Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement
<p>Amount of wood removal and slash in time period of 1980–2020.</p> "> Figure 2
<p>Amount of net roundwood, industrial wood, and firewood removed from forests in time period of 1980–2020.</p> "> Figure 3
<p>The proportion of industrial wood and firewood in the total net roundwood removal.</p> "> Figure 4
<p>Industrial roundwood removal, import, and export in time period of 1964–2020.</p> "> Figure 5
<p>Production of semi-finished wood product types in time period of 1964–2020.</p> "> Figure 6
<p>Inflow to the HWP pool from imported wood and from domestic harvest in time period of 1964–2020 (kt C/year).</p> "> Figure 7
<p>Carbon stock of the HWP pool 1964–2020 (kt C).</p> "> Figure 8
<p>Emissions and removals from the HWP pool in time period of 1964–2020 (kt CO<sub>2</sub>).</p> "> Figure 9
<p>Historic and predicted emissions and removals from the HWP pool for time period of 1964–2070 (kt CO<sub>2</sub>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods of the Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciais, P.; Borges, A.; Abril, G.; Meybeck, M.; Folberth, G.; Hauglustaine, D.; Janssens, I. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 2008, 5, 259–1271. [Google Scholar] [CrossRef] [Green Version]
- Brunet-Navarro, P.; Jochheim, H.; Kroiher, F.; Muys, B. Effect of cascade use on the carbon balance of the German and European wood sectors. J. Clean. Prod. 2018, 170, 137–146. [Google Scholar] [CrossRef]
- Sathre, R.; Gustavsson, L. Using wood products to mitigate climate change: External costs and structural change. Appl. Energy 2009, 86, 251–257. [Google Scholar] [CrossRef]
- Li, L.; Wei, X.; Zhao, J.; Hayes, D.; Daigneault, A.; Weiskittel, A.; Kizha, A.R.; O’Neill, S.R. Technological advancement expands carbon storage in harvested wood products in Maine, USA. Biomass Bioenergy 2022, 161, 106457. [Google Scholar] [CrossRef]
- IPCC 2022. Chapter 7 Agriculture, Forestry, and Other Land Uses (AFOLU). In Climate Change 2022: Mitigation of Climate Change, the Working Group III Contribution; Sixth Assessment Report; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Hall, D.O.; Mynick, H.E.; Williams, R.H. Cooling the greenhouse with bioenergy. Nature 1991, 353, 11–12. [Google Scholar] [CrossRef]
- Marland, G.; Schlamadinger, B. Biomass fuels and forest management strategies: How do we calculate the greenhouse gas emission benefits? Energy 1995, 20, 1131–1140. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Apps, M.; Bohlin, F.; Gustavsson, L.; Jungmeier, G.; Marland, G.; Pingoud, K.; Savolainen, I. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 1997, 13, 359–375. [Google Scholar] [CrossRef]
- Pingoud, K.; Perälä, A.-L.; Soimakallio, S.; Pussinen, A. Greenhouse gas impacts of harvested wood products. In Evaluation and Development of Methods; VTT Tiedotteita Research Notes; VTT Tiedotteita: Espoo, Finland, 2003; p. 2189. [Google Scholar]
- Green, C.; Avitabile, V.; Farrell, E.P.; Byrne, K.A. Reporting harvested wood products in national greenhouse gas inventories: Implications for Ireland. Biomass Bioenergy 2006, 30, 105–114. [Google Scholar] [CrossRef]
- Geng, A.; Yang, H.; Chen, J.; Hong, Y. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For. Policy Econ. 2017, 85, 92–200. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Börcsök, Z.; Molnár, S.; Schöberl, M. 2011/a: TÁMOP 4.2.2 III/3 Alprogram; University of West Hungary: Sopron, Hungary. (In Hungarian)
- Börcsök, Z.; Schöberl, M.; Molnár, S.; Lakatos, Á.; Ábrahám, J.; Molnár, A. 2011/b: A Faipari Termékekben Tárolt Szén Szerepe a Klímavédelemben. Available online: http://www.fataj.hu/2011/01/123/1tema.pdf (accessed on 10 October 2022). (In Hungarian).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Rüter, S. Projections of Net Emissions from Harvested Wood Products in European Countries; Work Report No. 2011/x of the Institute of Wood Technology and Wood Biology; Johann Heinrich von Thünen Institute (vTI): Hamburg, Gemany, 2011; 62p. [Google Scholar]
- Pilli, R.; Fiorese, G.; Grassi, G. EU mitigation potential of harvested wood products. Carbon Balance Manag. 2015, 10, 6. [Google Scholar] [CrossRef]
- Király, É.; Kottek, P. Estimation of the stocks and stock change of the Hungarian harvested wood product pool using the methodology of 2013 IPCC Supplementary Guidance. Erdészettudományi Közlemények 2014, 4, 95–107. (In Hungarian) [Google Scholar]
- IPCC 2014. Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- NIR 2022. Land-Use, Land-Use Change and Forestry; Somogyi, Z., Szakálas, J., Tobisch, T., Eds.; National Inventory Report for 1985–2020; National Inventory Report (NIR): Budapest, Hungary, 2022. [Google Scholar]
- European Commission. The European Green Deal, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Verkerk, P.J.; Delacote, P.; Hurmekoski, E.; Kunttu, J.; Matthews, R.; Mäkipää, R.; Mosley, F.; Perugini, L.; Reyer, C.P.O.; Roe, S.; et al. Forest-Based Climate Change Mitigation and Adaptation in Europe. From Science to Policy 14; European Forest Institute: Joensuu, Finland, 2022; ISBN 978-952-7426-22-7. [Google Scholar] [CrossRef]
- Ludvig, A.; Braun, M.; Hesser, F.; Ranacher, L.; Fritz, D.; Gschwantner, T.; Jandl, R.; Kindermann, G.; Ledermann, T.; Pölz, W.; et al. Comparing policy options for carbon efficiency in the wood value chain: Evidence from Austria. J. Clean. Prod. 2021, 292, 125985. [Google Scholar] [CrossRef]
- Savaresi, A.; Perugini, L. Balancing Emissions and Removals in the Land Sector: The View from the EU. Carbon Clim. Law Rev. 2021, 15, 49–59. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economic Plan for a Cleaner and More Competitive Europe, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2020) 98 final; European Commission: Brussels, Begium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. ‘Farm to fork’ Strategy for a Fair, Healthy and Environmentally Friendly Food System; COM (2020) 381 final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: New EU Forest Strategy for 2030; COM (2021) 572 final. 6.7.2021; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Ministry of Agriculture of Hungary. 2016: Hungarian National Forest Strategy 2016-2030; Prepared by the Department of Forestry and Wildlife Management of the Ministry of Agriculture of Hungary, Budapest. Available online: http://erdo-mezo.hu/wp-content/uploads/2016/10/nemzeti_erdostrategia_2016.pdf (accessed on 29 October 2022). (In Hungarian)
- Summary data on forests in Hungary. National Land Centre, Forestry Department. 2021. Available online: https://nfk.gov.hu/Magyarorszag_erdeivel_kapcsolatos_adatok_news_513 (accessed on 10 October 2022).
- Halász, A. Erdőgazdaságunk, Faiparunk és Faellátásunk Helyzete és Fejlődése 1920-1958-ig; Közgazdasági és Jogi Könyvkiadó: Budapest, Hungary, 1960; p. 333. (In Hungarian) [Google Scholar]
- Halász, A. Faellátásunk Helyzete és Fejlődése; Mezőgazdasági Könyvkiadó Vállalat: Budapest, Hungary, 1966; p. 322. (In Hungarian) [Google Scholar]
- Halász, A. A Magyar Erdészet 70 Éve Számokban 1920-1990; FM Erdőrendezési Szolgálat: Budapest, Hungary, 1994; p. 204. (In Hungarian) [Google Scholar]
- KSH. Agricultural Database I. KSH: Budapest, Hungary, 1965. (In Hungarian) [Google Scholar]
- KSH. Agricultural Statistics Pocketbook 1996, 1997, 1998, 1999; KSH: Budapest, Hungary, 1999. (In Hungarian) [Google Scholar]
- KSH. Hungarian Statistical Yearbook 1990, 1992, 1993, 1994, 1995, 1996, 1997; KSH: Budapest, Hungary, 1997. (In Hungarian) [Google Scholar]
- KSH. Light Industry Database 1978; KSH: Budapest, Hungary, 1978. (In Hungarian) [Google Scholar]
- KSH. Pocketbook of Agricultural and Food Industry Statistics 1991, 1992, 1993, 1994, 1995, 1996; KSH: Budapest, Hungary, 1996. (In Hungarian) [Google Scholar]
- KSH. Statistical Yearbook 1949–55; KSH: Budapest, Hungary, 1957. (In Hungarian) [Google Scholar]
- KSH. Statistical Yearbook 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989; KSH: Budapest, Hungary, 1989. (In Hungarian) [Google Scholar]
- KSH. Yearbook of Agricultural Statistics 1980, 1981,1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1997, 1998; KSH: Budapest, Hungary, 1998. (In Hungarian) [Google Scholar]
- KSH. Yearbook of Industrial Statistics 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988; KSH: Budapest, Hungary, 1988. (In Hungarian) [Google Scholar]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; IPCC: Geneva, Switzerland, 2003. [Google Scholar]
- Zhang, X.; Yang, H.; Chen, J. Life-cycle carbon budget of China’s harvested wood products in 1900–2015. For. Policy Econ. 2018, 92, 181–192. [Google Scholar] [CrossRef]
- Donlan, J.; Skog, K.; Byrne, K.A. Carbon storage in harvested wood products for Ireland. Biomass Bioenergy 2012, 46, S731–S738. [Google Scholar] [CrossRef]
- Tonosaki, M. Harvested wood products accounting in the post Kyoto commitment cycle. J. Wood Sci. 2009, 55, 390–394. [Google Scholar] [CrossRef]
- Skog, K.E. Sequestration of carbon in harvested wood products for the United States. For. Prod. J. 2008, 58, 56–72. [Google Scholar]
- Dias, A.C.; Louro, M.; Arroja, L.; Capela, I. Comparison of methods for estimating carbon in harvested wood products. Biomass Bioenergy 2009, 33, 213–222. [Google Scholar] [CrossRef]
- Kohlmaier, G.; Kohlmaier, L.; Fries, E.; Jaeschke, W. Application of the stock change and the production approach to harvested wood products in the EU-15 countries: A comparative analysis. Eur. J. For. Res. 2007, 126, 209–223. [Google Scholar] [CrossRef]
- Aleinikovas, M.; Jasinevičius, G.; Škėma, M.; Beniušienė, L.; Šilinskas, B.; Varnagirytė-Kabašinskienė, I. Assessing the Effects of Accounting Methods for Carbon Storage in Harvested Wood Products on the National Carbon Budget of Lithuania. Forests 2018, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 2017, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M.; et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef] [PubMed]
- Shanin, V.; Komarov, A.; Mäkipää, R. Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. Eur. J. For. Res. 2014, 133, 273–286. [Google Scholar] [CrossRef]
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|
Gross above-ground volume of harvested wood | 7338 | 7576 | 7767 | 7315 | 6580 | 7523 |
Net above-ground volume of harvested wood, including: | 6176 | 6317 | 6481 | 6174 | 5533 | 6621 |
industrial wood | 2950 | 2862 | 3038 | 2892 | 2457 | 3124 |
Firewood | 3226 | 3454 | 3443 | 3282 | 3076 | 3497 |
Half-Life (Year) | Density (Oven Dry Mass over Air Dry Volume) [Mg/m3] | Carbon Fraction | C Conversion Factor (Per Air Dry Volume) [Mg C/m3] | |
---|---|---|---|---|
Coniferous sawnwood | 35 | 0.45 | 0.5 | 0.28 |
Non-coniferous sawnwood | 35 | 0.56 | 0.5 | 0.225 |
Veneer sheets | 25 | 0.505 | 0.5 | 0.253 |
Plywood | 25 | 0.542 | 0.493 | 0.267 |
Particle board | 25 | 0.596 | 0.451 | 0.269 |
HDF | 25 | 0.788 | 0.425 | 0.335 |
MDF | 25 | 0.691 | 0.427 | 0.295 |
Fibreboard compressed | 25 | 0.739 | 0.426 | 0.315 |
Insulating board (Other board, LDF) | 25 | 0.159 | 0.474 | 0.075 |
Half-Life (Year) | Relative Dry Mass (Oven Dry Mass over Air Dry Mass) [Mg/Mg] | C Conversion Factor (per Air Dry Mass) [Mg C/Mg] | ||
Paper and paperboard (aggregate) | 2 | 0.9 | - | 0.386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, É.; Börcsök, Z.; Kocsis, Z.; Németh, G.; Polgár, A.; Borovics, A. Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 2022, 13, 1809. https://doi.org/10.3390/f13111809
Király É, Börcsök Z, Kocsis Z, Németh G, Polgár A, Borovics A. Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests. 2022; 13(11):1809. https://doi.org/10.3390/f13111809
Chicago/Turabian StyleKirály, Éva, Zoltán Börcsök, Zoltán Kocsis, Gábor Németh, András Polgár, and Attila Borovics. 2022. "Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement" Forests 13, no. 11: 1809. https://doi.org/10.3390/f13111809
APA StyleKirály, É., Börcsök, Z., Kocsis, Z., Németh, G., Polgár, A., & Borovics, A. (2022). Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests, 13(11), 1809. https://doi.org/10.3390/f13111809