Abstract
Perovskite chalcogenides have emerged as a new class of semiconductors with tunable band-gap in the visible-infrared region. High quality thin films are critical to understand the fundamental properties and realize the potential applications of these materials. We report growth of quasi-epitaxial thin films of quasi-one-dimensional hexagonal chalcogenide BaTiS3 by pulsed laser deposition. Optimal growth conditions were identified by varying the substrate temperature and H2S partial pressure and their effects on the film structure were examined. High-resolution thin film X-ray diffraction shows strong out-of-plane texture, whereas no evidence of in-plane relationship between the film and the substrate is observed. Grazing incidence wide-angle X-ray scattering and scanning transmission electron microscopy studies reveal the presence of weak epitaxial relationships of the film and the substrate, despite a defective interface. Our study opens up a pathway to realize quasi-1D hexagonal chalcogenide thin films and their heterostructures with perovskite chalcogenides.
Graphical abstract
Similar content being viewed by others
Data availability
The data are available from the corresponding authors of the article on reasonable request.
References
A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27(2), 59–210 (2003)
A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54(3), 136–154 (2011)
A. Rogalski, History of infrared detectors. Opto-Electron. Rev. (2012). https://doi.org/10.2478/s11772-012-0037-7
B.M. Walsh, H.R. Lee, N.P. Barnes, Mid infrared lasers for remote sensing applications. J. Lumin. 169, 400–405 (2016)
J. Feng, X. Yan, Y. Liu, H. Gao, Y. Wu, B. Su, L. Jiang, Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 29(16), 1605993 (2017)
B. Zeng, Z. Huang, A. Singh, Y. Yao, A.K. Azad, A.D. Mohite, A.J. Taylor, D.R. Smith, H.-T. Chen, Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Sci. Appl. (2018). https://doi.org/10.1038/s41377-018-0055-4
J. Wang, C. Jiang, W. Li, X. Xiao, Anisotropic low-dimensional materials for polarization-sensitive photodetectors: from materials to devices. Adv. Opt. Mater. 10(6), 2102436 (2022)
F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5458
Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019)
Y.Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Chalcogenide perovskites for photovoltaics. Nano Lett. 15(1), 581–585 (2015)
W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, Y. Yan, Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28(3), 821–829 (2016)
S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.-Y. Sun, S. Zhang, H. Zeng, Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016)
K.V. Sopiha, C. Comparotto, J.A. Márquez, J.J.S. Scragg, Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv. Opt. Mater. 10(3), 2101704 (2022)
S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29(9), 1604733 (2017)
S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, J. Ravichandran, Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12(7), 392–396 (2018)
B. Sun, S. Niu, R.P. Hermann, J. Moon, N. Shulumba, K. Page, B. Zhao, A.S. Thind, K. Mahalingam, J. Milam-Guerrero, R. Haiges, M. Mecklenburg, B.C. Melot, Y.D. Jho, B.M. Howe, R. Mishra, A. Alatas, B. Winn, M.E. Manley, J. Ravichandran, A.J. Minnich, High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals. Nat. Commun. 11(1), 6039 (2020)
J. Wu, X. Cong, S. Niu, F. Liu, H. Zhao, Z. Du, J. Ravichandran, P.H. Tan, H. Wang, Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 31(33), e1902118 (2019)
Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa, Y. Kato, H. Sai, H. Hiramatsu, H. Hosono, H. Fujiwara, Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol. RRL 4(5), 1900555 (2020)
M. Surendran, H. Chen, B. Zhao, A.S. Thind, S. Singh, T. Orvis, H. Zhao, J.-K. Han, H. Htoon, M. Kawasaki, R. Mishra, J. Ravichandran, Epitaxial thin films of a chalcogenide perovskite. Chem. Mater. 33(18), 7457–7464 (2021)
I. Sadeghi, K. Ye, M. Xu, Y. Li, J.M. Lebeau, R. Jaramillo, Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. 31(45), 2105563 (2021)
S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco, H. Huyan, S.B. Cronin, M.E. McConney, R. Haiges, R. Jaramillo, D.J. Singh, W.A. Tisdale, R. Kapadia, J. Ravichandran, Optimal bandgap in a 2D Ruddlesden-popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30(15), 4882–4886 (2018)
S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, J. Ravichandran, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33(24), 4135–4143 (2018)
S. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S.B. Cronin, H. Wang, J. Ravichandran, Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30(15), 4897–4901 (2018)
H. Chen, B. Zhao, E. Ergecen, J. Mutch, G.Y. Jung, Q. Song, C.A. Occhialini, G. Ren, S. Shabani, E. Seewald, S. Niu, J. Wu, N. Wang, M. Surendran, S. Singh, J. Luo, S. Ohtomo, G. Goh, B.C. Chakoumakos, S.J. Teat, B. Melot, H. Wang, D. Xiao, A.N. Pasupathy, R. Comin, R. Mishra, J.-H. Chu, N. Gedik, J. Ravichandran, Unconventional charge-density-wave order in a diluted-band semiconductor. https://arxiv.org/2207.11622 (2022)
A. Zhilyaev, T. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)
J.-K. Han, T. Herndon, J.-I. Jang, T.G. Langdon, M. Kawasaki, Synthesis of hybrid nanocrystalline alloys by mechanical bonding through high-pressure torsion. Adv. Eng. Mater. 22(4), 1901289 (2020)
B. Zhao, M.S.B. Hoque, G.Y. Jung, H. Mei, S. Singh, G. Ren, M. Milich, Q. Zhao, N. Wang, H. Chen, S. Niu, S.-J. Lee, C.-T. Kuo, J.-S. Lee, J.A. Tomko, H. Wang, M.A. Kats, R. Mishra, P.E. Hopkins, J. Ravichandran, Orientation-controlled anisotropy in single crystals of quasi-1D BaTiS3. Chem. Mater. 34(12), 5680–5689 (2022)
S.-W. Chan, Degenerate epitaxy, coincidence epitaxy and origin of “special” boundaries in thin films. J. Phys. Chem. Solids 55(10), 1137–1145 (1994)
M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), 2105290 (2021)
D. Liang, C. Dong, L. Cai, Z. Su, J. Zang, C. Wang, X. Wang, Y. Zou, Y. Li, L. Chen, L. Zhang, Z. Hong, A. El-Shaer, Z.K. Wang, X. Gao, B. Sun, Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics. Small 17(33), 2100972 (2021)
H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang, K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, J. Tang, Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Adv. Funct. Mater. 29(31), 1901720 (2019)
S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37(1–4), 14–38 (1991)
Acknowledgments
This work was supported in part by the Army Research Office under Award No. W911NF-19-1-0137, an ARO MURI program with award no. W911NF-21-1-0327, the National Science Foundation of the United States under grant numbers DMR-2122070 and DMR-2122071, and an Air Force Office of Scientific Research grant no. FA9550-22-1-0117. STEM characterization was conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory (ORNL), which is a Department of Energy (DOE) Office of Science User Facility, through a user project (G.D.R. and R.M.). The work of HPT processing at Oregon State University was supported by the National Science Foundation of the United States under Grant No. DMR-1810343. The authors gratefully acknowledge the use of facilities at the Core Center for Excellence in Nano Imaging at University of Southern California for the results reported in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Surendran, M., Zhao, B., Ren, G. et al. Quasi-epitaxial growth of BaTiS3 films. Journal of Materials Research 37, 3481–3490 (2022). https://doi.org/10.1557/s43578-022-00776-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00776-y