Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products in Romania and Their Contribution to Achieving Climate Neutrality
<p>Classification of wood products based on FAO forest product definitions.</p> "> Figure 2
<p>Carbon stored in HWPs in different categories. Left gray area shows data created with Equation (6) based on the country-specific data in 1961.</p> "> Figure 3
<p>Inflow from domestic production in HWPs by different categories.</p> "> Figure 4
<p>Carbon balance (emissions and removals) in HWPs by different categories.</p> "> Figure 5
<p>Roundwood (<b>A</b>), sawnwood (<b>B</b>), and secondary processing ((<b>C</b>) wood-based panel; (<b>D</b>) paper, and paperboard) production, import, and export between 1990 to 2022.</p> "> Figure 6
<p>Emission trends based on historical data and projected BAU scenario through 2050, including Monte Carlo variants (blue lines).</p> "> Figure 7
<p>Projected pathways of CO<sub>2</sub> emissions from 2023 to 2050 across five models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Used
2.2. Uncertainty Analysis
2.3. Monte Carlo Analysis
2.4. Projections Description
2.4.1. Business as Usual
2.4.2. Baseline Static Averages
2.4.3. Product Mix Shift Scenario
2.4.4. Moderate Growth Scenario
2.4.5. Moderate Decline Scenario
3. Results
3.1. Carbon Stock in HWP by Different Categories
3.2. Carbon Inflow from Domestic Production in HWPs by Different Categories
3.3. Carbon Balance in HWPs by Different Categories
3.4. Carbon Flow in HWPs by Different Categories
3.5. Projections
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, A.C.; Louro, M.; Arroja, L.; Capela, I. Carbon Estimation in Harvested Wood Products Using a Country-Specific Method: Portugal as a Case Study. Environ. Sci. Policy 2007, 10, 250–259. [Google Scholar] [CrossRef]
- Sathre, R.; O’Connor, J. Meta-Analysis of Greenhouse Gas Displacement Factors of Wood Product Substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Pilli, R.; Fiorese, G.; Grassi, G. EU Mitigation Potential of Harvested Wood Products. Carbon Balance Manag. 2015, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Jasinevičius, G.; Lindner, M.; Pingoud, K.; Tykkylainen, M. Review of Models for Carbon Accounting in Harvested Wood Products. Int. Wood Prod. J. 2015, 6, 198–212. [Google Scholar] [CrossRef]
- Aleinikovas, M.; Jasinevičius, G.; Škėma, M.; Beniušienė, L.; Šilinskas, B.; Varnagirytė-Kabašinskienė, I. Assessing the Effects of Accounting Methods for Carbon Storage in Harvested Wood Products on the National Carbon Budget of Lithuania. Forests 2018, 9, 737. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Song, T.; Xu, J. Harvested Wood Products as a Carbon Sink in China, 1900–2016. Int. J. Environ. Res. Public Health 2019, 16, 445. [Google Scholar] [CrossRef]
- Bozzolan, N.; Grassi, G.; Mohren, F.; Nabuurs, G.-J. Options to Improve the Carbon Balance of the Harvested Wood Products Sector in Four EU Countries. GCB Bioenergy 2024, 16, e13104. [Google Scholar] [CrossRef]
- Marland, E.; Marland, G. The Treatment of Long-Lived, Carbon-Containing Products in Inventories of Carbon Dioxide Emissions to the Atmosphere. Environ. Sci. Policy 2003, 6, 139–152. [Google Scholar] [CrossRef]
- Profft, I.; Mund, M.; Weber, G.-E.; Weller, E.; Schulze, E.-D. Forest Management and Carbon Sequestration in Wood Products. Eur. J. For. Res. 2009, 128, 399–413. [Google Scholar] [CrossRef]
- Stockmann, K.D.; Anderson, N.M.; Skog, K.E.; Healey, S.P.; Loeffler, D.R.; Jones, G.; Morrison, J.F. Estimates of Carbon Stored in Harvested Wood Products from the United States Forest Service Northern Region, 1906–2010. Carbon Balance Manag. 2012, 7, 1. [Google Scholar] [CrossRef]
- Brunet-Navarro, P.; Jochheim, H.; Kroiher, F.; Muys, B. Effect of Cascade Use on the Carbon Balance of the German and European Wood Sectors. J. Clean. Prod. 2018, 170, 137–146. [Google Scholar] [CrossRef]
- Iordache, M.; Bucura, F.; Ionete, R.E.; Grigorescu, R.; Iordache, A.M.; Zgavarogea, R.; Chitu, A.; Zaharioiu, A.; Botoran, O.R.; Constantinescu, M. The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study. Atmosphere 2022, 13, 1638. [Google Scholar] [CrossRef]
- Perone, A.; Benedetto, S.D.; Vizzarri, M.; Lasserre, B. Carbon Stock in Wood Products: Implications for Carbon Accounting at National and Local Scale in Italy. L’Italia For. Mont. 2015, 70, 257–272. [Google Scholar] [CrossRef]
- Leturcq, P. GHG Displacement Factors of Harvested Wood Products: The Myth of Substitution. Sci. Rep. 2020, 10, 20752. [Google Scholar] [CrossRef]
- Jasinevičius, G.; Lindner, M.; Cienciala, E.; Tykkyläinen, M. Carbon Accounting in Harvested Wood Products: Assessment Using Material Flow Analysis Resulting in Larger Pools Compared to the IPCC Default Method. J. Ind. Ecol. 2018, 22, 121–131. [Google Scholar] [CrossRef]
- Lippke, B.; Oneil, E.; Harrison, R.; Skog, K.; Gustavsson, L.; Sathre, R. Life Cycle Impacts of Forest Management and Wood Utilization on Carbon Mitigation: Knowns and Unknowns. Carbon Manag. 2011, 2, 303–333. [Google Scholar] [CrossRef]
- Lim, B.; Brown, S.; Schlamadinger, B.; Sokona, Y.; Abel, K.; Boer, R.; Breed, W.; Fr, J.; Karjalainen, T.; Nabuurs, G.-J.; et al. Evaluating Approaches for Estimating Net Emissions of Carbon Dioxide from Forest Harvesting and Wood Products. In Proceedings of the IPCC/OECD/IEA Programme on National Greenhouse Gas Inventories Meeting Report, Dakar, Senegal, 5–7 May 1998; p. 51. [Google Scholar]
- Peng, L.; Searchinger, T.D.; Zionts, J.; Waite, R. The Carbon Costs of Global Wood Harvests. Nature 2023, 620, 110–115. [Google Scholar] [CrossRef]
- Pingoud, K.; Skog, K.E.; Martino, D.L.; Tonosaki, M.; Zhang, X. IPCC. Guidelines for National Greenhouse Gas Inventories. Chapter 12: Harvested Wood Products; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 4. [Google Scholar]
- Geng, A.; Yang, H.; Chen, J.; Hong, Y. Review of Carbon Storage Function of Harvested Wood Products and the Potential of Wood Substitution in Greenhouse Gas Mitigation. For. Policy Econ. 2017, 85, 192–200. [Google Scholar] [CrossRef]
- Pingoud, K.; Pohjola, J.; Valsta, L. Assessing the Integrated Climatic Impacts of Forestry and Wood Products. Silva Fenn. 2010, 44, 155–175. [Google Scholar] [CrossRef]
- Donlan, J.; Skog, K.; Byrne, K.A. Carbon Storage in Harvested Wood Products for Ireland 1961–2009. Biomass Bioenergy 2012, 46, 731–738. [Google Scholar] [CrossRef]
- Skog, K.E. Sequestration of Carbon in Harvested Wood Products for the United States. For. Prod. J. 2008, 58, 56–72. [Google Scholar]
- Johnston, C.M.T.; Radeloff, V.C. Global Mitigation Potential of Carbon Stored in Harvested Wood Products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef] [PubMed]
- Rüter, S. Projection of Net-Emissions from Harvested Wood Products in European Countries: For the Period 2013–2020. Arbeitsbericht Aus Dem Inst. Für Holztechnol. Und Holzbiologie 2011, III, 63. [Google Scholar]
- Romanian National Forest Inventory (NFI). Available online: www.roifn.ro/site (accessed on 24 July 2023).
- Giurca, A.; Nichiforel, L.; Stăncioiu, P.T.; Drăgoi, M.; Dima, D.-P. Unlocking Romania’s Forest-Based Bioeconomy Potential: Knowledge-Action-Gaps and the Way Forward. Land 2022, 11, 2001. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). National Inventory Submissions. 2023. Available online: https://unfccc.int/ghg-inventories-annex-i-parties/2023 (accessed on 18 November 2023).
- Ciceu, A.; Radu, R.G.; Garcia-Duro, J. National Forestry Accounting Plan of Romania; Romanian Ministry of Environment, Waters and Forest: Bucharest, Romania, 2019; 57p. [Google Scholar]
- Panaite, C.; Bouriaud, L. O aplicație a metodei balanței lemnului în România. Bucov. For. 2020, 20, 127–137. [Google Scholar] [CrossRef]
- Cheval, S.; Bulai, A.; Croitoru, A.-E.; Dorondel, S.; Micu, D.; Mihăilă, D.; Sfîcă, L.; Tișcovschi, A. Climate Change Perception in Romania. Theor. Appl. Climatol. 2022, 149, 253–272. [Google Scholar] [CrossRef]
- Prolemn. Available online: https://pro-lemn.ro/ (accessed on 18 November 2024).
- Popa, B.; Nițǎ, M.D.; Nichiforel, L.; Bouriaud, L.; Talpǎ, N.; Ionițǎ, G. Are the Romanian Public Data Regarding the Harvested and Used Wood Correlated? Case Study: Solid Energy Biomass from Forestry. Rev. Pădurilor 2020, 135, 15–26. [Google Scholar]
- Nicorescu, A.; Aureliu-Florin, H.; Popa, B. External Trade Facts for Romanian Forestry Sector. Rev. Pădurilor 2022, 137, 1–50. [Google Scholar]
- Aggestam, F.; Blujdea, V.; Bouriaud, L.; Bucur, C.; Costea, A.; Diaconescu, A.; Dima, D.; Giurca, A.; Aureliu-Florin, H.; Horcea-Milcu, I.; et al. The Plan B for Romania’s Forests and Society; Transilvania University Press: Lexington, KY, USA, 2022; ISBN 978-606-19-1463-0. [Google Scholar]
- Kayo, C.; Kalt, G.; Tsunetsugu, Y.; Hashimoto, S.; Komata, H.; Noda, R.; Oka, H. The Default Methods in the 2019 Refinement Drastically Reduce Estimates of Global Carbon Sinks of Harvested Wood Products. Carbon Balance Manag. 2021, 16, 37. [Google Scholar] [CrossRef]
- National Statistic Institute (NSI). Statistics on Forestry Activities in 2023. Available online: https://insse.ro/cms/ro/content/statistica-activit%C4%83%C5%A3ilor-din-silvicultur%C4%83-%C3%AEn-anul-2023 (accessed on 10 June 2024).
- FAOSTAT. Food and Agriculture Organization of the United Nations, Statistics Division. Forestry Production and Trade. Available online: https://www.fao.org/faostat/en/#data/F (accessed on 4 May 2024).
- Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 19 October 2024).
- Federici, S.; Boer, R.; Gonzalez, S.; Hiraish, T.; Krug, T.; Penman, J.; Srivastava, N.; Sturgiss, R.; Tanabe, K.; Zhakata, W.; et al. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-140-1. [Google Scholar]
- Raši, R.; Cienciala, E.; Priwitzer, T.; Palán, Š.; Pavlenda, P. Carbon Balance in Harvested Wood Products in Slovakia/Bilancia Uhlíka v Drevných Produktoch Na Slovensku. For. J. 2015, 61, 101–106. [Google Scholar] [CrossRef]
- Király, É.; Börcsök, Z.; Kocsis, Z.; Németh, G.; Polgár, A.; Borovics, A. Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 2022, 13, 1809. [Google Scholar] [CrossRef]
- Winjum, J.K.; Brown, S.; Schlamadinger, B. Forest Harvests and Wood Products: Sources and Sinks of Atmospheric Carbon Dioxide. For. Sci. 1998, 44, 272–284. [Google Scholar] [CrossRef]
- Chen, J.; Colombo, S.J.; Ter-Mikaelian, M.T.; Heath, L.S. Future Carbon Storage in Harvested Wood Products from Ontario’s Crown Forests. Can. J. For. Res. 2008, 38, 1947–1958. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Tomé, M.; Dias, A.C.; Maas, G.C.B.; Sanquetta, F.T.I.; Corte, A.P.D. Carbon Storage and CO2 Dynamics from Wood Products Harvested in Brazil during 1900–2016. Carbon Manag. 2019, 10, 417–429. [Google Scholar] [CrossRef]
- Costea, M. Consumption-Based Economy. The Case of Romania in the Last Two Decades. EcoForum 2016, 5, 56–63. [Google Scholar]
- Hălălișan, A.-F.; Nicorescu, A.-I.; Popa, B.; Neykov, N.; Marinescu, V.; Abrudan, I.V. The Relationships between Forestry Sector Standardization, Market Evolution and Sustainability Approaches in the Communist and Post-Communist Economies: The Case of Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1683–1698. [Google Scholar] [CrossRef]
- Gherheș, V.; Cernicova-Buca, M.; Fărcașiu, M.A.; Palea, A. Romanian Students’ Environment-Related Routines during COVID-19 Home Confinement: Water, Plastic, and Paper Consumption. Int. J. Environ. Res. Public Health 2021, 18, 8209. [Google Scholar] [CrossRef]
- Gonçalves, D.; Bordado, J.M.; Marques, A.C.; Galhano dos Santos, R. Non-Formaldehyde, Bio-Based Adhesives for Use in Wood-Based Panel Manufacturing Industry—A Review. Polymers 2021, 13, 4086. [Google Scholar] [CrossRef]
- Popa, B.; Niță, M.D.; Hălălișan, A.F. Intentions to Engage in Forest Law Enforcement in Romania: An Application of the Theory of Planned Behavior. For. Policy Econ. 2019, 100, 33–43. [Google Scholar] [CrossRef]
- Ioras, F.; Abrudan, I.V. The Romanian Forestry Sector: Privatisation Facts. Int. For. Rev. 2006, 8, 361–367. [Google Scholar] [CrossRef]
- Kayo, C.; Sanjo, K.; Sato, I.; Liu, M.; Prasetyadi, G.V.; Hirahara, S. Carbon Stocks of Particle Board and Fiberboard in Japan. Sci. Rep. 2023, 13, 9846. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Hetemäki, L.; Linden, M. Factors Affecting Sawnwood Consumption in Europe. For. Policy Econ. 2015, 50, 236–248. [Google Scholar] [CrossRef]
- Paluš, H.; Parobek, J.; Moravčík, M.; Kovalčík, M.; Dzian, M.; Murgaš, V. Projecting Climate Change Potential of Harvested Wood Products under Different Scenarios of Wood Production and Utilization: Study of Slovakia. Sustainability 2020, 12, 2510. [Google Scholar] [CrossRef]
- Armeanu, D.; Vintilă, G.; Gherghina, Ş. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Rosário, A.; Raimundo, R. Consumer Marketing Strategy and E-Commerce in the Last Decade: A Literature Review. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3003–3024. [Google Scholar] [CrossRef]
- Iordan, C.-M.; Hu, X.; Arvesen, A.; Kauppi, P.; Cherubini, F. Contribution of Forest Wood Products to Negative Emissions: Historical Comparative Analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance Manag. 2018, 13, 12. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, C.-L.; Liao, H.-T. Carbon Neutrality Policies and Technologies: A Scientometric Analysis of Social Science Disciplines. Front. Environ. Sci. 2021, 9, 761736. [Google Scholar] [CrossRef]
- Ministerul Mediului. Available online: https://www.mmediu.ro/ (accessed on 18 November 2024).
- Romania’s National Inventory of Greenhouse Gas Emissions. Available online: https://unfccc.int/documents/274077 (accessed on 19 May 2024).
HWPs Categories | C Conversion Factor |
---|---|
Units | (per air dry volume) [MgC/m3] |
Coniferous sawnwood | 0.225 |
Broadleaf sawnwood | 0.280 |
Wood-based panels | 0.269 |
Units | (per air dry mass) [Mg C/Mg] |
Paper and paperboard | 0.386 |
Coniferous roundwood | 0.225 |
Broadleaf roundwood | 0.295 |
Scenario | Units | 2022 | 2023 | 2025 | 2030 | 2040 | 2050 |
---|---|---|---|---|---|---|---|
BAU | Value (kT CO2) | −2372.53 | −2362.74 | −2378.68 | −2434.54 | −2543.29 | −2630.01 |
Static Average | Value (Kt CO2) | −2372.53 | −3003.94 | −2899.43 | −2592.16 | −2027.96 | −1584.25 |
Diff. % | 0.00 | +27.14 | +21.89 | +6.47 | −20.26 | −39.76 | |
Product Mix Shift | Value (Kt CO2) | −2372.53 | −3028.35 | −3038.32 | −3080.29 | −3150.64 | −3185.87 |
Diff. % | 0.00 | +28.17 | +27.73 | +26.52 | +23.88 | +21.14 | |
Moderate Growth | Value (Kt CO2) | −2372.53 | −2722.13 | −2883.84 | −3266.81 | −3913.67 | −4420.81 |
Diff. % | 0.00 | +15.21 | +21.24 | +34.19 | +53.88 | +68.09 | |
Moderate Decline | Value (Kt CO2) | −2372.53 | −2208.63 | −1909.84 | −1265.80 | −223.29 | 593.42 |
Diff. % | 0.00 | −6.52 | −19.71 | −48.01 | −91.22 | −122.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, C.I.; Petrea, S.; Zaharia, A.; Cucu, A.B.; Serban, T.; Ienasoiu, G.; Radu, G.R. Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products in Romania and Their Contribution to Achieving Climate Neutrality. Sustainability 2025, 17, 640. https://doi.org/10.3390/su17020640
Braga CI, Petrea S, Zaharia A, Cucu AB, Serban T, Ienasoiu G, Radu GR. Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products in Romania and Their Contribution to Achieving Climate Neutrality. Sustainability. 2025; 17(2):640. https://doi.org/10.3390/su17020640
Chicago/Turabian StyleBraga, Cosmin Ion, Stefan Petrea, Alexandru Zaharia, Alexandru Bogdan Cucu, Tibor Serban, Gruita Ienasoiu, and Gheorghe Raul Radu. 2025. "Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products in Romania and Their Contribution to Achieving Climate Neutrality" Sustainability 17, no. 2: 640. https://doi.org/10.3390/su17020640
APA StyleBraga, C. I., Petrea, S., Zaharia, A., Cucu, A. B., Serban, T., Ienasoiu, G., & Radu, G. R. (2025). Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products in Romania and Their Contribution to Achieving Climate Neutrality. Sustainability, 17(2), 640. https://doi.org/10.3390/su17020640