Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate)
<p>Temperature protocol for isothermal cold-crystallization of PEF at various temperatures, <span class="html-italic">T<sub>c</sub></span>.</p> "> Figure 2
<p>DSC heating thermograms of cold-crystallized PEF and PEF granulate recorded at 10 °C/min. Thermograms shifted vertically for clarity. Dashed lines indicate changes of melting temperatures (<span class="html-italic">T</span><sub>m1</sub>, <span class="html-italic">T</span><sub>s</sub>, and <span class="html-italic">T</span><sub>m2</sub>) dependent on cold-crystallization temperature.</p> "> Figure 3
<p>Melting temperatures, <span class="html-italic">T</span><sub>m1</sub>, <span class="html-italic">T</span><sub>m2</sub>, and <span class="html-italic">T</span><sub>s,</sub> of isothermally cold-crystallized PEF samples vs. crystallization temperature, <span class="html-italic">T</span><sub>c</sub>.</p> "> Figure 4
<p>Comparison of heating thermograms, recorded at 10 °C/min, of specimens isothermally crystallized at temperature <span class="html-italic">T<sub>c</sub></span> of 150 °C and 160 °C for 1 h and 12 h. Thermograms shifted vertically for clarity.</p> "> Figure 5
<p>Comparison of DSC heating thermograms recorded at 10 °C/min of cold-crystallized C130, C140, C150, and C160 (black lines) and their re-heated counterparts C130a (<span class="html-italic">T</span><sub>a</sub> = 170 °C, <span class="html-italic">t</span><sub>a</sub> = 15 s), C140a (<span class="html-italic">T</span><sub>a</sub> = 172 °C, <span class="html-italic">t</span><sub>a</sub> = 30 s), C150a (<span class="html-italic">T</span><sub>a</sub> = 184 °C, <span class="html-italic">t</span><sub>a</sub> = 30 s), and C160a (<span class="html-italic">T</span><sub>a</sub> = 187 °C, <span class="html-italic">t</span><sub>a</sub> = 30 s) (red lines). Thermograms shifted vertically for clarity.</p> "> Figure 6
<p>TGA and DTGA thermograms of PEF granulate, qPEF, and C180 recorded during heating at 20 °C/min in a nitrogen atmosphere and in air.</p> "> Figure 7
<p>PLM micrographs of thin PEF films cold-crystallized isothermally at different temperatures, <span class="html-italic">T</span><sub>c</sub>. Amorphous C100 sample shown for comparison.</p> "> Figure 8
<p>SEM images of etched cryofracture surfaces of PEF cold-crystallized isothermally at different temperatures, <span class="html-italic">T</span><sub>c</sub>, and PEF granule for comparison.</p> "> Figure 9
<p>WAXS curves of qPEF, C100 and PEF cold-crystallized at different temperatures <span class="html-italic">T</span><sub>c</sub>. WAXS curves shifted vertically for clarity.</p> "> Figure 10
<p>Comparison of WAXS curves of C130<span class="html-italic">,</span> re-heated C130a and C130a* held at <span class="html-italic">T</span><sub>a</sub> = 170 °C for 15 s and 1 h, respectively, and then quickly quenched to RT. WAXS curves shifted vertically for clarity.</p> "> Figure 11
<p>SAXS-2D patterns of PEF cold-crystallized isothermally at temperatures, <span class="html-italic">T</span><sub>c</sub>, ranging from 120 °C to 180 °C, and PEF powdered granules for comparison.</p> "> Figure 12
<p>Kratky plots, <span class="html-italic">Iq</span><sup>2</sup> vs. <span class="html-italic">q</span>, where: <span class="html-italic">I</span> is scattering intensity; and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>4</mn> <mi>π</mi> <mrow> <mrow> <mi mathvariant="normal"> sin</mi> </mrow> <mo></mo> <mrow> <mi>θ</mi> </mrow> </mrow> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math>, <span class="html-italic">λ</span> is wavelength, for cold-crystallized PEF and PEF granulate. Plot for C100 shown for comparison.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation
2.3. Crystallization
2.4. Characterization
3. Results and Discussion
3.1. Thermal Properties
3.2. Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Jong, E.; Dam, M.A.; Sipos, L.; Gruter, G.J.M. Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters. ACS Symp. Ser. 2012, 1105, 1–13. [Google Scholar] [CrossRef]
- Knoop, R.J.I.; Vogelzang, W.; van Haveren, J.; van Es, D.S. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4191–4199. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Tsanaktsis, V.; Bikiaris, D.N. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: Thermal behavior comparison with PET and PEN. Phys. Chem. Chem. Phys. 2014, 16, 7946–7958. [Google Scholar] [CrossRef] [PubMed]
- Chebbi, Y.; Kasmi, N.; Majdoub, M.; Papageorgiou, G.Z.; Achilias, D.S.; Bikiaris, D.N. Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase. Polymers 2019, 11, 438. [Google Scholar] [CrossRef]
- Morales-Huerta, J.C.; de Ilarduya, A.M.; Muñoz-Guerra, S. Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer 2016, 87, 148–158. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Hohl, D.K.; Fleckenstein, P.; Storti, G.; Morbidelli, M. Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nat. Commun. 2018, 9, 2701. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Papageorgiou, D.G.; Terzopoulou, Z.; Bikiaris, D.N. Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229. [Google Scholar] [CrossRef]
- Piorkowska, E. Overview of Biobased Polymers. Adv. Polym. Sci. 2019, 283, 1–35. [Google Scholar] [CrossRef]
- Hollman, E. PEF Is the New PET. Innovation Origins. 2022. Available online: https://innovationorigins.com/en/pef-is-the-new-pet/ (accessed on 8 February 2022).
- Burgess, S.K.; Leisen, J.E.; Kraftschik, B.E.; Mubarak, C.R.; Kriegel, R.M.; Koros, W.J. Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate). Macromolecules 2014, 47, 1383–1391. [Google Scholar] [CrossRef]
- Forestier, E.; Combeaud, C.; Guigo, N.; Corvec, G.; Pradille, C.; Sbirrazzuoli, N.; Billon, N. Comparative Analysis of the Mechanical Behaviour of PEF and PET Uniaxial Stretching Based on the Time/Temperature Superposition Principle. Polymers 2021, 13, 3295. [Google Scholar] [CrossRef]
- Codou, A.; Moncel, M.; van Berkel, J.G.; Guigo, N.; Sbirrazzuoli, N. Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Phys. Chem. Chem. Phys. 2016, 18, 16647–16658. [Google Scholar] [CrossRef]
- Wang, J.G.; Liu, X.Q.; Zhang, Y.J.; Liu, F.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1–8. [Google Scholar] [CrossRef]
- Burgess, S.K.; Karvan, O.; Johnson, J.R.; Kriegel, R.M.; Koros, W.J. Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer 2014, 55, 4748–4756. [Google Scholar] [CrossRef]
- Burgess, S.K.; Kriegel, R.M.; Koros, W.J. Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193. [Google Scholar] [CrossRef]
- Burgess, S.K.; Mikkilineni, D.S.; Yu, D.B.; Kim, D.J.; Mubarak, C.R.; Kriegel, R.M.; Koros, W.J. Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: Kinetic sorption. Polymer 2014, 55, 6870–6882. [Google Scholar] [CrossRef]
- Svyntkivska, M.; Makowski, T.; de Boer, E.L.; Piorkowska, E. Solution electrospinning and properties of poly(ethylene 2,5-furandicarboxylate) fibers. Polym. Test. 2022, 113, 107677. [Google Scholar] [CrossRef]
- Svyntkivska, M.; Makowski, T.; Pawlowska, R.; Kregiel, D.; de Boer, E.L.; Piorkowska, E. Cytotoxicity studies and antibacterial modification of poly(ethylene 2,5-furandicarboxylate) nonwoven. Colloid. Surface B 2024, 233, 113609. [Google Scholar] [CrossRef]
- Kazaryan, L.G.; Medvedeva, F.M. X-ray study of poly (ethylene furan-2,5-dicarboxylate) structure. Vysok. Soedin. Ser. B 1968, 10, 305. [Google Scholar]
- Stoclet, G.; du Sart, G.G.; Yeniad, B.; de Vos, S.; Lefebvre, J.M. Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate). Polymer 2015, 72, 165–176. [Google Scholar] [CrossRef]
- Mao, Y.M.; Kriegel, R.M.; Bucknall, D.G. The crystal structure of poly(ethylene furanoate). Polymer 2016, 102, 308–314. [Google Scholar] [CrossRef]
- Lotti, N.; Munari, A.; Gigli, M.; Gazzano, M.; Tsanaktsis, V.; Bikiaris, D.N.; Papageorgiou, G.Z. Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites. Polymer 2016, 103, 288–298. [Google Scholar] [CrossRef]
- Maini, L.; Gigli, M.; Gazzano, M.; Lotti, N.; Bikiaris, D.N.; Papageorgiou, G.Z. Structural Investigation of Poly(ethylene furanoate) Polymorphs. Polymers 2018, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Righetti, M.C.; Vannini, M.; Celli, A.; Cangialosi, D.; Marega, C. Bio-based semi-crystalline PEF: Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in relation to crystallization. Polymer 2022, 247, 124771. [Google Scholar] [CrossRef]
- Tsanaktsis, V.; Papageorgiou, D.G.; Exarhopoulos, S.; Bikiaris, D.N.; Papageorgiou, G.Z. Crystallization and Polymorphism of Poly(ethylene furanoate). Cryst. Growth Des. 2015, 15, 5505–5512. [Google Scholar] [CrossRef]
- Codou, A.; Guigo, N.; van Berkel, J.; de Jong, E.; Sbirrazzuoli, N. Non-isothermal Crystallization Kinetics of Biobased Poly(ethylene 2,5-furandicarboxylate) Synthesized via the Direct Esterification Process. Macromol. Chem. Phys. 2014, 215, 2065–2074. [Google Scholar] [CrossRef]
- ASTM D4603; Standard Test Method for Determining Inherent Viscosity of Poly(Ethylene Terephthalate) (PET) by Glass Capillary Viscometer. ASTM International: West Conshohocken, PA, USA, 2018.
- Stanley, J.; Xanthopoulou, E.; Finsgar, M.; Zemljic, L.F.; Klonos, P.A.; Kyritsis, A.; Koltsakidis, S.; Tzetzis, D.; Lambropoulou, D.A.; Baciu, D.; et al. Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications. Polymers 2023, 15, 4502. [Google Scholar] [CrossRef]
- Gandini, A.; Silvestre, A.J.D.; Neto, C.P.; Sousa, A.F.; Gomes, M. The Furan Counterpart of Poly(ethylene terephthalate): An Alternative Material Based on Renewable Resources. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 295–298. [Google Scholar] [CrossRef]
- Solomon, O.F.; Ciutǎ, I.Z. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J. Appl. Polym. Sci. 1962, 6, 683–686. [Google Scholar] [CrossRef]
- Craubner, V.H. Zur berechnung der viskositätszahl aus einpunktmessungen. Makromol. Chem. 1966, 93, 24–32. [Google Scholar] [CrossRef]
- Cummins, C.; Mokarian-Tabari, P.; Holmes, J.D.; Morris, M.A. Selective Etching of Polylactic Acid in Poly(styrene)-Block-Poly(D,L)Lactide Diblock Copolymer for Nanoscale Patterning. J. Appl. Polym. Sci. 2014, 131, 40798. [Google Scholar] [CrossRef]
- Svyntkivska, M.; Makowski, T.; Shkyliuk, I.; Piorkowska, E. Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and modification with multiwall carbon nanotubes. Intern. J. Biol. Macromol. 2023, 242, 124730. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, D.; Gehde, M. The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization. Polymers 2022, 14, 793. [Google Scholar] [CrossRef] [PubMed]
- Hamonic, F.; Miri, V.; Saiter, A.; Dargent, E. Rigid amorphous fraction versus oriented amorphous fraction in uniaxially drawn polyesters. Eur. Polym. J. 2014, 58, 233–244. [Google Scholar] [CrossRef]
- Calleja, G.; Jourdan, A.; Ameduri, B.; Habas, J.P. Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. Eur. Polym. J. 2013, 49, 2214–2222. [Google Scholar] [CrossRef]
- Magon, A.; Pyda, M. Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer 2009, 50, 3967–3973. [Google Scholar] [CrossRef]
- Righetti, M.C.; Laus, M.; Di Lorenzo, M.L. Temperature dependence of the rigid amorphous fraction in poly(ethylene terephthalate). Eur. Polym. J. 2014, 58, 60–68. [Google Scholar] [CrossRef]
- Righetti, M.C.; Laus, M.; Di Lorenzo, M.L. Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym. Sci. 2014, 292, 1365–1374. [Google Scholar] [CrossRef]
- Aliotta, L.; Gazzano, M.; Lazzeri, A.; Righetti, M.C. Constrained Amorphous Interphase in Poly(L-lactic acid): Estimation of the Tensile Elastic Modulus. ACS Omega 2020, 5, 20890–20902. [Google Scholar] [CrossRef]
- Delpouve, N.; Stoclet, G.; Saiter, A.; Dargent, E.; Marais, S. Water Barrier Properties in Biaxially Drawn Poly(lactic acid) Films. J. Phys. Chem. B 2012, 116, 4615–4625. [Google Scholar] [CrossRef]
- Forestier, E.; Guigo, N.; Combeaud, C.; Billon, N.; Sbirrazzuoli, N. Conformational Change Analysis of Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene terephthalate) under Uniaxial Stretching. Macromolecules 2020, 53, 8693–8703. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Wahbi, M.; Kasmi, N.; Papageorgiou, G.Z.; Bikiaris, D.N. Effect of additives on the thermal and thermo-oxidative stability of poly (ethylene furanoate) biobased polyester. Thermochim. Acta 2020, 686, 178549. [Google Scholar] [CrossRef]
- Tsanaktsis, V.; Vouvoudi, E.; Papageorgiou, G.Z.; Papageorgiou, D.G.; Chrissafis, K.; Bikiaris, D.N. Thermal degradation kinetics and decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and low molecular weight aliphatic diols. J. Anal. Appl. Pyrol. 2015, 112, 369–378. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Karakatsianopoulou, E.; Kasmi, N.; Majdoub, M.; Papageorgiou, G.Z.; Bikiaris, D.N. Effect of catalyst type on recyclability and decomposition mechanism of poly (ethylene furanoate) biobased polyester. J. Anal. Appl. Pyrol. 2017, 126, 357–370. [Google Scholar] [CrossRef]
- Righetti, M.C.; Marchese, P.; Vannini, M.; Celli, A.; Lorenzetti, C.; Cavallo, D.; Ocando, C.; Müller, A.J.; Androsch, R. Polymorphism and Multiple Melting Behavior of Bio-Based Poly(propylene 2,5-furandicarboxylate). Biomacromolecules 2020, 21, 2622–2634. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, K.H.; Jin, B.S. Spherulitic morphologies of poly(ethylene terephthalate), poly(ethylene 2,6-naphthalate), and their blend. Macromol. Res. 2002, 10, 44–48. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Goderis, B.; Reynaers, H.; Koch, M.H.J.; Mathot, V.B.F. Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J. Polym. Sci. Pol. Phys. 1999, 37, 1715–1738. [Google Scholar] [CrossRef]
- Mao, Y.M.; Bucknall, D.G.; Kriegel, R.M. Simultaneous WAXS/SAXS study on semi-crystalline Poly(ethylene furanoate) under uniaxial stretching. Polymer 2018, 143, 228–236. [Google Scholar] [CrossRef]
Sample | Tg (°C) | Tm1 (°C) | ΔHm1 (J/g) | Ts (°C) | Tm2 (°C) | ΔHm2 (J/g) | ΔHmc (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|
C120 | 89 | 141 | 5.8 | 192 * | 211 | 35.3 | 39.3 ** | 28.7 |
C130 | 88 | 150 | 7.0 | 193 * | 210 | 38.0 | 44.9 ** | 32.8 |
C140 | 88 | 160 | 8.8 | 197 * | 210 | 37.2 | 46.0 | 33.6 |
C150 | 89 | 168 | 10.1 * | 200 * | 209 | 38.8 | 48.9 | 35.7 |
C160 | 88 | 179 | 11.9 * | - | 205 | 40.8 * | 52.7 | 38.6 |
C170 | 88 | 191 | - | - | 207 | - | 54.4 | 39.7 |
C180 | 88 | 203 * | - | - | 212 | - | 56.3 | 40.7 |
PEF | 90 | - | - | - | 213 | - | 55.5 | 40.5 |
Sample | Nitrogen | Air | |||
---|---|---|---|---|---|
T5% (°C) | Td (°C) | T5% (°C) | Td1 (°C) | Td2 (°C) | |
PEF granulate | 384 | 417 | 380 | 410 | 540 |
qPEF | 386 | 419 | 380 | 411 | 512 |
C180 | 370 | 408 | 367 | 407 | 550 |
Sample | LP(K) (nm) | LP(c) (nm) | Lc(c) (nm) |
---|---|---|---|
C120 | 8.9 | 7.7 | 3.0 |
C130 | 9.1 | 8.1 | 3.0 |
C130a | 10.1 | 9.6 | 3.1 |
C140 | 9.5 | 8.6 | 3.1 |
C140a | 10.5 | 9.8 | 3.2 |
C150 | 10.0 | 9.5 | 3.2 |
C150a | 11.2 | 10.6 | 3.3 |
C160 | 10.6 | 10.0 | 3.3 |
C160a | 11.2 | 10.5 | 3.4 |
C170 | 11.1 | 10.2 | 3.4 |
C180 | 11.4 | 10.6 | 3.5 |
PEF granulate | 9.9 | 9.6 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, M.; Bojda, J.; Svyntkivska, M.; Makowski, T.; de Boer, E.L.; Piorkowska, E. Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate). Polymers 2024, 16, 3052. https://doi.org/10.3390/polym16213052
Pluta M, Bojda J, Svyntkivska M, Makowski T, de Boer EL, Piorkowska E. Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate). Polymers. 2024; 16(21):3052. https://doi.org/10.3390/polym16213052
Chicago/Turabian StylePluta, Miroslaw, Joanna Bojda, Mariia Svyntkivska, Tomasz Makowski, Ele L. de Boer, and Ewa Piorkowska. 2024. "Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate)" Polymers 16, no. 21: 3052. https://doi.org/10.3390/polym16213052
APA StylePluta, M., Bojda, J., Svyntkivska, M., Makowski, T., de Boer, E. L., & Piorkowska, E. (2024). Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate). Polymers, 16(21), 3052. https://doi.org/10.3390/polym16213052