The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study
<p>GHG emissions vs. GHG removals comparative dynamics, EU-27 + UK.</p> "> Figure 2
<p>GHG emissions vs. GHG removals dynamics, by GHG type, EU-27 + UK. 1990 = 1.</p> "> Figure 3
<p>The GHG emissions/removals dynamics, by land use, EU-27 + UK.</p> "> Figure 4
<p>LULUCF GHG emissions structure by land use categories for the 1990–2019 time period, EU-27 + UK.</p> "> Figure 5
<p>Net GHG removals dynamics comparative aspects, UK-27 + UK vs. Romania (1990 = 1).</p> "> Figure 6
<p>(<b>a</b>) Contribution of the Romanian LULUCF sector to net GHG removals from EU-27 + United Kingdom (Calculation was made as a percentage ratio between the absolute change in removals in Romania and the absolute change in net removals at the UK-27 + UK’s level); (<b>b</b>) GHG emissions vs. GHG removals comparative dynamics for Romania.</p> "> Figure 7
<p>Comparative aspects of the dynamics of Romanian GHG emissions/removals between the LULUCF sector and NGHGI.</p> "> Figure 8
<p>Romania—GHG emissions/removals dynamics comparative aspects, by land use category. Note 3: FL—Forestlands; CL—Croplands; GL—Grasslands; WL—Wetlands; SL—Settlements; OL—Other Lands; HWP—Harvested Wood Products.</p> "> Figure 9
<p>LULUCF GHG emissions/removals scenarios vs. EU 2030 target.</p> "> Figure 10
<p>Comparative dynamics of the forecasted evolution of LULUCF GHG emissions vs. GHG removals scenarios.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. LULUCF Sector GHG Emissions vs. GHG Removals Evolution (EU-27 + UK’s)
3.2. Romanian LULUCF Sector GHG Emissions vs. GHG Removals Evolution
3.3. Romanian GHG Emissions/Removals Evolution Analysis by Land Use Categories
3.4. Romanian LULUCF Sector GHG Emissions/Removals Projections by 2040
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papiez, M.; Smiech, S.; Frodyma, K. The role of energy policy on the decoupling processes in the European Union countries. J. Clean. Prod. 2021, 318, 128484. [Google Scholar] [CrossRef]
- Iordache, M.; Zgavarogea, R.; Iordache, A.M.; Constantinescu, M.; Bucura, F.; Ionete, R.E.; Grigorescu, R.; Nechita, C. Temporal evolution of greenhouse gas emissions in European Union (EU-28): A perspective on Romania. Smart Energy Sustain. Environ. 2021, 24, 43–58. [Google Scholar] [CrossRef]
- Zgavarogea, R.; Iordache, M.; Iordache, A.M.; Constantinescu, M.; Bucura, F.; Ionete, R.E.; Grigorescu, R.; Nechita, C. The contribution of Romania to climate change—The effects of accounting the GHG emissions from land use, land-use change and forestry (LULUCF). Smart Energy Sustain. Environ. 2021, 24, 5–20. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Law No. 24/1994 for the ratification of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro on 5 June 1992. Available online: https://treaties.un.org/doc/Publication/MTDSG/Volume%20II/Chapter%20XXVII/XXVII-7.en.pdf (accessed on 17 January 2022).
- Bochenska, P.M.; Reznik, W. Greenhouse Gas Emissions from Agriculture in EU Countries-State and Perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change—Kyoto Protocol. Available online: https://unfccc.int/kyoto_protocol (accessed on 14 March 2022).
- United Nations Framework Convention on Climate Change—Paris Agreement. Law No. 57 of April 10, 2017 for the ratification of the Paris Agreement, concluded in Paris on December 12, 2015 and signed by Romania in New York on 22 April 2016. Available online: http://www.cdep.ro/pls/legis/legis_pck.htp_act?nr=57&an=2017 (accessed on 16 March 2022).
- Latta, G.S.; Bake, J.S.; Ohrel, S. A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO2 effects of alternative macroeconomic futures. For. Policy Econ. 2018, 87, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Hanna, F.; Kuramochi, T.; Roelfsema, M.; Elzen den, M.; Forsell, N.; H’ohne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J.; et al. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sust. Energ. Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Kuramochi, T.; Nascimento, L.; Moisio, M.; Elzen, M.; Forsell, N.; Soest, H.; Tanguy, P.; Gonzales, S.; Hans, F.; Jeffery, M.L.; et al. Greenhouse gas emission scenarios in nine key non-G20 countries: An assessment of progress toward 2030 climate targets. Environ Sci Policy 2021, 123, 67–81. [Google Scholar] [CrossRef]
- European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 14 March 2022).
- European Climate Law with proposals to revise Regulation (EU) 2018/841 and Regulation (EU) 2018/1999. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2022-0161_EN.html (accessed on 16 March 2022).
- IPCC. IPCC Special Report on the Impacts of Global Warming of 1.5 °C—Summary for Policy Makers; IPCC: Incheon, Korea, 2018. [Google Scholar]
- Romero, P.J.; Gramkow, C. Economic complexity and greenhouse gas emissions. World Dev. 2021, 139, 105317. [Google Scholar] [CrossRef]
- Perugini, L.; Pellis, G.; Grassi, G.; Ciais, P.; Dolman, H.; House, J.I.; Peters, G.P.; Smith, P.; Günther, D.; Peylin, P. Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute? Environ. Sci. Policy 2021, 122, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Oreggioni, G.D.; Ferraio, F.M.; Crippa, M.; Muntean, M.; Schaaf, E.; Guizzardi, D.; Solazzo, E.; Duerr, M.; Perry, M.; Vignati, E. Climate change in a changing world: Socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Glob. Environ. Chang. 2021, 70, 102350. [Google Scholar] [CrossRef]
- Kohl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU climate package “Fit for 55”—A double-edged sword for Europeans and their forests and timber industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Svensson, J.; Waisman, H.; Vogt-Schilb, A.; Bataille, C.; Aubert, P.-M.; Jaramilo-Gil, M.; Angulo-Paniagua, J.; Arguello, R.; Bravo, G.; Buira, D.; et al. A low GHG development pathway design framework for agriculture, forestry and land use. Energy Strategy Rev. 2021, 37, 100683. [Google Scholar] [CrossRef]
- Duffy, C.; O’Donoghue, C.; Ryan, M.; Styles, D.; Spillane, C. Afforestation: Replacing livestock emissions with carbon sequestration. J. Environ. 2020, 264, 110523. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, R.; Rinaldi, F.; Pilli, R.; Fiorese, G.; Hurmekoski, E.; Cazzaniga, N.; Robert, N.; Camia, A. Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts. Technol. Forecast Soc. Chang. 2021, 163, 120478. [Google Scholar] [CrossRef]
- Prudhomme, R.; O’Donoghue, C.; Ryan, M.; Styles, D. Defining national biogenic methane targets: Implications for national food production & climate neutrality objectives. J. Environ. 2021, 295, 113058. [Google Scholar] [CrossRef]
- Romania’s National Recovery and Resilience Plan. Available online: https://mfe.gov.ro/pnrr (accessed on 14 March 2022).
- Romania’s National Inventory of Greenhouse Gas Emissions. Available online: https://unfccc.int/documents/274077 (accessed on 14 March 2022).
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 14 March 2022).
- The Intergovernmental Panel on Climate Change—Fourth Assessment Report. Available online: https://www.ipcc.ch/assessment-report/ar4/ (accessed on 14 March 2022).
- Greenhouse gas emission trend projections and target. Available online: https://www.eea.europa.eu/data-and-maps/figures/greenhouse-gas-emission-trend-projections (accessed on 1 July 2022).
- United Nations Framework Convention on Climate Change—GHG projections. Available online: https://unfccc.int/Projections_PaMs.pdf (accessed on 1 July 2022).
Year | 1990 | 2005 | 2012 | 2019 | |
---|---|---|---|---|---|
GHG emissions, kt CO2 eq. | total | 197,194 | 170,615 | 162,473 | 151,741 |
CO2 | 168,044 | 142,499 | 134,162 | 123,247 | |
CH4 | 12,857 | 12,224 | 12,467 | 114,10 | |
N2O | 16,294 | 15,892 | 15,845 | 17,085 | |
CO2 removals, kt CO2 eq. | −390,389 | −473,151 | −476,342 | −394,862 | |
GHG emissions vs. GHG removals ratio | 1.98 | 2.77 | 2.93 | 2.60 | |
No. of GHG source type countries | 8 | 6 | 5 | 6 | |
No. of GHG sink type countries | 20 | 22 | 23 | 22 |
Year | 4A. FL | 4B. CL | 4C. GL | 4D. WL | 4E. SL | 4F. OL | 4G. HWP | 4H. Other |
---|---|---|---|---|---|---|---|---|
1990 | −347,716 | 87,835 | 36,278 | 15,594 | 41,919 | 3892 | −31,260 | 0.263 |
2005 | −403,043 | 70,414 | 19,063 | 19,877 | 48,020 | 1243 | −58,989 | 0.879 |
2012 | −429,771 | 63,229 | 20,482 | 17,282 | 48,897 | 1190 | −35,780 | 0.603 |
2019 | −344,619 | 57,038 | 11,884 | 20,421 | 50,313 | 1728 | −40,412 | 0.526 |
Year | CO2 Removals | ||||||
---|---|---|---|---|---|---|---|
1990 (kt CO2 eq.) | 2005 (kt CO2 eq.) | 2012 (kt CO2 eq.) | 2019 (kt CO2 eq.) | Average Level (kt CO2 eq.) | Rhythm of Change—2019/1990 (%) | GHG Removals Structure (%) | |
Forestland | −359,129 | −413,974 | −440,411 | −354,450 | −422,847 | 1.3 | 91.42 |
Harvested Wood Products | −31,260 | −58,989 | −35,780 | −40,412 | −39,618 | 29.3 | 8.57 |
Other land | 0 | −0.188 | −0.150 | 0 | −0.086 | - | 0.02 |
Time Segment | 1989–2005 | 2005–2012 | 2012–2019 | 1989–2019 | |
---|---|---|---|---|---|
GHG emissions (average), kt CO2 eq./year | 7987 | 8442 | 9086 | 8273 | |
GHG removals (average), kt CO2 eq. /year | 35,104 | 36,847 | 38,900 | 36,264 | |
GHG emissions (absolute average change), kt CO2 eq./year | 32 | 512 | −441 | 34 | |
GHG removals (absolute average change), kt CO2 eq. /year | 230 | 839 | −504 | 201 | |
GHG emissions (average annual rate), % | 0.4 | 5.4 | −4.3 | 0.4 | |
GHG removalss (average annual rate), % | 0.7 | 2.2 | −1.2 | 0.6 | |
GHG emissions structure on average by GHG type, % | CO2 | 80.3 | 78.2 | 74.2 | 78.0 |
CH4 | 0.03 | 0.07 | 0.08 | 0.05 | |
N2O | 19.7 | 23.0 | 29.2 | 22.7 |
Time Segment | Emissions (Average) (kt CO2 Eq./Year) | Absolute Average Change (kt CO2 Eq./Year) | Average Annual Rate % | ||||||
---|---|---|---|---|---|---|---|---|---|
CO2 | N2O | CH4 | CO2 | N2O | CH4 | CO2 | N2O | CH4 | |
1989–2005 | 6412 | 1573 | 2.5 | −3 | 36 | 0.01 | −0.1 | 2.5 | 3.5 |
2005–2012 | 6599 | 1836 | 5.9 | 476 | 33 | 3.1 | 6.3 | 1.7 | 69.9 |
2012–2019 | 6746 | 2333 | 6.7 | −515 | 76 | −2.0 | −6.6 | 3.4 | −13.0 |
1989–2019 | 6453 | 1816 | 3.9 | −11 | 44 | 0.3 | −0.2 | 2.5 | 1.12 |
Scenarios Year | WEM Scenario (kt CO2 Eq.) | WAM Scenario (kt CO2 Eq.) | WOM Scenario (kt CO2 Eq.) |
---|---|---|---|
1989 | −25,207 | −25,207 | −25,207 |
2005 | −28,370 | −28,370 | −28,370 |
2012 | −30,658 | −30,658 | −30,658 |
2019 | −30,217 | −30,217 | −30,217 |
2020 | −26,288 | −28,458 | −29,393 |
2025 | −25,541 | −30,021 | −28,105 |
2030 | −24,989 | −31,468 | −27,749 |
2035 | −24,691 | −32,939 | −27,618 |
2040 | −22,190 | −32,296 | −27,551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, M.; Bucura, F.; Ionete, R.E.; Grigorescu, R.; Iordache, A.M.; Zgavarogea, R.; Chitu, A.; Zaharioiu, A.; Botoran, O.R.; Constantinescu, M. The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study. Atmosphere 2022, 13, 1638. https://doi.org/10.3390/atmos13101638
Iordache M, Bucura F, Ionete RE, Grigorescu R, Iordache AM, Zgavarogea R, Chitu A, Zaharioiu A, Botoran OR, Constantinescu M. The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study. Atmosphere. 2022; 13(10):1638. https://doi.org/10.3390/atmos13101638
Chicago/Turabian StyleIordache, Mihaela, Felicia Bucura, Roxana Elena Ionete, Remus Grigorescu, Andreea Maria Iordache, Ramona Zgavarogea, Alin Chitu, Anca Zaharioiu, Oana Romina Botoran, and Marius Constantinescu. 2022. "The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study" Atmosphere 13, no. 10: 1638. https://doi.org/10.3390/atmos13101638
APA StyleIordache, M., Bucura, F., Ionete, R. E., Grigorescu, R., Iordache, A. M., Zgavarogea, R., Chitu, A., Zaharioiu, A., Botoran, O. R., & Constantinescu, M. (2022). The GHGs Evolution of LULUCF Sector at the European Union (EU-27 + UK): Romania Case Study. Atmosphere, 13(10), 1638. https://doi.org/10.3390/atmos13101638