Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches
<p>Schematic illustration showing the general approach of stacked layers (<b>a</b>), the high temperature approach (<b>b</b>) and the BaS<sub>3</sub> based approach (<b>c</b>).</p> "> Figure 2
<p>Schematic of the oven setup used for sulfurization showing the positions of the various instruments.</p> "> Figure 3
<p>XRD of Sample 1 annealed at high temperature (1100 °C) showing a match with BZS and other secondary phases. The inlet is a macroscopic image of the same sample showing the ablated parts and the sub-optimal surface structure.</p> "> Figure 4
<p>Comparison of microscope images of previously fabricated BaS<sub>3</sub> samples ((<b>a</b>–<b>d</b>), reused with permission from [<a href="#B49-crystals-14-00267" class="html-bibr">49</a>]) and BaS<sub>3</sub> samples fabricated as part of this study (<b>e</b>–<b>h</b>). The microstructures of Samples 2 (<b>a</b>), 3 (<b>b</b>) and 4 (<b>c</b>,<b>d</b>) have larger defects and bulges than Samples 5 (<b>e</b>), 6 (<b>f</b>), 7 (<b>g</b>) and 8 (<b>h</b>). The different colors in (<b>e</b>–<b>h</b>) are not accurate to reality and are caused by differences in the white balance.</p> "> Figure 5
<p>SEM images of Sample 10 (<b>a</b>,<b>c</b>) and Sample 9 (<b>b</b>,<b>d</b>) showing the surface of BaS and BaS<sub>3</sub> films, respectively, in top (<b>a</b>,<b>b</b>) and cross-sectional (<b>c</b>,<b>d</b>) view.</p> "> Figure 6
<p>The XRD pattern (black) of Sample 12 annealed for 10 min shows a good match with the BaS<sub>2</sub> reference pattern in red (<b>a</b>), whereas Sample 13 annealed for 15 min matches with BaS<sub>3</sub> (<b>b</b>). The Temperature curves for Samples 12 and 9 annealed for 10 (<b>c</b>) and 30 min (<b>d</b>), respectively, demonstrate, that a temperature slightly above 300 °C is needed to obtain a BaS<sub>3</sub> film. The sample temperatures are displayed in blue, whereas the oven temperature is displayed in orange.</p> "> Figure 7
<p>(<b>a</b>) XRD spectrum of Sample 16 annealed in rapid thermal processing, showing good match with the BaS<sub>3</sub> reference pattern (red lines). (<b>b</b>) Temperature curve for the same sample (blue line) showing the rise in temperature up to 420 °C even after exertion of the sample after 1:30 min. The oven temperature (orange line) was set to 660 °C and only slightly drops during the process.</p> "> Figure 8
<p>The microscope images of rapidly annealed BaS<sub>3</sub> film samples show a similar microstructure to those annealed for 30 min. (<b>a</b>,<b>b</b>) show Sample 15, (<b>c</b>,<b>d</b>) show Samples 16 and 17, respectively.</p> "> Figure A1
<p>BaS film (Sample 10, (<b>a</b>)) and BaS<sub>3</sub> film (Sample 9, (<b>b</b>)) cross-sections additionally used for the determination of the film thicknesses.</p> "> Figure A2
<p>Areas used for EDX measurements (<b>a</b>,<b>b</b>) and the resulting spectra (<b>c</b>,<b>d</b>) for a BaS film (Sample 10, (<b>a</b>,<b>c</b>)) and a BaS<sub>3</sub> film (Sample 9, (<b>b</b>,<b>d</b>)).</p> "> Figure A3
<p>XRD patterns of BaS3 Samples 15, 17 and 18 annealed in the rapid processing route (<b>a</b>) and their respective temperature curves with the sample temperature in blue and the oven temperature in orange (<b>b</b>–<b>d</b>).</p> ">
Abstract
:1. Introduction
1.1. History and Overview of Bulk and Thin Film Synthesis of Chalcogenide Perovskites
1.2. Synthesis of Chalcogenide Perovskites from Stacked Layers and BaS3
2. Materials and Methods
3. Results
3.1. BaZrS3 Films from High Temperature Annealing
3.2. Improved Microstructure and Reduced Synthesis Temperature of BaS3 Films
3.3. Attempts of Rapid Synthesis of BaS3 Films
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Swarnkar, A.; Mir, W.J.; Chakraborty, R.; Jagadeeswararao, M.; Sheikh, T.; Nag, A. Are Chalcogenide Perovskites an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell? Chem. Mater. 2019, 31, 565–575. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Agiorgousis, M.L.; Zhang, P.; Zhang, S. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Sopiha, K.V.; Comparotto, C.; Márquez, J.A.; Scragg, J.J.S. Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials. Adv. Opt. Mater. 2021, 10, 2101704. [Google Scholar] [CrossRef]
- Ye, K.; Koocher, N.Z.; Filippone, S.; Niu, S.; Zhao, B.; Yeung, M.; Bone, S.; Robinson, A.J.; Vora, P.; Schleife, A.; et al. Low-energy electronic structure of perovskite and Ruddlesden-Popper semiconductors in the Ba-Zr-S system probed by bond-selective polarized x-ray absorption spectroscopy, infrared reflectivity, and Raman scattering. Phys. Rev. B 2022, 105, 195203. [Google Scholar] [CrossRef]
- Ye, K.; Zhao, B.; Diroll, B.T.; Ravichandran, J.; Jaramillo, R. Time-resolved photoluminescence studies of perovskite chalcogenides. Faraday Discuss 2022, 239, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Surendran, M.; Chen, H.; Zhao, B.; Thind, A.S.; Singh, S.; Orvis, T.; Zhao, H.; Han, J.-K.; Htoon, H.; Kawasaki, M.; et al. Epitaxial Thin Films of a Chalcogenide Perovskite. Chem. Mater. 2021, 33, 7457–7464. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Y.; Xu, J.; Ma, J.; Jiang, H.; Li, X.; Zhang, B.; Chen, X.; Tian, Y.; Han, Y.; et al. Parametric study on controllable growth of SrZrS3 thin films with good conductivity for photodetectors. Nano Res. 2023, 16, 7867–7873. [Google Scholar] [CrossRef]
- Marquez, J.A.; Rusu, M.; Hempel, H.; Ahmet, I.Y.; Kolbach, M.; Simsek, I.; Choubrac, L.; Gurieva, G.; Gunder, R.; Schorr, S.; et al. BaZrS3 Chalcogenide Perovskite Thin Films by H2S Sulfurization of Oxide Precursors. J. Phys. Chem. Lett. 2021, 12, 2148–2153. [Google Scholar] [CrossRef]
- Shaili, H.; Beraich, M.; El hat, A.; Ouafi, M.; Salmani, E.M.; Essajai, R.; Battal, W.; Rouchdi, M.; Taibi, M.H.; Hassanain, N.; et al. Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications. J. Alloys Compd. 2021, 851, 156790. [Google Scholar] [CrossRef]
- Yu, Z.; Deng, C.; Kong, S.; Hui, H.; Guo, J.; Zhao, Q.; Tian, F.; Zhou, C.; Zhang, Y.; Yang, S.; et al. Transition Metal-Doped Chalcogenide Perovskite Magnetic Semiconductor BaZrS3. SSRN Electron. J. 2022, 563, 169886. [Google Scholar] [CrossRef]
- Pandey, J.; Ghoshal, D.; Dey, D.; Gupta, T.; Taraphder, A.; Koratkar, N.; Soni, A. Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films. Phys. Rev. B 2020, 102, 205308. [Google Scholar] [CrossRef]
- Gupta, T.; Ghoshal, D.; Yoshimura, A.; Basu, S.; Chow, P.K.; Lakhnot, A.S.; Pandey, J.; Warrender, J.M.; Efstathiadis, H.; Soni, A.; et al. An Environmentally Stable and Lead-Free Chalcogenide Perovskite. Adv. Funct. Mater. 2020, 30, 2001387. [Google Scholar] [CrossRef]
- Hahn, H.; Mutschke, U. Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Für Anorg. Und Allg. Chem. 1957, 288, 269–278. [Google Scholar] [CrossRef]
- Wang, Y.; Sato, N.; Yamada, K.; Fujino, T. Synthesis of BaZrS3 in the presence of excess sulfur. J. Alloys Compd. 2000, 311, 214–223. [Google Scholar] [CrossRef]
- Wang, Y.; Sato, N.; Fujino, T. Synthesis of BaZrS3 by short time reaction at lower temperatures. J. Alloys Compd. 2001, 327, 104–112. [Google Scholar] [CrossRef]
- Niu, S.; Huyan, H.; Liu, Y.; Yeung, M.; Ye, K.; Blankemeier, L.; Orvis, T.; Sarkar, D.; Singh, D.J.; Kapadia, R.; et al. Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides. Adv. Mater. 2017, 29, 1604733. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Milam-Guerrero, J.; Zhou, Y.; Ye, K.; Zhao, B.; Melot, B.C.; Ravichandran, J. Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 2018, 33, 4135–4143. [Google Scholar] [CrossRef]
- Niu, S.; Zhao, B.; Ye, K.; Bianco, E.; Zhou, J.; McConney, M.E.; Settens, C.; Haiges, R.; Jaramillo, R.; Ravichandran, J. Crystal growth and structural analysis of perovskite chalcogenide BaZrS3 and Ruddlesden–Popper phase Ba3Zr2S7. J. Mater. Res. 2019, 34, 3819–3826. [Google Scholar] [CrossRef]
- Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 1963, 16, 135–142. [Google Scholar] [CrossRef]
- Nitta, T.; Nagase, K.; Hayakawa, S. Formation, Microstructure, and Properties of Barium Zirconium Sulfide Ceramics. J. Am. Ceram. Soc. 1970, 53, 601–604. [Google Scholar] [CrossRef]
- Lelieveld, R.; Ijdo, D.J.W. Sulphides with the GdFeO3 structure. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1980, 36, 2223–2226. [Google Scholar] [CrossRef]
- Bystricky, R.; Tiwari, S.K.; Hutar, P.; Vanco, L.; Sykora, M. Synthesis of Sulfide Perovskites by Sulfurization with Boron Sulfides. Inorg. Chem. 2022, 61, 18823–18827. [Google Scholar] [CrossRef]
- Gross, N.; Sun, Y.-Y.; Perera, S.; Hui, H.; Wei, X.; Zhang, S.; Zeng, H.; Weinstein, B.A. Stability and Band-Gap Tuning of the Chalcogenide Perovskite BaZrS3 in Raman and Optical Investigations at High Pressures. Phys. Rev. Appl. 2017, 8, 044014. [Google Scholar] [CrossRef]
- Wei, X.; Hui, H.; Perera, S.; Sheng, A.; Watson, D.F.; Sun, Y.Y.; Jia, Q.; Zhang, S.; Zeng, H. Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics. ACS Omega 2020, 5, 18579–18583. [Google Scholar] [CrossRef]
- Ramanandan, S.P.; Giunto, A.; Stutz, E.Z.; Reynier, B.; Lefevre, I.T.F.M.; Rusu, M.; Schorr, S.; Unold, T.; Morral, A.F.I.; Márquez, J.A.; et al. Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. J. Phys. Energy 2022, 5, 014013. [Google Scholar] [CrossRef]
- Sharma, S.; Ward, Z.; Bhimani, K.; Li, K.; Lakhnot, A.; Jain, R.; Shi, S.-F.; Terrones, H.; Koratkar, N. Bandgap Tuning in BaZrS3 Perovskite Thin Films. ACS Appl. Electron. Mater. 2021, 3, 3306–3312. [Google Scholar] [CrossRef]
- Sharma, S.; Ward, Z.D.; Bhimani, K.; Sharma, M.; Quinton, J.; Rhone, T.D.; Shi, S.F.; Terrones, H.; Koratkar, N. Machine Learning-Aided Band Gap Engineering of BaZrS3 Chalcogenide Perovskite. ACS Appl. Mater. Interfaces 2023, 15, 18962–18972. [Google Scholar] [CrossRef] [PubMed]
- Comparotto, C.; Davydova, A.; Ericson, T.; Riekehr, L.; Moro, M.V.; Kubart, T.; Scragg, J. Chalcogenide Perovskite BaZrS3: Thin Film Growth by Sputtering and Rapid Thermal Processing. ACS Appl. Energy Mater. 2020, 3, 2762–2770. [Google Scholar] [CrossRef]
- Comparotto, C.; Ström, P.; Donzel-Gargand, O.; Kubart, T.; Scragg, J.J.S. Synthesis of BaZrS3 Perovskite Thin Films at a Moderate Temperature on Conductive Substrates. ACS Appl. Energy Mater. 2022, 5, 6335–6343. [Google Scholar] [CrossRef]
- Sadeghi, I.; Ye, K.; Xu, M.; Li, Y.; LeBeau, J.M.; Jaramillo, R. Making BaZrS3 Chalcogenide Perovskite Thin Films by Molecular Beam Epitaxy. Adv. Funct. Mater. 2021, 31, 2105563. [Google Scholar] [CrossRef]
- Sadeghi, I.; Sambeek, J.V.; Simonian, T.; Ye, K.; Nicolosi, V.; LeBeau, J.M.; Jaramillo, R. A new semiconducting perovskite alloy system made possible by gas-source molecular beam epitaxy. arXiv 2022, arXiv:2211.10787. [Google Scholar]
- Surendran, M.; Zhao, B.; Ren, G.; Singh, S.; Avishai, A.; Chen, H.; Han, J.-K.; Kawasaki, M.; Mishra, R.; Ravichandran, J. Quasi-epitaxial growth of BaTiS3 films. J. Mater. Res. 2022, 37, 3481–3490. [Google Scholar] [CrossRef]
- Ravi, V.K.; Yu, S.H.; Rajput, P.K.; Nayak, C.; Bhattacharyya, D.; Chung, D.S.; Nag, A. Colloidal BaZrS3 Chalcogenide Perovskite Nanocrystals for Thin Film Device Fabrication. Nanoscale 2021, 13, 1616–1623. [Google Scholar] [CrossRef]
- Dhole, S.; Wei, X.; Hui, H.; Roy, P.; Corey, Z.; Wang, Y.; Nie, W.; Chen, A.; Zeng, H.; Jia, Q. A Facile Aqueous Solution Route for the Growth of Chalcogenide Perovskite BaZrS3 Films. Photonics 2023, 10, 366. [Google Scholar] [CrossRef]
- Turnley, J.W.; Vincent, K.C.; Pradhan, A.A.; Panicker, I.; Swope, R.; Uible, M.C.; Bart, S.C.; Agrawal, R. Solution Deposition for Chalcogenide Perovskites: A Low-Temperature Route to BaMS3 Materials (M = Ti, Zr, Hf). J. Am. Chem. Soc. 2022, 144, 18234–18239. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Uible, M.C.; Agarwal, S.; Turnley, J.W.; Khandelwal, S.; Peterson, J.M.; Blach, D.D.; Swope, R.N.; Huang, L.; Bart, S.C.; et al. Synthesis of BaZrS3 and BaHfS3 Chalcogenide Perovskite Films Using Single-Phase Molecular Precursors at Moderate Temperatures. Angew. Chem. Int. Ed. 2023, 62, e202301049. [Google Scholar] [CrossRef]
- Nwambaekwe, K.C.; John-Denk, V.S.; Douman, S.F.; Mathumba, P.; Yussuf, S.T.; Uhuo, O.V.; Ekwere, P.I.; Iwuoha, E.I. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell. J. Mater. Res. Technol. 2021, 12, 1252–1287. [Google Scholar] [CrossRef]
- Künecke, U.; Hetzner, C.; Möckel, S.; Yoo, H.; Hock, R.; Wellmann, P. Characterization of kesterite thin films fabricated by rapid thermal processing of stacked elemental layers using spatially resolved cathodoluminescence. Thin Solid Film. 2015, 582, 387–391. [Google Scholar] [CrossRef]
- Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann, W.; Friedlmeier, T.M. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2. Engineering 2017, 3, 445–451. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Hossain, E.S.; Chelvanathan, P.; Shahahmadi, S.A.; Bais, B.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. Fabrication of Cu2SnS3 thin film solar cells by sulphurization of sequentially sputtered Sn/CuSn metallic stacked precursors. Sol. Energy 2019, 177, 262–273. [Google Scholar] [CrossRef]
- Wibowo, R.A.; Moeckel, S.; Yoo, H.; Hoelzing, A.; Hock, R.; Wellmann, P.J. Formation of Cu2SnSe3 from stacked elemental layers investigated by combined In Situ X-ray diffraction and differential scanning calorimetry techniques. J. Alloys Compd. 2014, 588, 254–258. [Google Scholar] [CrossRef]
- Jung, G.S.; Mun, S.H.; Shin, D.; Chalapathy, R.B.V.; Ahn, B.T.; Kwon, H. Fabrication of a smooth, large-grained Cu(In,Ga)Se2 thin film using a Cu/(In,Ga)2Se3 stacked precursor at low temperature for CIGS solar cells. RSC Adv. 2015, 5, 7611–7618. [Google Scholar] [CrossRef]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. (Eds.) Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Kresse, R.; Baudis, U.; Jäger, P.; Riechers, H.H.; Wagner, H.; Winkler, J.; Wolf, H.U. Barium and Barium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Nielsen, R.H.; Wilfing, G. Zirconium and Zirconium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Dang, V.Q.; Al-Ali, K. The synthesis and investigation of the reversible conversion of layered ZrS2 and ZrS3. New J. Chem. 2020, 44, 7583–7590. [Google Scholar] [CrossRef]
- Steudel, R. Liquid Sulfur. In Elemental Sulfur and Sulfur-Rich Compounds I; Springer: Berlin/Heidelberg, Germany, 2003; pp. 81–116. [Google Scholar]
- Freund, T.; Cicconi, M.R.; Wellmann, P.J. Fabrication of Bariumtrisulphide Thin Films as Precursors for Chalcogenide Perovskites. Phys. Status Solidi B 2022, 259, 2200094. [Google Scholar] [CrossRef]
- Yang, R.; Jess, A.D.; Fai, C.; Hages, C.J. Low-Temperature, Solution-Based Synthesis of Luminescent Chalcogenide Perovskite BaZrS3 Nanoparticles. J. Am. Chem. Soc. 2022, 144, 15928–15931. [Google Scholar] [CrossRef]
- Yang, R.; Nelson, J.; Fai, C.; Yetkin, H.A.; Werner, C.; Tervil, M.; Jess, A.D.; Dale, P.J.; Hages, C.J. A Low-Temperature Growth Mechanism for Chalcogenide Perovskites. Chem. Mater. 2023, 35, 4743–4750. [Google Scholar] [CrossRef]
- Vincent, K.C.; Agarwal, S.; Turnley, J.W.; Agrawal, R. Liquid Flux–Assisted Mechanism for Modest Temperature Synthesis of Large-Grain BaZrS3 and BaHfS3 Chalcogenide Perovskites. Adv. Energy Sustain. Res. 2023, 4, 2300010. [Google Scholar] [CrossRef]
- Kollmuss, M.; La Via, F.; Wellmann, P.J. Effect of Growth Conditions on the Surface Morphology and Defect Density of CS-PVT-Grown 3C-SiC. Cryst. Res. Technol. 2023, 58, 2300034. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wu, X.C.; Tao, Y.R.; Mao, C.J.; Zhu, J.J. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays. Chem. Commun. 2008, 2683–2685. [Google Scholar] [CrossRef]
- Clearfield, A. The Synthesis and Properties of Zirconium Disulfide. J. Am. Chem. Soc. 1958, 80, 6511–6513. [Google Scholar] [CrossRef]
Sample Nr. | BaS Film Thickness [nm]. | Substrate | BaS Purity [%]. |
---|---|---|---|
1 | 350 | Si | 99.9 |
2 | 440 | Glass | 99.7 |
3 | 180 | Glass | 99.7 |
4 * | 970 | Glass | 99.7 |
5 | 400 | Glass | 99.9 |
6 | 235 | Glass | 99.9 |
7 | 235 | Glass | 99.9 |
8 | 235 | Glass | 99.9 |
9 | 395 | Si | 99.9 |
10 | 350 | Si | 99.9 |
11 | ~400 | Glass | 99.9 |
12 | ~400 | Glass | 99.9 |
13 | ~400 | Glass | 99.9 |
14 | ~400 | Glass | 99.9 |
15 | 415 | Glass | 99.9 |
16 | 415 | Glass | 99.9 |
17 | 415 | Glass | 99.9 |
18 | 415 | Glass | 99.9 |
Sample Nr | Set Temperature [°C]. | Annealing Time [min]. | Pressure [mbar]. | Sulfur Amount [mg]. |
---|---|---|---|---|
2 | 350 | 30 | 2.7 | 50 |
3 | 350 | 30 | 1.3 | 100 |
4 | 350 | 30 | 1.3 | 104 |
5 | 300 | 33 | 10 | 66 |
6 | 300 | 30 | ~0.04 1 | 74 |
7 | 300 | 30 | 10 | 64 |
8 | 300 | 30 | 35 2 | 81 |
9 | 300 | 30 | 10 | 74 |
11 | 300 | 5 | 10 | ~80 |
12 | 300 | 10 | 10 | ~80 |
13 | 300 | 15 | 10 | ~80 |
14 | 300 | 20 | 10 | ~80 |
15 | 660 | 2 | 10 | 110 |
16 | 660 | 1:30 | 10 | 80 |
17 | 660 | 1:25 | 10 3 | 106 |
18 | 660 | 1:10 | 10 4 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freund, T.; Jamshaid, S.; Monavvar, M.; Wellmann, P. Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches. Crystals 2024, 14, 267. https://doi.org/10.3390/cryst14030267
Freund T, Jamshaid S, Monavvar M, Wellmann P. Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches. Crystals. 2024; 14(3):267. https://doi.org/10.3390/cryst14030267
Chicago/Turabian StyleFreund, Tim, Sumbal Jamshaid, Milad Monavvar, and Peter Wellmann. 2024. "Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches" Crystals 14, no. 3: 267. https://doi.org/10.3390/cryst14030267
APA StyleFreund, T., Jamshaid, S., Monavvar, M., & Wellmann, P. (2024). Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches. Crystals, 14(3), 267. https://doi.org/10.3390/cryst14030267