dbo:abstract
|
- En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16. Cette propriété est vraie pour tout triplet (x, y, z) d'entiers naturels, d'entiers relatifs, de nombres rationnels, de nombres réels ou de nombres complexes : x × (y + z) = (x × y) + (x × z) On parle alors de distributivité de la multiplication par rapport à l'addition. En algèbre générale, la distributivité est généralisée à d'autres opérations que l'addition et la multiplication. Une loi de composition interne ∘ est distributive par rapport à une autre loi interne ∗ dans un ensemble E si pour tout triplet (x, y, z) d'éléments de E, on a les propriétés suivantes : x ∘ (y ∗ z) = (x ∘ y) ∗ (x ∘ z) (distributivité à gauche)(x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) (distributivité à droite) (fr)
- En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16. Cette propriété est vraie pour tout triplet (x, y, z) d'entiers naturels, d'entiers relatifs, de nombres rationnels, de nombres réels ou de nombres complexes : x × (y + z) = (x × y) + (x × z) On parle alors de distributivité de la multiplication par rapport à l'addition. En algèbre générale, la distributivité est généralisée à d'autres opérations que l'addition et la multiplication. Une loi de composition interne ∘ est distributive par rapport à une autre loi interne ∗ dans un ensemble E si pour tout triplet (x, y, z) d'éléments de E, on a les propriétés suivantes : x ∘ (y ∗ z) = (x ∘ y) ∗ (x ∘ z) (distributivité à gauche)(x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) (distributivité à droite) (fr)
|
rdfs:comment
|
- En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16. x × (y + z) = (x × y) + (x × z) On parle alors de distributivité de la multiplication par rapport à l'addition. (fr)
- En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16. x × (y + z) = (x × y) + (x × z) On parle alors de distributivité de la multiplication par rapport à l'addition. (fr)
|