WO2024236862A1 - Light detection device and electronic equipment - Google Patents
Light detection device and electronic equipment Download PDFInfo
- Publication number
- WO2024236862A1 WO2024236862A1 PCT/JP2024/001398 JP2024001398W WO2024236862A1 WO 2024236862 A1 WO2024236862 A1 WO 2024236862A1 JP 2024001398 W JP2024001398 W JP 2024001398W WO 2024236862 A1 WO2024236862 A1 WO 2024236862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- photoelectric conversion
- light
- film
- insulating film
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 104
- 238000006243 chemical reaction Methods 0.000 claims abstract description 299
- 238000000926 separation method Methods 0.000 claims description 47
- 230000000903 blocking effect Effects 0.000 claims description 38
- 239000007769 metal material Substances 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 10
- 239000002096 quantum dot Substances 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 description 237
- 238000010586 diagram Methods 0.000 description 110
- 239000010410 layer Substances 0.000 description 75
- 238000012986 modification Methods 0.000 description 63
- 230000004048 modification Effects 0.000 description 63
- 238000004519 manufacturing process Methods 0.000 description 42
- 230000003287 optical effect Effects 0.000 description 39
- 239000000758 substrate Substances 0.000 description 36
- 239000004065 semiconductor Substances 0.000 description 35
- 238000012545 processing Methods 0.000 description 33
- 239000011241 protective layer Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 27
- 210000003128 head Anatomy 0.000 description 26
- 238000009792 diffusion process Methods 0.000 description 22
- 238000007667 floating Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 16
- 230000001681 protective effect Effects 0.000 description 13
- 239000010949 copper Substances 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 10
- 238000002674 endoscopic surgery Methods 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000001459 lithography Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010336 energy treatment Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 101100205847 Mus musculus Srst gene Proteins 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 2
- 229960004657 indocyanine green Drugs 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
Definitions
- This disclosure relates to a light detection device and electronic equipment.
- An imaging device has been proposed that includes multiple pixels, each of which includes a light-shielding film with a pinhole (hole) and a photodiode that is provided on a silicon substrate and photoelectrically converts light that passes through the pinhole (Patent Document 1).
- An optical detection device includes a photoelectric conversion element having a first electrode, a second electrode arranged opposite the first electrode, and a photoelectric conversion film arranged between the first electrode and the second electrode, and a light-shielding member arranged above the first electrode and having an opening through which light is incident.
- an electronic device includes an optical system and a photodetector that receives light transmitted through the optical system.
- the photodetector includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode, and a light shielding member disposed above the first electrode and having an opening through which light is incident.
- An optical detection device includes a photoelectric conversion element having a first electrode, a second electrode arranged opposite the first electrode, and a photoelectric conversion film arranged between the first electrode and the second electrode, and a separation portion arranged between adjacent photoelectric conversion elements.
- an electronic device includes an optical system and a light detection device that receives light transmitted through the optical system.
- the light detection device includes a photoelectric conversion element having a first electrode, a second electrode provided opposite to the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a separator provided between adjacent photoelectric conversion elements.
- a light detection device includes a photoelectric conversion element having a first electrode, a second electrode provided so as to face the first electrode, a photoelectric conversion film provided between the first electrode and the second electrode, and a light shielding member provided above the first electrode and having an opening through which light is incident.
- the second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
- an electronic device includes an optical system and a photodetector that receives light transmitted through the optical system.
- the photodetector includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode, and a light shielding member disposed above the first electrode and having an opening through which light is incident.
- the second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
- FIG. 1 is a block diagram illustrating an example of a schematic configuration of an imaging device which is an example of a light detection device according to a first embodiment of the present disclosure.
- FIG. 2 is a diagram for explaining an example of the configuration of a pixel of the imaging device according to the first embodiment of the present disclosure.
- FIG. 3 is a diagram illustrating an example of a cross-sectional configuration of the imaging device according to the first embodiment of the present disclosure.
- FIG. 4 is a diagram for explaining an example of a planar configuration of the imaging device according to the first embodiment of the present disclosure.
- FIG. 5 is a diagram for explaining an example of a planar configuration of the imaging device according to the first embodiment of the present disclosure.
- FIG. 1 is a block diagram illustrating an example of a schematic configuration of an imaging device which is an example of a light detection device according to a first embodiment of the present disclosure.
- FIG. 2 is a diagram for explaining an example of the configuration of a pixel of the imaging device according to the first embodiment of the
- FIG. 6 is a diagram for explaining a configuration example of an imaging device according to the first embodiment of the present disclosure.
- FIG. 7 is a diagram for explaining a configuration example of the imaging device according to the first embodiment of the present disclosure.
- FIG. 8 is a diagram for explaining a configuration example of an imaging device according to the first embodiment of the present disclosure.
- FIG. 9 is a diagram illustrating an example of a cross-sectional configuration of the imaging device according to the first embodiment of the present disclosure.
- FIG. 10A is a diagram for explaining an example of a manufacturing method for an imaging device according to the first embodiment of the present disclosure.
- FIG. 10B is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10A is a diagram for explaining an example of a manufacturing method for an imaging device according to the first embodiment of the present disclosure.
- FIG. 10B is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10C is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10D is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10E is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10F is a diagram for explaining an example of a manufacturing method for the imaging device according to the first embodiment of the present disclosure.
- FIG. 10G is a diagram for explaining an example of a manufacturing method of the imaging device according to the first embodiment of the present disclosure.
- FIG. 11A is a diagram for explaining a configuration example of an imaging device according to Modification 1 of the present disclosure.
- FIG. 11A is a diagram for explaining a configuration example of an imaging device according to Modification 1 of the present disclosure.
- FIG. 11A is a diagram for explaining a configuration example of an imaging device according to Modification 1 of the present disclosure.
- FIG. 11B is a diagram for explaining a configuration example of an imaging device according to Modification 1 of the present disclosure.
- FIG. 11C is a diagram for explaining a configuration example of an imaging device according to Modification 1 of the present disclosure.
- FIG. 12A is a diagram for explaining a configuration example of an imaging device according to Modification 2 of the present disclosure.
- FIG. 12B is a diagram for explaining a configuration example of an imaging device according to Modification 2 of the present disclosure.
- FIG. 12C is a diagram for explaining a configuration example of an imaging device according to Modification 2 of the present disclosure.
- FIG. 13 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 3 of the present disclosure.
- FIG. 14 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the fourth modification of the present disclosure.
- FIG. 15 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the fifth modification of the present disclosure.
- FIG. 16 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the sixth modification of the present disclosure.
- FIG. 17 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the seventh modification of the present disclosure.
- FIG. 18 is a diagram showing another example of the cross-sectional configuration of an imaging device according to the seventh modification of the present disclosure.
- FIG. 19 is a diagram for explaining a configuration example of an imaging device according to Modification 8 of the present disclosure.
- FIG. 20 is a diagram for explaining another example configuration of an imaging device according to the eighth modification of the present disclosure.
- FIG. 21 is a diagram for explaining another example configuration of an imaging device according to the eighth modification of the present disclosure.
- FIG. 22 is a diagram for explaining another example configuration of an imaging device according to the eighth modification of the present disclosure.
- FIG. 23 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the second embodiment of the present disclosure.
- FIG. 24 is a diagram illustrating an example of a planar configuration of an imaging device according to the second embodiment of the present disclosure.
- FIG. 25 is a diagram illustrating an example of a planar configuration of an imaging device according to the second embodiment of the present disclosure.
- FIG. 26A is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26B is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26C is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26D is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26E is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26F is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26G is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26H is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26I is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26J is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26K is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 26L is a diagram for explaining an example of a manufacturing method for an imaging device according to the second embodiment of the present disclosure.
- FIG. 27 is a diagram for explaining another configuration example of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28A is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28B is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28C is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28D is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28E is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28A is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28B is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28F is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28G is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28H is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28I is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28J is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28K is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28G is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28H is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 28L is a diagram for explaining another example of the manufacturing method of the imaging device according to the second embodiment of the present disclosure.
- FIG. 29 is a diagram for explaining a configuration example of an imaging device according to Modification 9 of the present disclosure.
- FIG. 30 is a diagram for explaining a configuration example of an imaging device according to Modification 9 of the present disclosure.
- FIG. 31 is a diagram for explaining a configuration example of an imaging device according to a tenth modification of the present disclosure.
- FIG. 32 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to an eleventh modification of the present disclosure.
- FIG. 33 is a diagram for explaining an example of a planar configuration of an imaging device according to Modification 11 of the present disclosure.
- FIG. 34 is a diagram for explaining an example of a planar configuration of an imaging device according to Modification 11 of the present disclosure.
- FIG. 35 is a diagram for explaining another configuration example of an imaging device according to the eleventh modification of the present disclosure.
- FIG. 36 is a diagram for explaining a configuration example of an imaging device according to a twelfth modification of the present disclosure.
- FIG. 37 is a diagram for explaining a configuration example of an imaging device according to a twelfth modification of the present disclosure.
- FIG. 38 is a diagram for explaining a configuration example of an imaging device according to a twelfth modification of the present disclosure.
- FIG. 39 is a block diagram showing an example of the configuration of an electronic device.
- FIG. 39 is a block diagram showing an example of the configuration of an electronic device.
- FIG. 40A is a schematic diagram showing an example of the overall configuration of a light detection system.
- FIG. 40B is a schematic diagram showing an example of the overall configuration of the light detection system.
- FIG. 41 is a block diagram showing an example of a schematic configuration of a vehicle control system.
- FIG. 42 is an explanatory diagram showing an example of the installation positions of the outside-vehicle information detection unit and the imaging unit.
- FIG. 43 is a diagram showing an example of a schematic configuration of an endoscopic surgery system.
- FIG. 44 is a block diagram showing an example of the functional configuration of the camera head and the CCU.
- First embodiment 1 is a block diagram showing an example of a schematic configuration of an imaging device which is an example of a light detection device according to a first embodiment of the present disclosure.
- the light detection device is a device capable of detecting incident light.
- the imaging device 1 which is a light detection device can receive light transmitted through an optical system and generate a signal.
- the imaging device 1 (light detection device) has a plurality of pixels P having a photoelectric conversion unit (photoelectric conversion element) and is configured to perform photoelectric conversion of the incident light to generate a signal.
- the photoelectric conversion unit of each pixel P is, for example, a photodiode, and is configured to be capable of photoelectrically converting light.
- the imaging device 1 has an imaging area in which a plurality of pixels P are arranged two-dimensionally in a matrix (pixel unit 100).
- the pixel unit 100 can also be considered a pixel array in which a plurality of pixels P are arranged.
- the imaging device 1 captures incident light (image light) from a subject through an optical system (not shown) that includes an optical lens.
- the imaging device 1 captures an image of the subject formed by the optical lens.
- the imaging device 1 photoelectrically converts the received light to generate a pixel signal.
- the imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
- the imaging device 1 can be used in electronic devices such as digital still cameras, video cameras, and mobile phones.
- the imaging device 1 has, for example, a vertical drive circuit 111, a signal processing circuit 112, a horizontal drive circuit 113, an output circuit 114, a control circuit 115, and an input/output terminal 116 in the peripheral area of the pixel section 100 (pixel array).
- the imaging device 1 also has a plurality of pixel drive lines Lread and a plurality of vertical signal lines VSL.
- a plurality of pixel drive lines Lread are wired to the pixel section 100 for each pixel row made up of a plurality of pixels P arranged in the horizontal direction (row direction).
- the pixel drive lines Lread are signal lines capable of transmitting signals that drive the pixels P.
- the pixel drive lines Lread are configured to transmit drive signals for reading out signals from the pixels P.
- a vertical signal line VSL is wired for each pixel column composed of a plurality of pixels P arranged in the vertical direction (column direction).
- the vertical signal line VSL is a signal line capable of transmitting a signal from the pixel P.
- the vertical signal line VSL is configured to transmit a signal output from the pixel P.
- the vertical drive circuit 111 is composed of, for example, a buffer, a shift register, an address decoder, etc.
- the vertical drive circuit 111 is configured to be able to drive each pixel P of the pixel section 100.
- the vertical drive circuit 111 generates signals for driving the pixels P and outputs them to each pixel P of the pixel section 100 via pixel drive lines Lread.
- the vertical drive circuit 111 generates, for example, signals for controlling selection transistors, signals for controlling reset transistors, etc., and supplies them to each pixel P via the pixel drive lines Lread.
- the signal processing circuit 112 is configured to be able to perform signal processing of the input pixel signal.
- the signal processing circuit 112 has, for example, a load circuit, an AD (Analog Digital) conversion circuit, a horizontal selection switch, etc.
- the load circuit is configured by a current source capable of supplying current to the amplification transistor of the pixel P.
- the signal processing circuit 112 may have an amplifier circuit configured to amplify signals read from the pixels P via the vertical signal lines VSL.
- a load circuit, an AD conversion circuit, etc. are provided for each of the multiple vertical signal lines VSL, for example.
- a load circuit, an AD conversion circuit, etc. may be provided for each pixel column of the pixel section 100.
- the signal output from each pixel P selected and scanned by the vertical drive circuit 111 is input to the signal processing circuit 112 via the vertical signal line VSL.
- the signal processing circuit 112 performs signal processing such as AD conversion of the pixel P signal and CDS (Correlated Double Sampling).
- the horizontal drive circuit 113 is composed of, for example, a buffer, a shift register, an address decoder, etc.
- the horizontal drive circuit 113 is configured to be able to drive the horizontal selection switches of the signal processing circuit 112.
- the horizontal drive circuit 113 drives each horizontal selection switch of the signal processing circuit 112 in sequence while scanning them.
- the signals of each pixel P transmitted through each vertical signal line VSL are subjected to signal processing by the signal processing circuit 112, and are output to the horizontal signal line 121 in sequence by selective scanning by the horizontal drive circuit 113.
- the output circuit 114 is configured to perform signal processing on the input signal and output the signal.
- the output circuit 114 performs signal processing on pixel signals input sequentially from the signal processing circuit 112 via the horizontal signal line 121, and outputs the processed pixel signals.
- the output circuit 114 can perform, for example, buffering, black level adjustment, column variation correction, various types of digital signal processing, etc.
- the control circuit 115 is configured to be able to control each part of the imaging device 1.
- the control circuit 115 receives a clock, data instructing the operating mode, and the like, provided from outside the semiconductor substrate 120, and can also output data such as internal information of the imaging device 1.
- the control circuit 115 has, for example, a timing generator configured to generate various timing signals. Based on the various timing signals generated by the timing generator, the control circuit 115 controls the driving of peripheral circuits such as the vertical drive circuit 111, the signal processing circuit 112, and the horizontal drive circuit 113.
- the input/output terminals 116 exchange signals with the outside.
- the vertical drive circuit 111, the signal processing circuit 112, the horizontal drive circuit 113, the horizontal signal line 121, the output circuit 114, the control circuit 115, etc. may be provided on the semiconductor substrate 120 or on another substrate.
- the imaging device 1 may have a structure (a laminated structure) formed by stacking multiple substrates.
- FIG. 2 is a diagram for explaining an example of the configuration of a pixel of the imaging device according to the first embodiment.
- the pixel P has a photoelectric conversion unit 11 (photoelectric conversion element) and a readout circuit 15.
- the photoelectric conversion unit 11 is configured to receive light and generate a signal.
- the readout circuit 15 is configured to be capable of outputting a signal based on the charge generated by photoelectric conversion.
- the photoelectric conversion unit 11 is configured to be able to generate electric charges by photoelectric conversion.
- the photoelectric conversion unit 11 includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23.
- the photoelectric conversion unit 11 has a photoelectric conversion film 21 and converts incident light into electric charges.
- the photoelectric conversion unit 11 performs photoelectric conversion to generate electric charges according to the amount of light received.
- the electric charges photoelectrically converted and accumulated in the photoelectric conversion unit 11 are transferred by the lower electrode 23 to the floating diffusion FD of the readout circuit 15.
- the read circuit 15 for example, includes a floating diffusion FD, a transistor AMP, a transistor SEL, and a transistor RST.
- the transistors AMP, SEL, and RST are each MOS transistors (MOSFETs) having gate, source, and drain terminals.
- the transistors AMP, SEL, and RST are each composed of an NMOS transistor.
- the transistor of pixel P may also be composed of a PMOS transistor.
- the floating diffusion FD is an accumulation section and is configured to be able to accumulate the transferred charge.
- the floating diffusion FD can accumulate the charge photoelectrically converted by the photoelectric conversion section 11.
- the floating diffusion FD can also be considered a retention section capable of retaining the transferred charge.
- the floating diffusion FD accumulates the transferred charge and converts it into a voltage according to the capacity of the floating diffusion FD.
- the transistor AMP is configured to generate and output a signal based on the charge stored in the floating diffusion FD. As shown in FIG. 2, the gate of the transistor AMP is electrically connected to the floating diffusion FD, and the voltage converted by the floating diffusion FD is input to the gate.
- the drain of the transistor AMP is connected to a power supply line to which a power supply voltage VDD is supplied, and the source of the transistor AMP is connected to a vertical signal line VSL via a transistor SEL.
- the transistor AMP is an amplifying transistor, and can generate a signal based on the charge stored in the floating diffusion FD, i.e., a signal based on the voltage of the floating diffusion FD, and output it to the vertical signal line VSL.
- the transistor SEL is configured to be capable of controlling the output of a pixel signal.
- the transistor SEL is controlled by a signal SSEL, and is configured to be capable of outputting a signal from the transistor AMP to a vertical signal line VSL.
- the transistor SEL can control the output timing of the pixel signal.
- the transistor SEL may be provided between the power supply line to which the power supply voltage VDD is applied and the transistor AMP. Furthermore, the transistor SEL may be omitted as necessary.
- the transistor RST is configured to be able to reset the voltage of the floating diffusion FD.
- the transistor RST is electrically connected to a power supply line to which a power supply voltage VDD is applied, and is configured to reset the charge of the pixel P.
- the transistor RST is controlled by a signal SRST, and can reset the charge accumulated in the floating diffusion FD and reset the voltage of the floating diffusion FD.
- the transistor RST is a reset transistor.
- the configuration of the readout circuit 15 may be changed as appropriate, for example, so that the conversion efficiency (gain) when converting charge to voltage can be changed.
- the readout circuit 15 may have a switching transistor, a capacitive element, etc., used to set the conversion efficiency.
- the vertical drive circuit 111 (see FIG. 1) supplies control signals to the gates of the transistors SEL, RST, etc. of each pixel P via the pixel drive line Lread described above, turning the transistors on (conducting state) or off (non-conducting state).
- the multiple pixel drive lines Lread of the imaging device 1 include wiring that transmits a signal SSEL that controls the transistor SEL, wiring that transmits a signal SRST that controls the transistor RST, etc.
- Transistors SEL, RST, etc. are controlled to be turned on and off by a vertical drive circuit 111.
- the vertical drive circuit 111 controls the readout circuit 15 of each pixel P to output a pixel signal from each pixel P to a vertical signal line VSL.
- the vertical drive circuit 111 can control the reading out of the pixel signal of each pixel P to the vertical signal line VSL.
- FIG. 3 is a diagram showing an example of a cross-sectional configuration of an imaging device according to a first embodiment.
- the imaging device 1 has, for example, a lens 90, a protective layer 80, a light receiving layer 10, a multilayer wiring layer 130, and a semiconductor substrate 120.
- the incident direction of light from the subject is the Z-axis direction
- the left-right direction on the paper perpendicular to the Z-axis direction is the X-axis direction
- the direction perpendicular to the Z-axis and X-axis directions is the Y-axis direction.
- directions may be indicated based on the direction of the arrow in FIG. 3.
- the imaging device 1 has a configuration in which a lens 90, a protective layer 80, a light receiving layer 10, a multi-layer wiring layer 130, and a semiconductor substrate 120 are stacked in the Z-axis direction. From the side where light is incident, the lens 90, the protective layer 80, the light receiving layer 10, the multi-layer wiring layer 130, and the semiconductor substrate 120 are provided.
- the lens 90 is a lens that collects light and guides light incident from above toward the light receiving layer 10.
- the lens 90 (lens section) is an optical component also known as an on-chip lens.
- the lens 90 is provided above the light receiving layer 10, for example, for each pixel P or for each set of pixels P.
- Light from a subject to be measured enters the lens 90 via an optical system such as an imaging lens.
- the photoelectric conversion section 11 of the pixel P photoelectrically converts the light incident through the lens 90.
- the lens 90 is made of, for example, amorphous silicon (a-Si). In this case, it is possible to efficiently focus the incident infrared light onto the photoelectric conversion unit 11.
- the lens 90 may also be made of silicon nitride (SiN), a resin material, or the like.
- the lens 90 may also be formed of another material that has a higher refractive index than the protective layer 80.
- the imaging device 1 may have a filter that selectively transmits light.
- the filter is configured to selectively transmit light of a specific wavelength range from among the incident light.
- the filter may be an RGB color filter, a complementary color filter, a filter that transmits infrared light, or the like, and is provided above the light receiving layer 10.
- the filter may be provided between the lens 90 and the protective layer 80 or within the protective layer 80 for each pixel P or for each set of pixels P.
- the protective layer 80 is a passivation layer (protective film) and is formed so as to cover the entire light blocking member 60 described below.
- the protective layer 80 is made of, for example, amorphous silicon (a-Si), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), a resin material, or the like.
- the protective layer 80 may be made of other insulating materials.
- the protective layer 80 can also be called a planarization layer (planarization film).
- the light receiving layer 10 has a plurality of photoelectric conversion sections 11.
- the photoelectric conversion section 11 of each pixel P can absorb incident light and generate electric charges.
- the photoelectric conversion section 11 (photoelectric conversion element) of each pixel P includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23.
- the photoelectric conversion section 11 also has a buffer layer 25.
- the photoelectric conversion film 21 is configured to be capable of generating electric charges through photoelectric conversion.
- the photoelectric conversion film 21 can perform photoelectric conversion of incident light and generate electric charges according to the amount of light received.
- the photoelectric conversion film 21 can also be called a photoelectric conversion layer.
- the photoelectric conversion film 21 (photoelectric conversion layer) has, for example, quantum dots, and is configured to receive infrared light and generate electric charges.
- the photoelectric conversion film 21 can also be called a quantum dot layer (QD layer).
- a photoelectric conversion film 21 formed using quantum dots is provided in each pixel P.
- the photoelectric conversion film 21 may be formed including an aggregate of nanoparticles.
- nanoparticles include PbS, PbSe, PbTe, InP, InAs, InSb, CdS, CdSe, and CdTe.
- the photoelectric conversion film 21 is configured to perform photoelectric conversion on light in wavelength ranges such as near infrared (NIR) and shortwave infrared (SWIR) to generate electric charges.
- the photoelectric conversion film 21 may also be configured to receive visible light and generate electric charges.
- the photoelectric conversion film 21 may be configured using inorganic materials or organic materials.
- the photoelectric conversion film 21 may be made of an organic material. Alternatively, the photoelectric conversion film 21 may be made of an inorganic material. The photoelectric conversion film 21 may be made of, for example, an organic semiconductor film or an amorphous silicon film. The material of the photoelectric conversion film 21 may be selected according to, for example, the wavelength range of the incident light to be measured.
- the upper electrode 22 is an electrode common to the photoelectric conversion film 21 of multiple pixels P, and is provided, for example, on one side of the photoelectric conversion film 21.
- the lower electrode 23 is provided on the other side of the photoelectric conversion film 21 for each pixel P or for each set of multiple pixels P.
- the upper electrode 22 and the lower electrode 23 can be provided so as to face each other.
- the upper electrode 22 and the lower electrode 23 are arranged with the photoelectric conversion film 21 in between.
- the lower electrode 23 is provided opposite the upper electrode 22, with a part of the buffer layer 25 and a part of the photoelectric conversion film 21 in between.
- the upper electrode 22 is an electrode on the upper side of the photoelectric conversion film 21, and the lower electrode 23 is an electrode on the lower side of the photoelectric conversion film 21.
- the upper electrode 22 is an electrode common to multiple pixels P and can also be called a common electrode.
- the lower electrode 23 is an electrode used to read out the electric charges converted by the photoelectric conversion film 21 and can also be called a readout electrode.
- An insulating film 131 of the multilayer wiring layer 130 is provided around the lower electrode 23.
- the upper electrode 22 and the lower electrode 23 are electrically connected to, for example, a circuit provided on the semiconductor substrate 120 via different wiring, electrodes, etc.
- the upper electrode 22 and the lower electrode 23 are each made of, for example, ITO (indium tin oxide), IZO (indium zinc oxide), or the like.
- the upper electrode 22 and the lower electrode 23 may be made of other tin oxide-based materials, zinc oxide-based materials, or other transparent conductive materials.
- the lower electrode 23 may be made of other metal materials that reflect light.
- the buffer layer 25 is provided between the photoelectric conversion film 21 and the lower electrode 23.
- the buffer layer 25 is made of, for example, an oxide semiconductor, and is arranged to face the photoelectric conversion film 21.
- the buffer layer 25 is bonded to the photoelectric conversion film 21 and the lower electrode 23.
- the lower electrode 23 is electrically connected to the buffer layer 25.
- a portion of the buffer layer 25 is provided on the insulating film 131 of the multilayer wiring layer 130.
- the buffer layer 25 is a layer used for storing and transporting (transferring) charges photoelectrically converted by the photoelectric conversion film 21, and is also called a carrier transport layer (or charge transport layer).
- the buffer layer 25 may be formed using an organic semiconductor material.
- the buffer layer 25 may also be configured using quantum dots (nanoparticles).
- the material of the buffer layer 25 may be selected depending on, for example, the material of the photoelectric conversion film 21, the material of the lower electrode 23, the carrier (signal charge), etc.
- a buffer layer may be provided between the photoelectric conversion film 21 and the upper electrode 22. The buffer layer may be omitted as necessary.
- the imaging device 1 has a protective film 85.
- the protective film 85 is provided on the upper electrode 22.
- the protective film 85 is a passivation film, and can be formed so as to cover the entire surface of the upper electrode 22.
- the protective film 85 can be made of, for example, aluminum oxide ( Al2O3 ) , silicon oxide ( SiO2 ), or the like.
- the protective film 85 may be made of other insulating materials.
- the protective film 85 can also be said to be a sealing member (sealing portion) that covers the photoelectric conversion unit 11.
- the multilayer wiring layer 130 includes, for example, a conductor film and an insulating film, and has a plurality of wirings and vias (VIAs), etc.
- the multilayer wiring layer 130 is provided by stacking on the semiconductor substrate 120.
- the multilayer wiring layer 130 has a configuration in which a plurality of wirings are stacked with insulating films between them.
- the multilayer wiring layer 130 includes insulating films 131 and 132.
- the insulating films of the multilayer wiring layer 130 can also be called interlayer insulating films (interlayer insulating layers).
- the wiring of the multi-layer wiring layer 130 is formed using, for example, a metal material such as aluminum (Al), copper (Cu), or tungsten (W).
- the wiring of the multi-layer wiring layer 130 may be formed using polysilicon (Poly-Si) or other conductive materials.
- the interlayer insulating film is formed using, for example, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), or the like.
- the semiconductor substrate 120 is, for example, a Si (silicon) substrate.
- the semiconductor substrate 120 can also be referred to as a semiconductor layer.
- the semiconductor substrate 120 may be an SOI (silicon on insulator) substrate, a SiGe (silicon germanium) substrate, a SiC (silicon carbide) substrate, or the like, or may be formed using other semiconductor materials.
- the semiconductor substrate 120 and the multi-layer wiring layer 130 are provided with, for example, the above-mentioned readout circuit 15 for each pixel P or for each set of pixels P.
- the above-mentioned vertical drive circuit 111, signal processing circuit 112, horizontal drive circuit 113, output circuit 114, control circuit 115, etc. may be provided on the semiconductor substrate 120 and the multi-layer wiring layer 130, or on a substrate other than the semiconductor substrate 120.
- the semiconductor substrate 120 and part or all of the multi-layer wiring layer 130 may be collectively referred to as the semiconductor substrate 120.
- the pixel P of the imaging device 1 has a wiring 31 and an electrode 32.
- the wiring 31 and the electrode 32 are used to read out the electric charge converted by the photoelectric conversion unit 11.
- the wiring 31 is made of a metal material such as copper (Cu) or tungsten (W).
- An insulating film 131 of the multi-layer wiring layer 130 is provided around the wiring 31. In the example shown in FIG. 3, the insulating film 131 is formed so as to cover the lower electrode 23.
- the wiring 31 is electrically connected to the lower electrode 23 in the insulating film 131, and is electrically connected to the electrode 32 in the insulating film 132.
- the electrode 32 is made of a metal material such as copper or aluminum.
- the insulating film 132 of the multilayer wiring layer 130 is provided around the electrode 32. In the example shown in FIG. 3, the insulating film 132 is formed so as to cover the electrode 32.
- the lower electrode 23 is electrically connected to the electrode 32 via the wiring 31 provided in the insulating film 131 and the insulating film 132.
- the lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to the readout circuit 15 provided on the semiconductor substrate 120 by wiring 31, electrodes 32, etc.
- the electric charge photoelectrically converted and accumulated in the photoelectric conversion unit 11 is transferred to the floating diffusion FD of the readout circuit 15 via wiring 31, electrodes 32, etc.
- the imaging device 1 is provided with a separation section 50, as in the example shown in FIG. 3.
- the separation section 50 is formed between a plurality of adjacent photoelectric conversion sections 11, and separates the photoelectric conversion sections 11.
- the separation section 50 is formed, for example, using a trench (groove section) provided at the boundary between a plurality of adjacent pixels P.
- the separation section 50 can also be referred to as a pixel separation wall (or a light guide wall).
- the separation section 50 is provided, for example, so as to penetrate the upper electrode 22, the photoelectric conversion film 21, and the buffer layer 25. By providing the separation section 50, the charge photoelectrically converted in the photoelectric conversion section 11 of the pixel P is prevented from leaking to the surrounding pixels P. In addition, it is possible to prevent light from leaking to the surrounding pixels P.
- an insulating film such as an aluminum oxide film (Al 2 O 3 ), a silicon oxide film (SiO 2 ), or the like, is provided in the trench of the separation unit 50.
- the separation unit 50 may also be formed using other insulating materials having a low refractive index.
- the separation unit 50 may be configured by stacking a plurality of films.
- a gap (cavity) may be provided in the trench of the separation unit 50.
- FIG. 4 is a diagram for explaining an example of the planar configuration of the imaging device according to the first embodiment.
- a plurality of separation sections 50 may be formed so as to surround the photoelectric conversion section 11 of each pixel P in a planar view.
- a plurality of separation sections 50 are provided discretely around the photoelectric conversion section 11. This makes it possible to prevent the upper electrode 22, which serves as a common electrode for each pixel P, from being separated (divided). By providing the separation sections 50, it becomes possible to suppress light leaking to surrounding pixels.
- the imaging device 1 is also provided with a light-shielding member 60, as in the example shown in FIG. 3.
- the imaging device 1 has a light-shielding member 60 with a plurality of openings 65.
- the openings 65 are openings (holes) through which light from the lens 90 enters.
- a light-shielding member 60 with one opening 65 is disposed above the photoelectric conversion unit 11 for each pixel P.
- the light-shielding member 60 is a light-shielding portion (light-shielding film) made of a material that blocks light, and is provided above the upper electrode 22.
- the light-shielding member 60 is provided in the protective layer 80 and is located above the upper electrode 22. It can also be said that the light-shielding member 60 is disposed by replacing a part of the protective layer 80.
- the protective layer 80 is formed so as to cover the light-shielding member 60, and is provided so as to fill the opening 65.
- the opening 65 of the light blocking member 60 may have a quadrilateral (e.g., a square) shape in a plan view, as shown in FIG. 5. Also, for example, the opening 65 may have a circular shape in a plan view. Note that the shape of the opening 65 can be changed as appropriate, and may be a rectangle, an ellipse, or another shape.
- the light blocking member 60 is composed of a reflecting member 61 that reflects incident light and an absorbing member 62 that absorbs the incident light.
- the light blocking member 60 has a configuration in which the reflecting member 61 and the absorbing member 62 are stacked.
- the reflecting member 61 is located above the upper electrode 22 in the direction in which the light is incident.
- the absorbing member 62 is stacked above the reflecting member 61.
- the reflective member 61 reflects light that passes through the opening 65 from the lens 90 and is reflected by the photoelectric conversion unit 11 and enters the reflective member 61.
- the reflective member 61 is made of a metal material such as aluminum (Al) or tantalum (Ta).
- the reflective member 61 reflects the incident light that passes through the opening 65 and is reflected by the photoelectric conversion unit 11 toward the photoelectric conversion unit 11.
- the reflective member 61 may be formed using other materials that have a low refractive index.
- a reflective member 61 having an opening 65 is provided on the upper electrode 22 of the photoelectric conversion section 11. Therefore, a portion of the light reflected by the lower electrode 23 is reflected by the reflective member 61 and can be made to enter (re-enter) the photoelectric conversion section 11. Light can be efficiently guided to the photoelectric conversion section 11, improving quantum efficiency (QE). It becomes possible to improve sensitivity to incident light.
- QE quantum efficiency
- the absorbing member 62 is made of a material that absorbs light, and absorbs the incident light.
- the absorbing member 62 is made of, for example, tungsten (W), a black filter, etc.
- the absorbing member 62 absorbs unnecessary light that is incident around the opening 65.
- the absorbing member 62 may be formed using other metal materials that absorb light, or may be made using other color filters.
- the imaging device 1 did not have an absorbing member 62, some of the light that passed through the lens 90 would be reflected by a pixel P, reflected again by the lens 90, etc., and would potentially enter a pixel P surrounding that pixel P. Unwanted light would leak into the photoelectric conversion unit 11 of the surrounding pixels P, causing color mixing. Noise caused by the reflected light would be mixed into the pixel signal, and defects caused by the reflected light would occur in the image. Such noise and defects in the image are also known as flare.
- an absorbing member 62 having an opening 65 is provided above the photoelectric conversion unit 11. This makes it possible to suppress the occurrence of unnecessary reflected light and to suppress the occurrence of color mixing. It is also possible to suppress the occurrence of flare and prevent a decrease in image quality.
- each pixel P of the imaging device for example, a light-shielding member 60 is provided above the photoelectric conversion unit 11, and separation units 50 are provided on all four sides of the photoelectric conversion unit 11.
- the pixel P has a light confinement structure including the light-shielding member 60 and the separation units 50.
- the light-shielding member 60 is located above the photoelectric conversion unit 11, and can also be considered a lid.
- the light reflected by the lower electrode 23 can be reflected by the reflecting member 61 or the separating portion 50, thereby lengthening the optical path length of the incident light. This makes it possible to increase the amount of light absorbed by the photoelectric conversion film 21 and improve the quantum efficiency.
- the photoelectric conversion unit 11 of the pixel P can efficiently absorb the light incident from the lens 90 through the opening 65 and perform photoelectric conversion. This makes it possible to improve the quantum efficiency of the pixel P. Furthermore, in this embodiment, it is possible to suppress the occurrence of color mixing between pixels.
- the insulating film 131 around the lower electrode 23 may be made of a material having a lower refractive index than the buffer layer 25.
- the insulating film 131 may be made of, for example, TEOS, a resin material containing fluorine, or a material containing a filler.
- the insulating film 131 may be formed of a material containing fluorine with a low refractive index, or may be made of a material containing a filler with a low refractive index.
- the insulating film 131 may also be made of other resin materials with low refractive index that have electrical insulation properties.
- the imaging device 1 by providing the insulating film 131 having a low refractive index, for example, light that has passed through the opening 65 and traveled toward the insulating film 131 can be reflected by the insulating film 131 toward the photoelectric conversion section 11. It is also possible for light that is incident on the outside of the lower electrode 23 to be re-incident on the photoelectric conversion film 21. This makes it possible to improve the light confinement performance and improve quantum efficiency.
- FIG. 7 is a diagram for explaining an example of the configuration of an imaging device according to the first embodiment.
- the width W1 of the opening 65 may be in the range of 30% to 75% of the width W2 of the pixel P.
- the width W1 of the opening 65 may be in the range of 35% to 70% of the width W2 of the pixel P.
- the area of the opening 65 in a direction perpendicular to the stacking direction (Z-axis direction in FIG. 7) of the lens 90, the light shielding member 60, the photoelectric conversion unit 11, etc. may be within a range of 4% to 56% of the area of the pixel P. Also, for example, the area of the opening 65 may be within a range of 10% to 50% of the area of the pixel P.
- FIG. 8 shows an example of the cross-sectional configuration in the area where the image height is high, i.e., the distance from the center of the pixel section 100 (pixel array) of the imaging device 1.
- the distance from the center of the pixel section 100 (pixel array) of the imaging device 1. For example, light from an optical lens is incident almost perpendicularly on the central part of the pixel section 100 of the imaging device 1.
- light is incident obliquely on the peripheral part located outside the central part, i.e., on the area away from the center of the pixel section 100, as shown by the example arrow in FIG. 8.
- the positions of the lens 90 and the opening 65 of the light blocking member 60 in each pixel P may be configured to differ depending on the distance from the center of the pixel unit 100, i.e., the image height.
- the lens 90 of the pixel P is, for example, arranged offset toward the center of the pixel unit 100 with respect to the photoelectric conversion unit 11 of the pixel P.
- the opening 65 of the light blocking member 60 of the pixel P may also be arranged offset toward the center of the pixel unit 100 with respect to the photoelectric conversion unit 11 of the pixel P.
- the lens 90 and opening 65 can be said to be shifted to the right on the page with respect to the photoelectric conversion unit 11 of the pixel P.
- the center position of the lens 90 is different from the center position of the opening 65.
- the center of the opening 65 of the light-shielding member 60 is closer to the center of the pixel unit 100 than the center of the photoelectric conversion unit 11 of that pixel P.
- the center of the lens 90 is closer to the center of the pixel unit 100 than the center of the opening 65 of that pixel P.
- the pixel P is configured, for example, as shown in FIG. 3 above.
- the positions of the lens 90 and the opening 65 are adjusted according to the image height, making it possible to perform appropriate pupil correction.
- This makes it possible to suppress a decrease in the amount of light incident on the photoelectric conversion unit 11 and to suppress a decrease in sensitivity to the incident light. Even when light is incident at an angle, it is possible to properly propagate the incident light to the photoelectric conversion unit 11.
- FIG. 9 is a diagram showing an example of a cross-sectional configuration of an imaging device according to the first embodiment.
- the imaging device 1 includes the above-mentioned semiconductor substrate 120.
- the semiconductor substrate 120 has a first surface 11S1 and a second surface 11S2 that face each other.
- the second surface 11S2 is the surface opposite to the first surface 11S1.
- the semiconductor substrate 120 is formed, for example, from a silicon substrate.
- the semiconductor substrate 120 is provided with the readout circuit 15 described above with reference to FIG. 2.
- the lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to the floating diffusion FD and the gate portion of the transistor AMP.
- the photoelectric conversion unit 11 is disposed above the semiconductor substrate 120.
- the light incident surface of the semiconductor substrate 120 is referred to as the upper side, and the opposite side of the semiconductor substrate 120 is referred to as the lower side.
- the lower electrode 23 of the photoelectric conversion section 11 is formed on the insulating film 131 of the multi-layer wiring layer 130.
- a buffer layer 25, a photoelectric conversion film 21, an upper electrode 22, and a light-shielding member 60 are formed on the lower electrode 23.
- a protective layer 80 is formed on the entire surface including the upper electrode 22 and the light-shielding member 60.
- a lens 90 is provided on the protective layer 80.
- An element isolation region 75 and an oxide film 76 are formed on the first surface 11S1 side of the semiconductor substrate 120.
- the transistor RST, transistor AMP, transistor SEL, floating diffusion FD, etc. of the read circuit 15 are provided on the first surface 11S1 side of the semiconductor substrate 120.
- Transistor RST has a gate portion 71, a channel formation region 71A, and source/drain regions 71B and 71C.
- the source/drain region 71C of transistor RST also serves as a floating diffusion FD.
- the other source/drain region 71B is electrically connected to a power supply line that supplies a power supply voltage VDD.
- the lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to one of the source/drain regions 71C (floating diffusion FD) of the transistor RST via wiring 31, electrode 32, and wiring 35.
- Transistor AMP has a gate portion 72, a channel formation region 72A, and source/drain regions 72B, 72C.
- the gate portion 72 is connected to the lower electrode 23 and one of the source/drain regions 71C (floating diffusion FD) of the transistor RST via wiring 35.
- one of the source/drain regions 72B shares an area with the other of the source/drain regions 71B constituting the transistor RST, and is connected to a power supply line through which the power supply voltage VDD is supplied.
- Transistor SEL has a gate portion 73, a channel formation region 73A, and source/drain regions 73B and 73C.
- One source/drain region 73B shares an area with the other source/drain region 72C constituting transistor AMP, and the other source/drain region 73C is connected to the vertical signal line VSL.
- FIGS. 10A to 10G are diagrams for explaining an example of a method for manufacturing an imaging device according to the first embodiment.
- a photoelectric conversion film 21, an upper electrode 22, etc. are formed, and a protective film 85 is formed on the upper electrode 22 by ALD (Atomic Layer Deposition), sputtering, etc.
- ALD Atomic Layer Deposition
- sputtering etc.
- the upper electrode 22, the photoelectric conversion film 21, the buffer layer 25, etc. are selectively removed by lithography and EB (Electron Beam), etc.
- the isolation section 50 is embedded and formed in the selectively removed portion by, for example, ALD.
- a protective film 85 is formed to cover the isolation portion 50, and unnecessary portions of the protective film 85 are then removed by CMP (Chemical Mechanical Polishing).
- CMP Chemical Mechanical Polishing
- a reflective member 61 e.g., an aluminum film
- an absorbing member 62 e.g., a tungsten film
- an opening 65 is formed in the light-shielding member 60 by lithography and dry etching.
- a protective layer 80 is formed on the light-shielding member 60, and a CMP process is performed. After that, a lens 90 and the like are formed.
- the imaging device 1 shown in FIG. 3 and the like can be manufactured. Note that the manufacturing method described above is merely one example, and other manufacturing methods may be adopted.
- the photodetection device of this embodiment includes a photoelectric conversion element (photoelectric conversion section 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) arranged opposite the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) arranged between the first electrode and the second electrode, and a light-shielding member (light-shielding member 60) arranged above the first electrode and having an opening (opening 65) through which light is incident.
- a light-shielding member 60 having an opening 65 is provided above the upper electrode 22 of the photoelectric conversion unit 11. This allows light from the measurement target to be appropriately guided to the photoelectric conversion unit 11. It is possible to realize a photodetector with good detection performance.
- a plurality of separation sections 50 may be formed discretely so as to surround the photoelectric conversion section 11 of each pixel P.
- a plurality of separation sections 50 are provided so as to surround the periphery of the photoelectric conversion section 11.
- the plurality of separation sections 50 are arranged apart from each other around the periphery of the photoelectric conversion section 11.
- FIGS. 12A to 12C are diagrams for explaining an example of the configuration of a light blocking member of an imaging device according to Modification 2.
- the shape of the opening 65 of the light blocking member 60 is not limited to the example shown in Fig. 5 and can be modified as appropriate.
- the opening 65 of the light blocking member 60 may have a circular shape in a plan view.
- the opening 65 of the light blocking member 60 may be polygonal, elliptical, or another shape.
- the opening 65 may have a hexagonal shape as shown in FIG. 12B.
- the opening 65 may have an octagonal shape as shown in FIG. 12C.
- FIG. 13 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 3.
- a plurality of films may be embedded in the trench of the isolation unit 50.
- the isolation unit 50 has an insulating film 51a and an insulating film 51b provided within the insulating film 51a.
- the insulating film 51b has, for example, a refractive index lower than that of the insulating film 51a.
- the insulating film 51b can be made of a material having a refractive index lower than that of the insulating film 51a (for example, an aluminum oxide (Al 2 O 3 ) film).
- the insulating film 51b is made of, for example, silicon oxide (SiO 2 ), a resin material, or the like.
- the insulating film 51b may be made using an air gap (void).
- the separation section 50 (light-guiding wall) having the insulating films 51a and 51b is provided, which makes it possible to efficiently re-enter light into the photoelectric conversion section 11. This improves the light confinement performance and makes it possible to increase quantum efficiency.
- (2-4. Modification 4) 14 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 4.
- the separation unit 50 may be provided from below the light blocking member 60 to below the lower electrode 23.
- the separation unit 50 may be formed so as to reach the insulating film 132 of the multilayer wiring layer 130.
- the separation unit 50 extends in the Z-axis direction and is provided into the insulating film 132.
- the separation unit 50 is provided so as to penetrate the photoelectric conversion unit 11 and the insulating film 131.
- the imaging device 1 according to this modified example can also have a light confinement structure in the region below the lower electrode 23. Therefore, as shown diagrammatically by the arrows in FIG. 14, light that passes through the lower electrode 23 and insulating film 131 without being reflected can be reflected toward the photoelectric conversion section 11 by the separator 50 in the insulating film 132 and the electrode 32. Light that travels below the lower electrode 23 can also be made to re-enter the photoelectric conversion film 21, making it possible to improve quantum efficiency. In addition, it is possible to suppress light leakage into surrounding pixels P and effectively reduce color mixing.
- Fig. 15 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 5.
- the absorbing member 62 of the light blocking member 60 may be configured by laminating a plurality of films as shown typically in Fig. 15.
- the absorbing member 62 may be configured by a plurality of film layers having different refractive indices corresponding to the wavelength bands of the incident light.
- the absorbing member 62 may be, for example, a multi-layer interference film including a silicon oxide film (SiO 2 ) and a titanium oxide film (TiO 2 ).
- the light blocking member 60 may have a moth-eye structure.
- the absorbing member 62 may have, for example, a structure in which fine irregularities are formed. In the case of this modified example, the same effects as those of the above-mentioned embodiment can be obtained.
- Fig. 16 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification Example 6.
- the light blocking member 60 may be configured to have different opening widths in the reflecting member 61 and the absorbing member 62.
- the opening 65 (opening 65a) in the reflecting member 61 and the opening 65 (opening 65b) in the absorbing member 62 may have different sizes.
- the opening 65b of the absorbing member 62 is configured to be larger than the width of the opening 65a of the reflecting member 61, for example. In this case, it is possible to suppress a decrease in quantum efficiency caused by manufacturing variations in the lens 90 (such as the thickness of the lens 90 and the position of the lens 90). In addition, by ensuring the area of the opening 65a of the reflecting member 61, it is possible to suppress a decrease in light confinement performance and a decrease in quantum efficiency.
- the light blocking member 60 may have a trapezoidal shape, as in the example shown in FIG. 16.
- the light blocking member 60 has a taper (inclined portion) and can also be said to have a tapered shape.
- the light blocking member 60 may be formed in a stepped shape by a reflecting member 61 and an absorbing member 62 having different sizes.
- the light blocking member 60 may be configured to have only one of a reflecting member 61 and an absorbing member 62.
- a reflecting member 61 may be disposed, and the absorbing member 62 may not be disposed.
- the absorbing member 62 may be disposed, and the reflecting member 61 may not be disposed.
- FIG. 19 is a diagram for explaining a configuration example of an imaging device according to Modification 8.
- the imaging device 1 does not need to have a light blocking member 60.
- a separator 50 is provided around the photoelectric conversion unit 11.
- a plurality of separators 50 are provided discretely so as to surround the photoelectric conversion unit 11 of each pixel P.
- the imaging device 1 In the imaging device 1, light reflected by the lower electrode 23 or the insulating film 131, etc., can be reflected by the separation section 50 and re-entered into the photoelectric conversion section 11. This makes it possible to increase the amount of light absorbed by the photoelectric conversion film 21 and improve quantum efficiency. In addition, color mixing between pixels P can be suppressed.
- the separation section 50 may be provided, for example, from the upper electrode 22 to below the lower electrode 23. As in the example shown in FIG. 20, the separation section 50 may be formed to reach the insulating film 132 of the multilayer wiring layer 130.
- the trench of the separation unit 50 may be filled with a plurality of films.
- the separation unit 50 has an insulating film 51a and an insulating film 51b provided within the insulating film 51a.
- the insulating film 51b may be made of a material having a refractive index lower than that of the insulating film 51a.
- the light detection device includes a photoelectric conversion element (photoelectric conversion section 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) arranged opposite the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) arranged between the first electrode and the second electrode, and a separation section (separation section 50) arranged between adjacent photoelectric conversion elements.
- a separator 50 is provided between adjacent photoelectric conversion units 11. This allows light from the measurement target to be appropriately guided to the photoelectric conversion units 11. It is possible to realize a light detection device with good detection performance.
- FIG. 23 is a diagram showing an example of a cross-sectional configuration of an imaging device according to a second embodiment of the present disclosure.
- FIGS. 24 and 25 are diagrams for explaining an example of a planar configuration of an imaging device.
- the photoelectric conversion unit 11 (photoelectric conversion element) of each pixel P includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23.
- the imaging device 1 may also have the buffer layer 25 and protective film 85 described above.
- the upper electrode 22 is provided on one side of the photoelectric conversion film 21 for each pixel P, as in the example shown in FIG. 23 etc.
- the lower electrode 23 is an electrode common to the photoelectric conversion films 21 of multiple pixels P, and is provided, for example, on the other side of the photoelectric conversion film 21.
- the upper electrode 22 and the lower electrode 23 can be provided so as to face each other.
- the lower electrode 23 is provided for multiple pixels P, as in the examples shown in Figures 23 and 25.
- the imaging device 1 has a configuration in which multiple pixels P share the lower electrode 23.
- the lower electrode 23 may be provided for all pixels P, and all pixels P may share one lower electrode 23.
- the imaging device 1 may have a configuration in which, for example, any number of pixels P arranged in the row direction (horizontal direction) and column direction (vertical direction) share a lower electrode 23.
- a lower electrode 23 is arranged for each set of pixels P (for example, in 2 ⁇ 2 pixel units, 3 ⁇ 3 pixel units, etc.), and the multiple pixels P share one lower electrode 23.
- the lower electrode 23 is made of a metal material such as titanium (Ti) or copper (Cu).
- the lower electrode 23 may be made of a conductive material such as aluminum (Al) or tantalum (Ta), or may be made of other metal materials that reflect light.
- the lower electrode 23 is an electrode common to multiple pixels P, and can also be called a common electrode.
- the upper electrode 22 is an electrode used to read out the electric charges converted by the photoelectric conversion film 21, and can also be called a readout electrode.
- the upper electrode 22 and the lower electrode 23 are each electrically connected to, for example, a circuit provided on the semiconductor substrate 120 via different wiring, electrodes, etc.
- the pixel P of the imaging device 1 has a wiring 36 and an electrode 32.
- the wiring 36 and the electrode 32 are used to read out the electric charge converted by the photoelectric conversion unit 11.
- the wiring 36 is electrically connected to the upper electrode 22, and is electrically connected to the electrode 32, for example, within the insulating film 132.
- the wiring 36 is provided, for example, so as to penetrate the photoelectric conversion film 21 and the lower electrode 23, and electrically connects the upper electrode 22 and the electrode 32.
- the wiring 36 is arranged so as to penetrate the photoelectric conversion film 21, the lower electrode 23, and the insulating film 131, and reach the electrode 32 in the insulating film 132.
- the wiring 36 is made of a metal material such as tungsten (W) or copper (Cu). As an example, the wiring 36 is provided away from the opening 65 in the pixel P and is located on the end side of the photoelectric conversion section 11.
- the wiring 36 is formed in a pillar shape and can be said to be a pillar-shaped wiring.
- the upper electrode 22 is electrically connected to the electrode 32 via the wiring 36, which is a pillar-shaped wiring.
- An insulating film 37 is provided around the wiring 36.
- the insulating film 37 is made of, for example, silicon oxide, and is provided on the side (side portion) of the wiring 36.
- the insulating film 37 is arranged, for example, so as to follow the side of the wiring 36.
- the insulating film 37 can be formed so as to cover the side (side wall) of the wiring 36.
- the insulating film 37 may be made of an insulating material such as silicon oxynitride or aluminum oxide, or may be made of other materials. In the imaging device 1, the insulating film 37 is provided to suppress the generation of dark current around the wiring 36.
- the upper electrode 22 of the photoelectric conversion unit 11 is electrically connected to the readout circuit 15 provided on the semiconductor substrate 120 by wiring 36, electrodes 32, etc.
- the electric charge photoelectrically converted and accumulated in the photoelectric conversion unit 11 is transferred to the floating diffusion FD of the readout circuit 15 via wiring 36, electrodes 32, etc.
- the lower electrodes 23 are provided for a plurality of pixels P. Therefore, compared to a case where a separate lower electrode 23 is provided for each pixel P, it is possible to prevent light from the measurement target (subject) from leaking below the lower electrode 23.
- the lower electrode 23 can also cause light that has traveled to the end side of the photoelectric conversion unit 11 to be re-entered into the photoelectric conversion unit 11. It is also possible to prevent light from leaking into surrounding pixels P, thereby reducing color mixing.
- the light that passes through the opening 65 is reflected by the lower electrode 23 toward the photoelectric conversion unit 11, making it possible to efficiently guide the light to the photoelectric conversion unit 11.
- This makes it possible to improve the light confinement performance and improve the quantum efficiency (QE). It is also possible to improve the sensitivity to incident light.
- Figures 26A to 26L are diagrams for explaining an example of a manufacturing method for an imaging device according to the second embodiment.
- an electrode 32 and insulating films 132, 131, etc. are formed, and a lower electrode 23 made of copper (Cu) is formed on the insulating film 131.
- a photoelectric conversion film 21 is formed on the lower electrode 23.
- an isolation portion 50 e.g., an aluminum oxide film is formed, for example, by ALD (Atomic Layer Deposition).
- the photoelectric conversion film 21, the insulating film 131, and the insulating film 132 are selectively removed by lithography and dry etching.
- an insulating film 37 e.g., a silicon oxide film
- wiring 36 e.g., a tungsten film
- an upper electrode 22 e.g., an ITO film
- a silicon nitride film is formed as a protective layer 80 so as to cover the upper electrode 22, and a planarization process is performed on the silicon nitride film.
- a light-shielding member 60 including a reflective member 61 and an absorbing member 62 is formed on the protective film 85.
- a silicon nitride film is formed as a protective layer 80 so as to cover the light shielding member 60, and a planarization process is performed on the protective layer 80.
- a lens 90 is formed on the protective layer 80.
- FIG. 27 is a diagram for explaining another example configuration of an imaging device according to the second embodiment.
- the separation section 50 may be provided between adjacent upper electrodes 22 and up to the lower electrode 23.
- the upper electrodes 22 of each pixel P may be provided so as to sandwich a part of the separation section 50.
- Figures 28A to 28L are diagrams for explaining another example of a method for manufacturing an imaging device according to the second embodiment.
- an electrode 32 and insulating films 132, 131, etc. are formed, and a lower electrode 23 is formed on the insulating film 131.
- a photoelectric conversion film 21 is formed on the lower electrode 23.
- FIG. 28C a portion of each of the photoelectric conversion film 21, the insulating film 131, and the insulating film 132 is removed by lithography and dry etching. Then, as shown in FIG. 28D, an insulating film 37 is formed by, for example, ALD. Furthermore, as shown in FIG. 28E, wiring 36 is embedded and formed.
- an ITO film 24 is formed as the upper electrode 22 on the photoelectric conversion film 21.
- a portion of each of the ITO film 24 and the photoelectric conversion film 21 is removed by lithography and dry etching.
- the upper electrode 22 of each pixel P is formed by selectively removing the ITO film 24.
- the separation section 50 is formed by, for example, ALD.
- a protective layer 80 is formed so as to cover the upper electrode 22.
- a light-shielding member 60 is formed on the protective layer 80.
- a protective layer 80 is formed to cover the light blocking member 60, and a planarization process is performed on the protective layer 80.
- a lens 90 is formed on the protective layer 80.
- the photodetector includes a photoelectric conversion element (photoelectric conversion unit 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) provided so as to face the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) provided between the first electrode and the second electrode, and a light shielding member (light shielding member 60) provided above the first electrode and having an opening (opening 65) through which light is incident.
- the second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
- the lower electrode 23 is provided for a plurality of pixels P. This makes it possible to prevent light from leaking below the lower electrode 23. It is possible to realize a photodetection device with good detection performance.
- the wiring 36 of each of the multiple pixels P may be arranged adjacent to one another.
- the wiring 36 (columnar wiring) of four adjacent pixels P may be arranged adjacent to one another.
- FIG. 31 is a diagram for explaining a configuration example of an imaging device according to Modification 10.
- the imaging device 1 may have a lens 95 as in the example shown in Fig. 31.
- the lens 95 is provided, for example, between the lens 90 and the protective layer 80.
- the lens 95 (lens portion) is an optical member also called an inner lens.
- Lens 95 for example, has a shape different from that of lens 90 and is located between lens 90 and protective layer 80.
- lens 90 is a convex lens and lens 95 is a concave lens.
- Lens 95 is made of a material having a refractive index different from that of each of lens 90 and protective layer 80, for example.
- the refractive index of lens 90 is n1
- the refractive index of protective layer 80 is n2
- the refractive index of lens 95 is n3
- lens 90, lens 95, and protective layer 80 can be formed to satisfy n1>n3>n2.
- Fig. 32 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 11.
- Fig. 33 and Fig. 34 are diagrams for explaining an example of a planar configuration of an imaging device according to Modification 11.
- the imaging device 1 may have a configuration in which two or more photoelectric conversion units (photoelectric conversion elements) are stacked.
- the imaging device 1 has a structure in which a photoelectric conversion unit 11 and a photoelectric conversion unit 211 are stacked as shown in FIG. 32. From the light incident side, a light receiving layer 210 having a plurality of photoelectric conversion units 211 and a light receiving layer 10 having a plurality of photoelectric conversion units 11 are provided.
- the photoelectric conversion unit 11 includes, for example, the photoelectric conversion film 21, the upper electrode 22, and the lower electrode 23 described above. In addition, a separation unit 50, wiring 36, and an electrode 32 are provided for the photoelectric conversion unit 11.
- the photoelectric conversion unit 211 is provided so as to be stacked on the photoelectric conversion unit 11.
- the photoelectric conversion unit 211 may have the same configuration as the photoelectric conversion unit 11.
- the photoelectric conversion unit 211 includes, for example, a photoelectric conversion film 221, an upper electrode 222, and a lower electrode 223.
- the photoelectric conversion film 221, the upper electrode 222, and the lower electrode 223 of the photoelectric conversion unit 211 correspond to the photoelectric conversion film 21, the upper electrode 22, and the lower electrode 23 of the photoelectric conversion unit 11, respectively.
- a separator 250, wiring 236, and electrode 232 are provided for the photoelectric conversion unit 211.
- the separator 250, wiring 236, and electrode 232 may have the same configuration as the separator 50, wiring 36, and electrode 32.
- the separator 250 is formed between adjacent photoelectric conversion units 211, and separates the photoelectric conversion units 211 from each other.
- the wiring 236 and the electrode 232 are used to read out the electric charge converted by the photoelectric conversion unit 211.
- the wiring 236 is electrically connected to the upper electrode 222, and is electrically connected to the electrode 232, for example, within the insulating film 132.
- the wiring 236 is formed in a pillar shape, and can be called a pillar wiring.
- the wiring 236 is provided, for example, so as to penetrate the photoelectric conversion film 221, the lower electrode 223, and the photoelectric conversion unit 11, and electrically connects the upper electrode 222 and the electrode 232.
- the wiring 236 is arranged so as to penetrate the photoelectric conversion film 221, the lower electrode 223, the photoelectric conversion unit 11, and the insulating film 131, and reach the electrode 232 in the insulating film 132.
- the photoelectric conversion unit 11 and the photoelectric conversion unit 211 can be configured to perform photoelectric conversion on light in different wavelength ranges.
- the photoelectric conversion unit 11 and the photoelectric conversion unit 211 selectively receive light in a specific wavelength range and perform photoelectric conversion depending on, for example, the constituent material of the photoelectric conversion films 21, 221 and the particle size (diameter) of the quantum dots.
- the photoelectric conversion unit 11 is located below the photoelectric conversion unit 211 and can perform photoelectric conversion on light passing through the photoelectric conversion unit 211 to generate electric charge.
- the imaging device 1 can obtain a pixel signal based on the charge converted by the photoelectric conversion unit 11 and a pixel signal based on the charge converted by the photoelectric conversion unit 211.
- Each of the photoelectric conversion unit 11 and the photoelectric conversion unit 211 may be configured to receive infrared light and perform photoelectric conversion, or may be configured to receive visible light and perform photoelectric conversion.
- FIG. 35 is a diagram for explaining another example configuration of an imaging device according to Modification 11.
- the wiring 236 may be provided so as to penetrate the upper electrode 22 of the photoelectric conversion section 11.
- the wiring 236 is provided so as to penetrate the photoelectric conversion film 221, the lower electrode 223, the upper electrode 22, the photoelectric conversion film 21, the lower electrode 23, and the insulating film 131, and electrically connects the upper electrode 222 and the electrode 232.
- the light blocking member 60 may be configured to have only one of a reflecting member 61 and an absorbing member 62.
- the light blocking member 60 may be configured to have only one of a reflecting member 61 and an absorbing member 62.
- the reflecting member 61 may be disposed, and the absorbing member 62 may not be disposed.
- the absorbing member 62 may be disposed, and the reflecting member 61 may not be disposed.
- the imaging device 1 may be configured not to have a light blocking member 60.
- Imaging device 1 can be applied to various electronic devices, such as imaging systems such as digital still cameras and digital video cameras, mobile phones with imaging functions, or other devices with imaging functions.
- FIG. 39 is a block diagram showing an example of the configuration of an electronic device.
- the electronic device 101 includes an optical system 102, a photodetector 103, and a DSP (Digital Signal Processor) 104.
- the DSP 104, display device 105, operation system 106, memory 108, recording device 109, and power supply system 110 are connected via a bus 107, and the electronic device 101 is capable of capturing still and moving images.
- the optical system 102 is composed of one or more lenses, and guides image light (incident light) from the subject to the light detection device 103, forming an image on the light receiving surface (sensor section) of the light detection device 103.
- the above-mentioned photodetection device (imaging device 1) can be used as the photodetection device 103. Electrons are accumulated in the photodetection device 103 for a certain period of time according to the image formed on the light receiving surface via the optical system 102. Then, a signal according to the electrons accumulated in the photodetection device 103 is supplied to the DSP 104.
- the DSP 104 performs various signal processing on the signal from the light detection device 103 to obtain an image, and temporarily stores the image data in the memory 108.
- the image data stored in the memory 108 is recorded in the recording device 109 or supplied to the display device 105 to display the image.
- the operation system 106 also accepts various operations by the user and supplies operation signals to each block of the electronic device 101.
- the power supply system 110 supplies the power necessary to drive each block of the electronic device 101.
- Fig. 40A is a schematic diagram showing an example of the overall configuration of a light detection system 2000 including a light detection device (imaging device 1).
- Fig. 40B is a schematic diagram showing an example of the circuit configuration of the light detection system 2000.
- the light detection system 2000 includes a light emitting device 2001 as a light source unit that emits light L2, and a light detection device 2002 as a light receiving unit having a photoelectric conversion element.
- the above-mentioned light detection device (imaging device 1) can be used as the light detection device 2002.
- the light detection system 2000 may further include a system control unit 2003, a light source driving unit 2004, a sensor control unit 2005, a light source side optical system 2006, and a camera side optical system 2007.
- the light detection device 2002 can detect light L1 and light L2.
- Light L1 is external ambient light reflected by the subject 2100 (object to be measured) (see FIG. 40A).
- Light L2 is light emitted by the light emitting device 2001 that is reflected by the subject 2100.
- Light L1 is, for example, visible light
- light L2 is, for example, infrared light.
- Light L1 can be detected by a photoelectric conversion unit in the light detection device 2002, and light L2 can be detected by a photoelectric conversion unit in the light detection device 2002.
- Image information of the subject 2100 can be obtained from the light L1
- distance information between the subject 2100 and the light detection system 2000 can be obtained from the light L2.
- the optical detection system 2000 can be mounted on, for example, an electronic device such as a smartphone or a mobile object such as a car.
- the light emitting device 2001 can be configured, for example, with a semiconductor laser, a surface emitting semiconductor laser, or a vertical cavity surface emitting laser (VCSEL).
- VCSEL vertical cavity surface emitting laser
- the method of detection by the light detection device 2002 of the light L2 emitted from the light emitting device 2001 can be, for example, the iTOF method, but is not limited to this.
- the photoelectric conversion unit can measure the distance to the subject 2100, for example, by the time-of-flight (TOF).
- a structured light method or a stereo vision method can be adopted as a method for detecting the light L2 emitted from the light emitting device 2001 by the light detecting device 2002.
- a structured light method or a stereo vision method can be adopted.
- the structured light method a predetermined pattern of light is projected onto the subject 2100, and the degree of distortion of the pattern is analyzed to measure the distance between the light detecting system 2000 and the subject 2100.
- the stereo vision method for example, two or more cameras are used to acquire two or more images of the subject 2100 viewed from two or more different viewpoints, thereby making it possible to measure the distance between the light detection system 2000 and the subject.
- the light emitting device 2001 and the light detection device 2002 can be synchronously controlled by the system control unit 2003.
- the technology according to the present disclosure (the present technology) can be applied to various products.
- the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
- FIG. 41 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
- the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
- the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
- Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
- the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
- the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
- the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
- the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
- radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
- the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
- the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
- the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030.
- the outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images.
- the outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, characters on the road surface, etc. based on the received images.
- the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received.
- the imaging unit 12031 can output the electrical signal as an image, or as distance measurement information.
- the light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
- the in-vehicle information detection unit 12040 detects information inside the vehicle.
- a driver state detection unit 12041 that detects the state of the driver is connected.
- the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
- the microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010.
- the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 can also perform cooperative control for the purpose of autonomous driving, which allows the vehicle to travel autonomously without relying on the driver's operation, by controlling the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040.
- the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching from high beams to low beams.
- the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
- an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
- the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
- FIG. 42 shows an example of the installation position of the imaging unit 12031.
- the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
- the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
- the imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100.
- the imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100.
- the imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100.
- the images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
- FIG. 42 shows an example of the imaging ranges of the imaging units 12101 to 12104.
- Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
- imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
- imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door.
- an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
- At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
- at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for phase difference detection.
- the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
- automatic braking control including follow-up stop control
- automatic acceleration control including follow-up start control
- the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles.
- the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
- the microcomputer 12051 determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by performing forced deceleration or avoidance steering via the drive system control unit 12010.
- At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
- the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the image captured by the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the image captured by the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian.
- the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian.
- the audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
- the technology according to the present disclosure can be applied to, for example, the imaging unit 12031.
- the imaging device 1 or the like can be applied to the imaging unit 12031.
- the technology according to the present disclosure (Application example to endoscopic surgery system)
- the technology according to the present disclosure can be applied to various products.
- the technology according to the present disclosure may be applied to an endoscopic surgery system.
- FIG. 43 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
- an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133.
- the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
- the endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101.
- the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
- the tip of the tube 11101 has an opening into which an objective lens is fitted.
- a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132.
- the endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
- An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the object of observation is focused on the image sensor by the optical system.
- the image sensor converts the observation light photoelectrically to generate an electrical signal corresponding to the observation light, i.e., an image signal corresponding to the observed image.
- the image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
- CCU Camera Control Unit
- the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
- a CPU Central Processing Unit
- GPU Graphics Processing Unit
- the display device 11202 under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
- the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
- a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
- the input device 11204 is an input interface for the endoscopic surgery system 11000.
- a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
- the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
- the treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc.
- the insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon.
- the recorder 11207 is a device capable of recording various types of information related to the surgery.
- the printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
- the light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these.
- a white light source composed of, for example, an LED, a laser light source, or a combination of these.
- the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203.
- the light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals.
- the image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
- the light source device 11203 may be configured to supply light of a predetermined wavelength band corresponding to special light observation.
- special light observation for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a specific tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed.
- fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
- excitation light is irradiated to body tissue and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescence wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image.
- the light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
- FIG. 44 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 43.
- the camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
- the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
- the camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
- the lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
- the lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
- the imaging unit 11402 is composed of an imaging element.
- the imaging element constituting the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type).
- each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these.
- the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display. By performing 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site.
- 3D dimensional
- the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
- the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
- the driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
- the communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201.
- the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
- the communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405.
- the control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
- the above-mentioned frame rate, exposure value, magnification, focus, and other imaging conditions may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal.
- the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
- the camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
- the communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102.
- the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
- the communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102.
- the image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
- the image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
- the control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
- the control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
- various image recognition techniques such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc.
- the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
- communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
- the technology of the present disclosure can be suitably applied to, for example, the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100.
- the technology of the present disclosure it is possible to provide a high-definition endoscope 11100.
- an imaging device has been described as an example, but the light detection device disclosed herein may be, for example, a device that receives incident light and converts the light into an electric charge.
- the output signal may be a signal of image information or a signal of distance measurement information.
- the light detection device imaging device
- the light detection device may be applied to an image sensor, a distance measurement sensor, etc.
- the optical detection device disclosed herein may also be applied as a distance measurement sensor capable of measuring distance using the Time Of Flight (TOF) method.
- the optical detection device (imaging device) may also be applied as a sensor capable of detecting events, for example, an event-driven sensor (called an Event Vision Sensor (EVS), Event Driven Sensor (EDS), Dynamic Vision Sensor (DVS), etc.).
- EVS Event Vision Sensor
- EDS Event Driven Sensor
- DVS Dynamic Vision Sensor
- the photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a light-shielding member provided above the first electrode and having an opening through which light is incident. This makes it possible to realize a photodetector with good detection performance.
- the photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a separator provided between adjacent photoelectric conversion elements. This makes it possible to realize a photodetector with good detection performance.
- the photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode.
- the second electrode is provided for a plurality of pixels each including a photoelectric conversion film. This makes it possible to realize a photodetector with good detection performance.
- the present disclosure may have the following configurations.
- a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode; a light-shielding member provided above the first electrode and having an opening through which light is incident.
- the light blocking member is a reflective member that reflects incident light that has passed through the opening and is reflected by the photoelectric conversion element.
- the light blocking member is an absorbing member that absorbs incident light.
- the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
- a pixel including the photoelectric conversion element is provided, The photodetector according to any one of (6) to (10), wherein the pixel has a light confinement structure including the light blocking member and the separation portion. (12) The photodetector according to any one of (1) to (11), wherein a width of the opening is within a range of 30% to 75% of a width of a pixel including the photoelectric conversion element. (13) The light detection device according to any one of (1) to (12), wherein an area of the opening is within a range of 4% to 56% of an area of a pixel including the photoelectric conversion element.
- a lens provided above the light blocking member and into which light is incident;
- a buffer layer is further provided between the photoelectric conversion film and the second electrode, The photodetector according to any one of (1) to (15), wherein the second electrode is electrically connected to the buffer layer.
- a third insulating film is provided around the second electrode.
- the first electrode is provided for each of the pixels.
- the light detection device further comprising an electrode provided below the second electrode and electrically connected to the wiring.
- a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode; and a separator provided between adjacent ones of the photoelectric conversion elements.
- the separation portion is provided so as to penetrate the first electrode and the photoelectric conversion film.
- the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
- a buffer layer is further provided between the photoelectric conversion film and the second electrode, The photodetector according to any one of (24) to (27), wherein the second electrode is electrically connected to the buffer layer.
- a third insulating film is provided around the second electrode. The photodetector according to any one of the preceding claims, wherein the third insulating film has a refractive index lower than a refractive index of the buffer layer.
- the light detection device includes: a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode; and a separator provided between adjacent ones of the photoelectric conversion elements.
- a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode; a light-shielding member provided above the first electrode and having an opening through which light is incident;
- the second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本開示は、光検出装置および電子機器に関する。 This disclosure relates to a light detection device and electronic equipment.
ピンホール(穴部)を有する遮光膜と、シリコン基板に設けられ、ピンホールを透過した光を光電変換するフォトダイオードと、をそれぞれ含む複数の画素を備えた撮像装置が提案されている(特許文献1)。 An imaging device has been proposed that includes multiple pixels, each of which includes a light-shielding film with a pinhole (hole) and a photodiode that is provided on a silicon substrate and photoelectrically converts light that passes through the pinhole (Patent Document 1).
光を検出する装置では、検出性能を向上させることが望ましい。 In devices that detect light, it is desirable to improve the detection performance.
良好な検出性能を有する光検出装置を提供することが望まれる。 It is desirable to provide an optical detection device with good detection performance.
本開示の一実施形態の光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、第1電極の上方に設けられ、光が入射する開口部を有する遮光部材とを備える。
本開示の一実施形態の電子機器は、光学系と、光学系を透過した光を受光する光検出装置とを備える。光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、第1電極の上方に設けられ、光が入射する開口部を有する遮光部材とを有する。
本開示の一実施形態の光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、隣り合う複数の光電変換素子の間に設けられる分離部とを備える。
本開示の一実施形態の電子機器は、光学系と、光学系を透過した光を受光する光検出装置とを備える。光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、隣り合う複数の光電変換素子の間に設けられる分離部とを有する。
本開示の一実施形態の光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、第1電極の上方に設けられ、光が入射する開口部を有する遮光部材とを備える。第2電極は、光電変換膜をそれぞれ含む複数の画素に対して設けられている。
本開示の一実施形態の電子機器は、光学系と、光学系を透過した光を受光する光検出装置とを備える。光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、第1電極の上方に設けられ、光が入射する開口部を有する遮光部材とを有する。第2電極は、光電変換膜をそれぞれ含む複数の画素に対して設けられている。
An optical detection device according to one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode arranged opposite the first electrode, and a photoelectric conversion film arranged between the first electrode and the second electrode, and a light-shielding member arranged above the first electrode and having an opening through which light is incident.
According to an embodiment of the present disclosure, an electronic device includes an optical system and a photodetector that receives light transmitted through the optical system. The photodetector includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode, and a light shielding member disposed above the first electrode and having an opening through which light is incident.
An optical detection device according to one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode arranged opposite the first electrode, and a photoelectric conversion film arranged between the first electrode and the second electrode, and a separation portion arranged between adjacent photoelectric conversion elements.
According to an embodiment of the present disclosure, an electronic device includes an optical system and a light detection device that receives light transmitted through the optical system. The light detection device includes a photoelectric conversion element having a first electrode, a second electrode provided opposite to the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a separator provided between adjacent photoelectric conversion elements.
A light detection device according to an embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode provided so as to face the first electrode, a photoelectric conversion film provided between the first electrode and the second electrode, and a light shielding member provided above the first electrode and having an opening through which light is incident. The second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
According to an embodiment of the present disclosure, an electronic device includes an optical system and a photodetector that receives light transmitted through the optical system. The photodetector includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode, and a light shielding member disposed above the first electrode and having an opening through which light is incident. The second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
2.変形例
3.第2の実施の形態
4.変形例
5.適用例
6.応用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be made in the following order.
1. First embodiment 2. Modification 3. Second embodiment 4. Modification 5. Application example 6. Application example
<1.第1の実施の形態>
図1は、本開示の第1の実施の形態に係る光検出装置の一例である撮像装置の概略構成の一例を示すブロック図である。光検出装置は、入射する光を検出可能な装置である。光検出装置である撮像装置1は、光学系を透過した光を受光して信号を生成し得る。撮像装置1(光検出装置)は、光電変換部(光電変換素子)を有する複数の画素Pを有し、入射した光を光電変換して信号を生成するように構成される。
1. First embodiment
1 is a block diagram showing an example of a schematic configuration of an imaging device which is an example of a light detection device according to a first embodiment of the present disclosure. The light detection device is a device capable of detecting incident light. The imaging device 1 which is a light detection device can receive light transmitted through an optical system and generate a signal. The imaging device 1 (light detection device) has a plurality of pixels P having a photoelectric conversion unit (photoelectric conversion element) and is configured to perform photoelectric conversion of the incident light to generate a signal.
各画素Pの光電変換部は、例えばフォトダイオードであり、光を光電変換可能に構成される。撮像装置1は、複数の画素Pが行列状に2次元配置された領域(画素部100)を、撮像エリアとして有する。画素部100は、複数の画素Pが配置される画素アレイともいえる。 The photoelectric conversion unit of each pixel P is, for example, a photodiode, and is configured to be capable of photoelectrically converting light. The imaging device 1 has an imaging area in which a plurality of pixels P are arranged two-dimensionally in a matrix (pixel unit 100). The pixel unit 100 can also be considered a pixel array in which a plurality of pixels P are arranged.
撮像装置1は、光学レンズを含む光学系(不図示)を介して、被写体からの入射光(像光)を取り込む。撮像装置1は、光学レンズにより形成される被写体の像を撮像する。撮像装置1は、受光した光を光電変換して画素信号を生成する。撮像装置1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。撮像装置1は、デジタルスチルカメラ、ビデオカメラ、携帯電話等の電子機器に利用可能である。 The imaging device 1 captures incident light (image light) from a subject through an optical system (not shown) that includes an optical lens. The imaging device 1 captures an image of the subject formed by the optical lens. The imaging device 1 photoelectrically converts the received light to generate a pixel signal. The imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor. The imaging device 1 can be used in electronic devices such as digital still cameras, video cameras, and mobile phones.
撮像装置1は、図1に示す例のように、画素部100(画素アレイ)の周辺領域に、例えば、垂直駆動回路111、信号処理回路112、水平駆動回路113、出力回路114、制御回路115、及び入出力端子116等を有する。また、撮像装置1には、複数の画素駆動線Lreadと、複数の垂直信号線VSLが設けられる。 As shown in the example of FIG. 1, the imaging device 1 has, for example, a vertical drive circuit 111, a signal processing circuit 112, a horizontal drive circuit 113, an output circuit 114, a control circuit 115, and an input/output terminal 116 in the peripheral area of the pixel section 100 (pixel array). The imaging device 1 also has a plurality of pixel drive lines Lread and a plurality of vertical signal lines VSL.
図1に示す例では、画素部100には、水平方向(行方向)に並ぶ複数の画素Pにより構成される画素行ごとに、複数の画素駆動線Lreadが配線される。画素駆動線Lreadは、画素Pを駆動する信号を伝えることが可能な信号線である。画素駆動線Lreadは、画素Pからの信号読み出しのための駆動信号を伝送するように構成される。 In the example shown in FIG. 1, a plurality of pixel drive lines Lread are wired to the pixel section 100 for each pixel row made up of a plurality of pixels P arranged in the horizontal direction (row direction). The pixel drive lines Lread are signal lines capable of transmitting signals that drive the pixels P. The pixel drive lines Lread are configured to transmit drive signals for reading out signals from the pixels P.
また、画素部100には、垂直方向(列方向)に並ぶ複数の画素Pにより構成される画素列ごとに、垂直信号線VSLが配線される。垂直信号線VSLは、画素Pからの信号を伝えることが可能な信号線である。垂直信号線VSLは、画素Pから出力される信号を伝送するように構成される。 In addition, in the pixel section 100, a vertical signal line VSL is wired for each pixel column composed of a plurality of pixels P arranged in the vertical direction (column direction). The vertical signal line VSL is a signal line capable of transmitting a signal from the pixel P. The vertical signal line VSL is configured to transmit a signal output from the pixel P.
垂直駆動回路111は、例えば、バッファ、シフトレジスタ、アドレスデコーダ等によって構成される。垂直駆動回路111は、画素部100の各画素Pを駆動可能に構成される。垂直駆動回路111は、画素Pを駆動するための信号を生成し、画素駆動線Lreadを介して画素部100の各画素Pへ出力する。垂直駆動回路111は、例えば、選択トランジスタを制御する信号、リセットトランジスタを制御する信号等を生成し、画素駆動線Lreadによって各画素Pに供給する。 The vertical drive circuit 111 is composed of, for example, a buffer, a shift register, an address decoder, etc. The vertical drive circuit 111 is configured to be able to drive each pixel P of the pixel section 100. The vertical drive circuit 111 generates signals for driving the pixels P and outputs them to each pixel P of the pixel section 100 via pixel drive lines Lread. The vertical drive circuit 111 generates, for example, signals for controlling selection transistors, signals for controlling reset transistors, etc., and supplies them to each pixel P via the pixel drive lines Lread.
信号処理回路112は、入力される画素の信号の信号処理を実行可能に構成される。信号処理回路112は、例えば、負荷回路、AD(Analog Digital)変換回路、水平選択スイッチ等を有する。負荷回路は、一例として、画素Pの増幅トランジスタに電流を供給可能な電流源により構成される。負荷回路は、例えば、画素Pの増幅トランジスタと共にソースフォロア回路を構成する。 The signal processing circuit 112 is configured to be able to perform signal processing of the input pixel signal. The signal processing circuit 112 has, for example, a load circuit, an AD (Analog Digital) conversion circuit, a horizontal selection switch, etc. As an example, the load circuit is configured by a current source capable of supplying current to the amplification transistor of the pixel P. The load circuit, together with the amplification transistor of the pixel P, forms, for example, a source follower circuit.
信号処理回路112は、垂直信号線VSLを介して画素Pから読み出される信号を増幅するように構成された増幅回路部を有していてもよい。負荷回路及びAD変換回路等は、例えば、複数の垂直信号線VSLの各々に対して設けられる。画素部100の画素列ごとに、負荷回路及びAD変換回路等が設けられ得る。 The signal processing circuit 112 may have an amplifier circuit configured to amplify signals read from the pixels P via the vertical signal lines VSL. A load circuit, an AD conversion circuit, etc. are provided for each of the multiple vertical signal lines VSL, for example. A load circuit, an AD conversion circuit, etc. may be provided for each pixel column of the pixel section 100.
垂直駆動回路111によって選択走査された各画素Pから出力される信号は、垂直信号線VSLを介して信号処理回路112に入力される。信号処理回路112は、画素Pの信号のAD変換、CDS(Correlated Double Sampling:相関二重サンプリング)等の信号処理を行う。 The signal output from each pixel P selected and scanned by the vertical drive circuit 111 is input to the signal processing circuit 112 via the vertical signal line VSL. The signal processing circuit 112 performs signal processing such as AD conversion of the pixel P signal and CDS (Correlated Double Sampling).
水平駆動回路113は、例えば、バッファ、シフトレジスタ、アドレスデコーダ等によって構成される。水平駆動回路113は、信号処理回路112の水平選択スイッチを駆動可能に構成される。水平駆動回路113は、信号処理回路112の各水平選択スイッチを走査しつつ順番に駆動する。垂直信号線VSLの各々を通して伝送される各画素Pの信号は、信号処理回路112により信号処理が施され、水平駆動回路113による選択走査によって順に水平信号線121に出力される。 The horizontal drive circuit 113 is composed of, for example, a buffer, a shift register, an address decoder, etc. The horizontal drive circuit 113 is configured to be able to drive the horizontal selection switches of the signal processing circuit 112. The horizontal drive circuit 113 drives each horizontal selection switch of the signal processing circuit 112 in sequence while scanning them. The signals of each pixel P transmitted through each vertical signal line VSL are subjected to signal processing by the signal processing circuit 112, and are output to the horizontal signal line 121 in sequence by selective scanning by the horizontal drive circuit 113.
出力回路114は、入力される信号に対して信号処理を行い、信号を出力するように構成される。出力回路114は、信号処理回路112から水平信号線121を介して順次入力される画素の信号に対して信号処理を行い、処理後の画素の信号を出力する。出力回路114は、例えば、バッファリング、黒レベル調整、列ばらつき補正、及び各種デジタル信号処理等を行い得る。 The output circuit 114 is configured to perform signal processing on the input signal and output the signal. The output circuit 114 performs signal processing on pixel signals input sequentially from the signal processing circuit 112 via the horizontal signal line 121, and outputs the processed pixel signals. The output circuit 114 can perform, for example, buffering, black level adjustment, column variation correction, various types of digital signal processing, etc.
制御回路115は、撮像装置1の各部を制御可能に構成される。制御回路115は、半導体基板120の外部から与えられるクロック、動作モードを指令するデータ等を受け取り、また、撮像装置1の内部情報等のデータを出力し得る。 The control circuit 115 is configured to be able to control each part of the imaging device 1. The control circuit 115 receives a clock, data instructing the operating mode, and the like, provided from outside the semiconductor substrate 120, and can also output data such as internal information of the imaging device 1.
制御回路115は、例えば、各種のタイミング信号を生成可能に構成されたタイミングジェネレータを有する。制御回路115は、タイミングジェネレータで生成された各種のタイミング信号に基づき、垂直駆動回路111、信号処理回路112、水平駆動回路113等の周辺回路の駆動制御を行う。入出力端子116は、外部との信号のやり取りを行うものである。 The control circuit 115 has, for example, a timing generator configured to generate various timing signals. Based on the various timing signals generated by the timing generator, the control circuit 115 controls the driving of peripheral circuits such as the vertical drive circuit 111, the signal processing circuit 112, and the horizontal drive circuit 113. The input/output terminals 116 exchange signals with the outside.
なお、垂直駆動回路111、信号処理回路112、水平駆動回路113、水平信号線121、出力回路114、制御回路115等は、半導体基板120に設けられていてもよいし、他の基板に設けられていてもよい。撮像装置1は、複数の基板を積層して構成された構造(積層構造)を有していてもよい。 The vertical drive circuit 111, the signal processing circuit 112, the horizontal drive circuit 113, the horizontal signal line 121, the output circuit 114, the control circuit 115, etc. may be provided on the semiconductor substrate 120 or on another substrate. The imaging device 1 may have a structure (a laminated structure) formed by stacking multiple substrates.
図2は、第1の実施の形態に係る撮像装置の画素の構成例を説明するための図である。画素Pは、光電変換部11(光電変換素子)と、読み出し回路15とを有する。光電変換部11は、光を受光して信号を生成するように構成される。読み出し回路15は、光電変換された電荷に基づく信号を出力可能に構成される。 FIG. 2 is a diagram for explaining an example of the configuration of a pixel of the imaging device according to the first embodiment. The pixel P has a photoelectric conversion unit 11 (photoelectric conversion element) and a readout circuit 15. The photoelectric conversion unit 11 is configured to receive light and generate a signal. The readout circuit 15 is configured to be capable of outputting a signal based on the charge generated by photoelectric conversion.
光電変換部11は、光電変換により電荷を生成可能に構成される。光電変換部11は、光電変換膜21と、上部電極22と、下部電極23とを含む。図2に示す例では、光電変換部11は、光電変換膜21を有し、入射する光を電荷に変換する。光電変換部11は、光電変換を行って受光量に応じた電荷を生成する。光電変換部11で光電変換されて蓄積された電荷は、下部電極23によって、読み出し回路15のフローティングディフュージョンFDに転送される。 The photoelectric conversion unit 11 is configured to be able to generate electric charges by photoelectric conversion. The photoelectric conversion unit 11 includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23. In the example shown in FIG. 2, the photoelectric conversion unit 11 has a photoelectric conversion film 21 and converts incident light into electric charges. The photoelectric conversion unit 11 performs photoelectric conversion to generate electric charges according to the amount of light received. The electric charges photoelectrically converted and accumulated in the photoelectric conversion unit 11 are transferred by the lower electrode 23 to the floating diffusion FD of the readout circuit 15.
読み出し回路15は、一例として、フローティングディフュージョンFDと、トランジスタAMPと、トランジスタSELと、トランジスタRSTとを有する。トランジスタAMP、トランジスタSEL、及びトランジスタRSTは、それぞれ、ゲート、ソース、ドレインの端子を有するMOSトランジスタ(MOSFET)である。 The read circuit 15, for example, includes a floating diffusion FD, a transistor AMP, a transistor SEL, and a transistor RST. The transistors AMP, SEL, and RST are each MOS transistors (MOSFETs) having gate, source, and drain terminals.
図2に示す例では、トランジスタAMP、トランジスタSEL、及びトランジスタRSTは、それぞれNMOSトランジスタにより構成される。なお、画素Pのトランジスタは、PMOSトランジスタにより構成されてもよい。 In the example shown in FIG. 2, the transistors AMP, SEL, and RST are each composed of an NMOS transistor. The transistor of pixel P may also be composed of a PMOS transistor.
フローティングディフュージョンFDは、蓄積部であり、転送された電荷を蓄積可能に構成される。フローティングディフュージョンFDは、光電変換部11で光電変換された電荷を蓄積し得る。フローティングディフュージョンFDは、転送された電荷を保持可能な保持部ともいえる。フローティングディフュージョンFDは、転送された電荷を蓄積し、フローティングディフュージョンFDの容量に応じた電圧に変換する。 The floating diffusion FD is an accumulation section and is configured to be able to accumulate the transferred charge. The floating diffusion FD can accumulate the charge photoelectrically converted by the photoelectric conversion section 11. The floating diffusion FD can also be considered a retention section capable of retaining the transferred charge. The floating diffusion FD accumulates the transferred charge and converts it into a voltage according to the capacity of the floating diffusion FD.
トランジスタAMPは、フローティングディフュージョンFDに蓄積された電荷に基づく信号を生成して出力するように構成される。図2に示すように、トランジスタAMPのゲートは、フローティングディフュージョンFDと電気的に接続され、フローティングディフュージョンFDで変換された電圧が入力される。 The transistor AMP is configured to generate and output a signal based on the charge stored in the floating diffusion FD. As shown in FIG. 2, the gate of the transistor AMP is electrically connected to the floating diffusion FD, and the voltage converted by the floating diffusion FD is input to the gate.
トランジスタAMPのドレインは、電源電圧VDDが供給される電源線に接続され、トランジスタAMPのソースは、トランジスタSELを介して垂直信号線VSLに接続される。トランジスタAMPは、増幅トランジスタであり、フローティングディフュージョンFDに蓄積された電荷に基づく信号、即ちフローティングディフュージョンFDの電圧に基づく信号を生成し、垂直信号線VSLへ出力し得る。 The drain of the transistor AMP is connected to a power supply line to which a power supply voltage VDD is supplied, and the source of the transistor AMP is connected to a vertical signal line VSL via a transistor SEL. The transistor AMP is an amplifying transistor, and can generate a signal based on the charge stored in the floating diffusion FD, i.e., a signal based on the voltage of the floating diffusion FD, and output it to the vertical signal line VSL.
トランジスタSELは、画素の信号の出力を制御可能に構成される。トランジスタSELは、信号SSELにより制御され、トランジスタAMPからの信号を垂直信号線VSLに出力可能に構成される。トランジスタSELは、画素の信号の出力タイミングを制御し得る。なお、トランジスタSELは、電源電圧VDDが与えられる電源線とトランジスタAMPとの間に設けられてもよい。また、必要に応じて、トランジスタSELを省略してもよい。 The transistor SEL is configured to be capable of controlling the output of a pixel signal. The transistor SEL is controlled by a signal SSEL, and is configured to be capable of outputting a signal from the transistor AMP to a vertical signal line VSL. The transistor SEL can control the output timing of the pixel signal. The transistor SEL may be provided between the power supply line to which the power supply voltage VDD is applied and the transistor AMP. Furthermore, the transistor SEL may be omitted as necessary.
トランジスタRSTは、フローティングディフュージョンFDの電圧をリセット可能に構成される。図2に示す例では、トランジスタRSTは、電源電圧VDDが与えられる電源線と電気的に接続され、画素Pの電荷のリセットを行うように構成される。トランジスタRSTは、信号SRSTにより制御され、フローティングディフュージョンFDに蓄積された電荷をリセットし、フローティングディフュージョンFDの電圧をリセットし得る。トランジスタRSTは、リセットトランジスタである。 The transistor RST is configured to be able to reset the voltage of the floating diffusion FD. In the example shown in FIG. 2, the transistor RST is electrically connected to a power supply line to which a power supply voltage VDD is applied, and is configured to reset the charge of the pixel P. The transistor RST is controlled by a signal SRST, and can reset the charge accumulated in the floating diffusion FD and reset the voltage of the floating diffusion FD. The transistor RST is a reset transistor.
なお、読み出し回路15の構成は、適宜変更であり、例えば、電荷を電圧に変換する際の変換効率(ゲイン)を変更可能に構成されてもよい。例えば、読み出し回路15は、変換効率の設定に用いる切り替えトランジスタ、容量素子等を有していてもよい。 The configuration of the readout circuit 15 may be changed as appropriate, for example, so that the conversion efficiency (gain) when converting charge to voltage can be changed. For example, the readout circuit 15 may have a switching transistor, a capacitive element, etc., used to set the conversion efficiency.
垂直駆動回路111(図1参照)は、上述した画素駆動線Lreadを介して、各画素PのトランジスタSEL、トランジスタRST等のゲートに制御信号を供給し、トランジスタをオン状態(導通状態)又はオフ状態(非導通状態)とする。撮像装置1の複数の画素駆動線Lreadには、トランジスタSELを制御する信号SSELを伝送する配線、トランジスタRSTを制御する信号SRSTを伝送する配線等が含まれる。 The vertical drive circuit 111 (see FIG. 1) supplies control signals to the gates of the transistors SEL, RST, etc. of each pixel P via the pixel drive line Lread described above, turning the transistors on (conducting state) or off (non-conducting state). The multiple pixel drive lines Lread of the imaging device 1 include wiring that transmits a signal SSEL that controls the transistor SEL, wiring that transmits a signal SRST that controls the transistor RST, etc.
トランジスタSEL、トランジスタRST等は、垂直駆動回路111によってオンオフ制御される。垂直駆動回路111は、各画素Pの読み出し回路15を制御することによって、各画素Pから画素信号を垂直信号線VSLに出力させる。垂直駆動回路111は、各画素Pの画素信号を垂直信号線VSLへ読み出す制御を行い得る。 Transistors SEL, RST, etc. are controlled to be turned on and off by a vertical drive circuit 111. The vertical drive circuit 111 controls the readout circuit 15 of each pixel P to output a pixel signal from each pixel P to a vertical signal line VSL. The vertical drive circuit 111 can control the reading out of the pixel signal of each pixel P to the vertical signal line VSL.
図3は、第1の実施の形態に係る撮像装置の断面構成の一例を示す図である。撮像装置1は、例えば、レンズ90と、保護層80と、受光層10と、多層配線層130と、半導体基板120とを有する。なお、図3に示すように、被写体からの光の入射方向をZ軸方向、Z軸方向に直交する紙面左右方向をX軸方向、Z軸方向及びX軸方向に直交する方向をY軸方向とする。以降の図において、図3の矢印の方向を基準として方向を表記する場合もある。 FIG. 3 is a diagram showing an example of a cross-sectional configuration of an imaging device according to a first embodiment. The imaging device 1 has, for example, a lens 90, a protective layer 80, a light receiving layer 10, a multilayer wiring layer 130, and a semiconductor substrate 120. As shown in FIG. 3, the incident direction of light from the subject is the Z-axis direction, the left-right direction on the paper perpendicular to the Z-axis direction is the X-axis direction, and the direction perpendicular to the Z-axis and X-axis directions is the Y-axis direction. In the following figures, directions may be indicated based on the direction of the arrow in FIG. 3.
撮像装置1は、レンズ90と、保護層80と、受光層10と、多層配線層130と、半導体基板120とがZ軸方向に積層された構成を有する。光が入射する側から、レンズ90と、保護層80と、受光層10と、多層配線層130と、半導体基板120とが設けられている。 The imaging device 1 has a configuration in which a lens 90, a protective layer 80, a light receiving layer 10, a multi-layer wiring layer 130, and a semiconductor substrate 120 are stacked in the Z-axis direction. From the side where light is incident, the lens 90, the protective layer 80, the light receiving layer 10, the multi-layer wiring layer 130, and the semiconductor substrate 120 are provided.
レンズ90は、光を集光するレンズであり、上方から入射する光を受光層10側へ導く。レンズ90(レンズ部)は、オンチップレンズとも呼ばれる光学部材である。レンズ90は、例えば、画素P毎または複数の画素P毎に、受光層10の上方に設けられる。レンズ90には、撮像レンズ等の光学系を介して、計測対象である被写体からの光が入射する。画素Pの光電変換部11は、レンズ90を介して入射する光を光電変換する。 The lens 90 is a lens that collects light and guides light incident from above toward the light receiving layer 10. The lens 90 (lens section) is an optical component also known as an on-chip lens. The lens 90 is provided above the light receiving layer 10, for example, for each pixel P or for each set of pixels P. Light from a subject to be measured enters the lens 90 via an optical system such as an imaging lens. The photoelectric conversion section 11 of the pixel P photoelectrically converts the light incident through the lens 90.
レンズ90は、例えば、アモルファスシリコン(a-Si)を用いて構成される。この場合、入射する赤外光を光電変換部11へ効率よく集光することが可能となる。なお、レンズ90は、窒化シリコン(SiN)、樹脂材料等により構成されてもよい。レンズ90は、保護層80の屈折率よりも高い屈折率を有する他の材料を用いて形成されてもよい。 The lens 90 is made of, for example, amorphous silicon (a-Si). In this case, it is possible to efficiently focus the incident infrared light onto the photoelectric conversion unit 11. The lens 90 may also be made of silicon nitride (SiN), a resin material, or the like. The lens 90 may also be formed of another material that has a higher refractive index than the protective layer 80.
撮像装置1は、光を選択的に透過するフィルタを有していてもよい。フィルタは、入射する光のうちの特定の波長域の光を選択的に透過させるように構成される。フィルタは、RGBのカラーフィルタ、補色系のカラーフィルタ、赤外光を透過するフィルタ等であり、受光層10の上方に設けられる。例えば、フィルタは、画素P毎または複数の画素P毎に、レンズ90と保護層80との間、または保護層80内に設けられてもよい。 The imaging device 1 may have a filter that selectively transmits light. The filter is configured to selectively transmit light of a specific wavelength range from among the incident light. The filter may be an RGB color filter, a complementary color filter, a filter that transmits infrared light, or the like, and is provided above the light receiving layer 10. For example, the filter may be provided between the lens 90 and the protective layer 80 or within the protective layer 80 for each pixel P or for each set of pixels P.
保護層80は、パッシベーション層(保護膜)であり、後述する遮光部材60の全体を覆うように形成される。保護層80は、例えば、アモルファスシリコン(a-Si)、窒化シリコン(SiN)、酸化アルミニウム(Al2O3)、樹脂材料等により構成される。なお、保護層80は、他の絶縁材料を用いて構成されてもよい。保護層80は、平坦化層(平坦化膜)ともいえる。 The protective layer 80 is a passivation layer (protective film) and is formed so as to cover the entire light blocking member 60 described below. The protective layer 80 is made of, for example, amorphous silicon (a-Si), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), a resin material, or the like. The protective layer 80 may be made of other insulating materials. The protective layer 80 can also be called a planarization layer (planarization film).
受光層10は、複数の光電変換部11を有する。各画素Pの光電変換部11は、入射する光を吸収して電荷を生成し得る。各画素Pの光電変換部11(光電変換素子)は、図3に示す例のように、光電変換膜21と、上部電極22と、下部電極23とを含む。また、光電変換部11は、バッファ層25を有する。 The light receiving layer 10 has a plurality of photoelectric conversion sections 11. The photoelectric conversion section 11 of each pixel P can absorb incident light and generate electric charges. As shown in the example of FIG. 3, the photoelectric conversion section 11 (photoelectric conversion element) of each pixel P includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23. The photoelectric conversion section 11 also has a buffer layer 25.
光電変換膜21は、光電変換により電荷を生成可能に構成される。光電変換膜21は、入射する光を光電変換し、受光量に応じた電荷を生成し得る。光電変換膜21は、光電変換層ともいえる。光電変換膜21(光電変換層)は、例えば、量子ドットを有し、赤外光を受光して電荷を生成するように構成される。光電変換膜21は、量子ドット層(QD層)ともいえる。 The photoelectric conversion film 21 is configured to be capable of generating electric charges through photoelectric conversion. The photoelectric conversion film 21 can perform photoelectric conversion of incident light and generate electric charges according to the amount of light received. The photoelectric conversion film 21 can also be called a photoelectric conversion layer. The photoelectric conversion film 21 (photoelectric conversion layer) has, for example, quantum dots, and is configured to receive infrared light and generate electric charges. The photoelectric conversion film 21 can also be called a quantum dot layer (QD layer).
撮像装置1では、一例として、各画素Pに、量子ドットを用いて構成される光電変換膜21が設けられる。例えば、光電変換膜21は、ナノ粒子の集合体を含んで構成され得る。ナノ粒子としては、PbS、PbSe、PbTe、InP、InAs、InSb、CdS、CdSe、CdTe等が挙げられる。 In the imaging device 1, as an example, a photoelectric conversion film 21 formed using quantum dots is provided in each pixel P. For example, the photoelectric conversion film 21 may be formed including an aggregate of nanoparticles. Examples of nanoparticles include PbS, PbSe, PbTe, InP, InAs, InSb, CdS, CdSe, and CdTe.
光電変換膜21は、近赤外(NIR)、短波赤外(SWIR)等の波長域の光を光電変換して電荷を生成するように構成される。光電変換膜21は、可視光を受光して電荷を生成するように構成されてもよい。光電変換膜21は、無機材料を用いて構成されてもよく、有機材料を用いて構成されてもよい。 The photoelectric conversion film 21 is configured to perform photoelectric conversion on light in wavelength ranges such as near infrared (NIR) and shortwave infrared (SWIR) to generate electric charges. The photoelectric conversion film 21 may also be configured to receive visible light and generate electric charges. The photoelectric conversion film 21 may be configured using inorganic materials or organic materials.
光電変換膜21として、有機材料からなる光電変換膜を設けるようにしてもよい。また、光電変換膜21として、無機材料からなる光電変換膜を配置してもよい。光電変換膜21は、例えば、有機半導体膜により構成されてもよいし、非晶質シリコン膜により構成されてもよい。光電変換膜21の材料は、例えば、計測対象となる入射光の波長域に応じて選択され得る。 The photoelectric conversion film 21 may be made of an organic material. Alternatively, the photoelectric conversion film 21 may be made of an inorganic material. The photoelectric conversion film 21 may be made of, for example, an organic semiconductor film or an amorphous silicon film. The material of the photoelectric conversion film 21 may be selected according to, for example, the wavelength range of the incident light to be measured.
上部電極22は、複数の画素Pの光電変換膜21に共通の電極であり、例えば、光電変換膜21の一方の面側に設けられる。下部電極23は、画素P毎または複数の画素P毎に、光電変換膜21の他方の面側に設けられる。上部電極22及び下部電極23は、互いに対向するように設けられ得る。 The upper electrode 22 is an electrode common to the photoelectric conversion film 21 of multiple pixels P, and is provided, for example, on one side of the photoelectric conversion film 21. The lower electrode 23 is provided on the other side of the photoelectric conversion film 21 for each pixel P or for each set of multiple pixels P. The upper electrode 22 and the lower electrode 23 can be provided so as to face each other.
上部電極22及び下部電極23は、光電変換膜21を挟んで配置される。図3に示す例では、下部電極23は、バッファ層25の一部と光電変換膜21の一部を挟んで、上部電極22に対向して設けられる。上部電極22は、光電変換膜21の上部の電極であり、下部電極23は、光電変換膜21の下部の電極である。 The upper electrode 22 and the lower electrode 23 are arranged with the photoelectric conversion film 21 in between. In the example shown in FIG. 3, the lower electrode 23 is provided opposite the upper electrode 22, with a part of the buffer layer 25 and a part of the photoelectric conversion film 21 in between. The upper electrode 22 is an electrode on the upper side of the photoelectric conversion film 21, and the lower electrode 23 is an electrode on the lower side of the photoelectric conversion film 21.
上部電極22は、複数の画素Pに対して共通の電極であり、共通電極ともいえる。下部電極23は、光電変換膜21で変換された電荷の読み出しに用いる電極であり、読み出し電極ともいえる。下部電極23の周囲には、多層配線層130の絶縁膜131が設けられる。上部電極22及び下部電極23は、それぞれ互いに異なる配線、電極等を介して、例えば、半導体基板120に設けられた回路に電気的に接続される。 The upper electrode 22 is an electrode common to multiple pixels P and can also be called a common electrode. The lower electrode 23 is an electrode used to read out the electric charges converted by the photoelectric conversion film 21 and can also be called a readout electrode. An insulating film 131 of the multilayer wiring layer 130 is provided around the lower electrode 23. The upper electrode 22 and the lower electrode 23 are electrically connected to, for example, a circuit provided on the semiconductor substrate 120 via different wiring, electrodes, etc.
上部電極22及び下部電極23は、例えば、それぞれ、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)等により構成される。上部電極22及び下部電極23は、他の酸化スズ系材料、酸化亜鉛系材料等を用いて構成されてもよく、他の透明導電材料を用いて構成されてもよい。なお、下部電極23は、光を反射する他の金属材料により構成されてもよい。 The upper electrode 22 and the lower electrode 23 are each made of, for example, ITO (indium tin oxide), IZO (indium zinc oxide), or the like. The upper electrode 22 and the lower electrode 23 may be made of other tin oxide-based materials, zinc oxide-based materials, or other transparent conductive materials. The lower electrode 23 may be made of other metal materials that reflect light.
バッファ層25は、光電変換膜21と下部電極23との間に設けられる。バッファ層25は、例えば、酸化物半導体により構成され、光電変換膜21に対向するように配置される。バッファ層25は、光電変換膜21と下部電極23とに接合される。下部電極23は、バッファ層25と電気的に接続されている。バッファ層25の一部は、多層配線層130の絶縁膜131上に設けられている。バッファ層25は、光電変換膜21で光電変換された電荷の蓄積および輸送(転送)に用いる層であり、キャリア輸送層(又は電荷輸送層)とも称される。 The buffer layer 25 is provided between the photoelectric conversion film 21 and the lower electrode 23. The buffer layer 25 is made of, for example, an oxide semiconductor, and is arranged to face the photoelectric conversion film 21. The buffer layer 25 is bonded to the photoelectric conversion film 21 and the lower electrode 23. The lower electrode 23 is electrically connected to the buffer layer 25. A portion of the buffer layer 25 is provided on the insulating film 131 of the multilayer wiring layer 130. The buffer layer 25 is a layer used for storing and transporting (transferring) charges photoelectrically converted by the photoelectric conversion film 21, and is also called a carrier transport layer (or charge transport layer).
なお、バッファ層25は、有機半導体材料を用いて形成されてもよい。また、バッファ層25は、量子ドット(ナノ粒子)を用いて構成されてもよい。バッファ層25の材料は、例えば、光電変換膜21の材料、下部電極23の材料、キャリア(信号電荷)等に応じて選択され得る。光電変換膜21と上部電極22との間に、バッファ層を設けるようにしてもよい。なお、必要に応じて、バッファ層を省略してもよい。 The buffer layer 25 may be formed using an organic semiconductor material. The buffer layer 25 may also be configured using quantum dots (nanoparticles). The material of the buffer layer 25 may be selected depending on, for example, the material of the photoelectric conversion film 21, the material of the lower electrode 23, the carrier (signal charge), etc. A buffer layer may be provided between the photoelectric conversion film 21 and the upper electrode 22. The buffer layer may be omitted as necessary.
撮像装置1は、図3に示すように、保護膜85を有する。保護膜85は、上部電極22の上に設けられる。保護膜85は、パッシベーション膜であり、上部電極22の表面全体を覆うように形成され得る。保護膜85は、例えば、酸化アルミニウム(Al2O3)、酸化シリコン(SiO2)等により構成され得る。保護膜85は、他の絶縁材料を用いて構成されてもよい。保護膜85は、光電変換部11を覆う封止部材(封止部)ともいえる。 As shown in Fig. 3, the imaging device 1 has a protective film 85. The protective film 85 is provided on the upper electrode 22. The protective film 85 is a passivation film, and can be formed so as to cover the entire surface of the upper electrode 22. The protective film 85 can be made of, for example, aluminum oxide ( Al2O3 ) , silicon oxide ( SiO2 ), or the like. The protective film 85 may be made of other insulating materials. The protective film 85 can also be said to be a sealing member (sealing portion) that covers the photoelectric conversion unit 11.
多層配線層130は、例えば、導体膜および絶縁膜を含み、複数の配線およびビア(VIA)等を有する。多層配線層130は、半導体基板120に積層して設けられる。多層配線層130は、複数の配線が絶縁膜を間に積層された構成を有する。図3に示す例では、多層配線層130は、絶縁膜131及び絶縁膜132を含む。多層配線層130の絶縁膜は、層間絶縁膜(層間絶縁層)ともいえる。 The multilayer wiring layer 130 includes, for example, a conductor film and an insulating film, and has a plurality of wirings and vias (VIAs), etc. The multilayer wiring layer 130 is provided by stacking on the semiconductor substrate 120. The multilayer wiring layer 130 has a configuration in which a plurality of wirings are stacked with insulating films between them. In the example shown in FIG. 3, the multilayer wiring layer 130 includes insulating films 131 and 132. The insulating films of the multilayer wiring layer 130 can also be called interlayer insulating films (interlayer insulating layers).
多層配線層130の配線は、例えば、アルミニウム(Al)、銅(Cu)、タングステン(W)等の金属材料を用いて形成される。多層配線層130の配線は、ポリシリコン(Poly-Si)、その他の導電材料を用いて構成されてもよい。層間絶縁膜は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等を用いて形成される。 The wiring of the multi-layer wiring layer 130 is formed using, for example, a metal material such as aluminum (Al), copper (Cu), or tungsten (W). The wiring of the multi-layer wiring layer 130 may be formed using polysilicon (Poly-Si) or other conductive materials. The interlayer insulating film is formed using, for example, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), or the like.
半導体基板120は、例えば、Si(シリコン)基板により構成される。半導体基板120は、半導体層ともいえる。半導体基板120は、SOI(Silicon On Insulator)基板、SiGe(シリコンゲルマニウム)基板、SiC(シリコンカーバイド)基板等であってもよく、他の半導体材料を用いて形成されてもよい。 The semiconductor substrate 120 is, for example, a Si (silicon) substrate. The semiconductor substrate 120 can also be referred to as a semiconductor layer. The semiconductor substrate 120 may be an SOI (silicon on insulator) substrate, a SiGe (silicon germanium) substrate, a SiC (silicon carbide) substrate, or the like, or may be formed using other semiconductor materials.
半導体基板120及び多層配線層130には、例えば、上述した読み出し回路15が、画素P毎または複数の画素P毎に設けられる。上述した垂直駆動回路111、信号処理回路112、水平駆動回路113、出力回路114、制御回路115等は、半導体基板120及び多層配線層130、又は、半導体基板120とは別の基板に設けられ得る。なお、半導体基板120と多層配線層130の一部又は全部とを併せて、半導体基板120ということもできる。 The semiconductor substrate 120 and the multi-layer wiring layer 130 are provided with, for example, the above-mentioned readout circuit 15 for each pixel P or for each set of pixels P. The above-mentioned vertical drive circuit 111, signal processing circuit 112, horizontal drive circuit 113, output circuit 114, control circuit 115, etc. may be provided on the semiconductor substrate 120 and the multi-layer wiring layer 130, or on a substrate other than the semiconductor substrate 120. The semiconductor substrate 120 and part or all of the multi-layer wiring layer 130 may be collectively referred to as the semiconductor substrate 120.
撮像装置1の画素Pは、配線31及び電極32を有する。配線31及び電極32は、光電変換部11で変換された電荷の読み出しに用いる配線及び電極である。配線31は、例えば、銅(Cu)、タングステン(W)等の金属材料を用いて構成される。配線31の周囲には、多層配線層130の絶縁膜131が設けられる。図3に示す例では、絶縁膜131は、下部電極23を覆うように形成される。 The pixel P of the imaging device 1 has a wiring 31 and an electrode 32. The wiring 31 and the electrode 32 are used to read out the electric charge converted by the photoelectric conversion unit 11. The wiring 31 is made of a metal material such as copper (Cu) or tungsten (W). An insulating film 131 of the multi-layer wiring layer 130 is provided around the wiring 31. In the example shown in FIG. 3, the insulating film 131 is formed so as to cover the lower electrode 23.
配線31は、絶縁膜131内において下部電極23と電気的に接続され、絶縁膜132内において電極32と電気的に接続される。電極32は、例えば、銅、アルミニウム等の金属材料を用いて構成される。電極32の周囲には、多層配線層130の絶縁膜132が設けられる。図3に示す例では、絶縁膜132は、電極32を覆うように形成される。下部電極23は、絶縁膜131内および絶縁膜132内に設けられた配線31を介して、電極32と電気的に接続される。 The wiring 31 is electrically connected to the lower electrode 23 in the insulating film 131, and is electrically connected to the electrode 32 in the insulating film 132. The electrode 32 is made of a metal material such as copper or aluminum. The insulating film 132 of the multilayer wiring layer 130 is provided around the electrode 32. In the example shown in FIG. 3, the insulating film 132 is formed so as to cover the electrode 32. The lower electrode 23 is electrically connected to the electrode 32 via the wiring 31 provided in the insulating film 131 and the insulating film 132.
撮像装置1では、配線31及び電極32等によって、光電変換部11の下部電極23と、半導体基板120に設けられた読み出し回路15とが電気的に接続される。光電変換部11で光電変換されて蓄積された電荷は、配線31及び電極32等を介して、読み出し回路15のフローティングディフュージョンFDに転送される。 In the imaging device 1, the lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to the readout circuit 15 provided on the semiconductor substrate 120 by wiring 31, electrodes 32, etc. The electric charge photoelectrically converted and accumulated in the photoelectric conversion unit 11 is transferred to the floating diffusion FD of the readout circuit 15 via wiring 31, electrodes 32, etc.
撮像装置1には、図3に示す例のように、分離部50が設けられる。分離部50は、隣り合う複数の光電変換部11の間に形成され、光電変換部11間を分離する。分離部50は、例えば、隣り合う複数の画素Pの境界に設けられるトレンチ(溝部)を用いて構成される。分離部50は、画素分離壁(又は導光壁)ともいえる。 The imaging device 1 is provided with a separation section 50, as in the example shown in FIG. 3. The separation section 50 is formed between a plurality of adjacent photoelectric conversion sections 11, and separates the photoelectric conversion sections 11. The separation section 50 is formed, for example, using a trench (groove section) provided at the boundary between a plurality of adjacent pixels P. The separation section 50 can also be referred to as a pixel separation wall (or a light guide wall).
分離部50は、例えば、上部電極22と光電変換膜21とバッファ層25を貫通するように設けられる。分離部50が設けられることで、画素Pの光電変換部11で光電変換された電荷が周囲の画素Pへ漏れることが抑制される。また、周囲の画素Pに光が漏れることを抑制することができる。 The separation section 50 is provided, for example, so as to penetrate the upper electrode 22, the photoelectric conversion film 21, and the buffer layer 25. By providing the separation section 50, the charge photoelectrically converted in the photoelectric conversion section 11 of the pixel P is prevented from leaking to the surrounding pixels P. In addition, it is possible to prevent light from leaking to the surrounding pixels P.
分離部50のトレンチ内には、一例として、絶縁膜、例えば酸化アルミニウム膜(Al2O3)、シリコン酸化膜(SiO2)等が設けられる。また、分離部50は、低屈折率を有する他の絶縁材料を用いて形成されてもよい。分離部50は、複数の膜を積層して構成されてもよい。分離部50のトレンチ内に、空隙(空洞)を設けるようにしてもよい。分離部50のトレンチ内に低屈折率材料等が設けられることで、周囲の画素Pに光が漏れることを効果的に抑制することができる。 As an example, an insulating film, such as an aluminum oxide film (Al 2 O 3 ), a silicon oxide film (SiO 2 ), or the like, is provided in the trench of the separation unit 50. The separation unit 50 may also be formed using other insulating materials having a low refractive index. The separation unit 50 may be configured by stacking a plurality of films. A gap (cavity) may be provided in the trench of the separation unit 50. By providing a low refractive index material or the like in the trench of the separation unit 50, it is possible to effectively suppress light leakage to the surrounding pixels P.
図4は、第1の実施の形態に係る撮像装置の平面構成の一例を説明するための図である。撮像装置1では、図4に示すように、平面視において各画素Pの光電変換部11をそれぞれ囲むように、複数の分離部50が形成され得る。図4に示す例のように、光電変換部11の周囲に、複数の分離部50が離散的に設けられる。このため、各画素Pの共通電極となる上部電極22が分離(分断)されることを回避することができる。分離部50が設けられることで、周囲の画素に光が漏れることを抑制することが可能となる。 FIG. 4 is a diagram for explaining an example of the planar configuration of the imaging device according to the first embodiment. In the imaging device 1, as shown in FIG. 4, a plurality of separation sections 50 may be formed so as to surround the photoelectric conversion section 11 of each pixel P in a planar view. As in the example shown in FIG. 4, a plurality of separation sections 50 are provided discretely around the photoelectric conversion section 11. This makes it possible to prevent the upper electrode 22, which serves as a common electrode for each pixel P, from being separated (divided). By providing the separation sections 50, it becomes possible to suppress light leaking to surrounding pixels.
また、撮像装置1には、図3に示す例のように、遮光部材60が設けられる。撮像装置1は、複数の開口部65が設けられた遮光部材60を有する。開口部65は、レンズ90からの光が入射する開口(ホール)である。図3に示す例では、画素P毎に、光電変換部11の上方に、1つの開口部65を有する遮光部材60が配置されるともいえる。 The imaging device 1 is also provided with a light-shielding member 60, as in the example shown in FIG. 3. The imaging device 1 has a light-shielding member 60 with a plurality of openings 65. The openings 65 are openings (holes) through which light from the lens 90 enters. In the example shown in FIG. 3, it can be said that a light-shielding member 60 with one opening 65 is disposed above the photoelectric conversion unit 11 for each pixel P.
遮光部材60は、光を遮る部材により構成された遮光部(遮光膜)であり、上部電極22の上方に設けられる。図3に示す例では、遮光部材60は、保護層80に設けられ、上部電極22の上に位置する。遮光部材60は、保護層80の一部に置換して配置されるともいえる。保護層80は、遮光部材60を覆うように形成され、開口部65を充填するように設けられる。 The light-shielding member 60 is a light-shielding portion (light-shielding film) made of a material that blocks light, and is provided above the upper electrode 22. In the example shown in FIG. 3, the light-shielding member 60 is provided in the protective layer 80 and is located above the upper electrode 22. It can also be said that the light-shielding member 60 is disposed by replacing a part of the protective layer 80. The protective layer 80 is formed so as to cover the light-shielding member 60, and is provided so as to fill the opening 65.
遮光部材60の開口部65は、一例として、図5に示すように、平面視において四角形(例えば正方形)の形状を有していてもよい。また、例えば、開口部65は、平面視において、円形状を有していてもよい。なお、開口部65の形状は、適宜変更可能であり、矩形、楕円形、その他の形状であってもよい。 As an example, the opening 65 of the light blocking member 60 may have a quadrilateral (e.g., a square) shape in a plan view, as shown in FIG. 5. Also, for example, the opening 65 may have a circular shape in a plan view. Note that the shape of the opening 65 can be changed as appropriate, and may be a rectangle, an ellipse, or another shape.
本実施の形態では、遮光部材60は、入射光を反射する反射部材61と、入射光を吸収する吸収部材62により構成される。遮光部材60は、反射部材61と吸収部材62とが積層された構成を有する。反射部材61は、光が入射する方向において、上部電極22の上に位置する。吸収部材62は、反射部材61の上方に積層される。 In this embodiment, the light blocking member 60 is composed of a reflecting member 61 that reflects incident light and an absorbing member 62 that absorbs the incident light. The light blocking member 60 has a configuration in which the reflecting member 61 and the absorbing member 62 are stacked. The reflecting member 61 is located above the upper electrode 22 in the direction in which the light is incident. The absorbing member 62 is stacked above the reflecting member 61.
反射部材61は、レンズ90から開口部65を通過した光のうち、光電変換部11で反射されて入射する光を反射する。反射部材61は、例えば、アルミニウム(Al)、タンタル(Ta)等の金属材料により構成される。反射部材61は、開口部65を通過して光電変換部11で反射された入射光を、光電変換部11側へ反射する。なお、反射部材61は、低屈折率を有する他の材料を用いて形成されてもよい。 The reflective member 61 reflects light that passes through the opening 65 from the lens 90 and is reflected by the photoelectric conversion unit 11 and enters the reflective member 61. The reflective member 61 is made of a metal material such as aluminum (Al) or tantalum (Ta). The reflective member 61 reflects the incident light that passes through the opening 65 and is reflected by the photoelectric conversion unit 11 toward the photoelectric conversion unit 11. The reflective member 61 may be formed using other materials that have a low refractive index.
このように、撮像装置1の各画素Pでは、光電変換部11の上部電極22の上に、開口部65を有する反射部材61が設けられる。このため、下部電極23で反射された光の一部は反射部材61によって反射され、光電変換部11に入射(再入射)させることができる。光電変換部11へ効率よく光を導くことができ、量子効率(QE)を向上させることができる。入射光に対する感度を向上させることが可能となる。 In this way, in each pixel P of the imaging device 1, a reflective member 61 having an opening 65 is provided on the upper electrode 22 of the photoelectric conversion section 11. Therefore, a portion of the light reflected by the lower electrode 23 is reflected by the reflective member 61 and can be made to enter (re-enter) the photoelectric conversion section 11. Light can be efficiently guided to the photoelectric conversion section 11, improving quantum efficiency (QE). It becomes possible to improve sensitivity to incident light.
吸収部材62は、光を吸収する材料により構成され、入射した光を吸収する。吸収部材62は、例えば、タングステン(W)、ブラックフィルタ等により構成される。吸収部材62は、開口部65の周囲に入射する不要な光を吸収する。なお、吸収部材62は、光を吸収する他の金属材料を用いて形成されてもよく、他のカラーフィルタを用いて構成されてもよい。 The absorbing member 62 is made of a material that absorbs light, and absorbs the incident light. The absorbing member 62 is made of, for example, tungsten (W), a black filter, etc. The absorbing member 62 absorbs unnecessary light that is incident around the opening 65. The absorbing member 62 may be formed using other metal materials that absorb light, or may be made using other color filters.
仮に、撮像装置1が吸収部材62を有しない場合、レンズ90を透過した光の一部が、画素Pで反射され、レンズ90等で再び反射されて戻り、その画素Pの周辺の画素Pに入射するおそれがある。不要な光が周辺の画素Pの光電変換部11に漏れ込み、混色が発生することが考えられる。反射光に起因するノイズが画素信号に混入し、反射光に起因する欠陥が画像に生じるおそれがある。このようなノイズ及び画像中の欠陥は、フレアとも呼ばれる。 If the imaging device 1 did not have an absorbing member 62, some of the light that passed through the lens 90 would be reflected by a pixel P, reflected again by the lens 90, etc., and would potentially enter a pixel P surrounding that pixel P. Unwanted light would leak into the photoelectric conversion unit 11 of the surrounding pixels P, causing color mixing. Noise caused by the reflected light would be mixed into the pixel signal, and defects caused by the reflected light would occur in the image. Such noise and defects in the image are also known as flare.
本実施の形態では、光電変換部11の上方に、開口部65を有する吸収部材62が設けられる。このため、不要な反射光が生じることを抑制し、混色が生じることを抑制することができる。また、フレアが生じることを抑制し、画像の画質低下を防ぐことが可能となる。 In this embodiment, an absorbing member 62 having an opening 65 is provided above the photoelectric conversion unit 11. This makes it possible to suppress the occurrence of unnecessary reflected light and to suppress the occurrence of color mixing. It is also possible to suppress the occurrence of flare and prevent a decrease in image quality.
撮像装置1の各画素Pでは、上述したように、例えば、光電変換部11の上方に遮光部材60が設けられ、光電変換部11の四方に分離部50が設けられる。画素Pは、遮光部材60と分離部50とを含む光閉じ込め構造を有する。遮光部材60は、光電変換部11の上方に位置し、蓋部ともいえる。 As described above, in each pixel P of the imaging device 1, for example, a light-shielding member 60 is provided above the photoelectric conversion unit 11, and separation units 50 are provided on all four sides of the photoelectric conversion unit 11. The pixel P has a light confinement structure including the light-shielding member 60 and the separation units 50. The light-shielding member 60 is located above the photoelectric conversion unit 11, and can also be considered a lid.
画素Pが光閉じ込め構造を有することで、図6において矢印で模式的に示すように、下部電極23で反射した光を、反射部材61又は分離部50にて反射し、入射光の光路長を長くすることができる。このため、光電変換膜21における光の吸収量を増加させ、量子効率を改善させることが可能となる。 By pixel P having a light confinement structure, as shown diagrammatically by the arrow in FIG. 6, the light reflected by the lower electrode 23 can be reflected by the reflecting member 61 or the separating portion 50, thereby lengthening the optical path length of the incident light. This makes it possible to increase the amount of light absorbed by the photoelectric conversion film 21 and improve the quantum efficiency.
このように、本実施の形態では、画素Pの光電変換部11は、レンズ90から開口部65を介して入射した光を、効率よく吸収して光電変換を行うことができる。画素Pにおける量子効率を向上させることが可能となる。また、本実施の形態では、画素間において混色が生じることを抑制することができる。 In this manner, in this embodiment, the photoelectric conversion unit 11 of the pixel P can efficiently absorb the light incident from the lens 90 through the opening 65 and perform photoelectric conversion. This makes it possible to improve the quantum efficiency of the pixel P. Furthermore, in this embodiment, it is possible to suppress the occurrence of color mixing between pixels.
下部電極23の周囲の絶縁膜131は、バッファ層25の屈折率よりも低い屈折率を有する材料により構成され得る。絶縁膜131は、例えば、TEOS、フッ素を含有した樹脂材料、フィラーを含有した材料等を用いて構成される。絶縁膜131は、フッ素を含有する低屈折率の材料を用いて形成されてもよく、低い屈折率を有するフィラーを含有する材料により構成されてもよい。また、絶縁膜131は、電気絶縁性を有する他の低屈折率の樹脂材料を用いて構成されてもよい。 The insulating film 131 around the lower electrode 23 may be made of a material having a lower refractive index than the buffer layer 25. The insulating film 131 may be made of, for example, TEOS, a resin material containing fluorine, or a material containing a filler. The insulating film 131 may be formed of a material containing fluorine with a low refractive index, or may be made of a material containing a filler with a low refractive index. The insulating film 131 may also be made of other resin materials with low refractive index that have electrical insulation properties.
撮像装置1では、低屈折率を有する絶縁膜131が設けられることで、例えば、開口部65を透過して絶縁膜131の方へ進んだ光を、絶縁膜131によって光電変換部11側へ反射させることができる。下部電極23の外側に入射する光も、光電変換膜21に再入射させることが可能となる。光閉じ込め性能を向上させることができ、量子効率を向上させることが可能となる。 In the imaging device 1, by providing the insulating film 131 having a low refractive index, for example, light that has passed through the opening 65 and traveled toward the insulating film 131 can be reflected by the insulating film 131 toward the photoelectric conversion section 11. It is also possible for light that is incident on the outside of the lower electrode 23 to be re-incident on the photoelectric conversion film 21. This makes it possible to improve the light confinement performance and improve quantum efficiency.
図7は、第1の実施の形態に係る撮像装置の構成例を説明するための図である。遮光部材60の開口部65が小さいとケラレ等のために光電変換部11への入射光の光量が低下し、開口部65が大きいと所望の光閉じ込め性能が得られない傾向がある。そこで、図7に示すように、例えば、開口部65の幅W1は、画素Pの幅W2に対して、30%以上75%以下の範囲内であってよい。また、例えば、開口部65の幅W1は、画素Pの幅W2に対して、35%以上70%以下の範囲内としてもよい。 FIG. 7 is a diagram for explaining an example of the configuration of an imaging device according to the first embodiment. If the opening 65 of the light-shielding member 60 is small, the amount of light incident on the photoelectric conversion unit 11 decreases due to vignetting, etc., and if the opening 65 is large, the desired light trapping performance tends not to be obtained. Therefore, as shown in FIG. 7, for example, the width W1 of the opening 65 may be in the range of 30% to 75% of the width W2 of the pixel P. Also, for example, the width W1 of the opening 65 may be in the range of 35% to 70% of the width W2 of the pixel P.
レンズ90、遮光部材60、光電変換部11等の積層方向(図7ではZ軸方向)と直交する方向における開口部65の面積は、画素Pの面積に対して、4%以上56%以下の範囲内としてもよい。また、例えば、開口部65の面積は、画素Pの面積に対して、10%以上50%以下の範囲内としてもよい。このように撮像装置1を構成することにより、光閉じ込め性能を向上させることができ、量子効率を向上させることが可能となる。 The area of the opening 65 in a direction perpendicular to the stacking direction (Z-axis direction in FIG. 7) of the lens 90, the light shielding member 60, the photoelectric conversion unit 11, etc. may be within a range of 4% to 56% of the area of the pixel P. Also, for example, the area of the opening 65 may be within a range of 10% to 50% of the area of the pixel P. By configuring the imaging device 1 in this manner, it is possible to improve the light confinement performance and improve the quantum efficiency.
図8は、撮像装置1の画素部100(画素アレイ)の中心からの距離、即ち、像高が高い領域における断面構成の一例を示している。撮像装置1の画素部100の中央部分には、例えば、光学レンズからの光がほぼ垂直に入射する。一方、中央部分よりも外側に位置する周辺部分、即ち画素部100の中央から離れた領域には、図8において矢印で示す例のように、光が斜めに入射する。 FIG. 8 shows an example of the cross-sectional configuration in the area where the image height is high, i.e., the distance from the center of the pixel section 100 (pixel array) of the imaging device 1. For example, light from an optical lens is incident almost perpendicularly on the central part of the pixel section 100 of the imaging device 1. On the other hand, light is incident obliquely on the peripheral part located outside the central part, i.e., on the area away from the center of the pixel section 100, as shown by the example arrow in FIG. 8.
そこで、撮像装置1では、各画素Pにおけるレンズ90、及び遮光部材60の開口部65等の位置が、画素部100の中心からの距離、即ち、像高に応じて異なるように構成されてもよい。図8に示すように、画素Pのレンズ90は、例えば、その画素Pの光電変換部11に対して画素部100の中央側にずらして配置される。画素Pの遮光部材60の開口部65も、その画素Pの光電変換部11に対して画素部100の中央側にずらして配置され得る。図8に示す例では、レンズ90及び開口部65は、画素Pの光電変換部11に対して、紙面右方向にシフトして設けられるともいえる。 In the imaging device 1, the positions of the lens 90 and the opening 65 of the light blocking member 60 in each pixel P may be configured to differ depending on the distance from the center of the pixel unit 100, i.e., the image height. As shown in FIG. 8, the lens 90 of the pixel P is, for example, arranged offset toward the center of the pixel unit 100 with respect to the photoelectric conversion unit 11 of the pixel P. The opening 65 of the light blocking member 60 of the pixel P may also be arranged offset toward the center of the pixel unit 100 with respect to the photoelectric conversion unit 11 of the pixel P. In the example shown in FIG. 8, the lens 90 and opening 65 can be said to be shifted to the right on the page with respect to the photoelectric conversion unit 11 of the pixel P.
レンズ90と遮光部材60との積層方向(Z軸方向)と直交する方向において、レンズ90の中心位置は、開口部65の中心位置と異なっている。遮光部材60の開口部65の中心は、その画素Pの光電変換部11の中心よりも画素部100の中心に近い位置にある。また、レンズ90の中心は、その画素Pの開口部65の中心よりも画素部100の中心に近い位置にある。なお、画素部100の中央領域では、画素Pは、例えば、上述した図3に示すように構成される。 In a direction perpendicular to the stacking direction (Z-axis direction) of the lens 90 and the light-shielding member 60, the center position of the lens 90 is different from the center position of the opening 65. The center of the opening 65 of the light-shielding member 60 is closer to the center of the pixel unit 100 than the center of the photoelectric conversion unit 11 of that pixel P. In addition, the center of the lens 90 is closer to the center of the pixel unit 100 than the center of the opening 65 of that pixel P. In the central region of the pixel unit 100, the pixel P is configured, for example, as shown in FIG. 3 above.
このように、撮像装置1では、レンズ90及び開口部65の各々の位置が像高に応じて調整され、瞳補正を適切に行うことができる。光電変換部11に入射する光量が低下することを抑制し、入射光に対する感度が低下することを抑制することが可能となる。光が斜めに入射する場合でも、入射する光を適切に光電変換部11へ伝搬させることが可能となる。 In this way, in the imaging device 1, the positions of the lens 90 and the opening 65 are adjusted according to the image height, making it possible to perform appropriate pupil correction. This makes it possible to suppress a decrease in the amount of light incident on the photoelectric conversion unit 11 and to suppress a decrease in sensitivity to the incident light. Even when light is incident at an angle, it is possible to properly propagate the incident light to the photoelectric conversion unit 11.
図9は、第1の実施の形態に係る撮像装置の断面構成の一例を示す図である。撮像装置1は、図9に示すように、上述した半導体基板120を備える。半導体基板120は、対向する第1面11S1及び第2面11S2を有する。第2面11S2は、第1面11S1とは反対側の面である。半導体基板120は、例えば、シリコン基板により構成される。 FIG. 9 is a diagram showing an example of a cross-sectional configuration of an imaging device according to the first embodiment. As shown in FIG. 9, the imaging device 1 includes the above-mentioned semiconductor substrate 120. The semiconductor substrate 120 has a first surface 11S1 and a second surface 11S2 that face each other. The second surface 11S2 is the surface opposite to the first surface 11S1. The semiconductor substrate 120 is formed, for example, from a silicon substrate.
半導体基板120には、図2を用いて上述した読み出し回路15が設けられる。光電変換部11の下部電極23は、フローティングディフュージョンFDとトランジスタAMPのゲート部に電気的に接続される。光電変換部11は、半導体基板120の上方に配置されている。ここで、半導体基板120における光入射面を上方とし、半導体基板120の反対側を下方とする。 The semiconductor substrate 120 is provided with the readout circuit 15 described above with reference to FIG. 2. The lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to the floating diffusion FD and the gate portion of the transistor AMP. The photoelectric conversion unit 11 is disposed above the semiconductor substrate 120. Here, the light incident surface of the semiconductor substrate 120 is referred to as the upper side, and the opposite side of the semiconductor substrate 120 is referred to as the lower side.
光電変換部11の下部電極23は、多層配線層130の絶縁膜131上に形成されている。下部電極23上には、バッファ層25と、光電変換膜21と、上部電極22と、遮光部材60とが形成されている。上部電極22と遮光部材60を含む全面には、保護層80が形成されている。レンズ90は、保護層80の上に設けられている。 The lower electrode 23 of the photoelectric conversion section 11 is formed on the insulating film 131 of the multi-layer wiring layer 130. A buffer layer 25, a photoelectric conversion film 21, an upper electrode 22, and a light-shielding member 60 are formed on the lower electrode 23. A protective layer 80 is formed on the entire surface including the upper electrode 22 and the light-shielding member 60. A lens 90 is provided on the protective layer 80.
半導体基板120の第1面11S1側には、素子分離領域75と酸化膜76が形成されている。また、半導体基板120の第1面11S1側には、読み出し回路15のトランジスタRST、トランジスタAMP、トランジスタSEL、フローティングディフュージョンFD等が設けられている。 An element isolation region 75 and an oxide film 76 are formed on the first surface 11S1 side of the semiconductor substrate 120. In addition, the transistor RST, transistor AMP, transistor SEL, floating diffusion FD, etc. of the read circuit 15 are provided on the first surface 11S1 side of the semiconductor substrate 120.
トランジスタRSTは、ゲート部71、チャネル形成領域71A、及び、ソース/ドレイン領域71B,71Cを有する。トランジスタRSTのソース/ドレイン領域71Cは、フローティングディフュージョンFDを兼ねている。また、他方のソース/ドレイン領域71Bは、電源電圧VDDが供給される電源線に電気的に接続される。 Transistor RST has a gate portion 71, a channel formation region 71A, and source/drain regions 71B and 71C. The source/drain region 71C of transistor RST also serves as a floating diffusion FD. The other source/drain region 71B is electrically connected to a power supply line that supplies a power supply voltage VDD.
光電変換部11の下部電極23は、配線31、電極32、及び配線35を介して、トランジスタRSTの一方のソース/ドレイン領域71C(フローティングディフュージョンFD)に電気的に接続されている。 The lower electrode 23 of the photoelectric conversion unit 11 is electrically connected to one of the source/drain regions 71C (floating diffusion FD) of the transistor RST via wiring 31, electrode 32, and wiring 35.
トランジスタAMPは、ゲート部72、チャネル形成領域72A、及び、ソース/ドレイン領域72B,72Cを有する。ゲート部72は、配線35を介して、下部電極23及びトランジスタRSTの一方のソース/ドレイン領域71C(フローティングディフュージョンFD)に接続されている。また、一方のソース/ドレイン領域72Bは、トランジスタRSTを構成する他方のソース/ドレイン領域71Bと、領域を共有しており、電源電圧VDDが供給される電源線に接続されている。 Transistor AMP has a gate portion 72, a channel formation region 72A, and source/drain regions 72B, 72C. The gate portion 72 is connected to the lower electrode 23 and one of the source/drain regions 71C (floating diffusion FD) of the transistor RST via wiring 35. In addition, one of the source/drain regions 72B shares an area with the other of the source/drain regions 71B constituting the transistor RST, and is connected to a power supply line through which the power supply voltage VDD is supplied.
トランジスタSELは、ゲート部73、チャネル形成領域73A、及び、ソース/ドレイン領域73B,73Cを有する。一方のソース/ドレイン領域73Bは、トランジスタAMPを構成する他方のソース/ドレイン領域72Cと、領域を共有しており、他方のソース/ドレイン領域73Cは、垂直信号線VSLに接続される。 Transistor SEL has a gate portion 73, a channel formation region 73A, and source/drain regions 73B and 73C. One source/drain region 73B shares an area with the other source/drain region 72C constituting transistor AMP, and the other source/drain region 73C is connected to the vertical signal line VSL.
図10A~図10Gは、第1の実施の形態に係る撮像装置の製造方法の一例を説明するための図である。まず、図10Aに示すように、光電変換膜21及び上部電極22等を形成し、ALD(Atomic Layer Deposition)及びスパッタリング等により上部電極22上に保護膜85を成膜する。 FIGS. 10A to 10G are diagrams for explaining an example of a method for manufacturing an imaging device according to the first embodiment. First, as shown in FIG. 10A, a photoelectric conversion film 21, an upper electrode 22, etc. are formed, and a protective film 85 is formed on the upper electrode 22 by ALD (Atomic Layer Deposition), sputtering, etc.
次に、図10Bに示すように、リソグラフィ及びEB(Electron Beam)等によって、上部電極22、光電変換膜21、及びバッファ層25等を選択的に除去する。そして、図10Cに示すように、選択的に除去された部分に、例えばALDにより分離部50を埋め込み形成する。 Next, as shown in FIG. 10B, the upper electrode 22, the photoelectric conversion film 21, the buffer layer 25, etc. are selectively removed by lithography and EB (Electron Beam), etc. Then, as shown in FIG. 10C, the isolation section 50 is embedded and formed in the selectively removed portion by, for example, ALD.
次に、図10Dに示すように、分離部50を覆うように保護膜85を形成した後、CMP(Chemical Mechanical Polishing)によって、保護膜85の不要な部分を除去する。そして、図10Eに示すように、保護膜85上に、反射部材61(例えばアルミニウム膜)及び吸収部材62(例えばタングステン膜)を成膜する。 Next, as shown in FIG. 10D, a protective film 85 is formed to cover the isolation portion 50, and unnecessary portions of the protective film 85 are then removed by CMP (Chemical Mechanical Polishing). Then, as shown in FIG. 10E, a reflective member 61 (e.g., an aluminum film) and an absorbing member 62 (e.g., a tungsten film) are formed on the protective film 85.
次に、図10Fに示すように、リソグラフィ及びドライエッチングによって、遮光部材60に開口部65を形成する。そして、図10Gに示すように、遮光部材60上に保護層80を形成し、CMP処理を行う。その後、レンズ90等を形成する。以上のような製造方法によって、図3等に示す撮像装置1を製造することができる。なお、上述した製造方法は、あくまでも一例であって、他の製造方法を採用してもよい。 Next, as shown in FIG. 10F, an opening 65 is formed in the light-shielding member 60 by lithography and dry etching. Then, as shown in FIG. 10G, a protective layer 80 is formed on the light-shielding member 60, and a CMP process is performed. After that, a lens 90 and the like are formed. By the manufacturing method described above, the imaging device 1 shown in FIG. 3 and the like can be manufactured. Note that the manufacturing method described above is merely one example, and other manufacturing methods may be adopted.
[作用・効果]
本実施の形態に係る光検出装置は、第1電極(上部電極22)と、第1電極に対向するように設けられる第2電極(下部電極23)と、第1電極と第2電極との間に設けられる光電変換膜(光電変換膜21)とを有する光電変換素子(光電変換部11)と、第1電極の上方に設けられ、光が入射する開口部(開口部65)を有する遮光部材(遮光部材60)とを備える。
[Action and Effects]
The photodetection device of this embodiment includes a photoelectric conversion element (photoelectric conversion section 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) arranged opposite the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) arranged between the first electrode and the second electrode, and a light-shielding member (light-shielding member 60) arranged above the first electrode and having an opening (opening 65) through which light is incident.
本実施の形態に係る光検出装置(撮像装置1)では、光電変換部11の上部電極22の上方に、開口部65を有する遮光部材60が設けられる。このため、計測対象からの光を光電変換部11へ適切に導くことができる。良好な検出性能を有する光検出装置を実現することが可能となる。 In the photodetector (imaging device 1) according to this embodiment, a light-shielding member 60 having an opening 65 is provided above the upper electrode 22 of the photoelectric conversion unit 11. This allows light from the measurement target to be appropriately guided to the photoelectric conversion unit 11. It is possible to realize a photodetector with good detection performance.
次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。 Next, a modified example of the present disclosure will be described. In the following, components similar to those in the above embodiment will be given the same reference numerals, and descriptions will be omitted as appropriate.
<2.変形例>
(2-1.変形例1)
上述した実施の形態では、分離部50の配置例について説明したが、分離部50の配置は上述した例に限られない。図11A~図11Cは、本開示の変形例1に係る撮像装置の構成例を説明するための図である。図11A~図11Cでは、分離部50のレイアウト例を示している。
2. Modifications
(2-1. Modification 1)
In the above-described embodiment, an example of the arrangement of the separator 50 has been described, but the arrangement of the separator 50 is not limited to the above-described example. Figures 11A to 11C are diagrams for explaining an example of the configuration of an imaging device according to the first modification of the present disclosure. Figures 11A to 11C show an example of the layout of the separator 50.
図11A、図11B、又は図11Cに示す例のように、各画素Pの光電変換部11をそれぞれ囲むように、複数の分離部50が離散的に形成されてもよい。図11A~図11Cに示す例では、光電変換部11の周囲を囲むように、複数の分離部50が設けられる。複数の分離部50は、光電変換部11の周囲において互いに離れて配置されている。本変形例の場合も、上記した実施の形態と同様の効果を得ることができる。 As in the example shown in FIG. 11A, FIG. 11B, or FIG. 11C, a plurality of separation sections 50 may be formed discretely so as to surround the photoelectric conversion section 11 of each pixel P. In the examples shown in FIG. 11A to FIG. 11C, a plurality of separation sections 50 are provided so as to surround the periphery of the photoelectric conversion section 11. The plurality of separation sections 50 are arranged apart from each other around the periphery of the photoelectric conversion section 11. In the case of this modified example, the same effect as in the above-described embodiment can be obtained.
(2-2.変形例2)
図12A~図12Cは、変形例2に係る撮像装置の遮光部材の構成例を説明するため図である。遮光部材60の開口部65の形状は、図5に図示した例に限られず、適宜変更可能である。例えば、図12Aに示すように、遮光部材60の開口部65は、平面視において、円形状を有していてもよい。
(2-2. Modification 2)
12A to 12C are diagrams for explaining an example of the configuration of a light blocking member of an imaging device according to Modification 2. The shape of the opening 65 of the light blocking member 60 is not limited to the example shown in Fig. 5 and can be modified as appropriate. For example, as shown in Fig. 12A, the opening 65 of the light blocking member 60 may have a circular shape in a plan view.
遮光部材60の開口部65は、多角形、楕円、又はその他の形状であってもよい。例えば、開口部65は、図12Bに示すように、六角形の形状を有していてもよい。また、例えば、開口部65は、図12Cに示すように、八角形の形状を有していてもよい。 The opening 65 of the light blocking member 60 may be polygonal, elliptical, or another shape. For example, the opening 65 may have a hexagonal shape as shown in FIG. 12B. Also, for example, the opening 65 may have an octagonal shape as shown in FIG. 12C.
(2-3.変形例3)
図13は、変形例3に係る撮像装置の断面構成の一例を示す図である。図13に示す例のように、分離部50のトレンチには、複数の膜が埋め込み形成されてもよい。図13に示す例では、分離部50は、絶縁膜51aと、絶縁膜51a内に設けられる絶縁膜51bとを有する。
(2-3. Modification 3)
Fig. 13 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 3. As in the example shown in Fig. 13, a plurality of films may be embedded in the trench of the isolation unit 50. In the example shown in Fig. 13, the isolation unit 50 has an insulating film 51a and an insulating film 51b provided within the insulating film 51a.
絶縁膜51bは、例えば、絶縁膜51aの屈折率よりも低い屈折率を有する。絶縁膜51bは、絶縁膜51a(例えば酸化アルミニウム(Al2O3)膜)の屈折率よりも低い屈折率を有する材料により構成され得る。絶縁膜51bは、例えば、酸化シリコン(SiO2)、樹脂材料等により構成される。なお、絶縁膜51bは、エアーギャップ(空隙)を用いて構成されてもよい。 The insulating film 51b has, for example, a refractive index lower than that of the insulating film 51a. The insulating film 51b can be made of a material having a refractive index lower than that of the insulating film 51a (for example, an aluminum oxide (Al 2 O 3 ) film). The insulating film 51b is made of, for example, silicon oxide (SiO 2 ), a resin material, or the like. The insulating film 51b may be made using an air gap (void).
本変形例では、絶縁膜51a及び絶縁膜51bを有する分離部50(導光壁)が設けられることで、光電変換部11へ効率よく光を再入射させることが可能となる。光閉じ込め性能を改善することができ、量子効率を向上させることが可能となる。 In this modified example, the separation section 50 (light-guiding wall) having the insulating films 51a and 51b is provided, which makes it possible to efficiently re-enter light into the photoelectric conversion section 11. This improves the light confinement performance and makes it possible to increase quantum efficiency.
(2-4.変形例4)
図14は、変形例4に係る撮像装置の断面構成の一例を示す図である。分離部50は、遮光部材60の下方から下部電極23の下方まで設けられてもよい。例えば、分離部50は、多層配線層130の絶縁膜132に達するように形成されてもよい。図14に示す例では、分離部50は、Z軸方向に延び、絶縁膜132内まで設けられている。光電変換部11と絶縁膜131を貫通するように、分離部50が設けられる。
(2-4. Modification 4)
14 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 4. The separation unit 50 may be provided from below the light blocking member 60 to below the lower electrode 23. For example, the separation unit 50 may be formed so as to reach the insulating film 132 of the multilayer wiring layer 130. In the example shown in FIG. 14, the separation unit 50 extends in the Z-axis direction and is provided into the insulating film 132. The separation unit 50 is provided so as to penetrate the photoelectric conversion unit 11 and the insulating film 131.
本変形例に係る撮像装置1は、下部電極23の下方の領域においても光閉じ込め構造を有することができる。このため、図14において矢印で模式的に示すように、下部電極23及び絶縁膜131等で反射されずに通過した光を、絶縁膜132内の分離部50及び電極32等によって光電変換部11側へ反射させることができる。下部電極23の下方に進んだ光も、光電変換膜21に再入射させることができ、量子効率を向上させることが可能となる。また、周囲の画素Pへの光の漏れ込みを抑制し、混色を効果的に低減することが可能となる。 The imaging device 1 according to this modified example can also have a light confinement structure in the region below the lower electrode 23. Therefore, as shown diagrammatically by the arrows in FIG. 14, light that passes through the lower electrode 23 and insulating film 131 without being reflected can be reflected toward the photoelectric conversion section 11 by the separator 50 in the insulating film 132 and the electrode 32. Light that travels below the lower electrode 23 can also be made to re-enter the photoelectric conversion film 21, making it possible to improve quantum efficiency. In addition, it is possible to suppress light leakage into surrounding pixels P and effectively reduce color mixing.
(2-5.変形例5)
図15は、変形例5に係る撮像装置の断面構成の一例を示す図である。遮光部材60の吸収部材62は、図15に模式的に示すように、複数の膜を積層して構成されてもよい。吸収部材62は、入射光の波長帯域に対応して異なる屈折率を有する複数層の膜により構成されていてもよい。
(2-5. Modification 5)
Fig. 15 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 5. The absorbing member 62 of the light blocking member 60 may be configured by laminating a plurality of films as shown typically in Fig. 15. The absorbing member 62 may be configured by a plurality of film layers having different refractive indices corresponding to the wavelength bands of the incident light.
吸収部材62は、例えば、シリコン酸化膜(SiO2)と酸化チタン膜(TiO2)を含む多層干渉膜であってもよい。遮光部材60は、モスアイ構造を有していてもよい。吸収部材62は、例えば、微細な凹凸が形成された構造を有し得る。本変形例の場合も、上記した実施の形態と同様の効果を得ることができる。 The absorbing member 62 may be, for example, a multi-layer interference film including a silicon oxide film (SiO 2 ) and a titanium oxide film (TiO 2 ). The light blocking member 60 may have a moth-eye structure. The absorbing member 62 may have, for example, a structure in which fine irregularities are formed. In the case of this modified example, the same effects as those of the above-mentioned embodiment can be obtained.
(2-6.変形例6)
図16は、変形例6に係る撮像装置の断面構成の一例を示す図である。遮光部材60は、反射部材61と吸収部材62とで、異なる開口幅を有するように構成されてもよい。図16に示す例のように、反射部材61における開口部65(開口部65a)と、吸収部材62における開口部65(開口部65b)とは、互いに異なる大きさを有し得る。
(2-6. Modification 6)
Fig. 16 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification Example 6. The light blocking member 60 may be configured to have different opening widths in the reflecting member 61 and the absorbing member 62. As in the example shown in Fig. 16, the opening 65 (opening 65a) in the reflecting member 61 and the opening 65 (opening 65b) in the absorbing member 62 may have different sizes.
吸収部材62の開口部65bは、例えば、反射部材61の開口部65aの幅よりも大きくなるように構成される。この場合、レンズ90の製造バラツキ(レンズ90の厚み、レンズ90の配置位置等)に起因して量子効率が低下することを抑制することができる。また、反射部材61の開口部65aの面積を確保することで、光閉じ込め性能の低下を抑制し、量子効率の低下を抑制することが可能となる。 The opening 65b of the absorbing member 62 is configured to be larger than the width of the opening 65a of the reflecting member 61, for example. In this case, it is possible to suppress a decrease in quantum efficiency caused by manufacturing variations in the lens 90 (such as the thickness of the lens 90 and the position of the lens 90). In addition, by ensuring the area of the opening 65a of the reflecting member 61, it is possible to suppress a decrease in light confinement performance and a decrease in quantum efficiency.
遮光部材60は、図16に示す例のように、台形の形状を有していてもよい。遮光部材60は、テーパー(傾斜部)を有し、テーパー状の形状を有するともいえる。遮光部材60は、互いに異なる大きさを有する反射部材61及び吸収部材62によって、階段状となるように形成されてもよい。 The light blocking member 60 may have a trapezoidal shape, as in the example shown in FIG. 16. The light blocking member 60 has a taper (inclined portion) and can also be said to have a tapered shape. The light blocking member 60 may be formed in a stepped shape by a reflecting member 61 and an absorbing member 62 having different sizes.
(2-7.変形例7)
図17及び図18は、変形例7に係る撮像装置の構成例を説明するための図である。遮光部材60を、反射部材61及び吸収部材62の一方のみを有する構成としてもよい。例えば、図17に示す例のように、反射部材61のみを配置し、吸収部材62を配置しなくてもよい。図18に示す例のように、吸収部材62のみを配置し、反射部材61を配置しないようにしてもよい。
(2-7. Modification 7)
17 and 18 are diagrams for explaining a configuration example of an imaging device according to Modification 7. The light blocking member 60 may be configured to have only one of a reflecting member 61 and an absorbing member 62. For example, as in the example shown in Fig. 17, only the reflecting member 61 may be disposed, and the absorbing member 62 may not be disposed. As in the example shown in Fig. 18, only the absorbing member 62 may be disposed, and the reflecting member 61 may not be disposed.
(2-8.変形例8)
図19は、変形例8に係る撮像装置の構成例を説明するための図である。図19に示す例のように、撮像装置1は、遮光部材60を有していなくてもよい。撮像装置1の各画素Pでは、光電変換部11の周囲に分離部50が設けられる。例えば、図4、図11A~図11C等に示す例のように、各画素Pの光電変換部11をそれぞれ囲むように、複数の分離部50が離散的に設けられる。
(2-8. Modification 8)
Fig. 19 is a diagram for explaining a configuration example of an imaging device according to Modification 8. As in the example shown in Fig. 19, the imaging device 1 does not need to have a light blocking member 60. In each pixel P of the imaging device 1, a separator 50 is provided around the photoelectric conversion unit 11. For example, as in the examples shown in Figs. 4, 11A to 11C, etc., a plurality of separators 50 are provided discretely so as to surround the photoelectric conversion unit 11 of each pixel P.
撮像装置1では、下部電極23又は絶縁膜131等で反射した光を、分離部50にて反射し、光電変換部11に再入射させることができる。このため、光電変換膜21における光の吸収量を増加させ、量子効率を向上させることが可能となる。また、画素P間において混色が生じることを抑制することができる。 In the imaging device 1, light reflected by the lower electrode 23 or the insulating film 131, etc., can be reflected by the separation section 50 and re-entered into the photoelectric conversion section 11. This makes it possible to increase the amount of light absorbed by the photoelectric conversion film 21 and improve quantum efficiency. In addition, color mixing between pixels P can be suppressed.
図20~図22は、変形例8に係る撮像装置の別の構成例を説明するための図である。分離部50を、例えば、上部電極22から下部電極23の下方まで設けるようにしてもよい。図20に示す例のように、分離部50は、多層配線層130の絶縁膜132に達するように形成されてもよい。 20 to 22 are diagrams for explaining another example configuration of an imaging device according to Modification 8. The separation section 50 may be provided, for example, from the upper electrode 22 to below the lower electrode 23. As in the example shown in FIG. 20, the separation section 50 may be formed to reach the insulating film 132 of the multilayer wiring layer 130.
また、分離部50のトレンチには、複数の膜が埋め込み形成されてもよい。図21又は図22に示す例では、分離部50は、絶縁膜51aと、絶縁膜51a内に設けられる絶縁膜51bとを有する。絶縁膜51bは、絶縁膜51aの屈折率よりも低い屈折率を有する材料により構成されてもよい。 The trench of the separation unit 50 may be filled with a plurality of films. In the example shown in FIG. 21 or FIG. 22, the separation unit 50 has an insulating film 51a and an insulating film 51b provided within the insulating film 51a. The insulating film 51b may be made of a material having a refractive index lower than that of the insulating film 51a.
本変形例に係る光検出装置は、第1電極(上部電極22)と、第1電極に対向するように設けられる第2電極(下部電極23)と、第1電極と第2電極との間に設けられる光電変換膜(光電変換膜21)とを有する光電変換素子(光電変換部11)と、隣り合う複数の光電変換素子の間に設けられる分離部(分離部50)とを備える。 The light detection device according to this modified example includes a photoelectric conversion element (photoelectric conversion section 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) arranged opposite the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) arranged between the first electrode and the second electrode, and a separation section (separation section 50) arranged between adjacent photoelectric conversion elements.
本変形例に係る光検出装置(撮像装置1)では、隣り合う複数の光電変換部11の間に、分離部50が設けられる。このため、計測対象からの光を光電変換部11へ適切に導くことができる。良好な検出性能を有する光検出装置を実現することが可能となる。 In the light detection device (imaging device 1) according to this modified example, a separator 50 is provided between adjacent photoelectric conversion units 11. This allows light from the measurement target to be appropriately guided to the photoelectric conversion units 11. It is possible to realize a light detection device with good detection performance.
<3.第2の実施の形態>
次に、本開示の第2の実施の形態について説明する。以下では、上述した実施の形態と同様の構成部分については同一の符号を付し、適宜説明を省略する。
3. Second embodiment
Next, a second embodiment of the present disclosure will be described. In the following, components similar to those in the above-described embodiment will be denoted by the same reference numerals, and descriptions thereof will be omitted as appropriate.
図23は、本開示の第2の実施の形態に係る撮像装置の断面構成の一例を示す図である。また、図24及び図25は、撮像装置の平面構成の一例を説明するための図である。各画素Pの光電変換部11(光電変換素子)は、光電変換膜21と、上部電極22と、下部電極23とを含む。なお、撮像装置1は、上述したバッファ層25、保護膜85を有していてもよい。 FIG. 23 is a diagram showing an example of a cross-sectional configuration of an imaging device according to a second embodiment of the present disclosure. Also, FIGS. 24 and 25 are diagrams for explaining an example of a planar configuration of an imaging device. The photoelectric conversion unit 11 (photoelectric conversion element) of each pixel P includes a photoelectric conversion film 21, an upper electrode 22, and a lower electrode 23. The imaging device 1 may also have the buffer layer 25 and protective film 85 described above.
本実施の形態では、上部電極22は、図23等に示す例のように、画素P毎に、光電変換膜21の一方の面側に設けられる。下部電極23は、複数の画素Pの光電変換膜21に共通の電極であり、例えば、光電変換膜21の他方の面側に設けられる。上部電極22及び下部電極23は、互いに対向するように設けられ得る。 In this embodiment, the upper electrode 22 is provided on one side of the photoelectric conversion film 21 for each pixel P, as in the example shown in FIG. 23 etc. The lower electrode 23 is an electrode common to the photoelectric conversion films 21 of multiple pixels P, and is provided, for example, on the other side of the photoelectric conversion film 21. The upper electrode 22 and the lower electrode 23 can be provided so as to face each other.
下部電極23は、図23及び図25に示す例のように、複数の画素Pに対して設けられる。撮像装置1は、複数の画素Pが下部電極23を共有する構成を有する。例えば、撮像装置1では、全ての画素Pに対して下部電極23が配置され、全画素Pが1つの下部電極23を共有していてもよい。 The lower electrode 23 is provided for multiple pixels P, as in the examples shown in Figures 23 and 25. The imaging device 1 has a configuration in which multiple pixels P share the lower electrode 23. For example, in the imaging device 1, the lower electrode 23 may be provided for all pixels P, and all pixels P may share one lower electrode 23.
撮像装置1は、例えば、行方向(水平方向)及び列方向(垂直方向)に並ぶ任意の数の複数の画素Pが、下部電極23を共有する構成を有していてよい。例えば、複数の画素P毎(例えば、2×2画素単位、3×3画素単位など)に下部電極23が配置され、複数の画素Pが1つの下部電極23を共有する。 The imaging device 1 may have a configuration in which, for example, any number of pixels P arranged in the row direction (horizontal direction) and column direction (vertical direction) share a lower electrode 23. For example, a lower electrode 23 is arranged for each set of pixels P (for example, in 2×2 pixel units, 3×3 pixel units, etc.), and the multiple pixels P share one lower electrode 23.
下部電極23は、例えば、チタン(Ti)、銅(Cu)等の金属材料を用いて構成される。下部電極23は、アルミニウム(Al)、タンタル(Ta)等の導電材料を用いて形成されてもよく、光を反射する他の金属材料により構成されてもよい。 The lower electrode 23 is made of a metal material such as titanium (Ti) or copper (Cu). The lower electrode 23 may be made of a conductive material such as aluminum (Al) or tantalum (Ta), or may be made of other metal materials that reflect light.
図23等に示す例では、下部電極23は、複数の画素Pに対して共通の電極であり、共通電極ともいえる。上部電極22は、光電変換膜21で変換された電荷の読み出しに用いる電極であり、読み出し電極ともいえる。上部電極22及び下部電極23は、それぞれ互いに異なる配線、電極等を介して、例えば、半導体基板120に設けられた回路に電気的に接続される。 In the example shown in FIG. 23 etc., the lower electrode 23 is an electrode common to multiple pixels P, and can also be called a common electrode. The upper electrode 22 is an electrode used to read out the electric charges converted by the photoelectric conversion film 21, and can also be called a readout electrode. The upper electrode 22 and the lower electrode 23 are each electrically connected to, for example, a circuit provided on the semiconductor substrate 120 via different wiring, electrodes, etc.
撮像装置1の画素Pは、配線36及び電極32を有する。配線36及び電極32は、光電変換部11で変換された電荷の読み出しに用いる配線及び電極である。配線36は、上部電極22と電気的に接続され、例えば絶縁膜132内において電極32と電気的に接続される。 The pixel P of the imaging device 1 has a wiring 36 and an electrode 32. The wiring 36 and the electrode 32 are used to read out the electric charge converted by the photoelectric conversion unit 11. The wiring 36 is electrically connected to the upper electrode 22, and is electrically connected to the electrode 32, for example, within the insulating film 132.
配線36は、例えば、光電変換膜21と下部電極23を貫通するように設けられ、上部電極22と電極32とを電気的に接続する。図23に示す例では、配線36は、光電変換膜21と下部電極23と絶縁膜131とを貫通し、絶縁膜132内の電極32に達するように配置される。 The wiring 36 is provided, for example, so as to penetrate the photoelectric conversion film 21 and the lower electrode 23, and electrically connects the upper electrode 22 and the electrode 32. In the example shown in FIG. 23, the wiring 36 is arranged so as to penetrate the photoelectric conversion film 21, the lower electrode 23, and the insulating film 131, and reach the electrode 32 in the insulating film 132.
配線36は、例えば、タングステン(W)、銅(Cu)等の金属材料を用いて構成される。配線36は、一例として、画素Pにおいて開口部65から離れて設けられ、光電変換部11の端側に位置する。配線36は、柱状に形成され、柱状配線といえる。上部電極22は、柱状配線である配線36を介して、電極32と電気的に接続される。配線36の周囲には、絶縁膜37が設けられる。 The wiring 36 is made of a metal material such as tungsten (W) or copper (Cu). As an example, the wiring 36 is provided away from the opening 65 in the pixel P and is located on the end side of the photoelectric conversion section 11. The wiring 36 is formed in a pillar shape and can be said to be a pillar-shaped wiring. The upper electrode 22 is electrically connected to the electrode 32 via the wiring 36, which is a pillar-shaped wiring. An insulating film 37 is provided around the wiring 36.
絶縁膜37は、例えば酸化シリコンにより構成され、配線36の側面(側部)に設けられる。絶縁膜37は、例えば、配線36の側面に沿うように配置される。図23に示す例のように、絶縁膜37は、配線36の側面(側壁)を覆うように形成され得る。 The insulating film 37 is made of, for example, silicon oxide, and is provided on the side (side portion) of the wiring 36. The insulating film 37 is arranged, for example, so as to follow the side of the wiring 36. As in the example shown in FIG. 23, the insulating film 37 can be formed so as to cover the side (side wall) of the wiring 36.
絶縁膜37は、酸窒化シリコン、酸化アルミニウム等の絶縁材料を用いて構成されてもよく、他の材料を用いて構成されてもよい。撮像装置1では、絶縁膜37が設けられることで、配線36の周囲における暗電流の発生を抑制することができる。 The insulating film 37 may be made of an insulating material such as silicon oxynitride or aluminum oxide, or may be made of other materials. In the imaging device 1, the insulating film 37 is provided to suppress the generation of dark current around the wiring 36.
撮像装置1では、配線36及び電極32等によって、光電変換部11の上部電極22と、半導体基板120に設けられた読み出し回路15とが電気的に接続される。光電変換部11で光電変換されて蓄積された電荷は、配線36及び電極32等を介して、読み出し回路15のフローティングディフュージョンFDに転送される。 In the imaging device 1, the upper electrode 22 of the photoelectric conversion unit 11 is electrically connected to the readout circuit 15 provided on the semiconductor substrate 120 by wiring 36, electrodes 32, etc. The electric charge photoelectrically converted and accumulated in the photoelectric conversion unit 11 is transferred to the floating diffusion FD of the readout circuit 15 via wiring 36, electrodes 32, etc.
本実施の形態に係る撮像装置1では、上述のように、複数の画素Pに対して下部電極23が設けられる。このため、画素P毎に分離された下部電極23が設けられる場合と比較して、計測対象(被写体)からの光が下部電極23の下方に漏れることを抑制することができる。光電変換部11の端側に進んだ光も、下部電極23によって光電変換部11へ再入射させることが可能となる。また、周囲の画素Pへの光の漏れ込みを抑制し、混色を低減することが可能となる。 In the imaging device 1 according to this embodiment, as described above, the lower electrodes 23 are provided for a plurality of pixels P. Therefore, compared to a case where a separate lower electrode 23 is provided for each pixel P, it is possible to prevent light from the measurement target (subject) from leaking below the lower electrode 23. The lower electrode 23 can also cause light that has traveled to the end side of the photoelectric conversion unit 11 to be re-entered into the photoelectric conversion unit 11. It is also possible to prevent light from leaking into surrounding pixels P, thereby reducing color mixing.
本実施の形態では、開口部65を通過した光を下部電極23によって光電変換部11へ反射させ、光電変換部11へ効率よく光を導くことが可能となる。光閉じ込め性能を向上させることができ、量子効率(QE)を向上させることができる。入射光に対する感度を向上させることが可能となる。 In this embodiment, the light that passes through the opening 65 is reflected by the lower electrode 23 toward the photoelectric conversion unit 11, making it possible to efficiently guide the light to the photoelectric conversion unit 11. This makes it possible to improve the light confinement performance and improve the quantum efficiency (QE). It is also possible to improve the sensitivity to incident light.
図26A~図26Lは、第2の実施の形態に係る撮像装置の製造方法の一例を説明するための図である。まず、図26Aに示すように、電極32及び絶縁膜132,131等を形成し、絶縁膜131上に銅(Cu)からなる下部電極23を形成する。そして、図26Bに示すように、下部電極23上に光電変換膜21を形成する。 Figures 26A to 26L are diagrams for explaining an example of a manufacturing method for an imaging device according to the second embodiment. First, as shown in Figure 26A, an electrode 32 and insulating films 132, 131, etc. are formed, and a lower electrode 23 made of copper (Cu) is formed on the insulating film 131. Then, as shown in Figure 26B, a photoelectric conversion film 21 is formed on the lower electrode 23.
次に、図26Cに示すように、リソグラフィ及びドライエッチングによって、光電変換膜21の一部を選択的に除去する。そして、図26Dに示すように、例えばALD(Atomic Layer Deposition)によって、分離部50(例えば酸化アルミニウム膜)を形成する。 Next, as shown in FIG. 26C, a portion of the photoelectric conversion film 21 is selectively removed by lithography and dry etching. Then, as shown in FIG. 26D, an isolation portion 50 (e.g., an aluminum oxide film) is formed, for example, by ALD (Atomic Layer Deposition).
次に、図26Eに示すように、リソグラフィ及びドライエッチングによって、光電変換膜21、絶縁膜131、及び絶縁膜132を選択的に除去する。そして、図26Fに示すように、選択的に除去された部分に、ALDによって絶縁膜37(例えばシリコン酸化膜)を形成する。さらに、図26Gに示すように、配線36(例えばタングステン膜)を埋め込み形成する。 Next, as shown in FIG. 26E, the photoelectric conversion film 21, the insulating film 131, and the insulating film 132 are selectively removed by lithography and dry etching. Then, as shown in FIG. 26F, an insulating film 37 (e.g., a silicon oxide film) is formed by ALD in the selectively removed portions. Furthermore, as shown in FIG. 26G, wiring 36 (e.g., a tungsten film) is embedded and formed.
次に、図26Hに示すように、光電変換膜21上に、上部電極22(例えばITO膜)を成膜する。そして、図26Iに示すように、上部電極22を覆うように保護層80としてのシリコン窒化膜を形成し、シリコン窒化膜に対して平坦化処理を行う。さらに、図26Jに示すように、保護膜85上に、反射部材61と吸収部材62とを含む遮光部材60を形成する。 Next, as shown in FIG. 26H, an upper electrode 22 (e.g., an ITO film) is formed on the photoelectric conversion film 21. Then, as shown in FIG. 26I, a silicon nitride film is formed as a protective layer 80 so as to cover the upper electrode 22, and a planarization process is performed on the silicon nitride film. Furthermore, as shown in FIG. 26J, a light-shielding member 60 including a reflective member 61 and an absorbing member 62 is formed on the protective film 85.
次に、図26Kに示すように、遮光部材60を覆うように保護層80としてのシリコン窒化膜を形成し、保護層80に対して平坦化処理を行う。そして、図26Lに示すように、保護層80上にレンズ90を形成する。以上のような製造方法によって、図23等に示す撮像装置1を製造することができる。 Next, as shown in FIG. 26K, a silicon nitride film is formed as a protective layer 80 so as to cover the light shielding member 60, and a planarization process is performed on the protective layer 80. Then, as shown in FIG. 26L, a lens 90 is formed on the protective layer 80. By the manufacturing method described above, the imaging device 1 shown in FIG. 23 etc. can be manufactured.
図27は、第2の実施の形態に係る撮像装置の別の構成例を説明するための図である。分離部50は、図27に示す例のように、隣り合う複数の上部電極22の間から、下部電極23まで設けられてもよい。分離部50の一部を挟むように、各画素Pの上部電極22が設けられ得る。 FIG. 27 is a diagram for explaining another example configuration of an imaging device according to the second embodiment. As in the example shown in FIG. 27, the separation section 50 may be provided between adjacent upper electrodes 22 and up to the lower electrode 23. The upper electrodes 22 of each pixel P may be provided so as to sandwich a part of the separation section 50.
図28A~図28Lは、第2の実施の形態に係る撮像装置の製造方法の別の例を説明するための図である。まず、図28Aに示すように、電極32及び絶縁膜132,131等を形成し、絶縁膜131上に下部電極23を形成する。そして、図28Bに示すように、下部電極23上に光電変換膜21を形成する。 Figures 28A to 28L are diagrams for explaining another example of a method for manufacturing an imaging device according to the second embodiment. First, as shown in Figure 28A, an electrode 32 and insulating films 132, 131, etc. are formed, and a lower electrode 23 is formed on the insulating film 131. Then, as shown in Figure 28B, a photoelectric conversion film 21 is formed on the lower electrode 23.
次に、図28Cに示すように、リソグラフィ及びドライエッチングによって、光電変換膜21、絶縁膜131、及び絶縁膜132の各々の一部を除去する。そして、図28Dに示すように、例えばALDによって絶縁膜37を形成する。さらに、図28Eに示すように、配線36を埋め込み形成する。 Next, as shown in FIG. 28C, a portion of each of the photoelectric conversion film 21, the insulating film 131, and the insulating film 132 is removed by lithography and dry etching. Then, as shown in FIG. 28D, an insulating film 37 is formed by, for example, ALD. Furthermore, as shown in FIG. 28E, wiring 36 is embedded and formed.
次に、図28Fに示すように、光電変換膜21上に、上部電極22としてのITO膜24を形成する。そして、図28Gに示すように、リソグラフィ及びドライエッチングによって、ITO膜24及び光電変換膜21の各々の一部を除去する。ITO膜24を選択的に除去することで、各画素Pの上部電極22が形成される。 Next, as shown in FIG. 28F, an ITO film 24 is formed as the upper electrode 22 on the photoelectric conversion film 21. Then, as shown in FIG. 28G, a portion of each of the ITO film 24 and the photoelectric conversion film 21 is removed by lithography and dry etching. The upper electrode 22 of each pixel P is formed by selectively removing the ITO film 24.
次に、図28Hに示すように、例えばALDによって分離部50を形成する。そして、図28Iに示すように、上部電極22を覆うように保護層80を形成する。さらに、図28Jに示すように、保護層80上に遮光部材60を形成する。 Next, as shown in FIG. 28H, the separation section 50 is formed by, for example, ALD. Then, as shown in FIG. 28I, a protective layer 80 is formed so as to cover the upper electrode 22. Furthermore, as shown in FIG. 28J, a light-shielding member 60 is formed on the protective layer 80.
次に、図28Kに示すように、遮光部材60を覆うように保護層80を形成し、保護層80に対して平坦化処理を行う。そして、図28Lに示すように、保護層80上にレンズ90を形成する。以上のような製造方法によって、図27等に示す撮像装置1を製造することができる。なお、上述した製造方法は、あくまでも一例であって、他の製造方法を採用してもよい。 Next, as shown in FIG. 28K, a protective layer 80 is formed to cover the light blocking member 60, and a planarization process is performed on the protective layer 80. Then, as shown in FIG. 28L, a lens 90 is formed on the protective layer 80. By using the manufacturing method described above, the imaging device 1 shown in FIG. 27 etc. can be manufactured. Note that the manufacturing method described above is merely one example, and other manufacturing methods may be adopted.
[作用・効果]
本実施の形態に係る光検出装置は、第1電極(上部電極22)と、第1電極に対向するように設けられる第2電極(下部電極23)と、第1電極と第2電極との間に設けられる光電変換膜(光電変換膜21)とを有する光電変換素子(光電変換部11)と、第1電極の上方に設けられ、光が入射する開口部(開口部65)を有する遮光部材(遮光部材60)とを備える。第2電極は、光電変換膜をそれぞれ含む複数の画素に対して設けられている。
[Action and Effects]
The photodetector according to this embodiment includes a photoelectric conversion element (photoelectric conversion unit 11) having a first electrode (upper electrode 22), a second electrode (lower electrode 23) provided so as to face the first electrode, and a photoelectric conversion film (photoelectric conversion film 21) provided between the first electrode and the second electrode, and a light shielding member (light shielding member 60) provided above the first electrode and having an opening (opening 65) through which light is incident. The second electrode is provided for a plurality of pixels each including a photoelectric conversion film.
本実施の形態に係る光検出装置(撮像装置1)では、下部電極23は、複数の画素Pに対して設けられる。このため、下部電極23の下方に光が漏れることを抑制することができる。良好な検出性能を有する光検出装置を実現することが可能となる。 In the photodetection device (imaging device 1) according to this embodiment, the lower electrode 23 is provided for a plurality of pixels P. This makes it possible to prevent light from leaking below the lower electrode 23. It is possible to realize a photodetection device with good detection performance.
次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。 Next, a modified example of the present disclosure will be described. In the following, components similar to those in the above embodiment will be given the same reference numerals, and descriptions will be omitted as appropriate.
<4.変形例>
(4-1.変形例9)
上述した実施の形態では、撮像装置1の構成例について説明したが、撮像装置1の構成は、上述した例に限られない。例えば、配線36の配置は、上述した例に限られず、任意に設定可能である。図29及び図30は、本開示の変形例9に係る撮像装置の構成例を説明するための図である。図29及び図30は、撮像装置1の平面構成の一例を示している。
4. Modifications
(4-1. Modification 9)
In the above-described embodiment, a configuration example of the imaging device 1 has been described, but the configuration of the imaging device 1 is not limited to the above-described example. For example, the arrangement of the wiring 36 is not limited to the above-described example, and can be set arbitrarily. Figures 29 and 30 are diagrams for explaining a configuration example of an imaging device according to a ninth modification of the present disclosure. Figures 29 and 30 show an example of the planar configuration of the imaging device 1.
撮像装置1では、複数の画素Pの各々の配線36が、互いに隣り合うように設けられてもよい。例えば、図29及び図30に示す例のように、隣り合う4つの画素Pの各々の配線36(柱状配線)が、互いに隣り合うように配置され得る。各画素Pの配線36を対称的に配置(レイアウト)することで、光の利用効率の向上が期待できる。 In the imaging device 1, the wiring 36 of each of the multiple pixels P may be arranged adjacent to one another. For example, as shown in the example of Figures 29 and 30, the wiring 36 (columnar wiring) of four adjacent pixels P may be arranged adjacent to one another. By arranging (laying out) the wiring 36 of each pixel P symmetrically, it is expected that the light utilization efficiency will be improved.
(4-2.変形例10)
図31は、変形例10に係る撮像装置の構成例を説明するための図である。撮像装置1は、図31に示す例のように、レンズ95を有していてもよい。レンズ95は、例えば、レンズ90と保護層80との間に設けられる。レンズ95(レンズ部)は、インナーレンズとも呼ばれる光学部材である。
(4-2. Modification 10)
Fig. 31 is a diagram for explaining a configuration example of an imaging device according to Modification 10. The imaging device 1 may have a lens 95 as in the example shown in Fig. 31. The lens 95 is provided, for example, between the lens 90 and the protective layer 80. The lens 95 (lens portion) is an optical member also called an inner lens.
レンズ95は、例えば、レンズ90とは異なる形状を有し、レンズ90と保護層80との間に位置する。図31に示す例では、レンズ90は、凸レンズであり、レンズ95は、凹レンズである。レンズ95は、例えば、レンズ90及び保護層80の各々の屈折率とは異なる屈折率を有する材料により構成される。 Lens 95, for example, has a shape different from that of lens 90 and is located between lens 90 and protective layer 80. In the example shown in FIG. 31, lens 90 is a convex lens and lens 95 is a concave lens. Lens 95 is made of a material having a refractive index different from that of each of lens 90 and protective layer 80, for example.
レンズ90の屈折率をn1、保護層80の屈折率をn2、レンズ95の屈折率をn3とすると、レンズ90及びレンズ95及び保護層80は、n1>n3>n2を満たすように形成され得る。このように撮像装置1を構成することで、光電変換部11へ光を効率よく集光させることができる。量子効率を向上させることが可能となる。 If the refractive index of lens 90 is n1, the refractive index of protective layer 80 is n2, and the refractive index of lens 95 is n3, then lens 90, lens 95, and protective layer 80 can be formed to satisfy n1>n3>n2. By configuring imaging device 1 in this way, light can be efficiently focused onto photoelectric conversion unit 11. It is possible to improve quantum efficiency.
(4-3.変形例11)
図32は、変形例11に係る撮像装置の断面構成の一例を示す図である。また、図33及び図34は、変形例11に係る撮像装置の平面構成の一例を説明するための図である。撮像装置1は、2つ又は2つ以上の光電変換部(光電変換素子)が積層された構成を有していてもよい。
(4-3. Modification 11)
Fig. 32 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 11. Fig. 33 and Fig. 34 are diagrams for explaining an example of a planar configuration of an imaging device according to Modification 11. The imaging device 1 may have a configuration in which two or more photoelectric conversion units (photoelectric conversion elements) are stacked.
撮像装置1は、一例として、図32に示すように、光電変換部11と、光電変換部211とが積層された構造を有する。光が入射する側から、複数の光電変換部211を有する受光層210と、複数の光電変換部11を有する受光層10とが設けられる。 As an example, the imaging device 1 has a structure in which a photoelectric conversion unit 11 and a photoelectric conversion unit 211 are stacked as shown in FIG. 32. From the light incident side, a light receiving layer 210 having a plurality of photoelectric conversion units 211 and a light receiving layer 10 having a plurality of photoelectric conversion units 11 are provided.
光電変換部11は、例えば、上述した光電変換膜21と、上部電極22と、下部電極23とを含む。また、光電変換部11に対して、分離部50と、配線36と、電極32が設けられる。光電変換部211は、光電変換部11に積層するように設けられる。光電変換部211は、光電変換部11と同様の構成を有し得る。 The photoelectric conversion unit 11 includes, for example, the photoelectric conversion film 21, the upper electrode 22, and the lower electrode 23 described above. In addition, a separation unit 50, wiring 36, and an electrode 32 are provided for the photoelectric conversion unit 11. The photoelectric conversion unit 211 is provided so as to be stacked on the photoelectric conversion unit 11. The photoelectric conversion unit 211 may have the same configuration as the photoelectric conversion unit 11.
光電変換部211は、例えば、光電変換膜221、上部電極222と、下部電極223とを含む。光電変換部211の光電変換膜221、上部電極222、下部電極223は、それぞれ、光電変換部11の光電変換膜21、上部電極22、下部電極23に対応する。 The photoelectric conversion unit 211 includes, for example, a photoelectric conversion film 221, an upper electrode 222, and a lower electrode 223. The photoelectric conversion film 221, the upper electrode 222, and the lower electrode 223 of the photoelectric conversion unit 211 correspond to the photoelectric conversion film 21, the upper electrode 22, and the lower electrode 23 of the photoelectric conversion unit 11, respectively.
また、光電変換部211に対して、分離部250と、配線236と、電極232が設けられる。分離部250、配線236、及び電極232は、分離部50、配線36、及び電極32と同様の構成を有し得る。分離部250は、隣り合う複数の光電変換部211の間に形成され、光電変換部211間を分離する。 In addition, a separator 250, wiring 236, and electrode 232 are provided for the photoelectric conversion unit 211. The separator 250, wiring 236, and electrode 232 may have the same configuration as the separator 50, wiring 36, and electrode 32. The separator 250 is formed between adjacent photoelectric conversion units 211, and separates the photoelectric conversion units 211 from each other.
配線236及び電極232は、光電変換部211で変換された電荷の読み出しに用いる配線及び電極である。配線236は、上部電極222と電気的に接続され、例えば絶縁膜132内において電極232と電気的に接続される。配線236は、柱状に形成され、柱状配線といえる。 The wiring 236 and the electrode 232 are used to read out the electric charge converted by the photoelectric conversion unit 211. The wiring 236 is electrically connected to the upper electrode 222, and is electrically connected to the electrode 232, for example, within the insulating film 132. The wiring 236 is formed in a pillar shape, and can be called a pillar wiring.
配線236は、例えば、光電変換膜221と下部電極223と光電変換部11とを貫通するように設けられ、上部電極222と電極232とを電気的に接続する。図32に示す例では、配線236は、光電変換膜221と下部電極223と光電変換部11と絶縁膜131とを貫通し、絶縁膜132内の電極232に達するように配置される。 The wiring 236 is provided, for example, so as to penetrate the photoelectric conversion film 221, the lower electrode 223, and the photoelectric conversion unit 11, and electrically connects the upper electrode 222 and the electrode 232. In the example shown in FIG. 32, the wiring 236 is arranged so as to penetrate the photoelectric conversion film 221, the lower electrode 223, the photoelectric conversion unit 11, and the insulating film 131, and reach the electrode 232 in the insulating film 132.
光電変換部11及び光電変換部211は、互いに異なる波長域の光を光電変換するように構成され得る。光電変換部11と光電変換部211とは、例えば、光電変換膜21,221の構成材料、量子ドットの粒径(直径)などに応じて、特定の波長域の光を選択的に受光して光電変換する。図32に示す例では、光電変換部11は、光電変換部211の下方に位置し、光電変換部211を透過する光を光電変換して電荷を生成し得る。 The photoelectric conversion unit 11 and the photoelectric conversion unit 211 can be configured to perform photoelectric conversion on light in different wavelength ranges. The photoelectric conversion unit 11 and the photoelectric conversion unit 211 selectively receive light in a specific wavelength range and perform photoelectric conversion depending on, for example, the constituent material of the photoelectric conversion films 21, 221 and the particle size (diameter) of the quantum dots. In the example shown in FIG. 32, the photoelectric conversion unit 11 is located below the photoelectric conversion unit 211 and can perform photoelectric conversion on light passing through the photoelectric conversion unit 211 to generate electric charge.
撮像装置1は、光電変換部11で変換された電荷に基づく画素信号と、光電変換部211で変換された電荷に基づく画素信号とを得ることができる。なお、光電変換部11及び光電変換部211の各々は、赤外光を受光して光電変換するように構成されてもよく、可視光を受光して光電変換するように構成されてもよい。 The imaging device 1 can obtain a pixel signal based on the charge converted by the photoelectric conversion unit 11 and a pixel signal based on the charge converted by the photoelectric conversion unit 211. Each of the photoelectric conversion unit 11 and the photoelectric conversion unit 211 may be configured to receive infrared light and perform photoelectric conversion, or may be configured to receive visible light and perform photoelectric conversion.
図35は、変形例11に係る撮像装置の別の構成例を説明するための図である。配線236は、光電変換部11の上部電極22を貫通して設けられてもよい。図35に示す例では、配線236は、光電変換膜221、下部電極223、上部電極22、光電変換膜21、下部電極23、及び絶縁膜131を貫通するように設けられ、上部電極222と電極232とを電気的に接続する。 FIG. 35 is a diagram for explaining another example configuration of an imaging device according to Modification 11. The wiring 236 may be provided so as to penetrate the upper electrode 22 of the photoelectric conversion section 11. In the example shown in FIG. 35, the wiring 236 is provided so as to penetrate the photoelectric conversion film 221, the lower electrode 223, the upper electrode 22, the photoelectric conversion film 21, the lower electrode 23, and the insulating film 131, and electrically connects the upper electrode 222 and the electrode 232.
(4-4.変形例12)
図36~図38は、変形例12に係る撮像装置の構成例を説明するための図である。遮光部材60を、反射部材61及び吸収部材62の一方のみを有する構成としてもよい。例えば、図36に示す例のように、反射部材61のみを配置し、吸収部材62を配置しなくてもよい。また、図37に示す例のように、吸収部材62のみを配置し、反射部材61を配置しないようにしてもよい。図38に示す例のように、撮像装置1を、遮光部材60を有しない構成としてもよい。
(4-4. Modification 12)
36 to 38 are diagrams for explaining configuration examples of an imaging device according to Modification 12. The light blocking member 60 may be configured to have only one of a reflecting member 61 and an absorbing member 62. For example, as in the example shown in FIG. 36, only the reflecting member 61 may be disposed, and the absorbing member 62 may not be disposed. Also, as in the example shown in FIG. 37, only the absorbing member 62 may be disposed, and the reflecting member 61 may not be disposed. As in the example shown in FIG. 38, the imaging device 1 may be configured not to have a light blocking member 60.
<5.適用例>
(適用例1)
上述したような光検出装置(撮像装置1)は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
5. Application Examples
(Application Example 1)
The above-described light detection device (imaging device 1) can be applied to various electronic devices, such as imaging systems such as digital still cameras and digital video cameras, mobile phones with imaging functions, or other devices with imaging functions.
図39は、電子機器の構成例を示すブロック図である。 FIG. 39 is a block diagram showing an example of the configuration of an electronic device.
図39に示すように、電子機器101は、光学系102、光検出装置103、DSP(Digital Signal Processor)104を備えており、バス107を介して、DSP104、表示装置105、操作系106、メモリ108、記録装置109、および電源系110が接続されて構成され、静止画像および動画像を撮像可能である。 As shown in FIG. 39, the electronic device 101 includes an optical system 102, a photodetector 103, and a DSP (Digital Signal Processor) 104. The DSP 104, display device 105, operation system 106, memory 108, recording device 109, and power supply system 110 are connected via a bus 107, and the electronic device 101 is capable of capturing still and moving images.
光学系102は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を光検出装置103に導き、光検出装置103の受光面(センサ部)に結像させる。 The optical system 102 is composed of one or more lenses, and guides image light (incident light) from the subject to the light detection device 103, forming an image on the light receiving surface (sensor section) of the light detection device 103.
光検出装置103としては、上述した光検出装置(撮像装置1)が適用可能である。光検出装置103には、光学系102を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、光検出装置103に蓄積された電子に応じた信号がDSP104に供給される。 The above-mentioned photodetection device (imaging device 1) can be used as the photodetection device 103. Electrons are accumulated in the photodetection device 103 for a certain period of time according to the image formed on the light receiving surface via the optical system 102. Then, a signal according to the electrons accumulated in the photodetection device 103 is supplied to the DSP 104.
DSP104は、光検出装置103からの信号に対して各種の信号処理を施して画像を取得し、その画像のデータを、メモリ108に一時的に記憶させる。メモリ108に記憶された画像のデータは、記録装置109に記録されたり、表示装置105に供給されて画像が表示されたりする。また、操作系106は、ユーザによる各種の操作を受け付けて電子機器101の各ブロックに操作信号を供給する。電源系110は、電子機器101の各ブロックの駆動に必要な電力を供給する。 The DSP 104 performs various signal processing on the signal from the light detection device 103 to obtain an image, and temporarily stores the image data in the memory 108. The image data stored in the memory 108 is recorded in the recording device 109 or supplied to the display device 105 to display the image. The operation system 106 also accepts various operations by the user and supplies operation signals to each block of the electronic device 101. The power supply system 110 supplies the power necessary to drive each block of the electronic device 101.
(適用例2)
図40Aは、光検出装置(撮像装置1)を備えた光検出システム2000の全体構成の一例を模式的に表したものである。図40Bは、光検出システム2000の回路構成の一例を模式的に表したものである。光検出システム2000は、光L2を発する光源部としての発光装置2001と、光電変換素子を有する受光部としての光検出装置2002とを備えている。
(Application Example 2)
Fig. 40A is a schematic diagram showing an example of the overall configuration of a light detection system 2000 including a light detection device (imaging device 1). Fig. 40B is a schematic diagram showing an example of the circuit configuration of the light detection system 2000. The light detection system 2000 includes a light emitting device 2001 as a light source unit that emits light L2, and a light detection device 2002 as a light receiving unit having a photoelectric conversion element.
光検出装置2002としては、上述した光検出装置(撮像装置1)を用いることができる。光検出システム2000は、さらに、システム制御部2003、光源駆動部2004、センサ制御部2005、光源側光学系2006、およびカメラ側光学系2007を備えていてもよい。 The above-mentioned light detection device (imaging device 1) can be used as the light detection device 2002. The light detection system 2000 may further include a system control unit 2003, a light source driving unit 2004, a sensor control unit 2005, a light source side optical system 2006, and a camera side optical system 2007.
光検出装置2002は、光L1と光L2とを検出することができる。光L1は、外部からの環境光が被写体2100(測定対象物)において反射された光である(図40A参照)。光L2は、発光装置2001において発光された光のうち、被写体2100に反射された光である。光L1は、例えば可視光であり、光L2は、例えば赤外光である。 The light detection device 2002 can detect light L1 and light L2. Light L1 is external ambient light reflected by the subject 2100 (object to be measured) (see FIG. 40A). Light L2 is light emitted by the light emitting device 2001 that is reflected by the subject 2100. Light L1 is, for example, visible light, and light L2 is, for example, infrared light.
光L1は、光検出装置2002における光電変換部において検出可能であり、光L2は、光検出装置2002における光電変換部において検出可能である。光L1から被写体2100の画像情報を獲得し、光L2から被写体2100と光検出システム2000との間の距離情報を獲得することができる。 Light L1 can be detected by a photoelectric conversion unit in the light detection device 2002, and light L2 can be detected by a photoelectric conversion unit in the light detection device 2002. Image information of the subject 2100 can be obtained from the light L1, and distance information between the subject 2100 and the light detection system 2000 can be obtained from the light L2.
光検出システム2000は、例えば、スマートフォン等の電子機器や車等の移動体に搭載することができる。発光装置2001は、例えば、半導体レーザ、面発光半導体レーザ、垂直共振器型面発光レーザ(VCSEL)で構成することができる。 The optical detection system 2000 can be mounted on, for example, an electronic device such as a smartphone or a mobile object such as a car. The light emitting device 2001 can be configured, for example, with a semiconductor laser, a surface emitting semiconductor laser, or a vertical cavity surface emitting laser (VCSEL).
発光装置2001から発光された光L2の光検出装置2002による検出方法としては、例えばiTOF方式を採用することができるが、これに限定されることはない。iTOF方式では、光電変換部は、例えば光飛行時間(Time-of-Flight;TOF)により被写体2100との距離を測定することができる。 The method of detection by the light detection device 2002 of the light L2 emitted from the light emitting device 2001 can be, for example, the iTOF method, but is not limited to this. In the iTOF method, the photoelectric conversion unit can measure the distance to the subject 2100, for example, by the time-of-flight (TOF).
発光装置2001から発光された光L2の光検出装置2002による検出方法としては、例えば、ストラクチャード・ライト方式やステレオビジョン方式を採用することもできる。例えばストラクチャード・ライト方式では、あらかじめ定められたパターンの光を被写体2100に投影し、そのパターンのひずみ具合を解析することによって光検出システム2000と被写体2100との距離を測定することができる。 As a method for detecting the light L2 emitted from the light emitting device 2001 by the light detecting device 2002, for example, a structured light method or a stereo vision method can be adopted. For example, in the structured light method, a predetermined pattern of light is projected onto the subject 2100, and the degree of distortion of the pattern is analyzed to measure the distance between the light detecting system 2000 and the subject 2100.
また、ステレオビジョン方式においては、例えば2以上のカメラを用い、被写体2100を2以上の異なる視点から見た2以上の画像を取得することで光検出システム2000と被写体との距離を測定することができる。なお、発光装置2001と光検出装置2002とは、システム制御部2003によって同期制御することができる。 In addition, in the stereo vision method, for example, two or more cameras are used to acquire two or more images of the subject 2100 viewed from two or more different viewpoints, thereby making it possible to measure the distance between the light detection system 2000 and the subject. Note that the light emitting device 2001 and the light detection device 2002 can be synchronously controlled by the system control unit 2003.
<6.応用例>
(移動体への応用例)
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<6. Application Examples>
(Example of application to moving objects)
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
図41は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 41 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図41に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 41, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030. The outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images. The outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, characters on the road surface, etc. based on the received images.
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received. The imaging unit 12031 can output the electrical signal as an image, or as distance measurement information. The light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also perform cooperative control for the purpose of autonomous driving, which allows the vehicle to travel autonomously without relying on the driver's operation, by controlling the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching from high beams to low beams.
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図41の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In the example of FIG. 41, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
図42は、撮像部12031の設置位置の例を示す図である。 FIG. 42 shows an example of the installation position of the imaging unit 12031.
図42では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 42, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100. The imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100. The imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100. The images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
なお、図42には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 42 shows an example of the imaging ranges of the imaging units 12101 to 12104. Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door. For example, an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for phase difference detection.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by performing forced deceleration or avoidance steering via the drive system control unit 12010.
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the image captured by the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the image captured by the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian. When the microcomputer 12051 determines that a pedestrian is present in the image captured by the imaging units 12101 to 12104 and recognizes a pedestrian, the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian. The audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、撮像装置1等は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、高精細な撮影画像を得ることが可能となる。移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことが可能となる。 Above, an example of a mobile object control system to which the technology according to the present disclosure can be applied has been described. Of the configurations described above, the technology according to the present disclosure can be applied to, for example, the imaging unit 12031. Specifically, for example, the imaging device 1 or the like can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, it becomes possible to obtain a high-definition captured image. It becomes possible to perform high-precision control using the captured image in the mobile object control system.
(内視鏡手術システムへの応用例)
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
(Application example to endoscopic surgery system)
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
図43は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 43 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
図43では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 In FIG. 43, an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133. As shown in the figure, the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the tube 11101 has an opening into which an objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132. The endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the object of observation is focused on the image sensor by the optical system. The image sensor converts the observation light photoelectrically to generate an electrical signal corresponding to the observation light, i.e., an image signal corresponding to the observed image. The image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202, under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc. The insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon. The recorder 11207 is a device capable of recording various types of information related to the surgery. The printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these. When the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203. In this case, it is also possible to capture images corresponding to each of the RGB colors in a time-division manner by irradiating the object of observation with laser light from each of the RGB laser light sources in a time-division manner and controlling the drive of the image sensor of the camera head 11102 in synchronization with the irradiation timing. According to this method, a color image can be obtained without providing a color filter to the image sensor.
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 The light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals. The image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 The light source device 11203 may be configured to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a specific tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, excitation light is irradiated to body tissue and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescence wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image. The light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
図44は、図43に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 44 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 43.
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 is composed of an imaging element. The imaging element constituting the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type). When the imaging unit 11402 is composed of a multi-plate type, for example, each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display. By performing 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site. Note that when the imaging unit 11402 is composed of a multi-plate type, multiple lens units 11401 may be provided corresponding to each imaging element.
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Furthermore, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 The communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405. The control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 The above-mentioned frame rate, exposure value, magnification, focus, and other imaging conditions may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 The communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 The control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 In the illustrated example, communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、高精細な内視鏡11100を提供することが可能となる。 Above, an example of an endoscopic surgery system to which the technology of the present disclosure can be applied has been described. Of the configurations described above, the technology of the present disclosure can be suitably applied to, for example, the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100. By applying the technology of the present disclosure to the imaging unit 11402, it is possible to provide a high-definition endoscope 11100.
以上、実施の形態、変形例および適用例ならびに応用例を挙げて本開示を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上述した変形例は、上記実施の形態の変形例として説明したが、各変形例の構成を適宜組み合わせることができる。 The present disclosure has been described above by giving embodiments, modifications, and examples of application and application, but the present technology is not limited to the above embodiments, and various modifications are possible. For example, the modifications described above have been described as modifications of the above embodiments, but the configurations of each modification can be combined as appropriate.
上記実施の形態等では、撮像装置を例示して説明するようにしたが、本開示の光検出装置は、例えば、入射する光を受光し、光を電荷に変換するものであればよい。出力される信号は、画像情報の信号でもよいし、測距情報の信号でもよい。光検出装置(撮像装置)は、イメージセンサ、測距センサ等に適用され得る。 In the above embodiments, an imaging device has been described as an example, but the light detection device disclosed herein may be, for example, a device that receives incident light and converts the light into an electric charge. The output signal may be a signal of image information or a signal of distance measurement information. The light detection device (imaging device) may be applied to an image sensor, a distance measurement sensor, etc.
本開示に係る光検出装置は、TOF(Time Of Flight)方式の距離計測が可能な測距センサとしても適用され得る。光検出装置(撮像装置)は、イベントを検出可能なセンサ、例えば、イベント駆動型のセンサ(EVS(Event Vision Sensor)、EDS(Event Driven Sensor)、DVS(Dynamic Vision Sensor)等と呼ばれる)としても適用され得る。 The optical detection device disclosed herein may also be applied as a distance measurement sensor capable of measuring distance using the Time Of Flight (TOF) method. The optical detection device (imaging device) may also be applied as a sensor capable of detecting events, for example, an event-driven sensor (called an Event Vision Sensor (EVS), Event Driven Sensor (EDS), Dynamic Vision Sensor (DVS), etc.).
本開示の一実施形態の光検出装置は、第1電極と、第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、第1電極の上方に設けられ、光が入射する開口部を有する遮光部材とを備える。このため、良好な検出性能を有する光検出装置を実現することが可能となる。 The photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a light-shielding member provided above the first electrode and having an opening through which light is incident. This makes it possible to realize a photodetector with good detection performance.
本開示の一実施形態の光検出装置は、第1電極と、第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子と、隣り合う複数の光電変換素子の間に設けられる分離部とを備える。このため、良好な検出性能を有する光検出装置を実現することが可能となる。 The photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode, and a photoelectric conversion film provided between the first electrode and the second electrode, and a separator provided between adjacent photoelectric conversion elements. This makes it possible to realize a photodetector with good detection performance.
本開示の一実施形態の光検出装置は、第1電極と、第1電極に対向するように設けられる第2電極と、第1電極と第2電極との間に設けられる光電変換膜とを有する光電変換素子を備える。第2電極は、光電変換膜をそれぞれ含む複数の画素に対して設けられている。このため、良好な検出性能を有する光検出装置を実現することが可能となる。 The photodetector of one embodiment of the present disclosure includes a photoelectric conversion element having a first electrode, a second electrode disposed opposite the first electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode. The second electrode is provided for a plurality of pixels each including a photoelectric conversion film. This makes it possible to realize a photodetector with good detection performance.
なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本開示は以下のような構成をとることも可能である。
(1)
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
前記第1電極の上方に設けられ、光が入射する開口部を有する遮光部材と
を備える光検出装置。
(2)
前記遮光部材は、前記開口部を通過した光のうち、前記光電変換素子で反射された入射光を反射する反射部材である
前記(1)に記載の光検出装置。
(3)
前記遮光部材は、入射光を吸収する吸収部材である
前記(1)または(2)に記載の光検出装置。
(4)
前記遮光部材は、前記第1電極の上方に設けられる反射部材と、前記反射部材の上方に積層される吸収部材とを有する
前記(1)から(3)のいずれか1つに記載の光検出装置。
(5)
前記吸収部材における前記開口部の幅は、前記反射部材における前記開口部の幅よりも大きい
前記(4)に記載の光検出装置。
(6)
隣り合う複数の前記光電変換素子の間に設けられる分離部をさらに備える
前記(1)から(5)のいずれか1つに記載の光検出装置。
(7)
前記分離部は、前記第1電極と前記光電変換膜とを貫通するように設けられている
前記(6)に記載の光検出装置。
(8)
前記分離部は、第1絶縁膜と、前記第1絶縁膜内に設けられる第2絶縁膜とを有し、
前記第2絶縁膜の屈折率は、前記第1絶縁膜の屈折率よりも低い
前記(6)または(7)に記載の光検出装置。
(9)
前記分離部は、前記遮光部材の下方から前記第2電極の下方まで設けられている
前記(6)から(8)のいずれか1つに記載の光検出装置。
(10)
平面視において、前記光電変換素子の周囲に複数の前記分離部が離散的に設けられている
前記(6)から(9)のいずれか1つに記載の光検出装置。
(11)
前記光電変換素子を含む画素を有し、
前記画素は、前記遮光部材と前記分離部とを含む光閉じ込め構造を有する
前記(6)から(10)のいずれか1つに記載の光検出装置。
(12)
前記開口部の幅は、前記光電変換素子を含む画素の幅に対して、30%以上75%以下の範囲内である
前記(1)から(11)のいずれか1つに記載の光検出装置。
(13)
前記開口部の面積は、前記光電変換素子を含む画素の面積に対して、4%以上56%以下の範囲内である
前記(1)から(12)のいずれか1つに記載の光検出装置。
(14)
前記遮光部材の上方に設けられ、光が入射するレンズをさらに備え、
前記光電変換膜は、前記レンズと前記開口部とを介して入射する光を光電変換する
前記(1)から(13)のいずれか1つに記載の光検出装置。
(15)
前記レンズと前記遮光部材との積層方向と直交する方向において、前記レンズの中心位置は、前記開口部の中心位置と異なる
前記(14)に記載の光検出装置。
(16)
前記光電変換膜と前記第2電極との間に設けられるバッファ層をさらに備え、
前記第2電極は、前記バッファ層と電気的に接続されている
前記(1)から(15)のいずれか1つに記載の光検出装置。
(17)
前記第2電極の周囲に設けられる第3絶縁膜をさらに備え、
前記第3絶縁膜の屈折率は、前記バッファ層の屈折率よりも低い
前記(16)に記載の光検出装置。
(18)
前記光電変換膜は、量子ドットを有する
前記(1)から(17)のいずれか1つに記載の光検出装置。
(19)
前記第2電極は、前記光電変換膜をそれぞれ含む複数の画素に対して設けられている
前記(1)から(18)のいずれか1つに記載の光検出装置。
(20)
前記第1電極は、前記画素毎に設けられている
前記(19)に記載の光検出装置。
(21)
前記第2電極と前記光電変換膜とを貫通し、前記第1電極と電気的に接続される配線をさらに備える
前記(19)または(20)に記載の光検出装置。
(22)
前記第2電極の下方に設けられ、前記配線と電気的に接続される電極をさらに備える
前記(21)に記載の光検出装置。
(23)
光学系と、
前記光学系を透過した光を受光する光検出装置と
を備え、
前記光検出装置は、
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
前記第1電極の上方に設けられ、光が入射する開口部を有する遮光部材と
を有する
電子機器。
(24)
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
隣り合う複数の前記光電変換素子の間に設けられる分離部と
を備える光検出装置。
(25)
前記分離部は、前記第1電極と前記光電変換膜とを貫通するように設けられている
前記(24)に記載の光検出装置。
(26)
前記分離部は、第1絶縁膜と、前記第1絶縁膜内に設けられる第2絶縁膜とを有し、
前記第2絶縁膜の屈折率は、前記第1絶縁膜の屈折率よりも低い
前記(24)または(25)に記載の光検出装置。
(27)
平面視において、前記光電変換素子の周囲に複数の前記分離部が離散的に設けられている
前記(24)から(26)のいずれか1つに記載の光検出装置。
(28)
前記光電変換膜と前記第2電極との間に設けられるバッファ層をさらに備え、
前記第2電極は、前記バッファ層と電気的に接続されている
前記(24)から(27)のいずれか1つに記載の光検出装置。
(29)
前記第2電極の周囲に設けられる第3絶縁膜をさらに備え、
前記第3絶縁膜の屈折率は、前記バッファ層の屈折率よりも低い
前記(28)に記載の光検出装置。
(30)
前記光電変換膜は、量子ドットを有する
前記(24)から(29)のいずれか1つに記載の光検出装置。
(31)
前記第2電極は、前記光電変換膜をそれぞれ含む複数の画素に対して設けられている
前記(24)から(30)のいずれか1つに記載の光検出装置。
(32)
前記第1電極は、前記画素毎に設けられている
前記(31)に記載の光検出装置。
(33)
前記第2電極と前記光電変換膜とを貫通し、前記第1電極と電気的に接続される配線をさらに備える
前記(31)または(32)に記載の光検出装置。
(34)
前記第2電極の下方に設けられ、前記配線と電気的に接続される電極をさらに備える
前記(33)に記載の光検出装置。
(35)
光学系と、
前記光学系を透過した光を受光する光検出装置と
を備え、
前記光検出装置は、
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
隣り合う複数の前記光電変換素子の間に設けられる分離部と
を有する
電子機器。
(36)
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
前記第1電極の上方に設けられ、光が入射する開口部を有する遮光部材と
を備え、
前記第2電極は、前記光電変換膜をそれぞれ含む複数の画素に対して設けられている
光検出装置。
(37)
前記第1電極は、前記画素毎に設けられている
前記(36)に記載の光検出装置。
(38)
隣り合う複数の前記光電変換素子の間に設けられる分離部をさらに備える
前記(36)または(37)に記載の光検出装置。
(39)
前記画素は、前記遮光部材と前記分離部とを含む光閉じ込め構造を有する
前記(38)に記載の光検出装置。
(40)
前記光電変換膜は、量子ドットを有する
前記(36)から(39)のいずれか1つに記載の光検出装置。
(41)
前記第2電極は、金属材料を用いて構成されている
前記(36)から(40)のいずれか1つに記載の光検出装置。
(42)
前記第2電極と前記光電変換膜とを貫通し、前記第1電極と電気的に接続される配線をさらに備える
前記(36)から(41)のいずれか1つに記載の光検出装置。
(43)
前記第2電極の下方に設けられ、前記配線と電気的に接続される電極をさらに備える
前記(42)に記載の光検出装置。
(44)
光学系と、
前記光学系を透過した光を受光する光検出装置と
を備え、
前記光検出装置は、
第1電極と、前記第1電極に対向するように設けられる第2電極と、前記第1電極と前記第2電極との間に設けられる光電変換膜とを有する光電変換素子と、
前記第1電極の上方に設けられ、光が入射する開口部を有する遮光部材と
を有し、
前記第2電極は、前記光電変換膜をそれぞれ含む複数の画素に対して設けられている
電子機器。
In addition, the effects described in this specification are merely examples and are not limited to the description, and other effects may be obtained. In addition, the present disclosure may have the following configurations.
(1)
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
a light-shielding member provided above the first electrode and having an opening through which light is incident.
(2)
The light detection device according to (1), wherein the light blocking member is a reflective member that reflects incident light that has passed through the opening and is reflected by the photoelectric conversion element.
(3)
The light detection device according to (1) or (2), wherein the light blocking member is an absorbing member that absorbs incident light.
(4)
The light detection device according to any one of (1) to (3), wherein the light blocking member has a reflective member provided above the first electrode and an absorbing member stacked above the reflective member.
(5)
The light detection device according to (4), wherein a width of the opening in the absorbing member is larger than a width of the opening in the reflecting member.
(6)
The photodetector according to any one of (1) to (5), further comprising a separator provided between adjacent ones of the photoelectric conversion elements.
(7)
The light-detecting device according to (6), wherein the separator is provided so as to penetrate the first electrode and the photoelectric conversion film.
(8)
the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
The photodetector according to any one of (6) to (7), wherein the refractive index of the second insulating film is lower than the refractive index of the first insulating film.
(9)
The photodetector according to any one of (6) to (8), wherein the separation portion is provided from below the light blocking member to below the second electrode.
(10)
The photodetector according to any one of (6) to (9), wherein a plurality of the separation portions are discretely provided around the photoelectric conversion element in a plan view.
(11)
A pixel including the photoelectric conversion element is provided,
The photodetector according to any one of (6) to (10), wherein the pixel has a light confinement structure including the light blocking member and the separation portion.
(12)
The photodetector according to any one of (1) to (11), wherein a width of the opening is within a range of 30% to 75% of a width of a pixel including the photoelectric conversion element.
(13)
The light detection device according to any one of (1) to (12), wherein an area of the opening is within a range of 4% to 56% of an area of a pixel including the photoelectric conversion element.
(14)
a lens provided above the light blocking member and into which light is incident;
The photodetector according to any one of (1) to (13), wherein the photoelectric conversion film photoelectrically converts light incident through the lens and the opening.
(15)
The light detection device according to (14), wherein a center position of the lens is different from a center position of the opening in a direction perpendicular to a stacking direction of the lens and the light blocking member.
(16)
A buffer layer is further provided between the photoelectric conversion film and the second electrode,
The photodetector according to any one of (1) to (15), wherein the second electrode is electrically connected to the buffer layer.
(17)
A third insulating film is provided around the second electrode.
The photodetector according to (16), wherein the refractive index of the third insulating film is lower than the refractive index of the buffer layer.
(18)
The photodetector according to any one of (1) to (17), wherein the photoelectric conversion film has quantum dots.
(19)
The photodetector according to any one of (1) to (18), wherein the second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
(20)
The photodetector according to (19), wherein the first electrode is provided for each of the pixels.
(21)
The photodetector according to (19) or (20), further comprising a wiring that penetrates the second electrode and the photoelectric conversion film and is electrically connected to the first electrode.
(22)
The light detection device according to (21), further comprising an electrode provided below the second electrode and electrically connected to the wiring.
(23)
An optical system;
a light detection device that receives light transmitted through the optical system;
The light detection device includes:
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
a light blocking member provided above the first electrode and having an opening through which light is incident.
(24)
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
and a separator provided between adjacent ones of the photoelectric conversion elements.
(25)
The light-detecting device according to (24), wherein the separation portion is provided so as to penetrate the first electrode and the photoelectric conversion film.
(26)
the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
The photodetector according to any one of (24) to (25), wherein the refractive index of the second insulating film is lower than the refractive index of the first insulating film.
(27)
The photodetector according to any one of (24) to (26), wherein a plurality of the separation portions are discretely provided around the photoelectric conversion element in a plan view.
(28)
A buffer layer is further provided between the photoelectric conversion film and the second electrode,
The photodetector according to any one of (24) to (27), wherein the second electrode is electrically connected to the buffer layer.
(29)
A third insulating film is provided around the second electrode.
The photodetector according to any one of the preceding claims, wherein the third insulating film has a refractive index lower than a refractive index of the buffer layer.
(30)
The photodetector according to any one of (24) to (29), wherein the photoelectric conversion film has quantum dots.
(31)
The photodetector according to any one of (24) to (30), wherein the second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
(32)
The photodetector according to any one of (31) to (34), wherein the first electrode is provided for each of the pixels.
(33)
The photodetector according to any one of (31) to (32), further comprising a wiring that penetrates the second electrode and the photoelectric conversion film and is electrically connected to the first electrode.
(34)
The light detection device according to (33), further comprising an electrode provided below the second electrode and electrically connected to the wiring.
(35)
An optical system;
a light detection device that receives light transmitted through the optical system;
The light detection device includes:
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
and a separator provided between adjacent ones of the photoelectric conversion elements.
(36)
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
a light-shielding member provided above the first electrode and having an opening through which light is incident;
The second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
(37)
The photodetector according to (36), wherein the first electrode is provided for each of the pixels.
(38)
The photodetector according to any one of (36) to (37), further comprising a separator provided between adjacent ones of the photoelectric conversion elements.
(39)
The light detection device according to (38), wherein the pixel has a light confinement structure including the light blocking member and the separation portion.
(40)
The photodetector according to any one of (36) to (39), wherein the photoelectric conversion film has quantum dots.
(41)
The photodetector according to any one of (36) to (40), wherein the second electrode is made of a metal material.
(42)
The photodetector according to any one of (36) to (41), further comprising a wiring that penetrates the second electrode and the photoelectric conversion film and is electrically connected to the first electrode.
(43)
The light detection device according to (42), further comprising an electrode provided below the second electrode and electrically connected to the wiring.
(44)
An optical system;
a light detection device that receives light transmitted through the optical system;
The light detection device includes:
a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
a light-shielding member provided above the first electrode and having an opening through which light is incident;
The second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
本出願は、日本国特許庁において2023年5月15日に出願された日本特許出願番号2023-079920号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2023-079920, filed on May 15, 2023, in the Japan Patent Office, the entire contents of which are incorporated herein by reference.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art may conceive of various modifications, combinations, subcombinations, and variations depending on design requirements and other factors, and it is understood that these are within the scope of the appended claims and their equivalents.
Claims (31)
前記第1電極の上方に設けられ、光が入射する開口部を有する遮光部材と
を備える光検出装置。 a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
a light-shielding member provided above the first electrode and having an opening through which light is incident.
請求項1に記載の光検出装置。 The light detection device according to claim 1 , wherein the light blocking member is a reflecting member that reflects incident light that has passed through the opening and is reflected by the photoelectric conversion element.
請求項1に記載の光検出装置。 The light detection device according to claim 1 , wherein the light blocking member is an absorptive member that absorbs incident light.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the light blocking member includes a reflective member provided above the first electrode, and an absorbing member laminated above the reflective member.
請求項4に記載の光検出装置。 The light detection device according to claim 4 , wherein a width of the opening in the absorbing member is greater than a width of the opening in the reflecting member.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , further comprising a separator provided between adjacent ones of the photoelectric conversion elements.
請求項6に記載の光検出装置。 The light-detecting device according to claim 6 , wherein the separator is provided so as to penetrate the first electrode and the photoelectric conversion film.
前記第2絶縁膜の屈折率は、前記第1絶縁膜の屈折率よりも低い
請求項6に記載の光検出装置。 the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
The photodetector according to claim 6 , wherein the second insulating film has a refractive index lower than a refractive index of the first insulating film.
請求項6に記載の光検出装置。 The light detection device according to claim 6 , wherein the separation portion is provided from below the light blocking member to below the second electrode.
請求項6に記載の光検出装置。 The light detection device according to claim 6 , wherein a plurality of the separation portions are provided discretely around the photoelectric conversion element in a plan view.
前記画素は、前記遮光部材と前記分離部とを含む光閉じ込め構造を有する
請求項6に記載の光検出装置。 A pixel including the photoelectric conversion element is provided,
The photodetector according to claim 6 , wherein the pixel has a light confinement structure including the light blocking member and the separation portion.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the width of the opening is within a range of 30% to 75% of the width of a pixel including the photoelectric conversion element.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein an area of the opening is within a range of 4% to 56% of an area of a pixel including the photoelectric conversion element.
前記光電変換膜は、前記レンズと前記開口部とを介して入射する光を光電変換する
請求項1に記載の光検出装置。 a lens provided above the light blocking member and into which light is incident;
The light detection device according to claim 1 , wherein the photoelectric conversion film photoelectrically converts light incident through the lens and the opening.
請求項14に記載の光検出装置。 The light detection device according to claim 14 , wherein a center position of the lens is different from a center position of the opening in a direction perpendicular to a stacking direction of the lens and the light blocking member.
前記第2電極は、前記バッファ層と電気的に接続されている
請求項1に記載の光検出装置。 A buffer layer is further provided between the photoelectric conversion film and the second electrode,
The photodetector device according to claim 1 , wherein the second electrode is electrically connected to the buffer layer.
前記第3絶縁膜の屈折率は、前記バッファ層の屈折率よりも低い
請求項16に記載の光検出装置。 A third insulating film is provided around the second electrode.
The photodetector according to claim 16 , wherein the third insulating film has a refractive index lower than a refractive index of the buffer layer.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the photoelectric conversion film includes quantum dots.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
請求項19に記載の光検出装置。 The photodetection device according to claim 19 , wherein the first electrode is provided for each of the pixels.
請求項19に記載の光検出装置。 The light detection device according to claim 19 , further comprising a wiring that penetrates the second electrode and the photoelectric conversion film and is electrically connected to the first electrode.
請求項21に記載の光検出装置。 The light detection device according to claim 21 , further comprising an electrode provided below the second electrode and electrically connected to the wiring.
隣り合う複数の前記光電変換素子の間に設けられる分離部と
を備える光検出装置。 a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
and a separator provided between adjacent ones of the photoelectric conversion elements.
請求項23に記載の光検出装置。 The light-detecting device according to claim 23 , wherein the separator is provided so as to penetrate the first electrode and the photoelectric conversion film.
前記第2絶縁膜の屈折率は、前記第1絶縁膜の屈折率よりも低い
請求項23に記載の光検出装置。 the isolation portion includes a first insulating film and a second insulating film provided within the first insulating film;
The photodetector according to claim 23 , wherein the second insulating film has a refractive index lower than a refractive index of the first insulating film.
請求項23に記載の光検出装置。 The light detection device according to claim 23 , wherein a plurality of the separation portions are provided discretely around the photoelectric conversion element in a plan view.
を備え、
前記第2電極は、前記光電変換膜をそれぞれ含む複数の画素に対して設けられている
光検出装置。 a photoelectric conversion element including a first electrode, a second electrode provided so as to face the first electrode, and a photoelectric conversion film provided between the first electrode and the second electrode;
The second electrode is provided for a plurality of pixels each including the photoelectric conversion film.
請求項27に記載の光検出装置。 The photodetection device according to claim 27 , wherein the first electrode is provided for each of the pixels.
請求項28に記載の光検出装置。 The light detection device according to claim 28 , wherein the second electrode is made of a metal material.
請求項28に記載の光検出装置。 The light detection device according to claim 28 , further comprising a wiring that penetrates the second electrode and the photoelectric conversion film and is electrically connected to the first electrode.
請求項30に記載の光検出装置。 The light detection device according to claim 30 , further comprising an electrode provided below the second electrode and electrically connected to the wiring.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-079920 | 2023-05-15 | ||
JP2023079920 | 2023-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024236862A1 true WO2024236862A1 (en) | 2024-11-21 |
Family
ID=93519472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001398 WO2024236862A1 (en) | 2023-05-15 | 2024-01-19 | Light detection device and electronic equipment |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024236862A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292365A (en) * | 1985-10-18 | 1987-04-27 | Fuji Photo Film Co Ltd | Semiconductor device and its manufacturing method |
WO2011148574A1 (en) * | 2010-05-28 | 2011-12-01 | パナソニック株式会社 | Solid-state image pickup device |
WO2017010262A1 (en) * | 2015-07-10 | 2017-01-19 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device, manufacturing device, and manufacturing method |
JP2017098513A (en) * | 2015-11-27 | 2017-06-01 | 株式会社ニコン | Imaging device, imaging apparatus, and focusing apparatus |
US20180006072A1 (en) * | 2016-06-30 | 2018-01-04 | Stmicroelectronics (Crolles 2) Sas | Backside illuminated photosensor element with light pipe and light mirror structures |
JP2020021848A (en) * | 2018-08-01 | 2020-02-06 | 住友化学株式会社 | Photodetector element |
WO2021005851A1 (en) * | 2019-07-11 | 2021-01-14 | ソニーセミコンダクタソリューションズ株式会社 | Photoelectric conversion element and photoelectric conversion device |
WO2021005961A1 (en) * | 2019-07-11 | 2021-01-14 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
WO2021149413A1 (en) * | 2020-01-23 | 2021-07-29 | パナソニックIpマネジメント株式会社 | Image capture device |
WO2021187283A1 (en) * | 2020-03-19 | 2021-09-23 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging element |
-
2024
- 2024-01-19 WO PCT/JP2024/001398 patent/WO2024236862A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292365A (en) * | 1985-10-18 | 1987-04-27 | Fuji Photo Film Co Ltd | Semiconductor device and its manufacturing method |
WO2011148574A1 (en) * | 2010-05-28 | 2011-12-01 | パナソニック株式会社 | Solid-state image pickup device |
WO2017010262A1 (en) * | 2015-07-10 | 2017-01-19 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device, manufacturing device, and manufacturing method |
JP2017098513A (en) * | 2015-11-27 | 2017-06-01 | 株式会社ニコン | Imaging device, imaging apparatus, and focusing apparatus |
US20180006072A1 (en) * | 2016-06-30 | 2018-01-04 | Stmicroelectronics (Crolles 2) Sas | Backside illuminated photosensor element with light pipe and light mirror structures |
JP2020021848A (en) * | 2018-08-01 | 2020-02-06 | 住友化学株式会社 | Photodetector element |
WO2021005851A1 (en) * | 2019-07-11 | 2021-01-14 | ソニーセミコンダクタソリューションズ株式会社 | Photoelectric conversion element and photoelectric conversion device |
WO2021005961A1 (en) * | 2019-07-11 | 2021-01-14 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
WO2021149413A1 (en) * | 2020-01-23 | 2021-07-29 | パナソニックIpマネジメント株式会社 | Image capture device |
WO2021187283A1 (en) * | 2020-03-19 | 2021-09-23 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019012739A (en) | Solid-state imaging device and imaging apparatus | |
CN108475688A (en) | Photo detector, the manufacturing method of photo detector, image-forming component and electronic equipment | |
JP2024174999A (en) | Imaging device | |
TW202147594A (en) | Imaging element and imaging device | |
WO2024236862A1 (en) | Light detection device and electronic equipment | |
JP2024164446A (en) | Optical detector and electronic apparatus | |
WO2024142627A1 (en) | Photodetector and electronic apparatus | |
WO2024084991A1 (en) | Photodetector, electronic apparatus, and optical element | |
WO2024142640A1 (en) | Optical element, photodetector, and electronic apparatus | |
JP7635141B2 (en) | Semiconductor device, solid-state imaging device and electronic device | |
WO2024237003A1 (en) | Light detection apparatus and electronic device | |
WO2024162113A1 (en) | Optical detector, optical element, and electronic device | |
WO2024162114A1 (en) | Light detector, optical element, and electronic appliance | |
WO2024202672A1 (en) | Light detection device and electronic device | |
WO2025041370A1 (en) | Light detection device and electronic apparatus | |
WO2024202671A1 (en) | Light detection device and electronic apparatus | |
WO2025018080A1 (en) | Photodetection apparatus, optical element, and electronic device | |
WO2024252897A1 (en) | Light detection device and electronic apparatus | |
WO2024202748A1 (en) | Light detection device and electronic device | |
JP7344114B2 (en) | Image sensor and electronic equipment | |
WO2024057814A1 (en) | Light-detection device and electronic instrument | |
US20220376128A1 (en) | Imaging device and electronic apparatus | |
WO2024111280A1 (en) | Light detection device and electronic equipment | |
WO2024225123A1 (en) | Imaging device and electronic apparatus | |
WO2024116302A1 (en) | Photodetector element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24806817 Country of ref document: EP Kind code of ref document: A1 |