Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome
<p>A schematic illustrating the arrangements of carbohydrate recognition domains (CRDs) in lectins. Lectins can contain (<b>a</b>) only CRDs, (<b>b</b>) CRDs in conjunction with other types of functional domains, (<b>c</b>) CRDs associated with membrane anchors, or (<b>d</b>) CRDs with oligomerization domains. It is also possible for a single lectin to contain all of these additional domains. Adapted from Taylor et al. [<a href="#B25-marinedrugs-23-00008" class="html-bibr">25</a>], Saijo et al. [<a href="#B29-marinedrugs-23-00008" class="html-bibr">29</a>], Sun et al. [<a href="#B30-marinedrugs-23-00008" class="html-bibr">30</a>], Siebs et al. [<a href="#B31-marinedrugs-23-00008" class="html-bibr">31</a>], Matsushita [<a href="#B32-marinedrugs-23-00008" class="html-bibr">32</a>].</p> "> Figure 2
<p>Applications of Rhodophyta lectins. This figure illustrates the versatility of lectins derived from Rhodophyta as bioactive molecules with significant potential in biomedical, pharmaceutical, agricultural, and biotechnological applications.</p> ">
Abstract
:1. Introduction
2. Lectin Families and Their Protein Characteristics
3. The Rhodophyte Lectome
4. Applications of Rhodophyta Lectins in Biotechnology and Medicine
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- van der Loos, L.M.; Eriksson, B.K.; Falcão Salles, J. The Macroalgal Holobiont in a Changing Sea. Trends Microbiol. 2019, 27, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Chopin, T.; Tacon, A.G.J. Importance of Seaweeds and Extractive Species in Global Aquaculture Production. Rev. Fish. Sci. Aquac. 2021, 29, 139–148. [Google Scholar] [CrossRef]
- Rizwan, S.; Saleem, M.; Hassan, H.U.; Raza, M.A.; Kanwal, R.; Kabir, M.; Ghaffar, R.A.; Fadladdin, Y.A.J.; Rafiq, N.; Matin, A.; et al. Biomedical Properties, Characterization of Seaweeds Species and Antimicrobial Activity. Braz. J. Biol. 2024, 84, e280796. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Dell’Anno, M.; Liu, Y.; Rossi, L.; Aksmann, A.; Pogorzelski, G.; Jóźwik, A. Assessment of the Antibacterial and Antioxidant Activities of Seaweed-Derived Extracts. Sci. Rep. 2024, 14, 21044. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; García-Silva, I.; González-Ortega, O.; Sandoval-Vargas, J.M.; Malla, A.; Vimolmangkang, S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020, 25, 4049. [Google Scholar] [CrossRef]
- Nova, P.; Gomes, A.M.; Costa-Pinto, A.R. It Comes from the Sea: Macroalgae-Derived Bioactive Compounds with Anti-Cancer Potential. Crit. Rev. Biotechnol. 2024, 44, 462–476. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.C.; Ma, J.; Cui, Y.; Wang, L. In Silico Discovery and Anti-Tumor Bioactivities Validation of an Algal Lectin from Kappaphycus alvarezii Genome. Int. J. Biol. Macromol. 2024, 275, 133311. [Google Scholar] [CrossRef]
- Gereniu, C.R.N.; Saravana, P.S.; Getachew, A.T.; Chun, B.-S. Characteristics of Functional Materials Recovered from Solomon Islands Red Seaweed (Kappaphycus alvarezii) Using Pressurized Hot Water Extraction. J. Appl. Phycol. 2017, 29, 1609–1621. [Google Scholar] [CrossRef]
- Das, A.K.; Prasad, K. Extraction of Plant Growth Regulators Present in Kappaphycus alvarezii Sap Using Imidazolium Based Ionic Liquids: Detection and Quantification by Using HPLC-DAD Technique. Anal. Methods 2015, 7, 9064–9067. [Google Scholar] [CrossRef]
- Jumaza, A.; Nirmagustina, D.E.; Purbosari, N. Emulsification of Virgin Coconut Oil (VCO) with Grass Jelly (Cyclea barbata Miers) Using Kappa Carragenan and Konjac into VCO Jelly Product. In Proceedings of the International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), Bangka Island, Indonesia, 21–23 July 2022. [Google Scholar]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Naganuma, T.; Ogawa, T.; Muramoto, K. Lectins of Marine Origin and Their Clinical Applications. In Antitumor Potential and Other Emerging Medicinal Properties of Natural Compounds; Springer: Dordrecht, The Netherlands, 2013; pp. 33–54. [Google Scholar]
- Lakhtin, V.; Lakhtin, M.; Alyoshkin, V. Lectins of Living Organisms. The Overview. Anaerobe 2011, 17, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Tsaneva, M.; Van Damme, E.J.M. 130 Years of Plant Lectin Research. Glycoconj. J. 2020, 37, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Holanda, E.; Sousa Arruda, F.V.; do Nascimento, K.S.; Alves, V.; Shiniti, C.; da Silva, B.R.; Holanda, A.; Sousa, B. Biological Applications of Plants and Algae Lectins: An Overview. In Carbohydrates—Comprehensive Studies on Glycobiology and Glycotechnology; InTech: London, UK, 2012. [Google Scholar]
- Abraham, A.; Rafeeq, C.M.; Karim, R.; Rubeena, A.S. Aquatic Lectins: An Overview (A Paradigm). In Aquatic Lectins; Springer Nature: Singapore, 2022; pp. 3–21. [Google Scholar]
- Sharon, N. History of Lectins: From Hemagglutinins to Biological Recognition Molecules. Glycobiology 2004, 14, 53R–62R. [Google Scholar] [CrossRef]
- Franz, H. The Ricin Story. In Advances in Lectin Research; Springer: Heidelberg, Germany, 1988; pp. 10–25. [Google Scholar]
- Cavada, B.; Barbosa, T.; Arruda, S.; Grangeiro, T.; Barral-Netto, M. Revisiting Proteus: Do Minor Changes in Lectin Structure Matter in Biological Activity? Lessons from and Potential Biotechnological Uses of the Diocleinae Subtribe Lectins. Curr. Protein Pept. Sci. 2001, 2, 123–135. [Google Scholar] [CrossRef]
- Boyd, W.C.; Almodóvar, L.R.; Boyd, L.G. Agglutinins in Marine Algae for Human Erythrocytes. Transfusion 1966, 6, 82–83. [Google Scholar] [CrossRef]
- Ambrosi, M.; Cameron, N.R.; Davis, B.G. Lectins: Tools for the Molecular Understanding of the Glycocode. Org. Biomol. Chem. 2005, 3, 1593. [Google Scholar] [CrossRef]
- Sharon, N. Lectins: Carbohydrate-Specific Reagents and Biological Recognition Molecules. J. Biol. Chem. 2007, 282, 2753–2764. [Google Scholar] [CrossRef]
- Feizi, T.; Haltiwanger, R.S. Editorial Overview: Carbohydrate–Protein Interactions and Glycosylation: Glycan Synthesis and Recognition: Finding the Perfect Partner in a Sugar-Coated Life. Curr. Opin. Struct. Biol. 2015, 34, vii–ix. [Google Scholar] [CrossRef]
- Taylor, M.; Drickamer, K.; Imberty, A.; van Kooyk, Y.; Schnaar, R.; Etzler, M.; Varki, A. Discovery and Classification of Glycan-Binding Proteins. Essentials of Glycobiology. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem. Biol. 2022, 17, 2993–3012. [Google Scholar] [CrossRef]
- Zelensky, A.N.; Gready, J.E. The C-type Lectin-like Domain Superfamily. FEBS J. 2005, 272, 6179–6217. [Google Scholar] [CrossRef] [PubMed]
- Naithani, S.; Komath, S.S.; Nonomura, A.; Govindjee, G. Plant Lectins and Their Many Roles: Carbohydrate-Binding and Beyond. J. Plant Physiol. 2021, 266, 153531. [Google Scholar] [CrossRef] [PubMed]
- Saijo, S.; Iwakura, Y. Dectin-1 and Dectin-2 in Innate Immunity against Fungi. Int. Immunol. 2011, 23, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qiao, Z.; Muchero, W.; Chen, J.-G. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Front. Plant Sci. 2020, 11, 596301. [Google Scholar] [CrossRef] [PubMed]
- Siebs, E.; Shanina, E.; Kuhaudomlarp, S.; da Silva Figueiredo Celestino Gomes, P.; Fortin, C.; Seeberger, P.H.; Rognan, D.; Rademacher, C.; Imberty, A.; Titz, A. Targeting the Central Pocket of the Pseudomonas aeruginosa Lectin LecA. ChemBioChem 2022, 23, e202100563. [Google Scholar] [CrossRef]
- Matsushita, M. Ficolins: Complement-Activating Lectins Involved in Innate Immunity. J. Innate Immun. 2010, 2, 24–32. [Google Scholar] [CrossRef]
- Ahmmed, M.K.; Bhowmik, S.; Giteru, S.G.; Zilani, M.N.H.; Adadi, P.; Islam, S.S.; Kanwugu, O.N.; Haq, M.; Ahmmed, F.; Ng, C.C.W.; et al. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar. Drugs 2022, 20, 430. [Google Scholar] [CrossRef]
- Santos, A.F.S.; da Silva, M.D.C.; Napoleão, T.H.; Paiva, P.M.G.; Correia, M.T.S.; Coelho, L.C.B.B. Lectins: Function, Structure, Biological Properties and Potential Applications. Curr. Top. Pept. Protein Res. 2014, 15, 41–62. [Google Scholar]
- Raposo, C.D.; Canelas, A.B.; Barros, M.T. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021, 11, 188. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Park, K.; Kwak, I.-S.; Jaabir, M.; Sivakamavalli, J. Classification of Lectins. In Lectins; Springer: Singapore, 2021; pp. 51–72. [Google Scholar]
- Osterne, V.J.S.; De Sloover, G.; Van Damme, E.J.M. Revisiting Legume Lectins: Structural Organization and Carbohydrate-Binding Properties. Carbohydr. Res. 2024, 544, 109241. [Google Scholar] [CrossRef]
- Cummings, R.D.; Chiffoleau, E.; van Kooyk, Y.; McEver, R.P. C-Type Lectins. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; ISBN 9781621824213. [Google Scholar]
- Zhang, H.; Robison, B.; Thorgaard, G.H.; Ristow, S.S. Cloning, Mapping and Genomic Organization of a Fish C-Type Lectin Gene from Homozygous Clones of Rainbow Trout (Oncorhynchus mykiss). Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2000, 1494, 14–22. [Google Scholar] [CrossRef]
- Vasta, G.R.; Feng, C. F-Type Lectins: Structure, Function, and Evolution. Methods Mol. Biol. 2020, 2132, 225–239. [Google Scholar] [PubMed]
- Qiu, L.; Lin, L.; Yang, K.; Zhang, H.; Li, J.; Zou, F.; Jiang, S. Molecular Cloning and Expression Analysis of a F-Type Lectin Gene from Japanese Sea Perch (Lateolabrax japonicus). Mol. Biol. Rep. 2011, 38, 3751–3756. [Google Scholar] [CrossRef] [PubMed]
- Vasta, G.R.; Amzel, L.M.; Bianchet, M.A.; Cammarata, M.; Feng, C.; Saito, K. F-Type Lectins: A Highly Diversified Family of Fucose-Binding Proteins with a Unique Sequence Motif and Structural Fold, Involved in Self/Non-Self-Recognition. Front. Immunol. 2017, 8, 1648. [Google Scholar] [CrossRef]
- Laaf, D.; Bojarová, P.; Elling, L.; Křen, V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019, 37, 402–415. [Google Scholar] [CrossRef]
- Modenutti, C.P.; Capurro, J.I.B.; Di Lella, S.; Martí, M.A. The Structural Biology of Galectin-Ligand Recognition: Current Advances in Modeling Tools, Protein Engineering, and Inhibitor Design. Front. Chem. 2019, 7, 823. [Google Scholar] [CrossRef]
- Cooper, D. Galectinomics: Finding Themes in Complexity. Biochim. Biophys. Acta (BBA) Gen. Subj. 2002, 1572, 209–231. [Google Scholar] [CrossRef]
- Cooper, D.N.W.; Barondes, S.H. God Must Love Galectins; He Made so Many of Them. Glycobiology 1999, 9, 979–984. [Google Scholar] [CrossRef]
- Pietrzyk-Brzezinska, A.J.; Bujacz, A. H-Type Lectins—Structural Characteristics and Their Applications in Diagnostics, Analytics and Drug Delivery. Int. J. Biol. Macromol. 2020, 152, 735–747. [Google Scholar] [CrossRef]
- de Azevedo Moreira, R.; Ainouz, I.L. Lectins from Seeds of Jack Fruit (Artocarpus integrifolia L.): Isolation and Purification of Two Isolectins from the Albumin Fraction. Biol. Plant. 1981, 23, 186–192. [Google Scholar] [CrossRef]
- Yang, H.; Czapla, T.H. Isolation and Characterization of CDNA Clones Encoding Jacalin Isolectins. J. Biol. Chem. 1993, 268, 5905–5910. [Google Scholar] [CrossRef] [PubMed]
- Esch, L.; Schaffrath, U. An Update on Jacalin-Like Lectins and Their Role in Plant Defense. Int. J. Mol. Sci. 2017, 18, 1592. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Ramessar, K.; O’Keefe, B.R. Antiviral Lectins: Selective Inhibitors of Viral Entry. Antivir. Res. 2017, 142, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowska, N.E.; Shenoy, S.R.; O’Keefe, B.R.; McMahon, J.B.; Palmer, K.E.; Dwek, R.A.; Wormald, M.R.; Wlodawer, A. Crystallographic, Thermodynamic, and Molecular Modeling Studies of the Mode of Binding of Oligosaccharides to the Potent Antiviral Protein Griffithsin. Proteins: Struct. Funct. Bioinform. 2007, 67, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Suttisrisung, S.; Senapin, S.; Withyachumnarnkul, B.; Wongprasert, K. Identification and Characterization of a Novel Legume-like Lectin CDNA Sequence from the Red Marine Algae Gracilaria fisheri. J. Biosci. 2011, 36, 833–843. [Google Scholar] [CrossRef]
- Schallus, T.; Jaeckh, C.; Fehér, K.; Palma, A.S.; Liu, Y.; Simpson, J.C.; Mackeen, M.; Stier, G.; Gibson, T.J.; Feizi, T.; et al. Malectin: A Novel Carbohydrate-Binding Protein of the Endoplasmic Reticulum and a Candidate Player in the Early Steps of Protein N-Glycosylation. Mol. Biol. Cell 2008, 19, 3404–3414. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Guo, L.; Pan, H.; Yvon, R.; Garman, S.; Wu, H.-M.; Cheung, A.Y. Malectin/Malectin-like Domain-Containing Proteins: A Repertoire of Cell Surface Molecules with Broad Functional Potential. Cell Surf. 2021, 7, 100056. [Google Scholar] [CrossRef]
- Olsnes, S.; Kozlov, J.V. Ricin. Toxicon 2001, 39, 1723–1728. [Google Scholar] [CrossRef]
- Cummings, R.D.; Schnaar, R.L.; Ozeki, Y. R-Type Lectins. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; ISBN 9781621824213. [Google Scholar]
- Gupta, R.K.; Gupta, G.S. R-Type Lectin Families. In Animal Lectins: Form, Function and Clinical Applications; Springer: Vienna, Austria, 2012; pp. 313–330. [Google Scholar]
- Hanschen, E.R.; Starkenburg, S.R. The State of Algal Genome Quality and Diversity. Algal Res. 2020, 50, 101968. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Cox, E.; Holmes, J.B.; Anderson, W.R.; Falk, R.; Hem, V.; Tsuchiya, M.T.N.; Schuler, G.D.; Zhang, X.; Torcivia, J.; et al. Exploring and Retrieving Sequence and Metadata for Species across the Tree of Life with NCBI Datasets. Sci. Data 2024, 11, 732. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. CDD: A Conserved Domain Database for the Functional Annotation of Proteins. Nucleic Acids Res. 2011, 39, D225–D229. [Google Scholar] [CrossRef] [PubMed]
- Schulenburg, H.; Hoeppner, M.P.; Weiner, J.; Bornberg-Bauer, E. Specificity of the Innate Immune System and Diversity of C-Type Lectin Domain (CTLD) Proteins in the Nematode Caenorhabditis elegans. Immunobiology 2008, 213, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Geer, L.Y.; Domrachev, M.; Lipman, D.J.; Bryant, S.H. CDART: Protein Homology by Domain Architecture. Genome Res. 2002, 12, 1619–1623. [Google Scholar] [CrossRef]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The Seaweed Holobiont: Understanding Seaweed–Bacteria Interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef]
- Savatin, D.V.; Gramegna, G.; Modesti, V.; Cervone, F. Wounding in the Plant Tissue: The Defense of a Dangerous Passage. Front. Plant Sci. 2014, 5, 470. [Google Scholar] [CrossRef]
- Lima, C.; Disner, G.R.; Falcão, M.A.P.; Seni-Silva, A.C.; Maleski, A.L.A.; Souza, M.M.; Reis Tonello, M.C.; Lopes-Ferreira, M. The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins 2021, 13, 538. [Google Scholar] [CrossRef]
- Barre, A.; Bourne, Y.; Van Damme, E.J.M.; Rougé, P. Overview of the Structure−Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int. J. Mol. Sci. 2019, 20, 254. [Google Scholar] [CrossRef]
- Feng, H.; Qiu, T.; Yin, C.; Zhao, X.; Xu, G.; Qi, L.; Zhang, Y.; Peng, Y.; Zhao, W. The Rice Malectin Regulates Plant Cell Death and Disease Resistance by Participating in Glycoprotein Quality Control. Int. J. Mol. Sci. 2022, 23, 5819. [Google Scholar] [CrossRef]
- Benevides, N.M.B.; Holanda, M.L.; Melo, F.R.; Freitas, A.L.P.; Sampaio, A.H. Purification and Partial Characterisation of the Lectin from the Marine Red Alga Enantiocladia duperreyi (C. Agardh) Falkenberg. Bot. Mar. 1998, 41, 521–526. [Google Scholar] [CrossRef]
- Kamiya, H.; Ogata, K.; Hori, K. Isolation and Characterization of a New Agglutinin in the Red Alga Palmaria palmata (L.) O. Kuntze. Bot. Mar. 1982, 25, 537–540. [Google Scholar] [CrossRef]
- Shiomi, K.; Yamanaka, H.; Kikuchi, T. Purification and Physicochemical Properties of a Hemagglutinin (GVA-1) in the Red Alga Gracilaria verrucosa. Nippon Suisan Gakkaishi 1981, 47, 1079–1084. [Google Scholar] [CrossRef]
- Chernikov, O.V.; Molchanova, V.I.; Chikalovets, I.V.; Kondrashina, A.S.; Li, W.; Lukyanov, P.A. Lectins of Marine Hydrobionts. Biochemistry 2013, 78, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Thakur, S.R.; Bansal, P. Algal Lectins as Promising Biomolecules for Biomedical Research. Crit. Rev. Microbiol. 2015, 41, 77–88. [Google Scholar] [CrossRef]
- Rogers, D.J.; Blunden, G.; Evans, P.R. Ptilota Plumosa, a New Source of a Blood-Group B Specific Lectin. Med. Lab. Sci. 1977, 34, 193–200. [Google Scholar]
- Chaves, R.P.; dos Santos, A.K.B.; Andrade, A.L.; de Azevedo Pinheiro, A.; de Sena Silva, J.M.; da Silva, F.M.S.; de Sousa, J.P.; Barroso Neto, I.L.; Bezerra, E.H.S.; Abreu, J.O.; et al. Structural Study and Antimicrobial and Wound Healing Effects of Lectin from Solieria filiformis (Kützing) P.W.Gabrielson. Biochimie 2023, 214, 61–76. [Google Scholar] [CrossRef]
- Mesquita, J.X.; de Brito, T.V.; Fontenelle, T.P.C.; Damasceno, R.O.S.; de Souza, M.H.L.P.; de Souza Lopes, J.L.; Beltramini, L.M.; dos Reis Barbosa, A.L.; Freitas, A.L.P. Lectin from Red Algae Amansia multifida Lamouroux: Extraction, Characterization and Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2021, 170, 532–539. [Google Scholar] [CrossRef]
- Hung, L.D.; Trinh, P.T.H. Structure and Anticancer Activity of a New Lectin from the Cultivated Red Alga, Kappaphycus striatus. J. Nat. Med. 2021, 75, 223–231. [Google Scholar] [CrossRef]
- de Souza Ferreira Bringel, P.H.; Marques, G.F.O.; de Queiroz Martins, M.G.; da Silva, M.T.L.; Nobre, C.A.S.; do Nascimento, K.S.; Cavada, B.S.; Castro, R.R.; Assreuy, A.M.S. The Lectin Isolated from the Alga Hypnea cervicornis Promotes Antinociception in Rats Subjected to Zymosan-Induced Arthritis: Involvement of CGMP Signalization and Cytokine Expression. Inflammation 2020, 43, 1446–1454. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Han, J.-W.; Jeon, H.; Cho, K.; Kim, J.; Lee, D.-S.; Han, J.W. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules 2020, 10, 333. [Google Scholar] [CrossRef]
- Barre, A.; Simplicien, M.; Benoist, H.; Van Damme, E.J.M.; Rougé, P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar. Drugs 2019, 17, 440. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application. Mar. Drugs 2019, 17, 567. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Qiu, L.; Liu, C.; Du, G.; Mo, Z.; Tang, X.; Mao, Y. Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis. Int. J. Mol. Sci. 2019, 20, 5970. [Google Scholar] [CrossRef] [PubMed]
- Fontenelle, T.P.C.; Lima, G.C.; Mesquita, J.X.; de Souza Lopes, J.L.; de Brito, T.V.; das Chagas Vieira Júnior, F.; Sales, A.B.; Aragão, K.S.; Souza, M.H.L.P.; dos Reis Barbosa, A.L.; et al. Lectin Obtained from the Red Seaweed Bryothamnion triquetrum: Secondary Structure and Anti-Inflammatory Activity in Mice. Int. J. Biol. Macromol. 2018, 112, 1122–1130. [Google Scholar] [CrossRef]
- Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; da Conceição Rivanor, R.L.; Mota, É.F.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the Dopaminergic System in the Antidepressant-like Effect of the Lectin Isolated from the Red Marine Alga Solieria filiformis in Mice. Int. J. Biol. Macromol. 2018, 111, 534–541. [Google Scholar] [CrossRef]
- Chaves, R.P.; da Silva, S.R.; da Silva, J.P.F.A.; Carneiro, R.F.; de Sousa, B.L.; Abreu, J.O.; de Carvalho, F.C.T.; Rocha, C.R.C.; Farias, W.R.L.; de Sousa, O.V.; et al. Meristiella echinocarpa Lectin (MEL): A New Member of the OAAH-Lectin Family. J. Appl. Phycol. 2018, 30, 2629–2638. [Google Scholar] [CrossRef]
- Mu, J.; Hirayama, M.; Sato, Y.; Morimoto, K.; Hori, K. A Novel High-Mannose Specific Lectin from the Green Alga Halimeda renschii Exhibits a Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin. Mar. Drugs 2017, 15, 255. [Google Scholar] [CrossRef]
- Hirayama, M.; Shibata, H.; Imamura, K.; Sakaguchi, T.; Hori, K. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein Gp120. Mar. Biotechnol. 2016, 18, 215–231. [Google Scholar] [CrossRef]
- Abreu, T.; Ribeiro, N.; Chaves, H.; Jorge, R.; Bezerra, M.; Monteiro, H.; Vasconcelos, I.; Mota, É.; Benevides, N. Antinociceptive and Anti-Inflammatory Activities of the Lectin from Marine Red Alga Solieria filiformis. Planta Med. 2016, 82, 596–605. [Google Scholar] [CrossRef]
- Han, J.; Jung, M.; Shim, E.; Shim, J.; Kim, Y.; Kim, G. Functional Recombinants Designed from a Fetuin/Asialofetuin-Specific Marine Algal Lectin, Rhodobindin. Mar. Drugs 2015, 13, 2183–2195. [Google Scholar] [CrossRef]
- Hung, L.D.; Hirayama, M.; Ly, B.M.; Hori, K. Purification, Primary Structure, and Biological Activity of the High-Mannose N-Glycan-Specific Lectin from Cultivated Eucheuma Denticulatum. J. Appl. Phycol. 2015, 27, 1657–1669. [Google Scholar] [CrossRef]
- Shim, E.; Shim, J.; Klochkova, T.A.; Han, J.W.; Kim, G.H. Purification of a Sex-Specific Lectin Involved in Gamete Binding of Aglaothamnion callophyllidicola (Rhodophyta). J. Phycol. 2012, 48, 916–924. [Google Scholar] [CrossRef]
- Han, J.W.; Klochkova, T.A.; Shim, J.B.; Yoon, K.; Kim, G.H. Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono. Appl. Environ. Microbiol. 2012, 78, 7283–7289. [Google Scholar] [CrossRef]
- Monteiro Abreu, T.; Maria Castelo Melo Silva, L.; Sousa Oliveira Vanderlei, E.; Moutinho Lagos de Melo, C.; Rego Alves Pereira, V.; Maria Barros Benevides, N. Cytokine Production Induced by Marine Algae Lectins in BALB/c Mice Splenocytes. Protein Pept. Lett. 2012, 19, 975–981. [Google Scholar] [CrossRef]
- Sato, Y.; Morimoto, K.; Hirayama, M.; Hori, K. High Mannose-Specific Lectin (KAA-2) from the Red Alga Kappaphycus alvarezii Potently Inhibits Influenza Virus Infection in a Strain-Independent Manner. Biochem. Biophys. Res. Commun. 2011, 405, 291–296. [Google Scholar] [CrossRef]
- Hung, L.D.; Sato, Y.; Hori, K. High-Mannose N-Glycan-Specific Lectin from the Red Alga Kappaphycus striatum (Carrageenophyte). Phytochemistry 2011, 72, 855–861. [Google Scholar] [CrossRef]
- Vanderlei, E.S.O.; Patoilo, K.K.N.R.; Lima, N.A.; Lima, A.P.S.; Rodrigues, J.A.G.; Silva, L.M.C.M.; Lima, M.E.P.; Lima, V.; Benevides, N.M.B. Antinociceptive and Anti-Inflammatory Activities of Lectin from the Marine Green Alga Caulerpa cupressoides. Int. Immunopharmacol. 2010, 10, 1113–1118. [Google Scholar] [CrossRef]
- Figueiredo, J.G.; Bitencourt, F.S.; Cunha, T.M.; Luz, P.B.; Nascimento, K.S.; Mota, M.R.L.; Sampaio, A.H.; Cavada, B.S.; Cunha, F.Q.; Alencar, N.M.N. Agglutinin Isolated from the Red Marine Alga Hypnea cervicornis J. Agardh Reduces Inflammatory Hypernociception: Involvement of Nitric Oxide. Pharmacol. Biochem. Behav. 2010, 96, 371–377. [Google Scholar] [CrossRef]
- Silva, L.M.C.M.; Lima, V.; Holanda, M.L.; Pinheiro, P.G.; Rodrigues, J.A.G.; Lima, M.E.P.; Benevides, N.M.B. Antinociceptive and Anti-Inflammatory Activities of Lectin from Marine Red Alga Pterocladiella capillacea. Biol. Pharm. Bull. 2010, 33, 830–835. [Google Scholar] [CrossRef]
- Molchanova, V.; Chernikov, O.; Chikalovets, I.; Lukyanov, P. Purification and Partial Characterization of the Lectin from the Marine Red Alga Tichocarpus crinitus (Gmelin) Rupr. (Rhodophyta). Bot. Mar. 2010, 53, 69–78. [Google Scholar] [CrossRef]
- Mori, T.; O’Keefe, B.R.; Sowder, R.C.; Bringans, S.; Gardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.; Buckheit, R.W.; McMahon, J.B.; et al. Isolation and Characterization of Griffithsin, a Novel HIV-Inactivating Protein, from the Red Alga Griffithsia sp. J. Biol. Chem. 2005, 280, 9345–9353. [Google Scholar] [CrossRef]
- Ziółkowska, N.E.; O’Keefe, B.R.; Mori, T.; Zhu, C.; Giomarelli, B.; Vojdani, F.; Palmer, K.E.; McMahon, J.B.; Wlodawer, A. Domain-Swapped Structure of the Potent Antiviral Protein Griffithsin and Its Mode of Carbohydrate Binding. Structure 2006, 14, 1127–1135. [Google Scholar] [CrossRef]
- Sato, Y.; Okuyama, S.; Hori, K. Primary Structure and Carbohydrate Binding Specificity of a Potent Anti-HIV Lectin Isolated from the Filamentous Cyanobacterium oscillatoria Agardhii. J. Biol. Chem. 2007, 282, 11021–11029. [Google Scholar] [CrossRef]
- Fukuda, Y.; Sugahara, T.; Ueno, M.; Fukuta, Y.; Ochi, Y.; Akiyama, K.; Miyazaki, T.; Masuda, S.; Kawakubo, A.; Kato, K. The Anti-Tumor Effect of Euchema serra Agglutinin on Colon Cancer Cells in Vitro and in Vivo. Anticancer Drugs 2006, 17, 943–947. [Google Scholar] [CrossRef]
- Hori, K.; Sato, Y.; Ito, K.; Fujiwara, Y.; Iwamoto, Y.; Makino, H.; Kawakubo, A. Strict Specificity for High-Mannose Type N-Glycans and Primary Structure of a Red Alga Eucheuma serra Lectin. Glycobiology 2007, 17, 479–491. [Google Scholar] [CrossRef]
- Liao, W.-R.; Lin, J.-Y.; Shieh, W.-Y.; Jeng, W.-L.; Huang, R. Antibiotic Activity of Lectins from Marine Algae against Marine Vibrios. J. Ind. Microbiol. Biotechnol. 2003, 30, 433–439. [Google Scholar] [CrossRef]
- Holanda, M.L.; Melo, V.M.M.; Silva, L.M.C.M.; Amorim, R.C.N.; Pereira, M.G.; Benevides, N.M.B. Differential Activity of a Lectin from Solieria filiformis against Human Pathogenic Bacteria. Braz. J. Med. Biol. Res. 2005, 38, 1769–1773. [Google Scholar] [CrossRef]
- Le Dinh, H.; Hori, K.; Quang, N.H. Screening and Preliminary Characterization of Hemagglutinins in Vietnamese Marine Algae. J. Appl. Phycol. 2009, 21, 89–97. [Google Scholar] [CrossRef]
- Hori, K.; Miyazawa, K.; Ito, K. Some Common Properties of Lectins from Marine Algae. Hydrobiologia 1990, 204–205, 561–566. [Google Scholar] [CrossRef]
- Nascimento, K.S.; Nagano, C.S.; Nunes, E.V.; Rodrigues, R.F.; Goersch, G.V.; Cavada, B.S.; Calvete, J.J.; Saker-Sampaio, S.; Farias, W.R.L.; Sampaio, A.H. Isolation and Characterization of a New Agglutinin from the Red Marine Alga Hypnea cervicornis J. Agardh. Biochem. Cell Biol. 2006, 84, 49–54. [Google Scholar] [CrossRef]
- Chernikov, O.V.; Chikalovets, I.V.; Molchanova, V.I.; Pavlova, M.A.; Lukyanov, P.A. Algae of Peter the Great Bay of the Sea of Japan as a Source of Lectins. Russ. J. Mar. Biol. 2007, 33, 329–332. [Google Scholar] [CrossRef]
- Melo, F.R.; Benevides, N.M.B.; Pereira, M.G.; Holanda, M.L.; Mendes, F.N.P.; Oliveira, S.R.M.; Freitas, A.L.P.; Silva, L.M.C.M. Purification and Partial Characterisation of a Lectin from the Red Marine Alga Vidalia obtusiloba C. Agardh. Rev. Bras. Botânica 2004, 27, 263–269. [Google Scholar] [CrossRef]
- Lima, M.E.P.; Carneiro, M.E.; Nascimento, A.E.; Grangeiro, T.B.; Holanda, M.L.; Amorim, R.C.N.; Benevides, N.M.B. Purification of a Lectin from the Marine Red Alga Gracilaria cornea and Its Effects on the Cattle Tick Boophilus microplus (Acari: Ixodidae). J. Agric. Food Chem. 2005, 53, 6414–6419. [Google Scholar] [CrossRef] [PubMed]
- Leite, Y.F.M.M.; Silva, L.M.C.M.; das Neves Amorim, R.C.; Freire, E.A.; de Melo Jorge, D.M.; Grangeiro, T.B.; Benevides, N.M.B. Purification of a Lectin from the Marine Red Alga Gracilaria ornata and Its Effect on the Development of the Cowpea Weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochim. Biophys. Acta (BBA) Gen. Subj. 2005, 1724, 137–145. [Google Scholar] [CrossRef] [PubMed]
Hidden Markov Models | ||||||||
---|---|---|---|---|---|---|---|---|
Class | Family | Species | Unique Lectin Hits | CTLs (PF00059) | JTLs (PF01419) | LTLs (PF00139, PF03388) | Malectins (PF11721, PF12819) | RTLs (PF00652) |
Bangiophyceae | Bangiaceae | Neopyropia yezoensis | 31 | 5 | - | 2 | 24 | - |
Porphyra umbilicalis | 19 | 3 | - | 2 | 14 | - | ||
Cyanidiaceae | Cyanidiococcus yangmingshanensis | 1 | - | - | - | - | 1 | |
Cyanidiococcus yangmingshanensis | 1 | - | - | - | - | 1 | ||
Cyanidioschyzon merolae | 1 | - | - | - | - | 1 | ||
Cyanidium caldarium | 1 | - | - | - | - | 1 | ||
Galdieriaceae | Galdieria Partita | 1 | - | - | 1 | - | - | |
Galdieria sulphuraria | 1 | - | - | 1 | - | - | ||
Galdieria sulphuraria | 1 | - | - | 1 | - | - | ||
Galdieria Yellowstonensis | 1 | - | - | 1 | - | - | ||
Porphyridiaceae | Porphyridium purpureum | 5 | - | - | 2 | 2 | 1 | |
Florideophyceae | Gigartinaceae | Chondrus crispus | 9 | - | - | 2 | 6 | 1 |
Gracilariaceae | Gracilaria domingensis | 19 | 1 | 5 | 1 | 10 | 1 | |
Gracilariopsis chorda | 21 | 3 | 2 | 2 | 13 | 1 | ||
Stylonematophyceae | Stylonemataceae | Rhodosorus marinus | 1 | - | - | 1 | - | - |
Species | Lectin Name | Biological Activities | Ref. |
---|---|---|---|
Kappaphycus alvarezii * | Siye | Antitumor | [8] |
Solieria filiformis | Sfl | Wound healing | [76] |
Amansia multifisa | AmL | Anti-inflammatory | [77] |
Kappaphycus striatus * | KSL | Anticancer | [78] |
Hypnea cervicornis | HCA | Anti-inflammatory and anti-nociceptive | [79] |
Grateloupia chiangii | GCL | Antiviral | [80] |
Agardhiella tenera | ATA | Anticancer | [81] |
Bryoyhamnion seaforthii | BSL | Anticancer and pro-healing | [81] |
Bryothamnion triquetrum | BTL | Anticancer | [81] |
Eucheuma serra | ESA | Anticancer and antibacterial | [68] |
Grithsia sp. | GRFT | Antiviral | [82] |
Pyropia yezoensis | C-type lectin; L-type lectin | Pattern Recognition Receptors | [83] |
Solieria filiformis | SfL-1; SfL-2 | Anticancer, antibacterial, anti-nociceptive and anti-depressant | [81] |
Bryothamnion triquetrum | BtL | Anti-inflammatory | [84] |
Solieria filiformis | SfL | Anti-depressant | [85] |
Solieria filiformis | SfL-1; SfL 2 | Anticancer | [86] |
Halimeda renschii | HRL40 | Anti-influenza | [87] |
Kappaphycus alvarezii | KAA-1; KAA-2 | Anti-HIV | [88] |
Solieria filiformis | SfL | Anti-nociceptive and anti-inflammatory | [89] |
Aglaothamnion callophyllidicola | Rhodobindin Variations | Drug delivery | [90] |
Eucheuma denticulatum | EDAs | Antimicrobial | [91] |
Aglaothamnion callophyllidicola | Rhodobindin | Gamete binding | [92] |
Aglaothamnion oosumiense | AOL1 | Gamete binding | [93] |
Solieria filiformis | SfL | Anti-inflammatory | [94] |
Kappaphycus alvarezii | KAA-2 | Anti-influenza | [95] |
Kappaphycus striatum | KSA-1; KSA-2; KSA-3 | Hemagluttination | [96] |
Caulerpa cupressoides | CcL | Anti-nociceptive and anti-inflammatory | [97] |
Hypnea cervicornis | HCA | Anti-nociceptive | [98] |
Pterocladiella capillacea | PcL | Anti-nociceptive and anti-inflammatory | [99] |
Tichocarpus crinitus | TCL | Hemagglutination and mitogenic activity | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, É.F.; Verza, F.A.; Nishimura, F.G.; Beleboni, R.O.; Hermans, C.; Janssens, K.; De Mol, M.L.; Hulpiau, P.; Marins, M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Mar. Drugs 2025, 23, 8. https://doi.org/10.3390/md23010008
Rodrigues ÉF, Verza FA, Nishimura FG, Beleboni RO, Hermans C, Janssens K, De Mol ML, Hulpiau P, Marins M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Marine Drugs. 2025; 23(1):8. https://doi.org/10.3390/md23010008
Chicago/Turabian StyleRodrigues, Éllen F., Flavia Alves Verza, Felipe Garcia Nishimura, Renê Oliveira Beleboni, Cedric Hermans, Kaat Janssens, Maarten Lieven De Mol, Paco Hulpiau, and Mozart Marins. 2025. "Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome" Marine Drugs 23, no. 1: 8. https://doi.org/10.3390/md23010008
APA StyleRodrigues, É. F., Verza, F. A., Nishimura, F. G., Beleboni, R. O., Hermans, C., Janssens, K., De Mol, M. L., Hulpiau, P., & Marins, M. (2025). Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Marine Drugs, 23(1), 8. https://doi.org/10.3390/md23010008