Ba0.9A0.1MnO3 (A = Ce, La, Mg) Perovskite-Type Mixed Oxides: Effect of Partial Substitution of Ba on the Catalytic Performance for the Oxidation of CO in Simulated Automobile Exhaust Conditions
<p>(<b>a</b>) XRD patterns and (<b>b</b>) magnification of the 2θ diffraction angle corresponding to the main diffraction peak of the hexagonal 2H-BaMnO<sub>3</sub> phase.</p> "> Figure 2
<p>(<b>a</b>) H<sub>2</sub>-TPR profiles and (<b>b</b>) H<sub>2</sub> consumption (mL/g of catalyst).</p> "> Figure 3
<p>O<sub>2</sub>-TPD profiles.</p> "> Figure 4
<p>CO-TPR conversion profiles in (<b>a</b>) 1% CO + 1% O<sub>2</sub>, (<b>b</b>) 1% CO + 10% O<sub>2</sub> and (<b>c</b>) 0.1% CO + 1% O<sub>2</sub>.</p> "> Figure 4 Cont.
<p>CO-TPR conversion profiles in (<b>a</b>) 1% CO + 1% O<sub>2</sub>, (<b>b</b>) 1% CO + 10% O<sub>2</sub> and (<b>c</b>) 0.1% CO + 1% O<sub>2</sub>.</p> "> Figure 5
<p>CO conversion profiles at 300 °C in 1% CO + 1% O<sub>2.</sub></p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Catalysts
2.2. Characterization
- I.
- Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), to determine the elemental composition. To obtain the solution needed for the analysis, a mixture of 5 mL of aqua regia and 10 mL of distilled water was used to dissolve 10 mg of catalyst. The analysis was performed in a PerkinElmer device, the Optimal 4300 DV (Waltham, MA, USA).
- II.
- N2 adsorption at −196 °C, carried out in an Autosorb-6B device from Quanta chrome (Anton Paar Austria GmbH, Graz, Austria), to obtain the specific surface area. Before the N2 adsorption tests, the solids were degassed at 250 °C for 4 h.
- III.
- X-Ray Diffraction (XRD) to identify the crystalline structure. The X-ray patterns were recorded with a Bruker D8-Advance device (Billerica, MA, USA), employing Cu Kα radiation at a step rate of 0.4°/min between 20° and 80° 2θ angles.
- IV.
- Temperature-Programmed Reduction with H2 (H2-TPR), to test the reducibility. These tests were developed in a Pulse Chemisorb 2705 (from Micromeritics, Norcross, GA, USA) provided with a Thermal Conductivity Detector (TCD) for determining the change in the thermal conductivity of the gaseous mixture, which is exclusively due to the decrease in the H2 amount (by its consumption during the reduction of samples), as the effect due to the water vapor (generated as oxidation product) has been avoided by its condensation before the entrance to the TCD. To develop the tests, 30 mg of a sample was heated at 10 °C/min from 25 °C to 1000 °C in a 5% H2/Ar environment (40 mL/min). Copper (II) oxide (CuO, 99.9% purity, Sigma-Aldrich) was employed as reference to quantify the amount of H2 consumed.
- V.
- Temperature-Programmed Desorption of O2 (O2-TPD) experiments, to estimate the O2 evolved from the samples. These studies were conducted using a Thermal Gravimetric Mass Spectrometry system (TG-MS, Q-600-TA, and Thermostar from Balzers Instruments (Pfeiffer Vacuum GmbH, Germany and Balzers, Liechtenstein), and 16 mg of sample heated at 10 °C/min from room temperature to 950 °C in a 100 mL/min He gas flow. All samples underwent a 1 h preheating process at 150 °C to remove moisture before testing. For the quantification of evolved H2O, CO, O2, and CO2, the 18, 28, 32, and 44 m/z signals were analyzed. A CuO reference sample (CuO, 99.9% purity, Sigma-Aldrich) was employed to calculate the amount of generated oxygen.
2.3. Activity Tests
3. Results and Discussion
3.1. Characterization
3.2. Catalytic Activity
- (i)
- In 1% CO + 1% O2, BM-La is the best catalyst as it presents the highest lowering of T50% (the most negative value of ∆T50%) respect to BM (see Table 3).
- (ii)
- In 1% CO + 10% O2, in the presence of an excess of oxygen in the reaction atmosphere respect to (i), both BM-La and BM-Mg present a similar performance.
- (iii)
- In 0.1% CO + 10% O2, which was the lowest CO/O2 ratio reactant mixture tested, the three samples feature a more similar performance.
- -
- the Langmuir-Hinshelwood (LH) mechanism, which involves the adsorption of CO and O2 molecules, followed by their reaction to form OOCO intermediates [13]. This step is considered the rate-limiting one of the oxidation processes.
- -
- the Eley-Rideal (ER) mechanism, in which the activated (adsorbed) O2 molecules combine directly with the CO molecules in the gas phase, being the activation of O2 the rate-limiting step.
4. Conclusions
- ➢
- Despite the partial substitution of Ba with Ce, La, or Mg, the mixed oxides maintain the hexagonal BaMnO3 perovskite structure.
- ➢
- The partial substitution of Ba by Ce, La, or Mg seems to enhance the mobility of oxygen and the reducibility of the samples, BM-La being the most reducible sample and the unique evolving oxygen at intermediate temperatures (α’-O2).
- ➢
- All perovskites-type mixed oxides catalyze CO oxidation under the different reactant mixtures tested, showing the lowest T50% values for the lowest CO/O2 ratio gas mixture used (0.1% CO + 10% O2).
- ➢
- The samples do not suffer an appreciable deactivation during reaction at 300 °C, so, a long lifetime is expected when they would be used as catalysts for CO oxidation. Additionally, since a higher percentage of CO conversion was achieved for BM-A composition than for BM, it is confirmed that the partial substitution of Ba cation by Ce, La, or Mg is effective to improve the catalytic performance of raw BM samples. BM-La is the most effective catalyst as it is the most reducible and because it evolves α’-O2.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dey, S.; Mehta, N.S. Automobile Pollution Control Using Catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Bhandwal, M.; Tyagi, R.K. A New Method to Reduce the Harmful Gases and Particulate Matter Emitted from the Vehicles. Mater. Today Proc. 2022, 56, 3623–3626. [Google Scholar] [CrossRef]
- Nadanakumar, V.; Jenoris Muthiya, S.; Prudhvi, T.; Induja, S.; Sathyamurthy, R.; Dharmaraj, V. Experimental Investigation to Control HC, CO & NOx Emissions from Diesel Engines Using Diesel Oxidation Catalyst. Mater. Today Proc. 2021, 43, 434–440. [Google Scholar] [CrossRef]
- Horizon Europe Work Programme for 2023–2024. Available online: https://cinea.ec.europa.eu/news-events/news/horizon-europe-work-programme-2023-24-now-available-2022-12-07_en (accessed on 9 October 2023).
- Prasad, R.; Singh, P. A review on CO oxidation over copper chromite catalysts. Catal. Rev. 2012, 54, 224–279. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Liu, C. Perspective on CO oxidation over Pd-based catalysts. Catal. Sci. Technol. 2015, 5, 69–81. [Google Scholar] [CrossRef]
- Grabchenko, M.B.; Mamontov, G.V.; Zaikovskii, V.I.; La Parola, V.; Liotta, L.F.; Vodyankina, O.V. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B. Environ. 2020, 260, 118148. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Wu, R.; Song, L.; Zheng, L.; Zhang, G.; He, H. Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: Study of the CO-O2 competitive adsorption and active oxygen species. Catal. Sci. Technol. 2019, 9, 347–354. [Google Scholar] [CrossRef]
- Zhang, L.L.; Sun, M.J.; Liu, C.G. CO oxidation on the phosphotungstic acid supported Rh single-atom catalysts via Rh-assisted Mans-van Krevelen mechanism. Mol. Catal. 2019, 462, 37–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Wang, H.; Guo, Y.; Wang, L.; Zhan, W.; Guo, Y.; Lu, G. The effects of the presence of metal Fe in the CO oxidation over Ir/FeOx catalyst. Catal. Commun. 2015, 61, 83–87. [Google Scholar] [CrossRef]
- Song, K.S.; Kang, S.K.; Kim, S.D. Preparation and Characterization of Ag/MnOx/Perovskite Catalysts for CO Oxidation. Catal. Lett. 1997, 49, 65–68. [Google Scholar] [CrossRef]
- Seyfi, B.; Baghalha, M.; Kazemian, H. Modified LaCoO3 Nano-Perovskite Catalysts for the Environmental Application of Automotive CO Oxidation. Chem. Eng. J. 2009, 148, 306–311. [Google Scholar] [CrossRef]
- Cui, X.; Liu, J.; Yan, X.; Yang, Y.; Xiong, B. Exploring Reaction Mechanism of CO Oxidation over SrCoO3 Catalyst: A DFT Study. Appl. Surf. Sci. 2021, 570, 151234. [Google Scholar] [CrossRef]
- Díaz-Verde, A.; Torregrosa-Rivero, V.; Illán-Gómez, M.J. Copper Catalysts Supported on Barium Deficient Perovskites for CO Oxidation Reaction. Top. Catal. 2023, 66, 895–907. [Google Scholar] [CrossRef]
- Nie, L.; Mei, D.; Wang, Y. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423. [Google Scholar] [CrossRef]
- Aneggi, E.; Trovarelli, A. Potential of ceria-zirconia-based materials in carbon soot oxidation for gasoline particulate filters. Catalysts 2020, 10, 768. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Hernández, W.Y.; Tsampas, M.N.; Zhao, C.; Boreave, A.; Bosselet, F.; Vernoux, P. La/Sr-Based Perovskites as Soot Oxidation Catalysts for Gasoline Particulate Filters. Catal. Today 2015, 258, 525–534. [Google Scholar] [CrossRef]
- Moreno-Marcos, C.; Torregrosa-Rivero, V.; Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. BaFe1−xCuxO3 Perovskites as Soot Oxidation Catalysts for Gasoline Particulate Filters (GPF): A Preliminary Study. Top. Catal. 2019, 62, 413–418. [Google Scholar] [CrossRef]
- Peron, G.; Glisenti, A. Perovskites as Alternatives to Noble Metals in Automotive Exhaust Abatement: Activation of Oxygen on LaCrO3 and LaMnO3. Top. Catal. 2019, 62, 244–251. [Google Scholar] [CrossRef]
- Doggali, P.; Kusaba, S.; Teraoka, Y.; Chankapure, P.; Rayalu, S.; Labhsetwar, N. La0.9Ba0.1CoO3 Perovskite Type Catalysts for the Control of CO and PM Emissions. Catal. Commun. 2010, 11, 665–669. [Google Scholar] [CrossRef]
- Díaz-Verde, Á.; Montilla-Verdú, S.; Torregrosa-Rivero, V.; Illán-Gómez, M.J. Tailoring the Composition of BaxBO3 (B = Fe, Mn) Mixed Oxides as CO or Soot Oxidation Catalysts in Simulated GDI Engine Exhaust Conditions. Molecules 2023, 28, 3327. [Google Scholar] [CrossRef]
- Mokoena, L.; Pattrick, G.; Scurrell, M.S. Catalytic Activity of Gold-Perovskite Catalysts in the Oxidation of Carbon Monoxide. Gold Bull. 2016, 49, 35–44. [Google Scholar] [CrossRef]
- Xiao, P.; Zhong, L.; Zhu, J.; Hong, J.; Li, J.; Li, H.; Zhu, Y. CO and Soot Oxidation over Macroporous Perovskite LaFeO3. Catal. Today 2015, 258, 660–667. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Filot, I.A.W.; Su, Y.-Q.; Liu, J.-X.; Hensen, E.J.M. Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO3-Supported Rh, Pd, and Pt Single-Atom Catalysts. J. Phys. Chem. C 2019, 123, 7290–7298. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-Rivero, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. Improving the Performance of BaMnO3 Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis. Nanomaterials 2022, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Chen, C.; Meng, J.; Wu, Y.; Liu, G.; Wang, L.; Wan, H.; Guan, G. Facile Synthesis of Three-Dimensionally Ordered Macroporous Silicon-Doped La0.8K0.2CoO3 Perovskite Catalysts for Soot Combustion. Catal. Sci. Technol. 2016, 6, 7718–7728. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. Exploring the Effect of Using Carbon Black in the Sol-Gel Synthesis of BaMnO3 and BaMn0.7Cu0.3O3 Perovskite Catalysts for CO Oxidation. Catal. Today 2023, 423, 114028. [Google Scholar] [CrossRef]
- Kembo, J.P.N.; Wang, J.; Luo, N.; Gao, F.; Yi, H.; Zhao, S.; Zhou, Y.; Tang, X. A Review of Catalytic Oxidation of Carbon Monoxide over Different Catalysts Emphasis on Hopcalite Catalysts. New J. Chem. 2023, 44, 20207. [Google Scholar] [CrossRef]
- Atkins, P. Shriver and Atkins’ Inorganic Chemistry; OUP: Oxford, UK, 2010; ISBN 978-0-19-923617-6. [Google Scholar]
- Ghezali, N.; Díaz Verde, Á.; Illán Gómez, M.J. Screening Ba0.9A0.1MnO3 and Ba0.9A0.1Mn0.7Cu0.3O3 (A = Mg, Ca, Sr, Ce, La) Sol-Gel Synthesised Perovskites as GPF Catalysts. Materials 2023, 16, 6899. [Google Scholar] [CrossRef] [PubMed]
- Çoban Özkan, D.; Türk, A.; Celik, E. Synthesis and Characterizations of LaMnO3 Perovskite Powders Using Sol–Gel Method. J. Mater. Sci. Mater. Electron. 2021, 32, 15544–15562. [Google Scholar] [CrossRef]
- Díaz Verde, Á.; Martínez Munuera, J.C.; García García, A.; Piqueras, P.; Sanchis, E.G. Ceria and Praseodymia-Based Catalysts for the Removal of Gaseous Pollutants from Oxyfuel Combustion Engines. In Proceedings of the 15th European Congress on Catalysis, Prague, Czech Republic, 27 August–1 September 2023. [Google Scholar]
- Aarif Ul Islam, S.; Ikram, M. Structural Stability Improvement, Williamson Hall Analysis and Band-Gap Tailoring through A-Site Sr Doping in Rare Earth Based Double Perovskite La2NiMnO6. Rare Met. 2019, 38, 805–813. [Google Scholar] [CrossRef]
- Akinlolu, K.; Omolara, B.; Shailendra, T.; Abimbola, A.; Kehinde, O. Synthesis, Characterization and Catalytic Activity of Partially Substituted La1−xBaxCoO3 (x ≥ 0.1 ≤ 0.4) Nano Catalysts for Potential Soot Oxidation in Diesel Particulate Filters in Diesel Engines. Int. Rev. Appl. Sci. Eng. 2020, 11, 52–57. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Sánchez-Adsuar, M.-S.; Illán-Gómez, M.-J. Modified BaMnO3-Based Catalysts for Gasoline Particle Filters (GPF): A Preliminary Study. Catalysts 2022, 12, 1325. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.-S.; Illán-Gómez, M.-J. Copper Doped BaMnO3 Perovskite Catalysts for NO Oxidation and NO2-Assisted Diesel Soot Removal. RSC Adv. 2017, 7, 35228–35238. [Google Scholar] [CrossRef]
- Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.-J. Tolerance and Regeneration versus SO2 of Ba0. 9A0. 1Ti0. 8Cu0. 2O3 (A = Sr, Ca, Mg) Catalysts. Appl. Catal. A Gen. 2019, 577, 113–123. [Google Scholar]
- Koolen, C.D.; Luo, W.; Züttel, A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO2 Electroreduction. ACS Catal. 2023, 13, 948–973. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhao, Z.; Wei, Y.; Xu, C. Comparative Study of Nanometric Co-, Mn- and Fe-Based Perovskite-Type Complex Oxide Catalysts for the Simultaneous Elimination of Soot and NOx from Diesel Engine Exhaust. Catal. Today 2012, 184, 288–300. [Google Scholar] [CrossRef]
- Zhao, Z.; Yamada, Y.; Ueda, A.; Sakurai, H.; Kobayashi, T. The Roles of Redox and Acid–Base Properties of Silica-Supported Vanadia Catalysts in the Selective Oxidation of Ethane. Catal. Today 2004, 93–95, 163–171. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zang, M.; Shi, L.; Zhang, H.; Zhao, C. Effect of A-Site Element on the Performance of Three-Dimensionally Ordered Macroporous Manganese-Based Perovskite Catalyst. J. Saudi Chem. Soc. 2020, 24, 417–424. [Google Scholar] [CrossRef]
- Zang, M.; Zhao, C.; Wang, Y.; Liu, X.; Cheng, Y.; Chen, S. Low Temperature Catalytic Combustion of Toluene over Three-Dimensionally Ordered La0.8Ce0.2MnO3/Cordierite Catalysts. Appl. Surf. Sci. 2019, 483, 355–362. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, H.; Chu, B.; Qin, Z.; Dong, L.; He, H.; Tang, C.; Fan, M.; Bin, L. Catalytic Removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) Perovskite Oxide Catalysts: Tune Surface Chemical Composition to Improve N2 Selectivity. Chem. Eng. J. 2019, 369, 511–521. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and Selectivity of Pure Manganese Oxides in the Selective Catalytic Reduction of Nitric Oxide with Ammonia. Appl. Catal. B Environ. 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Khaskheli, A.A.; Xu, L.; Liu, D. Manganese Oxide-Based Catalysts for Soot Oxidation: A Review on the Recent Advances and Future Directions. Energy Fuels 2022, 36, 7362–7381. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Hua, W.; Guo, Y.; Lu, G.; Gil, S.; Giroir-Fendler, A. Relationship between Catalytic Deactivation and Physicochemical Properties of LaMnO3 Perovskite Catalyst during Catalytic Oxidation of Vinyl Chloride. Appl. Catal. B Environ. 2016, 186, 173–183. [Google Scholar] [CrossRef]
- Wang, Y.; Arandiyan, H.; Scott, J.; Akia, M.; Dai, H.; Deng, J.; Aguey-Zinsou, K.-F.; Amal, R. High Performance Au–Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catal. 2016, 6, 6935–6947. [Google Scholar] [CrossRef]
- Cimino, S.; Colonna, S.; De Rossi, S.; Faticanti, M.; Lisi, L.; Pettiti, I.; Porta, P. Methane Combustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO3 Perovskite. J. Catal. 2002, 205, 309–317. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, X.; Li, X.; Zeng, M.; Redshaw, C.; Cao, R.; Sarangi, R.; Hou, C.; Chen, Z.; Zhang, W.; et al. Engineering Surface Segregation of Perovskite Oxide through Wet Exsolution for CO Catalytic Oxidation. J. Hazard. Mater. 2022, 436, 129110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Hua, Q.; Gu, W.; Liu, B. Catalytic Oxidation of CO on LaMn1−xFexO3 Perovskites Solid Solution. J. Mol. Catal. A Chem. 2014, 391, 7–11. [Google Scholar] [CrossRef]
- Gremminger, A.; Pihl, J.; Casapu, M.; Grunwaldt, J.-D.; Toops, T.J.; Deutschmann, O. PGM Based Catalysts for Exhaust-Gas after-Treatment under Typical Diesel, Gasoline and Gas Engine Conditions with Focus on Methane and Formaldehyde Oxidation. Appl. Catal. B Environ. 2020, 265, 118571. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Wang, D.; Peng, Y.; Ma, Y. Activity Improvement of Acid Treatment on LaFeO3 Catalyst for CO Oxidation. Catal. Today 2021, 376, 205–210. [Google Scholar] [CrossRef]
- York, A.P.E.; Cooper, C.S.; Simmance, K.; Wilkinson, S.K. Non-PGM Iron Perovskite Three-Way Gasoline Emissions Control Catalysts: Kinetics, Reaction Mechanism and Catalyst Sizing Study. Top. Catal. 2020, 63, 256–267. [Google Scholar] [CrossRef]
- Zhang-Steenwinkel, Y.; van der Zande, L.M.; Castricum, H.L.; Bliek, A. Step Response and Transient Isotopic Labelling Studies into the Mechanism of CO Oxidation over La0.8Ce0.2MnO3 Perovskite. Appl. Catal. B Environ. 2004, 54, 93–103. [Google Scholar] [CrossRef]
- Yang, J.; Hu, S.; Fang, Y.; Hoang, S.; Li, L.; Yang, W.; Liang, Z.; Wu, J.; Hu, J.; Xiao, W.; et al. Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catal. 2019, 9, 9751–9763. [Google Scholar] [CrossRef]
- Loc, L.C.; Tri, N.; Cuong, H.; Gaidai, N.; Agafonov, Y.; Nekrasov, N.V.; Ha, A.; Thoang, H.S.; Lapidus, A.L. Mechanism of Carbon Monoxide Oxidation over Supported CuO Catalysts Modified by Ce and Pt. DGMK Tagungsbericht 2014, 2014, 167–176. [Google Scholar]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Ding, K.; Gulec, A.; Johnson, A.M.; Schweitzer, N.M.; Stucky, G.D.; Marks, L.D.; Stair, P.C. Identification of Active Sites in CO Oxidation and Water-Gas Shift over Supported Pt Catalysts. Science 2015, 350, 189–192. [Google Scholar] [CrossRef]
- Schmal, M.; Perez, C.A.C.; Magalhães, R.N.S.H. Synthesis and Characterization of Perovskite-Type Oxides La1−xMxCoO3 (M = Ce, Sr) for the Selective CO Oxidation (SELOX). Top. Catal. 2014, 57, 1103–1111. [Google Scholar] [CrossRef]
Nomenclature | Molecular Formula | BET Surface Area (m²/g) | A (wt%) | Intensity (a.u) a | Average Crystal Size (nm) | Cell Parameters (Å) b | |
---|---|---|---|---|---|---|---|
a | c | ||||||
BM | BaMnO3 | 3 | - | 1154 | 46 | 5.7 | 4.9 |
BM-Ce | Ba0.9Ce0.1MnO3 | 10 | 1.3 | 1913 | 22 | 5.5 | 5.0 |
BM-La | Ba0.9La0.1MnO3 | 7 | 1.1 | 1562 | 28 | 5.7 | 4.8 |
BM-Mg | Ba0.9Mg0.1MnO3 | 7 | 4.2 | 2382 | 28 | 5.7 | 4.8 |
Metals | Ba(II) | Mg(II) | La(III) | Ce(IV) | Ce(III) | Mn(IV) | Mn(III) |
Ionic radii (pm) | 146.4 | 65.0 | 107.3 | 90.6 | 105.2 | 53.0 | 65.0 |
Catalyst | 1% CO + 1% O2 | 1% CO + 10% O2 | 0.1% CO + 10% O2 | |||
---|---|---|---|---|---|---|
T50% | ∆T50% * | T50% | ∆T50% ** | T50% | ∆T50% *** | |
BM | 400 | --- | 455 | 55 | 340 | −115 |
BM-Ce | 325 | −75 | 373 | 48 | 230 | −143 |
BM-La | 290 | −110 | 320 | 30 | 250 | −70 |
BM-Mg | 342 | −58 | 340 | 2 | 175 | −165 |
Pt-Al | 265 | --- | 210 | −55 | 130 | −80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezali, N.; Díaz Verde, Á.; Illán Gómez, M.J. Ba0.9A0.1MnO3 (A = Ce, La, Mg) Perovskite-Type Mixed Oxides: Effect of Partial Substitution of Ba on the Catalytic Performance for the Oxidation of CO in Simulated Automobile Exhaust Conditions. Crystals 2024, 14, 191. https://doi.org/10.3390/cryst14020191
Ghezali N, Díaz Verde Á, Illán Gómez MJ. Ba0.9A0.1MnO3 (A = Ce, La, Mg) Perovskite-Type Mixed Oxides: Effect of Partial Substitution of Ba on the Catalytic Performance for the Oxidation of CO in Simulated Automobile Exhaust Conditions. Crystals. 2024; 14(2):191. https://doi.org/10.3390/cryst14020191
Chicago/Turabian StyleGhezali, Nawel, Álvaro Díaz Verde, and María José Illán Gómez. 2024. "Ba0.9A0.1MnO3 (A = Ce, La, Mg) Perovskite-Type Mixed Oxides: Effect of Partial Substitution of Ba on the Catalytic Performance for the Oxidation of CO in Simulated Automobile Exhaust Conditions" Crystals 14, no. 2: 191. https://doi.org/10.3390/cryst14020191
APA StyleGhezali, N., Díaz Verde, Á., & Illán Gómez, M. J. (2024). Ba0.9A0.1MnO3 (A = Ce, La, Mg) Perovskite-Type Mixed Oxides: Effect of Partial Substitution of Ba on the Catalytic Performance for the Oxidation of CO in Simulated Automobile Exhaust Conditions. Crystals, 14(2), 191. https://doi.org/10.3390/cryst14020191