Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries
Abstract
:1. Introduction
2. An Overview of Literature on Renewable Energy Consumption-Economic Growth Nexus
3. Data and Methodological Framework
3.1. Sample Selection and Variable Description
3.2. Econometric Approach
4. Empirical Findings
4.1. Descriptive Statistics, Correlation Analysis, and Stationarity Investigation
4.2. Panel Data Regression Models Results
4.3. Cointegration and Causality Examination
5. Concluding Remarks and Policy Implications
Author Contributions
Conflicts of Interest
References
- Sebri, M. Use renewables to be cleaner: Meta-analysis of the renewable energy consumption-economic growth nexus. Renew. Sustain. Energy Rev. 2015, 42, 657–665. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Dienst, C.; Konig, J.; Ortiz, W. A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries. Renew. Sustain. Energy Rev. 2014, 40, 1–10. [Google Scholar] [CrossRef]
- Bilen, K.; Ozyurt, O.; Bakirci, K.; Karsli, S.; Erdogan, S.; Yimaz, M.; Comakli, O. Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 1529–1561. [Google Scholar] [CrossRef]
- Gottschamer, L.; Zhang, Q. Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity. Renew. Sustain. Energy Rev. 2016, 65, 164–174. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. International Energy Outlook 2016; U.S. Energy Information Administration: Washington, DC, USA, 2016.
- Vaona, A. The effect of renewable energy generation on import demand. Renew. Energy 2016, 86, 354–359. [Google Scholar] [CrossRef]
- Alper, A.; Oguz, O. The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Menegaki, A.N. Growth and renewable energy in europe: A random effect model with evidence for neutrality hypothesis. Energy Econ. 2011, 33, 257–263. [Google Scholar] [CrossRef]
- Beça, P.; Santos, R. Measuring sustainable welfare: A new approach to the isew. Ecol. Econ. 2010, 69, 810–819. [Google Scholar] [CrossRef]
- Moldan, B.; Janouskova, S.; Hak, T. How to understand and measure environmental sustainability: Indicators and targets. Ecol. Indic. 2012, 17, 4–13. [Google Scholar] [CrossRef]
- Menegaki, A.N.; Tugcu, C.T. Energy consumption and sustainable economic welfare in G7 countries; A comparison with the conventional nexus. Renew. Sustain. Energy Rev. 2017, 69, 892–901. [Google Scholar] [CrossRef]
- Menegaki, A.N.; Tiwari, A.K. The index of sustainable economic welfare in the energy-growth nexus for American countries. Ecol. Indic. 2017, 72, 494–509. [Google Scholar] [CrossRef]
- Menegaki, A.N.; Tugcu, C.T. Rethinking the energy-growth nexus: Proposing an index of sustainable economic welfare for sub-saharan Africa. Energy Res. Soc. Sci. 2016, 17, 147–159. [Google Scholar] [CrossRef]
- Menegaki, A.N.; Tugcu, C.T. The sensitivity of growth, conservation, feedback & neutrality hypotheses to sustainability accounting. Energy Sustain. Dev. 2016, 34, 77–87. [Google Scholar]
- Gaspar, J.S.; Marques, A.C.; Fuinhas, J.A. The traditional energy-growth nexus: A comparison between sustainable development and economic growth approaches. Ecol. Indic. 2017, 75, 286–296. [Google Scholar] [CrossRef]
- Valentine, S.V. Emerging symbiosis: Renewable energy and energy security. Renew. Sustain. Energy Rev. 2011, 15, 4572–4578. [Google Scholar] [CrossRef]
- Domac, J.; Richards, L.K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- Fang, Y.P. Economic welfare impacts from renewable energy consumption: The China experience. Renew. Sustain. Energy Rev. 2011, 15, 5120–5128. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. Fossil & renewable energy consumption, GHGS (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 2014, 74, 439–446. [Google Scholar]
- Vass, M.M. Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050. Renew. Energy 2017, 107, 164–180. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Keleş, S.; Bilgen, S. Renewable energy sources in turkey for climate change mitigation and energy sustainability. Renew. Sustain Energy Rev. 2012, 16, 5199–5206. [Google Scholar] [CrossRef]
- Pahle, M.; Pachauri, S.; Steinbacher, K. Can the green economy deliver it all? Experiences of renewable energy policies with socio-economic objectives. Appl. Energy 2016, 179, 1331–1341. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a green economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Foster, E.; Contestabile, M.; Blazquez, J.; Manzano, B.; Workman, M.; Shah, N. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses. Energy Policy 2017, 103, 258–264. [Google Scholar] [CrossRef]
- Sinn, H.W. Public policies against global warming: A supply side approach. Int. Tax Public Financ. 2008, 15, 360–394. [Google Scholar] [CrossRef]
- Tirole, J. Some political economy of global warming. Econ. Energy Environ. Policy 2012, 1, 121–132. [Google Scholar] [CrossRef]
- European Union. Directive 2009/28/EC of the european parliament and of the council of 23 april 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC (text with EEA relevance). Off. J. Eur. Union 2009, 5, 2009. [Google Scholar]
- Jäger-Waldau, A. Photovoltaics and renewable energies in europe. Renew. Sustain. Energy Rev. 2007, 11, 1414–1437. [Google Scholar] [CrossRef]
- Woo, C.; Chung, Y.; Chun, D.; Seo, H.; Hong, S. The static and dynamic environmental efficiency of renewable energy: A malmquist index analysis of OECD countries. Renew. Sustain. Energy Rev. 2015, 47, 367–376. [Google Scholar] [CrossRef]
- Reboredo, J.C. Renewable energy contribution to the energy supply: Is there convergence across countries? Renew. Sustain. Energy Rev. 2015, 45, 290–295. [Google Scholar] [CrossRef]
- Chontanawat, J.; Hunt, L.C.; Pierse, R. Does energy consumption cause economic growth? Evidence from a systematic study of over 100 countries. J. Policy Model. 2008, 30, 209–220. [Google Scholar] [CrossRef]
- Chien, T.; Hu, J.L. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies. Energy Policy 2007, 35, 3606–3615. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Carrera, D.G.; Mack, A. Sustainability assessment of energy technologies via social indicators: Results of a survey among european energy experts. Energy Policy 2010, 38, 1030–1039. [Google Scholar] [CrossRef]
- Botelho, A.; Pinto, L.M.C.; Lourenco-Gomes, L.; Valente, M.; Sousa, S. Social sustainability of renewable energy sources in electricity production: An application of the contingent valuation method. Sustain. Cities Soc. 2016, 26, 429–437. [Google Scholar] [CrossRef]
- Van den Berg, G.P. The beat is getting stronger: The effect of atmospheric stability on low frequency modulated sound of wind turbines. J. Low Freq. Noise Vib. Act. Control 2005, 24, 1–23. [Google Scholar] [CrossRef]
- Chiabrando, R.; Fabrizio, E.; Garnero, G. The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renew. Sustain. Energy Rev. 2009, 13, 2441–2451. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Examining the bi-directional long run relationship between renewable energy consumption and GDP growth. Renew. Sustain Energy Rev. 2013, 22, 209–222. [Google Scholar] [CrossRef]
- Amri, F. Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries. Renew. Sustain. Energy Rev. 2017, 69, 527–534. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. The renewable energy consumption-growth nexus in central America. Appl. Energy 2011, 88, 343–347. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Econ. 2012, 34, 733–738. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Huang, B.N.; Hwang, M.J.; Yang, C.W. Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach. Ecol. Econ. 2008, 67, 41–54. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The environmental kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain Energy Rev. 2015, 47, 173–185. [Google Scholar] [CrossRef]
- Kahia, M.; Aïssa, M.S.B.; Lanouar, C. Renewable and non-renewable energy use—economic growth nexus: The case of mena net oil importing countries. Renew. Sustain. Energy Rev. 2017, 71, 127–140. [Google Scholar] [CrossRef]
- Koçak, E.; Şarkgüneşi, A. The renewable energy and economic growth nexus in black sea and balkan countries. Energy Policy 2017, 100, 51–57. [Google Scholar] [CrossRef]
- Lin, B.Q.; Moubarak, M. Renewable energy consumption—economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the us. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Ocal, O.; Aslan, A. Renewable energy consumption-economic growth nexus in Turkey. Renew. Sustain. Energy Rev. 2013, 28, 494–499. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. [Google Scholar] [CrossRef]
- Sebri, M.; Ben-Salha, O. On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries. Renew. Sustain. Energy Rev. 2014, 39, 14–23. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Zeshan, M.; Zaman, K. Does renewable energy consumption add in economic growth? An application of auto-regressive distributed lag model in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 576–585. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Ozturk, I.; Aslan, A. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 2012, 34, 1942–1950. [Google Scholar] [CrossRef]
- Vaona, A. Granger non-causality tests between (non)renewable energy consumption and output in Italy since 1861: The (ir)relevance of structural breaks. Energy Policy 2012, 45, 226–236. [Google Scholar] [CrossRef]
- Yildirim, E.; Sarac, S.; Asian, A. Energy consumption and economic growth in the USA: Evidence from renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 6770–6774. [Google Scholar] [CrossRef]
- Bilgili, F.; Ozturk, I. Biomass energy and economic growth nexus in G7 countries: Evidence from dynamic panel data. Renew. Sustain. Energy Rev. 2015, 49, 132–138. [Google Scholar] [CrossRef]
- Ozturk, I.; Bilgili, F. Economic growth and biomass consumption nexus: Dynamic panel analysis for sub-sahara African countries. Appl. Energy 2015, 137, 110–116. [Google Scholar] [CrossRef]
- Bildirici, M.E. Economic growth and biomass energy. Biomass Bioenergy 2013, 50, 19–24. [Google Scholar] [CrossRef]
- Shahbaz, M.; Rasool, G.; Ahmed, K.; Mahalik, M.K. Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region. Renew. Sustain. Energy Rev. 2016, 60, 1442–1450. [Google Scholar] [CrossRef]
- Solarin, S.A.; Ozturk, I. On the causal dynamics between hydroelectricity consumption and economic growth in Latin America countries. Renew. Sustain. Energy Rev. 2015, 52, 1857–1868. [Google Scholar] [CrossRef]
- Apergis, N.; Chang, T.; Gupta, R.; Ziramba, E. Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers. Renew. Sustain. Energy Rev. 2016, 62, 318–325. [Google Scholar] [CrossRef]
- Payne, J.E. On the dynamics of energy consumption and output in the US. Appl. Energy 2009, 86, 575–577. [Google Scholar] [CrossRef]
- Ozturk, I. A literature survey on energy-growth nexus. Energy Policy 2010, 38, 340–349. [Google Scholar] [CrossRef]
- Lise, W.; Van Montfort, K. Energy consumption and GDP in Turkey: Is there a co-integration relationship? Energy Econ. 2007, 29, 1166–1178. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. The causal relationship between energy consumption and gdp in Albania, Bulgaria, Hungary and Romania: Evidence from ARDL bound testing approach. Appl. Energy 2010, 87, 1938–1943. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Apergis, N.; Christou, C.; Gupta, R. Are there environmental Kuznets curves for us state-level CO2 emissions? Renew. Sustain. Energy Rev. 2017, 69, 551–558. [Google Scholar] [CrossRef]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.Z.; Hashmi, M.Z. Modelling the CO2 emissions and economic growth in croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Lu, A.; Li, L.; He, Y.; Tojo, J.; Zhu, X. A disaggregated analysis of the environmental kuznets curve for industrial CO2 emissions in china. Appl. Energy 2017, 190, 172–180. [Google Scholar] [CrossRef]
- Sinha, A.; Bhattacharya, J. Estimation of environmental kuznets curve for SO2 emission: A case of Indian cities. Ecol. Indic. 2017, 72, 881–894. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified ols for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2000; Volume 15, pp. 93–130. [Google Scholar]
- Lau, K.K.L.; Lindberg, F.; Johansson, E.; Rasmussen, M.I.; Thorsson, S. Investigating solar energy potential in tropical urban environment: A case study of dar es salaam, tanzania. Sustain. Cities Soc. 2017, 30, 118–127. [Google Scholar] [CrossRef]
- Hassan, S.N.; Sani, Y.M.; Aziz, A.R.A.; Sulaiman, N.M.N.; Daud, W.M.A.W. Biogasoline: An out-of-the-box solution to the food-for-fuel and land-use competitions. Energy Convers. Manag. 2015, 89, 349–367. [Google Scholar] [CrossRef]
- Ozturk, I.; Uddin, G.S. Causality among carbon emissions, energy consumption and growth in India. Ekonomska Istraživanja 2012, 25, 752–775. [Google Scholar]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and hypothesis-testing of cointegration vectors in gaussian vector autoregressive models. J. Econom. Soc. 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
Study | Period | Dataset | Estimation Technique | Outcome |
---|---|---|---|---|
Amri [40] | 1990–2012 | 72 countries | Two-step GMM | Feedback Hypothesis |
Apergis and Payne [41] | 1985–2005 | 20 OECD countries | PVECM | |
Apergis and Payne [42] | 1980–2006 | 6 Central American countries | PVECM | |
Apergis and Payne [43] | 1990–2007 | 80 countries | PVECM | |
Kahia et al. [48] | 1980–2012 | MENA Net Oil Importing Countries | PVECM | |
Koçak and Şarkgüneşi [49] | 1990–2012 | 9 Black Sea and Balkan countries | Panel cointegration and heterogeneous causality | |
Lin and Moubarak [50] | 1977–2011 | China | ARDL, Johansen cointegration, Granger causality | |
Sebri and Ben-Salha [54] | 1971–2010 | BRICS countries | ARDL and VECM | |
Shahbaz et al. [55] | 1972Q1–2011Q4 | Pakistan | ARDL and VECM | |
Shahbaz et al. [62] | 1991Q1–2015Q4 | BRICS region | PVECM | |
Menyah and Wolde-Rufael [51] | 1960–2007 | U.S. | Toda-Yamamoto causality | Conservation Hypothesis |
Ocal and Aslan [52] | 1990–2010 | Turkey | ARDL and Toda-Yamamoto causality | |
Sadorsky [53] | 1994–2003 | 18 emerging countries | Panel cointegration | |
Lise and Van Montfort [67] | 1970–2003 | Turkey | ECM | |
Bhattacharya et al. [44] | 1991–2012 | 38 top renewable energy consuming states | Heterogeneous panel estimations | Growth Hypothesis |
Inglesi-Lotz [46] | 1990–2010 | 34 OECD countries | Pedroni cointegration | |
Bilgili and Ozturk [59] | 1980–2009 | G7 countries | Panel cointegration, Conventional OLS, DOLS | |
Ozturk and Bilgili [60] | 1980–2009 | 51 Sub-Sahara African | Panel cointegration, Conventional OLS, DOLS | |
Menegaki [8] | 1997–2007 | 27 European countries | Panel error correction model | Neutrality Hypothesis |
Vaona [57] | 1861–2000 | Italy | Granger non-causality | |
Payne [65] | 1949–2006 | U.S. | Toda-Yamamoto causality | |
Menegaki and Tugcu [11] | 1995–2013 | G7 states | ARDL | Mixed Results |
Menegaki and Tiwari [12] | 1990–2013 | 20 American countries | Quantile regression, Fixed effects model and PVECM | |
Menegaki and Tugcu [13] | 1985–2013 | 42 Sub-Saharan African states | Panel cointegration and Granger causality | |
Menegaki and Tugcu [14] | 1995–2013 | 15 emerging economies | Granger causality and seemingly unrelated regression | |
Gaspar et al. [15] | 1995–2014 | 20 European states | Panel-corrected standard errors and Fixed effects vector decomposition estimators | |
Al-mulali [39] | 1980–2009 | 108 countries | FMOLS | |
Huang et al. [45] | 1972–2002 | 82 states | System GMM and PVAR | |
Tugcu et al. [56] | 1980–2009 | G7 countries | ARDL and Hatemi J causality | |
Yildirim et al. [58] | 1949–2010 | U.S. | Toda-Yamamoto and Bootstrap-corrected causality | |
Bildirici [61] | 1980–2009 | 10 developing and emerging states | ARDL and Dynamic ECM | |
Solarin and Ozturk [63] | 1970–2012 | 7 Latin America countries | VECM | |
Apergis et al. [64] | 1965–2012 | 10 major hydroelectricity consuming states | Nonlinear panel smooth transition VECM | |
Ozturk and Acaravci [68] | 1980–2006 | Albania, Bulgaria, Hungary, Romania | ARDL and VECM |
Variables | Description | Period | Source |
---|---|---|---|
Variables towards sustainable economic growth (dependent variables) | |||
GDPC | Gross domestic product per capita (constant 2010 U.S. $), logarithmic values. | 2003–2014 | WDI [NY.GDP.PCAP.KD] |
Variables towards renewable energy and country-level controls (explanatory variables) | |||
Variables towards renewable energy (overall) | |||
PRE | Primary production of renewable energies (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
CRE | Gross inland renewable energies consumption (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [tsdcc320] |
SRE_GFEC | Share of renewable energy in gross final energy consumption (%). | 2004–2014 | Eurostat [t2020_31] |
SRE_FCT | Share of renewable energy in fuel consumption of transport (%). | 2004–2014 | Eurostat [tsdcc340] |
EGRS | Electricity generated from renewable sources (% of gross electricity consumption). | 2004–2014 | Eurostat [tsdcc330] |
FEC | Final renewable energies consumption in households (% of the total consumption). | 2003–2014 | Eurostat [t2020_rk210] |
Variables towards renewable energy (by type) | |||
Biomass | |||
SBIOFUELS | Primary production of solid biofuels, excluding charcoal (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
BGAS | Primary production of biogas (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
MW | Primary production of municipal waste, renewable (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
BGASOLINE | Primary production of biogasoline (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
BDIESELS | Primary production of biodiesels (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
OLB | Primary production of other liquid biofuels (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
Hydropower | |||
HYDRO | Primary production of hydropower (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
Geothermal energy | |||
GEOTHERMAL | Primary production of geothermal energy (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
Wind power | |||
WIND | Primary production of wind power (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
Solar energy | |||
SOLAR_T | Primary production of solar thermal energy (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
SOLAR_P | Primary production of solar photovoltaic energy (1000 tonnes of oil equivalent), logarithmic values. | 2003–2014 | Eurostat [ten00081] |
Country-level control variables | |||
ED | Energy dependence of a certain country (%), assessing the level of reliance upon imports so as to achieve its energy requirements. | 2003–2014 | Eurostat [tsdcc310] |
GGE | Greenhouse gas emissions (in CO2 equivalent) indexed to 1990, logarithmic values. | 2003–2014 | Eurostat [tsdcc100] |
PET | Pollutant emissions from transport, nitrogen oxides (index, 2000 = 100), logarithmic values. | 2003–2014 | Eurostat [t2020_rk300] |
RP | Resource productivity (purchasing power standard per kilogram), as the ratio between gross domestic product and domestic material consumption. | 2003–2014 | Eurostat [tsdpc100] |
RD | Research and development expenditure (% of GDP). | 2003–2014 | WDI [GB.XPD.RSDV.GD.ZS] |
LF | Labor force, total, logarithmic values. | 2003–2014 | WDI [SL.TLF.TOTL.IN] |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Variables towards sustainable economic growth | |||||
GDPC | 336 | 31,663.85 | 20,449.34 | 4864.61 | 110,001.05 |
Variables towards renewable energy (overall) | |||||
PRE | 336 | 5359.61 | 6653.16 | 0.30 | 36,017.90 |
CRE | 336 | 5502.68 | 6837.68 | 0.30 | 35,406.30 |
SRE_GFEC | 308 | 0.15 | 0.11 | 0.00 | 0.53 |
SRE_FCT | 308 | 0.03 | 0.03 | 0.00 | 0.22 |
EGRS | 308 | 0.20 | 0.17 | 0.00 | 0.70 |
FEC | 334 | 0.19 | 0.14 | 0.00 | 0.52 |
Variables towards renewable energy (by type) | |||||
Biomass | |||||
SBIOFUELS | 336 | 2720.08 | 2915.34 | 0.00 | 11,424.70 |
BGAS | 333 | 285.51 | 857.35 | 0.00 | 7434.30 |
MW | 333 | 262.99 | 488.78 | 0.00 | 3037.00 |
BGASOLINE | 333 | 49.77 | 100.51 | 0.00 | 503.40 |
BDIESELS | 333 | 230.09 | 503.49 | 0.00 | 3042.60 |
OLB | 333 | 20.22 | 79.96 | 0.00 | 833.80 |
Hydropower, geothermal energy, wind, and solar energy | |||||
HYDRO | 336 | 1029.01 | 1576.47 | 0.00 | 6786.90 |
GEOTHERMAL | 333 | 201.48 | 918.08 | 0.00 | 5235.00 |
WIND | 336 | 419.16 | 890.48 | 0.00 | 4931.80 |
SOLAR_T | 336 | 62.56 | 216.95 | 0.00 | 2400.90 |
SOLAR_P | 335 | 86.95 | 338.69 | 0.00 | 3100.30 |
Country-level control variables | |||||
ED | 336 | 0.56 | 0.28 | −0.50 | 1.04 |
GGE | 336 | 92.16 | 30.37 | 40.63 | 171.25 |
PET | 336 | 84.23 | 20.74 | 40.40 | 138.30 |
RP | 336 | 1.48 | 0.72 | 0.47 | 3.52 |
RD | 336 | 0.01 | 0.01 | 0.00 | 0.04 |
LF | 336 | 8,622,532.49 | 10,953,756.15 | 159,601.00 | 42,755,645.00 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
(1) GDPC | 1 | |||||||||||
(2) PRE | 0.08 | 1 | ||||||||||
(3) CRE | 0.11 * | 1.00 *** | 1 | |||||||||
(4) SRE_GFEC | −0.08 | 0.42 *** | 0.40 *** | 1 | ||||||||
(5) SRE_FCT | 0.21 *** | 0.38 *** | 0.39 *** | 0.39 *** | 1 | |||||||
(6) EGRS | 0.08 | 0.47 *** | 0.46 *** | 0.83 *** | 0.39 *** | 1 | ||||||
(7) FEC | −0.56 *** | 0.18 ** | 0.15 ** | 0.61 *** | −0.11 | 0.43 *** | 1 | |||||
(8) SBIOFUELS | −0.03 | 0.97 *** | 0.96 *** | 0.48 *** | 0.35 *** | 0.47 *** | 0.26 *** | 1 | ||||
(9) BGAS | 0.53 *** | 0.65 *** | 0.67 *** | −0.04 | 0.41 *** | 0.16 ** | −0.37 *** | 0.56 *** | 1 | |||
(10) MW | 0.61 *** | 0.58 *** | 0.60 *** | 0.02 | 0.41 *** | 0.18 ** | −0.44 *** | 0.51 *** | 0.76 *** | 1 | ||
(11) BGASOLINE | 0.11 * | 0.53 *** | 0.53 *** | 0.09 | 0.56 *** | 0.14 * | −0.21 *** | 0.50 *** | 0.57 *** | 0.50 *** | 1 | |
(12) BDIESELS | 0.19 *** | 0.64 *** | 0.65 *** | 0.1 | 0.51 *** | 0.22 *** | −0.14 * | 0.59 *** | 0.72 *** | 0.61 *** | 0.67 *** | 1 |
(13) OLB | 0.43 *** | 0.36 *** | 0.37 *** | 0.28 *** | 0.37 *** | 0.32 *** | −0.18 *** | 0.32 *** | 0.44 *** | 0.58 *** | 0.25 *** | 0.36 *** |
(14) HYDRO | −0.03 | 0.75 *** | 0.74 *** | 0.42 *** | 0.33 *** | 0.57 *** | 0.18 ** | 0.74 *** | 0.42 *** | 0.34 *** | 0.46 *** | 0.51 *** |
(15) GEOTHERMAL | −0.08 | 0.47 *** | 0.48 *** | −0.04 | 0.16 ** | 0.16 ** | 0.06 | 0.44 *** | 0.33 *** | 0.36 *** | 0.27 *** | 0.45 *** |
(16) WIND | 0.46 *** | 0.61 *** | 0.62 *** | 0.08 | 0.34 *** | 0.23 *** | −0.21 *** | 0.52 *** | 0.77 *** | 0.68 *** | 0.48 *** | 0.67 *** |
(17) SOLAR_T | 0.37 *** | 0.43 *** | 0.45 *** | −0.08 | 0.24 *** | 0.20 *** | −0.19 *** | 0.27 *** | 0.63 *** | 0.56 *** | 0.37 *** | 0.54 *** |
(18) SOLAR_P | 0.14 * | 0.35 *** | 0.36 *** | −0.07 | 0.31 *** | 0.12 * | −0.07 | 0.28 *** | 0.52 *** | 0.39 *** | 0.48 *** | 0.51 *** |
(19) ED | 0.18 *** | −0.42 *** | −0.41 *** | −0.30 *** | −0.07 | −0.16 ** | −0.23 *** | −0.48 *** | −0.18 ** | −0.15 ** | −0.1 | −0.14 * |
(20) GGE | 0.55 *** | −0.24 *** | −0.21 *** | −0.30 *** | −0.15 ** | −0.05 | −0.46 *** | −0.35 *** | 0.11 * | 0.18 ** | −0.12 * | −0.07 |
(21) PET | −0.40 *** | −0.28 *** | −0.30 *** | −0.22 *** | −0.41 *** | −0.19 *** | 0.08 | −0.19 *** | −0.52 *** | −0.48 *** | −0.34 *** | −0.43 *** |
(22) RP | 0.59 *** | −0.04 | −0.01 | −0.39 *** | 0.17 ** | −0.18 ** | −0.56 *** | −0.14 * | 0.50 *** | 0.50 *** | 0.25 *** | 0.26 *** |
(23) RD | 0.67 *** | 0.44 *** | 0.46 *** | 0.42 *** | 0.44 *** | 0.41 *** | −0.19 *** | 0.42 *** | 0.53 *** | 0.68 *** | 0.30 *** | 0.32 *** |
(24) LF | 0.05 | 0.83 *** | 0.84 *** | −0.04 | 0.26 *** | 0.12 * | −0.17 ** | 0.77 *** | 0.73 *** | 0.63 *** | 0.58 *** | 0.68 *** |
Variables | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) |
(13) OLB | 1 | |||||||||||
(14) HYDRO | 0.17 ** | 1 | ||||||||||
(15) GEOTHERMAL | 0.15 ** | 0.47 *** | 1 | |||||||||
(16) WIND | 0.44 *** | 0.35 *** | 0.37 *** | 1 | ||||||||
(17) SOLAR_T | 0.33 *** | 0.32 *** | 0.44 *** | 0.68 *** | 1 | |||||||
(18) SOLAR_P | 0.27 *** | 0.30 *** | 0.41 *** | 0.48 *** | 0.58 *** | 1 | ||||||
(19) ED | −0.13 * | −0.04 | 0.08 | −0.15 ** | 0.11 * | 0.1 | 1 | |||||
(20) GGE | 0.06 | −0.06 | 0.04 | 0.17 ** | 0.40 *** | −0.04 | 0.46 *** | 1 | ||||
(21) PET | −0.38 *** | −0.09 | −0.05 | −0.54 *** | −0.48 *** | −0.51 *** | 0.07 | −0.07 | 1 | |||
(22) RP | 0.20 *** | −0.07 | 0.1 | 0.37 *** | 0.41 *** | 0.43 *** | 0.20 *** | 0.29 *** | −0.41 *** | 1 | ||
(23) RD | 0.61 *** | 0.24 *** | −0.02 | 0.44 *** | 0.25 *** | 0.15 ** | −0.26 *** | 0.15 ** | −0.49 *** | 0.24 *** | 1 | |
(24) LF | 0.28 *** | 0.65 *** | 0.56 *** | 0.67 *** | 0.54 *** | 0.43 *** | −0.31 *** | −0.05 | −0.23 *** | 0.17 ** | 0.22 *** | 1 |
Variables | Level | |||||||
Individual Intercept | Individual Intercept and Trend | |||||||
LLC | IPS | ADF | PP | LLC | IPS | ADF | PP | |
GDPC | −5.75 *** | −2.83 ** | 84.85 ** | 167.04 *** | −7.61 *** | −0.51 | 55.05 | 59.46 |
PRE | −4.45 *** | 2.11 | 36.52 | 82.96 * | −6.89 *** | −1.06 | 68.08 | 109.98 *** |
CRE | −5.35 *** | 0.91 | 49.79 | 102.04 *** | −4.64 *** | −0.18 | 57.43 | 80.91 * |
SRE_GFEC | 2.13 | 6.06 | 14.31 | 12.22 | −4.98 *** | 0.34 | 55.27 | 76.34 * |
SRE_FCT | −3.12 *** | 0.66 | 53.78 | 52.02 | −5.43 *** | −0.68 | 70.27 † | 56.53 |
EGRS | 7.93 | 9.27 | 5.17 | 11.88 | −1.93 * | 2.46 | 30.96 | 59.38 |
FEC | −0.06 | 3.16 | 29.52 | 34 | −4.75 *** | −0.03 | 52.33 | 108.09 *** |
SBIOFUELS | −5.08 *** | −0.6 | 60.8 | 77.67 * | −3.83 *** | 0.93 | 47.80 | 69.75 † |
BGAS | −2.95 ** | 1.11 | 61.35 | 68.12 | −6.05 *** | −2.49 ** | 94.05 ** | 106.34 *** |
MW | −4.72 *** | −0.38 | 42.73 | 51.48 † | −5.25 *** | −0.11 | 39.68 | 54.55 * |
BGASOLINE | −19.94 *** | −5.8 *** | 63.79 ** | 43.22 | −21.23 *** | −2.62 ** | 48.61 † | 27.85 |
BDIESELS | −8.42 *** | −2.3 * | 77.93 * | 118.73 *** | −5.97 *** | 0.81 | 43.77 | 83.49 ** |
OLB | −0.67 | −0.07 | 22.89 | 39.61 * | −3.64 *** | −0.66 | 26.11 | 57.51 *** |
HYDRO | −8.58 *** | −5.93 *** | 133.67 *** | 219.98 *** | −13.28 *** | −4.99 *** | 114.73 *** | 196.45 *** |
GEOTHERMAL | −180.32 *** | −63.66 *** | 59.11 * | 64.71 ** | −624.51 *** | −103.32 *** | 55.83 * | 49.63 † |
WIND | −10.94 *** | −2.94 ** | 103.03 *** | 177.18 *** | −5.80 *** | 0.04 | 62.10 | 90.14 *** |
SOLAR_T | −5.38 *** | 1.1 | 43.11 | 38.78 | 1.47 | 2.87 | 23.41 | 35.75 |
SOLAR_P | −1.97 * | 1.07 | 48.81 | 25.9 | −8.56 *** | −1.82 * | 75.50 * | 48.84 |
ED | 0.59 | 2.72 | 27.66 | 69.88 | −6.11 *** | −2.85 ** | 92.79 ** | 202.50 *** |
GGE | 2.94 | 4.77 | 25.49 | 20.32 | −6.41 *** | −1.11 | 66.33 | 126.22 *** |
PET | −1.71 * | 3.22 | 37.08 | 26.03 | −8.09 *** | −1.68 * | 76.01 * | 106.09 *** |
RP | 0.25 | 4.63 | 16.12 | 16.95 | −3.78 *** | 1.16 | 40.34 | 101.25 *** |
RD | −2.8 ** | 2.16 | 50.4 | 29.95 | −4.78 *** | −0.18 | 58.37 | 86.95 ** |
LF | −8 *** | −1.38 † | 81.55 * | 116.09 *** | −5.28 *** | 0.76 | 53.20 | 69.96 † |
Variables | First Difference | |||||||
Individual Intercept | Individual Intercept and Trend | |||||||
LLC | IPS | ADF | PP | LLC | IPS | ADF | PP | |
ΔGDPC | −8.08 *** | −2.76 ** | 83.78 ** | 109.52 *** | −11.96 *** | −0.94 | 73.15 † | 77.84 * |
ΔPRE | −10.37 *** | −6.04 *** | 143.00 *** | 242.85 *** | −9.63 *** | −2.38 ** | 109.15 *** | 225.42 *** |
ΔCRE | −7.49 *** | −4.40 *** | 117.65 *** | 218.64 *** | −13.47 *** | −2.03 * | 93.74 ** | 209.88 *** |
ΔSRE_GFEC | −5.13 *** | −2.37 ** | 88.04** | 173.95 *** | −4.75 *** | −0.09 | 60.77 | 171.06 *** |
ΔSRE_FCT | −5.82 *** | −3.29 *** | 99.67 *** | 162.77 *** | −6.61 *** | −0.13 | 63.54 | 133.15 *** |
ΔEGRS | −1.85 * | 0.01 | 56.99 | 118.42 *** | −11.44 *** | −1.06 | 89.35 ** | 156.94 *** |
ΔFEC | −6.54 *** | −4.05 *** | 107.78 *** | 251.83 *** | −4.67 *** | −0.47 | 63.27 | 213.91 *** |
ΔSBIOFUELS | −5.02 *** | −3.40 *** | 98.06 *** | 220.83 *** | −3.41 *** | −0.32 | 68.32 † | 247.66 *** |
ΔBGAS | −11.62 *** | −7.02 *** | 154.65 *** | 247.18 *** | −11.78 *** | −3.11 *** | 122.08 *** | 225.96 *** |
ΔMW | −3.10 ** | −2.05 * | 54.77 * | 128.76 *** | −1.29 † | 0.04 | 37.81 | 135.87 *** |
ΔBGASOLINE | −15.92 *** | −4.13 *** | 75.49 *** | 96.47 *** | −11.69 *** | −1.60 † | 62.84 ** | 137.17 *** |
ΔBDIESELS | −8.42 *** | −3.85 *** | 98.29 *** | 194.14 *** | −16.37 *** | −3.34 *** | 118.53 *** | 220.86 *** |
ΔOLB | −4.12 *** | −2.11 * | 37.61 * | 79.75 *** | −3.07 ** | −0.12 | 22.27 | 71.19 *** |
ΔHYDRO | −16.70 *** | −9.61 *** | 194.39 *** | 349.57 *** | −15.30 *** | −3.71 *** | 128.82 *** | 299.90 *** |
ΔGEOTHERMAL | −497.95 *** | −80.40 *** | 96.05 *** | 147.50 *** | −306.91 *** | −31.68 *** | 75.29 *** | 150.37 *** |
ΔWIND | −9.22 *** | −3.70 *** | 97.36 *** | 158.60 *** | −25.28 *** | −4.90 *** | 130.67 *** | 206.99 *** |
ΔSOLAR_T | −1.59 † | −1.16 | 60.06 | 137.08 *** | −4.90 *** | −0.06 | 59.29 | 175.25 *** |
ΔSOLAR_P | −4.47 *** | −3.66 *** | 93.09 *** | 115.15 *** | −4.17 *** | −1.26 | 80.49 ** | 125.95 *** |
ΔED | −7.98 *** | −7.75 *** | 168.48 *** | 383.62 *** | −5.08 *** | −2.58 ** | 112.63 *** | 351.12 *** |
ΔGGE | −11.64 *** | −6.79 *** | 154.76 *** | 275.04 *** | −12.86 *** | −3.20 *** | 123.94 *** | 293.40 *** |
ΔPET | −7.84 *** | −4.71 *** | 120.33 *** | 191.42 *** | −5.98 *** | −0.85 | 81.41 * | 145.72 *** |
ΔRP | −7.19 *** | −4.77 *** | 120.45 *** | 269.63 *** | −11.66 *** | −2.59 ** | 108.24 *** | 261.40 *** |
ΔRD | −4.90 *** | −3.24 *** | 97.76 *** | 187.27 *** | −4.33 *** | −0.71 | 72.08 † | 174.11 *** |
ΔLF | −2.99 ** | −2.29 * | 81.50 * | 187.40 *** | −2.94 ** | −1.02 | 76.83 * | 243.79 *** |
Variables | Equations | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
PRE | 0.08 *** (5.01) | |||||
CRE | 0.07 *** (4.45) | |||||
SRE_GFEC | 1.61 *** (5.43) | |||||
SRE_FCT | 1.27 *** (5.83) | |||||
EGRS | 0.35 * (2.14) | |||||
FEC | 0.23 (1.27) | |||||
ED | 0.12 † (1.82) | 0.10 (1.54) | 0.09 (1.46) | 0.07 (1.23) | 0.07 (1.13) | 0.13 † (1.93) |
GGE | 0.19 * (2.38) | 0.20 * (2.39) | 0.37 *** (4.30) | 0.32 *** (3.99) | 0.23 ** (2.64) | 0.22 * (2.59) |
PET | −0.03 (−0.82) | −0.03 (−0.88) | 0.09 * (2.17) | 0.03 (0.75) | 0.01 (0.21) | −0.05 (−1.36) |
RP | −0.01 (−0.23) | −0.00 (−0.07) | 0.01 (0.40) | 0.02 (1.12) | −0.01 (−0.35) | 0.01 (0.48) |
RD | 5.68 * (2.33) | 6.34 ** (2.60) | 1.93 (0.80) | 6.98 ** (3.25) | 5.86 * (2.44) | 8.43 *** (3.34) |
LF | −0.29 † (−1.88) | −0.31 † (−1.96) | 0.15 (1.10) | −0.07 (−0.47) | 0.16 (1.11) | −0.00 (−0.03) |
_cons | 13.02 *** (5.78) | 13.50 *** (5.75) | 5.46 * (2.55) | 9.40 *** (4.45) | 6.44 ** (2.84) | 9.21 *** (4.08) |
F statistic | 8.18 *** | 7.36 *** | 7.02 *** | 7.71 *** | 3.23 *** | 4.45 *** |
R-sq within | 0.16 | 0.15 | 0.15 | 0.17 | 0.08 | 0.09 |
Obs | 336 | 336 | 308 | 308 | 308 | 334 |
N Countries | 28 | 28 | 28 | 28 | 28 | 28 |
Variables | Equations | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
SBIOFUELS | 0.16 *** (6.77) | |||||
BGAS | 0.06 *** (8.27) | |||||
MW | 0.04 *** (5.88) | |||||
BGASOLINE | 0.02 *** (6.19) | |||||
BDIESELS | 0.02 *** (8.83) | |||||
OLB | −0.00 (−0.33) | |||||
ED | 0.07 (1.15) | 0.20 ** (3.22) | 0.11 † (1.72) | 0.10 (1.56) | 0.20 *** (3.36) | 0.12 † (1.83) |
GGE | 0.24 ** (3.01) | 0.38 *** (4.81) | 0.25 ** (3.11) | 0.30 *** (3.71) | 0.37 *** (4.79) | 0.20 * (2.33) |
PET | −0.04 (−1.04) | −0.00 (−0.02) | −0.06 (−1.58) | −0.03 (−0.72) | −0.03 (−0.75) | −0.06 (−1.48) |
RP | −0.02 (−0.92) | 0.01 (0.30) | 0.01 (0.34) | 0.01 (0.44) | 0.02 (0.76) | 0.01 (0.51) |
RD | 6.60 ** (2.88) | 5.59 * (2.51) | 7.43 ** (3.21) | 7.61 ** (3.32) | 7.74 *** (3.58) | 9.29 *** (3.82) |
LF | −0.07 (−0.53) | 0.03 (0.21) | −0.06 (−0.45) | −0.03 (−0.20) | −0.10 (−0.73) | 0.01 (0.09) |
_cons | 9.18 *** (4.48) | 7.64 *** (3.83) | 9.93 *** (4.76) | 9.13 *** (4.40) | 9.74 *** (4.96) | 9.12 *** (4.14) |
F statistic | 11.44 *** | 14.97 *** | 9.68 *** | 10.27 *** | 16.50 *** | 4.26 *** |
R-sq within | 0.21 | 0.26 | 0.18 | 0.19 | 0.28 | 0.09 |
Obs | 336 | 336 | 336 | 336 | 336 | 336 |
N Countries | 28 | 28 | 28 | 28 | 28 | 28 |
Variables | Equations | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
HYDRO | 0.05 † (1.94) | ||||
GEOTHERMAL | 0.02 * (2.17) | ||||
WIND | 0.04 *** (11.78) | ||||
SOLAR_T | 0.03 *** (3.90) | ||||
SOLAR_P | −0.00 (−1.33) | ||||
ED | 0.15 * (2.18) | 0.14 * (2.10) | 0.13 * (2.39) | 0.14 * 2.09) | 0.13 † (1.94) |
GGE | 0.22 * (2.57) | 0.22 ** (2.61) | 0.40 *** (5.57) | 0.22 ** (2.63) | 0.16 † (1.82) |
PET | −0.06 (−1.55) | −0.07 † (−1.68) | 0.03 (0.90) | −0.06 (−1.62) | −0.07 † (−1.76) |
RP | 0.01 (0.39) | 0.00 (0.03) | 0.00 (0.08) | −0.02 (−0.93) | 0.01 (0.49) |
RD | 8.91 *** (3.70) | 8.04 ** (3.25) | 7.33 *** (3.66) | 6.53 ** (2.65) | 10.03 *** (4.08) |
LF | 0.00 (0.02) | 0.03 (0.19) | 0.09 (0.72) | −0.18 (−1.18) | 0.03 (0.19) |
_cons | 8.95 *** (4.09) | 8.82 *** (4.03) | 6.55 *** (3.57) | 11.98 *** (5.28) | 9.08 *** (4.14) |
F statistic | 4.84 *** | 4.99 *** | 26.02 *** | 6.63 *** | 4.52 *** |
R-sq within | 0.10 | 0.10 | 0.38 | 0.13 | 0.10 |
Obs | 336 | 336 | 336 | 336 | 336 |
N Countries | 28 | 28 | 28 | 28 | 28 |
Within-Dimension | ||||||
Cointegration Test | Individual Intercept | Individual Intercept and Individual Trend | No Intercept or Trend | |||
Statistic | Weighted Statistic | Statistic | Weighted Statistic | Statistic | Weighted Statistic | |
Panel v-Statistic | −0.11 | −1.11 | 0.65 | −3.32 | −3.06 | −3.84 |
Panel rho-Statistic | 2.18 | 1.87 | 4.25 | 4.49 | −2.45 ** | −2.61 ** |
Panel PP-Statistic | −0.48 | −1.21 | 0.92 | −1.16 | −6.67 *** | −6.02 *** |
Panel ADF-Statistic | −4.44 *** | −3.41 *** | −0.52 | −2.44 ** | −6.76 *** | −6.03 *** |
Between-Dimension | ||||||
Statistic | Statistic | Statistic | ||||
Group rho-Statistic | 4.55 | 6.34 | −0.21 | |||
Group PP-Statistic | −0.16 | −0.76 | −9.12 *** | |||
Group ADF-Statistic | −3.46 *** | −1.02 | −7.73 *** |
ADF (t-Statistic) | Residual Variance | HAC Variance |
---|---|---|
−4.38 *** | 0.002 | 0.003 |
Hypothesized No. of CE(s) | Fisher Stat. (From Trace Test) | Fisher Stat. (From Max-Eigen Test) |
---|---|---|
None | 579.9 *** | 502.3 *** |
At most 1 | 169.6 *** | 146.7 *** |
At most 2 | 104.6 *** | 104.6 *** |
Variables | FMOLS | DOLS |
---|---|---|
PRE | 0.06 *** (4.40) | 0.05 *** (5.16) |
ED | 0.08 (1.05) | 0.12 (1.28) |
R-squared | 0.99 | 0.99 |
Adjusted R-squared | 0.99 | 0.99 |
S.E. of regression | 0.07 | 0.06 |
Durbin-Watson stat | 0.42 | |
Mean dependent var | 10.16 | 10.15 |
S.D. dependent var | 0.66 | 0.67 |
Sum squared resid | 1.30 | 1.08 |
Long-run variance | 0.01 | 0.01 |
Variables | Short-Run (or Weak) Granger Causality | Long-Run Granger Causality | ||
---|---|---|---|---|
ΔGDPC | ΔPRE | ΔED | ECT | |
(6) ΔGDPC | - | 12.56 ** | 4.00 | −0.002 |
(7) ΔPRE | 1.49 | - | 4.76 † | −0.020 ** |
(8) ΔED | 2.83 | 4.20 | - | 0.013 *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armeanu, D.Ş.; Vintilă, G.; Gherghina, Ş.C. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies 2017, 10, 381. https://doi.org/10.3390/en10030381
Armeanu DŞ, Vintilă G, Gherghina ŞC. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies. 2017; 10(3):381. https://doi.org/10.3390/en10030381
Chicago/Turabian StyleArmeanu, Daniel Ştefan, Georgeta Vintilă, and Ştefan Cristian Gherghina. 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries" Energies 10, no. 3: 381. https://doi.org/10.3390/en10030381
APA StyleArmeanu, D. Ş., Vintilă, G., & Gherghina, Ş. C. (2017). Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies, 10(3), 381. https://doi.org/10.3390/en10030381