[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quasi-epitaxial growth of BaTiS3 films

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Perovskite chalcogenides have emerged as a new class of semiconductors with tunable band-gap in the visible-infrared region. High quality thin films are critical to understand the fundamental properties and realize the potential applications of these materials. We report growth of quasi-epitaxial thin films of quasi-one-dimensional hexagonal chalcogenide BaTiS3 by pulsed laser deposition. Optimal growth conditions were identified by varying the substrate temperature and H2S partial pressure and their effects on the film structure were examined. High-resolution thin film X-ray diffraction shows strong out-of-plane texture, whereas no evidence of in-plane relationship between the film and the substrate is observed. Grazing incidence wide-angle X-ray scattering and scanning transmission electron microscopy studies reveal the presence of weak epitaxial relationships of the film and the substrate, despite a defective interface. Our study opens up a pathway to realize quasi-1D hexagonal chalcogenide thin films and their heterostructures with perovskite chalcogenides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data are available from the corresponding authors of the article on reasonable request.

References

  1. A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27(2), 59–210 (2003)

    Article  CAS  Google Scholar 

  2. A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54(3), 136–154 (2011)

    Article  Google Scholar 

  3. A. Rogalski, History of infrared detectors. Opto-Electron. Rev. (2012). https://doi.org/10.2478/s11772-012-0037-7

    Article  Google Scholar 

  4. B.M. Walsh, H.R. Lee, N.P. Barnes, Mid infrared lasers for remote sensing applications. J. Lumin. 169, 400–405 (2016)

    Article  CAS  Google Scholar 

  5. J. Feng, X. Yan, Y. Liu, H. Gao, Y. Wu, B. Su, L. Jiang, Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 29(16), 1605993 (2017)

    Article  Google Scholar 

  6. B. Zeng, Z. Huang, A. Singh, Y. Yao, A.K. Azad, A.D. Mohite, A.J. Taylor, D.R. Smith, H.-T. Chen, Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Sci. Appl. (2018). https://doi.org/10.1038/s41377-018-0055-4

    Article  Google Scholar 

  7. J. Wang, C. Jiang, W. Li, X. Xiao, Anisotropic low-dimensional materials for polarization-sensitive photodetectors: from materials to devices. Adv. Opt. Mater. 10(6), 2102436 (2022)

    Article  CAS  Google Scholar 

  8. F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5458

    Article  Google Scholar 

  9. Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019)

    Article  CAS  Google Scholar 

  10. Y.Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Chalcogenide perovskites for photovoltaics. Nano Lett. 15(1), 581–585 (2015)

    Article  CAS  Google Scholar 

  11. W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, Y. Yan, Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28(3), 821–829 (2016)

    Article  CAS  Google Scholar 

  12. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.-Y. Sun, S. Zhang, H. Zeng, Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016)

    Article  CAS  Google Scholar 

  13. K.V. Sopiha, C. Comparotto, J.A. Márquez, J.J.S. Scragg, Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv. Opt. Mater. 10(3), 2101704 (2022)

    Article  CAS  Google Scholar 

  14. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29(9), 1604733 (2017)

    Article  Google Scholar 

  15. S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, J. Ravichandran, Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12(7), 392–396 (2018)

    Article  CAS  Google Scholar 

  16. B. Sun, S. Niu, R.P. Hermann, J. Moon, N. Shulumba, K. Page, B. Zhao, A.S. Thind, K. Mahalingam, J. Milam-Guerrero, R. Haiges, M. Mecklenburg, B.C. Melot, Y.D. Jho, B.M. Howe, R. Mishra, A. Alatas, B. Winn, M.E. Manley, J. Ravichandran, A.J. Minnich, High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals. Nat. Commun. 11(1), 6039 (2020)

    Article  CAS  Google Scholar 

  17. J. Wu, X. Cong, S. Niu, F. Liu, H. Zhao, Z. Du, J. Ravichandran, P.H. Tan, H. Wang, Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 31(33), e1902118 (2019)

    Article  Google Scholar 

  18. Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa, Y. Kato, H. Sai, H. Hiramatsu, H. Hosono, H. Fujiwara, Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol. RRL 4(5), 1900555 (2020)

    Article  CAS  Google Scholar 

  19. M. Surendran, H. Chen, B. Zhao, A.S. Thind, S. Singh, T. Orvis, H. Zhao, J.-K. Han, H. Htoon, M. Kawasaki, R. Mishra, J. Ravichandran, Epitaxial thin films of a chalcogenide perovskite. Chem. Mater. 33(18), 7457–7464 (2021)

    Article  CAS  Google Scholar 

  20. I. Sadeghi, K. Ye, M. Xu, Y. Li, J.M. Lebeau, R. Jaramillo, Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. 31(45), 2105563 (2021)

    Article  CAS  Google Scholar 

  21. S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco, H. Huyan, S.B. Cronin, M.E. McConney, R. Haiges, R. Jaramillo, D.J. Singh, W.A. Tisdale, R. Kapadia, J. Ravichandran, Optimal bandgap in a 2D Ruddlesden-popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30(15), 4882–4886 (2018)

    Article  CAS  Google Scholar 

  22. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, J. Ravichandran, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33(24), 4135–4143 (2018)

    Article  CAS  Google Scholar 

  23. S. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S.B. Cronin, H. Wang, J. Ravichandran, Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30(15), 4897–4901 (2018)

    Article  CAS  Google Scholar 

  24. H. Chen, B. Zhao, E. Ergecen, J. Mutch, G.Y. Jung, Q. Song, C.A. Occhialini, G. Ren, S. Shabani, E. Seewald, S. Niu, J. Wu, N. Wang, M. Surendran, S. Singh, J. Luo, S. Ohtomo, G. Goh, B.C. Chakoumakos, S.J. Teat, B. Melot, H. Wang, D. Xiao, A.N. Pasupathy, R. Comin, R. Mishra, J.-H. Chu, N. Gedik, J. Ravichandran, Unconventional charge-density-wave order in a diluted-band semiconductor. https://arxiv.org/2207.11622 (2022)

  25. A. Zhilyaev, T. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)

    Article  CAS  Google Scholar 

  26. J.-K. Han, T. Herndon, J.-I. Jang, T.G. Langdon, M. Kawasaki, Synthesis of hybrid nanocrystalline alloys by mechanical bonding through high-pressure torsion. Adv. Eng. Mater. 22(4), 1901289 (2020)

    Article  CAS  Google Scholar 

  27. B. Zhao, M.S.B. Hoque, G.Y. Jung, H. Mei, S. Singh, G. Ren, M. Milich, Q. Zhao, N. Wang, H. Chen, S. Niu, S.-J. Lee, C.-T. Kuo, J.-S. Lee, J.A. Tomko, H. Wang, M.A. Kats, R. Mishra, P.E. Hopkins, J. Ravichandran, Orientation-controlled anisotropy in single crystals of quasi-1D BaTiS3. Chem. Mater. 34(12), 5680–5689 (2022)

    Article  CAS  Google Scholar 

  28. S.-W. Chan, Degenerate epitaxy, coincidence epitaxy and origin of “special” boundaries in thin films. J. Phys. Chem. Solids 55(10), 1137–1145 (1994)

    Article  CAS  Google Scholar 

  29. M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), 2105290 (2021)

    Article  CAS  Google Scholar 

  30. D. Liang, C. Dong, L. Cai, Z. Su, J. Zang, C. Wang, X. Wang, Y. Zou, Y. Li, L. Chen, L. Zhang, Z. Hong, A. El-Shaer, Z.K. Wang, X. Gao, B. Sun, Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics. Small 17(33), 2100972 (2021)

    Article  CAS  Google Scholar 

  31. H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang, K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, J. Tang, Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Adv. Funct. Mater. 29(31), 1901720 (2019)

    Article  Google Scholar 

  32. S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37(1–4), 14–38 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Army Research Office under Award No. W911NF-19-1-0137, an ARO MURI program with award no. W911NF-21-1-0327, the National Science Foundation of the United States under grant numbers DMR-2122070 and DMR-2122071, and an Air Force Office of Scientific Research grant no. FA9550-22-1-0117. STEM characterization was conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory (ORNL), which is a Department of Energy (DOE) Office of Science User Facility, through a user project (G.D.R. and R.M.). The work of HPT processing at Oregon State University was supported by the National Science Foundation of the United States under Grant No. DMR-1810343. The authors gratefully acknowledge the use of facilities at the Core Center for Excellence in Nano Imaging at University of Southern California for the results reported in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakanth Ravichandran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendran, M., Zhao, B., Ren, G. et al. Quasi-epitaxial growth of BaTiS3 films. Journal of Materials Research 37, 3481–3490 (2022). https://doi.org/10.1557/s43578-022-00776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00776-y

Keywords

Navigation