[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l' (en). Introduite à l'origine en cohomologie singulière, des constructionsanalogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du (en). Il n'existe pas de cup-produit en homologie, mais on peut définir un cap-produit ou invoquer la dualité de Poincaré si la dimension de l'espace convient.

Property Value
dbo:abstract
  • En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l' (en). Introduite à l'origine en cohomologie singulière, des constructionsanalogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du (en). Il n'existe pas de cup-produit en homologie, mais on peut définir un cap-produit ou invoquer la dualité de Poincaré si la dimension de l'espace convient. (fr)
  • En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l' (en). Introduite à l'origine en cohomologie singulière, des constructionsanalogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du (en). Il n'existe pas de cup-produit en homologie, mais on peut définir un cap-produit ou invoquer la dualité de Poincaré si la dimension de l'espace convient. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7095027 (xsd:integer)
dbo:wikiPageLength
  • 4689 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 167640359 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:année
  • 2001 (xsd:integer)
prop-fr:auteur
prop-fr:isbn
  • 978 (xsd:integer)
prop-fr:langue
  • en (fr)
  • en (fr)
prop-fr:lieu
  • New York (fr)
  • New York (fr)
prop-fr:lireEnLigne
prop-fr:pages
  • xii+544 (fr)
  • xii+544 (fr)
prop-fr:pagesTotales
  • 544 (xsd:integer)
prop-fr:titre
  • Algebraic Topology (fr)
  • Algebraic Topology (fr)
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
dct:subject
rdfs:comment
  • En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l' (en). Introduite à l'origine en cohomologie singulière, des constructionsanalogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du (en). Il n'existe pas de cup-produit en homologie, mais on peut définir un cap-produit ou invoquer la dualité de Poincaré si la dimension de l'espace convient. (fr)
  • En topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l' (en). Introduite à l'origine en cohomologie singulière, des constructionsanalogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du (en). Il n'existe pas de cup-produit en homologie, mais on peut définir un cap-produit ou invoquer la dualité de Poincaré si la dimension de l'espace convient. (fr)
rdfs:label
  • Cup-Produkt (de)
  • Cup-produit (fr)
  • Cup-Produkt (de)
  • Cup-produit (fr)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of