WO2024225405A1 - Phenolic resin foam and method for producing same - Google Patents
Phenolic resin foam and method for producing same Download PDFInfo
- Publication number
- WO2024225405A1 WO2024225405A1 PCT/JP2024/016349 JP2024016349W WO2024225405A1 WO 2024225405 A1 WO2024225405 A1 WO 2024225405A1 JP 2024016349 W JP2024016349 W JP 2024016349W WO 2024225405 A1 WO2024225405 A1 WO 2024225405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenolic resin
- lignin
- mass
- resin composition
- resin foam
- Prior art date
Links
- 239000005011 phenolic resin Substances 0.000 title claims abstract description 290
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 title claims abstract description 288
- 229920001568 phenolic resin Polymers 0.000 title claims abstract description 288
- 239000006260 foam Substances 0.000 title claims abstract description 143
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 claims abstract description 59
- 238000000197 pyrolysis Methods 0.000 claims abstract description 29
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- PGSWEKYNAOWQDF-UHFFFAOYSA-N 3-methylcatechol Chemical compound CC1=CC=CC(O)=C1O PGSWEKYNAOWQDF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004202 carbamide Substances 0.000 claims abstract description 10
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 claims abstract description 10
- RYHGQTREHREIBC-UHFFFAOYSA-N 3,4-dimethylbenzene-1,2-diol Chemical group CC1=CC=C(O)C(O)=C1C RYHGQTREHREIBC-UHFFFAOYSA-N 0.000 claims abstract description 7
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000004132 cross linking Methods 0.000 claims abstract description 6
- 229920005610 lignin Polymers 0.000 claims description 173
- 239000000203 mixture Substances 0.000 claims description 167
- 239000000463 material Substances 0.000 claims description 76
- 238000005187 foaming Methods 0.000 claims description 53
- 239000000843 powder Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- 150000002989 phenols Chemical class 0.000 claims description 7
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 32
- 239000004088 foaming agent Substances 0.000 description 29
- 230000008569 process Effects 0.000 description 28
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 230000014759 maintenance of location Effects 0.000 description 24
- 150000002500 ions Chemical class 0.000 description 21
- 238000005259 measurement Methods 0.000 description 21
- 230000002378 acidificating effect Effects 0.000 description 18
- 239000002667 nucleating agent Substances 0.000 description 17
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 15
- 238000000465 moulding Methods 0.000 description 15
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 14
- -1 polypropylene Polymers 0.000 description 14
- 241000196324 Embryophyta Species 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000000123 paper Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 239000004745 nonwoven fabric Substances 0.000 description 9
- 238000011417 postcuring Methods 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000001282 iso-butane Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000004604 Blowing Agent Substances 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 6
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 6
- 239000011134 resol-type phenolic resin Substances 0.000 description 6
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 description 5
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229920005611 kraft lignin Polymers 0.000 description 5
- 239000004848 polyfunctional curative Substances 0.000 description 5
- 238000005143 pyrolysis gas chromatography mass spectroscopy Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- JIRHAGAOHOYLNO-UHFFFAOYSA-N (3-cyclopentyloxy-4-methoxyphenyl)methanol Chemical compound COC1=CC=C(CO)C=C1OC1CCCC1 JIRHAGAOHOYLNO-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920001732 Lignosulfonate Polymers 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 239000008259 solid foam Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 2
- GDPWRLVSJWKGPJ-UPHRSURJSA-N (z)-1-chloro-2,3,3,3-tetrafluoroprop-1-ene Chemical compound Cl\C=C(/F)C(F)(F)F GDPWRLVSJWKGPJ-UPHRSURJSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- OQISUJXQFPPARX-UHFFFAOYSA-N 2-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C OQISUJXQFPPARX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 2
- 229920005682 EO-PO block copolymer Polymers 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N Furaldehyde Natural products O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 229940044654 phenolsulfonic acid Drugs 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- CZGWDPMDAIPURF-UHFFFAOYSA-N (4,6-dihydrazinyl-1,3,5-triazin-2-yl)hydrazine Chemical compound NNC1=NC(NN)=NC(NN)=N1 CZGWDPMDAIPURF-UHFFFAOYSA-N 0.000 description 1
- NLOLSXYRJFEOTA-OWOJBTEDSA-N (e)-1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)\C=C\C(F)(F)F NLOLSXYRJFEOTA-OWOJBTEDSA-N 0.000 description 1
- PNWJILFKWURCIR-UPHRSURJSA-N (e)-1-chloro-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C(Cl)=C/C(F)(F)F PNWJILFKWURCIR-UPHRSURJSA-N 0.000 description 1
- GDPWRLVSJWKGPJ-OWOJBTEDSA-N (e)-1-chloro-2,3,3,3-tetrafluoroprop-1-ene Chemical compound Cl/C=C(/F)C(F)(F)F GDPWRLVSJWKGPJ-OWOJBTEDSA-N 0.000 description 1
- USVVENVKYJZFMW-ONEGZZNKSA-N (e)-carboxyiminocarbamic acid Chemical compound OC(=O)\N=N\C(O)=O USVVENVKYJZFMW-ONEGZZNKSA-N 0.000 description 1
- ZHJBJVPTRJNNIK-UPHRSURJSA-N (z)-1,2-dichloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(\Cl)=C\Cl ZHJBJVPTRJNNIK-UPHRSURJSA-N 0.000 description 1
- CVMVAHSMKGITAV-UHFFFAOYSA-N 1,1,1,4,4,5,5,5-octafluoropent-2-ene Chemical compound FC(F)(F)C=CC(F)(F)C(F)(F)F CVMVAHSMKGITAV-UHFFFAOYSA-N 0.000 description 1
- QSSVZVNYQIGOJR-UHFFFAOYSA-N 1,1,2-trichloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C(Cl)Cl QSSVZVNYQIGOJR-UHFFFAOYSA-N 0.000 description 1
- QAERDLQYXMEHEB-UHFFFAOYSA-N 1,1,3,3,3-pentafluoroprop-1-ene Chemical compound FC(F)=CC(F)(F)F QAERDLQYXMEHEB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ISCYUDAHBJMFNT-UHFFFAOYSA-N 1,1-dichloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C(Cl)Cl ISCYUDAHBJMFNT-UHFFFAOYSA-N 0.000 description 1
- RWYKESRENLAKMN-UHFFFAOYSA-N 1-[4-[1-[4-[2-[4-[5-(1,2-dihydroxypropyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy]-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propoxy]-3-hydroxy-5-methoxyphenyl]-3-hydroxy-2-[4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-1,3,3a,4,6, Chemical compound O1C=2C(OC)=CC(C(O)C(C)O)=CC=2C(CO)C1C(C=C1OC)=CC=C1OC(CO)C(C=1C=C(OC)C(O)=CC=1)OC(C(=C1)OC)=C(O)C=C1C(C(CO)OC=1C(=CC(=CC=1)C1C2COCC2C(O1)C=1C=C(OC)C(O)=C(OC)C=1)OC)OC(C(=C1)OC)=CC=C1C(O)C(CO)OC1=CC=C(C=CCO)C=C1OC RWYKESRENLAKMN-UHFFFAOYSA-N 0.000 description 1
- FGUQBEGFRUTZFO-UHFFFAOYSA-N 1-chloro-1,2,3-trifluoroprop-1-ene Chemical compound FCC(F)=C(F)Cl FGUQBEGFRUTZFO-UHFFFAOYSA-N 0.000 description 1
- SEXCLMKCCLUUKC-UHFFFAOYSA-N 1-chloro-1,3,3-trifluoroprop-1-ene Chemical compound FC(F)C=C(F)Cl SEXCLMKCCLUUKC-UHFFFAOYSA-N 0.000 description 1
- USCSECLOSDIOTA-UHFFFAOYSA-N 1-chloro-2,3,3-trifluoroprop-1-ene Chemical compound FC(F)C(F)=CCl USCSECLOSDIOTA-UHFFFAOYSA-N 0.000 description 1
- CZHLPWNZCJEPJB-UHFFFAOYSA-N 1-chloro-3-methylbutane Chemical compound CC(C)CCCl CZHLPWNZCJEPJB-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- SQCZQTSHSZLZIQ-UHFFFAOYSA-N 1-chloropentane Chemical compound CCCCCCl SQCZQTSHSZLZIQ-UHFFFAOYSA-N 0.000 description 1
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- IAOGXBHBKZGVGJ-UHFFFAOYSA-N 2,3,3-trichloro-3-fluoroprop-1-ene Chemical compound FC(Cl)(Cl)C(Cl)=C IAOGXBHBKZGVGJ-UHFFFAOYSA-N 0.000 description 1
- IAPGBTZUBKUKOR-UHFFFAOYSA-N 2,3-dichloro-3,3-difluoroprop-1-ene Chemical compound FC(F)(Cl)C(Cl)=C IAPGBTZUBKUKOR-UHFFFAOYSA-N 0.000 description 1
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical class CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- UZTWWVBZLLQHRB-UHFFFAOYSA-N 2-chloro-1,1,3-trifluoroprop-1-ene Chemical compound FCC(Cl)=C(F)F UZTWWVBZLLQHRB-UHFFFAOYSA-N 0.000 description 1
- IEFKUHVUFVKRMJ-UHFFFAOYSA-N 2-chloro-1,3,3-trifluoroprop-1-ene Chemical compound ClC(=CF)C(F)F IEFKUHVUFVKRMJ-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 1
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- FFIDRWZHRKKSAS-UHFFFAOYSA-N 3-chloro-1,1,3-trifluoroprop-1-ene Chemical compound FC(Cl)C=C(F)F FFIDRWZHRKKSAS-UHFFFAOYSA-N 0.000 description 1
- UAHVVXPNJLRMPX-UHFFFAOYSA-N 3-chloro-1,2,3-trifluoroprop-1-ene Chemical compound FC=C(F)C(F)Cl UAHVVXPNJLRMPX-UHFFFAOYSA-N 0.000 description 1
- VTOPKRLXDFCFGJ-UHFFFAOYSA-N 3-chloro-2,3,3-trifluoroprop-1-ene Chemical compound FC(=C)C(F)(F)Cl VTOPKRLXDFCFGJ-UHFFFAOYSA-N 0.000 description 1
- NBOCQTNZUPTTEI-UHFFFAOYSA-N 4-[4-(hydrazinesulfonyl)phenoxy]benzenesulfonohydrazide Chemical compound C1=CC(S(=O)(=O)NN)=CC=C1OC1=CC=C(S(=O)(=O)NN)C=C1 NBOCQTNZUPTTEI-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 235000013844 butane Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- QTBFPMKWQKYFLR-UHFFFAOYSA-N isobutyl chloride Chemical compound CC(C)CCl QTBFPMKWQKYFLR-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000005335 volcanic glass Substances 0.000 description 1
- 238000003221 volumetric titration Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Definitions
- the present invention relates to a phenolic resin foam and a method for producing the same.
- Acid-cured phenolic resin foam made from resol phenolic resin has excellent heat insulation properties, is flame-resistant, and produces little smoke. As a result, it has been used for a long time in building materials such as exterior wall materials like metal siding, interior wall materials like partition panels, ceiling materials, fire doors, and storm shutters, as well as being widely used as a cooling and heat-insulating material for industrial plants.
- Lignin is one of the plant-derived materials that has been considered for use for some time. Lignin is a component recovered when pulp is produced from plants. It is classified into woody and herbaceous plants based on the plant species used as the raw material, and is further classified into kraft lignin, lignosulfonic acid, soda lignin, etc. based on the difference in the method of extracting lignin during pulp production. Because lignin has a phenolic skeleton in its chemical structure, there have been attempts to create composites with phenolic resins.
- Patent Document 1 discloses a method for producing a foamed phenolic resin in which lignin sulfonate is added to a phenolic resol to control the foaming and curing speed.
- Patent Document 2 discloses that a bio-based phenolic resin foam can be provided by adding organosolv lignin or pyrolytic lignin to a condensate of a mixture of phenol, formaldehyde, and a basic catalyst.
- the phenolic resin foam to which lignin sulfonate is added which is given as an example in Patent Document 1
- the phenolic resin foam in Patent Document 2 to which organosolv lignin or pyrolytic lignin has been added cannot be said to have sufficient thermal conductivity compared to the phenolic resin foam to which no lignin compound has been added, as in Patent Document 1.
- the phenolic resin foam in Patent Document 2 requires 24 hours or more for foaming and hardening, which is undesirable from the viewpoint of productivity.
- the present invention is as follows.
- the phenolic resin foam according to [1] having a density of 10 kg/m3 or more and 50 kg/m3 or less.
- a method for producing a phenolic resin foam laminate according to [5], comprising foaming and curing a foamable phenolic resin composition containing lignin on a facing material comprising foaming and curing a foamable phenolic resin composition containing lignin on a facing material,
- the method includes at least one of a step of adding lignin to a phenol, a step of adding lignin during synthesis of a phenolic resin, a step of adding lignin to a phenolic resin, and a step of adding lignin to a phenolic resin composition;
- the moisture content of the lignin is 34.0% or less
- the water content of the lignin-containing phenolic resin composition in the foamable phenolic resin composition is 1.5 mass % or more and 6.5 mass % or less.
- the step of adding lignin The method for producing a phenolic resin foam laminate according to [6], wherein the median diameter of the lignin powder to be added
- the phenolic resin foam of the present invention can maintain the foaming and curing time even for lignin-containing phenolic resin foams by appropriately adjusting the moisture content of the lignin and the moisture content of the phenolic resin composition to which lignin has been added, and can be produced without reducing productivity. Furthermore, by suppressing foaming inhibition caused by water and maintaining fine cells, even for lignin-containing phenolic resin foams, the thermal conductivity and heat insulating performance can be maintained. Furthermore, by using plant-derived materials, it is possible to provide bio-based phenolic resin foams.
- the present invention identifies the conditions for adding plant-derived materials, which are necessary to maintain the foaming and hardening time and thermal insulation performance, and discovers a phenolic resin foam that simultaneously satisfies low thermal conductivity, high productivity, and is bio-based, something that was not previously possible.
- phenolic resin to which a surfactant has been added is referred to as a "phenolic resin composition”
- a "phenolic resin composition” containing lignin is particularly referred to as a "lignin-containing phenolic resin composition”.
- phenolic resin foam laminate A laminate having a surface material on at least one of the sides of the phenolic resin foam and the back side of the side is referred to as a "phenolic resin foam laminate”.
- the phenolic resin foam in the embodiment of the present application contains lignin.
- the presence or absence of lignin in the phenolic resin foam can be determined by subjecting the phenolic resin foam to pyrolysis gas chromatography mass spectrometry, as described below.
- the area of the pyrolysis product derived from dihydroxybenzene detected at a retention time of about 1.38 ⁇ t minutes is designated as A
- the pyrolysis product showing a structure derived from urea crosslinking corresponds to, for example, peak 9 in [ Figure 1] of Patent No. 4711469, and is detected in the vicinity of a retention time of 1.50 x t minutes in the total ion chromatogram.
- the values of areas A, B, and C differ depending on the type of lignin and change according to the amount of lignin added to the phenolic resin composition.
- the value of area Y does not change depending on the timing of lignin addition.
- the areas A, B, C, and Y are calculated using the intersection with the baseline or the inflection point with the adjacent peak as the boundary.
- Z is 0.035 to 0.715, preferably 0.040 to 0.40. More preferably, Z is 0.055 to 0.23, and even more preferably, 0.065 to 0.18. Most preferably, Z is 0.075 to 0.11. If it is less than 0.035, it indicates that the ratio of plant-derived materials in the phenolic resin foam is low, and the value as a bio-based material is low. If it is more than 0.715, it indicates that the ratio of lignin present in the phenolic resin foam is significantly high. However, if the lignin ratio is increased, the viscosity increases when added to the phenolic resin, which is undesirable. In addition, when used as a heat insulating material, the lignin functions as a thermal bridge, increasing the thermal conductivity.
- the phenolic resin foam of the present invention contains a foaming agent, which will be described later.
- the density of the phenolic resin foam of the present invention may be adjusted to a desired density depending on the purpose of use of the foam, but is preferably 10 kg/m3 or more and 50 kg/m3 or less, more preferably 20 kg/m3 or more and 50 kg/m3 or less, even more preferably 22 kg/m3 or more and 50 kg/m3 or less, and most preferably 24 kg/m3 or more and 45 kg/ m3 or less.
- the density is 10 kg/m3 or more , the decrease in mechanical strength such as compressive strength and the decrease in surface brittleness, which are likely to occur due to low density, are small, and strength that is practically problem-free can be maintained.
- the density of the phenolic resin foam can be adjusted by adjusting the filling ratio of the foaming agent in the phenolic resin foam, and can be adjusted to a desired value mainly by changing the amount of foaming agent added to the phenolic resin composition, the temperature of the foamable phenolic resin composition, the timing of pre-molding in the process of discharging the mixed foamable phenolic resin composition, the amount of foaming nucleating agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time.
- the average bubble diameter of the phenolic resin foam of the present invention is preferably 70 ⁇ m or more and 250 ⁇ m or less, more preferably 70 ⁇ m or more and 130 ⁇ m or less. It is even more preferably 70 ⁇ m or more and 120 ⁇ m or less, and most preferably 70 ⁇ m or more and 110 ⁇ m or less.
- the average bubble diameter is 70 ⁇ m or more, the increase in thermal conductivity due to thermal conduction in the phenolic resin part, which increases as the bubble diameter becomes smaller, can be suppressed.
- the bubble diameter is 250 ⁇ m or less, the heat conduction due to radiation within the bubbles is small, and the increase in thermal conductivity can be suppressed.
- the average bubble diameter of the phenolic resin foam can be adjusted to a desired value by changing, for example, the amount of solid foaming nucleating agent added, the temperature of the foamable phenolic resin composition, the timing of preforming in the process of discharging the mixed foamable phenolic resin composition onto the lower surface material, and further, the amount of foaming agent added and the amount of acidic curing agent added, and the curing conditions such as temperature and residence time.
- the thermal conductivity of the phenolic resin foam in this embodiment at 23°C is 0.024 W/(m ⁇ K) or less, preferably 0.02330 W/(m ⁇ K) or less. More preferably, it is 0.02230 W/(m ⁇ K) or less, even more preferably, it is 0.02150 W/(m ⁇ K) or less, and most preferably, it is 0.02115 W/(m ⁇ K) or less.
- Phenolic resin foam laminates can be used alone or joined to external materials for a variety of applications.
- external materials include board-like materials, sheet-like and film-like materials, and combinations thereof.
- Suitable board-like materials include ordinary plywood, structural plywood, particle board, and wood-based boards such as OSB, wood-wool cement boards, wood-chip cement boards, gypsum boards, flexible boards, medium density fiberboards, calcium silicate boards, magnesium silicate boards, and volcanic glass laminates.
- Suitable sheet-like and film-like materials include polyester nonwoven fabric, polypropylene nonwoven fabric, inorganic-filled glass fiber nonwoven fabric, glass fiber nonwoven fabric, paper, calcium carbonate paper, polyethylene-processed paper, polyethylene film, plastic moisture-proof film, asphalt waterproof paper, and aluminum foil (with or without holes).
- phenolic resin a resol-type phenolic resin synthesized by an alkali metal hydroxide or an alkaline earth metal hydroxide is used.
- the resol-type phenolic resin is synthesized by heating phenols and aldehydes as raw materials in a temperature range of 40 to 100°C with an alkali catalyst.
- an additive such as urea may be added during or after the synthesis of the resol-type phenolic resin as necessary. When urea is added, it is more preferable to mix urea that has been methylolated with an alkali catalyst in advance with the resol-type phenolic resin.
- the moisture content is adjusted to a level suitable for foaming during foaming.
- aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons, or mixtures thereof, viscosity-adjusting diluents such as ethylene glycol and diethylene glycol, and other additives such as dicyandiamide and melamine may be added to the phenolic resin as necessary.
- lignin may be added during or after the synthesis of the resol-type phenolic resin as necessary.
- the starting molar ratio of phenols to aldehydes during synthesis of the phenolic resin is preferably in the range of 1:1 to 1:4.5, more preferably in the range of 1:1.5 to 1:2.5. If necessary, lignin may be dissolved in advance in the phenols used in the synthesis.
- the phenols preferably used in the synthesis of the phenolic resin are phenol itself and other phenols, examples of which include resorcinol, catechol, o-, m- and p-cresol, xylenols, ethylphenols, and p-tert-butylphenol. Dinuclear phenols can also be used.
- the aldehydes may be any compound that can be an aldehyde source, and it is preferable to use formaldehyde itself, paraformaldehyde that can be depolymerized for use, and other aldehydes and their derivatives.
- aldehydes include glyoxal, acetaldehyde, chloral, furfural, and benzaldehyde.
- the mass average molecular weight of the phenolic resin is preferably 300 or more, more preferably 400 or more, and even more preferably 450 or more.
- the mass average molecular weight is preferably 2,500 or less, more preferably 2,200 or less, even more preferably 2,050 or less, and most preferably 1,900 or less.
- the mass average molecular weight of the phenolic resin can be measured using the method described in the examples of this specification.
- the viscosity of the phenolic resin composition at 40°C is preferably 5,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, more preferably 7,000 mPa ⁇ s or more and 50,000 mPa ⁇ s or less, and even more preferably 9,000 mPa ⁇ s or more and 40,000 mPa ⁇ s or less.
- the lignin, surfactant, foaming agent and foam nucleating agent may be added to the phenolic resin composition in advance, or may be added simultaneously with the acidic hardener.
- lignin woody lignin and herbaceous lignin can be used, among which kraft lignin, lignin sulfonic acid, lignin sulfonate, soda lignin, organosolv lignin, explosive lignin, sulfuric acid lignin, alkaline lignin, dealkalized lignin, and their derivatives, modified products, and decomposition products can be used. These lignins can be used alone or in combination of two or more types.
- the water content of the lignin-containing phenolic resin composition is 1.5% by mass or more and 6.5% by mass or less, and preferably 1.5% by mass or more and 5.0% by mass or less. More preferably, it is 1.5% by mass or more and 4.8% by mass or less, and even more preferably, it is 1.5% by mass or more and 4.2% by mass or less. Most preferably, it is 4.0% by mass or less. If it is less than 1.5% by mass, the viscosity of the lignin-containing phenolic resin composition increases rapidly, and productivity decreases significantly. If it is more than 6.5% by mass, the water inhibits foaming and curing, and fine cells cannot be maintained, resulting in high thermal conductivity.
- the method for adjusting the moisture content of the lignin-containing phenolic resin composition is not particularly limited, but can be appropriately done, for example, by using a thin-film evaporator to control the temperature and vacuum level by steam pressure.
- the moisture content of the lignin added to the phenolic resin composition is 34.0% by mass or less, and preferably 11.0% by mass or less. More preferably, it is 7.0% by mass or less, and even more preferably, it is 6.0% by mass or less. Most preferably, it is 5.5% by mass or less. If it is more than 34.0% by mass, the moisture in the lignin that dissipates during foaming and curing is large, which leads to coarsening of the bubble diameter of the foam and increases the thermal conductivity of the foam.
- the viscosity is less likely to increase when the lignin-containing phenolic resin composition, the foaming agent, and the acidic curing agent are mixed in a mixer, the generation of shear heat in the mixer is reduced, and the foaming and curing time is delayed. If it is 34.0% by mass or less, the viscosity increases during mixing, shear heat is generated in the mixer, and the lignin-containing phenolic resin composition is heated in advance, which reduces the curing reaction suppression effect caused by lignin. Therefore, phenolic resin foam containing lignin can be produced in the same foaming and curing time as phenolic resin foam not containing lignin, without impairing productivity.
- the method for adjusting the moisture content of the lignin is not particularly limited, but can be appropriately done, for example, by heating or drying the lignin powder using a constant temperature air blower dryer.
- the median diameter of the lignin powder is preferably 0.1 ⁇ m to 300 ⁇ m, more preferably 0.1 ⁇ m to 250 ⁇ m. Even more preferably, it is 0.1 ⁇ m to 200 ⁇ m, and most preferably 0.1 ⁇ m to 150 ⁇ m. If it is larger than 300 ⁇ m, the size of the lignin particles in the phenolic resin foam is significantly larger than the bubble diameter of the foam, making the cells more likely to be destroyed and increasing the thermal conductivity.
- the method for grinding the lignin powder is not particularly limited, but examples include methods using grinders such as a rolling ball mill, a rolling rod mill, a vibrating ball mill, a vibrating rod mill, a pan mill, a roller mill, and a high-speed rotary mill.
- grinders such as a rolling ball mill, a rolling rod mill, a vibrating ball mill, a vibrating rod mill, a pan mill, a roller mill, and a high-speed rotary mill.
- the timing of adding lignin is not particularly limited, but can be determined as desired as long as it is supplied into the mixer that mixes the phenolic resin composition, the foaming agent, and the acidic curing agent. If lignin is added downstream of the mixer, the dispersibility of the lignin in the phenolic resin composition will decrease, resulting in a phenolic resin foam with lignin present locally within the foam. When used as an insulating material, the lignin will function as a thermal bridge, increasing the thermal conductivity. Therefore, it is preferable to add lignin in a process upstream of the mixer that mixes the phenolic resin composition.
- the amount of lignin added is preferably 1.0% by mass or more and less than 30.0% by mass, more preferably 1.0% by mass or more and less than 25.0% by mass, more preferably 1.0% by mass or more and less than 25.0% by mass, even more preferably 1.0% by mass or more and less than 12.0% by mass, and most preferably 1.0% by mass or more and less than 8.0% by mass. If the amount of lignin added is less than 1.0% by mass, the ratio of plant-derived materials in the phenolic resin foam is low, and the value as a bio-based material is low.
- the amount of lignin added is more than 30.0% by mass, the ratio of lignin present in the phenolic resin foam increases, which is undesirable because the viscosity increases when added to the phenolic resin.
- the lignin when used as a heat insulating material, the lignin functions as a thermal bridge, increasing the thermal conductivity.
- nonionic surfactants are particularly effective.
- alkylene oxides which are copolymers of ethylene oxide and propylene oxide, condensates of alkylene oxides and castor oil, condensation products of alkylene oxides and alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers having 14 to 22 carbon atoms in the alkyl ether portion, fatty acid esters such as polyoxyethylene fatty acid esters, silicone compounds such as polydimethylsiloxane, polyalcohols, etc. are preferred.
- These surfactants may be used alone or in combination of two or more. There are no particular restrictions on the amount used, but they are preferably used in the range of 0.3 to 10 parts by mass per 100 parts by mass of phenolic resin.
- Hydrofluoroolefins, hydrocarbons and chlorinated hydrocarbons can be used as blowing agents, either alone or in combination of two or more of these.
- Hydrofluoroolefins generally have low thermal conductivity, and are therefore preferred because, when used as a blowing agent, a phenolic resin foam having low thermal conductivity can be obtained.
- Hydrofluoroolefins include chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins. In the present invention, chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins can also be used in combination.
- Chlorinated hydrofluoroolefins include (Z)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(Z)), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd, for example, E-form (HCFO-1233zd(E)), manufactured by Honeywell Japan, Inc., product name: Solstice (trademark) LBA), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1 213xa), 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1-chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb), 2,3,3-trichloro-3-fluoropropene (HCFO-1231xf), 2,3-dichloro-3,3-
- (E)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)) is also included.
- these chlorinated hydrofluoroolefins can be used in a mixture of two or more kinds.
- Non-chlorinated hydrofluoroolefins include 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze, for example, E-form (HFO-1234ze(E)), manufactured by Honeywell Japan, Inc., product name: Solstice(trademark) ze), 1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz, for example, Z-form (HFO-1336mzz(Z)), manufactured by Chemours Inc., Opteon(trademark) 1100), 2,3,3,
- fluoroolefins include 3-tetrafluoro-1-propene (HFO-1234yf), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 3,3,3-trifluoropropene (HFO-1243zf), and 1,1,1,4,4,5,5,5-octafluor
- the preferred hydrocarbons are cyclic or chain alkanes, alkenes, and alkynes having 3 to 7 carbon atoms, and specific examples include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, and cyclohexane. Of these, pentanes such as normal pentane, isopentane, cyclopentane, and neopentane, and butanes such as normal butane, isobutane, and cyclobutane are preferably used.
- these hydrocarbons can also be used in a mixture of two or more types.
- mixtures include normal pentane and normal butane, isobutane and isopentane, normal butane and isopentane, isobutane and normal pentane, cyclopentane and normal butane, cyclopentane and isobutane, and the mixture of cyclopentane and isobutane is particularly preferred.
- chlorinated hydrocarbon linear or branched chlorinated aliphatic hydrocarbons having 2 to 5 carbon atoms can be preferably used.
- the number of bonded chlorine atoms is preferably 1 to 4, and examples thereof include dichloroethane, propyl chloride, 2-chloropropane, butyl chloride, isobutyl chloride, pentyl chloride, and isopentyl chloride.
- propyl chloride and 2-chloropropane which are chloropropanes, are more preferably used.
- these chlorinated hydrocarbons can also be used in combination of two or more types.
- foaming agents are not particularly limited, and examples thereof include chemical foaming agents such as sodium hydrogen carbonate, sodium carbonate, calcium carbonate, magnesium carbonate, azodicarboxylic acid amide, azobisisobutyronitrile, barium azodicarboxylate, N,N'-dinitrosopentamethylenetetramine, p,p'-oxybisbenzenesulfonylhydrazide, and trihydrazinotriazine. These foaming agents may be used alone or in combination of two or more.
- the amount of foaming agent in the phenolic resin composition varies depending on the type of foaming agent, the compatibility of the foaming agent with the phenolic resin, the temperature, and the foaming and curing conditions such as the residence time. Therefore, it may be determined arbitrarily depending on the desired density of the phenolic resin foam, the foaming conditions, etc., but the amount of foaming agent is preferably 3.0 to 20 parts by mass, more preferably 4.0 to 18 parts by mass, even more preferably 5.0 to 16 parts by mass, and most preferably 6.0 to 15 parts by mass, per 100 parts by mass of the phenolic resin composition.
- the amount of foaming agent per 100 parts by mass of the phenolic resin composition is 3.0 parts by mass or more, the resin foam can be prevented from becoming highly densified. Also, when the amount of foaming agent per 100 parts by mass of the phenolic resin composition is 20 parts by mass or less, the phenolic resin foam can be prevented from becoming low-densified, which would result in a decrease in mechanical strength such as compressive strength, and an increase in thermal conductivity.
- a foam nucleating agent may be used to manufacture the phenolic resin foam.
- a gaseous foam nucleating agent such as nitrogen, helium, argon, or other low-boiling substances having a boiling point 50° C. or more lower than that of the foaming agent may be added.
- a solid foam nucleating agent such as inorganic powders such as aluminum hydroxide powder, aluminum oxide powder, calcium carbonate powder, talc, kaolin, silica stone powder, silica sand, mica, calcium silicate powder, wollastonite, glass powder, glass beads, fly ash, silica fume, gypsum powder, borax, slag powder, alumina cement, and Portland cement, and an organic powder such as crushed powder of phenolic resin foam may also be added. These may be used alone, or two or more types may be used in combination, regardless of whether they are gaseous or solid. The timing of adding the foam nucleating agent may be determined arbitrarily, as long as it is supplied into the mixer that mixes the phenolic resin composition.
- the amount added is preferably 0.2% by mass or more and 1.0% by mass or less, and more preferably 0.3% by mass or more and 0.5% by mass or less, based on 100% by mass of the foaming agent.
- the amount of solid foam nucleating agent added is preferably 3.0% by mass or more and 10.0% by mass or less, and more preferably 3.0% by mass or more and 8.0% by mass or less, relative to 100 parts by mass of the phenolic resin composition.
- the amount of solid foam nucleating agent added is 3.0% by mass or more, it becomes easier to suppress the seepage of the foamable phenolic resin composition from the surface material.
- by setting the amount of solid foam nucleating agent added to 10.0% by mass or less it becomes easier to suppress the emission of a foaming agent with a low boiling point.
- the acidic curing agent may be any acidic curing agent capable of curing the phenolic resin composition, and contains an organic acid as an acid component.
- the organic acid is preferably arylsulfonic acid or an anhydride thereof.
- arylsulfonic acid and anhydrides thereof include toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, substituted phenolsulfonic acid, xylenolsulfonic acid, substituted xylenolsulfonic acid, dodecylbenzenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and the like, and anhydrides thereof.
- resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like may be added as a curing aid.
- acidic curing agents may also be diluted with a solvent such as ethylene glycol or diethylene glycol.
- the amount of acidic hardener used varies depending on the type. When using a mixture of 80% by weight of xylene sulfonic acid and 20% by weight of diethylene glycol, it is preferably used in an amount of 6 to 20 parts by weight, more preferably 8 to 15 parts by weight, and most preferably 11 to 13 parts by weight, per 100 parts by weight of the phenolic resin composition.
- a flexible surface material (flexible surface material) is used as the surface material arranged on at least one of the sides of the phenolic resin foam and the back surface of the side.
- the flexible surface material used is preferably a nonwoven or woven fabric whose main components are polyester, polypropylene, nylon, etc., paper such as craft paper, glass fiber mixed paper, calcium hydroxide paper, aluminum hydroxide paper, magnesium silicate paper, or inorganic fiber nonwoven fabric such as glass fiber nonwoven fabric, and these may be mixed (or laminated) and used.
- inexpensive paper that can be disposed of after peeling is preferred. These surface materials are usually provided in a roll form.
- the flexible surface material may be mixed with additives such as flame retardants.
- additives such as flame retardants.
- an adhesive such as an epoxy resin may be used, but from the standpoint of production costs and preventing the manufacturing process from becoming complicated, it is preferable that the bonding be achieved only by the adhesive strength that occurs when the foamable phenolic resin composition is thermally cured on the surface of the surface material.
- the method for producing the phenolic resin foam laminate is a continuous production method including a mixing step of mixing the above-mentioned foamable phenolic resin composition in a mixer, a discharge step of discharging the mixed foamable phenolic resin composition onto a lower surface material, and a foam laminate production step of producing a phenolic resin foam laminate from the foamable phenolic resin composition discharged onto the lower surface material. It is also possible to adopt a batch method using a mold in which each step is performed in stages. It can also be used as a phenolic resin foam by not laminating a surface material or by removing the surface material.
- the phenolic resin composition discharged onto the lower surface material is covered with the upper surface material, and then preformed to be uniform from the top and bottom while foaming and curing, and then formed into a plate shape while proceeding with foaming and curing.
- various methods according to the manufacturing purpose can be mentioned as a method for performing preforming and forming in the continuous manufacturing method, such as a method using a slat type double conveyor, a method using a metal roll or a steel plate, and a method using a combination of a plurality of these.
- the foamable phenolic resin composition covered with the upper and lower surface materials can be continuously guided into the slat type double conveyor, and then it can be foamed and cured while adjusting to a predetermined thickness by applying pressure from the top and bottom while heating, and formed into a plate shape.
- the temperature of the foamable phenolic resin composition when discharged onto the lower surface material depends on the boiling point of the foaming agent, but it is generally preferable that it is 32°C or higher and 45°C or lower.
- the temperature of the foamable phenolic resin composition When the temperature of the foamable phenolic resin composition is 32°C or higher, the foamable phenolic resin composition is easily foamed in the early stages, and therefore it is easy to suppress the seepage of the foamable phenolic resin composition from the lower surface material.
- the temperature of the foamable phenolic resin composition when the temperature of the foamable phenolic resin composition is 45°C or lower, it is easy to suppress the diffusion even when a foaming agent with a low boiling point is used, and it is easy to prevent the decrease in foaming efficiency and the increase in thermal conductivity due to the coarsening of the bubble diameter.
- the temperature of the foamable phenolic resin composition discharged onto the lower surface material can be adjusted by adjusting the temperature and flow rate of the water temperature of the mixer that mixes the various compositions, as well as the rotation speed, etc.
- the heating temperature control conditions for the process of foaming and curing the foamable phenolic resin composition discharged onto the lower surface material while preforming from the upper surface material are desirably 30°C or higher and 80°C or lower. If the temperature is 30°C or higher, the foaming promotion effect in the preforming process is easily obtained, and curing can be promoted. If the temperature is 80°C or lower, the vicinity of the center in the thickness direction is not easily affected by internal heat generation, the center temperature is not easily increased, and the thermal conductivity can be maintained for a long period of time.
- the residence time in the preforming process is preferably 1 minute or more and 20 minutes or less.
- the heating temperature control conditions of the main molding process following the pre-molding process are preferably 65°C or higher and 100°C or lower.
- the main molding can be performed using an endless steel belt type double conveyor or a slat type double conveyor, or a roll or the like.
- the residence time is preferably 5 minutes or more and 40 minutes or less. If the residence time is 5 minutes or more, foaming and curing can be sufficiently promoted. If the residence time is 2 hours or less, the production efficiency of the phenolic resin foam laminate can be increased.
- the temperature difference between the upper and lower conveyors is less than 4°C.
- the temperature of the post-curing process is preferably 90°C or higher and 120°C or lower. If it is 90°C or higher, the moisture in the foam is easily dissipated, and if it is 120°C or lower, the low thermal conductivity of the product can be maintained for a long period of time.
- the residence time in the post-curing process is preferably 60 minutes or more and 300 minutes or less.
- This reaction liquid was concentrated at 60°C to obtain a phenolic resin.
- the mass average molecular weight and viscosity at 40°C of the phenolic resin were measured using the following methods, and the mass average molecular weight was 500, the viscosity at 40°C was 9,730 mPa ⁇ s, and the water content was 4.0% by mass.
- Measurement conditions Measuring device: Shodex System 21 (manufactured by Showa Denko K.K.) Column: Shodex Asahipak GF-310HQ (7.5 mm I.D. x 30 cm) Eluent: 0.1% by mass of lithium bromide dissolved in N,N-dimethylformamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) was used. Flow rate: 0.6 ml/min Detector: RI detector Column temperature: 40° C.
- Standard material Standard polystyrene (Shodex STANDARD manufactured by Showa Denko K.K.) SL-105), 2-hydroxybenzyl alcohol (Sigma-Aldrich, 99% product), phenol (Kanto Chemical Co., Ltd., special grade)
- Example 1 A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition.
- lignin (dealkalized) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had been previously heated and dried at 120°C for 20 minutes in a constant temperature air dryer and then pulverized, and having a median diameter of 25.7 ⁇ m and a moisture content of 10.2 mass%, was added in an amount of 8.0 mass% per 100 parts by mass of the phenolic resin composition containing the surfactant.
- This is the lignin-containing phenolic resin composition.
- the moisture content was 4.20 mass%.
- 13 parts by mass of a composition consisting of a mixture of 70% by mass of cyclopentane and 30% by mass of isobutane as a foaming agent, 0.4% by mass of nitrogen as a gas foaming nucleating agent relative to the foaming agent, and 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol as an acidic hardener were added to 100 parts by mass of the lignin-containing phenolic resin composition, and the mixture was supplied to a variable speed mixing head whose temperature was controlled at 17°C.
- the lignin was kneaded with the phenolic resin composition in a twin-screw extruder before the addition of the foaming agent and the acidic hardener. Thereafter, the gas foaming nucleating agent, the foaming agent, and the acidic hardener were mixed in a mixer, and the obtained foamable phenolic resin composition was distributed in a multi-port distribution pipe and supplied onto the moving lower surface material.
- the mixer (mixer) used was the one disclosed in FIG. 1 of JP-A-10-225993.
- a mixer was used in which an inlet for the lignin-containing phenolic resin composition and an inlet for the foaming agent were arranged adjacent to each other on the upper side of the mixer, and an inlet for the acidic curing agent was provided on the side near the center of the stirring section where the rotor stirs.
- the stirring section and subsequent sections were connected to a nozzle for discharging the foamable phenolic resin composition. That is, the mixer is composed of a mixing section (front stage) up to the acidic curing agent inlet, a mixing section (rear stage) from the acidic curing agent inlet to the stirring end section, and a distribution section from the stirring end section to the nozzle.
- the distribution section has multiple nozzles at the tip and is designed to distribute the mixed foamable phenolic resin composition uniformly. Furthermore, the distribution section has a jacketed structure so that sufficient heat exchange can be performed using temperature-controlled water, and the temperature of the temperature-controlled water in the distribution section was set to 17°C. In addition, a thermocouple was installed at the outlet of the multi-port distribution pipe so that the temperature of the foamable phenolic resin composition could be detected, and the rotation speed of the mixer was set to 500 rpm. The temperature of the foamable phenolic resin composition discharged onto the lower surface material at this time was 34°C.
- the foamable phenolic resin composition supplied onto the lower surface material was introduced into a pre-molding process controlled at 40°C, and after 30 seconds, pre-molding was performed from above the upper surface material with a free roller. The residence time in this process was 5 minutes. Thereafter, the composition was sandwiched between two surface materials and introduced into a slat-type double conveyor heated to 69°C (main molding process), cured for a residence time of 15 minutes, then retained at 100°C for 9 minutes, and cured at 110°C for 2 hours (post-curing process), to obtain a phenolic resin foam laminate of Example 1 having a thickness of about 30 mm.
- polyester nonwoven fabric (Eltas E05060, Asahi Kasei Corporation, basis weight 60 g/ m2 ) was used for both the upper and lower surface materials.
- This manufacturing method is indicated as manufacturing method A in Table 2.
- the foaming and hardening rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described below).
- the characteristics of the lignin powder used were evaluated using the following method.
- a laser diffraction light scattering type particle size distribution measuring device Microtrack HRA; 9320-X100, manufactured by Nikkiso Co., Ltd.
- the properties of the phenolic resin composition and lignin-containing phenolic resin composition used were evaluated using the following methods.
- the properties of the obtained phenolic resin foam and phenolic resin foam laminate were evaluated (identification of the lignin components in the phenolic resin foam, measurement of density, measurement of the thermal conductivity of the phenolic resin foam laminate at 23°C, measurement of the average cell diameter of the phenolic resin foam, and identification of the type of blowing agent in the phenolic resin foam) using the following methods.
- GC-MS pyrolysis gas chromatography mass spectrometry
- Injection method split method (split ratio 100:1)
- MS device JEOL RESONANCE, JMS-Q1500GC Interface temperature: 300°C
- Ionization method EI (electron ionization) method 70 eV (temperature 230° C.)
- Pyrolysis device Frontier-lab EGA/PY-3030D Thermal decomposition temperature: 600°C (under He atmosphere) Scan range: m/z 10-800 Sample amount: 1 mg
- the phenolic foam laminate was cut into 300 mm squares and placed in an atmosphere of 23 ⁇ 1°C and 50 ⁇ 2% humidity. The weight change over time was then measured every 24 hours, and the condition was checked and adjusted until the weight change after 24 hours was 0.2% by mass or less.
- the conditioned phenolic foam laminate specimen was introduced into a thermal conductivity measuring device placed in an atmosphere of 23 ⁇ 1°C and 50 ⁇ 2% humidity. If the thermal conductivity measuring device was not placed in the room controlled at 23 ⁇ 1% and 50 ⁇ 2% humidity where the phenolic foam laminate specimen was placed, the specimen whose condition had been checked and adjusted in the aforementioned atmosphere was immediately placed in a polyethylene bag, the bag was closed, and the specimen was removed from the bag within one hour, and the thermal conductivity was immediately measured.
- the average bubble diameter was measured by the following method: A phenolic resin foam laminate was used as a sample, and after removing the surface material from the sample, four photographs of bubbles at approximately the center in the thickness direction of the phenolic resin foam and at approximately the center and the center relative to the front and back surfaces were taken with a scanning electron microscope at a magnification of 50 times, four straight lines 90 mm long (corresponding to 1,800 ⁇ m in the cross section of the actual foam) were drawn on the obtained photographs while avoiding voids, and the number of bubbles was measured according to the number of bubbles crossed by each straight line for each line, and the average value of these values was divided by 1,800 ⁇ m to obtain the average bubble diameter.
- Phenolic resin foam laminate was used as the sample, and after removing the surface material from the sample, 0.25 mg of sample was cut out from near the center of the phenolic resin foam and placed in a dedicated container, to which 10 ml of chloroform and 12 crushed glass beads were added.
- the sample was crushed in a homogenizer (IKA ULTRA-TURRAX Tube Drive) at 6000 rpm for 7 to 11 min while extracting the components into chloroform, after which the extract was filtered through a 0.45 ⁇ m filter and subjected to GC/MS measurement.
- the components to be quantified were dissolved in chloroform to prepare standard sample solutions of known concentrations, which were subjected to GC/MS measurement under the same conditions as the sample.
- Halogenated hydrocarbons and hydrocarbons were identified from the retention times and mass spectra obtained in advance. Separately, the detection sensitivity of each generated gas component was measured using a standard gas, and the content of each substance was calculated from the detection area and detection sensitivity of each gas component obtained by GC/MS. The mass percentage of each blowing agent component in the phenolic resin foam was calculated from the content of each identified gas component and the content and molar mass of the blowing agent.
- Example 2 A phenolic resin foam laminate of Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to lignin (alkali) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method with a median diameter of 26.8 ⁇ m and a moisture content of 5.3 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.85 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 3 A phenolic resin foam laminate of Example 3 was produced in the same manner as in Example 1, except that the lignin was not pulverized and was changed to lignin sulfonic acid sodium salt having a median diameter of 238.5 ⁇ m and a moisture content of 5.0 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.83 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 4 A phenolic resin foam laminate of Example 4 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 ⁇ m and a moisture content of 6.5% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.93% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 5 A phenolic resin foam laminate of Example 5 was produced in the same manner as in Example 1, except that the amount of lignin added to 100 parts by mass of the phenolic resin composition was 1.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 3.80 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 6 A phenolic resin foam laminate of Example 6 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 12.0% by mass. The water content of the lignin-containing phenolic resin composition after concentration was 4.40% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 7 A phenolic resin foam laminate of Example 7 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 20.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.78 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 8 The phenolic resin foam laminate of Example 8 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 25.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.99 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 9 A phenolic resin foam laminate of Example 9 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 29.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 5.15 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 10 The phenolic resin foam laminate of Example 10 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 ⁇ m and a moisture content of 6.5% by mass, and the amount of lignin added to 100 parts by mass of the phenolic resin composition was 29.0% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 4.33% by mass. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
- Example 11 A phenolic resin foam laminate of Example 11 was produced in the same manner as in Example 1, except that 2.7 mass% of water was added to 100 mass parts of the phenolic resin composition containing a surfactant, and the water content of the lignin-containing phenolic resin composition after concentration was set to 6.50 mass%.
- the foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
- Example 12 A phenolic resin foam laminate of Example 12 was produced in the same manner as in Example 1, except that the foaming agent was (Z)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(Z)).
- the water content of the lignin-containing phenolic resin composition after concentration was 4.20 mass%.
- the foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
- Example 13 A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition.
- lignin de-alkalized (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had a median diameter of 25.7 ⁇ m and a moisture content of 10.2 mass% and had been previously heated and dried at 120° C.
- the lignin-containing phenolic resin composition was kneaded with a cordless driver drill so that 12 parts by mass of normal pentane was used as a foaming agent per 100 parts by mass of the lignin-containing phenolic resin composition.
- no gas foaming nucleating agent was added, but the air entrained during kneading played the role of the foaming nucleating agent. It was confirmed from the change in the weight of the resin composition that the predetermined amount of each was kneaded.
- the polycup containing the foamable phenolic resin composition was cooled in a refrigerator for 1 hour, and after confirming that the foamable phenolic resin composition was 12°C or less, 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol was added as an acidic curing agent, and kneaded for 2 minutes with a cordless driver drill.
- the foamable phenolic resin composition was applied to the bottom surface of a metal frame (mold) with a spatula in an environment of 23°C. The amount of the foamable phenolic resin composition applied was appropriately adjusted so that the thickness did not protrude from the metal frame (mold) after foaming.
- the metal frame (mold) used here is made of metal with a thickness of 2.0 mm, an inner diameter of 300 mm x 300 mm x 30 mm in height, and the bottom surface is punched with holes of 5 mm in diameter at 1 mm intervals, and polyester nonwoven fabric (Asahi Kasei Corporation Eltas E05060, basis weight 60 g/m 2 ) is laid on the bottom surface as a surface material.
- the work time from mixing the foamable phenolic resin composition and the acidic curing agent to finishing the application was 5 minutes.
- a plate larger than 300 mm x 300 mm with the same punching specifications as the bottom surface and the same surface material as the bottom surface of the metal frame (mold) was attached to it, and the top plate was fixed to the metal frame (mold) with a clip.
- the metal frame (mold) was placed in an oven heated to 85°C, and a 25 kg weight heated to 85°C was placed on the center of the top plate of the metal frame (mold) and heated for 1 hour, followed by curing at 105°C for 1 hour to obtain a phenolic resin foam laminate of Example 13 having a thickness of 30 mm.
- This manufacturing method is shown as Manufacturing Method B in Table 2.
- the foaming and curing speed of the foamable phenolic resin composition containing lignin applied to the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin.
- Comparative Example 1 A phenolic resin foam laminate of Comparative Example 1 was produced in the same manner as in Example 1, except that lignin was not mixed into the phenolic resin composition.
- the water content of the phenolic resin composition was 3.73% by mass.
- the foaming and curing speed of the foamable phenolic resin composition supplied onto the lower surface material was such that a foam laminate was obtained that was sufficiently cured to maintain sufficient productivity in the commercial production of phenolic resin foams.
- Comparative Example 2 A phenolic resin foam laminate of Comparative Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to a kraft lignin with a median diameter of 23.7 ⁇ m and a moisture content of 34.6% by mass without drying. The moisture content of the lignin-containing phenolic resin composition after concentration was 5.94% by mass.
- the foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was reduced compared to the foaming and curing speed of the foamable phenolic resin composition not containing lignin (Comparative Example 1), and an insufficiently cured foam was obtained. Therefore, after the post-curing process, the foam was further cured at 110° C. for 4 hours to obtain a sufficiently cured foam.
- Comparative Example 3 A phenolic resin foam laminate of Comparative Example 3 was produced in the same manner as in Example 1, except that 13.7% by mass of water was added to 100 parts by mass of the surfactant-containing phenolic resin composition, and the water content of the concentrated lignin-containing phenolic resin composition was 15.70% by mass.
- the foaming and curing speed of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was reduced compared to the foaming and curing speed of the lignin-free foamable phenolic resin composition (Comparative Example 1), resulting in an insufficiently cured foam. Therefore, the foam was further cured at 110°C for 4 hours after the post-curing step to obtain a sufficiently cured foam.
- Examples 1 to 13 and Comparative Examples 2 to 3 The types of lignin used in Examples 1 to 13 and Comparative Examples 2 to 3 are shown in Table 1. In addition, the above-mentioned measurements and evaluation tests were performed on Examples 1 to 13 and Comparative Examples 1 to 3. The measurement and evaluation results are shown in Tables 2 and 3.
- the phenolic resin foam according to the present invention can maintain the foaming and curing time even in the case of a phenolic resin foam containing lignin by appropriately adjusting the water content of the phenolic resin composition to which lignin has been added, and can be produced without reducing productivity. Furthermore, the foaming inhibition caused by water can be suppressed, and fine cells can be maintained, so that even in the case of a phenolic resin foam containing lignin, the thermal conductivity can be maintained, and the heat insulating performance can be maintained.
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
In the ion chromatogram of a gas component that is generated by heating this phenolic resin foam at 600°C, the ion chromatogram being obtained by a gas chromatography mass spectrometry method, the area ratio Z (Z = X/Y) of the sum X (X = A + B + C) of the area A associated with a dihydroxybenzene, the area B associated with a dihydroxytoluene, and the area C associated with a dihydroxyxylene in the pyrolysis product, to the area Y of the pyrolysis product indicating a structure derived from urea crosslinking is within the range of formula (1). This phenolic resin foam has a thermal conductivity of 0.0240 W/(m∙K) or less in an environment at 23°C. (1): 0.035 ≤ Z ≤ 0.715
Description
本出願は、2023年4月28日に日本国に特許出願された特願2023-075252の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
This application claims priority to patent application No. 2023-075252, filed in Japan on April 28, 2023, the entire disclosure of which is incorporated herein by reference.
本発明は、フェノール樹脂発泡体およびその製造方法に関する。
The present invention relates to a phenolic resin foam and a method for producing the same.
レゾール型フェノール樹脂を原料とした酸硬化型フェノール樹脂発泡体は、優れた断熱性を示す上に、燃え難く、煙の発生が少ないことからも、従前より、例えば金属サイディング等の外壁材、間仕切りパネル等の内壁材の他、天井材、防火扉、および雨戸等の建材に使用されているばかりでなく、工業プラント用の保冷・保温材等としても広く利用されている。
Acid-cured phenolic resin foam made from resol phenolic resin has excellent heat insulation properties, is flame-resistant, and produces little smoke. As a result, it has been used for a long time in building materials such as exterior wall materials like metal siding, interior wall materials like partition panels, ceiling materials, fire doors, and storm shutters, as well as being widely used as a cooling and heat-insulating material for industrial plants.
近年地球温暖化の懸念から温室効果ガスの削減が急務になっており、その中でも焼却処理時に発生する二酸化炭素などの温室効果ガスの削減手段の一つとして、製品原料としての植物由来材料の活用が注目されている。原料として植物由来材料を使用した発泡体は、その使用量に応じて、焼却処理時に発生する二酸化炭素を、植物が吸収した量と同量と考えることができるため、結果的に大気中の二酸化炭素の増減に影響を与えないとする、カーボンニュートラルの技術と捉えることができる。
In recent years, concerns about global warming have made it urgent to reduce greenhouse gas emissions, and the use of plant-derived materials as product raw materials has been attracting attention as one way to reduce greenhouse gases such as carbon dioxide generated during incineration. Foams that use plant-derived materials as raw materials can be considered to have the same amount of carbon dioxide generated during incineration as the amount absorbed by the plant, depending on the amount used, and therefore can be considered a carbon-neutral technology that does not affect the increase or decrease of carbon dioxide in the atmosphere.
植物由来材料として従来から活用が検討されているものの一つとして、リグニンが挙げられる。リグニンは、植物からパルプを製造する際に回収される成分であり、原料となる植物種から、木本系と草本系に分類され、また、パルプ製造に伴うリグニンの抽出方法の違いから、クラフトリグニン、リグニンスルホン酸、ソーダリグニン等に分類される。リグニンは、その化学構造がフェノール骨格を有することから、これまで、フェノール樹脂との複合物を作製する試みがなされてきた。
Lignin is one of the plant-derived materials that has been considered for use for some time. Lignin is a component recovered when pulp is produced from plants. It is classified into woody and herbaceous plants based on the plant species used as the raw material, and is further classified into kraft lignin, lignosulfonic acid, soda lignin, etc. based on the difference in the method of extracting lignin during pulp production. Because lignin has a phenolic skeleton in its chemical structure, there have been attempts to create composites with phenolic resins.
特許文献1は、リグニンスルホン酸塩をフェノール系レゾールに添加し、発泡硬化速度を制御できる、発泡フェノール樹脂の製造方法を開示している。また特許文献2ではオルガノソルブリグニンや熱分解性リグニンをフェノールとホルムアルデヒドと塩基性触媒の混合物の縮合物に添加することにより、バイオベースのフェノール樹脂発泡体を提供できることを開示している。
Patent Document 1 discloses a method for producing a foamed phenolic resin in which lignin sulfonate is added to a phenolic resol to control the foaming and curing speed. Patent Document 2 discloses that a bio-based phenolic resin foam can be provided by adding organosolv lignin or pyrolytic lignin to a condensate of a mixture of phenol, formaldehyde, and a basic catalyst.
しかしながら特許文献1で、実施例にあげられているリグニンスルホン酸塩を添加したフェノール樹脂発泡体は、熱伝導率が高いことから、フェノール樹脂発泡体が本来持つ低い熱伝導率を生かせていない。また、リグニンスルホン酸塩の添加量を増やすほど、硬化終了時間が遅延しており、生産性の観点から好ましいとはいえない。
However, the phenolic resin foam to which lignin sulfonate is added, which is given as an example in Patent Document 1, has a high thermal conductivity, and therefore does not take advantage of the inherently low thermal conductivity of phenolic resin foam. Furthermore, the more the amount of lignin sulfonate added is increased, the longer the curing completion time becomes, which is not desirable from the viewpoint of productivity.
一方特許文献2で、オルガノソルブリグニンや熱分解性リグニンを添加したフェノール樹脂発泡体も、特許文献1同様にリグニン化合物を添加していないフェノール樹脂発泡体と比較すると、十分な熱伝導率を有しているとは言えない。また、特許文献2のフェノール樹脂発泡体は、発泡硬化に24時間以上を要しており、生産性の観点からも好ましくない。
On the other hand, the phenolic resin foam in Patent Document 2 to which organosolv lignin or pyrolytic lignin has been added cannot be said to have sufficient thermal conductivity compared to the phenolic resin foam to which no lignin compound has been added, as in Patent Document 1. In addition, the phenolic resin foam in Patent Document 2 requires 24 hours or more for foaming and hardening, which is undesirable from the viewpoint of productivity.
よって、リグニンを含有しつつも、低い熱伝導率を有するフェノール樹脂発泡体が望まれていた。更に、リグニンを含まないフェノール樹脂発泡体と同等の発泡硬化時間を示しつつ、同等の低い熱伝導率を示す技術が求められていた。
Therefore, there was a demand for a phenolic resin foam that contains lignin but has low thermal conductivity. Furthermore, there was a demand for technology that shows the same foaming and curing time as phenolic resin foam that does not contain lignin, while also showing the same low thermal conductivity.
そこで、本発明者らは上記課題を解決するべく鋭意検討を重ねたところ、リグニンの含水率を適正に調整するとともに、リグニン含有フェノール樹脂組成物の含水率をも適性化することによって、リグニンを含むフェノール樹脂発泡体が、リグニンを含まないフェノール樹脂発泡体と比べて、同等の発泡硬化時間を示しつつも同等の熱伝導率を発現し得る技術を開発するに至った。即ち本発明は以下の通りである。
The inventors therefore conducted extensive research to solve the above problems, and as a result, they have developed a technology that allows a lignin-containing phenolic resin foam to exhibit the same foaming and curing time and the same thermal conductivity as a lignin-free phenolic resin foam by properly adjusting the moisture content of the lignin and optimizing the moisture content of the lignin-containing phenolic resin composition. That is, the present invention is as follows.
[1]
600℃で加熱することにより生じたガス成分をガスクロマトグラフ質量分析法によって得られるイオンクロマトグラムにおいて、熱分解生成物のジヒドロキシベンゼン由来の面積A、ジヒドロキシトルエン由来の面積B、ジヒドロキシキシレン由来の面積Cの合計X(X=A+B+C)と、尿素架橋由来の構造を示す熱分解生成物の面積Yとの面積比Z(Z=X/Y)が、下記式(1)の範囲にあり、23℃環境下における熱伝導率の値が0.0240W/(m・K)以下である、フェノール樹脂発泡体。
0.035≦Z≦0.715 (1)
[2]
密度が10kg/m3以上50kg/m3以下である、[1]に記載のフェノール樹脂発泡体。
[3]
平均気泡径が70μm以上250μm以下である、[1]又は[2]のいずれかに記載のフェノール樹脂発泡体。
[4]
ハイドロフルオロオレフィン、炭化水素、塩素化炭化水素のいずれかを含む[1]~[3]のいずれかに記載のフェノール樹脂発泡体。
[5]
フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に表面材を備える、[1]~[4]のいずれかに記載のフェノール樹脂発泡体。
[6]
リグニンを含む発泡性フェノール樹脂組成物を、面材上で発泡及び硬化させる、[5]に記載のフェノール樹脂発泡体積層板の製造方法であって、
前記発泡性フェノール樹脂組成物を得るために、フェノール類にリグニンを添加する工程、フェノール樹脂の合成時にリグニンを添加する工程、フェノール樹脂にリグニンを添加する工程、及びフェノール樹脂組成物にリグニンを添加する工程の少なくとも1つの工程を含み、
前記リグニンの含水率が34.0%以下であり、
前記発泡性フェノール樹脂組成物中の、リグニン含有フェノール樹脂組成物の含水率が、1.5質量%以上、6.5質量%以下である、製造方法。
[7]
前記リグニンを添加する工程において、
添加するリグニン粉末のメディアン径が、0.1μm以上300μm以下である、[6]に記載のフェノール樹脂発泡体積層板の製造方法。 [1]
A phenolic resin foam having a thermal conductivity of 0.0240 W/(m K) or less in a 23° C. environment, wherein in an ion chromatogram obtained by subjecting gas components generated by heating at 600° C. to gas chromatography-mass spectrometry, the total X (X=A+B+C) of the area A derived from dihydroxybenzene, the area B derived from dihydroxytoluene, and the area C derived from dihydroxyxylene, which are pyrolysis products, is a ratio of an area Y (Z=X/Y) to an area Y of the pyrolysis product exhibiting a structure derived from urea crosslinking, falls within the range of the following formula (1):
0.035≦Z≦0.715 (1)
[2]
The phenolic resin foam according to [1], having a density of 10 kg/m3 or more and 50 kg/m3 or less.
[3]
The phenolic resin foam according to any one of [1] and [2], having an average cell diameter of 70 μm or more and 250 μm or less.
[4]
The phenolic resin foam according to any one of [1] to [3], which contains any one of hydrofluoroolefins, hydrocarbons, and chlorinated hydrocarbons.
[5]
The phenolic resin foam according to any one of [1] to [4], comprising a surface material on at least one of one side of the phenolic resin foam and the back side of the one side.
[6]
A method for producing a phenolic resin foam laminate according to [5], comprising foaming and curing a foamable phenolic resin composition containing lignin on a facing material,
In order to obtain the foamable phenolic resin composition, the method includes at least one of a step of adding lignin to a phenol, a step of adding lignin during synthesis of a phenolic resin, a step of adding lignin to a phenolic resin, and a step of adding lignin to a phenolic resin composition;
The moisture content of the lignin is 34.0% or less,
The water content of the lignin-containing phenolic resin composition in the foamable phenolic resin composition is 1.5 mass % or more and 6.5 mass % or less.
[7]
In the step of adding lignin,
The method for producing a phenolic resin foam laminate according to [6], wherein the median diameter of the lignin powder to be added is 0.1 μm or more and 300 μm or less.
600℃で加熱することにより生じたガス成分をガスクロマトグラフ質量分析法によって得られるイオンクロマトグラムにおいて、熱分解生成物のジヒドロキシベンゼン由来の面積A、ジヒドロキシトルエン由来の面積B、ジヒドロキシキシレン由来の面積Cの合計X(X=A+B+C)と、尿素架橋由来の構造を示す熱分解生成物の面積Yとの面積比Z(Z=X/Y)が、下記式(1)の範囲にあり、23℃環境下における熱伝導率の値が0.0240W/(m・K)以下である、フェノール樹脂発泡体。
0.035≦Z≦0.715 (1)
[2]
密度が10kg/m3以上50kg/m3以下である、[1]に記載のフェノール樹脂発泡体。
[3]
平均気泡径が70μm以上250μm以下である、[1]又は[2]のいずれかに記載のフェノール樹脂発泡体。
[4]
ハイドロフルオロオレフィン、炭化水素、塩素化炭化水素のいずれかを含む[1]~[3]のいずれかに記載のフェノール樹脂発泡体。
[5]
フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に表面材を備える、[1]~[4]のいずれかに記載のフェノール樹脂発泡体。
[6]
リグニンを含む発泡性フェノール樹脂組成物を、面材上で発泡及び硬化させる、[5]に記載のフェノール樹脂発泡体積層板の製造方法であって、
前記発泡性フェノール樹脂組成物を得るために、フェノール類にリグニンを添加する工程、フェノール樹脂の合成時にリグニンを添加する工程、フェノール樹脂にリグニンを添加する工程、及びフェノール樹脂組成物にリグニンを添加する工程の少なくとも1つの工程を含み、
前記リグニンの含水率が34.0%以下であり、
前記発泡性フェノール樹脂組成物中の、リグニン含有フェノール樹脂組成物の含水率が、1.5質量%以上、6.5質量%以下である、製造方法。
[7]
前記リグニンを添加する工程において、
添加するリグニン粉末のメディアン径が、0.1μm以上300μm以下である、[6]に記載のフェノール樹脂発泡体積層板の製造方法。 [1]
A phenolic resin foam having a thermal conductivity of 0.0240 W/(m K) or less in a 23° C. environment, wherein in an ion chromatogram obtained by subjecting gas components generated by heating at 600° C. to gas chromatography-mass spectrometry, the total X (X=A+B+C) of the area A derived from dihydroxybenzene, the area B derived from dihydroxytoluene, and the area C derived from dihydroxyxylene, which are pyrolysis products, is a ratio of an area Y (Z=X/Y) to an area Y of the pyrolysis product exhibiting a structure derived from urea crosslinking, falls within the range of the following formula (1):
0.035≦Z≦0.715 (1)
[2]
The phenolic resin foam according to [1], having a density of 10 kg/m3 or more and 50 kg/m3 or less.
[3]
The phenolic resin foam according to any one of [1] and [2], having an average cell diameter of 70 μm or more and 250 μm or less.
[4]
The phenolic resin foam according to any one of [1] to [3], which contains any one of hydrofluoroolefins, hydrocarbons, and chlorinated hydrocarbons.
[5]
The phenolic resin foam according to any one of [1] to [4], comprising a surface material on at least one of one side of the phenolic resin foam and the back side of the one side.
[6]
A method for producing a phenolic resin foam laminate according to [5], comprising foaming and curing a foamable phenolic resin composition containing lignin on a facing material,
In order to obtain the foamable phenolic resin composition, the method includes at least one of a step of adding lignin to a phenol, a step of adding lignin during synthesis of a phenolic resin, a step of adding lignin to a phenolic resin, and a step of adding lignin to a phenolic resin composition;
The moisture content of the lignin is 34.0% or less,
The water content of the lignin-containing phenolic resin composition in the foamable phenolic resin composition is 1.5 mass % or more and 6.5 mass % or less.
[7]
In the step of adding lignin,
The method for producing a phenolic resin foam laminate according to [6], wherein the median diameter of the lignin powder to be added is 0.1 μm or more and 300 μm or less.
本発明によるフェノール樹脂発泡体は、リグニンの含水率及びリグニンが添加されたフェノール樹脂組成物の含水率を適正に調整することで、リグニンを含むフェノール樹脂発泡体であっても、発泡硬化時間を維持することができ、生産性を落とさずに生産できる。さらに、水による発泡阻害を抑制することができ、微細なセルを維持することで、リグニンを含むフェノール樹脂発泡体であっても、熱伝導率を維持することができ、断熱性能を維持することができる。また、植物由来材料を用いることにより、バイオベース化されたフェノール樹脂発泡体を提供することが可能となる。
The phenolic resin foam of the present invention can maintain the foaming and curing time even for lignin-containing phenolic resin foams by appropriately adjusting the moisture content of the lignin and the moisture content of the phenolic resin composition to which lignin has been added, and can be produced without reducing productivity. Furthermore, by suppressing foaming inhibition caused by water and maintaining fine cells, even for lignin-containing phenolic resin foams, the thermal conductivity and heat insulating performance can be maintained. Furthermore, by using plant-derived materials, it is possible to provide bio-based phenolic resin foams.
本発明は、発泡硬化時間および断熱性能を維持するために必要となる、植物由来材料の添加条件を見極めるとともに、これまで実現し得なかった、低い熱伝導率と高生産性とバイオベース化を同時に満足するフェノール樹脂発泡体を見出したものである。
The present invention identifies the conditions for adding plant-derived materials, which are necessary to maintain the foaming and hardening time and thermal insulation performance, and discovers a phenolic resin foam that simultaneously satisfies low thermal conductivity, high productivity, and is bio-based, something that was not previously possible.
以下、本発明を実施するための形態について(以下、「本実施形態」という。)詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また本明細書では、「フェノール樹脂」に対して界面活性剤を添加したものを「フェノール樹脂組成物」と称し、「フェノール樹脂組成物」中にリグニンが含有されているものを、特に「リグニン含有フェノール樹脂組成物」と称する。「フェノール樹脂組成物」または「リグニン含有フェノール樹脂組成物」に対して発泡剤、発泡核剤および酸性硬化剤等を添加して発泡性または発泡性と硬化性の両方を付与したものを「発泡性フェノール樹脂組成物」と称する。また、得られた発泡体を「フェノール樹脂発泡体」と称する。なお、フェノール樹脂発泡体の内、一面および当該一面の裏面の少なくとも一方に表面材を備える積層板を、「フェノール樹脂発泡体積層板」と称する。
The following describes in detail the form for carrying out the present invention (hereinafter, referred to as the "present embodiment"). The present invention is not limited to the following embodiment, and can be carried out in various modifications within the scope of the gist. In this specification, a "phenolic resin" to which a surfactant has been added is referred to as a "phenolic resin composition", and a "phenolic resin composition" containing lignin is particularly referred to as a "lignin-containing phenolic resin composition". A "phenolic resin composition" or a "lignin-containing phenolic resin composition" to which a foaming agent, a foaming nucleating agent, an acidic curing agent, etc. have been added to impart foamability or both foamability and curability is referred to as a "foamable phenolic resin composition". The resulting foam is referred to as a "phenolic resin foam". A laminate having a surface material on at least one of the sides of the phenolic resin foam and the back side of the side is referred to as a "phenolic resin foam laminate".
本願の実施形態におけるフェノール樹脂発泡体では、リグニンを含有する。フェノール樹脂発泡体において、リグニンの含有の有無は、以下に説明するように、フェノール樹脂発泡体に対して、熱分解ガスクロマトグラフ質量分析を行うことにより判別され得る。
The phenolic resin foam in the embodiment of the present application contains lignin. The presence or absence of lignin in the phenolic resin foam can be determined by subjecting the phenolic resin foam to pyrolysis gas chromatography mass spectrometry, as described below.
リグニンを含むフェノール樹脂発泡体に対して、600℃で加熱することにより生じたガス成分を、ガスクロマトグラフ質量分析を行った際に、得られるトータルイオンクロマトグラムにおいて、フェノールが検出される保持時間をt分とした場合、m/z=110の抽出イオンクロマトグラムにおいて、保持時間1.38×t分付近にジヒドロキシベンゼン由来の熱分解生成物、m/z=124の抽出イオンクロマトグラムにおいて、保持時間1.46×t分付近にジヒドロキシトルエン由来の熱分解生成物、保持時間1.50×t分付近にジヒドロキシトルエン由来の熱分解生成物、m/z=138の抽出イオンクロマトグラムにおいて、保持時間1.58×t分付近にジヒドロキシキシレン由来の熱分解生成物が検出される。なお、後述する熱分解ガスクロマトグラフ質量分析の測定方法により、フェノールは、保持時間10.0分付近に検出される。
When gas chromatography mass spectrometry is performed on the gas components generated by heating a phenolic resin foam containing lignin at 600°C, if the retention time at which phenol is detected in the obtained total ion chromatogram is t minutes, then in the extracted ion chromatogram of m/z = 110, a pyrolysis product derived from dihydroxybenzene is detected at a retention time of approximately 1.38 x t minutes, in the extracted ion chromatogram of m/z = 124, a pyrolysis product derived from dihydroxytoluene is detected at a retention time of approximately 1.46 x t minutes, a pyrolysis product derived from dihydroxytoluene is detected at a retention time of approximately 1.50 x t minutes, and in the extracted ion chromatogram of m/z = 138, a pyrolysis product derived from dihydroxyxylene is detected at a retention time of approximately 1.58 x t minutes. Phenol is detected at a retention time of approximately 10.0 minutes using the pyrolysis gas chromatography mass spectrometry measurement method described below.
得られた熱分解生成物のm/z=110の抽出イオンクロマトグラムにおいて、保持時間1.38×t分付近に検出されるジヒドロキシベンゼン由来の熱分解生成物の面積をA、m/z=124の抽出イオンクロマトグラムにおいて、保持時間1.46×t分付近に検出されるジヒドロキシトルエン由来の熱分解生成物の面積と、保持時間1.50×t分付近に検出されるジヒドロキシトルエン由来の熱分解生成物の面積との合計をB、m/z=138の抽出イオンクロマトグラムにおいて、保持時間1.58×t分付近に検出されるジヒドロキシキシレン由来の熱分解生成物の面積をCとし、A、B、Cの合計をX(X=A+B+C)とする。また、尿素架橋由来の構造を示す熱分解生成物の面積をYとしたときの、Xとの比をZ(Z=X/Y)とする。なお、尿素架橋由来の構造を示す熱分解生成物は、例えば、特許4711469号の[図1]ピーク9に相当し、トータルイオンクロマトグラムにおいて、保持時間1.50×t分付近に検出される。なお、抽出イオンクロマトグラムにおいて、面積A、B、Cの値は、リグニンの種類によって異なっており、フェノール樹脂組成物に対するリグニンの添加量に応じて変化する。また、面積Yの値はリグニンの添加タイミングによって変化しない。また、面積A、B、C、Yに関しては、ベースラインとの交点または隣り合うピークとの変曲点を境界として、面積が算出される。
In the extracted ion chromatogram of the obtained pyrolysis product at m/z=110, the area of the pyrolysis product derived from dihydroxybenzene detected at a retention time of about 1.38×t minutes is designated as A, in the extracted ion chromatogram of m/z=124, the sum of the area of the pyrolysis product derived from dihydroxytoluene detected at a retention time of about 1.46×t minutes and the area of the pyrolysis product derived from dihydroxytoluene detected at a retention time of about 1.50×t minutes is designated as B, and in the extracted ion chromatogram of m/z=138, the area of the pyrolysis product derived from dihydroxyxylene detected at a retention time of about 1.58×t minutes is designated as C, and the sum of A, B, and C is designated as X (X=A+B+C). In addition, when the area of the pyrolysis product showing a structure derived from urea crosslinking is designated as Y, the ratio to X is designated as Z (Z=X/Y). The pyrolysis product showing a structure derived from urea crosslinking corresponds to, for example, peak 9 in [Figure 1] of Patent No. 4711469, and is detected in the vicinity of a retention time of 1.50 x t minutes in the total ion chromatogram. In the extracted ion chromatogram, the values of areas A, B, and C differ depending on the type of lignin and change according to the amount of lignin added to the phenolic resin composition. The value of area Y does not change depending on the timing of lignin addition. The areas A, B, C, and Y are calculated using the intersection with the baseline or the inflection point with the adjacent peak as the boundary.
得られた熱分解生成物のイオンクロマトグラムにおいて、Zは、0.035以上0.715以下であり、0.040以上0.40以下であることが好ましい。より好ましくは、0.055以上0.23以下であり、更に好ましくは、0.065以上0.18以下である。最も好ましくは、0.075以上0.11以下である。0.035より小さい場合、フェノール樹脂発泡体中の植物由来材料の比率が低いことを示しており、バイオベース材料としての価値が低い。0.715より大きい場合、フェノール樹脂発泡体中に占めるリグニンの存在比率が著しく高いことを示しているが、リグニン比率を高めると、フェノール樹脂への添加時に粘度が上昇するため好ましくないことに加えて、断熱材として使用した際に、リグニンが熱橋として機能し、熱伝導率が高くなってしまう。
In the ion chromatogram of the obtained pyrolysis product, Z is 0.035 to 0.715, preferably 0.040 to 0.40. More preferably, Z is 0.055 to 0.23, and even more preferably, 0.065 to 0.18. Most preferably, Z is 0.075 to 0.11. If it is less than 0.035, it indicates that the ratio of plant-derived materials in the phenolic resin foam is low, and the value as a bio-based material is low. If it is more than 0.715, it indicates that the ratio of lignin present in the phenolic resin foam is significantly high. However, if the lignin ratio is increased, the viscosity increases when added to the phenolic resin, which is undesirable. In addition, when used as a heat insulating material, the lignin functions as a thermal bridge, increasing the thermal conductivity.
本発明のフェノール樹脂発泡体は、後述する発泡剤を含む。
The phenolic resin foam of the present invention contains a foaming agent, which will be described later.
本発明のフェノール樹脂発泡体の密度は、発泡体の使用目的によって所望する密度に調整して構わないが、好ましくは10kg/m3以上50kg/m3以下であり、より好ましくは20kg/m3以上50kg/m3以下であり、更に好ましくは22kg/m3以上50kg/m3以下であり、最も好ましくは24kg/m3以上45kg/m3以下である。密度が10kg/m3以上の場合、密度が低い事によって発生しやすい圧縮強さ等の機械的強度の低下や、表面脆性の低下が小さく、実用上問題ない強度を維持できる。密度が50kg/m3以下である場合は、密度が高い事によって大きくなるフェノール樹脂部の熱伝導により熱伝導率が増大する懸念が小さくなる。なお、フェノール樹脂発泡体の密度はフェノール樹脂発泡体への発泡剤の充填割合を調整すればよく、主に、フェノール樹脂組成物への発泡剤の添加量、発泡性フェノール樹脂組成物の温度、混合した発泡性フェノール樹脂組成物を吐出する工程における予成形のタイミング、さらには、発泡核剤の添加量、酸性硬化剤の添加量、温度や滞留時間等の硬化条件などの変更により所望の値に調整できる。
The density of the phenolic resin foam of the present invention may be adjusted to a desired density depending on the purpose of use of the foam, but is preferably 10 kg/m3 or more and 50 kg/m3 or less, more preferably 20 kg/m3 or more and 50 kg/m3 or less, even more preferably 22 kg/m3 or more and 50 kg/m3 or less, and most preferably 24 kg/m3 or more and 45 kg/ m3 or less. When the density is 10 kg/m3 or more , the decrease in mechanical strength such as compressive strength and the decrease in surface brittleness, which are likely to occur due to low density, are small, and strength that is practically problem-free can be maintained. When the density is 50 kg/ m3 or less, there is less concern that the thermal conductivity will increase due to the heat conduction of the phenolic resin portion, which increases due to high density. The density of the phenolic resin foam can be adjusted by adjusting the filling ratio of the foaming agent in the phenolic resin foam, and can be adjusted to a desired value mainly by changing the amount of foaming agent added to the phenolic resin composition, the temperature of the foamable phenolic resin composition, the timing of pre-molding in the process of discharging the mixed foamable phenolic resin composition, the amount of foaming nucleating agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time.
本発明のフェノール樹脂発泡体の平均気泡径は、70μm以上250μm以下であることが好ましく、70μm以上130μm以下であることがより好ましい。更に好ましくは、70μm以上120μm以下であり、最も好ましくは70μm以上110μm以下である。平均気泡径が70μm以上であると、気泡径が小さくなることによって増える、フェノール樹脂部の熱伝導による熱伝導率の増大を抑制できる。また、気泡径が250μm以下であると、気泡内での輻射による熱伝導が小さく、熱伝導率の増大を抑制できる。なお、フェノール樹脂発泡体の平均気泡径は、例えば、固体発泡核剤の添加量、発泡性フェノール樹脂組成物の温度、混合した発泡性フェノール樹脂組成物を下表面材上に吐出する工程における予成形のタイミング、更には、発泡剤の添加量と酸性硬化剤の添加量、および温度や滞留時間等の硬化条件などの変更により所望の値に調整できる。
The average bubble diameter of the phenolic resin foam of the present invention is preferably 70 μm or more and 250 μm or less, more preferably 70 μm or more and 130 μm or less. It is even more preferably 70 μm or more and 120 μm or less, and most preferably 70 μm or more and 110 μm or less. When the average bubble diameter is 70 μm or more, the increase in thermal conductivity due to thermal conduction in the phenolic resin part, which increases as the bubble diameter becomes smaller, can be suppressed. Furthermore, when the bubble diameter is 250 μm or less, the heat conduction due to radiation within the bubbles is small, and the increase in thermal conductivity can be suppressed. The average bubble diameter of the phenolic resin foam can be adjusted to a desired value by changing, for example, the amount of solid foaming nucleating agent added, the temperature of the foamable phenolic resin composition, the timing of preforming in the process of discharging the mixed foamable phenolic resin composition onto the lower surface material, and further, the amount of foaming agent added and the amount of acidic curing agent added, and the curing conditions such as temperature and residence time.
本実施形態におけるフェノール樹脂発泡体の、23℃における熱伝導率は0.024W/(m・K)以下であり、好ましくは0.02330W/(m・K)以下である。より好ましくは0.02230W/(m・K)以下であり、更に好ましくは0.02150W/(m・K)以下であり、最も好ましくは0.02115W/(m・K)以下である。
The thermal conductivity of the phenolic resin foam in this embodiment at 23°C is 0.024 W/(m·K) or less, preferably 0.02330 W/(m·K) or less. More preferably, it is 0.02230 W/(m·K) or less, even more preferably, it is 0.02150 W/(m·K) or less, and most preferably, it is 0.02115 W/(m·K) or less.
フェノール樹脂発泡体積層板としては、これを単体で使用する他、外部部材と接合させて様々な用途に用いることができる。外部部材の例としては、ボード状材料およびシート状・フィルム状材料およびその組み合わせがある。ボード状材料としては、普通合板、構造用合板、パーティクルボード、およびOSBなどの木質系ボード、木毛セメント板、木片セメント板、石膏ボード、フレキシブルボード、ミディアムデンシティファイバーボード、ケイ酸カルシウム板、ケイ酸マグネシウム板、ならびに火山性ガラス質複層板などが好適である。また、シート状・フィルム状材料としては、ポリエステル不織布、ポリプロピレン不織布、無機質充填ガラス繊維不織布、ガラス繊維不織布、紙、炭酸カルシウム紙、ポリエチレン加工紙、ポリエチレンフィルム、プラスチック系防湿フィルム、アスファルト防水紙、およびアルミニウム箔(孔あり・孔なし)などが好ましい。
Phenolic resin foam laminates can be used alone or joined to external materials for a variety of applications. Examples of external materials include board-like materials, sheet-like and film-like materials, and combinations thereof. Suitable board-like materials include ordinary plywood, structural plywood, particle board, and wood-based boards such as OSB, wood-wool cement boards, wood-chip cement boards, gypsum boards, flexible boards, medium density fiberboards, calcium silicate boards, magnesium silicate boards, and volcanic glass laminates. Suitable sheet-like and film-like materials include polyester nonwoven fabric, polypropylene nonwoven fabric, inorganic-filled glass fiber nonwoven fabric, glass fiber nonwoven fabric, paper, calcium carbonate paper, polyethylene-processed paper, polyethylene film, plastic moisture-proof film, asphalt waterproof paper, and aluminum foil (with or without holes).
以下、フェノール樹脂発泡体の製造方法についてより詳細に説明する。
The manufacturing method for phenolic resin foam is explained in more detail below.
<フェノール樹脂発泡体の原料>
フェノール樹脂としては、アルカリ金属水酸化物またはアルカリ土類金属水酸化物によって合成するレゾール型フェノール樹脂を用いる。レゾール型フェノール樹脂は、フェノール類とアルデヒド類とを原料としてアルカリ触媒により40~100℃の温度範囲で加熱して合成する。また、必要に応じてレゾール型フェノール樹脂の合成時、もしくは合成後に、尿素等の添加剤を添加してもよい。尿素を添加する場合は予めアルカリ触媒でメチロール化した尿素をレゾール型フェノール樹脂に混合することがより好ましい。合成後のレゾール型フェノール樹脂は、通常過剰な水分を含んでいるので、発泡に際し、発泡に適した水分量に調整する。また、フェノール樹脂には、脂肪族炭化水素または高沸点の脂環式炭化水素、或いは、それらの混合物や、エチレングリコールおよびジエチレングリコール等の粘度調整用の希釈剤、ならびにその他必要に応じてジシアンジアミドやメラミン等の添加剤を添加することもできる。また、必要に応じてレゾール型フェノール樹脂の合成時、もしくは合成後にリグニンを添加させてもよい。 <Raw materials for phenolic resin foam>
As the phenolic resin, a resol-type phenolic resin synthesized by an alkali metal hydroxide or an alkaline earth metal hydroxide is used. The resol-type phenolic resin is synthesized by heating phenols and aldehydes as raw materials in a temperature range of 40 to 100°C with an alkali catalyst. In addition, an additive such as urea may be added during or after the synthesis of the resol-type phenolic resin as necessary. When urea is added, it is more preferable to mix urea that has been methylolated with an alkali catalyst in advance with the resol-type phenolic resin. Since the resol-type phenolic resin after synthesis usually contains excess moisture, the moisture content is adjusted to a level suitable for foaming during foaming. In addition, aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons, or mixtures thereof, viscosity-adjusting diluents such as ethylene glycol and diethylene glycol, and other additives such as dicyandiamide and melamine may be added to the phenolic resin as necessary. In addition, lignin may be added during or after the synthesis of the resol-type phenolic resin as necessary.
フェノール樹脂としては、アルカリ金属水酸化物またはアルカリ土類金属水酸化物によって合成するレゾール型フェノール樹脂を用いる。レゾール型フェノール樹脂は、フェノール類とアルデヒド類とを原料としてアルカリ触媒により40~100℃の温度範囲で加熱して合成する。また、必要に応じてレゾール型フェノール樹脂の合成時、もしくは合成後に、尿素等の添加剤を添加してもよい。尿素を添加する場合は予めアルカリ触媒でメチロール化した尿素をレゾール型フェノール樹脂に混合することがより好ましい。合成後のレゾール型フェノール樹脂は、通常過剰な水分を含んでいるので、発泡に際し、発泡に適した水分量に調整する。また、フェノール樹脂には、脂肪族炭化水素または高沸点の脂環式炭化水素、或いは、それらの混合物や、エチレングリコールおよびジエチレングリコール等の粘度調整用の希釈剤、ならびにその他必要に応じてジシアンジアミドやメラミン等の添加剤を添加することもできる。また、必要に応じてレゾール型フェノール樹脂の合成時、もしくは合成後にリグニンを添加させてもよい。 <Raw materials for phenolic resin foam>
As the phenolic resin, a resol-type phenolic resin synthesized by an alkali metal hydroxide or an alkaline earth metal hydroxide is used. The resol-type phenolic resin is synthesized by heating phenols and aldehydes as raw materials in a temperature range of 40 to 100°C with an alkali catalyst. In addition, an additive such as urea may be added during or after the synthesis of the resol-type phenolic resin as necessary. When urea is added, it is more preferable to mix urea that has been methylolated with an alkali catalyst in advance with the resol-type phenolic resin. Since the resol-type phenolic resin after synthesis usually contains excess moisture, the moisture content is adjusted to a level suitable for foaming during foaming. In addition, aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons, or mixtures thereof, viscosity-adjusting diluents such as ethylene glycol and diethylene glycol, and other additives such as dicyandiamide and melamine may be added to the phenolic resin as necessary. In addition, lignin may be added during or after the synthesis of the resol-type phenolic resin as necessary.
フェノール樹脂の合成時のフェノール類対アルデヒド類の出発モル比は好ましくは1:1から1:4.5の範囲内であり、より好ましくは1:1.5から1:2.5の範囲内である。また、必要に応じて合成に使用するフェノール類に予めリグニンを溶解させてもよい。
The starting molar ratio of phenols to aldehydes during synthesis of the phenolic resin is preferably in the range of 1:1 to 1:4.5, more preferably in the range of 1:1.5 to 1:2.5. If necessary, lignin may be dissolved in advance in the phenols used in the synthesis.
ここで、本実施形態においてフェノール樹脂合成の際に好ましく使用されるフェノール類は、フェノール自体、および他のフェノール類であり、他のフェノール類の例としては、レゾルシノール、カテコール、o-、m-およびp-クレゾール、キシレノール類、エチルフェノール類、ならびにp-tertブチルフェノール等が挙げられる。また、2核フェノール類も使用できる。
Here, in this embodiment, the phenols preferably used in the synthesis of the phenolic resin are phenol itself and other phenols, examples of which include resorcinol, catechol, o-, m- and p-cresol, xylenols, ethylphenols, and p-tert-butylphenol. Dinuclear phenols can also be used.
また、アルデヒド類は、アルデヒド源となり得る化合物であればよく、アルデヒド類としては、ホルムアルデヒド自体、解重合させて利用できるパラホルムアルデヒド、および他のアルデヒド類やその誘導体を用いることが好ましい。他のアルデヒド類の例としては、グリオキサール、アセトアルデヒド、クロラール、フルフラール、およびベンズアルデヒド等が挙げられる。
Also, the aldehydes may be any compound that can be an aldehyde source, and it is preferable to use formaldehyde itself, paraformaldehyde that can be depolymerized for use, and other aldehydes and their derivatives. Examples of other aldehydes include glyoxal, acetaldehyde, chloral, furfural, and benzaldehyde.
フェノール樹脂の質量平均分子量は、300以上であることが好ましく、400以上であることがより好ましく、450以上であることが更に好ましい。また該質量平均分子量は、2,500以下であることが好ましく、2,200以下であることがより好ましく、2,050以下であることが更に好ましく、1,900以下であることが最も好ましい。フェノール樹脂の質量平均分子量が300以上であると、硬化反応の反応熱による反応暴走が起きづらく、反応熱を利用して発泡成形が出来るため、エネルギー効率が良い。また質量平均分子量が2,500以下の時、重合反応の反応熱が少ない事により気泡径が小さくなりやすく、ボード成形工程より上流側の設備で樹脂が硬化しづらいため配管が汚れにくく、長時間連続運転ができる。なお、フェノール樹脂の質量平均分子量は、本明細書の実施例に記載の方法を用いて測定することができる。
The mass average molecular weight of the phenolic resin is preferably 300 or more, more preferably 400 or more, and even more preferably 450 or more. The mass average molecular weight is preferably 2,500 or less, more preferably 2,200 or less, even more preferably 2,050 or less, and most preferably 1,900 or less. When the mass average molecular weight of the phenolic resin is 300 or more, runaway reaction due to the reaction heat of the curing reaction is unlikely to occur, and foam molding can be performed using the reaction heat, resulting in good energy efficiency. When the mass average molecular weight is 2,500 or less, the reaction heat of the polymerization reaction is small, so the bubble diameter tends to be small, and the resin is unlikely to harden in equipment upstream of the board molding process, so the piping is less likely to become dirty, and continuous operation for long periods of time is possible. The mass average molecular weight of the phenolic resin can be measured using the method described in the examples of this specification.
フェノール樹脂組成物の40℃における粘度は、好ましくは5,000mPa・s以上100,000mPa・s以下であり、より好ましくは7,000mPa・s以上50,000mPa・s以下であり、更に好ましくは9,000mPa・s以上40,000mPa・s以下である。
The viscosity of the phenolic resin composition at 40°C is preferably 5,000 mPa·s or more and 100,000 mPa·s or less, more preferably 7,000 mPa·s or more and 50,000 mPa·s or less, and even more preferably 9,000 mPa·s or more and 40,000 mPa·s or less.
リグニン、界面活性剤、発泡剤および発泡核剤は、フェノール樹脂組成物に予め添加しておいてもよいし、酸性硬化剤と同時に添加してもよい。
The lignin, surfactant, foaming agent and foam nucleating agent may be added to the phenolic resin composition in advance, or may be added simultaneously with the acidic hardener.
リグニンとしては、木本系リグニン、草本系リグニンが使用でき、それらの中でも、クラフトリグニン、リグニンスルホン酸、リグニンスルホン酸塩、ソーダリグニン、オルガノソルブリグニン、爆砕リグニン、硫酸リグニン、アルカリリグニン、脱アルカリリグニン、およびそれらの誘導体および変成体および分解物が使用できる。これらのリグニンは、単体として、もしくは、2種類以上の組み合わせとして使用することができる。
As lignin, woody lignin and herbaceous lignin can be used, among which kraft lignin, lignin sulfonic acid, lignin sulfonate, soda lignin, organosolv lignin, explosive lignin, sulfuric acid lignin, alkaline lignin, dealkalized lignin, and their derivatives, modified products, and decomposition products can be used. These lignins can be used alone or in combination of two or more types.
リグニン含有フェノール樹脂組成物の含水率は、1.5質量%以上6.5質量%以下であり、1.5質量%以上5.0質量%以下であることが好ましい。より好ましくは、1.5質量%以上4.8質量%以下であり、更に好ましくは、1.5質量%以上4.2質量%以下である。最も好ましくは、4.0質量%以下である。1.5質量%未満であると、リグニン含有フェノール樹脂組成物の粘度が急激に上昇し、生産性が著しく低下する。6.5質量%より大きいと、水によって発泡硬化が阻害され、微細なセルを維持できなくなることで、熱伝導率が高くなってしまう。
The water content of the lignin-containing phenolic resin composition is 1.5% by mass or more and 6.5% by mass or less, and preferably 1.5% by mass or more and 5.0% by mass or less. More preferably, it is 1.5% by mass or more and 4.8% by mass or less, and even more preferably, it is 1.5% by mass or more and 4.2% by mass or less. Most preferably, it is 4.0% by mass or less. If it is less than 1.5% by mass, the viscosity of the lignin-containing phenolic resin composition increases rapidly, and productivity decreases significantly. If it is more than 6.5% by mass, the water inhibits foaming and curing, and fine cells cannot be maintained, resulting in high thermal conductivity.
リグニン含有フェノール樹脂組成物の含水率の調整方法は、特に限定されないが、例えば薄膜蒸発器を用いて、蒸気圧力による温度制御と真空度制御を行うことで、適宜なし得る。
The method for adjusting the moisture content of the lignin-containing phenolic resin composition is not particularly limited, but can be appropriately done, for example, by using a thin-film evaporator to control the temperature and vacuum level by steam pressure.
フェノール樹脂組成物に添加するリグニンの含水率は、34.0質量%以下であり、11.0質量%以下であることが好ましい。より好ましくは、7.0質量%以下であり、更に好ましくは、6.0質量%以下である。最も好ましくは、5.5質量%以下である。34.0質量%より大きいと、発泡および硬化時に放散するリグニン内の水分が多く、発泡体の気泡径の粗大化につながり、発泡体の熱伝導率が上昇する。また、34.0質量%より大きいと、リグニン含有フェノール樹脂組成物、発泡剤、酸性硬化剤を混合器内で混合する際に、粘度上昇が起きにくく、混合器内でのせん断熱の発生が低減され、発泡硬化時間が遅延する。34.0質量%以下であると、混合する際に、粘度上昇が起き、混合器内でせん断熱が発生し、予めリグニン含有フェノール樹脂組成物が加熱されることで、リグニンによる硬化反応抑制効果を低減できる。そのため、リグニンを含むフェノール樹脂発泡体が、リグニンを含まないフェノール樹脂発泡体と同等の発泡硬化時間で作製可能であり、生産性を損なわない。
The moisture content of the lignin added to the phenolic resin composition is 34.0% by mass or less, and preferably 11.0% by mass or less. More preferably, it is 7.0% by mass or less, and even more preferably, it is 6.0% by mass or less. Most preferably, it is 5.5% by mass or less. If it is more than 34.0% by mass, the moisture in the lignin that dissipates during foaming and curing is large, which leads to coarsening of the bubble diameter of the foam and increases the thermal conductivity of the foam. Also, if it is more than 34.0% by mass, the viscosity is less likely to increase when the lignin-containing phenolic resin composition, the foaming agent, and the acidic curing agent are mixed in a mixer, the generation of shear heat in the mixer is reduced, and the foaming and curing time is delayed. If it is 34.0% by mass or less, the viscosity increases during mixing, shear heat is generated in the mixer, and the lignin-containing phenolic resin composition is heated in advance, which reduces the curing reaction suppression effect caused by lignin. Therefore, phenolic resin foam containing lignin can be produced in the same foaming and curing time as phenolic resin foam not containing lignin, without impairing productivity.
リグニンの含水率の調整方法は、特に限定されないが、例えば、送風恒温乾燥機を用いて、リグニン粉末を加熱または乾燥させることで、適宜なし得る。
The method for adjusting the moisture content of the lignin is not particularly limited, but can be appropriately done, for example, by heating or drying the lignin powder using a constant temperature air blower dryer.
リグニン粉末のメディアン径は、0.1μm以上300μm以下であることが好ましく、0.1μm以上250μm以下であることがより好ましい。更に好ましくは0.1μm以上200μm以下であり、最も好ましくは0.1μm以上150μm以下である。300μmより大きいと、フェノール樹脂発泡体中のリグニン粒子の大きさが、発泡体の気泡径より著しく大きいことで、セルを破壊しやすく、熱伝導率が高くなってしまう。
The median diameter of the lignin powder is preferably 0.1 μm to 300 μm, more preferably 0.1 μm to 250 μm. Even more preferably, it is 0.1 μm to 200 μm, and most preferably 0.1 μm to 150 μm. If it is larger than 300 μm, the size of the lignin particles in the phenolic resin foam is significantly larger than the bubble diameter of the foam, making the cells more likely to be destroyed and increasing the thermal conductivity.
リグニン粉末の粉砕方法は、特に限定されないが、例えば、転動ボールミル、転動ロッドミル、振動ボールミル、振動ロッドミル、パンミル、ローラーミル、高速回転式ミル等の粉砕機を使用する方法が挙げられる。
The method for grinding the lignin powder is not particularly limited, but examples include methods using grinders such as a rolling ball mill, a rolling rod mill, a vibrating ball mill, a vibrating rod mill, a pan mill, a roller mill, and a high-speed rotary mill.
リグニンの添加のタイミングは、特に限定されないが、フェノール樹脂組成物、発泡剤、酸性硬化剤を混合する混合機内に供給されていればよく、任意に決めることができる。混合機より下流でリグニンを添加した場合、フェノール樹脂組成物に対するリグニンの分散性が低下し、発泡体内にリグニンが局所的に存在するフェノール樹脂発泡体になり、断熱材として使用した際に、リグニンが熱橋として機能し、熱伝導率が高くなってしまう。それゆえ、リグニンはフェノール樹脂組成物を混合する混合機より上流側の工程で添加されることが好ましい。
The timing of adding lignin is not particularly limited, but can be determined as desired as long as it is supplied into the mixer that mixes the phenolic resin composition, the foaming agent, and the acidic curing agent. If lignin is added downstream of the mixer, the dispersibility of the lignin in the phenolic resin composition will decrease, resulting in a phenolic resin foam with lignin present locally within the foam. When used as an insulating material, the lignin will function as a thermal bridge, increasing the thermal conductivity. Therefore, it is preferable to add lignin in a process upstream of the mixer that mixes the phenolic resin composition.
リグニンの添加量は、フェノール樹脂組成物100質量部に対して、1.0質量%以上30.0質量%未満であることが好ましく、1.0質量%以上25.0質量%以下であることがより好ましい。更に好ましくは1.0質量%以上12.0質量%以下であり、最も好ましくは、1.0質量%以上8.0質量%以下である。リグニンの添加量が1.0質量%未満であると、フェノール樹脂発泡体中の植物由来材料の比率が低く、バイオベース材料としての価値が低い。リグニンの添加量が30.0質量%超であると、フェノール樹脂発泡体中に占めるリグニンの存在比率が高くなり、フェノール樹脂への添加時に粘度が上昇するため好ましくないことに加えて、断熱材として使用した際に、リグニンが熱橋として機能し、熱伝導率が高くなってしまう。
The amount of lignin added is preferably 1.0% by mass or more and less than 30.0% by mass, more preferably 1.0% by mass or more and less than 25.0% by mass, more preferably 1.0% by mass or more and less than 25.0% by mass, even more preferably 1.0% by mass or more and less than 12.0% by mass, and most preferably 1.0% by mass or more and less than 8.0% by mass. If the amount of lignin added is less than 1.0% by mass, the ratio of plant-derived materials in the phenolic resin foam is low, and the value as a bio-based material is low. If the amount of lignin added is more than 30.0% by mass, the ratio of lignin present in the phenolic resin foam increases, which is undesirable because the viscosity increases when added to the phenolic resin. In addition, when used as a heat insulating material, the lignin functions as a thermal bridge, increasing the thermal conductivity.
界面活性剤としては、フェノール樹脂発泡体の製造に一般に使用されるものを使用できるが、中でもノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油との縮合物や、アルキレンオキサイドと、ノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合生成物や、アルキルエーテル部分の炭素数が14~22のポリオキシエチレンアルキルエーテルや、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類や、ポリジメチルシロキサン等のシリコーン系化合物や、ポリアルコール類等が好ましい。これらの界面活性剤は単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。また、その使用量については特に制限はないが、フェノール樹脂100質量部に対して0.3質量部以上10質量部以下の範囲で好ましく使用される。
As the surfactant, those generally used in the manufacture of phenolic resin foams can be used, but nonionic surfactants are particularly effective. For example, alkylene oxides, which are copolymers of ethylene oxide and propylene oxide, condensates of alkylene oxides and castor oil, condensation products of alkylene oxides and alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers having 14 to 22 carbon atoms in the alkyl ether portion, fatty acid esters such as polyoxyethylene fatty acid esters, silicone compounds such as polydimethylsiloxane, polyalcohols, etc. are preferred. These surfactants may be used alone or in combination of two or more. There are no particular restrictions on the amount used, but they are preferably used in the range of 0.3 to 10 parts by mass per 100 parts by mass of phenolic resin.
発泡剤としてハイドロフルオロオレフィン、炭化水素および塩素化炭化水素を単体として、もしくは、これら2種類以上の組み合わせとして使用することができる。
Hydrofluoroolefins, hydrocarbons and chlorinated hydrocarbons can be used as blowing agents, either alone or in combination of two or more of these.
ハイドロフルオロオレフィンは一般的に熱伝導率が低く、発泡剤として使用した際、熱伝導率が低いフェノール樹脂発泡体が得られるため好ましい。ハイドロフルオロオレフィンは塩素化ハイドロフルオロオレフィンおよび非塩化ハイドロフルオロオレフィンを含む。本発明では、塩素化ハイドロフルオロオレフィンと非塩素化ハイドロフルオロオレフィンは、混合して使用することもできる。
Hydrofluoroolefins generally have low thermal conductivity, and are therefore preferred because, when used as a blowing agent, a phenolic resin foam having low thermal conductivity can be obtained. Hydrofluoroolefins include chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins. In the present invention, chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins can also be used in combination.
塩素化ハイドロフルオロオレフィンとしては、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd、例えば、E体(HCFO-1233zd(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)LBA)、1,1,2-トリクロロ-3,3,3-トリフルオロプロペン(HCFO-1213xa)、1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd)、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za)、1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb)、2,3,3-トリクロロ-3-フルオロプロペン(HCFO-1231xf)、2,3-ジクロロ-3,3-ジフルオロプロペン(HCFO-1232xf)、2-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233xc)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、1-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233yb)、3-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233yc)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)、3-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yf)、1-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。更に、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))も挙げられる。本発明では、これらの塩素化ハイドロフルオロオレフィンは、2種類以上混合して使用することもできる。
Chlorinated hydrofluoroolefins include (Z)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(Z)), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd, for example, E-form (HCFO-1233zd(E)), manufactured by Honeywell Japan, Inc., product name: Solstice (trademark) LBA), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1 213xa), 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1-chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb), 2,3,3-trichloro-3-fluoropropene (HCFO-1231xf), 2,3-dichloro-3,3-difluoropropene (HCFO-1232xf), 2-chloro -1,1,3-trifluoropropene (HCFO-1233xc), 2-chloro-1,3,3-trifluoropropene (HCFO-1233xe), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-1,2,3-trifluoropropene (HCFO-1233yb), 3-chloro-1,1,3-trifluoropropene (HCFO-1233yc), 1-chloro-2,3,3-trifluoropropene (HCFO O-1233yd), 3-chloro-1,2,3-trifluoropropene (HCFO-1233ye), 3-chloro-2,3,3-trifluoropropene (HCFO-1233yf), 1-chloro-1,3,3-trifluoropropene (HCFO-1233zb), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), and the like, and one or a mixture of these configuration isomers, i.e., E-isomer and Z-isomer, is used. Further, (E)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)) is also included. In the present invention, these chlorinated hydrofluoroolefins can be used in a mixture of two or more kinds.
非塩素化ハイドロフルオロオレフィンとしては、1,3,3,3-テトラフルオロプロパ-1-エン(HFO-1234ze、例えば、E体(HFO-1234ze(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)ze)、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz、例えば、Z体(HFO-1336mzz(Z))である、ケマーズ株式会社製、Opteon(商標)1100)、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、1,1,3,3,3-ペンタフルオロプロペン(HFO-1225zc)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,1,1,4,4,5,5,5-オクタフルオロ-2-ペンテン(HFO-1438mzz)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。本発明では、これらの非塩素化ハイドロフルオロオレフィンは、2種類以上混合して使用することもできる。
Non-chlorinated hydrofluoroolefins include 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze, for example, E-form (HFO-1234ze(E)), manufactured by Honeywell Japan, Inc., product name: Solstice(trademark) ze), 1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz, for example, Z-form (HFO-1336mzz(Z)), manufactured by Chemours Inc., Opteon(trademark) 1100), 2,3,3, Examples of such fluoroolefins include 3-tetrafluoro-1-propene (HFO-1234yf), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 3,3,3-trifluoropropene (HFO-1243zf), and 1,1,1,4,4,5,5,5-octafluoro-2-pentene (HFO-1438mzz). One or a mixture of these configurational isomers, i.e., E-isomer or Z-isomer, is used. In the present invention, these non-chlorinated hydrofluoroolefins can also be used in a mixture of two or more kinds.
炭化水素としては、炭素数が3~7の環状または鎖状のアルカン、アルケン、アルキンが好ましく、具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン、等を挙げることができる。その中でも、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンのペンタン類およびノルマルブタン、イソブタン、シクロブタンのブタン類が好ましく用いられる。本発明では、これらの炭化水素は、2種類以上混合して使用することもできる。混合の例としては、ノルマルペンタンとノルマルブタン、イソブタンとイソペンタン、ノルマルブタンとイソペンタン、イソブタンとノルマルペンタン、シクロペンタンとノルマルブタン、シクロペンタンとイソブタン等があり、特にシクロペンタンとイソブタンの混合物が好ましい。
The preferred hydrocarbons are cyclic or chain alkanes, alkenes, and alkynes having 3 to 7 carbon atoms, and specific examples include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, and cyclohexane. Of these, pentanes such as normal pentane, isopentane, cyclopentane, and neopentane, and butanes such as normal butane, isobutane, and cyclobutane are preferably used. In the present invention, these hydrocarbons can also be used in a mixture of two or more types. Examples of mixtures include normal pentane and normal butane, isobutane and isopentane, normal butane and isopentane, isobutane and normal pentane, cyclopentane and normal butane, cyclopentane and isobutane, and the mixture of cyclopentane and isobutane is particularly preferred.
塩素化炭化水素としては、炭素数が2~5の直鎖状または分岐状の塩素化脂肪族炭化水素を好ましく利用できる。結合している塩素原子の数は1~4が好ましく、例えば、ジクロロエタン、プロピルクロリド、2-クロロプロパン、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリドなどが挙げられる。これらのうち、クロロプロパンであるプロピルクロリド、2-クロロプロパンが、より好ましく用いられる。本発明では、これらの塩素化炭化水素は、2種類以上を組み合わせて使用することもできる。
As the chlorinated hydrocarbon, linear or branched chlorinated aliphatic hydrocarbons having 2 to 5 carbon atoms can be preferably used. The number of bonded chlorine atoms is preferably 1 to 4, and examples thereof include dichloroethane, propyl chloride, 2-chloropropane, butyl chloride, isobutyl chloride, pentyl chloride, and isopentyl chloride. Of these, propyl chloride and 2-chloropropane, which are chloropropanes, are more preferably used. In the present invention, these chlorinated hydrocarbons can also be used in combination of two or more types.
更に、他の発泡剤としては、特に限定されず、例えば、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、アゾジカルボン酸アミド、アゾビスイソブチロニトリル、アゾジカルボン酸バリウム、N,N’-ジニトロソペンタメチレンテトラミン、p,p’-オキシビスベンゼンスルホニルヒドラジド、およびトリヒドラジノトリアジン等の化学発泡剤等が挙げられる。これらの発泡剤は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
Furthermore, other foaming agents are not particularly limited, and examples thereof include chemical foaming agents such as sodium hydrogen carbonate, sodium carbonate, calcium carbonate, magnesium carbonate, azodicarboxylic acid amide, azobisisobutyronitrile, barium azodicarboxylate, N,N'-dinitrosopentamethylenetetramine, p,p'-oxybisbenzenesulfonylhydrazide, and trihydrazinotriazine. These foaming agents may be used alone or in combination of two or more.
フェノール樹脂組成物中の発泡剤の量は、発泡剤の種類、発泡剤のフェノール樹脂との相溶性、温度、ならびに滞留時間等の発泡と硬化の条件によりばらつきがある。そのため所望するフェノール樹脂発泡体の密度、発泡条件等によって任意に決めて差し支えないが、発泡剤の量はフェノール樹脂組成物100質量部に対して、3.0~20質量部であることが好ましく、より好ましくは4.0~18質量部、更に好ましくは5.0~16質量部、最も好ましくは6.0部~15質量部である。フェノール樹脂組成物100質量部当たりの発泡剤の量が3.0質量部以上の場合、樹脂発泡体の高密度化を抑制することができる。また、フェノール樹脂組成物100質量部当たりの発泡剤の量が20質量部以下であると、フェノール樹脂発泡体が低密度になることによる圧縮強さなどの機械的強度の低下や、熱伝導率の増大を抑制できる。
The amount of foaming agent in the phenolic resin composition varies depending on the type of foaming agent, the compatibility of the foaming agent with the phenolic resin, the temperature, and the foaming and curing conditions such as the residence time. Therefore, it may be determined arbitrarily depending on the desired density of the phenolic resin foam, the foaming conditions, etc., but the amount of foaming agent is preferably 3.0 to 20 parts by mass, more preferably 4.0 to 18 parts by mass, even more preferably 5.0 to 16 parts by mass, and most preferably 6.0 to 15 parts by mass, per 100 parts by mass of the phenolic resin composition. When the amount of foaming agent per 100 parts by mass of the phenolic resin composition is 3.0 parts by mass or more, the resin foam can be prevented from becoming highly densified. Also, when the amount of foaming agent per 100 parts by mass of the phenolic resin composition is 20 parts by mass or less, the phenolic resin foam can be prevented from becoming low-densified, which would result in a decrease in mechanical strength such as compressive strength, and an increase in thermal conductivity.
本実施形態においては、フェノール樹脂発泡体の製造に発泡核剤を使用してもよい。発泡核剤としては、窒素、ヘリウム、アルゴンなどの、発泡剤よりも沸点が50℃以上低い低沸点物質のような気体発泡核剤を添加することができる。また、水酸化アルミニウム粉、酸化アルミニウム粉、炭酸カルシウム粉、タルク、はくとう土(カオリン)、珪石粉、珪砂、マイカ、珪酸カルシウム粉、ワラストナイト、ガラス粉、ガラスビーズ、フライアッシュ、シリカフューム、石膏粉、ホウ砂、スラグ粉、アルミナセメント、ポルトランドセメント等の無機粉、および、フェノール樹脂発泡体の粉砕粉のような有機粉等の固体発泡核剤を添加することもできる。これらは、単独で使用してもよいし、気体及び固体の区別なく、2種類以上を組み合わせて使用してもよい。発泡核剤の添加タイミングは、フェノール樹脂組成物を混合する混合機内に供給されていればよく、任意に決めることができる。
In this embodiment, a foam nucleating agent may be used to manufacture the phenolic resin foam. As the foam nucleating agent, a gaseous foam nucleating agent such as nitrogen, helium, argon, or other low-boiling substances having a boiling point 50° C. or more lower than that of the foaming agent may be added. In addition, a solid foam nucleating agent such as inorganic powders such as aluminum hydroxide powder, aluminum oxide powder, calcium carbonate powder, talc, kaolin, silica stone powder, silica sand, mica, calcium silicate powder, wollastonite, glass powder, glass beads, fly ash, silica fume, gypsum powder, borax, slag powder, alumina cement, and Portland cement, and an organic powder such as crushed powder of phenolic resin foam may also be added. These may be used alone, or two or more types may be used in combination, regardless of whether they are gaseous or solid. The timing of adding the foam nucleating agent may be determined arbitrarily, as long as it is supplied into the mixer that mixes the phenolic resin composition.
気体発泡核剤を添加する場合には、その添加量は、発泡剤の量を100質量%として、0.2質量%以上1.0質量%以下であることが好ましく、0.3質量%以上0.5質量%以下であることがより好ましい。
When a gas foam nucleating agent is added, the amount added is preferably 0.2% by mass or more and 1.0% by mass or less, and more preferably 0.3% by mass or more and 0.5% by mass or less, based on 100% by mass of the foaming agent.
固体発泡核剤の添加量は、フェノール樹脂組成物の100質量部に対して、3.0質量%以上10.0質量%以下であることが好ましく、3.0質量%以上8.0質量%以下であることがより好ましい。固体発泡核剤の添加量が3.0質量%以上であると、表面材からの発泡性フェノール樹脂組成物の浸み出しを抑制し易くなる。また、固体発泡核剤の添加量を10.0質量%以下とすることで、沸点の低い発泡剤の放散を抑制し易くなる。
The amount of solid foam nucleating agent added is preferably 3.0% by mass or more and 10.0% by mass or less, and more preferably 3.0% by mass or more and 8.0% by mass or less, relative to 100 parts by mass of the phenolic resin composition. When the amount of solid foam nucleating agent added is 3.0% by mass or more, it becomes easier to suppress the seepage of the foamable phenolic resin composition from the surface material. In addition, by setting the amount of solid foam nucleating agent added to 10.0% by mass or less, it becomes easier to suppress the emission of a foaming agent with a low boiling point.
酸性硬化剤は、フェノール樹脂組成物を硬化できる酸性の硬化剤であればよく、酸成分として有機酸を含有する。有機酸としては、アリールスルホン酸、或いは、これらの無水物が好ましい。アリールスルホン酸およびその無水物としては、トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、置換フェノールスルホン酸、キシレノールスルホン酸、置換キシレノールスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸等、および、それらの無水物が挙げられ、これらを一種類で用いても、二種類以上組み合わせてもよい。なお、本実施形態では、硬化助剤として、レゾルシノール、クレゾール、サリゲニン(o-メチロールフェノール)、およびp-メチロールフェノール等を添加してもよい。また、これらの酸性硬化剤は、エチレングリコールおよびジエチレングリコール等の溶媒で希釈してもよい。
The acidic curing agent may be any acidic curing agent capable of curing the phenolic resin composition, and contains an organic acid as an acid component. The organic acid is preferably arylsulfonic acid or an anhydride thereof. Examples of arylsulfonic acid and anhydrides thereof include toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, substituted phenolsulfonic acid, xylenolsulfonic acid, substituted xylenolsulfonic acid, dodecylbenzenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and the like, and anhydrides thereof. These may be used alone or in combination of two or more. In this embodiment, resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like may be added as a curing aid. These acidic curing agents may also be diluted with a solvent such as ethylene glycol or diethylene glycol.
酸性硬化剤の使用量は、その種類により異なり、キシレンスルホン酸80質量%とジエチレングリコール20質量%との混合物を使用する場合には、フェノール樹脂組成物100質量部に対して、好ましくは6質量部以上20質量部以下、より好ましくは8質量部以上15質量部以下で、最も好ましくは11質量部以上13質量部以下で使用される。
The amount of acidic hardener used varies depending on the type. When using a mixture of 80% by weight of xylene sulfonic acid and 20% by weight of diethylene glycol, it is preferably used in an amount of 6 to 20 parts by weight, more preferably 8 to 15 parts by weight, and most preferably 11 to 13 parts by weight, per 100 parts by weight of the phenolic resin composition.
フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に配される表面材としては、可撓性を有する表面材(可撓性表面材)を用いる。使用される可撓性表面材としては、主成分がポリエステル、ポリプロピレン、およびナイロン等からなる不織布または織布、クラフト紙、ガラス繊維混抄紙、水酸化カルシウム紙、水酸化アルミニウム紙、および珪酸マグネシウム紙等の紙類、またはガラス繊維不織布のような無機繊維の不織布等が好ましく、これらは混合(または積層)して用いてもよい。得られるフェノール樹脂発泡体積層板から表面材を剥離し母材のみを利用する場合には、剥離後に廃棄可能な安価な紙類が好ましい。これら表面材は、通常ロール状の形態で提供されている。更に、可撓性表面材としては、難燃剤等の添加剤を混練したものを用いても構わない。なお、表面材とフェノール樹脂発泡体との接着方法は特に限定されず、エポキシ樹脂等の接着剤を使用しても構わないが、製造コスト面、および製造工程の煩雑化防止の面からも、発泡性フェノール樹脂組成物が表面材表面で熱硬化する際の固着力のみによるものであることが好ましい。
A flexible surface material (flexible surface material) is used as the surface material arranged on at least one of the sides of the phenolic resin foam and the back surface of the side. The flexible surface material used is preferably a nonwoven or woven fabric whose main components are polyester, polypropylene, nylon, etc., paper such as craft paper, glass fiber mixed paper, calcium hydroxide paper, aluminum hydroxide paper, magnesium silicate paper, or inorganic fiber nonwoven fabric such as glass fiber nonwoven fabric, and these may be mixed (or laminated) and used. When the surface material is peeled off from the obtained phenolic resin foam laminate and only the base material is used, inexpensive paper that can be disposed of after peeling is preferred. These surface materials are usually provided in a roll form. Furthermore, the flexible surface material may be mixed with additives such as flame retardants. There are no particular limitations on the method of bonding the surface material and the phenolic resin foam, and an adhesive such as an epoxy resin may be used, but from the standpoint of production costs and preventing the manufacturing process from becoming complicated, it is preferable that the bonding be achieved only by the adhesive strength that occurs when the foamable phenolic resin composition is thermally cured on the surface of the surface material.
<フェノール樹脂発泡体およびその積層板の製造方法>
フェノール樹脂発泡体積層板の製造方法としては、上述した発泡性フェノール樹脂組成物を混合機にて混合する混合工程と、混合した発泡性フェノール樹脂組成物を下表面材上に吐出する吐出工程と、下表面材上に吐出した発泡性フェノール樹脂組成物からフェノール樹脂発泡体積層板を製造する発泡体積層板製造工程とを備える連続製造方式が用いられる。また、各ステップを段階的に行う型枠を利用するバッチ方式を採用することも可能である。面材が積層されていないか、もしくは面材を除去することにより、フェノール樹脂発泡体として利用することもできる。 <Method of manufacturing phenolic resin foam and laminate thereof>
The method for producing the phenolic resin foam laminate is a continuous production method including a mixing step of mixing the above-mentioned foamable phenolic resin composition in a mixer, a discharge step of discharging the mixed foamable phenolic resin composition onto a lower surface material, and a foam laminate production step of producing a phenolic resin foam laminate from the foamable phenolic resin composition discharged onto the lower surface material. It is also possible to adopt a batch method using a mold in which each step is performed in stages. It can also be used as a phenolic resin foam by not laminating a surface material or by removing the surface material.
フェノール樹脂発泡体積層板の製造方法としては、上述した発泡性フェノール樹脂組成物を混合機にて混合する混合工程と、混合した発泡性フェノール樹脂組成物を下表面材上に吐出する吐出工程と、下表面材上に吐出した発泡性フェノール樹脂組成物からフェノール樹脂発泡体積層板を製造する発泡体積層板製造工程とを備える連続製造方式が用いられる。また、各ステップを段階的に行う型枠を利用するバッチ方式を採用することも可能である。面材が積層されていないか、もしくは面材を除去することにより、フェノール樹脂発泡体として利用することもできる。 <Method of manufacturing phenolic resin foam and laminate thereof>
The method for producing the phenolic resin foam laminate is a continuous production method including a mixing step of mixing the above-mentioned foamable phenolic resin composition in a mixer, a discharge step of discharging the mixed foamable phenolic resin composition onto a lower surface material, and a foam laminate production step of producing a phenolic resin foam laminate from the foamable phenolic resin composition discharged onto the lower surface material. It is also possible to adopt a batch method using a mold in which each step is performed in stages. It can also be used as a phenolic resin foam by not laminating a surface material or by removing the surface material.
連続製造方式においては、下表面材上に吐出したフェノール樹脂組成物を上表面材で被覆した後、発泡および硬化させながら上下方向から均すように予成形し、その後、発泡および硬化を進めつつ板状に本成形していく。連続製造方式においては、予成形や本成形を行う方法として、スラット型ダブルコンベアを利用する方法や、金属ロールもしくは鋼板を利用する方法、更には、これらを複数組み合わせて利用する方法等、製造目的に応じた種々の方法が挙げられる。このうち、例えば、スラット型ダブルコンベアを利用して成形する場合には、上下の表面材で被覆された発泡性フェノール樹脂組成物をスラット型ダブルコンベア中へ連続的に案内した後、加熱しながら上下方向から圧力を加えて、所定の厚みに調整しつつ、発泡および硬化させ板状に成形することができる。下表面材上に吐出する際の、発泡性フェノール樹脂組成物の温度は、発泡剤の沸点によるが一般的に32℃以上45℃以下であることが好ましい。発泡性フェノール樹脂組成物の温度が32℃以上であると、発泡性フェノール樹脂組成物が初期に発泡し易くなるために、下表面材からの発泡性フェノール樹脂組成物の浸み出しを抑制し易くなる。一方、発泡性フェノール樹脂組成物の温度が45℃以下であると、沸点の低い発泡剤を用いる場合においても放散を抑制し易くなり、発泡効率の低下と気泡径の粗大化による熱伝導率の増大を防ぎ易くなる。なお、下表面材上に吐出する発泡性フェノール樹脂組成物の温度は、各種組成物を混合する混合機の温調水温度や流量、および、回転数等の調整によって行うことができる。
In the continuous manufacturing method, the phenolic resin composition discharged onto the lower surface material is covered with the upper surface material, and then preformed to be uniform from the top and bottom while foaming and curing, and then formed into a plate shape while proceeding with foaming and curing. In the continuous manufacturing method, various methods according to the manufacturing purpose can be mentioned as a method for performing preforming and forming in the continuous manufacturing method, such as a method using a slat type double conveyor, a method using a metal roll or a steel plate, and a method using a combination of a plurality of these. Among these, for example, when molding using a slat type double conveyor, the foamable phenolic resin composition covered with the upper and lower surface materials can be continuously guided into the slat type double conveyor, and then it can be foamed and cured while adjusting to a predetermined thickness by applying pressure from the top and bottom while heating, and formed into a plate shape. The temperature of the foamable phenolic resin composition when discharged onto the lower surface material depends on the boiling point of the foaming agent, but it is generally preferable that it is 32°C or higher and 45°C or lower. When the temperature of the foamable phenolic resin composition is 32°C or higher, the foamable phenolic resin composition is easily foamed in the early stages, and therefore it is easy to suppress the seepage of the foamable phenolic resin composition from the lower surface material. On the other hand, when the temperature of the foamable phenolic resin composition is 45°C or lower, it is easy to suppress the diffusion even when a foaming agent with a low boiling point is used, and it is easy to prevent the decrease in foaming efficiency and the increase in thermal conductivity due to the coarsening of the bubble diameter. The temperature of the foamable phenolic resin composition discharged onto the lower surface material can be adjusted by adjusting the temperature and flow rate of the water temperature of the mixer that mixes the various compositions, as well as the rotation speed, etc.
<予成形工程>
下表面材上に吐出した発泡性フェノール樹脂組成物を発泡および硬化させつつ上表面材上から予成形を行う工程の加熱温調条件は、30℃以上80℃以下とすることが望ましい。30℃以上であると、予成形工程での発泡の促進効果が得られ易くなることに加え、硬化を促進させることができる。また、80℃以下であると、厚み方向中心部近傍が内部発熱の影響を受け難く、中心部温度が高くなり難く、熱伝導率を長期間維持することができる。発泡性フェノール樹脂組成物を発泡および硬化させる際に、厚み方向中心部近傍における内部発熱を抑制しつつも効率的に硬化を促進させるためには、予成形工程に続き、本成形工程および後硬化工程を設け、段階的に昇温させることが重要である。予成形工程の滞留時間としては、1分以上20分以内であることが好ましい。 <Preforming process>
The heating temperature control conditions for the process of foaming and curing the foamable phenolic resin composition discharged onto the lower surface material while preforming from the upper surface material are desirably 30°C or higher and 80°C or lower. If the temperature is 30°C or higher, the foaming promotion effect in the preforming process is easily obtained, and curing can be promoted. If the temperature is 80°C or lower, the vicinity of the center in the thickness direction is not easily affected by internal heat generation, the center temperature is not easily increased, and the thermal conductivity can be maintained for a long period of time. When foaming and curing the foamable phenolic resin composition, in order to efficiently promote curing while suppressing internal heat generation in the vicinity of the center in the thickness direction, it is important to provide a main molding process and a post-curing process following the preforming process and to raise the temperature stepwise. The residence time in the preforming process is preferably 1 minute or more and 20 minutes or less.
下表面材上に吐出した発泡性フェノール樹脂組成物を発泡および硬化させつつ上表面材上から予成形を行う工程の加熱温調条件は、30℃以上80℃以下とすることが望ましい。30℃以上であると、予成形工程での発泡の促進効果が得られ易くなることに加え、硬化を促進させることができる。また、80℃以下であると、厚み方向中心部近傍が内部発熱の影響を受け難く、中心部温度が高くなり難く、熱伝導率を長期間維持することができる。発泡性フェノール樹脂組成物を発泡および硬化させる際に、厚み方向中心部近傍における内部発熱を抑制しつつも効率的に硬化を促進させるためには、予成形工程に続き、本成形工程および後硬化工程を設け、段階的に昇温させることが重要である。予成形工程の滞留時間としては、1分以上20分以内であることが好ましい。 <Preforming process>
The heating temperature control conditions for the process of foaming and curing the foamable phenolic resin composition discharged onto the lower surface material while preforming from the upper surface material are desirably 30°C or higher and 80°C or lower. If the temperature is 30°C or higher, the foaming promotion effect in the preforming process is easily obtained, and curing can be promoted. If the temperature is 80°C or lower, the vicinity of the center in the thickness direction is not easily affected by internal heat generation, the center temperature is not easily increased, and the thermal conductivity can be maintained for a long period of time. When foaming and curing the foamable phenolic resin composition, in order to efficiently promote curing while suppressing internal heat generation in the vicinity of the center in the thickness direction, it is important to provide a main molding process and a post-curing process following the preforming process and to raise the temperature stepwise. The residence time in the preforming process is preferably 1 minute or more and 20 minutes or less.
<本成形工程>
予成形工程に続く本成形工程の加熱温調条件は、65℃以上100℃以下であることが望ましい。該区間において、無端スチールベルト型ダブルコンベアまたはスラット型ダブルコンベア、もしくはロール等を用いて本成形を行うことができる。また、本成形工程の滞留時間は、発泡および硬化反応を行わせる主工程であることから、5分以上40分以内であることが好ましい。滞留時間が5分以上であると発泡と硬化を十分に促進させることができる。滞留時間が2時間以内であるとフェノール樹脂発泡体積層板の生産効率を高めることができる。なお、コンベアを用いる際には、上下のコンベア温度差は4℃未満とすることが望ましい。 <Main molding process>
The heating temperature control conditions of the main molding process following the pre-molding process are preferably 65°C or higher and 100°C or lower. In this section, the main molding can be performed using an endless steel belt type double conveyor or a slat type double conveyor, or a roll or the like. In addition, since the main molding process is a main process for carrying out foaming and curing reactions, the residence time is preferably 5 minutes or more and 40 minutes or less. If the residence time is 5 minutes or more, foaming and curing can be sufficiently promoted. If the residence time is 2 hours or less, the production efficiency of the phenolic resin foam laminate can be increased. In addition, when using a conveyor, it is preferable that the temperature difference between the upper and lower conveyors is less than 4°C.
予成形工程に続く本成形工程の加熱温調条件は、65℃以上100℃以下であることが望ましい。該区間において、無端スチールベルト型ダブルコンベアまたはスラット型ダブルコンベア、もしくはロール等を用いて本成形を行うことができる。また、本成形工程の滞留時間は、発泡および硬化反応を行わせる主工程であることから、5分以上40分以内であることが好ましい。滞留時間が5分以上であると発泡と硬化を十分に促進させることができる。滞留時間が2時間以内であるとフェノール樹脂発泡体積層板の生産効率を高めることができる。なお、コンベアを用いる際には、上下のコンベア温度差は4℃未満とすることが望ましい。 <Main molding process>
The heating temperature control conditions of the main molding process following the pre-molding process are preferably 65°C or higher and 100°C or lower. In this section, the main molding can be performed using an endless steel belt type double conveyor or a slat type double conveyor, or a roll or the like. In addition, since the main molding process is a main process for carrying out foaming and curing reactions, the residence time is preferably 5 minutes or more and 40 minutes or less. If the residence time is 5 minutes or more, foaming and curing can be sufficiently promoted. If the residence time is 2 hours or less, the production efficiency of the phenolic resin foam laminate can be increased. In addition, when using a conveyor, it is preferable that the temperature difference between the upper and lower conveyors is less than 4°C.
<後硬化工程>
予成形工程および本成形工程の温調区間を経て加熱温調した後に、後硬化工程を適用する。後硬化工程の温度は、90℃以上120℃以下であることが好ましい。90℃以上であると、発泡体中の水分が放散し易くなり、120℃以下であると、製品の低い熱伝導率を長期間維持することができる。後硬化工程の温調区間を設けることで、最終成形した後に、発泡性フェノール樹脂組成物中の水分を放散させることができる。後硬化工程の滞留時間としては、60分以上300分以下であることが好ましい。 <Post-curing process>
After heating and temperature control through the temperature control sections of the pre-molding process and the main molding process, the post-curing process is applied. The temperature of the post-curing process is preferably 90°C or higher and 120°C or lower. If it is 90°C or higher, the moisture in the foam is easily dissipated, and if it is 120°C or lower, the low thermal conductivity of the product can be maintained for a long period of time. By providing a temperature control section in the post-curing process, the moisture in the foamable phenolic resin composition can be dissipated after final molding. The residence time in the post-curing process is preferably 60 minutes or more and 300 minutes or less.
予成形工程および本成形工程の温調区間を経て加熱温調した後に、後硬化工程を適用する。後硬化工程の温度は、90℃以上120℃以下であることが好ましい。90℃以上であると、発泡体中の水分が放散し易くなり、120℃以下であると、製品の低い熱伝導率を長期間維持することができる。後硬化工程の温調区間を設けることで、最終成形した後に、発泡性フェノール樹脂組成物中の水分を放散させることができる。後硬化工程の滞留時間としては、60分以上300分以下であることが好ましい。 <Post-curing process>
After heating and temperature control through the temperature control sections of the pre-molding process and the main molding process, the post-curing process is applied. The temperature of the post-curing process is preferably 90°C or higher and 120°C or lower. If it is 90°C or higher, the moisture in the foam is easily dissipated, and if it is 120°C or lower, the low thermal conductivity of the product can be maintained for a long period of time. By providing a temperature control section in the post-curing process, the moisture in the foamable phenolic resin composition can be dissipated after final molding. The residence time in the post-curing process is preferably 60 minutes or more and 300 minutes or less.
以下に、実施例および比較例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to these.
<フェノール樹脂の合成>
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)とを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液を加えながら昇温して、反応を行わせた。反応液のオストワルド粘度が110センチストークス(=110×10-6m2/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を398kg添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液でpHを6.4に中和した。 <Synthesis of phenolic resin>
3,500 kg of 52% by mass formaldehyde aqueous solution (52% by mass formalin) and 2,510 kg of 99% by mass phenol (containing water as an impurity) were charged into the reactor, and the mixture was stirred with a propeller-rotating agitator, and the temperature of the liquid inside the reactor was adjusted to 40° C. with a temperature controller. The reaction was then carried out by raising the temperature while adding a 48% by mass aqueous sodium hydroxide solution. When the Ostwald viscosity of the reaction liquid reached 110 centistokes (=110×10 −6 m 2 /s, measured value at 25° C.), the reaction liquid was cooled and 398 kg of urea was added. Thereafter, the reaction liquid was cooled to 30° C., and neutralized to pH 6.4 with a 50% by mass aqueous solution of paratoluenesulfonic acid monohydrate.
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)とを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液を加えながら昇温して、反応を行わせた。反応液のオストワルド粘度が110センチストークス(=110×10-6m2/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を398kg添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液でpHを6.4に中和した。 <Synthesis of phenolic resin>
3,500 kg of 52% by mass formaldehyde aqueous solution (52% by mass formalin) and 2,510 kg of 99% by mass phenol (containing water as an impurity) were charged into the reactor, and the mixture was stirred with a propeller-rotating agitator, and the temperature of the liquid inside the reactor was adjusted to 40° C. with a temperature controller. The reaction was then carried out by raising the temperature while adding a 48% by mass aqueous sodium hydroxide solution. When the Ostwald viscosity of the reaction liquid reached 110 centistokes (=110×10 −6 m 2 /s, measured value at 25° C.), the reaction liquid was cooled and 398 kg of urea was added. Thereafter, the reaction liquid was cooled to 30° C., and neutralized to pH 6.4 with a 50% by mass aqueous solution of paratoluenesulfonic acid monohydrate.
この反応液を60℃で濃縮処理して、フェノール樹脂を得た。なお、フェノール樹脂の質量平均分子量、および、40℃における粘度を各々以下の方法で測定したところ、質量平均分子量は500、40℃における粘度は9,730mPa・s、含水率は、4.0質量%であった。
This reaction liquid was concentrated at 60°C to obtain a phenolic resin. The mass average molecular weight and viscosity at 40°C of the phenolic resin were measured using the following methods, and the mass average molecular weight was 500, the viscosity at 40°C was 9,730 mPa·s, and the water content was 4.0% by mass.
<フェノール樹脂の質量平均分子量>
ゲル浸透クロマトグラフィー(GPC)測定により以下のような条件で測定を行い、後に示す標準物質(標準ポリスチレン、2-ヒドロキシベンジルアルコールおよびフェノール)によって得られた検量線よりフェノール樹脂の質量平均分子量Mwを求めた。
前処理:
フェノール樹脂約10mgをN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)1mlに溶解し、0.2μmメンブレンフィルターでろ過したものを測定溶液として用いた。
測定条件:
測定装置:Shodex System21(昭和電工株式会社製)
カラム:Shodex Asahipak GF-310HQ(7.5mmI.D.×30cm)
溶離液:臭化リチウム0.1質量%をN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)に溶解し使用した。
流量:0.6ml/分
検出器:RI検出器
カラム温度:40℃
標準物質:標準ポリスチレン(昭和電工株式会社製「Shodex STANDARD
SL-105」)、2-ヒドロキシベンジルアルコール(シグマアルドリッチ社製、99%品)、フェノール(関東化学株式会社製、特級) <Mass average molecular weight of phenolic resin>
Measurement was carried out by gel permeation chromatography (GPC) under the following conditions, and the mass average molecular weight Mw of the phenol resin was determined from a calibration curve obtained using standard substances (standard polystyrene, 2-hydroxybenzyl alcohol and phenol) shown below.
Pretreatment:
About 10 mg of phenol resin was dissolved in 1 ml of N,N-dimethylformamide (Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography), and filtered through a 0.2 μm membrane filter to prepare a measurement solution.
Measurement conditions:
Measuring device: Shodex System 21 (manufactured by Showa Denko K.K.)
Column: Shodex Asahipak GF-310HQ (7.5 mm I.D. x 30 cm)
Eluent: 0.1% by mass of lithium bromide dissolved in N,N-dimethylformamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) was used.
Flow rate: 0.6 ml/min Detector: RI detector Column temperature: 40° C.
Standard material: Standard polystyrene (Shodex STANDARD manufactured by Showa Denko K.K.)
SL-105), 2-hydroxybenzyl alcohol (Sigma-Aldrich, 99% product), phenol (Kanto Chemical Co., Ltd., special grade)
ゲル浸透クロマトグラフィー(GPC)測定により以下のような条件で測定を行い、後に示す標準物質(標準ポリスチレン、2-ヒドロキシベンジルアルコールおよびフェノール)によって得られた検量線よりフェノール樹脂の質量平均分子量Mwを求めた。
前処理:
フェノール樹脂約10mgをN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)1mlに溶解し、0.2μmメンブレンフィルターでろ過したものを測定溶液として用いた。
測定条件:
測定装置:Shodex System21(昭和電工株式会社製)
カラム:Shodex Asahipak GF-310HQ(7.5mmI.D.×30cm)
溶離液:臭化リチウム0.1質量%をN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)に溶解し使用した。
流量:0.6ml/分
検出器:RI検出器
カラム温度:40℃
標準物質:標準ポリスチレン(昭和電工株式会社製「Shodex STANDARD
SL-105」)、2-ヒドロキシベンジルアルコール(シグマアルドリッチ社製、99%品)、フェノール(関東化学株式会社製、特級) <Mass average molecular weight of phenolic resin>
Measurement was carried out by gel permeation chromatography (GPC) under the following conditions, and the mass average molecular weight Mw of the phenol resin was determined from a calibration curve obtained using standard substances (standard polystyrene, 2-hydroxybenzyl alcohol and phenol) shown below.
Pretreatment:
About 10 mg of phenol resin was dissolved in 1 ml of N,N-dimethylformamide (Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography), and filtered through a 0.2 μm membrane filter to prepare a measurement solution.
Measurement conditions:
Measuring device: Shodex System 21 (manufactured by Showa Denko K.K.)
Column: Shodex Asahipak GF-310HQ (7.5 mm I.D. x 30 cm)
Eluent: 0.1% by mass of lithium bromide dissolved in N,N-dimethylformamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) was used.
Flow rate: 0.6 ml/min Detector: RI detector Column temperature: 40° C.
Standard material: Standard polystyrene (Shodex STANDARD manufactured by Showa Denko K.K.)
SL-105), 2-hydroxybenzyl alcohol (Sigma-Aldrich, 99% product), phenol (Kanto Chemical Co., Ltd., special grade)
<フェノール樹脂の粘度測定>
回転粘度計(BrookField metek製、DVNXHBCBG型、ローター部はCPA-52Z)を用い、0.5mlのフェノール樹脂を40℃で6分間安定させた後の測定値をフェノール樹脂の粘度とした。 <Viscosity measurement of phenolic resin>
A rotational viscometer (manufactured by BrookField Metek, DVNXHBCBG type, rotor part CPA-52Z) was used, and the measured value after stabilizing 0.5 ml of the phenolic resin at 40° C. for 6 minutes was taken as the viscosity of the phenolic resin.
回転粘度計(BrookField metek製、DVNXHBCBG型、ローター部はCPA-52Z)を用い、0.5mlのフェノール樹脂を40℃で6分間安定させた後の測定値をフェノール樹脂の粘度とした。 <Viscosity measurement of phenolic resin>
A rotational viscometer (manufactured by BrookField Metek, DVNXHBCBG type, rotor part CPA-52Z) was used, and the measured value after stabilizing 0.5 ml of the phenolic resin at 40° C. for 6 minutes was taken as the viscosity of the phenolic resin.
(実施例1)
フェノール樹脂100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。リグニンとして、予め送風恒温乾燥機内で、120℃で20分間加熱乾燥処理させたのち、粉砕処理を行った、メディアン径25.7μm、含水率10.2質量%の、亜硫酸法で得られたリグニン(脱アルカリ)(東京化成工業株式会社製)を、上記界面活性剤を含むフェノール樹脂組成物100質量部に対して8.0質量%添加した。これをリグニン含有フェノール樹脂組成物とする。リグニン含有フェノール樹脂組成物を、薄膜蒸発器で濃縮したところ、含水率は、4.20質量%であった。また、上記リグニン含有フェノール樹脂組成物100質量部に対して、発泡剤としてシクロペンタン70質量%とイソブタン30質量%の混合物から成る組成物を13質量部、気体発泡核剤として窒素を発泡剤に対して0.4質量%、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し、17℃に温調した回転数可変式のミキシングヘッドに供給した。リグニンは、発泡剤および酸性硬化剤の添加前に、二軸押出機にてフェノール樹脂組成物と混練した。その後、気体発泡核剤、発泡剤および酸性硬化剤を混合機にて混合し、得られた発泡性フェノール樹脂組成物をマルチポート分配管にて分配し、移動する下表面材上に供給した。なお、混合機(ミキサー)は、特開平10-225993号の図1に開示されたものを使用した。即ち、混合機の上部側面に、リグニン含有フェノール樹脂組成物の導入口、発泡剤の導入口が隣接して並び、回転子が攪拌する攪拌部の中央付近の側面に酸性硬化剤の導入口を備えている混合機を使用した。攪拌部以降は発泡性フェノール樹脂組成物を吐出するためのノズルに繋がっている。即ち、混合機は、酸性硬化剤導入口までを混合部(前段)、酸性硬化剤導入口~攪拌終了部を混合部(後段)、攪拌終了部~ノズルを分配部とし、これらにより構成されている。分配部は先端に複数のノズルを有し、混合された発泡性フェノール樹脂組成物が均一に分配されるように設計されている。更に、分配部はジャケット式構造になっており、温調水により十分熱交換できるようになっており、分配部の温調水温度を17℃に設定した。また、マルチポート分配管の吐出口には、発泡性フェノール樹脂組成物の温度を検出できるように熱電対が設置してあり、混合機の回転数を500rpmに設定した。このときの下表面材上に吐出した発泡性フェノール樹脂組成物の温度は34℃であった。下表面材上に供給した発泡性フェノール樹脂組成物は、40℃に温調された予成形工程に導入され、30秒後に、上表面材上方より、フリーローラーにて予成形を行った。この工程の滞留時間を5分間とした。その後、二枚の表面材で挟み込まれるようにして、69℃に加熱されたスラット型ダブルコンベアに導入され(本成形工程)、15分の滞留時間で硬化させた後、100℃で9分滞留後、110℃で2時間キュアさせ(後硬化工程)、厚みが約30mmの実施例1のフェノール樹脂発泡体積層板を得た。なお、表面材としては、上下表面材ともに、ポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m2)を使用した。このような作製方法を表2において作製方法Aと表示する。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 1
A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition. As the lignin, lignin (dealkalized) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had been previously heated and dried at 120°C for 20 minutes in a constant temperature air dryer and then pulverized, and having a median diameter of 25.7 μm and a moisture content of 10.2 mass%, was added in an amount of 8.0 mass% per 100 parts by mass of the phenolic resin composition containing the surfactant. This is the lignin-containing phenolic resin composition. When the lignin-containing phenolic resin composition was concentrated with a thin film evaporator, the moisture content was 4.20 mass%. In addition, 13 parts by mass of a composition consisting of a mixture of 70% by mass of cyclopentane and 30% by mass of isobutane as a foaming agent, 0.4% by mass of nitrogen as a gas foaming nucleating agent relative to the foaming agent, and 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol as an acidic hardener were added to 100 parts by mass of the lignin-containing phenolic resin composition, and the mixture was supplied to a variable speed mixing head whose temperature was controlled at 17°C. The lignin was kneaded with the phenolic resin composition in a twin-screw extruder before the addition of the foaming agent and the acidic hardener. Thereafter, the gas foaming nucleating agent, the foaming agent, and the acidic hardener were mixed in a mixer, and the obtained foamable phenolic resin composition was distributed in a multi-port distribution pipe and supplied onto the moving lower surface material. The mixer (mixer) used was the one disclosed in FIG. 1 of JP-A-10-225993. That is, a mixer was used in which an inlet for the lignin-containing phenolic resin composition and an inlet for the foaming agent were arranged adjacent to each other on the upper side of the mixer, and an inlet for the acidic curing agent was provided on the side near the center of the stirring section where the rotor stirs. The stirring section and subsequent sections were connected to a nozzle for discharging the foamable phenolic resin composition. That is, the mixer is composed of a mixing section (front stage) up to the acidic curing agent inlet, a mixing section (rear stage) from the acidic curing agent inlet to the stirring end section, and a distribution section from the stirring end section to the nozzle. The distribution section has multiple nozzles at the tip and is designed to distribute the mixed foamable phenolic resin composition uniformly. Furthermore, the distribution section has a jacketed structure so that sufficient heat exchange can be performed using temperature-controlled water, and the temperature of the temperature-controlled water in the distribution section was set to 17°C. In addition, a thermocouple was installed at the outlet of the multi-port distribution pipe so that the temperature of the foamable phenolic resin composition could be detected, and the rotation speed of the mixer was set to 500 rpm. The temperature of the foamable phenolic resin composition discharged onto the lower surface material at this time was 34°C. The foamable phenolic resin composition supplied onto the lower surface material was introduced into a pre-molding process controlled at 40°C, and after 30 seconds, pre-molding was performed from above the upper surface material with a free roller. The residence time in this process was 5 minutes. Thereafter, the composition was sandwiched between two surface materials and introduced into a slat-type double conveyor heated to 69°C (main molding process), cured for a residence time of 15 minutes, then retained at 100°C for 9 minutes, and cured at 110°C for 2 hours (post-curing process), to obtain a phenolic resin foam laminate of Example 1 having a thickness of about 30 mm. As the surface material, polyester nonwoven fabric (Eltas E05060, Asahi Kasei Corporation, basis weight 60 g/ m2 ) was used for both the upper and lower surface materials. This manufacturing method is indicated as manufacturing method A in Table 2. The foaming and hardening rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described below).
フェノール樹脂100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。リグニンとして、予め送風恒温乾燥機内で、120℃で20分間加熱乾燥処理させたのち、粉砕処理を行った、メディアン径25.7μm、含水率10.2質量%の、亜硫酸法で得られたリグニン(脱アルカリ)(東京化成工業株式会社製)を、上記界面活性剤を含むフェノール樹脂組成物100質量部に対して8.0質量%添加した。これをリグニン含有フェノール樹脂組成物とする。リグニン含有フェノール樹脂組成物を、薄膜蒸発器で濃縮したところ、含水率は、4.20質量%であった。また、上記リグニン含有フェノール樹脂組成物100質量部に対して、発泡剤としてシクロペンタン70質量%とイソブタン30質量%の混合物から成る組成物を13質量部、気体発泡核剤として窒素を発泡剤に対して0.4質量%、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し、17℃に温調した回転数可変式のミキシングヘッドに供給した。リグニンは、発泡剤および酸性硬化剤の添加前に、二軸押出機にてフェノール樹脂組成物と混練した。その後、気体発泡核剤、発泡剤および酸性硬化剤を混合機にて混合し、得られた発泡性フェノール樹脂組成物をマルチポート分配管にて分配し、移動する下表面材上に供給した。なお、混合機(ミキサー)は、特開平10-225993号の図1に開示されたものを使用した。即ち、混合機の上部側面に、リグニン含有フェノール樹脂組成物の導入口、発泡剤の導入口が隣接して並び、回転子が攪拌する攪拌部の中央付近の側面に酸性硬化剤の導入口を備えている混合機を使用した。攪拌部以降は発泡性フェノール樹脂組成物を吐出するためのノズルに繋がっている。即ち、混合機は、酸性硬化剤導入口までを混合部(前段)、酸性硬化剤導入口~攪拌終了部を混合部(後段)、攪拌終了部~ノズルを分配部とし、これらにより構成されている。分配部は先端に複数のノズルを有し、混合された発泡性フェノール樹脂組成物が均一に分配されるように設計されている。更に、分配部はジャケット式構造になっており、温調水により十分熱交換できるようになっており、分配部の温調水温度を17℃に設定した。また、マルチポート分配管の吐出口には、発泡性フェノール樹脂組成物の温度を検出できるように熱電対が設置してあり、混合機の回転数を500rpmに設定した。このときの下表面材上に吐出した発泡性フェノール樹脂組成物の温度は34℃であった。下表面材上に供給した発泡性フェノール樹脂組成物は、40℃に温調された予成形工程に導入され、30秒後に、上表面材上方より、フリーローラーにて予成形を行った。この工程の滞留時間を5分間とした。その後、二枚の表面材で挟み込まれるようにして、69℃に加熱されたスラット型ダブルコンベアに導入され(本成形工程)、15分の滞留時間で硬化させた後、100℃で9分滞留後、110℃で2時間キュアさせ(後硬化工程)、厚みが約30mmの実施例1のフェノール樹脂発泡体積層板を得た。なお、表面材としては、上下表面材ともに、ポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m2)を使用した。このような作製方法を表2において作製方法Aと表示する。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 1
A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition. As the lignin, lignin (dealkalized) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had been previously heated and dried at 120°C for 20 minutes in a constant temperature air dryer and then pulverized, and having a median diameter of 25.7 μm and a moisture content of 10.2 mass%, was added in an amount of 8.0 mass% per 100 parts by mass of the phenolic resin composition containing the surfactant. This is the lignin-containing phenolic resin composition. When the lignin-containing phenolic resin composition was concentrated with a thin film evaporator, the moisture content was 4.20 mass%. In addition, 13 parts by mass of a composition consisting of a mixture of 70% by mass of cyclopentane and 30% by mass of isobutane as a foaming agent, 0.4% by mass of nitrogen as a gas foaming nucleating agent relative to the foaming agent, and 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol as an acidic hardener were added to 100 parts by mass of the lignin-containing phenolic resin composition, and the mixture was supplied to a variable speed mixing head whose temperature was controlled at 17°C. The lignin was kneaded with the phenolic resin composition in a twin-screw extruder before the addition of the foaming agent and the acidic hardener. Thereafter, the gas foaming nucleating agent, the foaming agent, and the acidic hardener were mixed in a mixer, and the obtained foamable phenolic resin composition was distributed in a multi-port distribution pipe and supplied onto the moving lower surface material. The mixer (mixer) used was the one disclosed in FIG. 1 of JP-A-10-225993. That is, a mixer was used in which an inlet for the lignin-containing phenolic resin composition and an inlet for the foaming agent were arranged adjacent to each other on the upper side of the mixer, and an inlet for the acidic curing agent was provided on the side near the center of the stirring section where the rotor stirs. The stirring section and subsequent sections were connected to a nozzle for discharging the foamable phenolic resin composition. That is, the mixer is composed of a mixing section (front stage) up to the acidic curing agent inlet, a mixing section (rear stage) from the acidic curing agent inlet to the stirring end section, and a distribution section from the stirring end section to the nozzle. The distribution section has multiple nozzles at the tip and is designed to distribute the mixed foamable phenolic resin composition uniformly. Furthermore, the distribution section has a jacketed structure so that sufficient heat exchange can be performed using temperature-controlled water, and the temperature of the temperature-controlled water in the distribution section was set to 17°C. In addition, a thermocouple was installed at the outlet of the multi-port distribution pipe so that the temperature of the foamable phenolic resin composition could be detected, and the rotation speed of the mixer was set to 500 rpm. The temperature of the foamable phenolic resin composition discharged onto the lower surface material at this time was 34°C. The foamable phenolic resin composition supplied onto the lower surface material was introduced into a pre-molding process controlled at 40°C, and after 30 seconds, pre-molding was performed from above the upper surface material with a free roller. The residence time in this process was 5 minutes. Thereafter, the composition was sandwiched between two surface materials and introduced into a slat-type double conveyor heated to 69°C (main molding process), cured for a residence time of 15 minutes, then retained at 100°C for 9 minutes, and cured at 110°C for 2 hours (post-curing process), to obtain a phenolic resin foam laminate of Example 1 having a thickness of about 30 mm. As the surface material, polyester nonwoven fabric (Eltas E05060, Asahi Kasei Corporation, basis weight 60 g/ m2 ) was used for both the upper and lower surface materials. This manufacturing method is indicated as manufacturing method A in Table 2. The foaming and hardening rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described below).
使用したリグニン粉末の特性評価を以下の方法によって行った。
The characteristics of the lignin powder used were evaluated using the following method.
<リグニン粉末のメディアン径の測定>
リグニン粉末のメディアン径は、レーザー回析光散乱方式粒径分布測定装置(日機装(株)製、マイクロトラックHRA;9320-X100)を使用し、リグニン粉末を水中に一様に分散させるため超音波で1分間処理した後測定した。 <Measurement of median diameter of lignin powder>
The median diameter of the lignin powder was measured using a laser diffraction light scattering type particle size distribution measuring device (Microtrack HRA; 9320-X100, manufactured by Nikkiso Co., Ltd.) after treating the lignin powder with ultrasound for 1 minute to uniformly disperse it in water.
リグニン粉末のメディアン径は、レーザー回析光散乱方式粒径分布測定装置(日機装(株)製、マイクロトラックHRA;9320-X100)を使用し、リグニン粉末を水中に一様に分散させるため超音波で1分間処理した後測定した。 <Measurement of median diameter of lignin powder>
The median diameter of the lignin powder was measured using a laser diffraction light scattering type particle size distribution measuring device (Microtrack HRA; 9320-X100, manufactured by Nikkiso Co., Ltd.) after treating the lignin powder with ultrasound for 1 minute to uniformly disperse it in water.
<リグニン粉末の含水率の測定>
リグニン粉末の含水率は、水分計((株)島津製作所、MOC63u)を使用し、粉末0.5gを120℃で20分間加熱した際に、下式の通り、加熱前の質量と加熱後の質量M(g)との差を、加熱前の質量で割った値から算出した。
含水率(質量%)=((0.5―M)/0.5)×100 <Measurement of moisture content of lignin powder>
The moisture content of the lignin powder was calculated using a moisture meter (Shimadzu Corporation, MOC63u) by heating 0.5 g of the powder at 120° C. for 20 minutes, and then dividing the difference between the mass before and after heating, M (g), by the mass before heating, according to the following formula:
Moisture content (mass%) = ((0.5-M)/0.5) x 100
リグニン粉末の含水率は、水分計((株)島津製作所、MOC63u)を使用し、粉末0.5gを120℃で20分間加熱した際に、下式の通り、加熱前の質量と加熱後の質量M(g)との差を、加熱前の質量で割った値から算出した。
含水率(質量%)=((0.5―M)/0.5)×100 <Measurement of moisture content of lignin powder>
The moisture content of the lignin powder was calculated using a moisture meter (Shimadzu Corporation, MOC63u) by heating 0.5 g of the powder at 120° C. for 20 minutes, and then dividing the difference between the mass before and after heating, M (g), by the mass before heating, according to the following formula:
Moisture content (mass%) = ((0.5-M)/0.5) x 100
使用したフェノール樹脂組成物およびリグニン含有フェノール樹脂組成物の特性評価を以下の方法によって行った。
The properties of the phenolic resin composition and lignin-containing phenolic resin composition used were evaluated using the following methods.
<フェノール樹脂組成物およびリグニン含有フェノール樹脂組成物の含水率測定>
フェノール樹脂組成物およびリグニン含有フェノール樹脂組成物の含水率測定は、容量滴定法カールフィッシャー水分計(京都電子工業(株)、MKV-710)を使用し、カールフィッシャー試薬としてケムアクア滴定液TR-3(京都電子工業(株))、脱水溶媒としてケムアクア脱水溶媒MET(京都電子工業(株))を用いて測定した。 <Measurement of Moisture Content of Phenolic Resin Composition and Lignin-Containing Phenolic Resin Composition>
The moisture content of the phenolic resin composition and the lignin-containing phenolic resin composition was measured using a volumetric titration Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., MKV-710) using Chem-Aqua titrant TR-3 (Kyoto Electronics Manufacturing Co., Ltd.) as the Karl Fischer reagent and Chem-Aqua dehydrating solvent MET (Kyoto Electronics Manufacturing Co., Ltd.) as the dehydrating solvent.
フェノール樹脂組成物およびリグニン含有フェノール樹脂組成物の含水率測定は、容量滴定法カールフィッシャー水分計(京都電子工業(株)、MKV-710)を使用し、カールフィッシャー試薬としてケムアクア滴定液TR-3(京都電子工業(株))、脱水溶媒としてケムアクア脱水溶媒MET(京都電子工業(株))を用いて測定した。 <Measurement of Moisture Content of Phenolic Resin Composition and Lignin-Containing Phenolic Resin Composition>
The moisture content of the phenolic resin composition and the lignin-containing phenolic resin composition was measured using a volumetric titration Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., MKV-710) using Chem-Aqua titrant TR-3 (Kyoto Electronics Manufacturing Co., Ltd.) as the Karl Fischer reagent and Chem-Aqua dehydrating solvent MET (Kyoto Electronics Manufacturing Co., Ltd.) as the dehydrating solvent.
得られたフェノール樹脂発泡体およびフェノール樹脂発泡体積層板の特性評価(フェノール樹脂発泡体中のリグニン成分の同定、密度の測定、フェノール樹脂発泡体積層板の23℃環境下での熱伝導率の測定、フェノール樹脂発泡体の平均気泡径の測定、フェノール樹脂発泡体中の発泡剤種の同定)を以下の方法によって行った。
The properties of the obtained phenolic resin foam and phenolic resin foam laminate were evaluated (identification of the lignin components in the phenolic resin foam, measurement of density, measurement of the thermal conductivity of the phenolic resin foam laminate at 23°C, measurement of the average cell diameter of the phenolic resin foam, and identification of the type of blowing agent in the phenolic resin foam) using the following methods.
<フェノール樹脂発泡体中のリグニン成分の同定>
フェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、以下の測定条件および解析条件で熱分解ガスクロマトグラフ質量分析を行い、フェノール樹脂発泡体中に存在するリグニン成分を同定した。 <Identification of lignin components in phenolic resin foam>
A phenolic resin foam laminate was used as a sample. After removing the surface material from the sample, pyrolysis gas chromatography mass spectrometry was performed under the following measurement and analysis conditions to identify the lignin components present in the phenolic resin foam.
フェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、以下の測定条件および解析条件で熱分解ガスクロマトグラフ質量分析を行い、フェノール樹脂発泡体中に存在するリグニン成分を同定した。 <Identification of lignin components in phenolic resin foam>
A phenolic resin foam laminate was used as a sample. After removing the surface material from the sample, pyrolysis gas chromatography mass spectrometry was performed under the following measurement and analysis conditions to identify the lignin components present in the phenolic resin foam.
<熱分解ガスクロマトグラフ質量分析(GC-MS)測定条件>
GC装置:Agilent Technologies 7890B
カラム:DB1(30m、0.25mmφ、液相厚0.25μm)
カラム温度:40℃(5min)→(10℃/min.昇温)→320℃(12min保持)
流速:1ml/minコンスタントフロー
注入口の温度:300℃
注入方法:スプリット法(スプリット比100:1)
MS装置:JEOL RESONANCE, JMS-Q1500GC
インターフェース温度:300℃
イオン化法:EI(電子イオン化)法70eV(温度230℃)
熱分解装置:Frontier-lab EGA/PY-3030D
熱分解温度:600℃(He雰囲気下)
スキャンレンジ:m/z 10~800
試料量:1mg <Conditions for pyrolysis gas chromatography mass spectrometry (GC-MS) measurement>
GC device: Agilent Technologies 7890B
Column: DB1 (30 m, 0.25 mm diameter, liquid phase thickness 0.25 μm)
Column temperature: 40°C (5 min) → (10°C/min. temperature increase) → 320°C (12 min hold)
Flow rate: 1 ml/min constant flow Inlet temperature: 300° C.
Injection method: split method (split ratio 100:1)
MS device: JEOL RESONANCE, JMS-Q1500GC
Interface temperature: 300°C
Ionization method: EI (electron ionization) method 70 eV (temperature 230° C.)
Pyrolysis device: Frontier-lab EGA/PY-3030D
Thermal decomposition temperature: 600°C (under He atmosphere)
Scan range: m/z 10-800
Sample amount: 1 mg
GC装置:Agilent Technologies 7890B
カラム:DB1(30m、0.25mmφ、液相厚0.25μm)
カラム温度:40℃(5min)→(10℃/min.昇温)→320℃(12min保持)
流速:1ml/minコンスタントフロー
注入口の温度:300℃
注入方法:スプリット法(スプリット比100:1)
MS装置:JEOL RESONANCE, JMS-Q1500GC
インターフェース温度:300℃
イオン化法:EI(電子イオン化)法70eV(温度230℃)
熱分解装置:Frontier-lab EGA/PY-3030D
熱分解温度:600℃(He雰囲気下)
スキャンレンジ:m/z 10~800
試料量:1mg <Conditions for pyrolysis gas chromatography mass spectrometry (GC-MS) measurement>
GC device: Agilent Technologies 7890B
Column: DB1 (30 m, 0.25 mm diameter, liquid phase thickness 0.25 μm)
Column temperature: 40°C (5 min) → (10°C/min. temperature increase) → 320°C (12 min hold)
Flow rate: 1 ml/min constant flow Inlet temperature: 300° C.
Injection method: split method (split ratio 100:1)
MS device: JEOL RESONANCE, JMS-Q1500GC
Interface temperature: 300°C
Ionization method: EI (electron ionization) method 70 eV (temperature 230° C.)
Pyrolysis device: Frontier-lab EGA/PY-3030D
Thermal decomposition temperature: 600°C (under He atmosphere)
Scan range: m/z 10-800
Sample amount: 1 mg
ガスクロマトグラフ質量分析では、得られたトータルイオンクロマトグラムにおいて、フェノールが検出される保持時間をt分とした場合、m/z=110の抽出イオンクロマトグラムにおいて、保持時間1.38×t分付近にジヒドロキシベンゼン由来の熱分解生成物、m/z=124の抽出イオンクロマトグラムにおいて、保持時間1.46×t分付近にジヒドロキシトルエン由来の熱分解生成物、保持時間1.50×t分付近にジヒドロキシトルエン由来の熱分解生成物、m/z=138の抽出イオンクロマトグラムにおいて保持時間1.58×t分付近にジヒドロキシキシレン由来の熱分解生成物が検出される。なお、上記熱分解ガスクロマトグラフ質量分析の測定方法により、フェノールは、保持時間10.0分付近に検出された。
In gas chromatography mass spectrometry, if the retention time at which phenol is detected in the obtained total ion chromatogram is t minutes, then in the extracted ion chromatogram of m/z = 110, a pyrolysis product derived from dihydroxybenzene is detected at a retention time of approximately 1.38 x t minutes, in the extracted ion chromatogram of m/z = 124, a pyrolysis product derived from dihydroxytoluene is detected at a retention time of approximately 1.46 x t minutes, a pyrolysis product derived from dihydroxytoluene is detected at a retention time of approximately 1.50 x t minutes, and in the extracted ion chromatogram of m/z = 138, a pyrolysis product derived from dihydroxyxylene is detected at a retention time of approximately 1.58 x t minutes. Note that, by the above pyrolysis gas chromatography mass spectrometry measurement method, phenol was detected at a retention time of approximately 10.0 minutes.
得られた熱分解生成物のイオンクロマトグラムにおける、m/z=110の抽出イオンクロマトグラムにおいて、保持時間1.38×t分付近に検出されるジヒドロキシベンゼン由来の熱分解生成物の面積をA、m/z=124の抽出イオンクロマトグラムにおいて、保持時間1.46×t分付近に検出されるジヒドロキシトルエン由来の熱分解生成物の面積と、保持時間1.50×t分付近に検出されるジヒドロキシトルエン由来の熱分解生成物の面積の合計をB、m/z=138の抽出イオンクロマトグラムにおいて保持時間1.58×t分付近に検出されるジヒドロキシキシレン由来の熱分解生成物の面積をCとし、A、B、Cの合計をX(X=A+B+C)とする。また、特許4711469号の[図1]ピーク9に相当し、トータルイオンクロマトグラムにおいて保持時間1.50×t分付近に検出される尿素架橋由来の構造を示す熱分解生成物の面積をYとしたときの、Xとの比をZ(Z=X/Y)として、算出した。また、面積A、B、C、Yは、ベースラインとの交点または隣り合うピークとの変曲点を境界として、面積を算出した。
In the ion chromatogram of the obtained pyrolysis products, the area of the pyrolysis product derived from dihydroxybenzene detected near the retention time of 1.38×t minutes in the extracted ion chromatogram of m/z=110 is defined as A, the sum of the area of the pyrolysis product derived from dihydroxytoluene detected near the retention time of 1.46×t minutes in the extracted ion chromatogram of m/z=124 and the area of the pyrolysis product derived from dihydroxytoluene detected near the retention time of 1.50×t minutes in the extracted ion chromatogram of m/z=124 is defined as B, the area of the pyrolysis product derived from dihydroxyxylene detected near the retention time of 1.58×t minutes in the extracted ion chromatogram of m/z=138 is defined as C, and the sum of A, B, and C is defined as X (X=A+B+C). In addition, when the area of the pyrolysis product that corresponds to peak 9 in [Figure 1] of Patent No. 4711469 and shows a structure derived from urea crosslinking detected in the total ion chromatogram at a retention time of about 1.50 x t minutes is taken as Y, the ratio to X was calculated as Z (Z = X/Y). In addition, the areas A, B, C, and Y were calculated using the intersection with the baseline or the inflection point with the adjacent peak as the boundary.
<フェノール樹脂発泡体の密度の測定>
200mm角のフェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、JIS K7222に従い質量と見かけ容積を測定して求めた。 <Measurement of density of phenolic resin foam>
A 200 mm square phenolic resin foam laminate was used as a sample, and after removing the surface material from the sample, the mass and apparent volume were measured in accordance with JIS K7222.
200mm角のフェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、JIS K7222に従い質量と見かけ容積を測定して求めた。 <Measurement of density of phenolic resin foam>
A 200 mm square phenolic resin foam laminate was used as a sample, and after removing the surface material from the sample, the mass and apparent volume were measured in accordance with JIS K7222.
<フェノール樹脂発泡体積層板の23℃環境下での熱伝導率の測定>
JIS A 1412-2:1999に準拠し、以下の方法で23℃の環境下における樹脂発泡体積層板の厚み方向の熱伝導率を測定した。具体的な手順は以下の通りである。 <Measurement of thermal conductivity of phenolic resin foam laminate in a 23°C environment>
In accordance with JIS A 1412-2:1999, the thermal conductivity in the thickness direction of the resin foam laminate was measured in an environment of 23° C. by the following method. The specific procedure is as follows.
JIS A 1412-2:1999に準拠し、以下の方法で23℃の環境下における樹脂発泡体積層板の厚み方向の熱伝導率を測定した。具体的な手順は以下の通りである。 <Measurement of thermal conductivity of phenolic resin foam laminate in a 23°C environment>
In accordance with JIS A 1412-2:1999, the thermal conductivity in the thickness direction of the resin foam laminate was measured in an environment of 23° C. by the following method. The specific procedure is as follows.
フェノール樹脂発泡体積層板を300mm角に切断し、試片を23±1℃・湿度50±2%の雰囲気に入れた。その後、24時間ごとに重量の経時変化を測定し、24時間経過後の重量変化が0.2質量%以下になるまで、状態の確認および調節を行った。状態調節されたフェノール樹脂発泡体積層板試片を、同じく23±1℃・湿度50±2%の雰囲気に置かれた熱伝導率測定装置に導入した。熱伝導率測定装置が、フェノール樹脂発泡体積層板試片が置かれていた23±1%・湿度50±2%にコントロールされた室内に置かれていない場合には、前述の雰囲気において状態の確認および調節を行った試片を、速やかにポリエチレン製の袋に入れて袋を閉じて、1時間以内に袋から出して、速やかに熱伝導率を測定した。
The phenolic foam laminate was cut into 300 mm squares and placed in an atmosphere of 23±1°C and 50±2% humidity. The weight change over time was then measured every 24 hours, and the condition was checked and adjusted until the weight change after 24 hours was 0.2% by mass or less. The conditioned phenolic foam laminate specimen was introduced into a thermal conductivity measuring device placed in an atmosphere of 23±1°C and 50±2% humidity. If the thermal conductivity measuring device was not placed in the room controlled at 23±1% and 50±2% humidity where the phenolic foam laminate specimen was placed, the specimen whose condition had been checked and adjusted in the aforementioned atmosphere was immediately placed in a polyethylene bag, the bag was closed, and the specimen was removed from the bag within one hour, and the thermal conductivity was immediately measured.
熱伝導率測定は、低温板13℃、高温板33℃の条件で、試験体1枚・対象構成方式の測定装置(英弘精機社、商品名「HC-074/FOX304」)を用い行った。
Thermal conductivity measurements were performed with a low temperature plate at 13°C and a high temperature plate at 33°C using a measuring device with a single test piece and a symmetrical configuration (Eiko Seiki Co., Ltd., product name "HC-074/FOX304").
<フェノール樹脂発泡体の平均気泡径の測定>
平均気泡径は、以下の方法で測定した。フェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、フェノール樹脂発泡体の厚み方向のほぼ中央と、中央と表裏面に対してほぼ中央の位置における気泡を50倍に拡大した走査型電子顕微鏡で写真を4枚撮影し、得られた写真上にボイドを避けて90mmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数に準じて測定した気泡数を各直線で求め、それらの平均値で1,800μmを割った値を平均気泡径とした。 <Measurement of average cell diameter of phenolic resin foam>
The average bubble diameter was measured by the following method: A phenolic resin foam laminate was used as a sample, and after removing the surface material from the sample, four photographs of bubbles at approximately the center in the thickness direction of the phenolic resin foam and at approximately the center and the center relative to the front and back surfaces were taken with a scanning electron microscope at a magnification of 50 times, four straight lines 90 mm long (corresponding to 1,800 μm in the cross section of the actual foam) were drawn on the obtained photographs while avoiding voids, and the number of bubbles was measured according to the number of bubbles crossed by each straight line for each line, and the average value of these values was divided by 1,800 μm to obtain the average bubble diameter.
平均気泡径は、以下の方法で測定した。フェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、フェノール樹脂発泡体の厚み方向のほぼ中央と、中央と表裏面に対してほぼ中央の位置における気泡を50倍に拡大した走査型電子顕微鏡で写真を4枚撮影し、得られた写真上にボイドを避けて90mmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数に準じて測定した気泡数を各直線で求め、それらの平均値で1,800μmを割った値を平均気泡径とした。 <Measurement of average cell diameter of phenolic resin foam>
The average bubble diameter was measured by the following method: A phenolic resin foam laminate was used as a sample, and after removing the surface material from the sample, four photographs of bubbles at approximately the center in the thickness direction of the phenolic resin foam and at approximately the center and the center relative to the front and back surfaces were taken with a scanning electron microscope at a magnification of 50 times, four straight lines 90 mm long (corresponding to 1,800 μm in the cross section of the actual foam) were drawn on the obtained photographs while avoiding voids, and the number of bubbles was measured according to the number of bubbles crossed by each straight line for each line, and the average value of these values was divided by 1,800 μm to obtain the average bubble diameter.
<フェノール樹脂発泡体中の発泡剤種の同定>
はじめに、ハロゲン化炭化水素、および炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。 <Identification of blowing agent species in phenolic resin foam>
First, the retention times were determined under the following GC/MS measurement conditions using standard gases of halogenated hydrocarbons and hydrocarbons.
はじめに、ハロゲン化炭化水素、および炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。 <Identification of blowing agent species in phenolic resin foam>
First, the retention times were determined under the following GC/MS measurement conditions using standard gases of halogenated hydrocarbons and hydrocarbons.
フェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、フェノール樹脂発泡体の中央部付近から0.25mgの試料を切り出して専用容器に入れ、クロロホルム10mlおよび粉砕ガラスビーズ12個を加えた。ホモジナイザー(IKA ULTRA-TURRAX Tube Drive)にて6000rpm×7~11minで試料を粉砕しながらクロロホルム中に成分を抽出したのち、抽出液を0.45μmフィルターでろ過しGC/MS測定に供した。定量目的成分をクロロホルムに溶解して既知濃度の標準試料溶液を調製し、試料と同じ条件でGC/MS測定に供した。
Phenolic resin foam laminate was used as the sample, and after removing the surface material from the sample, 0.25 mg of sample was cut out from near the center of the phenolic resin foam and placed in a dedicated container, to which 10 ml of chloroform and 12 crushed glass beads were added. The sample was crushed in a homogenizer (IKA ULTRA-TURRAX Tube Drive) at 6000 rpm for 7 to 11 min while extracting the components into chloroform, after which the extract was filtered through a 0.45 μm filter and subjected to GC/MS measurement. The components to be quantified were dissolved in chloroform to prepare standard sample solutions of known concentrations, which were subjected to GC/MS measurement under the same conditions as the sample.
ハロゲン化炭化水素、および炭化水素を、事前に求めた保持時間とマススペクトルから同定した。別途、発生したガス成分の検出感度を各々標準ガスによって測定し、GC/MSで得られた各ガス成分の検出エリア面積と検出感度より、各物質の含有量を算出した。同定した各ガス成分の含有量と、発泡剤の含有量とモル質量より、フェノール樹脂発泡体に占める各発泡剤成分の質量%を算出した。
Halogenated hydrocarbons and hydrocarbons were identified from the retention times and mass spectra obtained in advance. Separately, the detection sensitivity of each generated gas component was measured using a standard gas, and the content of each substance was calculated from the detection area and detection sensitivity of each gas component obtained by GC/MS. The mass percentage of each blowing agent component in the phenolic resin foam was calculated from the content of each identified gas component and the content and molar mass of the blowing agent.
(実施例2)
リグニンを、メディアン径26.8μm、含水率5.3質量%の亜硫酸法で得られたリグニン(アルカリ)(東京化成工業株式会社製)に変更した以外、実施例1と同様にして実施例2のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.85質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 2
A phenolic resin foam laminate of Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to lignin (alkali) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method with a median diameter of 26.8 μm and a moisture content of 5.3 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.85 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
リグニンを、メディアン径26.8μm、含水率5.3質量%の亜硫酸法で得られたリグニン(アルカリ)(東京化成工業株式会社製)に変更した以外、実施例1と同様にして実施例2のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.85質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 2
A phenolic resin foam laminate of Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to lignin (alkali) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method with a median diameter of 26.8 μm and a moisture content of 5.3 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.85 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例3)
リグニンを、粉砕処理を行わず、メディアン径238.5μm、含水率5.0質量%のリグニンスルホン酸ナトリウム塩に変更した以外、実施例1と同様にして実施例3のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.83質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 3
A phenolic resin foam laminate of Example 3 was produced in the same manner as in Example 1, except that the lignin was not pulverized and was changed to lignin sulfonic acid sodium salt having a median diameter of 238.5 μm and a moisture content of 5.0 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.83 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
リグニンを、粉砕処理を行わず、メディアン径238.5μm、含水率5.0質量%のリグニンスルホン酸ナトリウム塩に変更した以外、実施例1と同様にして実施例3のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.83質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 3
A phenolic resin foam laminate of Example 3 was produced in the same manner as in Example 1, except that the lignin was not pulverized and was changed to lignin sulfonic acid sodium salt having a median diameter of 238.5 μm and a moisture content of 5.0 mass%. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.83 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例4)
リグニンを、メディアン径23.9μm、含水率6.5質量%のクラフトリグニンに変更した以外、実施例1と同様にして実施例4のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.93質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 4
A phenolic resin foam laminate of Example 4 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 μm and a moisture content of 6.5% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.93% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
リグニンを、メディアン径23.9μm、含水率6.5質量%のクラフトリグニンに変更した以外、実施例1と同様にして実施例4のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.93質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 4
A phenolic resin foam laminate of Example 4 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 μm and a moisture content of 6.5% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 3.93% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例5)
フェノール樹脂組成物100質量部に対するリグニンの添加量を、1.0質量%にした以外、実施例1と同様にして実施例5のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.80質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 5
A phenolic resin foam laminate of Example 5 was produced in the same manner as in Example 1, except that the amount of lignin added to 100 parts by mass of the phenolic resin composition was 1.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 3.80 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
フェノール樹脂組成物100質量部に対するリグニンの添加量を、1.0質量%にした以外、実施例1と同様にして実施例5のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、3.80質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 5
A phenolic resin foam laminate of Example 5 was produced in the same manner as in Example 1, except that the amount of lignin added to 100 parts by mass of the phenolic resin composition was 1.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 3.80 mass%. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例6)
フェノール樹脂組成物100質量部に対するリグニンの添加量を、12.0質量%にした以外、実施例1と同様にして実施例6のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.40質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 6
A phenolic resin foam laminate of Example 6 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 12.0% by mass. The water content of the lignin-containing phenolic resin composition after concentration was 4.40% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
フェノール樹脂組成物100質量部に対するリグニンの添加量を、12.0質量%にした以外、実施例1と同様にして実施例6のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.40質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 6
A phenolic resin foam laminate of Example 6 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 12.0% by mass. The water content of the lignin-containing phenolic resin composition after concentration was 4.40% by mass. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例7)
フェノール樹脂組成物100質量部に対するリグニンの添加量を、20.0質量%にした以外、実施例1と同様にして実施例7のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.78質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 7)
A phenolic resin foam laminate of Example 7 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 20.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.78 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
フェノール樹脂組成物100質量部に対するリグニンの添加量を、20.0質量%にした以外、実施例1と同様にして実施例7のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.78質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 7)
A phenolic resin foam laminate of Example 7 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 20.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.78 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例8)
フェノール樹脂組成物100質量部に対するリグニンの添加量を、25.0質量%にした以外、実施例1と同様にして実施例8のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.99質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 8)
The phenolic resin foam laminate of Example 8 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 25.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.99 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
フェノール樹脂組成物100質量部に対するリグニンの添加量を、25.0質量%にした以外、実施例1と同様にして実施例8のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.99質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 8)
The phenolic resin foam laminate of Example 8 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 25.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 4.99 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例9)
フェノール樹脂組成物100質量部に対するリグニンの添加量を、29.0質量%にした以外、実施例1と同様にして実施例9のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、5.15質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 9)
A phenolic resin foam laminate of Example 9 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 29.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 5.15 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
フェノール樹脂組成物100質量部に対するリグニンの添加量を、29.0質量%にした以外、実施例1と同様にして実施例9のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、5.15質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 9)
A phenolic resin foam laminate of Example 9 was produced in the same manner as in Example 1, except that the amount of lignin added relative to 100 parts by mass of the phenolic resin composition was 29.0 mass%. The water content of the lignin-containing phenolic resin composition after concentration was 5.15 mass%. The foaming and curing rate of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例10)
リグニンを、メディアン径23.9μm、含水率6.5質量%のクラフトリグニンに変更し、フェノール樹脂組成物100質量部に対するリグニンの添加量を、29.0質量%にした以外、実施例1と同様にして実施例10のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.33質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 10)
The phenolic resin foam laminate of Example 10 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 μm and a moisture content of 6.5% by mass, and the amount of lignin added to 100 parts by mass of the phenolic resin composition was 29.0% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 4.33% by mass. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
リグニンを、メディアン径23.9μm、含水率6.5質量%のクラフトリグニンに変更し、フェノール樹脂組成物100質量部に対するリグニンの添加量を、29.0質量%にした以外、実施例1と同様にして実施例10のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.33質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 (Example 10)
The phenolic resin foam laminate of Example 10 was produced in the same manner as in Example 1, except that the lignin was changed to kraft lignin having a median diameter of 23.9 μm and a moisture content of 6.5% by mass, and the amount of lignin added to 100 parts by mass of the phenolic resin composition was 29.0% by mass. The moisture content of the lignin-containing phenolic resin composition after concentration was 4.33% by mass. The foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was equivalent to that of the foamable phenolic resin composition not containing lignin (Comparative Example 1 described later).
(実施例11)
界面活性剤を含むフェノール樹脂組成物100質量部に対し、水2.7質量%を加え、濃縮後のリグニン含有フェノール樹脂組成物の含水率を6.50質量%にした以外、実施例1と同様にして実施例11のフェノール樹脂発泡体積層板を製造した。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 11
A phenolic resin foam laminate of Example 11 was produced in the same manner as in Example 1, except that 2.7 mass% of water was added to 100 mass parts of the phenolic resin composition containing a surfactant, and the water content of the lignin-containing phenolic resin composition after concentration was set to 6.50 mass%. The foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
界面活性剤を含むフェノール樹脂組成物100質量部に対し、水2.7質量%を加え、濃縮後のリグニン含有フェノール樹脂組成物の含水率を6.50質量%にした以外、実施例1と同様にして実施例11のフェノール樹脂発泡体積層板を製造した。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 11
A phenolic resin foam laminate of Example 11 was produced in the same manner as in Example 1, except that 2.7 mass% of water was added to 100 mass parts of the phenolic resin composition containing a surfactant, and the water content of the lignin-containing phenolic resin composition after concentration was set to 6.50 mass%. The foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
(実施例12)
発泡剤を、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))にした以外、実施例1と同様にして実施例12のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.20質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 12
A phenolic resin foam laminate of Example 12 was produced in the same manner as in Example 1, except that the foaming agent was (Z)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(Z)). The water content of the lignin-containing phenolic resin composition after concentration was 4.20 mass%. The foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
発泡剤を、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))にした以外、実施例1と同様にして実施例12のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、4.20質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)と比較して、同等であった。 Example 12
A phenolic resin foam laminate of Example 12 was produced in the same manner as in Example 1, except that the foaming agent was (Z)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(Z)). The water content of the lignin-containing phenolic resin composition after concentration was 4.20 mass%. The foaming and curing rate of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was equivalent to that of the lignin-free foamable phenolic resin composition (Comparative Example 1 described later).
(実施例13)
フェノール樹脂100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。リグニンとして、予め送風恒温乾燥機内で、120℃で20分間加熱乾燥処理させたのち、粉砕処理を行った、メディアン径25.7μm、含水率10.2質量%の、亜硫酸法で得られたリグニン(脱アルカリ)(東京化成工業株式会社製)が、上記界面活性剤を含むフェノール樹脂組成物100質量部に対して、8.0質量%になるようにそれぞれポリカップに入れ、コードレスドライバードリル(Hi-Koki DS 10DAL)に攪拌棒を取り付けて混練した。これをリグニン含有フェノール樹脂組成物とする。リグニン含有フェノール樹脂組成物を、薄膜蒸発器で濃縮したところ、含水率は、4.20質量%であった。また、上記リグニン含有フェノール樹脂組成物100質量部に対して、発泡剤としてノルマルペンタンが12質量部になるように、コードレスドライバードリルを用いて混練した。ここでは、気体発泡核剤は添加していないが、混練時に巻き込まれる空気が発泡核剤の役割を果たす。それぞれ所定量混練できていることは、樹脂組成物の重量の変化より確認した。次に当該発泡性フェノール樹脂組成物が入ったポリカップを冷蔵庫にて1時間冷やし、発泡性フェノール樹脂組成物が12℃以下であることを確認後、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し、コードレスドライバードリルで2分間混練した。次に発泡性フェノール樹脂組成物を23℃の環境下で金属の金枠(型枠)の底面にへらで塗布した。発泡後に厚みが金枠(型枠)からはみ出さないように、発泡性フェノール樹脂組成物の塗布量を適宜調整した。ここで使用した金枠(型枠)は厚みが2.0mmの金属からなり、内径が300mm×300mm×高さ30mmで、底面は直径5mmの穴が1mm間隔にパンチングされていて、更に底面にポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m2)を表面材として敷いたものである。発泡性フェノール樹脂組成物と酸性硬化剤を混練してから塗布を終えるまでの作業の時間は5分とした。その後、天板として、底面と同じパンチング仕様の、300mm×300mmより大きい板に金枠(型枠)底面と同じ表面材を張り付けたものを、表面材が発泡性フェノール樹脂側を向くように被せ、クリップで天板を金枠(型枠)に固定した。この金枠(型枠)を85℃に加熱されたオーブンに入れ、金枠(型枠)の天板中央に85℃に加熱された錘25kgを乗せて1時間加熱後、更に105℃で1時間キュアさせ、厚み30mmの実施例13のフェノール樹脂発泡体積層板を得た。このような作製方法を表2において作製方法Bと表示する。なお、下表面材上に塗布したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度と比較して、同等であった。 Example 13
A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition. As the lignin, lignin (de-alkalized) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had a median diameter of 25.7 μm and a moisture content of 10.2 mass% and had been previously heated and dried at 120° C. for 20 minutes in a constant temperature air dryer and then pulverized, was placed in a polycup so that the content was 8.0 mass% per 100 parts by mass of the phenolic resin composition containing the surfactant, and the mixture was kneaded with a cordless driver drill (Hi-Koki DS 10DAL) equipped with a stirring rod. This is the lignin-containing phenolic resin composition. When the lignin-containing phenolic resin composition was concentrated with a thin film evaporator, the moisture content was 4.20 mass%. In addition, the lignin-containing phenolic resin composition was kneaded with a cordless driver drill so that 12 parts by mass of normal pentane was used as a foaming agent per 100 parts by mass of the lignin-containing phenolic resin composition. Here, no gas foaming nucleating agent was added, but the air entrained during kneading played the role of the foaming nucleating agent. It was confirmed from the change in the weight of the resin composition that the predetermined amount of each was kneaded. Next, the polycup containing the foamable phenolic resin composition was cooled in a refrigerator for 1 hour, and after confirming that the foamable phenolic resin composition was 12°C or less, 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol was added as an acidic curing agent, and kneaded for 2 minutes with a cordless driver drill. Next, the foamable phenolic resin composition was applied to the bottom surface of a metal frame (mold) with a spatula in an environment of 23°C. The amount of the foamable phenolic resin composition applied was appropriately adjusted so that the thickness did not protrude from the metal frame (mold) after foaming. The metal frame (mold) used here is made of metal with a thickness of 2.0 mm, an inner diameter of 300 mm x 300 mm x 30 mm in height, and the bottom surface is punched with holes of 5 mm in diameter at 1 mm intervals, and polyester nonwoven fabric (Asahi Kasei Corporation Eltas E05060, basis weight 60 g/m 2 ) is laid on the bottom surface as a surface material. The work time from mixing the foamable phenolic resin composition and the acidic curing agent to finishing the application was 5 minutes. After that, as a top plate, a plate larger than 300 mm x 300 mm with the same punching specifications as the bottom surface and the same surface material as the bottom surface of the metal frame (mold) was attached to it, and the top plate was fixed to the metal frame (mold) with a clip. The metal frame (mold) was placed in an oven heated to 85°C, and a 25 kg weight heated to 85°C was placed on the center of the top plate of the metal frame (mold) and heated for 1 hour, followed by curing at 105°C for 1 hour to obtain a phenolic resin foam laminate of Example 13 having a thickness of 30 mm. This manufacturing method is shown as Manufacturing Method B in Table 2. The foaming and curing speed of the foamable phenolic resin composition containing lignin applied to the lower surface material (Comparative Example 1 described later) was equivalent to that of the foamable phenolic resin composition not containing lignin.
フェノール樹脂100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。リグニンとして、予め送風恒温乾燥機内で、120℃で20分間加熱乾燥処理させたのち、粉砕処理を行った、メディアン径25.7μm、含水率10.2質量%の、亜硫酸法で得られたリグニン(脱アルカリ)(東京化成工業株式会社製)が、上記界面活性剤を含むフェノール樹脂組成物100質量部に対して、8.0質量%になるようにそれぞれポリカップに入れ、コードレスドライバードリル(Hi-Koki DS 10DAL)に攪拌棒を取り付けて混練した。これをリグニン含有フェノール樹脂組成物とする。リグニン含有フェノール樹脂組成物を、薄膜蒸発器で濃縮したところ、含水率は、4.20質量%であった。また、上記リグニン含有フェノール樹脂組成物100質量部に対して、発泡剤としてノルマルペンタンが12質量部になるように、コードレスドライバードリルを用いて混練した。ここでは、気体発泡核剤は添加していないが、混練時に巻き込まれる空気が発泡核剤の役割を果たす。それぞれ所定量混練できていることは、樹脂組成物の重量の変化より確認した。次に当該発泡性フェノール樹脂組成物が入ったポリカップを冷蔵庫にて1時間冷やし、発泡性フェノール樹脂組成物が12℃以下であることを確認後、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し、コードレスドライバードリルで2分間混練した。次に発泡性フェノール樹脂組成物を23℃の環境下で金属の金枠(型枠)の底面にへらで塗布した。発泡後に厚みが金枠(型枠)からはみ出さないように、発泡性フェノール樹脂組成物の塗布量を適宜調整した。ここで使用した金枠(型枠)は厚みが2.0mmの金属からなり、内径が300mm×300mm×高さ30mmで、底面は直径5mmの穴が1mm間隔にパンチングされていて、更に底面にポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m2)を表面材として敷いたものである。発泡性フェノール樹脂組成物と酸性硬化剤を混練してから塗布を終えるまでの作業の時間は5分とした。その後、天板として、底面と同じパンチング仕様の、300mm×300mmより大きい板に金枠(型枠)底面と同じ表面材を張り付けたものを、表面材が発泡性フェノール樹脂側を向くように被せ、クリップで天板を金枠(型枠)に固定した。この金枠(型枠)を85℃に加熱されたオーブンに入れ、金枠(型枠)の天板中央に85℃に加熱された錘25kgを乗せて1時間加熱後、更に105℃で1時間キュアさせ、厚み30mmの実施例13のフェノール樹脂発泡体積層板を得た。このような作製方法を表2において作製方法Bと表示する。なお、下表面材上に塗布したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度(後述の比較例1)は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度と比較して、同等であった。 Example 13
A composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants was mixed in a ratio of 3.0 parts by mass per 100 parts by mass of phenolic resin. This is the phenolic resin composition. As the lignin, lignin (de-alkalized) (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained by the sulfite method, which had a median diameter of 25.7 μm and a moisture content of 10.2 mass% and had been previously heated and dried at 120° C. for 20 minutes in a constant temperature air dryer and then pulverized, was placed in a polycup so that the content was 8.0 mass% per 100 parts by mass of the phenolic resin composition containing the surfactant, and the mixture was kneaded with a cordless driver drill (Hi-Koki DS 10DAL) equipped with a stirring rod. This is the lignin-containing phenolic resin composition. When the lignin-containing phenolic resin composition was concentrated with a thin film evaporator, the moisture content was 4.20 mass%. In addition, the lignin-containing phenolic resin composition was kneaded with a cordless driver drill so that 12 parts by mass of normal pentane was used as a foaming agent per 100 parts by mass of the lignin-containing phenolic resin composition. Here, no gas foaming nucleating agent was added, but the air entrained during kneading played the role of the foaming nucleating agent. It was confirmed from the change in the weight of the resin composition that the predetermined amount of each was kneaded. Next, the polycup containing the foamable phenolic resin composition was cooled in a refrigerator for 1 hour, and after confirming that the foamable phenolic resin composition was 12°C or less, 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol was added as an acidic curing agent, and kneaded for 2 minutes with a cordless driver drill. Next, the foamable phenolic resin composition was applied to the bottom surface of a metal frame (mold) with a spatula in an environment of 23°C. The amount of the foamable phenolic resin composition applied was appropriately adjusted so that the thickness did not protrude from the metal frame (mold) after foaming. The metal frame (mold) used here is made of metal with a thickness of 2.0 mm, an inner diameter of 300 mm x 300 mm x 30 mm in height, and the bottom surface is punched with holes of 5 mm in diameter at 1 mm intervals, and polyester nonwoven fabric (Asahi Kasei Corporation Eltas E05060, basis weight 60 g/m 2 ) is laid on the bottom surface as a surface material. The work time from mixing the foamable phenolic resin composition and the acidic curing agent to finishing the application was 5 minutes. After that, as a top plate, a plate larger than 300 mm x 300 mm with the same punching specifications as the bottom surface and the same surface material as the bottom surface of the metal frame (mold) was attached to it, and the top plate was fixed to the metal frame (mold) with a clip. The metal frame (mold) was placed in an oven heated to 85°C, and a 25 kg weight heated to 85°C was placed on the center of the top plate of the metal frame (mold) and heated for 1 hour, followed by curing at 105°C for 1 hour to obtain a phenolic resin foam laminate of Example 13 having a thickness of 30 mm. This manufacturing method is shown as Manufacturing Method B in Table 2. The foaming and curing speed of the foamable phenolic resin composition containing lignin applied to the lower surface material (Comparative Example 1 described later) was equivalent to that of the foamable phenolic resin composition not containing lignin.
(比較例1)
フェノール樹脂組成物にリグニンを混練しなかったこと以外、実施例1と同様にして比較例1のフェノール樹脂発泡体積層板を製造した。なお、フェノール樹脂組成物の含水率は、3.73質量%であった。また、下表面材上に供給した発泡性フェノール樹脂組成物の発泡硬化速度は、業としてフェノール樹脂発泡体を製造する上で、十分な生産性を維持できる程度の硬化十分な発泡体積層板を得た。 (Comparative Example 1)
A phenolic resin foam laminate of Comparative Example 1 was produced in the same manner as in Example 1, except that lignin was not mixed into the phenolic resin composition. The water content of the phenolic resin composition was 3.73% by mass. The foaming and curing speed of the foamable phenolic resin composition supplied onto the lower surface material was such that a foam laminate was obtained that was sufficiently cured to maintain sufficient productivity in the commercial production of phenolic resin foams.
フェノール樹脂組成物にリグニンを混練しなかったこと以外、実施例1と同様にして比較例1のフェノール樹脂発泡体積層板を製造した。なお、フェノール樹脂組成物の含水率は、3.73質量%であった。また、下表面材上に供給した発泡性フェノール樹脂組成物の発泡硬化速度は、業としてフェノール樹脂発泡体を製造する上で、十分な生産性を維持できる程度の硬化十分な発泡体積層板を得た。 (Comparative Example 1)
A phenolic resin foam laminate of Comparative Example 1 was produced in the same manner as in Example 1, except that lignin was not mixed into the phenolic resin composition. The water content of the phenolic resin composition was 3.73% by mass. The foaming and curing speed of the foamable phenolic resin composition supplied onto the lower surface material was such that a foam laminate was obtained that was sufficiently cured to maintain sufficient productivity in the commercial production of phenolic resin foams.
(比較例2)
リグニンを、乾燥処理を行わず、メディアン径23.7μm、含水率34.6質量%のクラフトリグニンに変更した以外、実施例1と全く同様にして比較例2のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、5.94質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(比較例1)と比較して、減少しており、硬化不足の発泡体を得た。そのため、後硬化工程ののちに更に110℃で4時間キュアさせることで、十分に硬化された発泡体を得た。 (Comparative Example 2)
A phenolic resin foam laminate of Comparative Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to a kraft lignin with a median diameter of 23.7 μm and a moisture content of 34.6% by mass without drying. The moisture content of the lignin-containing phenolic resin composition after concentration was 5.94% by mass. In addition, the foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was reduced compared to the foaming and curing speed of the foamable phenolic resin composition not containing lignin (Comparative Example 1), and an insufficiently cured foam was obtained. Therefore, after the post-curing process, the foam was further cured at 110° C. for 4 hours to obtain a sufficiently cured foam.
リグニンを、乾燥処理を行わず、メディアン径23.7μm、含水率34.6質量%のクラフトリグニンに変更した以外、実施例1と全く同様にして比較例2のフェノール樹脂発泡体積層板を製造した。なお、濃縮後のリグニン含有フェノール樹脂組成物の含水率は、5.94質量%であった。また、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(比較例1)と比較して、減少しており、硬化不足の発泡体を得た。そのため、後硬化工程ののちに更に110℃で4時間キュアさせることで、十分に硬化された発泡体を得た。 (Comparative Example 2)
A phenolic resin foam laminate of Comparative Example 2 was produced in the same manner as in Example 1, except that the lignin was changed to a kraft lignin with a median diameter of 23.7 μm and a moisture content of 34.6% by mass without drying. The moisture content of the lignin-containing phenolic resin composition after concentration was 5.94% by mass. In addition, the foaming and curing speed of the foamable phenolic resin composition containing lignin supplied onto the lower surface material was reduced compared to the foaming and curing speed of the foamable phenolic resin composition not containing lignin (Comparative Example 1), and an insufficiently cured foam was obtained. Therefore, after the post-curing process, the foam was further cured at 110° C. for 4 hours to obtain a sufficiently cured foam.
(比較例3)
界面活性剤を含むフェノール樹脂組成物100質量部に対し、水13.7質量%を加え、濃縮後のリグニン含有フェノール樹脂組成物の含水率を15.70質量%にした以外、実施例1と全く同様にして比較例3のフェノール樹脂発泡体積層板を製造した。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(比較例1)と比較して、減少しており、硬化不足の発泡体を得た。そのため、後硬化工程ののちに更に110℃で4時間キュアさせることで、十分に硬化された発泡体を得た。 (Comparative Example 3)
A phenolic resin foam laminate of Comparative Example 3 was produced in the same manner as in Example 1, except that 13.7% by mass of water was added to 100 parts by mass of the surfactant-containing phenolic resin composition, and the water content of the concentrated lignin-containing phenolic resin composition was 15.70% by mass. The foaming and curing speed of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was reduced compared to the foaming and curing speed of the lignin-free foamable phenolic resin composition (Comparative Example 1), resulting in an insufficiently cured foam. Therefore, the foam was further cured at 110°C for 4 hours after the post-curing step to obtain a sufficiently cured foam.
界面活性剤を含むフェノール樹脂組成物100質量部に対し、水13.7質量%を加え、濃縮後のリグニン含有フェノール樹脂組成物の含水率を15.70質量%にした以外、実施例1と全く同様にして比較例3のフェノール樹脂発泡体積層板を製造した。なお、下表面材上に供給したリグニンを含む発泡性フェノール樹脂組成物の発泡硬化速度は、リグニンを含まない発泡性フェノール樹脂組成物の発泡硬化速度(比較例1)と比較して、減少しており、硬化不足の発泡体を得た。そのため、後硬化工程ののちに更に110℃で4時間キュアさせることで、十分に硬化された発泡体を得た。 (Comparative Example 3)
A phenolic resin foam laminate of Comparative Example 3 was produced in the same manner as in Example 1, except that 13.7% by mass of water was added to 100 parts by mass of the surfactant-containing phenolic resin composition, and the water content of the concentrated lignin-containing phenolic resin composition was 15.70% by mass. The foaming and curing speed of the lignin-containing foamable phenolic resin composition supplied onto the lower surface material was reduced compared to the foaming and curing speed of the lignin-free foamable phenolic resin composition (Comparative Example 1), resulting in an insufficiently cured foam. Therefore, the foam was further cured at 110°C for 4 hours after the post-curing step to obtain a sufficiently cured foam.
実施例1~13及び比較例2~3で用いたリグニンの種類を表1に示した。また、実施例1~13及び比較例1~3に対して前記の測定及び評価試験を行った。測定結果及び評価結果を表2、3に示す。
The types of lignin used in Examples 1 to 13 and Comparative Examples 2 to 3 are shown in Table 1. In addition, the above-mentioned measurements and evaluation tests were performed on Examples 1 to 13 and Comparative Examples 1 to 3. The measurement and evaluation results are shown in Tables 2 and 3.
本発明によるフェノール樹脂発泡体は、リグニンが添加されたフェノール樹脂組成物の含水率を適正に調整することで、リグニンを含むフェノール樹脂発泡体であっても、発泡硬化時間を維持することができ、生産性を落とさずに生産できる。さらに、水による発泡阻害を抑制することができ、微細なセルを維持することで、リグニンを含むフェノール樹脂発泡体であっても、熱伝導率を維持することができ、断熱性能を維持することができる。また、リグニン粉末を粉砕し粒径の小さい微細化されたリグニンを添加することで、リグニン粉末の粗大粒子によるセルの破壊を低減し、微細なセルを維持でき、リグニンを含むフェノール樹脂発泡体であっても、熱伝導率を維持することができ、断熱性能を維持することができる。また、植物由来材料を用いることにより、バイオベース化されたフェノール樹脂発泡体を提供することが可能となる。
The phenolic resin foam according to the present invention can maintain the foaming and curing time even in the case of a phenolic resin foam containing lignin by appropriately adjusting the water content of the phenolic resin composition to which lignin has been added, and can be produced without reducing productivity. Furthermore, the foaming inhibition caused by water can be suppressed, and fine cells can be maintained, so that even in the case of a phenolic resin foam containing lignin, the thermal conductivity can be maintained, and the heat insulating performance can be maintained. In addition, by grinding lignin powder and adding finely divided lignin having a small particle size, the destruction of cells caused by coarse particles of the lignin powder can be reduced, and fine cells can be maintained, so that even in the case of a phenolic resin foam containing lignin, the thermal conductivity can be maintained, and the heat insulating performance can be maintained. In addition, by using a plant-derived material, it is possible to provide a bio-based phenolic resin foam.
The phenolic resin foam according to the present invention can maintain the foaming and curing time even in the case of a phenolic resin foam containing lignin by appropriately adjusting the water content of the phenolic resin composition to which lignin has been added, and can be produced without reducing productivity. Furthermore, the foaming inhibition caused by water can be suppressed, and fine cells can be maintained, so that even in the case of a phenolic resin foam containing lignin, the thermal conductivity can be maintained, and the heat insulating performance can be maintained. In addition, by grinding lignin powder and adding finely divided lignin having a small particle size, the destruction of cells caused by coarse particles of the lignin powder can be reduced, and fine cells can be maintained, so that even in the case of a phenolic resin foam containing lignin, the thermal conductivity can be maintained, and the heat insulating performance can be maintained. In addition, by using a plant-derived material, it is possible to provide a bio-based phenolic resin foam.
Claims (7)
- 600℃で加熱することにより生じたガス成分をガスクロマトグラフ質量分析法によって得られるイオンクロマトグラムにおいて、熱分解生成物のジヒドロキシベンゼン由来の面積A、ジヒドロキシトルエン由来の面積B、ジヒドロキシキシレン由来の面積Cの合計X(X=A+B+C)と、尿素架橋由来の構造を示す熱分解生成物の面積Yとの面積比Z(Z=X/Y)が、下記式(1)の範囲にあり、23℃環境下における熱伝導率の値が0.0240W/(m・K)以下である、フェノール樹脂発泡体。
0.035≦Z≦0.715 (1) A phenolic resin foam having a thermal conductivity of 0.0240 W/(m K) or less in a 23° C. environment, wherein in an ion chromatogram obtained by subjecting gas components generated by heating at 600° C. to gas chromatography-mass spectrometry, the total X (X=A+B+C) of the area A derived from dihydroxybenzene, the area B derived from dihydroxytoluene, and the area C derived from dihydroxyxylene, which are pyrolysis products, is a ratio of an area Y (Z=X/Y) to an area Y of the pyrolysis product exhibiting a structure derived from urea crosslinking, falls within the range of the following formula (1):
0.035≦Z≦0.715 (1) - 密度が10kg/m3以上50kg/m3以下である、請求項1に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1, having a density of 10 kg/m3 or more and 50 kg/m3 or less.
- 平均気泡径が70μm以上250μm以下である、請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, having an average bubble diameter of 70 μm or more and 250 μm or less.
- ハイドロフルオロオレフィン、炭化水素、塩素化炭化水素のいずれかを含む請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, which contains either a hydrofluoroolefin, a hydrocarbon, or a chlorinated hydrocarbon.
- フェノール樹脂発泡体の一面および該一面の裏面の少なくとも一方に表面材を備える、請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, which is provided with a surface material on at least one of the surfaces of the phenolic resin foam and the back surface of the surface.
- 発泡性フェノール樹脂組成物を発泡及び硬化させる、フェノール樹脂発泡体積層板の製造方法であって、
前記発泡性フェノール樹脂組成物を得るために、フェノール類にリグニンを添加する工程、フェノール樹脂の合成時にリグニンを添加する工程、フェノール樹脂にリグニンを添加する工程、及びフェノール樹脂組成物にリグニンを添加する工程の少なくとも1つの工程を含み、
前記リグニンの含水率が34.0%以下であり、
前記発泡性フェノール樹脂組成物中の、リグニン含有フェノール樹脂組成物の含水率が、1.5質量%以上、6.5質量%以下である、製造方法。 A method for producing a phenolic resin foam laminate, comprising foaming and curing a foamable phenolic resin composition, comprising:
In order to obtain the foamable phenolic resin composition, the method includes at least one of a step of adding lignin to phenols, a step of adding lignin during synthesis of a phenolic resin, a step of adding lignin to a phenolic resin, and a step of adding lignin to a phenolic resin composition;
The moisture content of the lignin is 34.0% or less,
The water content of the lignin-containing phenolic resin composition in the foamable phenolic resin composition is 1.5 mass% or more and 6.5 mass% or less. - 前記リグニンを添加する工程において
添加するリグニン粉末のメディアン径が、0.1μm以上300μm以下である、請求項6に記載の製造方法。
The method according to claim 6, wherein the lignin powder added in the step of adding lignin has a median diameter of 0.1 μm or more and 300 μm or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-075252 | 2023-04-28 | ||
JP2023075252 | 2023-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024225405A1 true WO2024225405A1 (en) | 2024-10-31 |
Family
ID=93256490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/016349 WO2024225405A1 (en) | 2023-04-28 | 2024-04-25 | Phenolic resin foam and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024225405A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014533748A (en) * | 2011-11-18 | 2014-12-15 | モメンティブ・スペシャルティ・ケミカルズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Foam material based on phenolic resin |
US20180273755A1 (en) * | 2014-11-12 | 2018-09-27 | E I Du Pont De Nemours And Company | Lignin compositions |
CN111234455A (en) * | 2020-03-26 | 2020-06-05 | 南京工业大学 | Preparation method for preparing phenolic foam by enzymatic modification of lignin |
CN111620991A (en) * | 2020-06-15 | 2020-09-04 | 上海昶法新材料有限公司 | Modified phenolic resin for foaming, foaming material, and preparation method and application thereof |
CN115636406A (en) * | 2022-11-08 | 2023-01-24 | 福州大学 | Smoke-suppression flame-retardant phenolic carbon foam and preparation method and application thereof |
WO2023219158A1 (en) * | 2022-05-12 | 2023-11-16 | スーパーレジン工業株式会社 | Foamed body and layered structure |
-
2024
- 2024-04-25 WO PCT/JP2024/016349 patent/WO2024225405A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014533748A (en) * | 2011-11-18 | 2014-12-15 | モメンティブ・スペシャルティ・ケミカルズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Foam material based on phenolic resin |
US20180273755A1 (en) * | 2014-11-12 | 2018-09-27 | E I Du Pont De Nemours And Company | Lignin compositions |
CN111234455A (en) * | 2020-03-26 | 2020-06-05 | 南京工业大学 | Preparation method for preparing phenolic foam by enzymatic modification of lignin |
CN111620991A (en) * | 2020-06-15 | 2020-09-04 | 上海昶法新材料有限公司 | Modified phenolic resin for foaming, foaming material, and preparation method and application thereof |
WO2023219158A1 (en) * | 2022-05-12 | 2023-11-16 | スーパーレジン工業株式会社 | Foamed body and layered structure |
CN115636406A (en) * | 2022-11-08 | 2023-01-24 | 福州大学 | Smoke-suppression flame-retardant phenolic carbon foam and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7223200B1 (en) | Phenolic Foam Laminates and Composites | |
JP7011048B2 (en) | Phenol resin foam laminated board and its manufacturing method | |
JP7223201B1 (en) | Phenolic Foam Laminate | |
WO2024225405A1 (en) | Phenolic resin foam and method for producing same | |
JP6961075B2 (en) | Flame-retardant phenol resin foam | |
JP6946038B2 (en) | Phenol resin foam laminate and its manufacturing method | |
RU2791537C1 (en) | Foamed phenolic resin laminated board | |
WO2023204283A1 (en) | Foamed phenolic-resin object and laminate thereof | |
JP7221083B2 (en) | Method for producing phenolic resin foam | |
JP7014566B2 (en) | Phenol resin foam plate and its manufacturing method | |
JP7584764B2 (en) | Foam Laminate | |
JP7027078B2 (en) | Phenol resin foam laminated board and its manufacturing method | |
KR102728357B1 (en) | Phenolic resin foam laminate | |
JP7026468B2 (en) | Phenol resin foam laminated board and its manufacturing method | |
WO2024225143A1 (en) | Phenolic resin foam, thermal decomposition method for phenolic resin foam, thermal decomposition product of phenolic resin foam, and method for producing phenolic resin foam | |
JP7045169B2 (en) | Phenol resin foam laminated board and its manufacturing method | |
JP2021192962A (en) | Foamed laminate | |
JP2000169616A (en) | Phenolic resin foaming composition and production of foam using the composition |