Abstract
Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type thermoelectric materials. Compared to oxide counterparts, we expect the chalcogenides to possess more favorable thermoelectric properties such as lower lattice thermal conductivity and smaller band gap, making them promising material candidates for high temperature thermoelectrics. Thus, it is necessary to study the thermal properties of these materials in detail, especially thermal stability, to evaluate their potential. In this work, we report the synthesis and thermal stability study of five compounds, α-SrZrS3, β-SrZrS3, BaZrS3, Ba2ZrS4, and Ba3Zr2S7. These materials cover several structural types including distorted perovskite, needle-like, and Ruddlesden–Popper phases. Differential scanning calorimeter and thermogravimetric analysis measurements were performed up to 1200 °C in air. Structural and chemical characterizations such as X-ray diffraction, Raman spectroscopy, and energy dispersive analytical X-ray spectroscopy were performed on all the samples before and after the heat treatment to understand the oxidation process. Our studies show that perovskite chalcogenides possess excellent thermal stability in air at least up to 550 °C.
Similar content being viewed by others
References
Y-Y. Sun, M.L. Agiorgousis, P. Zhang, and S. Zhang: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581 (2015).
S. Körbel, M.A.L. Marques, and S. Botti: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157 (2016).
H. Wang, G. Gou, and J. Li: Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507 (2016).
M-G. Ju, J. Dai, L. Ma, and X.C. Zeng: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 48, 1700216 (2017).
A. Nijamudheen and A.V. Akimov: Criticality of symmetry in rational design of chalcogenide perovskites. J. Phys. Chem. Lett. 9, 248 (2017).
K. Kuhar, A. Crovetto, M. Pandey, K.S. Thygesen, B. Seger, P.C.K. Vesborg, O. Hansen, I. Chorkendorff, and K.W. Jacobsen: Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017).
W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, and Y. Yan: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821 (2016).
S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y-Y. Sun, S. Zhang, and H. Zeng: Chalcogenide perovskites—An emerging class of ionic semiconductors. Nano Energy 22, 129 (2016).
S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, and J. Ravichandran: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).
N. Gross, Y-Y. Sun, S. Perera, H. Hui, X. Wei, S. Zhang, H. Zeng, and B.A. Weinstein: Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys. Rev. Appl. 8, 044014 (2017).
J. Wang and K. Kovnir: Giant anisotropy detected. Nat. Photon. 12, 382 (2018).
J. He, Y. Liu, and R. Funahashi: Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 26, 1762 (2011).
H. Muta, K. Kurosaki, and S. Yamanaka: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292 (2003).
H. Ohta, K. Sugiura, and K. Koumoto: Recent progress in oxide thermoelectric materials: p-type Ca3CO4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).
W.J. Weber, C.W. Griffin, and J.L. Bates: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).
M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105 (1995).
T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura: Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < x < 0.1). Phys. Rev. B 63, 113104 (2001).
M. Yasukawa and N. Murayama: A promising oxide material for high-temperature thermoelectric energy conversion: Ba1−xSrxPbO3 solid solution system. Mater. Sci. Eng., B 54, 64 (1998).
S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, and J. Ravichandran: Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392 (2018).
S. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S.B. Cronin, H. Wang, and J. Ravichandran: Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30, 4897 (2018).
S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco, H. Huyan, S.B. Cronin, M.E. McConney, R. Haiges, R. Jaramillo, D.J. Singh, W.A. Tisdale, R. Kapadia, and J. Ravichandran: Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882 (2018).
J.A. Brehm, J.W. Bennett, M.R. Schoenberg, I. Grinberg, and A.M. Rappe: The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation. J. Chem. Phys. 140, 224703 (2014).
R. Lelieveld and D.J.W. Ijdo: Sulphides with the GdFeO3 structure. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2223 (1980).
A. Clearfield: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallographica 16, 135 (1963).
H. Hahn and U. Mutschke: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269 (1957).
J. Huster: Die Kristallstruktur von BaTiS3. Z. Naturforsch. B 35, 775 (1980).
B. Okai, K. Takahashi, M. Saeki, and J. Yoshimoto: Preparation and crystal structures of some complex sulphides at high pressures. MRS Bull. 23, 1575 (1988).
L.J. Tranchitella, B.H. Chen, J.C. Fettinger, and B.W. Eichhorn: Structural evolutions in the Sr1−xBaxZrSe3 series. J. Solid State Chem. 130, 20 (1997).
K.S. Aleksandrov and J. BartolomÉ: Structural distortions in families of perovskite-like crystals. Phase Transitions 74, 255 (2001).
C-S. Lee, K.M. Kleinke, and H. Kleinke: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049 (2005).
J.W. Bennett, I. Grinberg, and A.M. Rappe: Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).
L.J. Tranchitella, J.C. Fettinger, P.K. Dorhout, P.M. Van Calcar, and B.W. Eichhorn: Commensurate columnar composite compounds: Synthesis and structure of Ba15Zr14Se42 and Sr21Ti19Se57. J. Am. Chem. Soc. 120, 7639 (1998).
O. Gourdon, V. Petricek, and M. Evain: A new structure type in the hexagonal perovskite family; structure determination of the modulated misfit compound Sr9/8TiS3. Acta Crystallographica B56, 409 (2000).
O. Gourdon, E. Jeanneau, M. Evain, S. Jobic, R. Brec, H.J. Koo, and M.H. Whangbo: Influence of the metal–metal sigma bonding on the structures and physical properties of the hexagonal perovskite-type sulfides Sr9/8TiS3, Sr8/7TiS3, and Sr8/7[Ti6/7Fe1/7]S3. J. Solid State Chem. 162, 103 (2001).
Y. Zhang, T. Shimada, T. Kitamura, and J. Wang: Ferroelectricity in Ruddlesden–Popper chalcogenide perovskites for photovoltaic application: The role of tolerance factor. J. Phys. Chem. Lett. 8, 5834 (2017).
P.E. Quintard, P. Barberis, A.P. Mirgorodsky, and T. Merle-Mejean: Comparative lattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases of zirconia and hafnia. J. Am. Ceram. Soc. 85, 1745 (2002).
P. Dawson, M.M. Hargreave, and G.R. Wilkinson: Polarized i.r. reflection, absorption and laser Raman studies on a single crystal of BaSO4. Spectrochim. Acta, Part A 33, 83 (1977).
O. Kamishima, T. Hattori, K. Ohta, Y. Chiba, and M. Ishigame: Raman scattering of single-crystal SrZrO3. J. Phys.: Condens. Matter 11, 5355 (1999).
ACKNOWLEDGMENTS
This work is supported by USC Viterbi School of Engineering Startup Funds and the Air Force Office of Scientific Research under award number FA9550-16-1-0335. S.N. acknowledges Link Foundation Energy Fellowship. J.M.G. and B.C.M. gratefully acknowledge support from the Office of Naval Research Grant No. N00014-15-1-2411.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Niu, S., Milam-Guerrero, J., Zhou, Y. et al. Thermal stability study of transition metal perovskite sulfides. Journal of Materials Research 33, 4135–4143 (2018). https://doi.org/10.1557/jmr.2018.419
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.419