[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Thermal stability study of transition metal perovskite sulfides

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type thermoelectric materials. Compared to oxide counterparts, we expect the chalcogenides to possess more favorable thermoelectric properties such as lower lattice thermal conductivity and smaller band gap, making them promising material candidates for high temperature thermoelectrics. Thus, it is necessary to study the thermal properties of these materials in detail, especially thermal stability, to evaluate their potential. In this work, we report the synthesis and thermal stability study of five compounds, α-SrZrS3, β-SrZrS3, BaZrS3, Ba2ZrS4, and Ba3Zr2S7. These materials cover several structural types including distorted perovskite, needle-like, and Ruddlesden–Popper phases. Differential scanning calorimeter and thermogravimetric analysis measurements were performed up to 1200 °C in air. Structural and chemical characterizations such as X-ray diffraction, Raman spectroscopy, and energy dispersive analytical X-ray spectroscopy were performed on all the samples before and after the heat treatment to understand the oxidation process. Our studies show that perovskite chalcogenides possess excellent thermal stability in air at least up to 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y-Y. Sun, M.L. Agiorgousis, P. Zhang, and S. Zhang: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581 (2015).

    Article  CAS  Google Scholar 

  2. S. Körbel, M.A.L. Marques, and S. Botti: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157 (2016).

    Article  Google Scholar 

  3. H. Wang, G. Gou, and J. Li: Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507 (2016).

    Article  CAS  Google Scholar 

  4. M-G. Ju, J. Dai, L. Ma, and X.C. Zeng: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 48, 1700216 (2017).

    Article  Google Scholar 

  5. A. Nijamudheen and A.V. Akimov: Criticality of symmetry in rational design of chalcogenide perovskites. J. Phys. Chem. Lett. 9, 248 (2017).

    Article  Google Scholar 

  6. K. Kuhar, A. Crovetto, M. Pandey, K.S. Thygesen, B. Seger, P.C.K. Vesborg, O. Hansen, I. Chorkendorff, and K.W. Jacobsen: Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017).

    Article  CAS  Google Scholar 

  7. W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, and Y. Yan: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821 (2016).

    Article  CAS  Google Scholar 

  8. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y-Y. Sun, S. Zhang, and H. Zeng: Chalcogenide perovskites—An emerging class of ionic semiconductors. Nano Energy 22, 129 (2016).

    Article  CAS  Google Scholar 

  9. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, and J. Ravichandran: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).

    Article  Google Scholar 

  10. N. Gross, Y-Y. Sun, S. Perera, H. Hui, X. Wei, S. Zhang, H. Zeng, and B.A. Weinstein: Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys. Rev. Appl. 8, 044014 (2017).

    Article  Google Scholar 

  11. J. Wang and K. Kovnir: Giant anisotropy detected. Nat. Photon. 12, 382 (2018).

    Article  CAS  Google Scholar 

  12. J. He, Y. Liu, and R. Funahashi: Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 26, 1762 (2011).

    Article  CAS  Google Scholar 

  13. H. Muta, K. Kurosaki, and S. Yamanaka: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292 (2003).

    Article  CAS  Google Scholar 

  14. H. Ohta, K. Sugiura, and K. Koumoto: Recent progress in oxide thermoelectric materials: p-type Ca3CO4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).

    Article  CAS  Google Scholar 

  15. W.J. Weber, C.W. Griffin, and J.L. Bates: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).

    Article  CAS  Google Scholar 

  16. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105 (1995).

    Article  CAS  Google Scholar 

  17. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura: Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < x < 0.1). Phys. Rev. B 63, 113104 (2001).

    Article  Google Scholar 

  18. M. Yasukawa and N. Murayama: A promising oxide material for high-temperature thermoelectric energy conversion: Ba1−xSrxPbO3 solid solution system. Mater. Sci. Eng., B 54, 64 (1998).

    Article  Google Scholar 

  19. S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, and J. Ravichandran: Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392 (2018).

    Article  CAS  Google Scholar 

  20. S. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S.B. Cronin, H. Wang, and J. Ravichandran: Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30, 4897 (2018).

    Article  CAS  Google Scholar 

  21. S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco, H. Huyan, S.B. Cronin, M.E. McConney, R. Haiges, R. Jaramillo, D.J. Singh, W.A. Tisdale, R. Kapadia, and J. Ravichandran: Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882 (2018).

    Article  CAS  Google Scholar 

  22. J.A. Brehm, J.W. Bennett, M.R. Schoenberg, I. Grinberg, and A.M. Rappe: The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation. J. Chem. Phys. 140, 224703 (2014).

    Article  Google Scholar 

  23. R. Lelieveld and D.J.W. Ijdo: Sulphides with the GdFeO3 structure. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2223 (1980).

    Article  Google Scholar 

  24. A. Clearfield: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallographica 16, 135 (1963).

    Article  CAS  Google Scholar 

  25. H. Hahn and U. Mutschke: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269 (1957).

    Article  Google Scholar 

  26. J. Huster: Die Kristallstruktur von BaTiS3. Z. Naturforsch. B 35, 775 (1980).

    Article  Google Scholar 

  27. B. Okai, K. Takahashi, M. Saeki, and J. Yoshimoto: Preparation and crystal structures of some complex sulphides at high pressures. MRS Bull. 23, 1575 (1988).

    Article  CAS  Google Scholar 

  28. L.J. Tranchitella, B.H. Chen, J.C. Fettinger, and B.W. Eichhorn: Structural evolutions in the Sr1−xBaxZrSe3 series. J. Solid State Chem. 130, 20 (1997).

    Article  CAS  Google Scholar 

  29. K.S. Aleksandrov and J. BartolomÉ: Structural distortions in families of perovskite-like crystals. Phase Transitions 74, 255 (2001).

    Article  CAS  Google Scholar 

  30. C-S. Lee, K.M. Kleinke, and H. Kleinke: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049 (2005).

    Article  CAS  Google Scholar 

  31. J.W. Bennett, I. Grinberg, and A.M. Rappe: Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).

    Article  Google Scholar 

  32. L.J. Tranchitella, J.C. Fettinger, P.K. Dorhout, P.M. Van Calcar, and B.W. Eichhorn: Commensurate columnar composite compounds: Synthesis and structure of Ba15Zr14Se42 and Sr21Ti19Se57. J. Am. Chem. Soc. 120, 7639 (1998).

    Article  CAS  Google Scholar 

  33. O. Gourdon, V. Petricek, and M. Evain: A new structure type in the hexagonal perovskite family; structure determination of the modulated misfit compound Sr9/8TiS3. Acta Crystallographica B56, 409 (2000).

    Article  CAS  Google Scholar 

  34. O. Gourdon, E. Jeanneau, M. Evain, S. Jobic, R. Brec, H.J. Koo, and M.H. Whangbo: Influence of the metal–metal sigma bonding on the structures and physical properties of the hexagonal perovskite-type sulfides Sr9/8TiS3, Sr8/7TiS3, and Sr8/7[Ti6/7Fe1/7]S3. J. Solid State Chem. 162, 103 (2001).

    Article  CAS  Google Scholar 

  35. Y. Zhang, T. Shimada, T. Kitamura, and J. Wang: Ferroelectricity in Ruddlesden–Popper chalcogenide perovskites for photovoltaic application: The role of tolerance factor. J. Phys. Chem. Lett. 8, 5834 (2017).

    Article  CAS  Google Scholar 

  36. P.E. Quintard, P. Barberis, A.P. Mirgorodsky, and T. Merle-Mejean: Comparative lattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases of zirconia and hafnia. J. Am. Ceram. Soc. 85, 1745 (2002).

    Article  CAS  Google Scholar 

  37. P. Dawson, M.M. Hargreave, and G.R. Wilkinson: Polarized i.r. reflection, absorption and laser Raman studies on a single crystal of BaSO4. Spectrochim. Acta, Part A 33, 83 (1977).

    Article  Google Scholar 

  38. O. Kamishima, T. Hattori, K. Ohta, Y. Chiba, and M. Ishigame: Raman scattering of single-crystal SrZrO3. J. Phys.: Condens. Matter 11, 5355 (1999).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by USC Viterbi School of Engineering Startup Funds and the Air Force Office of Scientific Research under award number FA9550-16-1-0335. S.N. acknowledges Link Foundation Energy Fellowship. J.M.G. and B.C.M. gratefully acknowledge support from the Office of Naval Research Grant No. N00014-15-1-2411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakanth Ravichandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Milam-Guerrero, J., Zhou, Y. et al. Thermal stability study of transition metal perovskite sulfides. Journal of Materials Research 33, 4135–4143 (2018). https://doi.org/10.1557/jmr.2018.419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.419

Navigation