Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus
<p>Transverse sections of intestinal tissues (foregut) HE staining of <span class="html-italic">S. monotuberculatus</span> under different salinity. LSG: low-salinity group; CG: control group; HSG: high-salinity group. IV: intestinal villi; L: lumen; IC: crypt; M: mucosa; SMC: submucosa; MM: muscularis layer; S: serosa layer; BB: brush border; GC: goblet cell; CSMM: circular smooth muscle; LSMM: longitudinal smooth muscle. The blue arrow indicates the presence of vacuolation in the intestine; the red arrow indicates death to epithelial cell of the intestine.</p> "> Figure 2
<p>Sample dilution curve.</p> "> Figure 3
<p>Venn diagrams of OTUs.</p> "> Figure 4
<p>Beta diversity analysis index based on PCA analysis. Note: (<b>a</b>–<b>c</b>) respectively represent the PCA diagram of intestinal flora in <span class="html-italic">S. monotuberculatus</span> treated with different salinity for 24 h, 48 h and 96 h; (<b>d</b>–<b>f</b>) respectively represent the PCA diagram of intestinal flora in <span class="html-italic">S. monotuberculatus</span> treated with the same salinity and different treatment time, (<b>d</b>): low-salinity group; (<b>e</b>): control group; (<b>f</b>): high-salinity group.</p> "> Figure 5
<p>Relative abundance of bacterial community in the gut of <span class="html-italic">S. monotuberculatus</span> at the level of phylum.</p> "> Figure 6
<p>Relative abundance of bacterial community in the gut of <span class="html-italic">S. monotuberculatus</span> at the level of genus.</p> "> Figure 7
<p>Heatmap showing the abundance distribution of potential functional pathways of gut bacterial communities in <span class="html-italic">S. monotuberculatus</span> under different salinity and different stress times. Note: The color from blue to red represents an increase in the abundance of the corresponding functional pathway; samples under different salinity stress were clustered according to functional pathways.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Intestinal Tissue Alternation
2.2. Analysis of Operational Classification Units
2.3. Analysis of Intestinal Flora Diversity
2.3.1. Alpha Diversity of Intestinal Flora
2.3.2. Beta Diversity of Intestinal Flora
2.4. Analysis of Intestinal Flora Structure
2.4.1. Structural Analysis of Intestinal Flora at the Phylum Level
2.4.2. Structural Analysis of Intestinal Flora at the Genus Level
2.5. Gene Function Prediction of Gut Bacterial Community
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experiment Methods
4.2.1. Experiment Design
4.2.2. Sample Collection and Preparation
4.2.3. Histological Analysis of Intestinal Tissues
4.2.4. Total DNA Extraction and Sequencing of Bacteria
4.2.5. Data Processing Methods
4.2.6. KEGG Functional Analysis
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Y. Fauna Sinica: Phylum Echinodermata Class Holothuroidea; Science Press: Beijing, China, 1997. [Google Scholar]
- Purcell, S.W.; Conand, C.; Uthicke, S.; Byrne, M. Ecological roles of exploited sea cucumbers. In Oceanography and Marine Biology; Hughes, R.N., Hughes, D.J., Smith, I.P., Dale, A.C., Eds.; Taylor & Francis Group: London, UK, 2016; Volume 54, pp. 367–386. [Google Scholar]
- Yang, H.S.; Xu, S.; Lin, C.G.; Sun, J.C.; Zhang, L.B. Research progress and prospects of restoration and resource conservation in typical sea areas. Oceanol. Limnol. Sin. 2020, 51, 809–820. [Google Scholar]
- Yang, H.S.; Xiao, N.; Zhang, T. Present Status and Prospect of the Study of Echinoderms. Stud. Mar. Sin. 2016, 51, 125–131. [Google Scholar]
- Sun, S. Effects of Important Environmental Factors on the Movement Behavior of Stichopus herrmanni. Master’s Thesis, Hainan University, Haikou, China, 2020. [Google Scholar]
- Ma, W.G.; Yin, H.Y.; Sun, C.Y.; Wang, Z.G.; Wei, Y.F.; Feng, B.X.; Feng, J.; Xu, Q.; Li, X.B.; Wang, A.M. The ecological carrying capacity of stichopus monotuberculatus and ecological effect prediction in a tropical coral reef island marine ranching area. Oceanol. Limnol. Sin. 2022, 53, 1573–1584. [Google Scholar]
- Cheng, C.; Wu, F.; Ren, C.; Jiang, X.; Zhang, X.; Li, X.; Luo, P.; Hu, C.; Chen, T. Aquaculture of the tropical sea cucumber, Stichopus monotuberculatus: Induced spawning, detailed records of gonadal and embryonic development, and improvements in larval breeding by digestive enzyme supply in diet. Aquaculture 2021, 540, 736690. [Google Scholar] [CrossRef]
- Garçon, D.P.; Masui, D.C.; Mantelatto, F.L.M.; Furriel, R.P.M.; McNamara, J.C.; Leone, F.A. Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 154, 44–55. [Google Scholar] [CrossRef]
- Huong, D.T.T.; Jasmani, S.; Jayasankar, V.; Wilder, M. Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture 2010, 304, 88–94. [Google Scholar] [CrossRef]
- Fan, C.; Wen, Z.C.; Huo, Z.M.; Yang, F.; Yan, X.W. Influence of salinity stress on growth and survival of Manila clam Ruditapes philippinarum at various developmental stages. J. Dalian Ocean. Univ. 2016, 31, 497–504. [Google Scholar]
- Bao, T.; Liu, Y.M.; Lai, Q.F.; Yao, Z.L.; Zhou, K.; Gao, P.C. Response of Corbicula fluminea’s ingestion rate and branchial ATPase activity to salinity stress. Mar. Fish. 2021, 43, 671–679. [Google Scholar]
- Wang, Y.; Hu, W.B.; Li, J.X.; Huang, X.Y.; Duan, L.Z.; Zhan, Y.Y. Effects of acute salinity stress on gill structure and four enzyme activities in Saxidomus purpurata. J. Agric. Sci. Technol. 2016, 18, 178–186. [Google Scholar]
- Kurihara, T. Tolerance of the bivalve Trapezium liratum (Reeve, 1843) to decrease in salinity. Plankton Benthos Res. 2017, 12, 44–52. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.Q.; Fu, Z.Y.; Yang, J.R.; Zhou, S.J.; Yu, G.; Zhou, W.L.; Ma, Z.H. A comparative study on low and high salinity tolerance of two strains of Pinctada fucata. Front. Mar. Sci. 2021, 8, 704907. [Google Scholar] [CrossRef]
- Sun, F.; Wang, C.; Chen, X. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment. Appl. Microbiol. Biotechnol. 2022, 106, 5211–5220. [Google Scholar] [CrossRef] [PubMed]
- Abid, A.; Davies, S.J.; Waines, P.; Emery, M.; Castex, M.; Gioacchini, G.; Carnevali, O.; Bickerdike, R.; Romero, J.; Merrifield, D.L. Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol. 2013, 35, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Sci. Total Environ. 2020, 742, 140429. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut microbiota and energy homeostasis in fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Koosha, R.Z.; Fazel, P.; Sedighian, H.; Behzadi, E.; Hedayati, C.M.; Fooladi, A.A.I. The impact of the gut microbiome on toxigenic bacteria. Microb. Pathog. 2021, 160, 105188. [Google Scholar] [CrossRef]
- Yu, Y.B.; Lv, F.; Wang, C.H.; Wang, A.M.; Zhao, W.H.; Yang, W.P. Effects of bacillus coagulans on growth performance, disease resistance, and HSP70 gene expression in juvenile gibel carp, Carassius auratus gibelio. J. World Aquac. Soc. 2016, 47, 729–740. [Google Scholar] [CrossRef]
- Kim, D.H.; Brunt, J.; Austin, B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol. 2007, 102, 1654–1664. [Google Scholar] [CrossRef]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. Embo Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef]
- Eddy, S.D.; Jones, S.H. Microbiology of summer flounder paralichthys dentatus fingerling production at a marine fish hatchery. Aquaculture 2002, 211, 9–28. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Wang, Y.; Chen, W.; Jin, Z.; Yao, Z.; Zhang, D. Strain-specific changes in the gut microbiota profiles of the white shrimp Litopenaeus vannamei in response to cold stress. Aquaculture 2019, 503, 357–366. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Liu, Q.; Zhang, J.; Xiong, D. Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress. Fish Shellfish Immunol. 2019, 88, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.; Sheik, C.S.; Krumholz, L.R.; Najar, F.Z.; Roe, B.A.; Elshahed, M.S. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol. 2009, 75, 5227–5236. [Google Scholar] [CrossRef] [PubMed]
- Zarkasi, K.Z.; Abell, G.C.J.; Taylor, R.S.; Neuman, C.; Hatje, E.; Tamplin, M.L.; Katouli, M.; Bowman, J.P. Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J. Appl. Microbiol. 2014, 117, 18–27. [Google Scholar] [CrossRef]
- Wei, N. Intestinal Microbiota in Large Yellow Croaker (Larimichthys crocea) and the Relationship to Host Economic Traits. Master’s Thesis, Jimei University, Xiamen, China, 2016. [Google Scholar]
- Rungrassamee, W.; Klanchui, A.; Maibunkaew, S.; Chaiyapechara, S.; Jiravanichpaisal, P.; Karoonuthaisiri, N. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE 2014, 9, e91853. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Wang, L.; Shao, Z. Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquac. Res. 2014, 47, 1737–1746. [Google Scholar] [CrossRef]
- Bourne, D.G.; Morrow, K.M.; Webster, N.S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 2016, 70, 317–340. [Google Scholar] [CrossRef]
- Pagán-Jiménez, M.; Ruiz-Calderón, J.F.; Dominguez-Bello, M.G.; García-Arrarás, J.E. Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS ONE 2019, 14, e0208011. [Google Scholar] [CrossRef]
- Liu, Y.X. Study on the Effect of Different Diets on the Gut Bacterial Community and Host Metabolism of Sea Urchin Strongylocentrotus intermedius. Master’s Thesis, Dalian Ocean University, Dalian, China, 2023. [Google Scholar]
- Quan, Z.J.; Gao, P.P.; Zhang, Y.; Wang, L.; Ding, J.; Chang, Y.Q. Bacterial community and function in the intestinal tracts of sea cucumber (Apostichopus japonicus) at different temperatures. Chin. J. Ecol. 2019, 38, 2756–2764. (In Chinese) [Google Scholar]
- Sha, Y.; Liu, M.; Wang, B.; Jiang, K.; Sun, G.; Wang, L. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology 2016, 85, 109–115. [Google Scholar] [CrossRef]
- Horodesky, A.; Castilho-Westphal, G.G.; Cozer, N.; Rossi, V.G.; Ostrensky, A. Effects of salinity on the survival and histology of oysters Crassostrea gasar (Adanson, 1757). Biosci. J. 2019, 35, 586–597. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, L.; Liu, S.; Ru, X.; Xing, L.; Cao, X.; Yang, H. The effect of salinity on the growth, energy budget and physiological performance of green, white and purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture 2015, 437, 297–303. [Google Scholar] [CrossRef]
- Geng, C.; Tian, Y.; Shang, Y.; Wang, L.; Jiang, Y.; Chang, Y. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus. SpringerPlus 2016, 5, 1977. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.A.; Santos, I.A.; Vidolin, D. Osmolality and ions of the perivisceral coelomic fluid of the intertidal sea urchin Echinometra lucunter (Echinodermata: Echinoidea) upon salinity and ionic challenges. Zoologia 2011, 28, 479–487. [Google Scholar] [CrossRef]
- Meng, X.L.; Dong, Y.W.; Dong, S.L.; Zhou, X.; Yu, S.S. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression. Aquaculture 2011, 316, 88–92. [Google Scholar] [CrossRef]
- Wang, Z. Animal nutrition·Intestinal health. Feed Husb. 2018, 11, 1. (In Chinese) [Google Scholar]
- Fu, Z.; Dong, Y.; Tang, S.; Zhou, L.; Xu, C.; Li, C. Effects of dietary α-lipoic acid on growth, antioxidant capacity and intestinal health of Litopenaeus vannamei under low salinity stress. Chin. J. Anim. Nutr. 2021, 33, 5203–5218. [Google Scholar]
- Kamenev, Y.O.; Dolmatov, I.Y.; Frolova, L.T.; Khang, N.A. The morphology of the digestive tract and respiratory organs of the holothurian Cladolabes schmeltzii (Holothuroidea, Dendrochirotida). Tissue Cell 2013, 45, 126–139. [Google Scholar] [CrossRef]
- Kato, Y.; Yu, D.; Schwartz, M.Z. Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo. J. Pediatr. Surg. 1999, 34, 18–21. [Google Scholar] [CrossRef]
- Vasconcelos, A.A.; Pomin, V.H. The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics. Microorganisms 2017, 5, 51. [Google Scholar] [CrossRef]
- Lin, Z. Study on Intestinal Flora and Host Metabolic Characteristics of Sea Cucumber (Apostichopus japonicus) Under Sulfamethoxazole Stress. Master’s Thesis, Dalian Ocean University, Dalian, China, 2023. [Google Scholar]
- Tian, X.; Xu, Y.; Zheng, W.; Cui, Y.; Jiang, F.; Gong, X. Semicarbazide exposure induces histological damage and enzymatic reactions in Apostichopus japonicas. Mod. Food Sci. Technol. 2020, 36, 35–42. [Google Scholar]
- Zhang, Z.; Dai, W.; Xue, Q.; Lin, Z. Effects of acute salinity stress on the gut bacterial community structure and functional potentials of Sinonvacula constricta. Haiyang Xuebao 2023, 45, 131–141. [Google Scholar]
- Li, H. Effects of Saline-Alkali Acclimation on Physiological and Biochemistryand and Gut Microbes of Juvenile Luciobarbus capito. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2022. [Google Scholar]
- Wen, J.; Lan, J.; Zhou, H.; Wang, P.; Ou, Y.; Li, J. Effects of different salinities on histological structure of digestive organs of juvenile Lateolabrax maculatus. J. South. Agric. 2019, 50, 2826–2832. [Google Scholar]
- Shen, Y.; Huang, J.; Ge, X. Effects of salinity on histological structure of digestive system in snail Onchidium struma. Fish. Sci. 2015, 34, 240–244. [Google Scholar]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. From The Cover: Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef]
- Semova, I.; Carten, J.D.; Stombaugh, J.; Mackey, L.C.; Knight, R.; Farber, S.A.; Rawls, J.F. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 2012, 12, 277–288. [Google Scholar] [CrossRef]
- Sheng, Y.; Ren, H.; Limbu, S.M.; Sun, Y.; Qiao, F.; Zhai, W.; Zhang, M. The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (Danio rerio). Front. Microbiol. 2018, 9, 1124. [Google Scholar] [CrossRef]
- Schmidt, V.T.; Smith, K.F.; Melvin, D.W.; Amaral-Zettler, L.A. Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol. Ecol. 2015, 24, 2537–2550. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Xu, H.; Bao, X.; Liu, X.; Chang, Y.; Ding, J. Characterization of the bacterial community in different parts of the gut of sea cucumber (Apostichopus Japonicus) and its variation during gut regeneration. Aquac. Res. 2018, 49, 1987–1996. [Google Scholar] [CrossRef]
- Li, J.; Liao, M.J.; Li, B.; Wang, Y.G.; Rong, X.J.; Zhang, Z.; Liu, A.R.; Fan, R.Y. The characteristics of culturable bacterial microflora in the gastrointestinal tract of cultured sea cucumber (Apostichopus japonicus) during the early developmental stage and its relationship with environmental flora. Prog. Fish. Sci. 2019, 40, 122–131. [Google Scholar]
- Huang, L.H.; Zhong, S.P.; Pan, C.Y.; Mo, H.L.; Pan, Z.J.; Huang, G.Q.; Mi, S.L.; Gao, C.H.; Liu, Y.H. Effects of acute salinity stress on physiology and immunoenzymatic activityin juvenile sea cucumber, Stichopus monotuberculatus. Aquaculture 2024, 578, 740094. [Google Scholar] [CrossRef]
- Gao, F.; Li, F.; Tan, J.; Yan, J.; Sun, H. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS ONE 2014, 9, e100092. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.T.; Egea, E.; Eeckhaut, I. Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. J. Invertebr. Pathol. 2008, 98, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Hakim, J.A.; Koo, H.; Kumar, R.; Lefkowitz, E.J.; Morrow, C.D.; Powell, M.L.; Bej, A.K. The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles. FEMS Microbiol. Ecol. 2016, 92, fiw146. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Basic Research on Feeding Ecology of Juvenile Holothuria scabra. Master’s Thesis, Beibu Gulf University, Qinzhou, China, 2024. [Google Scholar]
- Xu, H.; Wang, L.; Bao, X.; Jiang, N.; Yang, X.; Hao, Z.; Chang, Y.; Ding, J. Microbial communities in sea cucumber (Apostichopus japonicus) culture pond and the effects of environmental factors. Aquac. Res. 2019, 50, 1257–1268. [Google Scholar] [CrossRef]
- Weigel, B.L. Sea cucumber intestinal regeneration reveals deterministic assembly of the gut microbiome. Appl. Environ. Microbiol. 2020, 86, e00489-20. [Google Scholar] [CrossRef]
- Battistuzzi, F.U.; Hedges, S.B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 2008, 26, 335–343. [Google Scholar] [CrossRef]
- Harris, J.M. The presence, nature and role of gut microflora in aquatic invertebrates: A synthesis. Microb. Ecol. 1993, 25, 195–231. [Google Scholar] [CrossRef]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria. In The Prokaryotes; A Handbook on the Biology of Bacteria; Springer: Berlin/Heidelberg, Germany, 2006; Volume 5, pp. 3–37. [Google Scholar]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Shao, Y.; He, Q.; Fu, Y.; Zhang, G.; Liu, Y. Environmental impact and variation analysis of different CaO2 and Ca(NO3)2 dosing modes on microbial community in black-odorous sediment. Process Saf. Environ. Prot. 2022, 167, 641–650. [Google Scholar] [CrossRef]
- Zarrinpar, A.; Chaix, A.; Xu, Z.Z.; Chang, M.W.; Marotz, C.A.; Saghatelian, A.; Knight, R.; Panda, S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 2018, 9, 2872. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Li, Z.H. esearch progress of Rolstonia and Cupriavidus. Int. J. Lab. Med. 2008, 29, 437–439. [Google Scholar]
- Deng, H.; He, C.B.; Zhou, Z.C.; Liu, C.; Tan, K.F.; Wang, N.B.; Jiang, B.; Gao, X.G.; Liu, W.D. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 2009, 287, 18–27. [Google Scholar] [CrossRef]
- Spilker, T.; Vandamme, P.; LiPuma, J.J. Identification and distribution of Achromobacter species in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Dong, Y.; Ye, J.; Xue, Q.; Lin, Z. Gut microbiome composition likely affects the growth of razor clam Sinonovacula constricta. Aquaculture 2022, 550, 737847. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Wang, Q.; Li, B.; Zhang, H.; Pi, Y. The effects of benzo[a]pyrene on the composition of gut microbiota and the gut health of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol. 2019, 93, 369–379. [Google Scholar] [CrossRef]
- Lamendella, R.; Domingo, J.W.S.; Ghosh, S.; Martinson, J.; Oerther, D.B. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 2011, 11, 103. [Google Scholar] [CrossRef]
- Huang, L.H.; Pan, Z.J.; Pan, C.Y.; Zhao, L.Y.; Zhong, S.P.; Gao, C.H.; Mi, S.L.; Feng, P.F.; Deng, G.Q.; Meng, Y.W.; et al. Effects of Salinity Stress on Physiological Behavior, Respiratory Metabolism, and Intestinal Transcriptome of Stichopus monotuberculatus. Aquac. Rep. 2024, 36, 102117. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, F.; Xu, Q.; Huang, D.; Wang, A.; Sun, T. Study on feeding selection of environmental sediments and digestive function adaptability of holothuria atra. Oceanol. Limnol. Sin. 2019, 50, 1070–1079. [Google Scholar]
- Chen, J. Studies on the Regulation and the Related Mechanism of Arginine on Growth and Intestinal Structure of Juvenile Grass Carp (ctenopharyngodon idellus). Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Sun, N. Molecular Cloning and Expression Analysis of Tropomyosin Gene from Grass Carp. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2015. [Google Scholar]
- Lima, J.; Manning, T.; Rutherford, K.M.; Baima, E.T.; Dewhurst, R.J.; Walsh, P.; Roehe, R. Taxonomic annotation of 16S rRNA sequences of pig intestinal samples using MG-RAST and QIIME2 generated different microbiota compositions. J. Microbiol. Methods 2021, 186, 106235. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis: A beginner’s guide. I. Introduction and application. Weather 1990, 45, 375–382. [Google Scholar] [CrossRef]
- Avershina, E.; Frisli, T.; Rudi, K. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data. Microbes Environ. 2013, 28, 211–216. [Google Scholar] [CrossRef]
Parameters | LSG | CG | HSG |
---|---|---|---|
Villi length (μm) | 122.66 ± 39.66 b | 124.08 ± 23.38 a | 119.64 ± 44.05 c |
Crypt depth (μm) | 24.01 ± 6.34 ab | 25.32 ± 3.87 a | 21.07 ± 5.32 c |
Muscular layer thickness (μm) | 4.86 ± 1.08 ab | 5.16 ± 0.86 a | 4.22 ± 2.25 c |
Mucosal layer thickness (μm) | 123.74 ± 28.56 b | 125.49 ± 36.06 a | 118.05 ± 34.67 c |
Group | Shannon_2 | Simpson | Chao1 | ACE | Goods_Coverage |
---|---|---|---|---|---|
CG0h | 2.06 ± 0.31 abc | 0.40 ± 0.06 ab | 183.17 ± 27.85 | 216.82 ± 30.56 | 0.9997 ± 0.00005 |
LSG24 h | 1.98 ± 0.069 bc | 0.44 ± 0.01 a | 182.23 ± 11.61 | 211.02 ± 9.66 | 0.9997 ± 0.00005 |
CG24h | 2.10 ± 0.15 abc | 0.41 ± 0.04 ab | 175.67 ± 16.95 | 208.12 ± 19.03 | 0.9996 ± 0.00004 |
HSG24h | 1.99 ± 0.03 bc | 0.44 ± 0.01 a | 196.23 ± 5.41 | 232.19 ± 4.10 | 0.9996 ± 0.00001 |
LSG48h | 1.90 ± 0.06 c | 0.45 ± 0.01 a | 160.1 ± 5.45 | 199.43 ± 10.43 | 0.9996 ± 0.00004 |
CG48h | 1.96 ± 0.12 bc | 0.45 ± 0.02 a | 170.1 ± 16.14 | 204.14 ± 15.58 | 0.9997 ± 0.00002 |
HSG48h | 2.19 ± 0.13 abc | 0.39 ± 0.04 ab | 196.33 ± 17.47 | 233.23 ± 17.22 | 0.9996 ± 0.00002 |
LSG96h | 2.39 ± 0.10 ab | 0.37 ± 0.03 ab | 208.27 ± 7.04 | 242.80 ± 8.05 | 0.9996 ± 0.00003 |
CG96h | 2.47 ± 0.09 a | 0.32 ± 0.02 b | 204.37 ± 8.12 | 242.49 ± 6.97 | 0.9996 ± 0.00005 |
HSG96h | 2.19 ± 0.09 abc | 0.41 ± 0.01 ab | 210.6 ± 23.87 | 245.61 ± 27.39 | 0.9997 ± 0.00005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wang, H.; Pan, C.; Yang, X.; Deng, G.; Meng, Y.; Yu, Y.; Chen, X.; Zhong, S. Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus. Mar. Drugs 2024, 22, 576. https://doi.org/10.3390/md22120576
Huang L, Wang H, Pan C, Yang X, Deng G, Meng Y, Yu Y, Chen X, Zhong S. Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus. Marine Drugs. 2024; 22(12):576. https://doi.org/10.3390/md22120576
Chicago/Turabian StyleHuang, Lianghua, Hui Wang, Chuanyan Pan, Xueming Yang, Guoqing Deng, Yaowen Meng, Yongxiang Yu, Xiuli Chen, and Shengping Zhong. 2024. "Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus" Marine Drugs 22, no. 12: 576. https://doi.org/10.3390/md22120576
APA StyleHuang, L., Wang, H., Pan, C., Yang, X., Deng, G., Meng, Y., Yu, Y., Chen, X., & Zhong, S. (2024). Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus. Marine Drugs, 22(12), 576. https://doi.org/10.3390/md22120576