[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023204283A1 - Foamed phenolic-resin object and laminate thereof - Google Patents

Foamed phenolic-resin object and laminate thereof Download PDF

Info

Publication number
WO2023204283A1
WO2023204283A1 PCT/JP2023/015835 JP2023015835W WO2023204283A1 WO 2023204283 A1 WO2023204283 A1 WO 2023204283A1 JP 2023015835 W JP2023015835 W JP 2023015835W WO 2023204283 A1 WO2023204283 A1 WO 2023204283A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenolic resin
resin foam
mass
hydrofluoroether
foam
Prior art date
Application number
PCT/JP2023/015835
Other languages
French (fr)
Japanese (ja)
Inventor
成実 宮田
英徹 栗田
Original Assignee
旭化成建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成建材株式会社 filed Critical 旭化成建材株式会社
Priority to JP2024516318A priority Critical patent/JPWO2023204283A1/ja
Publication of WO2023204283A1 publication Critical patent/WO2023204283A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic

Definitions

  • the present invention relates to a phenolic resin foam and a laminate thereof.
  • foamed plastic insulation materials contain gas with low thermal conductivity within the bubbles, and exhibit even higher insulation performance, making them ideal for exterior wall materials such as metal siding, and partition panels. It is widely used in building materials such as ceiling materials, fire doors, and storm shutters, as well as wall materials without .
  • Phenol resin foam is a typical example of a foam with high heat insulation performance. In order to improve the heat insulation performance, attempts have been made to reduce the cell diameter of foams in addition to using gases with low thermal conductivity.
  • Patent Document 1 discloses that a phenolic resin foam with high heat insulation performance can be obtained by adding fluoroether, which has the effect of reducing the cell diameter, and reducing the cell diameter of the phenolic resin foam. Further, Patent Document 2 discloses that by adding a powdery solidified phenol resin, the cell diameter of a phenol resin foam can be reduced and high heat insulation can be achieved.
  • Galden which is listed as an example of fluoroether in Patent Document 1
  • GWP global warming potential
  • the effect of reducing the cell diameter is limited only when the blowing agent is a hydrocarbon, and no adaptation has been made to the case where a hydrofluoroolefin with low thermal conductivity is used as the blowing agent.
  • Patent Document 2 is a technology that reduces the bubble diameter even when hydrofluoroolefins are used as a blowing agent, the thermal conductivity of the solid increases as more powdered phenol resin solidified material is added. It is hard to say that this is a preferable method for lowering the . Moreover, if the powdery phenol resin solidified product is added in a large amount, it tends to stay in the pipes, which may clog the pipes and reduce productivity. Furthermore, the powdered solidified phenol resin requires equipment for kneading the powder into resin in addition to equipment for producing the powder, which requires a large investment in equipment.
  • the present inventors believe that there are three main ways to improve the heat insulation performance of resin foam, that is, to reduce the thermal conductivity.
  • the first is to ⁇ use a gas with low thermal conductivity
  • the second is to ⁇ reduce the cell diameter of the foam
  • the third is to ⁇ reduce the density of the foam.'' It is.
  • "lowering the density” it is not a practical solution because lowering the density makes it impossible to maintain the closed cell ratio of the resin foam, and furthermore, it has negative effects such as a decline in mechanical properties. I don't get it.
  • the first method is generally being actively investigated.
  • CFCs and HFCs with low thermal conductivity were widely used in the past.
  • their use is regulated due to their high ozone depletion potential (ODP), and currently, hydrofluoroolefins, which have similar excellent thermal conductivity, ODP of 0, and low GWP, are the mainstream.
  • ODP ozone depletion potential
  • hydrofluoroolefins which have similar excellent thermal conductivity, ODP of 0, and low GWP
  • This second perspective is specifically based on the following ideas. That is, first of all, it is important to create as many cell nuclei as possible in the resin composition. Secondly, it is important to allow the generated bubbles to grow stably while not causing them to burst, and by achieving both of these, it is possible to realize the miniaturization of the bubbles. The finer the bubble diameter is, the more it is possible to suppress the radiant heat conduction of the foam. Therefore, making the bubble diameter smaller is the second most important factor for thermal conductivity after using a gas with low thermal conductivity. This can be said to be a major contributing factor.
  • the present inventors have conducted extensive studies to solve the above problems, and have found that by adding a specific hydrofluoroether to a phenolic resin composition, the cell diameter of the phenolic resin foam can be made finer.
  • a technology that can reduce thermal conductivity when using blowing agents That is, the present invention is as follows.
  • the hydrofluoroether represented by (Formula 1) is methyl perfluoropropyl ether, methyl nonafluorobutyl ether, methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, 1,1,1,2,2 , 3,4,5,5,5-de
  • the phenolic resin foam and its laminate according to the present invention can make the cell diameter of the phenolic resin foam finer. Since cell size contributes to reducing thermal conductivity, the use of each blowing agent can reduce thermal conductivity. In addition, this is an improvement especially in cases where there are appearance defects such as voids or uneven color of the foam, or low compressive strength when no hydrofluoroether is added. Furthermore, since the GWP of the raw material is small, it is possible to provide an environmentally friendly foam with a small environmental impact.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • a product obtained by adding a surfactant to a "phenol resin” is referred to as a "phenol resin composition”
  • a "phenol resin composition” includes a hydrofluoroether, a foaming agent, a foaming nucleating agent, and the like.
  • a composition to which an acidic curing agent or the like is added to impart foamability or both foamability and curability is referred to as a "foamable phenol resin composition.”
  • the obtained foam is referred to as a "phenol resin foam.”
  • the phenolic resin foam of this embodiment is manufactured from a phenolic resin composition containing a hydrofluoroether, a blowing agent, and an acidic curing agent.
  • the hydrofluoroether contained in the phenolic resin foam of this embodiment is represented by (Formula 2).
  • this hydrofluoroether By adding this hydrofluoroether to a phenol resin or a phenol resin composition, the effect of reducing the cell diameter of the phenol resin foam can be obtained.
  • the content is 0.03% to 4.3% by mass, preferably 0.1% to 3.8% by mass, more preferably 0.3% by mass based on the phenolic resin foam. 3.3% by weight, most preferably 0.5% to 3.3% by weight.
  • This hydrofluoroether may be a combination of two or more types of molecules corresponding to Formula 2. When the content of hydrofluoroether is 0.03% by mass or more, the thermal conductivity tends to be low.
  • the thermal conductivity will decrease due to an increase in the amount of hydrofluoroether that liquefies in the foam. There is little concern that the size will increase or the rigidity of the phenol resin will decrease.
  • the type of hydrofluoroether and the phase with the phenolic resin are adjusted.
  • the amount of hydrofluoroether added to 100 parts by mass of the phenolic resin composition is 0.1 parts by mass to 6.8 parts by mass. It is preferable that there be.
  • Hydrofluoroether is thought to form bubble nuclei by itself in the phenolic resin, and as it increases the number of bubbles in the foamable phenolic resin composition, it reduces the average cell diameter of the phenolic resin foam and suppresses radiant heat conduction. , is thought to have the effect of lowering the thermal conductivity of the phenolic resin foam.
  • the order in which the phenolic resin composition, blowing agent, and hydrofluoroether are mixed is not particularly limited, but the hydrofluoroether may be kneaded with the phenol resin composition before the blowing agent is kneaded, or the hydrofluoroether may be mixed with the hydrofluoroether. It is more preferable to simultaneously knead the agent into the phenolic resin composition.
  • the hydrofluoroether When the hydrofluoroether is kneaded into the phenolic resin composition after the blowing agent, or when a premixed mixture of the hydrofluoroether and the blowing agent is kneaded into the phenolic resin composition, the hydrofluoroether self-builds bubbles. However, there is a risk that it will adsorb to the bubbles that are already in the growth process and inhibit the growth of the bubbles. There is a concern that this may reduce the closed cell ratio.
  • the kneading method is not particularly limited as long as the hydrofluoroether can be uniformly dispersed in the phenol resin or phenol resin composition.
  • hydrofluoroether has an oxygen atom and an alkyl group in its molecule, so it has a shorter atmospheric lifetime than perfluoroalkanes, so it has the advantage of having a relatively small global warming potential and a small environmental burden. Furthermore, since the presence of oxygen atoms in the molecule increases compatibility with phenolic resin, it is thought that the dispersibility of hydrofluoroether in phenolic resin increases and has the effect of promoting the formation of fine bubble nuclei. It will be done. On the other hand, molecular chains consisting only of carbon and fluorine in hydrofluoroethers tend to have longer atmospheric lifetimes and have a higher GWP. is preferably not long. Moreover, since hydrofluoroether is a flame-retardant substance, it is thought that the higher the content in the phenol resin foam, the more difficult the phenol resin foam becomes to burn.
  • the hydrofluoroether of (Formula 2) needs to be an ether of a group represented by C a H b F c and a group represented by C x H y F z .
  • the number of carbon atoms, ie, the value of a, in the group represented by C a H b F c must be 2 to 7, preferably 2 to 6, from the viewpoint of the boiling point of the hydrofluoroether.
  • the group represented by C a H b F c is a hydrocarbon group in which some or all of the hydrogens are substituted with fluorine, and preferably has a small number of hydrogen atoms, and the value of b is 0 to 3. 0 or 1 is preferred, and 0 is particularly preferred.
  • the number of carbon atoms, ie, the value of x, in the group represented by C x H y F z must be from 1 to 3, preferably from 1 to 2, from the viewpoint of the boiling point of the hydrofluoroether.
  • the group represented by C x H y F z is a hydrocarbon group or a group in which part of the hydrocarbon is substituted with fluorine, preferably one with a small number of fluorine atoms, and the value of z is 0 to 3. is preferred.
  • the hydrofluoroether of (Formula 2) has a group represented by C a H b F c with a small number of hydrogen atoms and a C x H y F z group with a small number of fluorine atoms, so that it can be easily absorbed in the resin. It is thought that this increases the dispersibility of hydrofluoroether and promotes the formation of fine bubble nuclei. Furthermore, it is preferable that a ⁇ x, and more preferably that a>x.
  • Hydrofluoroethers of formula 2 preferably used in the present invention include methyl perfluoropropyl ether, methyl nonafluorobutyl ether, methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, 1,1,1 , 2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 1,1,2,2-tetrafluoroethyl-2,2,2- Trifluoroethyl ether is mentioned. These hydrofluoroethers may be used alone or in combination of two or more.
  • the phenolic resin foam according to the present invention tends to have improved compressive strength compared to the phenolic resin foam to which no hydrofluoroether is added. This is because the addition of hydrofluoroether reduces the cell diameter, which increases the number of cell walls lined up in the compression direction compared to a phenolic resin foam that does not contain hydrofluoroether, which increases the opposing force. This is due to the reduction of voids that serve as starting points for
  • the appearance is improved compared to a phenolic resin foam to which no hydrofluoroether is added. This is because adding hydrofluoroether not only reduces the cell diameter, but also reduces the incidence of voids and tends to make the cell diameter uniform in the thickness direction, eliminating uneven color of the foam. It's for a reason.
  • the average cell diameter of the phenolic resin foam in the present invention is preferably 70 ⁇ m or more and 180 ⁇ m or less, more preferably 70 ⁇ m or more and 170 ⁇ m or less, even more preferably 70 ⁇ m or more and 150 ⁇ m or less, and most preferably 70 ⁇ m or more and 135 ⁇ m or less.
  • the average cell diameter is 70 ⁇ m or more, it is possible to suppress an increase in thermal conductivity due to heat conduction of the phenol resin portion, which increases as the cell diameter becomes smaller.
  • the bubble diameter is 180 ⁇ m or less, heat conduction by radiation is small, and an increase in thermal conductivity can be suppressed.
  • the average cell diameter of the phenolic resin foam is determined by, for example, the amount of hydrofluoroether added, the amount of solid foam nucleating agent added, the temperature of the foamable phenolic resin composition, and the amount of the mixed foamable phenolic resin composition added to the lower surface material.
  • the desired value can be adjusted by changing the timing of preforming in the upward discharge step, the amount of foaming agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time.
  • the phenolic resin foam of the present invention can use hydrofluoroolefins, hydrocarbons, and chlorinated hydrocarbons as blowing agents singly or in combination of two or more of these.
  • Hydrofluoroolefins generally have low thermal conductivity, and when used as a blowing agent, are preferred because they yield phenolic resin foams with low thermal conductivity.
  • Hydrofluoroolefins include chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins. In the present invention, chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins can also be used in combination.
  • chlorinated hydrofluoroolefins examples include (Z)-1-Chloro-2,3,3,3-Tetrafluoropropene (HCFO-1224yd(Z)), 1-chloro-3,3,3-trifluoropropene (HCFO- 1233zd, for example, E form (HCFO-1233zd(E)), manufactured by Honeywell Japan Co., Ltd., product name: Solstice (trademark) LBA), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1213xa), 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1- Chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb), 2,3,3-trichloro-3-fluoropropene (HCFO-1231xf), 2,3-dichloro-3,3
  • Non-chlorinated hydrofluoroolefins include 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze, for example, E form (HFO-1234ze (E)), manufactured by Honeywell Japan Co., Ltd.; Product name: Solstice (trademark) ze), 1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz, e.g.
  • HFO-1336mzz Z-form (HFO-1336mzz (Z)), Chemours Stock Opteon (trademark) 1100), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1 , 3,3,3-tetrafluoropropene (HFO-1234ze), 3,3,3-trifluoropropene (HFO-1243zf), 1,1,1,4,4,5,5,5-octafluoro- Examples include 2-pentene (HFO-1438mzz), and one or a mixture of these configurational isomers, ie, E form or Z form, is used. In the present invention, two or more of these non-chlorinated hydrofluoroolefins may be used in combination.
  • hydrocarbon cyclic or chain alkanes, alkenes, and alkynes having 3 to 7 carbon atoms are preferable, and specifically, normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, Examples include isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, and the like.
  • pentanes such as normal pentane, isopentane, cyclopentane, and neopentane
  • butanes such as normal butane, isobutane, and cyclobutane
  • two or more of these hydrocarbons may be used in combination.
  • mixtures include normal pentane and normal butane, isobutane and isopentane, normal butane and isopentane, isobutane and normal pentane, cyclopentane and normal butane, cyclopentane and isobutane, and the like.
  • chlorinated hydrocarbon linear or branched chlorinated aliphatic hydrocarbons having 2 to 5 carbon atoms can be preferably used.
  • the number of bonded chlorine atoms is preferably 1 to 4, and examples thereof include dichloroethane, propyl chloride, 2-chloropropane, butyl chloride, isobutyl chloride, pentyl chloride, and isopentyl chloride.
  • propyl chloride and 2-chloropropane which are chloropropanes, are more preferably used.
  • two or more of these chlorinated hydrocarbons may be used in combination.
  • blowing agents are not particularly limited, and include, for example, sodium hydrogen carbonate, sodium carbonate, calcium carbonate, magnesium carbonate, azodicarboxylic acid amide, azobisisobutyronitrile, barium azodicarboxylate, N,N' -Chemical blowing agents such as dinitrosopentamethylenetetramine, p,p'-oxybisbenzenesulfonylhydrazide, and trihydrazinotriazine, and the like. These blowing agents may be used alone or in combination of two or more.
  • the amount of blowing agent in the phenolic resin composition varies depending on the type of blowing agent, the compatibility of the blowing agent with the phenolic resin, temperature, and conditions for foaming and curing such as residence time. Therefore, it may be determined arbitrarily depending on the density of the desired phenolic resin foam, foaming conditions, etc., but it is preferably 3.0 to 20 parts by mass, more preferably 4 parts by mass, based on 100 parts by mass of the phenolic resin composition. 0 to 18 parts by weight, more preferably 5.0 to 16 parts by weight, and most preferably 6.0 to 15 parts by weight. When the amount of the blowing agent per 100 parts by mass of the phenol resin composition is 3.0 parts by mass or more, high density of the resin foam can be suppressed.
  • the amount of the blowing agent per 100 parts by mass of the phenolic resin composition is 20 parts by mass or less, the phenol resin foam will have a low density, resulting in a decrease in mechanical strength such as compressive strength and damage to the cell walls. It becomes easier to suppress the decrease in the closed cell ratio due to the increase in the thermal conductivity, and it is possible to suppress the increase in thermal conductivity.
  • a foam nucleating agent may be used in the production of the phenolic resin foam.
  • a gaseous foaming nucleating agent such as a low boiling point substance having a boiling point 50° C. or more lower than that of the foaming agent, such as nitrogen, helium, or argon, can be added.
  • Solid foam nucleating agents such as gypsum powder, borax, slag powder, inorganic powders such as alumina cement and portland cement, and organic powders such as ground powder of phenolic resin foam can also be added. These may be used alone or in combination of two or more types, regardless of whether they are gas or solid.
  • the timing of adding the foaming nucleating agent can be arbitrarily determined as long as it is supplied into the mixer that mixes the phenolic resin composition.
  • the amount of the solid foaming nucleating agent added is preferably 3.0% by mass or more and 10.0% by mass or less, and 3.0% by mass or more and 8.0% by mass, based on 100 parts by mass of the phenolic resin composition. It is more preferable that it is below.
  • the amount of the solid foam nucleating agent added is 3.0% by mass or more, it becomes easier to suppress seepage of the foamable phenolic resin composition from the surface material. Further, by setting the amount of the solid foaming nucleating agent to be 10.0% by mass or less, it becomes easier to suppress the dispersion of the foaming agent having a low boiling point.
  • the density of the phenolic resin foam of the present invention may be adjusted to a desired density depending on the intended use of the foam, but is preferably 10 kg/m 3 or more and 70 kg/m 3 or less, more preferably 20 kg/m 3 It is not less than 55 kg/m 3 , more preferably not less than 22 kg/m 3 and not more than 50 kg/m 3 , and most preferably not less than 24 kg/m 3 and not more than 45 kg/m 3 .
  • the density is 10 kg/m 3 or more, the decrease in mechanical strength such as compressive strength, which tends to occur due to the low density, and the decrease in surface brittleness are small, and it is possible to maintain a strength that does not pose any practical problems.
  • the density of the phenolic resin foam can be determined by adjusting the filling ratio of the blowing agent into the phenol resin foam, and mainly depends on the amount of blowing agent added to the phenol resin composition, the temperature of the expandable phenol resin composition, The desired value can be achieved by changing the timing of preforming in the process of discharging the mixed foamable phenolic resin composition, the amount of foaming nucleating agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time. It can be adjusted to
  • the phenolic resin foam of the present invention preferably has a closed cell ratio of 80% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 92% or more.
  • the closed cell ratio is 80% or more, it is possible to suppress an increase in thermal conductivity due to air replacing the blowing agent in the phenolic resin foam. This effect is greater as the closed cell ratio is higher.
  • the closed cell ratio of the phenolic resin foam can be adjusted to a desired value by, for example, changing the amount of the foaming nucleating agent, the amount of the foaming agent, and the amount of the acidic curing agent.
  • the phenolic resin foam in this embodiment has a thermal conductivity at 23°C of preferably 0.0211 W/(m ⁇ K) or less, more preferably 0.0200 W/(m ⁇ K) or less, and even more preferably is 0.0180 W/(m ⁇ K) or less, most preferably 0.0175 W/(m ⁇ K) or less.
  • the void ratio of the phenolic resin foam of this embodiment is preferably 0.5% or less.
  • the void ratio can be adjusted by adjusting the amount of hydrofluoroether and curing conditions such as temperature and residence time.
  • the void ratio is determined by cutting a cross section parallel to the thickness direction of the resin foam and measuring the voids present in the cross section using the method described below . is defined as a void, and the value obtained by dividing the total area of all voids on the cross-sectional area by the cross-sectional area is defined as the void ratio.
  • the phenol resin foam laminate in this embodiment is a laminate that includes a surface material on at least one of one surface of the phenol resin foam and the back surface of the one surface.
  • the "thickness direction" in this embodiment refers to the dimension of the shortest side among the three sides of the phenolic resin foam laminate, and normally, when manufacturing the phenolic resin foam laminate, the foaming property on the lower surface material is This is the direction in which the phenol resin composition foams and grows.
  • the phenolic resin foam laminate can be used alone or in various applications by joining it with an external member.
  • external members include board-like materials and sheet-like/film-like materials and combinations thereof.
  • Board-like materials include ordinary plywood, structural plywood, particle board, and wood boards such as OSB, wood wool cement board, wood chip cement board, gypsum board, flexible board, medium density fiberboard, calcium silicate board, and silicone board.
  • Suitable materials include acid magnesium plates and volcanic glass multilayer plates.
  • sheet-like and film-like materials include polyester nonwoven fabric, polypropylene nonwoven fabric, mineral-filled glass fiber nonwoven fabric, glass fiber nonwoven fabric, paper, calcium carbonate paper, polyethylene processed paper, polyethylene film, plastic moisture-proof film, asphalt waterproof paper, and Aluminum foil (with or without holes) is preferable.
  • phenol resin a resol type phenol resin synthesized from an alkali metal hydroxide or an alkaline earth metal hydroxide is used.
  • Resol type phenolic resin is synthesized by heating phenols and aldehydes as raw materials in a temperature range of 40 to 100°C using an alkali catalyst.
  • additives such as urea may be added during or after the synthesis of the resol type phenolic resin, if necessary. When adding urea, it is more preferable to mix urea that has been methylolated with an alkali catalyst in advance with the resol type phenol resin.
  • phenolic resins include aliphatic hydrocarbons, high-boiling alicyclic hydrocarbons, or mixtures thereof, diluents for viscosity adjustment such as ethylene glycol and diethylene glycol, and other additives such as dicyandiamide and melamine as necessary. It is also possible to add additives such as.
  • the starting molar ratio of phenols to aldehydes during the synthesis of phenolic resins is preferably within the range of 1:1 to 1:4.5, more preferably within the range of 1:1.5 to 1:2.5. It is.
  • the phenols preferably used in the synthesis of phenolic resin in this embodiment are phenol itself and other phenols.
  • examples of other phenols include resorcinol, catechol, o-, m- and p-cresol, xylenols, ethylphenols, and p-tertbutylphenol.
  • dinuclear phenols can also be used.
  • the aldehydes may be any compound that can serve as an aldehyde source, and as the aldehydes, it is preferable to use formaldehyde itself, paraformaldehyde which can be used by depolymerizing, and other aldehydes and derivatives thereof.
  • formaldehyde itself, paraformaldehyde which can be used by depolymerizing, and other aldehydes and derivatives thereof.
  • aldehydes include glyoxal, acetaldehyde, chloral, furfural, and benzaldehyde.
  • the mass average molecular weight of the phenol resin is preferably 300 or more, more preferably 400 or more, and even more preferably 450 or more.
  • the mass average molecular weight is preferably 2,500 or less, more preferably 2,200 or less, even more preferably 2,050 or less, and most preferably 1,900 or less.
  • the mass average molecular weight of the phenol resin can be measured using the method described in the Examples of this specification.
  • the viscosity of the phenol resin composition at 40° C. is preferably 5,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, more preferably 7,000 mPa ⁇ s or more and 50,000 mPa ⁇ s or less, and even more preferably 9 ,000 mPa ⁇ s or more and 40,000 mPa ⁇ s or less. Further, the water content of the phenol resin and the phenol resin composition is preferably 1.5% by mass or more and 20% by mass or less.
  • the surfactant, hydrofluoroether, foaming agent, and foam nucleating agent may be added to the phenolic resin composition in advance, or may be added at the same time as the acidic curing agent. However, it is preferable to add the hydrofluoroether before or at the same time as the blowing agent.
  • nonionic surfactants are particularly effective; for example, alkylene which is a copolymer of ethylene oxide and propylene oxide oxides, condensates of alkylene oxides and castor oil, condensation products of alkylene oxides and alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers whose alkyl ether moiety has 14 to 22 carbon atoms, Furthermore, fatty acid esters such as polyoxyethylene fatty acid ester, silicone compounds such as polydimethylsiloxane, and polyalcohols are more preferable. These surfactants may be used alone or in combination of two or more. There is no particular restriction on the amount used, but it is preferably used in a range of 0.3 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the phenol resin.
  • the acidic curing agent may be any acidic curing agent that can cure the phenolic resin composition, and contains an organic acid as an acid component.
  • organic acid arylsulfonic acids or anhydrides thereof are preferred.
  • Arylsulfonic acids and their anhydrides include toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, substituted phenolsulfonic acid, xylenolsulfonic acid, substituted xylenolsulfonic acid, dodecylbenzenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, etc.
  • resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like may be added as curing aids.
  • these acidic curing agents may be diluted with solvents such as ethylene glycol and diethylene glycol.
  • the amount of the acidic curing agent used varies depending on the type thereof, and when using a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol, it is preferably 6 parts by mass based on 100 parts by mass of the phenolic resin composition.
  • the amount used is 20 parts by mass or less, more preferably 8 parts by mass or more and 15 parts by mass or less, and most preferably 11 parts by mass or more and 13 parts by mass or less.
  • a flexible surface material (flexible surface material) is used as the surface material disposed on at least one of one surface and the back surface of the one surface of the phenolic resin foam.
  • Flexible surface materials used include nonwoven or woven fabrics whose main components are polyester, polypropylene, nylon, etc., kraft paper, glass fiber mixed paper, calcium hydroxide paper, aluminum hydroxide paper, and magnesium silicate paper. Papers such as , and nonwoven fabrics made of inorganic fibers such as glass fiber nonwoven fabrics are preferred, and these may be used in combination (or in a layered manner). In the case where the surface material is peeled off from the obtained phenol resin foam laminate and only the base material is used, inexpensive paper that can be discarded after peeling is preferable. These facing materials are usually provided in roll form.
  • the flexible surface material one kneaded with additives such as flame retardants may be used.
  • additives such as flame retardants
  • the method of adhering the surface material and the phenolic resin foam is not particularly limited, and adhesives such as epoxy resin may be used, but from the viewpoint of manufacturing cost and prevention of complication of the manufacturing process, It is preferable that the adhesive force is solely due to the adhesive force when the foamable phenol resin composition is thermally cured on the surface of the surface material.
  • the method for manufacturing the phenolic resin foam laminate includes a mixing step of mixing the above-mentioned foamable phenolic resin composition in a mixer, and a discharging step of discharging the mixed foamable phenolic resin composition onto the lower surface material.
  • a continuous manufacturing method is used, which includes a foam laminate manufacturing process for manufacturing a phenolic resin foam laminate from a foamable phenolic resin composition discharged onto the lower surface material. It is also possible to adopt a batch method using a mold that performs each step in stages.
  • the phenolic resin composition discharged onto the lower surface material is coated with the upper surface material, and then preformed so as to be evenly distributed from above and below while foaming and curing. This is then formed into a plate shape.
  • methods for preforming and main forming include methods that use a slat-type double conveyor, methods that use metal rolls or steel plates, and methods that use a combination of these, depending on the manufacturing purpose. There are various methods depending on the situation.
  • the foamable phenolic resin composition coated with the upper and lower surface materials is continuously guided into the slat-type double conveyor, and then heated while By applying pressure from above and below, the material can be foamed and cured to form a plate while adjusting the thickness to a predetermined value.
  • the temperature of the foamable phenolic resin composition when discharged onto the lower surface material depends on the boiling point of the foaming agent, but is generally preferably 32°C or higher and 45°C or lower.
  • the temperature of the foamable phenolic resin composition When the temperature of the foamable phenolic resin composition is 32°C or higher, the foamable phenolic resin composition tends to foam at an early stage, so that the seepage of the foamable phenolic resin composition from the lower surface material is suppressed. It becomes easier. On the other hand, if the temperature of the foamable phenolic resin composition is 45°C or lower, it will be easier to suppress the dissipation even when using a blowing agent with a low boiling point, resulting in a decrease in foaming efficiency and a decrease in thermal conductivity due to coarsening of the cell diameter. It becomes easier to prevent growth.
  • the temperature of the foamable phenolic resin composition discharged onto the lower surface material can be controlled by adjusting the water temperature, flow rate, rotation speed, etc. of a mixer for mixing various compositions.
  • the heating temperature control conditions for the step of preforming the foamable phenolic resin composition discharged onto the lower surface material while foaming and curing it from above the upper surface material be 30° C. or higher and 80° C. or lower.
  • the temperature is 30° C. or higher, the effect of promoting foaming in the preforming step can be easily obtained, and curing can be promoted.
  • the temperature is 80° C. or lower, the vicinity of the center in the thickness direction is less susceptible to internal heat generation, the temperature of the center is less likely to increase, and a decrease in the closed cell ratio can be suppressed.
  • the heating temperature control conditions for the main forming step following the preforming step are preferably 65° C. or higher and 100° C. or lower.
  • main forming can be performed using an endless steel belt type double conveyor, a slat type double conveyor, rolls, or the like.
  • the residence time of this molding step is preferably 5 minutes or more and 2 hours or less, since this is the main step of performing foaming and curing reactions. Foaming and curing can be sufficiently promoted when the residence time is 5 minutes or more. When the residence time is within 2 hours, the production efficiency of the phenolic resin foam laminate can be improved. Note that when using a conveyor, it is desirable that the temperature difference between the upper and lower conveyors be less than 4°C.
  • a post-curing step After heating and controlling the temperature through the preforming step and the temperature control section of the main forming step, a post-curing step is applied.
  • the temperature of the post-curing step is preferably 90°C or higher and 120°C or lower.
  • the temperature is 90°C or higher, moisture in the foam board is easily dissipated, and when the temperature is 120°C or lower, a decrease in the closed cell ratio of the product can be suppressed and a low thermal conductivity can be maintained for a long period of time.
  • water in the foamable phenolic resin composition can be diffused after final molding.
  • This reaction solution was concentrated at 60°C to obtain phenol resin A.
  • the mass average molecular weight and viscosity at 40°C of phenol resin A were measured by the following methods, the mass average molecular weight was 1,300, and the viscosity at 40°C was 9,730 mPa ⁇ s.
  • Measurement condition Measuring device: Shodex System21 (manufactured by Showa Denko K.K.) Column: Shodex Asahipak GF-310HQ (7.5mm I.D. x 30cm) Eluent: 0.1% by mass of lithium bromide was dissolved in N,N dimethylformamide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for high-performance liquid chromatography).
  • Example 1 Ratio of 3.0 parts by mass of a composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants, based on 100 parts by mass of phenolic resin A. mixed with. This is used as a phenol resin composition.
  • a foaming nucleating agent 4.0% by mass of phenolic resin foam powder was added to the phenolic resin composition containing the surfactant.
  • the viscosity of the phenolic resin composition after kneading the phenolic resin foam powder at 40° C. was 22,000 mPa ⁇ s.
  • the phenolic resin foam powder used here was a pulverized phenol resin foam (neoma foam manufactured by Asahi Kasei Kenzai Co., Ltd.) powder (average particle size was 28 ⁇ m and bulk density was 181 kg/m 3 ), and was kneaded with the phenol resin composition in a twin-screw extruder before adding the hydrofluoroether, blowing agent, and acidic curing agent. Thereafter, the hydrofluoroether, foaming agent, and acidic curing agent were mixed in a mixer, and the resulting foamable phenolic resin composition was distributed using a multiport distribution pipe and supplied onto the moving lower surface material.
  • the mixer disclosed in FIG. 1 of JP-A No. 10-225993 was used.
  • an inlet for a phenolic resin composition containing a solid foaming nucleating agent, an inlet for a hydrofluoroether, and an inlet for a blowing agent are arranged adjacently from top to bottom in order, and the rotor A mixer was used, which was equipped with an acid curing agent inlet on the side near the center of the stirring section.
  • the part after the stirring part is connected to a nozzle for discharging the foamable phenolic resin composition. That is, the mixer consists of a mixing section (first stage) up to the acidic curing agent inlet, a mixing section (second stage) between the acidic curing agent inlet and the stirring end section, and a distributing section between the stirring end section and the nozzle.
  • the distribution section has a plurality of nozzles at its tip and is designed to uniformly distribute the mixed foamable phenolic resin composition. Furthermore, the distribution section had a jacket type structure, which enabled sufficient heat exchange with temperature-controlled water, and the temperature of the temperature-controlled water in the distribution section was set at 17°C. Further, a thermocouple was installed at the discharge port of the multi-port distribution pipe so that the temperature of the foamable phenolic resin composition could be detected, and the rotation speed of the mixer was set at 500 rpm. At this time, the temperature of the foamable phenol resin composition discharged onto the lower surface material was 34°C.
  • the foamable phenolic resin composition supplied onto the lower surface material was introduced into a preforming step whose temperature was controlled at 40° C., and after 30 seconds, preforming was performed from above the upper surface material using a free roller.
  • the residence time in this step was 5 minutes. After that, it is sandwiched between two surface materials and introduced into a slat-type double conveyor heated to 69°C (main forming process), where it is cured for 15 minutes and then 9 minutes at 100°C. Thereafter, it was cured at 110° C. for 2 hours (post-curing step) to obtain a phenol resin foam laminate having a thickness of about 30 mm.
  • polyester nonwoven fabric As a surface material, polyester nonwoven fabric (Asahi Kasei Corporation Eltas E05060, basis weight 60 g/m 2 ) was used for both the upper and lower surface materials. Such a manufacturing method is indicated as manufacturing method A in Table 2.
  • Characteristic evaluation of the obtained phenolic resin foam and phenolic resin foam laminate (identification and content measurement of hydrofluoroether in the phenolic resin foam, identification of blowing agent species, measurement of average cell diameter, measurement of density, Measurement of thermal conductivity in a 23°C environment, measurement of compressive strength in the thickness direction, evaluation of color spots and void ratio, and measurement of closed cell ratio) were performed by the following methods.
  • a 0.25 mg sample was cut out from near the center of the phenolic resin foam, placed in a special container, and 10 ml of chloroform and 12 crushed glass beads were added. After extracting components into chloroform while grinding the sample at 6000 rpm x 7 to 11 min with a homogenizer (IKA ULTRA-TURRAX Tube Drive), the extract was filtered with a 0.45 ⁇ m filter and subjected to GC/MS measurement. A standard sample solution with a known concentration was prepared by dissolving the target component for quantitative determination in chloroform, and subjected to GC/MS measurement under the same conditions as the sample.
  • Hydrofluoroethers, hydrofluoroolefins, halogenated hydrocarbons, and hydrocarbons were identified from the retention times and mass spectra determined in advance. Separately, the detection sensitivity of each generated gas component was measured using a standard gas, and the content of each substance was calculated from the detection area area and detection sensitivity of each gas component obtained by GC/MS. The mass % of each blowing agent component was calculated from the hydrofluoroether content (mass % based on the phenol resin foam) and the blowing agent content and molar mass from the content of each identified gas component.
  • the average bubble diameter was measured by the following method. Four photos were taken with a scanning electron microscope of the air bubbles at approximately the center in the thickness direction of the phenolic resin foam laminate, and at approximately the center between the center and the front and back surfaces, magnified 50 times. Draw four straight lines with a length of 90 mm (corresponding to 1,800 ⁇ m in the actual foam cross section) avoiding voids, and calculate the number of bubbles for each straight line based on the number of bubbles crossed by each straight line. , the value obtained by dividing 1,800 ⁇ m by their average value was defined as the average bubble diameter.
  • a phenol resin foam laminate was cut into 300 mm square pieces, and the specimens were placed in an atmosphere of 23 ⁇ 1°C and humidity of 50 ⁇ 2%. Thereafter, the change in weight over time was measured every 24 hours, and the condition was checked and adjusted until the weight change after 24 hours was 0.2% by mass or less.
  • the conditioned phenolic resin foam laminate specimen was introduced into the thermal conductivity apparatus, which was also placed in an atmosphere of 23 ⁇ 1° C. and humidity of 50 ⁇ 2%.
  • the thermal conductivity measuring device is not placed in the room where the phenolic resin foam laminate specimen was placed, where the humidity is controlled at 23 ⁇ 1% and the humidity is 50 ⁇ 2%, it is necessary to The tested and adjusted specimens were immediately placed in a polyethylene bag, the bag was closed, and the bag was taken out within 1 hour, and the thermal conductivity was immediately measured.
  • the thermal conductivity was measured at 23°C under the conditions of a low-temperature plate at 13°C and a high-temperature plate at 33°C, using a measuring device with a single test piece and target configuration method (Hideko Seiki Co., Ltd., product name "HC-074/FOX304"). ”) was used.
  • ⁇ Void rate evaluation of phenolic resin foam Cut approximately the center of the thickness of the phenolic resin foam parallel to the front and back surfaces, enlarge the 100 mm x 150 mm area by 200% (4.0 times the area), make a color copy, and use transparent graph paper to make a 1 mm x 1 mm size.
  • the area of voids with 8 squares or more (2.0 mm 2 or more) is integrated, the area fraction is calculated, and the void ratio (%) (average value of 4 measurements) is calculated, and the void ratio of the phenolic resin foam is calculated. Those in which the ratio was 0.5% or less were rated as "little," and those in excess of 0.5% were rated as "high.”
  • ⁇ Measurement of closed cell ratio of phenolic resin foam If the thickness of the resin foam is 25 mm or more, a 25 mm square cube is cut out as a sample at the center position in the thickness direction of the phenolic resin foam using a cutting tool such as a band saw. In addition, if the thickness of the resin foam is less than 25 mm, the thickness after removal of the face material (if fibrous material derived from the face material remains, or if there is a face material on the back side), and the thickness is 25 mm in both length and width. Cut out a rectangular parallelepiped as a sample.
  • the sample volume V (cm 3 ) is measured using the standard method of using an air comparison hydrometer (model 1000, manufactured by Tokyo Science Co., Ltd.).
  • the closed cell ratio in a resin foam is calculated from the sample volume V, the sample mass W (g), and the density ⁇ of the resin composition constituting the resin foam, as shown in the following formula. ) is divided by the apparent volume Va (cm 3 ) calculated from the external dimensions of the sample, and is measured in accordance with ASTM D 2856 (Method C).
  • Example 2 A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7100 high-performance liquid (manufactured by 3M).
  • Example 3 A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7200 high performance liquid (manufactured by 3M).
  • Example 4 A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7300 high-performance liquid (manufactured by 3M).
  • Example 5 A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Asahiklin (registered trademark) AE-3000 (manufactured by AGC, purity 99% or higher).
  • Example 6 The procedure was carried out in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 0.1 part with respect to 100 parts by mass of the phenolic resin composition. A resin foam was produced.
  • Example 7 The procedure was carried out in exactly the same manner as in Example 1 except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 6.5 parts with respect to 100 parts by mass of the phenolic resin composition. A resin foam was produced.
  • Example 8 The resin was prepared in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M Company), and 14 parts by mass of HCFO-1224yd (Z) (manufactured by AGC Company) was used as the blowing agent. A foam was produced.
  • Example 9 The hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M), and the blowing agent was a mixture of 80% by mass of HCFO-1224yd (Z) (manufactured by AGC) and 20% by mass of cyclopentane.
  • a resin foam was produced in exactly the same manner as in Example 1, except that the amount added was 12 parts by mass.
  • Example 10 A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and 6.3 parts by mass of cyclopentane was used as the blowing agent.
  • the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and 6.3 parts by mass of cyclopentane was used as the blowing agent.
  • Example 11 The hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M), HCFO-1224yd (Z) (manufactured by AGC) was used as a blowing agent, the amount of blowing agent added was 14 parts by mass, and the hydrofluoroether A resin foam was produced in exactly the same manner as in Example 1, except that the inlet was installed on the downstream side of the mixer so that the hydrofluoroether was kneaded after the blowing agent.
  • Such a manufacturing method is indicated as manufacturing method B in Table 2.
  • HCFO-1233zd (E) as a blowing agent was further kneaded using a cordless driver drill while cooling the polycup so that the amount was 12 parts by mass. Although no foaming nucleating agent was added here, the air involved during kneading played the role of the foaming nucleating agent. It was confirmed by the change in the weight of the resin composition that each of the resin compositions had been kneaded in a predetermined amount.
  • the polycup containing the foamable phenolic resin composition was cooled in the refrigerator for 1 hour, and after confirming that the foamable phenolic resin composition was at 12°C or lower, 80% by mass of xylene sulfonic acid and diethylene glycol were added as acidic curing agents. 13 parts by mass of a composition consisting of a 20% by mass mixture was added and kneaded with a cordless screwdriver drill for 2 minutes in an ice bath.
  • the foamable phenolic resin composition was applied to the bottom of a metal frame (form) using a spatula in an environment of 13°C. The amount of the foamable phenol resin composition applied was adjusted as appropriate so that the thickness would not protrude from the metal frame (form) after foaming.
  • the metal frame (form) used here is made of metal with a thickness of 2.0 mm, and has an inner diameter of 300 mm x 300 mm x height of 30 mm, with holes of 5 mm diameter punched at 1 mm intervals on the bottom.
  • a polyester nonwoven fabric (Eltas E05060 manufactured by Asahi Kasei Corporation, basis weight 60 g/m 2 ) was laid as a surface material. The working time from kneading the foamable phenolic resin composition and acidic curing agent to finishing the application was 5 minutes.
  • top plate cover a board larger than 300 mm x 300 mm with the same punching specifications as the bottom with the same surface material as the bottom of the metal frame (formwork) so that the surface material faces the foamed phenolic resin side.
  • the top plate was fixed to the metal frame (formwork) with clips. Place this metal frame (formwork) in an oven heated to 85°C, place a 25kg weight heated to 85°C in the center of the top plate of the metal frame (formwork), heat it for 1 hour, and then heat it again at 105°C for 1 hour. After curing for a period of time, a phenol resin foam laminate having a thickness of 30 mm was obtained.
  • Such a manufacturing method is indicated as manufacturing method C in Table 2.
  • Example 1 A resin foam was produced in exactly the same manner as in Example 1, except that AMOLEA (registered trademark) AS-300 (manufactured by AGC, purity 99% or more), which is a fluorine compound that does not correspond to Formula 1, was used.
  • AMOLEA registered trademark
  • AS-300 manufactured by AGC, purity 99% or more
  • Comparative example 2 Resin foaming was carried out in the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 7 parts with respect to 100 parts by mass of the phenolic resin composition. manufactured a body.
  • the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 7 parts with respect to 100 parts by mass of the phenolic resin composition. manufactured a body.
  • Table 1 shows the types of hydrofluoroethers used in Examples 1 to 12 and Comparative Examples 1 and 2. In addition, the measurement and evaluation tests described above were conducted for Examples 1 to 12 and Comparative Examples 1 to 7. Measurement results and evaluation results are shown in 2.
  • the phenolic resin foam and its laminate of this embodiment have a small cell diameter, so they may have excellent heat insulation performance, and the appearance defects such as voids and uneven color of the foam, as well as the compressive strength, are improved. Therefore, it can be used in various places that require insulation, for example.
  • the raw materials are cheaper than the conventional technology, the capital investment is small, and the GWP is small, it is possible to provide an environmentally friendly foam with a small environmental impact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

A foamed phenolic-resin object containing a hydrofluoroether represented by (formula 1) in an amount of 0.03-4.3 mass%. (Formula 1): CaHbFc-O-CxHyFz (where a, b, c, x, y, and z are integers, and 2≤a≤7, 0≤b≤3, c=2a+1-b, b≤2a+1, 1≤x≤3, 2≤y≤7, z=2×x+1-y, and y≤2x+1)

Description

フェノール樹脂発泡体およびその積層板Phenolic resin foam and its laminates 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年4月22日に日本国に特許出願された特願2022-071172の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims priority to Japanese Patent Application No. 2022-071172 filed in Japan on April 22, 2022, and the entire disclosure of this earlier application is incorporated herein by reference.
 本発明は、フェノール樹脂発泡体およびその積層板に関するものである。 The present invention relates to a phenolic resin foam and a laminate thereof.
 発泡プラスチック系断熱材は、繊維系であるグラスウールやロックウールと異なり熱伝導率の低いガスを気泡内に包含することで、一段と高い断熱性能を示す事から、金属サイディングなどの外壁材、間仕切りパネル等のない壁材のほか、天井材、防火扉、および雨戸などの建材に多く使用されている。 Unlike the fiber-based glass wool and rock wool, foamed plastic insulation materials contain gas with low thermal conductivity within the bubbles, and exhibit even higher insulation performance, making them ideal for exterior wall materials such as metal siding, and partition panels. It is widely used in building materials such as ceiling materials, fire doors, and storm shutters, as well as wall materials without .
 近年地球温暖化の懸念から温室効果ガスの削減が急務になっており、その中でも省エネルギー化による温室効果ガスの削減手段の一つとして、建築物の高断熱化が注目されている。断熱性能が高いほど省エネルギー効果が大きいため、断熱性能の更なる向上が求められてきた。 In recent years, there has been an urgent need to reduce greenhouse gases due to concerns about global warming, and highly insulated buildings are attracting attention as a means of reducing greenhouse gases through energy conservation. Since the higher the insulation performance, the greater the energy saving effect, there has been a demand for further improvements in insulation performance.
 断熱性能の高い発泡体の代表例としてフェノール樹脂発泡体がある。これまでに断熱性能を向上させるため、熱伝導率の低いガスを使用する以外に発泡体の気泡径を小さくする試みがなされてきた。 Phenol resin foam is a typical example of a foam with high heat insulation performance. In order to improve the heat insulation performance, attempts have been made to reduce the cell diameter of foams in addition to using gases with low thermal conductivity.
 特許文献1は、気泡径の縮小効果があるフルオロエーテルを添加し、フェノール樹脂発泡体の気泡径を縮小させることにより断熱性能の高いフェノール樹脂発泡体が得られることを開示している。また特許文献2では粉状のフェノール樹脂固化物を添加することにより、フェノール樹脂発泡体の気泡径を縮小し高断熱化できることを開示している。 Patent Document 1 discloses that a phenolic resin foam with high heat insulation performance can be obtained by adding fluoroether, which has the effect of reducing the cell diameter, and reducing the cell diameter of the phenolic resin foam. Further, Patent Document 2 discloses that by adding a powdery solidified phenol resin, the cell diameter of a phenol resin foam can be reduced and high heat insulation can be achieved.
特開平11-140217号公報Japanese Patent Application Publication No. 11-140217 特開2017-210618号公報JP2017-210618A
 しかしながら特許文献1でフルオロエーテルの実施例に挙げられているガルデンは高価であり、また、地球温暖化係数(GWP)が高く環境負荷が比較的大きい事から積極的に使い難い。また、気泡径の縮小効果は発泡剤が炭化水素使用のみに限定されており、熱伝導率が低いハイドロフルオロオレフィンを発泡剤に使用した場合への適合化はなされていない。 However, Galden, which is listed as an example of fluoroether in Patent Document 1, is expensive, and has a high global warming potential (GWP) and relatively large environmental impact, so it is difficult to actively use it. In addition, the effect of reducing the cell diameter is limited only when the blowing agent is a hydrocarbon, and no adaptation has been made to the case where a hydrofluoroolefin with low thermal conductivity is used as the blowing agent.
 一方特許文献2は発泡剤にハイドロフルオロオレフィンを使用した場合においても気泡径を縮小させる技術ではあるものの、粉状のフェノール樹脂固化物を添加するほど固体の熱伝導が増すことから、熱伝導率を低くする方法として好ましいとは言い難い。また粉状のフェノール樹脂固化物は添加量が多いと配管に滞留し易く、配管を閉塞させ、生産性を低下させる恐れがある。更に粉状のフェノール樹脂固化物は、粉体を作製するための設備に加え、粉体を樹脂に混練する設備も必要となり、高額な設備投資が必要となる。 On the other hand, although Patent Document 2 is a technology that reduces the bubble diameter even when hydrofluoroolefins are used as a blowing agent, the thermal conductivity of the solid increases as more powdered phenol resin solidified material is added. It is hard to say that this is a preferable method for lowering the . Moreover, if the powdery phenol resin solidified product is added in a large amount, it tends to stay in the pipes, which may clog the pipes and reduce productivity. Furthermore, the powdered solidified phenol resin requires equipment for kneading the powder into resin in addition to equipment for producing the powder, which requires a large investment in equipment.
 そこで、本発明者らは樹脂発泡体の断熱性能を向上させる、すなわち、熱伝導率を低減させるための主な方法として大きく三つの視点があると考えている。一つ目は、「熱伝導率の低いガスを用いる」こと、二つ目は、「発泡体の気泡径を微細化」すること、三つ目として、「発泡体を低密度化」することである。三つ目の「低密度化」に関しては、低密度化により樹脂発泡体の独立気泡率が維持できなくなること、更には機械物性が低下するなどの弊害があることから実用的な対応にはなり得ない。また熱伝導率への寄与効果の大きさから、一般的に一つ目の検討が活発に行われている。 Therefore, the present inventors believe that there are three main ways to improve the heat insulation performance of resin foam, that is, to reduce the thermal conductivity. The first is to ``use a gas with low thermal conductivity,'' the second is to ``reduce the cell diameter of the foam,'' and the third is to ``reduce the density of the foam.'' It is. Regarding the third option, "lowering the density," it is not a practical solution because lowering the density makes it impossible to maintain the closed cell ratio of the resin foam, and furthermore, it has negative effects such as a decline in mechanical properties. I don't get it. Furthermore, due to the large contribution effect to thermal conductivity, the first method is generally being actively investigated.
 一つ目の視点に基づき、過去には熱伝導率が低いCFCやHFCが盛んに使用されていた。しかし、いずれもオゾン層破壊係数(ODP)が高いことから使用が規制され、現在は代替品として熱伝導率が同程度に優れ、ODPが0、かつGWPも低いハイドロフルオロオレフィンが主流となっている。ただし一つ目の視点のみの対応では、熱伝導率向上化には限界があり、更なる熱伝導率の向上のためには、二つ目の視点である「発泡体の気泡径微細化」を極める必要がある。 Based on the first viewpoint, CFCs and HFCs with low thermal conductivity were widely used in the past. However, their use is regulated due to their high ozone depletion potential (ODP), and currently, hydrofluoroolefins, which have similar excellent thermal conductivity, ODP of 0, and low GWP, are the mainstream. There is. However, there is a limit to improving thermal conductivity if only the first point of view is addressed, and in order to further improve thermal conductivity, the second point of view is "reducing the cell diameter of the foam". It is necessary to master.
 この二つ目の視点は、具体的に以下の考えに基づくものである。すなわち、第一に樹脂組成物中に気泡核を出来るだけ多く作ることが重要である。第二に、発生した気泡を安定的に成長させつつ破泡させないことが重要であり、これらの両立によって気泡の微細化を実現できるものである。気泡径は微細化させるほど、発泡体の輻射(放射)熱伝導を抑制することができることから、気泡径の微細化は「熱伝導率の低いガスを用いる」ことの次に熱伝導率への寄与効果の大きな因子といえる。 This second perspective is specifically based on the following ideas. That is, first of all, it is important to create as many cell nuclei as possible in the resin composition. Secondly, it is important to allow the generated bubbles to grow stably while not causing them to burst, and by achieving both of these, it is possible to realize the miniaturization of the bubbles. The finer the bubble diameter is, the more it is possible to suppress the radiant heat conduction of the foam. Therefore, making the bubble diameter smaller is the second most important factor for thermal conductivity after using a gas with low thermal conductivity. This can be said to be a major contributing factor.
 よって、フェノール樹脂発泡体の低熱伝導率化のためには必須となる、種々の発泡剤使用時に気泡径を微細化させる技術が必要とされていた。 Therefore, there has been a need for a technique for reducing the cell diameter when using various blowing agents, which is essential for lowering the thermal conductivity of phenolic resin foams.
 本発明者らは上記課題を解決するべく鋭意検討を重ねたところ、特定のハイドロフルオロエーテルをフェノール樹脂組成物に添加させることにより、フェノール樹脂発泡体の気泡径を微細化させることで、各々の発泡剤の使用において熱伝導率を低減し得る技術を開発するに至った。即ち本発明は以下の通りである。 The present inventors have conducted extensive studies to solve the above problems, and have found that by adding a specific hydrofluoroether to a phenolic resin composition, the cell diameter of the phenolic resin foam can be made finer. We have developed a technology that can reduce thermal conductivity when using blowing agents. That is, the present invention is as follows.
[1]
 下記(式1)で表されるハイドロフルオロエーテルをフェノール樹脂発泡体に対し0.03~4.3質量%含有するフェノール樹脂発泡体。
式1:C-O-C
(但し、a,b,c,x,y,zは整数であり、2≦a≦7、0≦b≦3、c=2a+1-b、b≦2a+1、1≦x≦3、2≦y≦7、z=2×x+1-y、y≦2x+1)
[2]
 (式1)で表されるハイドロフルオロエーテルが、メチルパーフルオロプロピルエーテル、メチルノナフルオロブチルエーテル、メチルノナフルオロイソブチルエーテル、エチルノナフルオロブチルエーテル、エチルノナフルオロイソブチルエーテル、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)-ペンタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルの内のいずれかである、[1]に記載のフェノール樹脂発泡体。
[3]
 平均気泡径が70μm以上180μm以下である、[1]又は[2]に記載のフェノール樹脂発泡体。
[4]
 発泡剤がハイドロフルオロオレフィンを含む[1]~[3]のいずれかに記載のフェノール樹脂発泡体。
[5]
 発泡剤が炭化水素を含む[4]に記載のフェノール樹脂発泡体。
[6]
 密度が10kg/m以上70kg/m以下である、[1]~[5]のいずれかに記載のフェノール樹脂発泡体。
[7]
 独立気泡率が80%以上である、[1]~[6]のいずれかに記載のフェノール樹脂発泡体。
[8]
 フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に表面材を備える、[1]~[7]のいずれかに記載のフェノール樹脂発泡体の積層板。
[1]
A phenolic resin foam containing 0.03 to 4.3% by mass of a hydrofluoroether represented by the following (Formula 1) based on the phenolic resin foam.
Formula 1: C a H b F c -O-C x H y F z
(However, a, b, c, x, y, z are integers, 2≦a≦7, 0≦b≦3, c=2a+1-b, b≦2a+1, 1≦x≦3, 2≦y ≦7, z=2×x+1-y, y≦2x+1)
[2]
The hydrofluoroether represented by (Formula 1) is methyl perfluoropropyl ether, methyl nonafluorobutyl ether, methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, 1,1,1,2,2 , 3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether The phenolic resin foam according to [1], which is any one of the above.
[3]
The phenolic resin foam according to [1] or [2], having an average cell diameter of 70 μm or more and 180 μm or less.
[4]
The phenolic resin foam according to any one of [1] to [3], wherein the blowing agent contains a hydrofluoroolefin.
[5]
The phenolic resin foam according to [4], wherein the blowing agent contains a hydrocarbon.
[6]
The phenolic resin foam according to any one of [1] to [5], which has a density of 10 kg/m 3 or more and 70 kg/m 3 or less.
[7]
The phenolic resin foam according to any one of [1] to [6], which has a closed cell ratio of 80% or more.
[8]
The phenolic resin foam laminate according to any one of [1] to [7], comprising a surface material on at least one of one side of the phenolic resin foam and the back side of the one side.
 本発明によるフェノール樹脂発泡体およびその積層板は、フェノール樹脂発泡体の気泡径を微細化することができる。気泡径は熱伝導率の低減に寄与するので、各々の発泡剤の使用において熱伝導率を低減しうる。また、ハイドロフルオロエーテル未添加時にボイドや発泡体の色ムラなどの外観不良があったり、圧縮強さが低かったりする場合には特に、これらが改善されたものである。更に、原料のGWPが小さい事から環境負荷が小さく環境に優しい発泡体を提供し得る。 The phenolic resin foam and its laminate according to the present invention can make the cell diameter of the phenolic resin foam finer. Since cell size contributes to reducing thermal conductivity, the use of each blowing agent can reduce thermal conductivity. In addition, this is an improvement especially in cases where there are appearance defects such as voids or uneven color of the foam, or low compressive strength when no hydrofluoroether is added. Furthermore, since the GWP of the raw material is small, it is possible to provide an environmentally friendly foam with a small environmental impact.
 以下、本発明を実施するための形態について(以下、「本実施形態」という。)詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。また本明細書では、「フェノール樹脂」に対して界面活性剤を添加したものを「フェノール樹脂組成物」と称し、「フェノール樹脂組成物」に対してハイドロフルオロエーテル、発泡剤、発泡核剤および酸性硬化剤等を添加して発泡性または発泡性と硬化性の両方を付与したものを「発泡性フェノール樹脂組成物」と称する。また、得られた発泡体を「フェノール樹脂発泡体」と称する。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist. In addition, in this specification, a product obtained by adding a surfactant to a "phenol resin" is referred to as a "phenol resin composition", and a "phenol resin composition" includes a hydrofluoroether, a foaming agent, a foaming nucleating agent, and the like. A composition to which an acidic curing agent or the like is added to impart foamability or both foamability and curability is referred to as a "foamable phenol resin composition." Moreover, the obtained foam is referred to as a "phenol resin foam."
<フェノール樹脂発泡体>
 本実施形態のフェノール樹脂発泡体は、ハイドロフルオロエーテルと、発泡剤と酸性硬化剤を含むフェノール樹脂組成物から製造される。
<Phenol resin foam>
The phenolic resin foam of this embodiment is manufactured from a phenolic resin composition containing a hydrofluoroether, a blowing agent, and an acidic curing agent.
 本実施形態のフェノール樹脂発泡体に含まれるハイドロフルオロエーテルは(式2)で表される。
 式2:C-O-C
(但し、a,b,c,x,y,zは整数であり、2≦a≦7、0≦b≦3、c=2a+1-b、b≦2a+1、1≦x≦3、2≦y≦7、z=2×x+1-y、y≦2x+1)
The hydrofluoroether contained in the phenolic resin foam of this embodiment is represented by (Formula 2).
Formula 2: C a H b F c -O-C x H y F z
(However, a, b, c, x, y, z are integers, 2≦a≦7, 0≦b≦3, c=2a+1-b, b≦2a+1, 1≦x≦3, 2≦y ≦7, z=2×x+1-y, y≦2x+1)
 このハイドロフルオロエーテルをフェノール樹脂またはフェノール樹脂組成物に添加することで、フェノール樹脂発泡体の気泡径を縮小する効果が得られる。一般的にフェノール樹脂発泡体に対して含有量が0.03質量%~4.3質量%であり、好ましくは、0.1質量%~3.8質量%、より好ましくは0.3質量%~3.3質量%、最も好ましくは0.5質量%~3.3質量%である。このハイドロフルオロエーテルは、式2に該当する分子の2種類以上の組み合わせであってもよい。ハイドロフルオロエーテルの含有量が0.03質量%以上であると熱伝導率が低くなりやすい。また、ハイドロフルオロエーテルの含有量が4.3質量%以下であると、沸点の高いハイドロフルオロエーテルを使用した場合においても、発泡体中で液化するハイドロフルオロエーテルの量の増加によって熱伝導率が大きくなったり、フェノール樹脂の剛性が低下したりする懸念が小さい。本実施形態において、フェノール樹脂発泡体に対するハイドロフルオロエーテルの含有量を上記範囲(0.03質量%~4.3質量%の範囲)にするために、ハイドロフルオロエーテルの種類、フェノール樹脂との相溶性、発泡体製造時の発泡温度や滞留時間等の発泡と硬化の条件によって異なるが、フェノール樹脂組成物100質量部に対するハイドロフルオロエーテルの添加量は0.1質量部~6.8質量部であることが好ましい。 By adding this hydrofluoroether to a phenol resin or a phenol resin composition, the effect of reducing the cell diameter of the phenol resin foam can be obtained. Generally, the content is 0.03% to 4.3% by mass, preferably 0.1% to 3.8% by mass, more preferably 0.3% by mass based on the phenolic resin foam. 3.3% by weight, most preferably 0.5% to 3.3% by weight. This hydrofluoroether may be a combination of two or more types of molecules corresponding to Formula 2. When the content of hydrofluoroether is 0.03% by mass or more, the thermal conductivity tends to be low. Furthermore, if the content of hydrofluoroether is 4.3% by mass or less, even if a hydrofluoroether with a high boiling point is used, the thermal conductivity will decrease due to an increase in the amount of hydrofluoroether that liquefies in the foam. There is little concern that the size will increase or the rigidity of the phenol resin will decrease. In this embodiment, in order to keep the content of hydrofluoroether in the phenolic resin foam within the above range (0.03% to 4.3% by mass), the type of hydrofluoroether and the phase with the phenolic resin are adjusted. Although it varies depending on foaming and curing conditions such as solubility, foaming temperature and residence time during foam production, the amount of hydrofluoroether added to 100 parts by mass of the phenolic resin composition is 0.1 parts by mass to 6.8 parts by mass. It is preferable that there be.
 ハイドロフルオロエーテルはフェノール樹脂中で自ら気泡核になるものと考えられており、発泡性フェノール樹脂組成物の気泡数を増やすことから、フェノール樹脂発泡体の平均気泡径を縮小し、輻射熱伝導を抑え、フェノール樹脂発泡体の熱伝導率を下げる効果を持つと考えられる。フェノール樹脂組成物と発泡剤とハイドロフルオロエーテルとを混合させる順番については特に限定されないが、ハイドロフルオロエーテルをフェノール樹脂組成物に発泡剤を混練するより前に混練するか、またはハイドロフルオロエーテルと発泡剤を同時にフェノール樹脂組成物に混練する事がより好ましい。ハイドロフルオロエーテルを発泡剤より後にフェノール樹脂組成物に混練したり、ハイドロフルオロエーテルと発泡剤を事前に混合した混合物をフェノール樹脂組成物に混練したりする場合には、ハイドロフルオロエーテルが自ら気泡核として作用しつつも、すでに成長過程にある気泡に吸着し、気泡の成長を阻害する虞がある。これにより、独立気泡率が低下する事が懸念される。混練方法はフェノール樹脂またはフェノール樹脂組成物中に均一にハイドロフルオロエーテルを分散できるのであれば特に限定されない。またハイドロフルオロエーテルは、酸素原子とアルキル基が分子内に存在するため、パーフルオロアルカン類に比べ大気寿命が短い事から、地球温暖化係数が比較的小さく、環境負荷が小さい利点を有する。更に酸素原子が分子内にあることでフェノール樹脂との相溶性が高くなることから、フェノール樹脂中でのハイドロフルオロエーテルの分散性が上がり、微細な気泡核の形成を促進する効果があると考えられる。一方、ハイドロフルオロエーテルにおける炭素とフッ素のみからなる分子鎖は、長くなると大気寿命が長くなる傾向にあり、GWPが大きくなる可能性があるため、環境負荷の観点から炭素とフッ素のみからなる分子鎖は長くないことが好ましい。またハイドロフルオロエーテルは難燃性物質であることから、フェノール樹脂発泡体における含有量が多いほどフェノール樹脂発泡体が燃え難くなると考えられる。 Hydrofluoroether is thought to form bubble nuclei by itself in the phenolic resin, and as it increases the number of bubbles in the foamable phenolic resin composition, it reduces the average cell diameter of the phenolic resin foam and suppresses radiant heat conduction. , is thought to have the effect of lowering the thermal conductivity of the phenolic resin foam. The order in which the phenolic resin composition, blowing agent, and hydrofluoroether are mixed is not particularly limited, but the hydrofluoroether may be kneaded with the phenol resin composition before the blowing agent is kneaded, or the hydrofluoroether may be mixed with the hydrofluoroether. It is more preferable to simultaneously knead the agent into the phenolic resin composition. When the hydrofluoroether is kneaded into the phenolic resin composition after the blowing agent, or when a premixed mixture of the hydrofluoroether and the blowing agent is kneaded into the phenolic resin composition, the hydrofluoroether self-builds bubbles. However, there is a risk that it will adsorb to the bubbles that are already in the growth process and inhibit the growth of the bubbles. There is a concern that this may reduce the closed cell ratio. The kneading method is not particularly limited as long as the hydrofluoroether can be uniformly dispersed in the phenol resin or phenol resin composition. In addition, hydrofluoroether has an oxygen atom and an alkyl group in its molecule, so it has a shorter atmospheric lifetime than perfluoroalkanes, so it has the advantage of having a relatively small global warming potential and a small environmental burden. Furthermore, since the presence of oxygen atoms in the molecule increases compatibility with phenolic resin, it is thought that the dispersibility of hydrofluoroether in phenolic resin increases and has the effect of promoting the formation of fine bubble nuclei. It will be done. On the other hand, molecular chains consisting only of carbon and fluorine in hydrofluoroethers tend to have longer atmospheric lifetimes and have a higher GWP. is preferably not long. Moreover, since hydrofluoroether is a flame-retardant substance, it is thought that the higher the content in the phenol resin foam, the more difficult the phenol resin foam becomes to burn.
 (式2)のハイドロフルオロエーテルは、Cで表される基とCで表される基とのエーテルである必要がある。Cで表される基の、炭素数すなわちaの値は、ハイドロフルオロエーテルの沸点の観点から、2~7である必要があり、2~6であることが好ましい。Cで表される基は、炭化水素基の一部または全ての水素がフッ素に置換された基であり、水素原子数が少ないものが好ましく、bの値は0~3である必要があり、0または1が好ましく、0が特に好ましい。Cで表される基の、炭素数すなわちxの値は、ハイドロフルオロエーテルの沸点の観点から、1~3である必要があり、1~2であることが好ましい。Cで表される基は炭化水素基もしくは炭化水素の一部がフッ素に置換された基であり、フッ素原子数が少ないものが好ましく、zの値は0~3であることが好ましい。ハイドロフルオロエーテルaの値が7以下、かつxの値が3以下の場合は、沸点が十分に低く、ハイドロフルオロエーテルが発泡体内で液滴として残存する割合が小さくなりやすいため、液滴による熱伝導増大を抑えることができる。(式2)のハイドロフルオロエーテルは、水素原子数の少ないCで表される基と、フッ素原子数の少ないC基とを持つことによって、樹脂中でのハイドロフルオロエーテルの分散性が上がり、微細な気泡核の形成を促進する効果を発揮すると考えられる。また、a≧xであることが好ましく、a>xであることがより好ましい。 The hydrofluoroether of (Formula 2) needs to be an ether of a group represented by C a H b F c and a group represented by C x H y F z . The number of carbon atoms, ie, the value of a, in the group represented by C a H b F c must be 2 to 7, preferably 2 to 6, from the viewpoint of the boiling point of the hydrofluoroether. The group represented by C a H b F c is a hydrocarbon group in which some or all of the hydrogens are substituted with fluorine, and preferably has a small number of hydrogen atoms, and the value of b is 0 to 3. 0 or 1 is preferred, and 0 is particularly preferred. The number of carbon atoms, ie, the value of x, in the group represented by C x H y F z must be from 1 to 3, preferably from 1 to 2, from the viewpoint of the boiling point of the hydrofluoroether. The group represented by C x H y F z is a hydrocarbon group or a group in which part of the hydrocarbon is substituted with fluorine, preferably one with a small number of fluorine atoms, and the value of z is 0 to 3. is preferred. When the value of hydrofluoroether a is 7 or less and the value of x is 3 or less, the boiling point is sufficiently low and the proportion of hydrofluoroether remaining as droplets in the foam tends to be small, so the droplets generate heat. Increase in conduction can be suppressed. The hydrofluoroether of (Formula 2) has a group represented by C a H b F c with a small number of hydrogen atoms and a C x H y F z group with a small number of fluorine atoms, so that it can be easily absorbed in the resin. It is thought that this increases the dispersibility of hydrofluoroether and promotes the formation of fine bubble nuclei. Furthermore, it is preferable that a≧x, and more preferably that a>x.
 本発明において好ましく使用される(式2)のハイドロフルオロエーテルは、メチルパーフルオロプロピルエーテル、メチルノナフルオロブチルエーテル、メチルノナフルオロイソブチルエーテル、エチルノナフルオロブチルエーテル、エチルノナフルオロイソブチルエーテル、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)-ペンタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルが挙げられる。これらのハイドロフルオロエーテルは、単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。 Hydrofluoroethers of formula 2 preferably used in the present invention include methyl perfluoropropyl ether, methyl nonafluorobutyl ether, methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, 1,1,1 , 2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 1,1,2,2-tetrafluoroethyl-2,2,2- Trifluoroethyl ether is mentioned. These hydrofluoroethers may be used alone or in combination of two or more.
 本発明によるフェノール樹脂発泡体は、ハイドロフルオロエーテルを添加していないフェノール樹脂発泡体と比べると圧縮強さが改善傾向にある。これはハイドロフルオロエーテルを添加する事により気泡径が小さくなるため、添加していないフェノール樹脂発泡体と比較し、圧縮方向に並ぶ気泡壁の数が多くなり対抗する力が増す事に加え、破壊の起点となるボイドが減ることによるものである。 The phenolic resin foam according to the present invention tends to have improved compressive strength compared to the phenolic resin foam to which no hydrofluoroether is added. This is because the addition of hydrofluoroether reduces the cell diameter, which increases the number of cell walls lined up in the compression direction compared to a phenolic resin foam that does not contain hydrofluoroether, which increases the opposing force. This is due to the reduction of voids that serve as starting points for
 また本実施形態では、ハイドロフルオロエーテルを添加していないフェノール樹脂発泡体と比較して外観が改善される。これはハイドロフルオロエーテルを添加する事により気泡径が小さくなるばかりでなく、ボイドの発生率が低下し、厚み方向に対し気泡径が均一になる傾向があるため発泡体の色ムラが解消されるためである。 Furthermore, in this embodiment, the appearance is improved compared to a phenolic resin foam to which no hydrofluoroether is added. This is because adding hydrofluoroether not only reduces the cell diameter, but also reduces the incidence of voids and tends to make the cell diameter uniform in the thickness direction, eliminating uneven color of the foam. It's for a reason.
 本発明におけるフェノール樹脂発泡体の平均気泡径は、好ましくは70μm以上180μm以下、より好ましくは70μm以上170μm以下、更に好ましくは70μm以上150μm以下、最も好ましくは70μm以上135μm以下である。平均気泡径が70μm以上であると、気泡径が小さくなることによって増えるフェノール樹脂部の熱伝導による熱伝導率の増大を抑制できる。また、逆に気泡径が180μm以下であると、輻射による熱伝導が小さく、熱伝導率の増大を抑制できる。なお、フェノール樹脂発泡体の平均気泡径は、例えば、ハイドロフルオロエーテルの添加量、固体発泡核剤の添加量、発泡性フェノール樹脂組成物の温度、混合した発泡性フェノール樹脂組成物を下表面材上に吐出する工程における予成形のタイミング、更には、発泡剤の添加量と酸性硬化剤の添加量、および温度や滞留時間等の硬化条件などの変更により所望の値に調整できる。 The average cell diameter of the phenolic resin foam in the present invention is preferably 70 μm or more and 180 μm or less, more preferably 70 μm or more and 170 μm or less, even more preferably 70 μm or more and 150 μm or less, and most preferably 70 μm or more and 135 μm or less. When the average cell diameter is 70 μm or more, it is possible to suppress an increase in thermal conductivity due to heat conduction of the phenol resin portion, which increases as the cell diameter becomes smaller. Conversely, when the bubble diameter is 180 μm or less, heat conduction by radiation is small, and an increase in thermal conductivity can be suppressed. Note that the average cell diameter of the phenolic resin foam is determined by, for example, the amount of hydrofluoroether added, the amount of solid foam nucleating agent added, the temperature of the foamable phenolic resin composition, and the amount of the mixed foamable phenolic resin composition added to the lower surface material. The desired value can be adjusted by changing the timing of preforming in the upward discharge step, the amount of foaming agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time.
 本発明のフェノール樹脂発泡体は、発泡剤としてハイドロフルオロオレフィン、炭化水素および塩素化炭化水素を単体として、もしくは、これら2種類以上の組み合わせとして使用することができる。 The phenolic resin foam of the present invention can use hydrofluoroolefins, hydrocarbons, and chlorinated hydrocarbons as blowing agents singly or in combination of two or more of these.
 ハイドロフルオロオレフィンは一般的に熱伝導率が低く、発泡剤として使用した際、熱伝導率が低いフェノール樹脂発泡体が得られるため好ましい。ハイドロフルオロオレフィンは塩素化ハイドロフルオロオレフィンおよび非塩化ハイドロフルオロオレフィンを含む。本発明では、塩素化ハイドロフルオロオレフィンと非塩素化ハイドロフルオロオレフィンは、混合して使用することもできる。 Hydrofluoroolefins generally have low thermal conductivity, and when used as a blowing agent, are preferred because they yield phenolic resin foams with low thermal conductivity. Hydrofluoroolefins include chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins. In the present invention, chlorinated hydrofluoroolefins and non-chlorinated hydrofluoroolefins can also be used in combination.
 塩素化ハイドロフルオロオレフィンとしては、(Z)-1-Chloro-2,3,3,3-Tetrafluoropropene(HCFO-1224yd(Z))、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd、例えば、E体(HCFO-1233zd(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)LBA)、1,1,2-トリクロロ-3,3,3-トリフルオロプロペン(HCFO-1213xa)、1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd)、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za)、1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb)、2,3,3-トリクロロ-3-フルオロプロペン(HCFO-1231xf)、2,3-ジクロロ-3,3-ジフルオロプロペン(HCFO-1232xf)、2-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233xc)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、1-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233yb)、3-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233yc)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)、3-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yf)、1-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。更に、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))も挙げられる。本発明では、これらの塩素化ハイドロフルオロオレフィンは、2種類以上混合して使用することもできる。 Examples of chlorinated hydrofluoroolefins include (Z)-1-Chloro-2,3,3,3-Tetrafluoropropene (HCFO-1224yd(Z)), 1-chloro-3,3,3-trifluoropropene (HCFO- 1233zd, for example, E form (HCFO-1233zd(E)), manufactured by Honeywell Japan Co., Ltd., product name: Solstice (trademark) LBA), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1213xa), 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1- Chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb), 2,3,3-trichloro-3-fluoropropene (HCFO-1231xf), 2,3-dichloro-3,3-difluoropropene ( HCFO-1232xf), 2-chloro-1,1,3-trifluoropropene (HCFO-1233xc), 2-chloro-1,3,3-trifluoropropene (HCFO-1233xe), 2-chloro-3,3 , 3-trifluoropropene (HCFO-1233xf), 1-chloro-1,2,3-trifluoropropene (HCFO-1233yb), 3-chloro-1,1,3-trifluoropropene (HCFO-1233yc), 1-chloro-2,3,3-trifluoropropene (HCFO-1233yd), 3-chloro-1,2,3-trifluoropropene (HCFO-1233ye), 3-chloro-2,3,3-trifluoro Propene (HCFO-1233yf), 1-chloro-1,3,3-trifluoropropene (HCFO-1233zb), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), etc. One or a mixture of the configurational isomers, ie, the E-form or the Z-form, is used. Furthermore, (E)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)) can also be mentioned. In the present invention, two or more of these chlorinated hydrofluoroolefins may be used in combination.
 非塩素化ハイドロフルオロオレフィンとしては、1,3,3,3-テトラフルオロプロパ-1-エン(HFO-1234ze、例えば、E体(HFO-1234ze(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)ze)、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz、例えば、Z体(HFO-1336mzz(Z))である、ケマーズ株式会社製、Opteon(商標)1100)、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、1,1,3,3,3-ペンタフルオロプロペン(HFO-1225zc)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,1,1,4,4,5,5,5-オクタフルオロ-2-ペンテン(HFO-1438mzz)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。本発明では、これらの非塩素化ハイドロフルオロオレフィンは、2種類以上混合して使用することもできる。 Non-chlorinated hydrofluoroolefins include 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze, for example, E form (HFO-1234ze (E)), manufactured by Honeywell Japan Co., Ltd.; Product name: Solstice (trademark) ze), 1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz, e.g. Z-form (HFO-1336mzz (Z)), Chemours Stock Opteon (trademark) 1100), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1 , 3,3,3-tetrafluoropropene (HFO-1234ze), 3,3,3-trifluoropropene (HFO-1243zf), 1,1,1,4,4,5,5,5-octafluoro- Examples include 2-pentene (HFO-1438mzz), and one or a mixture of these configurational isomers, ie, E form or Z form, is used. In the present invention, two or more of these non-chlorinated hydrofluoroolefins may be used in combination.
 炭化水素としては、炭素数が3~7の環状または鎖状のアルカン、アルケン、アルキンが好ましく、具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン、等を挙げることができる。その中でも、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンのペンタン類およびノルマルブタン、イソブタン、シクロブタンのブタン類が好ましく用いられる。本発明では、これらの炭化水素は、2種類以上混合して使用することもできる。混合の例としては、ノルマルペンタンとノルマルブタン、イソブタンとイソペンタン、ノルマルブタンとイソペンタン、イソブタンとノルマルペンタン、シクロペンタンとノルマルブタン、シクロペンタンとイソブタン等がある。 As the hydrocarbon, cyclic or chain alkanes, alkenes, and alkynes having 3 to 7 carbon atoms are preferable, and specifically, normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, Examples include isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, and the like. Among these, pentanes such as normal pentane, isopentane, cyclopentane, and neopentane, and butanes such as normal butane, isobutane, and cyclobutane are preferably used. In the present invention, two or more of these hydrocarbons may be used in combination. Examples of mixtures include normal pentane and normal butane, isobutane and isopentane, normal butane and isopentane, isobutane and normal pentane, cyclopentane and normal butane, cyclopentane and isobutane, and the like.
 塩素化炭化水素としては、炭素数が2~5の直鎖状または分岐状の塩素化脂肪族炭化水素を好ましく利用できる。結合している塩素原子の数は1~4が好ましく、例えば、ジクロロエタン、プロピルクロリド、2-クロロプロパン、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリドなどが挙げられる。これらのうち、クロロプロパンであるプロピルクロリド、2-クロロプロパンが、より好ましく用いられる。本発明では、これらの塩素化炭化水素は、2種類以上を組み合わせて使用することもできる。 As the chlorinated hydrocarbon, linear or branched chlorinated aliphatic hydrocarbons having 2 to 5 carbon atoms can be preferably used. The number of bonded chlorine atoms is preferably 1 to 4, and examples thereof include dichloroethane, propyl chloride, 2-chloropropane, butyl chloride, isobutyl chloride, pentyl chloride, and isopentyl chloride. Among these, propyl chloride and 2-chloropropane, which are chloropropanes, are more preferably used. In the present invention, two or more of these chlorinated hydrocarbons may be used in combination.
 更に、他の発泡剤としては、特に限定されず、例えば、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、アゾジカルボン酸アミド、アゾビスイソブチロニトリル、アゾジカルボン酸バリウム、N,N’-ジニトロソペンタメチレンテトラミン、p,p’-オキシビスベンゼンスルホニルヒドラジド、およびトリヒドラジノトリアジン等の化学発泡剤等が挙げられる。これらの発泡剤は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Further, other blowing agents are not particularly limited, and include, for example, sodium hydrogen carbonate, sodium carbonate, calcium carbonate, magnesium carbonate, azodicarboxylic acid amide, azobisisobutyronitrile, barium azodicarboxylate, N,N' -Chemical blowing agents such as dinitrosopentamethylenetetramine, p,p'-oxybisbenzenesulfonylhydrazide, and trihydrazinotriazine, and the like. These blowing agents may be used alone or in combination of two or more.
 フェノール樹脂組成物中の発泡剤の量は、発泡剤の種類、発泡剤のフェノール樹脂との相溶性、温度、ならびに滞留時間等の発泡と硬化の条件によりばらつきがある。そのため所望するフェノール樹脂発泡体の密度、発泡条件等によって任意に決めて差し支えないが、フェノール樹脂組成物100質量部に対して、3.0~20質量部とすることが好ましく、より好ましくは4.0~18質量部、更に好ましくは5.0~16質量部、最も好ましくは6.0部~15質量部である。フェノール樹脂組成物100質量部当たりの発泡剤の量が3.0質量部以上の場合、樹脂発泡体の高密度化を抑制することができる。また、フェノール樹脂組成物100質量部当たりの発泡剤の量が20質量部以下であるとフェノール樹脂発泡体が低密度になることによる、圧縮強さなどの機械的強度の低下や気泡壁面が破れ易くなることによる独立気泡率の低下を抑制し易くなり、熱伝導率の増大を抑制できる。 The amount of blowing agent in the phenolic resin composition varies depending on the type of blowing agent, the compatibility of the blowing agent with the phenolic resin, temperature, and conditions for foaming and curing such as residence time. Therefore, it may be determined arbitrarily depending on the density of the desired phenolic resin foam, foaming conditions, etc., but it is preferably 3.0 to 20 parts by mass, more preferably 4 parts by mass, based on 100 parts by mass of the phenolic resin composition. 0 to 18 parts by weight, more preferably 5.0 to 16 parts by weight, and most preferably 6.0 to 15 parts by weight. When the amount of the blowing agent per 100 parts by mass of the phenol resin composition is 3.0 parts by mass or more, high density of the resin foam can be suppressed. In addition, if the amount of the blowing agent per 100 parts by mass of the phenolic resin composition is 20 parts by mass or less, the phenol resin foam will have a low density, resulting in a decrease in mechanical strength such as compressive strength and damage to the cell walls. It becomes easier to suppress the decrease in the closed cell ratio due to the increase in the thermal conductivity, and it is possible to suppress the increase in thermal conductivity.
 本実施形態においては、フェノール樹脂発泡体の製造に発泡核剤を使用してもよい。発泡核剤としては、窒素、ヘリウム、アルゴンなどの、発泡剤よりも沸点が50℃以上低い低沸点物質のような気体発泡核剤を添加することができる。また、水酸化アルミニウム粉、酸化アルミニウム粉、炭酸カルシウム粉、タルク、はくとう土(カオリン)、珪石粉、珪砂、マイカ、珪酸カルシウム粉、ワラストナイト、ガラス粉、ガラスビーズ、フライアッシュ、シリカフューム、石膏粉、ホウ砂、スラグ粉、アルミナセメント、ポルトランドセメント等の無機粉、および、フェノール樹脂発泡体の粉砕粉のような有機粉等の固体発泡核剤を添加することもできる。これらは、単独で使用してもよいし、気体及び固体の区別なく、2種類以上を組み合わせて使用してもよい。発泡核剤の添加タイミングは、フェノール樹脂組成物を混合する混合機内に供給されていればよく、任意に決めることができる。 In this embodiment, a foam nucleating agent may be used in the production of the phenolic resin foam. As the foaming nucleating agent, a gaseous foaming nucleating agent such as a low boiling point substance having a boiling point 50° C. or more lower than that of the foaming agent, such as nitrogen, helium, or argon, can be added. In addition, aluminum hydroxide powder, aluminum oxide powder, calcium carbonate powder, talc, clay clay (kaolin), silica powder, silica sand, mica, calcium silicate powder, wollastonite, glass powder, glass beads, fly ash, silica fume. Solid foam nucleating agents such as gypsum powder, borax, slag powder, inorganic powders such as alumina cement and portland cement, and organic powders such as ground powder of phenolic resin foam can also be added. These may be used alone or in combination of two or more types, regardless of whether they are gas or solid. The timing of adding the foaming nucleating agent can be arbitrarily determined as long as it is supplied into the mixer that mixes the phenolic resin composition.
 固体発泡核剤の添加量は、フェノール樹脂組成物の100質量部に対して、3.0質量%以上10.0質量%以下であることが好ましく、3.0質量%以上8.0質量%以下であることがより好ましい。固体発泡核剤の添加量が3.0質量%以上であると、表面材からの発泡性フェノール樹脂組成物の浸み出しを抑制し易くなる。また、固体発泡核剤の添加量を10.0質量%以下とすることで、沸点の低い発泡剤の放散を抑制し易くなる。 The amount of the solid foaming nucleating agent added is preferably 3.0% by mass or more and 10.0% by mass or less, and 3.0% by mass or more and 8.0% by mass, based on 100 parts by mass of the phenolic resin composition. It is more preferable that it is below. When the amount of the solid foam nucleating agent added is 3.0% by mass or more, it becomes easier to suppress seepage of the foamable phenolic resin composition from the surface material. Further, by setting the amount of the solid foaming nucleating agent to be 10.0% by mass or less, it becomes easier to suppress the dispersion of the foaming agent having a low boiling point.
 本発明のフェノール樹脂発泡体の密度は、発泡体の使用目的によって所望する密度に調整して構わないが、好ましくは10kg/m以上70kg/m以下であり、より好ましくは20kg/m以上55kg/m以下であり、更に好ましくは22kg/m以上50kg/m以下であり、最も好ましくは24kg/m以上45kg/m以下である。密度が10kg/m以上の場合、密度が低い事によって発生しやすい圧縮強さ等の機械的強度の低下や、表面脆性の低下が小さく、実用上問題ない強度を維持できる。密度が70kg/m以下である場合は、密度が高い事によって大きくなる樹脂部の熱伝熱により熱伝導率が増大する懸念が小さくなる。なお、フェノール樹脂発泡体の密度はフェノール樹脂発泡体への発泡剤の充填割合を調整すればよく、主に、フェノール樹脂組成物への発泡剤の添加量、発泡性フェノール樹脂組成物の温度、混合した発泡性フェノール樹脂組成物を吐出する工程における予成形のタイミング、さらには、発泡核剤の添加量、酸性硬化剤の添加量、温度や滞留時間等の硬化条件などの変更により所望の値に調整できる。 The density of the phenolic resin foam of the present invention may be adjusted to a desired density depending on the intended use of the foam, but is preferably 10 kg/m 3 or more and 70 kg/m 3 or less, more preferably 20 kg/m 3 It is not less than 55 kg/m 3 , more preferably not less than 22 kg/m 3 and not more than 50 kg/m 3 , and most preferably not less than 24 kg/m 3 and not more than 45 kg/m 3 . When the density is 10 kg/m 3 or more, the decrease in mechanical strength such as compressive strength, which tends to occur due to the low density, and the decrease in surface brittleness are small, and it is possible to maintain a strength that does not pose any practical problems. When the density is 70 kg/m 3 or less, there is less concern that the thermal conductivity will increase due to heat transfer of the resin portion, which increases due to the high density. The density of the phenolic resin foam can be determined by adjusting the filling ratio of the blowing agent into the phenol resin foam, and mainly depends on the amount of blowing agent added to the phenol resin composition, the temperature of the expandable phenol resin composition, The desired value can be achieved by changing the timing of preforming in the process of discharging the mixed foamable phenolic resin composition, the amount of foaming nucleating agent added, the amount of acidic curing agent added, and curing conditions such as temperature and residence time. It can be adjusted to
 本発明のフェノール樹脂発泡体は、独立気泡率が80%以上である事が好ましく、より好ましくは85%以上、更に好ましくは90%以上、最も好ましくは92%以上である。独立気泡率が80%以上であると、フェノール樹脂発泡体中の発泡剤が空気と置換することに伴う、熱伝導率の増大を抑制することができる。この効果は独立気泡率が高いほど大きい。フェノール樹脂発泡体の独立気泡率は、例えば、発泡核剤の添加量、発泡剤の添加量と酸性硬化剤の量などの変更により所望の値に調整できる。 The phenolic resin foam of the present invention preferably has a closed cell ratio of 80% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 92% or more. When the closed cell ratio is 80% or more, it is possible to suppress an increase in thermal conductivity due to air replacing the blowing agent in the phenolic resin foam. This effect is greater as the closed cell ratio is higher. The closed cell ratio of the phenolic resin foam can be adjusted to a desired value by, for example, changing the amount of the foaming nucleating agent, the amount of the foaming agent, and the amount of the acidic curing agent.
 本実施形態におけるフェノール樹脂発泡体は、23℃における熱伝導率が好ましくは0.0211W/(m・K)以下であり、より好ましくは0.0200W/(m・K)以下であり、更に好ましくは0.0180W/(m・K)以下であり、最も好ましくは0.0175W/(m・K)以下である。 The phenolic resin foam in this embodiment has a thermal conductivity at 23°C of preferably 0.0211 W/(m·K) or less, more preferably 0.0200 W/(m·K) or less, and even more preferably is 0.0180 W/(m·K) or less, most preferably 0.0175 W/(m·K) or less.
 本実施形態のフェノール樹脂発泡体のボイド率は、0.5%以下である事が好ましい。ボイド率が0.5%以下であると、厚み方向の圧縮強さの低下を引き起こし難くなるとともに、外観上ボイドが気にならない範囲になる。ボイド率はハイドロフルオロエーテルの量、温度や滞留時間等の硬化条件などによって調整できる。なお本発明では、ボイド率は樹脂発泡体の厚み方向に平行な横断面を切り出し、その断面に存在する空隙部を後述する方法で測定し、各空隙につきその面積が2.0mm以上のものをボイドとし、該横断面上の全ボイドの総面積を横断面積で割った値をボイド率とする。 The void ratio of the phenolic resin foam of this embodiment is preferably 0.5% or less. When the void ratio is 0.5% or less, it becomes difficult to cause a decrease in compressive strength in the thickness direction, and the voids are within a range where they are not noticeable in terms of appearance. The void ratio can be adjusted by adjusting the amount of hydrofluoroether and curing conditions such as temperature and residence time. In the present invention, the void ratio is determined by cutting a cross section parallel to the thickness direction of the resin foam and measuring the voids present in the cross section using the method described below . is defined as a void, and the value obtained by dividing the total area of all voids on the cross-sectional area by the cross-sectional area is defined as the void ratio.
<フェノール樹脂発泡体積層板>
 本実施形態におけるフェノール樹脂発泡体積層板は、当該フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に表面材を備える積層板である。なお、本実施形態における「厚み方向」とは、フェノール樹脂発泡体積層板の三辺のうち最も短い辺の寸法を指し、通常、フェノール樹脂発泡体積層板の製造時に下表面材上の発泡性フェノール樹脂組成物が発泡して成長する方向である。
<Phenol resin foam laminate>
The phenol resin foam laminate in this embodiment is a laminate that includes a surface material on at least one of one surface of the phenol resin foam and the back surface of the one surface. In addition, the "thickness direction" in this embodiment refers to the dimension of the shortest side among the three sides of the phenolic resin foam laminate, and normally, when manufacturing the phenolic resin foam laminate, the foaming property on the lower surface material is This is the direction in which the phenol resin composition foams and grows.
 また、フェノール樹脂発泡体積層板は、これを単体で使用する他、外部部材と接合させて様々な用途に用いることができる。外部部材の例としては、ボード状材料およびシート状・フィルム状材料およびその組み合わせがある。ボード状材料としては、普通合板、構造用合板、パーティクルボード、およびOSBなどの木質系ボード、木毛セメント板、木片セメント板、石膏ボード、フレキシブルボード、ミディアムデンシティファイバーボード、ケイ酸カルシウム板、ケイ酸マグネシウム板、ならびに火山性ガラス質複層板などが好適である。また、シート状・フィルム状材料としては、ポリエステル不織布、ポリプロピレン不織布、無機質充填ガラス繊維不織布、ガラス繊維不織布、紙、炭酸カルシウム紙、ポリエチレン加工紙、ポリエチレンフィルム、プラスチック系防湿フィルム、アスファルト防水紙、およびアルミニウム箔(孔あり・孔なし)などが好ましい。 In addition, the phenolic resin foam laminate can be used alone or in various applications by joining it with an external member. Examples of external members include board-like materials and sheet-like/film-like materials and combinations thereof. Board-like materials include ordinary plywood, structural plywood, particle board, and wood boards such as OSB, wood wool cement board, wood chip cement board, gypsum board, flexible board, medium density fiberboard, calcium silicate board, and silicone board. Suitable materials include acid magnesium plates and volcanic glass multilayer plates. In addition, sheet-like and film-like materials include polyester nonwoven fabric, polypropylene nonwoven fabric, mineral-filled glass fiber nonwoven fabric, glass fiber nonwoven fabric, paper, calcium carbonate paper, polyethylene processed paper, polyethylene film, plastic moisture-proof film, asphalt waterproof paper, and Aluminum foil (with or without holes) is preferable.
 以下、フェノール樹脂発泡体の製造方法についてより詳細に説明する。 Hereinafter, the method for producing a phenolic resin foam will be explained in more detail.
<フェノール樹脂発泡体積層板の原料>
 フェノール樹脂としては、アルカリ金属水酸化物またはアルカリ土類金属水酸化物によって合成するレゾール型フェノール樹脂を用いる。レゾール型フェノール樹脂は、フェノール類とアルデヒド類とを原料としてアルカリ触媒により40~100℃の温度範囲で加熱して合成する。また、必要に応じてレゾール型フェノール樹脂の合成時、もしくは合成後に、尿素等の添加剤を添加してもよい。尿素を添加する場合は予めアルカリ触媒でメチロール化した尿素をレゾール型フェノール樹脂に混合することがより好ましい。合成後のレゾール型フェノール樹脂は、通常過剰な水分を含んでいるので、発泡に際し、発泡に適した水分量に調整する。また、フェノール樹脂には、脂肪族炭化水素または高沸点の脂環式炭化水素、或いは、それらの混合物や、エチレングリコールおよびジエチレングリコール等の粘度調整用の希釈剤、ならびにその他必要に応じてジシアンジアミドやメラミン等の添加剤を添加することもできる。
<Raw materials for phenolic resin foam laminates>
As the phenol resin, a resol type phenol resin synthesized from an alkali metal hydroxide or an alkaline earth metal hydroxide is used. Resol type phenolic resin is synthesized by heating phenols and aldehydes as raw materials in a temperature range of 40 to 100°C using an alkali catalyst. Additionally, additives such as urea may be added during or after the synthesis of the resol type phenolic resin, if necessary. When adding urea, it is more preferable to mix urea that has been methylolated with an alkali catalyst in advance with the resol type phenol resin. Since the synthesized resol type phenolic resin usually contains excessive water, the amount of water is adjusted to an appropriate level for foaming. In addition, phenolic resins include aliphatic hydrocarbons, high-boiling alicyclic hydrocarbons, or mixtures thereof, diluents for viscosity adjustment such as ethylene glycol and diethylene glycol, and other additives such as dicyandiamide and melamine as necessary. It is also possible to add additives such as.
 フェノール樹脂の合成時のフェノール類対アルデヒド類の出発モル比は好ましくは1:1から1:4.5の範囲内であり、より好ましくは1:1.5から1:2.5の範囲内である。 The starting molar ratio of phenols to aldehydes during the synthesis of phenolic resins is preferably within the range of 1:1 to 1:4.5, more preferably within the range of 1:1.5 to 1:2.5. It is.
 ここで、本実施形態においてフェノール樹脂合成の際に好ましく使用されるフェノール類は、フェノール自体、および他のフェノール類であり、他のフェノール類の例としては、レゾルシノール、カテコール、o-、m-およびp-クレゾール、キシレノール類、エチルフェノール類、ならびにp-tertブチルフェノール等が挙げられる。また、2核フェノール類も使用できる。 Here, the phenols preferably used in the synthesis of phenolic resin in this embodiment are phenol itself and other phenols. Examples of other phenols include resorcinol, catechol, o-, m- and p-cresol, xylenols, ethylphenols, and p-tertbutylphenol. Furthermore, dinuclear phenols can also be used.
 また、アルデヒド類は、アルデヒド源となり得る化合物であればよく、アルデヒド類としては、ホルムアルデヒド自体、解重合させて利用できるパラホルムアルデヒド、および他のアルデヒド類やその誘導体を用いることが好ましい。他のアルデヒド類の例としては、グリオキサール、アセトアルデヒド、クロラール、フルフラール、およびベンズアルデヒド等が挙げられる。 Further, the aldehydes may be any compound that can serve as an aldehyde source, and as the aldehydes, it is preferable to use formaldehyde itself, paraformaldehyde which can be used by depolymerizing, and other aldehydes and derivatives thereof. Examples of other aldehydes include glyoxal, acetaldehyde, chloral, furfural, and benzaldehyde.
 フェノール樹脂の質量平均分子量は、300以上であることが好ましく、400以上であることがより好ましく、450以上であることが更に好ましい。また該質量平均分子量は、2,500以下であることが好ましく、2,200以下であることがより好ましく、2,050以下であることが更に好ましく、1,900以下であることが最も好ましい。フェノール樹脂の質量平均分子量が300以上であると、硬化反応の反応熱による反応暴走が起きづらく、反応熱を利用して発泡成形が出来るため、エネルギー効率が良い。また質量平均分子量が2,500以下の時、重合反応の反応熱が少ない事により気泡径が小さくなりやすく、ボード成形工程より上流側の設備で樹脂が硬化しづらいため配管が汚れにくく、長時間連続運転ができる。なお、フェノール樹脂の質量平均分子量は、本明細書の実施例に記載の方法を用いて測定することができる。 The mass average molecular weight of the phenol resin is preferably 300 or more, more preferably 400 or more, and even more preferably 450 or more. The mass average molecular weight is preferably 2,500 or less, more preferably 2,200 or less, even more preferably 2,050 or less, and most preferably 1,900 or less. When the weight average molecular weight of the phenol resin is 300 or more, reaction runaway due to the reaction heat of the curing reaction is less likely to occur, and foam molding can be performed using the reaction heat, resulting in good energy efficiency. In addition, when the mass average molecular weight is 2,500 or less, the bubble diameter tends to become smaller due to less reaction heat of the polymerization reaction, and the resin is difficult to harden in equipment upstream of the board molding process, so the piping is less likely to get dirty and can last for a long time. Can be operated continuously. Note that the mass average molecular weight of the phenol resin can be measured using the method described in the Examples of this specification.
 フェノール樹脂組成物の40℃における粘度は、好ましくは5,000mPa・s以上100,000mPa・s以下であり、より好ましくは7,000mPa・s以上50,000mPa・s以下であり、更に好ましくは9,000mPa・s以上40,000mPa・s以下である。また、フェノール樹脂およびフェノール樹脂組成物の水分量は1.5質量%以上20質量%以下が好ましい。 The viscosity of the phenol resin composition at 40° C. is preferably 5,000 mPa·s or more and 100,000 mPa·s or less, more preferably 7,000 mPa·s or more and 50,000 mPa·s or less, and even more preferably 9 ,000 mPa·s or more and 40,000 mPa·s or less. Further, the water content of the phenol resin and the phenol resin composition is preferably 1.5% by mass or more and 20% by mass or less.
 界面活性剤、ハイドロフルオロエーテル、発泡剤および発泡核剤は、フェノール樹脂組成物に予め添加しておいてもよいし、酸性硬化剤と同時に添加してもよい。ただし、ハイドロフルオロエーテルは発泡剤より前または同時に添加する事が好ましい。 The surfactant, hydrofluoroether, foaming agent, and foam nucleating agent may be added to the phenolic resin composition in advance, or may be added at the same time as the acidic curing agent. However, it is preferable to add the hydrofluoroether before or at the same time as the blowing agent.
 界面活性剤としては、フェノール樹脂発泡体の製造に一般に使用されるものを使用できるが、中でもノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油との縮合物や、アルキレンオキサイドと、ノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合生成物や、アルキルエーテル部分の炭素数が14~22のポリオキシエチレンアルキルエーテルや、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類や、ポリジメチルシロキサン等のシリコーン系化合物や、ポリアルコール類等が好ましい。これらの界面活性剤は単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。また、その使用量については特に制限はないが、フェノール樹脂100質量部に対して0.3質量部以上10質量部以下の範囲で好ましく使用される。 As the surfactant, those commonly used in the production of phenolic resin foams can be used, but nonionic surfactants are particularly effective; for example, alkylene which is a copolymer of ethylene oxide and propylene oxide oxides, condensates of alkylene oxides and castor oil, condensation products of alkylene oxides and alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers whose alkyl ether moiety has 14 to 22 carbon atoms, Furthermore, fatty acid esters such as polyoxyethylene fatty acid ester, silicone compounds such as polydimethylsiloxane, and polyalcohols are more preferable. These surfactants may be used alone or in combination of two or more. There is no particular restriction on the amount used, but it is preferably used in a range of 0.3 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the phenol resin.
 酸性硬化剤は、フェノール樹脂組成物を硬化できる酸性の硬化剤であればよく、酸成分として有機酸を含有する。有機酸としては、アリールスルホン酸、或いは、これらの無水物が好ましい。アリールスルホン酸およびその無水物としては、トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、置換フェノールスルホン酸、キシレノールスルホン酸、置換キシレノールスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸等、および、それらの無水物が挙げられ、これらを一種類で用いても、二種類以上組み合わせてもよい。なお、本実施形態では、硬化助剤として、レゾルシノール、クレゾール、サリゲニン(o-メチロールフェノール)、およびp-メチロールフェノール等を添加してもよい。また、これらの酸性硬化剤は、エチレングリコールおよびジエチレングリコール等の溶媒で希釈してもよい。 The acidic curing agent may be any acidic curing agent that can cure the phenolic resin composition, and contains an organic acid as an acid component. As the organic acid, arylsulfonic acids or anhydrides thereof are preferred. Arylsulfonic acids and their anhydrides include toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, substituted phenolsulfonic acid, xylenolsulfonic acid, substituted xylenolsulfonic acid, dodecylbenzenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, etc. and anhydrides thereof, and these may be used alone or in combination of two or more. In this embodiment, resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like may be added as curing aids. Moreover, these acidic curing agents may be diluted with solvents such as ethylene glycol and diethylene glycol.
 酸性硬化剤の使用量は、その種類により異なり、キシレンスルホン酸80質量%とジエチレングリコール20質量%との混合物を使用する場合には、フェノール樹脂組成物100質量部に対して、好ましくは6質量部以上20質量部以下、より好ましくは8質量部以上15質量部以下で、最も好ましくは11質量部以上13質量部以下で使用される。 The amount of the acidic curing agent used varies depending on the type thereof, and when using a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol, it is preferably 6 parts by mass based on 100 parts by mass of the phenolic resin composition. The amount used is 20 parts by mass or less, more preferably 8 parts by mass or more and 15 parts by mass or less, and most preferably 11 parts by mass or more and 13 parts by mass or less.
 フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に配される表面材としては、可撓性を有する表面材(可撓性表面材)を用いる。使用される可撓性表面材としては、主成分がポリエステル、ポリプロピレン、およびナイロン等からなる不織布または織布、クラフト紙、ガラス繊維混抄紙、水酸化カルシウム紙、水酸化アルミニウム紙、および珪酸マグネシウム紙等の紙類、またはガラス繊維不織布のような無機繊維の不織布等が好ましく、これらは混合(または積層)して用いてもよい。得られるフェノール樹脂発泡体積層板から表面材を剥離し母材のみを利用する場合には、剥離後に廃棄可能な安価な紙類が好ましい。これら表面材は、通常ロール状の形態で提供されている。更に、可撓性表面材としては、難燃剤等の添加剤を混練したものを用いても構わない。なお、表面材とフェノール樹脂発泡体との接着方法は特に限定されず、エポキシ樹脂等の接着剤を使用しても構わないが、製造コスト面、および製造工程の煩雑化防止の面からも、発泡性フェノール樹脂組成物が表面材表面で熱硬化する際の固着力のみによるものであることが好ましい。 A flexible surface material (flexible surface material) is used as the surface material disposed on at least one of one surface and the back surface of the one surface of the phenolic resin foam. Flexible surface materials used include nonwoven or woven fabrics whose main components are polyester, polypropylene, nylon, etc., kraft paper, glass fiber mixed paper, calcium hydroxide paper, aluminum hydroxide paper, and magnesium silicate paper. Papers such as , and nonwoven fabrics made of inorganic fibers such as glass fiber nonwoven fabrics are preferred, and these may be used in combination (or in a layered manner). In the case where the surface material is peeled off from the obtained phenol resin foam laminate and only the base material is used, inexpensive paper that can be discarded after peeling is preferable. These facing materials are usually provided in roll form. Furthermore, as the flexible surface material, one kneaded with additives such as flame retardants may be used. Note that the method of adhering the surface material and the phenolic resin foam is not particularly limited, and adhesives such as epoxy resin may be used, but from the viewpoint of manufacturing cost and prevention of complication of the manufacturing process, It is preferable that the adhesive force is solely due to the adhesive force when the foamable phenol resin composition is thermally cured on the surface of the surface material.
<フェノール樹脂発泡体積層板の製造方法>
 フェノール樹脂発泡体積層板の製造方法としては、上述した発泡性フェノール樹脂組成物を混合機にて混合する混合工程と、混合した発泡性フェノール樹脂組成物を下表面材上に吐出する吐出工程と、下表面材上に吐出した発泡性フェノール樹脂組成物からフェノール樹脂発泡体積層板を製造する発泡体積層板製造工程を備える連続製造方式が用いられる。また、各ステップを段階的に行う型枠を利用するバッチ方式を採用することも可能である。
<Production method of phenolic resin foam laminate>
The method for manufacturing the phenolic resin foam laminate includes a mixing step of mixing the above-mentioned foamable phenolic resin composition in a mixer, and a discharging step of discharging the mixed foamable phenolic resin composition onto the lower surface material. A continuous manufacturing method is used, which includes a foam laminate manufacturing process for manufacturing a phenolic resin foam laminate from a foamable phenolic resin composition discharged onto the lower surface material. It is also possible to adopt a batch method using a mold that performs each step in stages.
 連続製造方式においては、下表面材上に吐出したフェノール樹脂組成物を上表面材で被覆した後、発泡および硬化させながら上下方向から均すように予成形し、その後、発泡および硬化を進めつつ板状に本成形していく。連続製造方式においては、予成形や本成形を行う方法として、スラット型ダブルコンベアを利用する方法や、金属ロールもしくは鋼板を利用する方法、更には、これらを複数組み合わせて利用する方法等、製造目的に応じた種々の方法が挙げられる。このうち、例えば、スラット型ダブルコンベアを利用して成形する場合には、上下の表面材で被覆された発泡性フェノール樹脂組成物をスラット型ダブルコンベア中へ連続的に案内した後、加熱しながら上下方向から圧力を加えて、所定の厚みに調整しつつ、発泡および硬化させ板状に成形することができる。下表面材上に吐出する際の、発泡性フェノール樹脂組成物の温度は、発泡剤の沸点によるが一般的に32℃以上45℃以下であることが好ましい。発泡性フェノール樹脂組成物の温度が32℃以上であると、発泡性フェノール樹脂組成物が初期に発泡し易くなるために、下表面材からの発泡性フェノール樹脂組成物の浸み出しを抑制し易くなる。一方、発泡性フェノール樹脂組成物の温度が45℃以下であると、沸点の低い発泡剤を用いる場合においても放散を抑制し易くなり、発泡効率の低下と気泡径の粗大化による熱伝導率の増大を防ぎ易くなる。なお、下表面材上に吐出する発泡性フェノール樹脂組成物の温度は、各種組成物を混合する混合機の温調水温度や流量、および、回転数等の調整によって行うことができる。 In the continuous manufacturing method, the phenolic resin composition discharged onto the lower surface material is coated with the upper surface material, and then preformed so as to be evenly distributed from above and below while foaming and curing. This is then formed into a plate shape. In the continuous manufacturing method, methods for preforming and main forming include methods that use a slat-type double conveyor, methods that use metal rolls or steel plates, and methods that use a combination of these, depending on the manufacturing purpose. There are various methods depending on the situation. For example, when molding is performed using a slat-type double conveyor, the foamable phenolic resin composition coated with the upper and lower surface materials is continuously guided into the slat-type double conveyor, and then heated while By applying pressure from above and below, the material can be foamed and cured to form a plate while adjusting the thickness to a predetermined value. The temperature of the foamable phenolic resin composition when discharged onto the lower surface material depends on the boiling point of the foaming agent, but is generally preferably 32°C or higher and 45°C or lower. When the temperature of the foamable phenolic resin composition is 32°C or higher, the foamable phenolic resin composition tends to foam at an early stage, so that the seepage of the foamable phenolic resin composition from the lower surface material is suppressed. It becomes easier. On the other hand, if the temperature of the foamable phenolic resin composition is 45°C or lower, it will be easier to suppress the dissipation even when using a blowing agent with a low boiling point, resulting in a decrease in foaming efficiency and a decrease in thermal conductivity due to coarsening of the cell diameter. It becomes easier to prevent growth. The temperature of the foamable phenolic resin composition discharged onto the lower surface material can be controlled by adjusting the water temperature, flow rate, rotation speed, etc. of a mixer for mixing various compositions.
<予成形工程>
 下表面材上に吐出した発泡性フェノール樹脂組成物を発泡および硬化させつつ上表面材上から予成形を行う工程の加熱温調条件は、30℃以上80℃以下とすることが望ましい。30℃以上であると、予成形工程での発泡の促進効果が得られ易くなることに加え、硬化を促進させることができる。また、80℃以下であると、厚み方向中心部近傍が内部発熱の影響を受け難く、中心部温度が高くなり難く、独立気泡率の低下を抑制できる。発泡性フェノール樹脂組成物を発泡および硬化させる際に、厚み方向中心部近傍における内部発熱による独立気泡率の低下を抑制しつつも効率的に硬化を促進させるためには、予成形工程に続き、本成形工程および後硬化工程を設け、段階的に昇温させることが重要である。
<Preforming process>
It is desirable that the heating temperature control conditions for the step of preforming the foamable phenolic resin composition discharged onto the lower surface material while foaming and curing it from above the upper surface material be 30° C. or higher and 80° C. or lower. When the temperature is 30° C. or higher, the effect of promoting foaming in the preforming step can be easily obtained, and curing can be promoted. Further, when the temperature is 80° C. or lower, the vicinity of the center in the thickness direction is less susceptible to internal heat generation, the temperature of the center is less likely to increase, and a decrease in the closed cell ratio can be suppressed. When foaming and curing the expandable phenolic resin composition, in order to efficiently promote curing while suppressing a decrease in the closed cell ratio due to internal heat generation near the center in the thickness direction, following the preforming step, It is important to provide a main molding step and a post-curing step, and to raise the temperature in stages.
<本成形工程>
 予成形工程に続く本成形工程の加熱温調条件は、65℃以上100℃以下であることが望ましい。該区間において、無端スチールベルト型ダブルコンベアまたはスラット型ダブルコンベア、もしくはロール等を用いて本成形を行うことができる。また、本成形工程の滞留時間は、発泡および硬化反応を行わせる主工程であることから、5分以上2時間以内とすることが好ましい。滞留時間が5分以上であると発泡と硬化を十分に促進させることができる。滞留時間が2時間以内であるとフェノール樹脂発泡体積層板の生産効率を高めることができる。なお、コンベアを用いる際には、上下のコンベア温度差は4℃未満とすることが望ましい。
<Main molding process>
The heating temperature control conditions for the main forming step following the preforming step are preferably 65° C. or higher and 100° C. or lower. In this section, main forming can be performed using an endless steel belt type double conveyor, a slat type double conveyor, rolls, or the like. Further, the residence time of this molding step is preferably 5 minutes or more and 2 hours or less, since this is the main step of performing foaming and curing reactions. Foaming and curing can be sufficiently promoted when the residence time is 5 minutes or more. When the residence time is within 2 hours, the production efficiency of the phenolic resin foam laminate can be improved. Note that when using a conveyor, it is desirable that the temperature difference between the upper and lower conveyors be less than 4°C.
<後硬化工程>
 予成形工程および本成形工程の温調区間を経て加熱温調した後に、後硬化工程を適用する。後硬化工程の温度は、90℃以上120℃以下であることが好ましい。90℃以上であると、発泡板中の水分が放散し易くなり、120℃以下であると、製品の独立気泡率の低下を抑制し低い熱伝導率を長期間維持することができる。後硬化工程の温調区間を設けることで、最終成形した後に、発泡性フェノール樹脂組成物中の水分を放散させることができる。
<Post-curing process>
After heating and controlling the temperature through the preforming step and the temperature control section of the main forming step, a post-curing step is applied. The temperature of the post-curing step is preferably 90°C or higher and 120°C or lower. When the temperature is 90°C or higher, moisture in the foam board is easily dissipated, and when the temperature is 120°C or lower, a decrease in the closed cell ratio of the product can be suppressed and a low thermal conductivity can be maintained for a long period of time. By providing a temperature control section in the post-curing step, water in the foamable phenolic resin composition can be diffused after final molding.
 以下に、実施例および比較例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<フェノール樹脂の合成>
 反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)とを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液を加えながら昇温して、反応を行わせた。反応液のオストワルド粘度が110センチストークス(=110×10-6/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を398kg添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液でpHを6.4に中和した。
<Synthesis of phenolic resin>
A reactor was charged with 3,500 kg of a 52 mass% formaldehyde aqueous solution (52 mass% formalin) and 2,510 kg of 99 mass% phenol (including water as an impurity), stirred with a propeller-rotating stirrer, and reacted with a temperature controller. The temperature of the liquid inside the vessel was adjusted to 40°C. Next, while adding a 48% by mass aqueous sodium hydroxide solution, the temperature was raised to carry out the reaction. When the Ostwald viscosity of the reaction solution reached 110 centistokes (=110×10 −6 m 2 /s, measured value at 25° C.), the reaction solution was cooled and 398 kg of urea was added. Thereafter, the reaction solution was cooled to 30° C., and the pH was neutralized to 6.4 with a 50% by mass aqueous solution of paratoluenesulfonic acid monohydrate.
 この反応液を60℃で濃縮処理して、フェノール樹脂Aを得た。なお、フェノール樹脂Aの質量平均分子量、および、40℃における粘度を各々以下の方法で測定したところ、質量平均分子量は1,300、40℃における粘度は9,730mPa・sであった。 This reaction solution was concentrated at 60°C to obtain phenol resin A. In addition, when the mass average molecular weight and viscosity at 40°C of phenol resin A were measured by the following methods, the mass average molecular weight was 1,300, and the viscosity at 40°C was 9,730 mPa·s.
<フェノール樹脂の質量平均分子量>
 ゲル浸透クロマトグラフィー(GPC)測定により以下のような条件で測定を行い、後に示す標準物質(標準ポリスチレン、2-ヒドロキシベンジルアルコールおよびフェノール)によって得られた検量線よりフェノール樹脂の質量平均分子量Mwを求めた。
前処理:
 フェノール樹脂約10mgをN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)1mlに溶解し、0.2μmメンブレンフィルターでろ過したものを測定溶液として用いた。
測定条件:
 測定装置:Shodex System21(昭和電工株式会社製)
 カラム:Shodex Asahipak GF-310HQ(7.5mmI.D.×30cm)
 溶離液:臭化リチウム0.1質量%をN,Nジメチルホルムアミド(富士フィルム和光純薬株式会社製、高速液体クロマトグラフ用)に溶解し使用した。
 流量:0.6ml/分
 検出器:RI検出器
 カラム温度:40℃
 標準物質:標準ポリスチレン(昭和電工株式会社製「Shodex STANDARD SL-105」)、2-ヒドロキシベンジルアルコール(シグマアルドリッチ社製、99%品)、フェノール(関東化学株式会社製、特級)
<Mass average molecular weight of phenol resin>
Measurement was performed by gel permeation chromatography (GPC) under the following conditions, and the mass average molecular weight Mw of the phenolic resin was determined from the calibration curve obtained using the standard substances (standard polystyrene, 2-hydroxybenzyl alcohol, and phenol) shown below. I asked for it.
Preprocessing:
About 10 mg of phenol resin was dissolved in 1 ml of N,N dimethylformamide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography), and the solution was filtered through a 0.2 μm membrane filter and used as a measurement solution.
Measurement condition:
Measuring device: Shodex System21 (manufactured by Showa Denko K.K.)
Column: Shodex Asahipak GF-310HQ (7.5mm I.D. x 30cm)
Eluent: 0.1% by mass of lithium bromide was dissolved in N,N dimethylformamide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for high-performance liquid chromatography).
Flow rate: 0.6ml/min Detector: RI detector Column temperature: 40°C
Standard materials: Standard polystyrene (Shodex STANDARD SL-105, manufactured by Showa Denko K.K.), 2-hydroxybenzyl alcohol (manufactured by Sigma-Aldrich, 99% product), phenol (manufactured by Kanto Kagaku Co., Ltd., special grade)
<フェノール樹脂の粘度測定>
 回転粘度計(BrookField metek製、DVNXHBCBG型、ローター部はCPA-52Z)を用い、0.5mlのフェノール樹脂を40℃で6分間安定させた後の測定値をフェノール樹脂の粘度とした。
<Viscosity measurement of phenolic resin>
Using a rotational viscometer (manufactured by BrookField metek, DVNXHBCBG type, rotor part: CPA-52Z), the measured value after stabilizing 0.5 ml of phenol resin at 40° C. for 6 minutes was taken as the viscosity of the phenol resin.
(実施例1)
 フェノール樹脂A100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。発泡核剤としてフェノール樹脂発泡体粉を、上記界面活性剤を含むフェノール樹脂組成物に対して4.0質量%添加した。フェノール樹脂発泡体粉を混錬した後のフェノール樹脂組成物の40℃における粘度は22,000mPa・sだった。また、上記フェノール樹脂組成物100質量部に対して、ハイドロフルオロエーテルとして3M Novec(登録商標)7000(3M社製)を3.0質量部、発泡剤としてHCFO-1233zd(E)を13質量部、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し、17℃に温調した回転数可変式のミキシングヘッドに供給した。なお、ここで用いたフェノール樹脂発泡体粉は、特開2008-024868号の実施例1と同様の手順で粉砕した、フェノール樹脂発泡体(旭化成建材(株)製ネオマフォーム)粉砕粉(平均粒径は28μm、嵩密度は181kg/m)であり、ハイドロフルオロエーテル、発泡剤および酸性硬化剤の添加前に、二軸押出機にてフェノール樹脂組成物と混練した。その後、ハイドロフルオロエーテル、発泡剤および酸性硬化剤を混合機にて混合し、得られた発泡性フェノール樹脂組成物をマルチポート分配管にて分配し、移動する下表面材上に供給した。なお、混合機(ミキサー)は、特開平10-225993号の図1に開示されたものを使用した。即ち、混合機の上部側面に、固体発泡核剤を含むフェノール樹脂組成物の導入口、ハイドロフルオロエーテルの導入口、及び発泡剤の導入口が順番に上から下に隣接して並び、回転子が攪拌する攪拌部の中央付近の側面に酸性硬化剤の導入口を備えている混合機を使用した。攪拌部以降は発泡性フェノール樹脂組成物を吐出するためのノズルに繋がっている。即ち、混合機は、酸性硬化剤導入口までを混合部(前段)、酸性硬化剤導入口~攪拌終了部を混合部(後段)、攪拌終了部~ノズルを分配部とし、これらにより構成されている。分配部は先端に複数のノズルを有し、混合された発泡性フェノール樹脂組成物が均一に分配されるように設計されている。更に、分配部はジャケット式構造になっており、温調水により十分熱交換できるようになっており、分配部の温調水温度を17℃に設定した。また、マルチポート分配管の吐出口には、発泡性フェノール樹脂組成物の温度を検出できるように熱電対が設置してあり、混合機の回転数を500rpmに設定した。このときの下表面材上に吐出した発泡性フェノール樹脂組成物の温度は34℃であった。下表面材上に供給した発泡性フェノール樹脂組成物は、40℃に温調された予成形工程に導入され、30秒後に、上表面材上方より、フリーローラーにて予成形を行った。この工程の滞留時間を5分間とした。その後、二枚の表面材で挟み込まれるようにして、69℃に加熱されたスラット型ダブルコンベアに導入され(本成形工程)、15分の滞留時間で硬化させた後、100℃で9分滞留後、110℃で2時間キュアさせ(後硬化工程)、厚みが約30mmのフェノール樹脂発泡体積層板を得た。なお、表面材としては、上下表面材ともに、ポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m)を使用した。このような作製方法を表2において作製方法Aと表示する。
(Example 1)
Ratio of 3.0 parts by mass of a composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants, based on 100 parts by mass of phenolic resin A. mixed with. This is used as a phenol resin composition. As a foaming nucleating agent, 4.0% by mass of phenolic resin foam powder was added to the phenolic resin composition containing the surfactant. The viscosity of the phenolic resin composition after kneading the phenolic resin foam powder at 40° C. was 22,000 mPa·s. Further, for 100 parts by mass of the above phenolic resin composition, 3.0 parts by mass of 3M Novec (registered trademark) 7000 (manufactured by 3M Company) as a hydrofluoroether and 13 parts by mass of HCFO-1233zd(E) as a blowing agent. 13 parts by mass of a composition consisting of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol was added as an acidic curing agent, and the mixture was supplied to a variable rotation speed mixing head whose temperature was controlled to 17°C. The phenolic resin foam powder used here was a pulverized phenol resin foam (neoma foam manufactured by Asahi Kasei Kenzai Co., Ltd.) powder (average particle size was 28 μm and bulk density was 181 kg/m 3 ), and was kneaded with the phenol resin composition in a twin-screw extruder before adding the hydrofluoroether, blowing agent, and acidic curing agent. Thereafter, the hydrofluoroether, foaming agent, and acidic curing agent were mixed in a mixer, and the resulting foamable phenolic resin composition was distributed using a multiport distribution pipe and supplied onto the moving lower surface material. The mixer disclosed in FIG. 1 of JP-A No. 10-225993 was used. That is, on the upper side of the mixer, an inlet for a phenolic resin composition containing a solid foaming nucleating agent, an inlet for a hydrofluoroether, and an inlet for a blowing agent are arranged adjacently from top to bottom in order, and the rotor A mixer was used, which was equipped with an acid curing agent inlet on the side near the center of the stirring section. The part after the stirring part is connected to a nozzle for discharging the foamable phenolic resin composition. That is, the mixer consists of a mixing section (first stage) up to the acidic curing agent inlet, a mixing section (second stage) between the acidic curing agent inlet and the stirring end section, and a distributing section between the stirring end section and the nozzle. There is. The distribution section has a plurality of nozzles at its tip and is designed to uniformly distribute the mixed foamable phenolic resin composition. Furthermore, the distribution section had a jacket type structure, which enabled sufficient heat exchange with temperature-controlled water, and the temperature of the temperature-controlled water in the distribution section was set at 17°C. Further, a thermocouple was installed at the discharge port of the multi-port distribution pipe so that the temperature of the foamable phenolic resin composition could be detected, and the rotation speed of the mixer was set at 500 rpm. At this time, the temperature of the foamable phenol resin composition discharged onto the lower surface material was 34°C. The foamable phenolic resin composition supplied onto the lower surface material was introduced into a preforming step whose temperature was controlled at 40° C., and after 30 seconds, preforming was performed from above the upper surface material using a free roller. The residence time in this step was 5 minutes. After that, it is sandwiched between two surface materials and introduced into a slat-type double conveyor heated to 69℃ (main forming process), where it is cured for 15 minutes and then 9 minutes at 100℃. Thereafter, it was cured at 110° C. for 2 hours (post-curing step) to obtain a phenol resin foam laminate having a thickness of about 30 mm. In addition, as a surface material, polyester nonwoven fabric (Asahi Kasei Corporation Eltas E05060, basis weight 60 g/m 2 ) was used for both the upper and lower surface materials. Such a manufacturing method is indicated as manufacturing method A in Table 2.
 得られたフェノール樹脂発泡体およびフェノール樹脂発泡体積層板の特性評価(フェノール樹脂発泡体中のハイドロフルオロエーテルの同定及び含有量測定、発泡剤種の同定、平均気泡径の測定、密度の測定、23℃環境下での熱伝導率の測定、厚み方向の圧縮強さの測定、色斑とボイド率評価、独立気泡率の測定)を以下の方法によって行った。 Characteristic evaluation of the obtained phenolic resin foam and phenolic resin foam laminate (identification and content measurement of hydrofluoroether in the phenolic resin foam, identification of blowing agent species, measurement of average cell diameter, measurement of density, Measurement of thermal conductivity in a 23°C environment, measurement of compressive strength in the thickness direction, evaluation of color spots and void ratio, and measurement of closed cell ratio) were performed by the following methods.
<フェノール樹脂発泡体中のハイドロフルオロエーテルの同定及び含有量測定、発泡剤種の同定>
 はじめにハイドロフルオロエーテル、ハイドロフルオロオレフィン、ハロゲン化炭化水素、および炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。
<Identification and content measurement of hydrofluoroether in phenolic resin foam, identification of blowing agent species>
First, retention times were determined under the following GC/MS measurement conditions using hydrofluoroether, hydrofluoroolefin, halogenated hydrocarbon, and hydrocarbon standard gases.
 フェノール樹脂発泡体の中央部付近から0.25mgの試料を切り出して専用容器に入れ、クロロホルム10mlおよび粉砕ガラスビーズ12個を加えた。ホモジナイザー(IKA ULTRA-TURRAX Tube Drive)にて6000rpm×7~11minで試料を粉砕しながらクロロホルム中に成分を抽出したのち、抽出液を0.45μmフィルターでろ過しGC/MS測定に供した。定量目的成分をクロロホルムに溶解して既知濃度の標準試料溶液を調製し、試料と同じ条件でGC/MS測定に供した。 A 0.25 mg sample was cut out from near the center of the phenolic resin foam, placed in a special container, and 10 ml of chloroform and 12 crushed glass beads were added. After extracting components into chloroform while grinding the sample at 6000 rpm x 7 to 11 min with a homogenizer (IKA ULTRA-TURRAX Tube Drive), the extract was filtered with a 0.45 μm filter and subjected to GC/MS measurement. A standard sample solution with a known concentration was prepared by dissolving the target component for quantitative determination in chloroform, and subjected to GC/MS measurement under the same conditions as the sample.
 ハイドロフルオロエーテル、ハイドロフルオロオレフィン、ハロゲン化炭化水素、および炭化水素を、事前に求めた保持時間とマススペクトルから同定した。別途、発生したガス成分の検出感度を各々標準ガスによって測定し、GC/MSで得られた各ガス成分の検出エリア面積と検出感度より、各物質の含有量を算出した。同定した各ガス成分の含有量よりハイドロフルオロエーテル含有量(対フェノール樹脂発泡体質量%)および発泡剤の含有量とモル質量より各発泡剤成分の質量%を算出した。 Hydrofluoroethers, hydrofluoroolefins, halogenated hydrocarbons, and hydrocarbons were identified from the retention times and mass spectra determined in advance. Separately, the detection sensitivity of each generated gas component was measured using a standard gas, and the content of each substance was calculated from the detection area area and detection sensitivity of each gas component obtained by GC/MS. The mass % of each blowing agent component was calculated from the hydrofluoroether content (mass % based on the phenol resin foam) and the blowing agent content and molar mass from the content of each identified gas component.
(GC-MS測定条件)
GC装置:Agilent 6890
カラム:DB1(30m、0.25mmφ、膜厚0.25μm)
カラム温度:40℃(5min)~(20℃/min.昇温)-200℃
流速:1mL/min
注入口の温度:320℃
注入方法:スプリット法(1/50)
試料の注入量:1μL
MS装置:JEOL AutoMass-SUN
インターフェース温度:300℃
イオン化法:EI法 70eV
測定法:Scan
スキャン範囲:m/z=20~600
イオン源温度:240℃
(GC-MS measurement conditions)
GC device: Agilent 6890
Column: DB1 (30m, 0.25mmφ, film thickness 0.25μm)
Column temperature: 40°C (5 min) - (20°C/min. temperature increase) -200°C
Flow rate: 1mL/min
Inlet temperature: 320℃
Injection method: Split method (1/50)
Sample injection volume: 1 μL
MS device: JEOL AutoMass-SUN
Interface temperature: 300℃
Ionization method: EI method 70eV
Measurement method: Scan
Scan range: m/z=20-600
Ion source temperature: 240℃
<フェノール樹脂発泡体の平均気泡径の測定>
 平均気泡径は、以下の方法で測定した。フェノール樹脂発泡体積層板の厚み方向のほぼ中央と、中央と表裏面に対してほぼ中央の位置における気泡を50倍に拡大した走査型電子顕微鏡で写真を4枚撮影し、得られた写真上にボイドを避けて90mmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数に準じて測定した気泡数を各直線で求め、それらの平均値で1,800μmを割った値を平均気泡径とした。
<Measurement of average cell diameter of phenolic resin foam>
The average bubble diameter was measured by the following method. Four photos were taken with a scanning electron microscope of the air bubbles at approximately the center in the thickness direction of the phenolic resin foam laminate, and at approximately the center between the center and the front and back surfaces, magnified 50 times. Draw four straight lines with a length of 90 mm (corresponding to 1,800 μm in the actual foam cross section) avoiding voids, and calculate the number of bubbles for each straight line based on the number of bubbles crossed by each straight line. , the value obtained by dividing 1,800 μm by their average value was defined as the average bubble diameter.
<フェノール樹脂発泡体の密度の測定>
 200mm角のフェノール樹脂発泡体積層板を試料とし、この試料から表面材を取り除いた後、JIS K7222に従い質量と見かけ容積を測定して求めた。
<Measurement of density of phenolic resin foam>
A 200 mm square phenol resin foam laminate was used as a sample. After removing the surface material from this sample, the mass and apparent volume were determined according to JIS K7222.
<フェノール樹脂発泡体積層板の23℃環境下での熱伝導率の測定>
 JIS A 1412-2:1999に準拠し、以下の方法で23℃の環境下における樹脂発泡体積層板の厚み方向の熱伝導率を測定した。具体的な手順は以下の通りである。
<Measurement of thermal conductivity of phenolic resin foam laminate under 23°C environment>
In accordance with JIS A 1412-2:1999, the thermal conductivity in the thickness direction of the resin foam laminate was measured in a 23° C. environment using the following method. The specific steps are as follows.
 フェノール樹脂発泡体積層板を300mm角に切断し、試片を23±1℃・湿度50±2%の雰囲気に入れた。その後、24時間ごとに重量の経時変化を測定し、24時間経過後の重量変化が0.2質量%以下になるまで、状態の確認および調節を行った。状態調節されたフェノール樹脂発泡体積層板試片を、同じく23±1℃・湿度50±2%の雰囲気に置かれた熱伝導率装置に導入した。熱伝導率測定装置が、フェノール樹脂発泡体積層板試片が置かれていた23±1%・湿度50±2%にコントロールされた室内に置かれていない場合には、前述の雰囲気において状態の確認および調節を行った試片を、速やかにポリエチレン製の袋に入れて袋を閉じて、1時間以内に袋から出して、速やかに熱伝導率を測定した。 A phenol resin foam laminate was cut into 300 mm square pieces, and the specimens were placed in an atmosphere of 23±1°C and humidity of 50±2%. Thereafter, the change in weight over time was measured every 24 hours, and the condition was checked and adjusted until the weight change after 24 hours was 0.2% by mass or less. The conditioned phenolic resin foam laminate specimen was introduced into the thermal conductivity apparatus, which was also placed in an atmosphere of 23±1° C. and humidity of 50±2%. If the thermal conductivity measuring device is not placed in the room where the phenolic resin foam laminate specimen was placed, where the humidity is controlled at 23 ± 1% and the humidity is 50 ± 2%, it is necessary to The tested and adjusted specimens were immediately placed in a polyethylene bag, the bag was closed, and the bag was taken out within 1 hour, and the thermal conductivity was immediately measured.
 熱伝導率測定は、23℃の熱伝導率は低温板13℃、高温板33℃の条件で、試験体1枚・対象構成方式の測定装置(英弘精機社、商品名「HC-074/FOX304」)を用い行った。 The thermal conductivity was measured at 23°C under the conditions of a low-temperature plate at 13°C and a high-temperature plate at 33°C, using a measuring device with a single test piece and target configuration method (Hideko Seiki Co., Ltd., product name "HC-074/FOX304"). ”) was used.
<フェノール樹脂発泡体の厚み方向の圧縮強さの測定>
 得られたフェノール樹脂発泡体積層板から面材を取り除いた後、フェノール樹脂発泡体の厚み方向の圧縮強さを、JIS K7220に準拠して測定した。ただし、発泡体の寸法は100mm×100mm×30mmとした。
<Measurement of compressive strength in the thickness direction of phenolic resin foam>
After removing the face material from the obtained phenolic resin foam laminate, the compressive strength in the thickness direction of the phenolic resin foam was measured in accordance with JIS K7220. However, the dimensions of the foam were 100 mm x 100 mm x 30 mm.
<フェノール樹脂発泡体の色斑の評価>
 フェノール樹脂発泡体の厚み方向の発泡体断面を目視で観察した。その結果、ボイド以外で、目視で確認できる程度の気泡径のばらつきが、筋状もしくは局所的にあり、それにより発泡体の色が不均一に見えるものを、色斑「有」と評価し、それに該当しないものを、色斑「無」と評価した。
<Evaluation of color spots on phenolic resin foam>
The cross section of the phenolic resin foam in the thickness direction was visually observed. As a result, if there are streaks or localized variations in bubble diameter that can be visually confirmed other than voids, and the color of the foam appears uneven due to this, it is evaluated as having color spots. Those that did not fall under these conditions were evaluated as "no" color spots.
<フェノール樹脂発泡体のボイド率評価>
 フェノール樹脂発泡体の厚み方向のほぼ中央を表裏面に平行に切削し、100mm×150mmの範囲を200%拡大(面積は4.0倍)してカラーコピーをとり、透明方眼紙により1mm×1mmマスが8マス以上(2.0mm以上)の空隙の面積を積算して、面積分率を計算し、ボイド率(%)(4回測定の平均値)とし、フェノール樹脂発泡体のボイド率が0.5%以下になったものを、「少」、0.5%を超過するものを「多」と評価した。
<Void rate evaluation of phenolic resin foam>
Cut approximately the center of the thickness of the phenolic resin foam parallel to the front and back surfaces, enlarge the 100 mm x 150 mm area by 200% (4.0 times the area), make a color copy, and use transparent graph paper to make a 1 mm x 1 mm size. The area of voids with 8 squares or more (2.0 mm 2 or more) is integrated, the area fraction is calculated, and the void ratio (%) (average value of 4 measurements) is calculated, and the void ratio of the phenolic resin foam is calculated. Those in which the ratio was 0.5% or less were rated as "little," and those in excess of 0.5% were rated as "high."
<フェノール樹脂発泡体の独立気泡率の測定>
 フェノール樹脂発泡体の厚み方向中心位置において、バンドソー等の切断具を用いて、樹脂発泡体の厚みが25mm以上の場合は25mm角の立方体を試料として切り出す。また、樹脂発泡体の厚みが25mm未満の場合は面材除去(面材由来の繊維体が残存する場合、または、裏面側の面材がある場合)後の厚みを有し、縦横ともに25mmの直方体を試料として切り出す。そして、空気比較式比重計(1000型、東京サイエンス社製)の標準使用方法により、試料体積V(cm)を測定する。樹脂発泡体における独立気泡率は、下記式の通り前記試料体積Vから、試料質量W(g)と樹脂発泡体を構成する樹脂組成物の密度ρとから計算した気泡壁の体積(W/ρ)を差し引いた値を、試料の外寸から計算した見かけの体積Va(cm)で割った値であり、ASTM D 2856(C法)に準拠し測定する。フェノール樹脂組成物の密度は1.27kg/Lとして計算した。
 独立気泡率(%)=((V-W/ρ)/Va)×100
<Measurement of closed cell ratio of phenolic resin foam>
If the thickness of the resin foam is 25 mm or more, a 25 mm square cube is cut out as a sample at the center position in the thickness direction of the phenolic resin foam using a cutting tool such as a band saw. In addition, if the thickness of the resin foam is less than 25 mm, the thickness after removal of the face material (if fibrous material derived from the face material remains, or if there is a face material on the back side), and the thickness is 25 mm in both length and width. Cut out a rectangular parallelepiped as a sample. Then, the sample volume V (cm 3 ) is measured using the standard method of using an air comparison hydrometer (model 1000, manufactured by Tokyo Science Co., Ltd.). The closed cell ratio in a resin foam is calculated from the sample volume V, the sample mass W (g), and the density ρ of the resin composition constituting the resin foam, as shown in the following formula. ) is divided by the apparent volume Va (cm 3 ) calculated from the external dimensions of the sample, and is measured in accordance with ASTM D 2856 (Method C). The density of the phenol resin composition was calculated as 1.27 kg/L.
Closed cell ratio (%) = ((V-W/ρ)/Va) x 100
(実施例2)
 ハイドロフルオロエーテルを3M Novec(登録商標)7100高機能性液体(3M社製)に変更した以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 2)
A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7100 high-performance liquid (manufactured by 3M).
(実施例3)
 ハイドロフルオロエーテルを3M Novec(登録商標)7200高機能性液体(3M社製)に変更した以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 3)
A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7200 high performance liquid (manufactured by 3M).
(実施例4)
 ハイドロフルオロエーテルを3M Novec(登録商標)7300高機能性液体(3M社製)に変更した以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 4)
A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to 3M Novec (registered trademark) 7300 high-performance liquid (manufactured by 3M).
(実施例5)
 ハイドロフルオロエーテルをアサヒクリン(登録商標)AE-3000(AGC社製、純度99%以上)に変更した以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 5)
A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Asahiklin (registered trademark) AE-3000 (manufactured by AGC, purity 99% or higher).
(実施例6)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、フェノール樹脂組成物100質量部に対するハイドロフルオロエーテルの添加量を0.1部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 6)
The procedure was carried out in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 0.1 part with respect to 100 parts by mass of the phenolic resin composition. A resin foam was produced.
(実施例7)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、フェノール樹脂組成物100質量部に対するハイドロフルオロエーテルの添加量を6.5部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 7)
The procedure was carried out in exactly the same manner as in Example 1 except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 6.5 parts with respect to 100 parts by mass of the phenolic resin composition. A resin foam was produced.
(実施例8)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、発泡剤としてHCFO-1224yd(Z)(AGC社製)を14質量部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 8)
The resin was prepared in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M Company), and 14 parts by mass of HCFO-1224yd (Z) (manufactured by AGC Company) was used as the blowing agent. A foam was produced.
(実施例9)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、発泡剤としてHCFO-1224yd(Z)(AGC社製)80質量%とシクロペンタン20質量%の混合物にし、混合発泡剤の添加量を12質量部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 9)
The hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M), and the blowing agent was a mixture of 80% by mass of HCFO-1224yd (Z) (manufactured by AGC) and 20% by mass of cyclopentane. A resin foam was produced in exactly the same manner as in Example 1, except that the amount added was 12 parts by mass.
(実施例10)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、発泡剤としてシクロペンタンを6.3質量部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Example 10)
A resin foam was produced in exactly the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and 6.3 parts by mass of cyclopentane was used as the blowing agent.
(実施例11)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、発泡剤としてHCFO-1224yd(Z)(AGC社製)を使用し、発泡剤添加量を14質量部にし、ハイドロフルオロエーテルの導入口を混合機の下流側に設置し、発泡剤より後にハイドロフルオロエーテルが混練されるようにした以外、実施例1と全く同様にして樹脂発泡体を製造した。このような作製方法を表2において作製方法Bと表示する。
(Example 11)
The hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M), HCFO-1224yd (Z) (manufactured by AGC) was used as a blowing agent, the amount of blowing agent added was 14 parts by mass, and the hydrofluoroether A resin foam was produced in exactly the same manner as in Example 1, except that the inlet was installed on the downstream side of the mixer so that the hydrofluoroether was kneaded after the blowing agent. Such a manufacturing method is indicated as manufacturing method B in Table 2.
(実施例12)
 フェノール樹脂A100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.0質量部の割合で混合した。これをフェノール樹脂組成物とする。上記界面活性剤を含むフェノール樹脂組成物100質量部に対して、ハイドロフルオロエーテルとして3M Novec(登録商標)7200(3M社製)が3.0質量部になるようにそれぞれポリカップに入れ、コードレスドライバードリル(Hi-Koki DS 10DAL)に攪拌棒を取り付けて混練後、更に発泡剤としてHCFO-1233zd(E)が12質量部になるように、ポリカップを冷やしながらコードレスドライバードリルを用いて混練した。ここでは、発泡核剤は添加していないが、混練時に巻き込まれる空気が発泡核剤の役割を果たす。それぞれ所定量混練できていることは、樹脂組成物の重量の変化より確認した。次に当該発泡性フェノール樹脂組成物が入ったポリカップを冷蔵庫にて1時間冷やし、発泡性フェノール樹脂組成物が12℃以下であることを確認後、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13質量部添加し氷浴しながら2分間、コードレスドライバードリルで混練した。次に発泡性フェノール樹脂組成物を13℃の環境下で金属の金枠(型枠)の底面にへらで塗布した。発泡後に厚みが金枠(型枠)からはみ出さないように、発泡性フェノール樹脂組成物の塗布量を適宜調整した。ここで使用した金枠(型枠)は厚みが2.0mmの金属からなり、内径が300mm×300mm×高さ30mmで、底面は直径5mmの穴が1mm間隔にパンチングされていて、更に底面にポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m)を表面材として敷いたものである。発泡性フェノール樹脂組成物と酸性硬化剤を混練してから塗布を終えるまでの作業の時間は5分とした。その後、天板として、底面と同じパンチング仕様の、300mm×300mmより大きい板に金枠(型枠)底面と同じ表面材を張り付けたものを、表面材が発泡性フェノール樹脂側を向くように被せ、クリップで天板を金枠(型枠)に固定した。この金枠(型枠)を85℃に加熱されたオーブンに入れ、金枠(型枠)の天板中央に85℃に加熱された錘25kgを乗せて1時間加熱後、更に105℃で1時間キュアさせ、厚み30mmのフェノール樹脂発泡体積層板を得た。このような作製方法を表2において作製方法Cと表示する。
(Example 12)
Ratio of 3.0 parts by mass of a composition containing 50% by mass of ethylene oxide-propylene oxide block copolymer and polyoxyethylene dodecyl phenyl ether as surfactants, based on 100 parts by mass of phenolic resin A. mixed with. This is used as a phenol resin composition. 3.0 parts by mass of 3M Novec (registered trademark) 7200 (manufactured by 3M Company) as a hydrofluoroether was added to 100 parts by mass of the phenolic resin composition containing the above surfactant in a polycup, and a cordless screwdriver was added. After kneading with a stirring rod attached to a drill (Hi-Koki DS 10DAL), HCFO-1233zd (E) as a blowing agent was further kneaded using a cordless driver drill while cooling the polycup so that the amount was 12 parts by mass. Although no foaming nucleating agent was added here, the air involved during kneading played the role of the foaming nucleating agent. It was confirmed by the change in the weight of the resin composition that each of the resin compositions had been kneaded in a predetermined amount. Next, the polycup containing the foamable phenolic resin composition was cooled in the refrigerator for 1 hour, and after confirming that the foamable phenolic resin composition was at 12°C or lower, 80% by mass of xylene sulfonic acid and diethylene glycol were added as acidic curing agents. 13 parts by mass of a composition consisting of a 20% by mass mixture was added and kneaded with a cordless screwdriver drill for 2 minutes in an ice bath. Next, the foamable phenolic resin composition was applied to the bottom of a metal frame (form) using a spatula in an environment of 13°C. The amount of the foamable phenol resin composition applied was adjusted as appropriate so that the thickness would not protrude from the metal frame (form) after foaming. The metal frame (form) used here is made of metal with a thickness of 2.0 mm, and has an inner diameter of 300 mm x 300 mm x height of 30 mm, with holes of 5 mm diameter punched at 1 mm intervals on the bottom. A polyester nonwoven fabric (Eltas E05060 manufactured by Asahi Kasei Corporation, basis weight 60 g/m 2 ) was laid as a surface material. The working time from kneading the foamable phenolic resin composition and acidic curing agent to finishing the application was 5 minutes. After that, as a top plate, cover a board larger than 300 mm x 300 mm with the same punching specifications as the bottom with the same surface material as the bottom of the metal frame (formwork) so that the surface material faces the foamed phenolic resin side. The top plate was fixed to the metal frame (formwork) with clips. Place this metal frame (formwork) in an oven heated to 85℃, place a 25kg weight heated to 85℃ in the center of the top plate of the metal frame (formwork), heat it for 1 hour, and then heat it again at 105℃ for 1 hour. After curing for a period of time, a phenol resin foam laminate having a thickness of 30 mm was obtained. Such a manufacturing method is indicated as manufacturing method C in Table 2.
(比較例1)
 式1に該当しないフッ素化合物であるAMOLEA(登録商標) AS-300(AGC社製、純度99%以上)に変更した以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Comparative example 1)
A resin foam was produced in exactly the same manner as in Example 1, except that AMOLEA (registered trademark) AS-300 (manufactured by AGC, purity 99% or more), which is a fluorine compound that does not correspond to Formula 1, was used.
(比較例2)
 ハイドロフルオロエーテルをNovec(登録商標)7200(3M社製)に変更し、フェノール樹脂組成物100質量部に対するハイドロフルオロエーテルの添加量を7部にした以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Comparative example 2)
Resin foaming was carried out in the same manner as in Example 1, except that the hydrofluoroether was changed to Novec (registered trademark) 7200 (manufactured by 3M) and the amount of hydrofluoroether added was 7 parts with respect to 100 parts by mass of the phenolic resin composition. manufactured a body.
(比較例3)
 ハイドロフルオロエーテルを添加しなかったこと以外、実施例1と全く同様にして樹脂発泡体を製造した。
(Comparative example 3)
A resin foam was produced in exactly the same manner as in Example 1, except that no hydrofluoroether was added.
(比較例4)
 ハイドロフルオロエーテルを添加しなかったこと以外、実施例8と全く同様にして樹脂発泡体を製造した。
(Comparative example 4)
A resin foam was produced in exactly the same manner as in Example 8, except that no hydrofluoroether was added.
(比較例5)
 ハイドロフルオロエーテルを添加しなかったこと以外、実施例9と全く同様にして樹脂発泡体を製造した。
(Comparative example 5)
A resin foam was produced in exactly the same manner as in Example 9, except that no hydrofluoroether was added.
(比較例6)
 ハイドロフルオロエーテルを添加しなかったこと以外、実施例10と全く同様にして樹脂発泡体を製造した。
(Comparative example 6)
A resin foam was produced in exactly the same manner as in Example 10, except that no hydrofluoroether was added.
(比較例7)
 ハイドロフルオロエーテルを添加しなかったこと以外、実施例12と全く同様にして樹脂発泡体を製造した。
(Comparative example 7)
A resin foam was produced in exactly the same manner as in Example 12, except that no hydrofluoroether was added.
 実施例1~12及び比較例1、2で用いたハイドロフルオロエーテルの種類を表1に示した。また、実施例1~12及び比較例1~7に対して前記の測定及び評価試験を行った。測定結果及び評価結果を2に示す。 Table 1 shows the types of hydrofluoroethers used in Examples 1 to 12 and Comparative Examples 1 and 2. In addition, the measurement and evaluation tests described above were conducted for Examples 1 to 12 and Comparative Examples 1 to 7. Measurement results and evaluation results are shown in 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態のフェノール樹脂発泡体およびその積層板は気泡径が小さいため優れた断熱性能を持つ可能性があり、ボイドや発泡体の色ムラなどの外観不良や圧縮強さが改善されたものであることから、例えば断熱を必要とする種々の場所で利用可能である。また原料が従来技術より安価で、設備投資が少なく、GWPが小さい事から環境負荷が小さく環境に優しい発泡体を提供し得る。 The phenolic resin foam and its laminate of this embodiment have a small cell diameter, so they may have excellent heat insulation performance, and the appearance defects such as voids and uneven color of the foam, as well as the compressive strength, are improved. Therefore, it can be used in various places that require insulation, for example. In addition, since the raw materials are cheaper than the conventional technology, the capital investment is small, and the GWP is small, it is possible to provide an environmentally friendly foam with a small environmental impact.

Claims (9)

  1.  下記(式1)で表されるハイドロフルオロエーテルをフェノール樹脂発泡体に対し0.03~4.3質量%含有するフェノール樹脂発泡体。
    (式1):C-O-C
    (但し、a,b,c,x,y,zは整数であり、2≦a≦7、0≦b≦3、c=2a+1-b、b≦2a+1、1≦x≦3、2≦y≦7、z=2×x+1-y、y≦2x+1)
    A phenolic resin foam containing 0.03 to 4.3% by mass of a hydrofluoroether represented by the following (Formula 1) based on the phenolic resin foam.
    (Formula 1): C a H b F c -O-C x H y F z
    (However, a, b, c, x, y, z are integers, 2≦a≦7, 0≦b≦3, c=2a+1-b, b≦2a+1, 1≦x≦3, 2≦y ≦7, z=2×x+1-y, y≦2x+1)
  2.  (式1)で表されるハイドロフルオロエーテルが、メチルパーフルオロプロピルエーテル、メチルノナフルオロブチルエーテル、メチルノナフルオロイソブチルエーテル、エチルノナフルオロブチルエーテル、エチルノナフルオロイソブチルエーテル、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)-ペンタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルの内のいずれかである、請求項1に記載のフェノール樹脂発泡体。 The hydrofluoroether represented by (Formula 1) is methyl perfluoropropyl ether, methyl nonafluorobutyl ether, methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, 1,1,1,2,2 , 3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether The phenolic resin foam according to claim 1, which is any one of the following.
  3.  平均気泡径が70μm以上180μm以下である、請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, having an average cell diameter of 70 μm or more and 180 μm or less.
  4.  発泡剤がハイドロフルオロオレフィンを含む請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, wherein the blowing agent contains a hydrofluoroolefin.
  5.  発泡剤が炭化水素を含む請求項4に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 4, wherein the blowing agent contains a hydrocarbon.
  6.  密度が10kg/m以上70kg/m以下である、請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, having a density of 10 kg/m 3 or more and 70 kg/m 3 or less.
  7.  独立気泡率が80%以上である、請求項1又は2に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 1 or 2, having a closed cell ratio of 80% or more.
  8.  独立気泡率が80%以上である、請求項3に記載のフェノール樹脂発泡体。 The phenolic resin foam according to claim 3, having a closed cell ratio of 80% or more.
  9.  前記フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に表面材を備える、請求項1又は2に記載のフェノール樹脂発泡体の積層板。 The phenolic resin foam laminate according to claim 1 or 2, comprising a surface material on at least one of one surface of the phenolic resin foam and the back surface of the one surface.
PCT/JP2023/015835 2022-04-22 2023-04-20 Foamed phenolic-resin object and laminate thereof WO2023204283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024516318A JPWO2023204283A1 (en) 2022-04-22 2023-04-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071172 2022-04-22
JP2022-071172 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204283A1 true WO2023204283A1 (en) 2023-10-26

Family

ID=88419923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015835 WO2023204283A1 (en) 2022-04-22 2023-04-20 Foamed phenolic-resin object and laminate thereof

Country Status (3)

Country Link
JP (1) JPWO2023204283A1 (en)
TW (1) TW202344587A (en)
WO (1) WO2023204283A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202242A (en) * 1990-11-28 1992-07-23 Toyo Tire & Rubber Co Ltd Production of phenol resin foam
JP2001502377A (en) * 1996-10-22 2001-02-20 オウェンス コーニング Production of non-chlorofluorocarbon cellular resole foams using perfluorinated ethers
JP2002309031A (en) * 2001-04-12 2002-10-23 Asahi Kasei Corp Phenol resin foam for fine foam
US20060128821A1 (en) * 2004-11-08 2006-06-15 Owens John G Preparation of polymeric foams using hydrofluoroether nucleating agents
JP2011504538A (en) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド Foaming agent and composition containing fluorine-substituted olefin, and foaming method
JP2018095869A (en) * 2016-12-10 2018-06-21 積水化学工業株式会社 Phenol resin foam and method for producing the same
WO2021157698A1 (en) * 2020-02-06 2021-08-12 旭化成建材株式会社 Phenol resin foam laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202242A (en) * 1990-11-28 1992-07-23 Toyo Tire & Rubber Co Ltd Production of phenol resin foam
JP2001502377A (en) * 1996-10-22 2001-02-20 オウェンス コーニング Production of non-chlorofluorocarbon cellular resole foams using perfluorinated ethers
JP2002309031A (en) * 2001-04-12 2002-10-23 Asahi Kasei Corp Phenol resin foam for fine foam
US20060128821A1 (en) * 2004-11-08 2006-06-15 Owens John G Preparation of polymeric foams using hydrofluoroether nucleating agents
JP2011504538A (en) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド Foaming agent and composition containing fluorine-substituted olefin, and foaming method
JP2018095869A (en) * 2016-12-10 2018-06-21 積水化学工業株式会社 Phenol resin foam and method for producing the same
WO2021157698A1 (en) * 2020-02-06 2021-08-12 旭化成建材株式会社 Phenol resin foam laminate

Also Published As

Publication number Publication date
JPWO2023204283A1 (en) 2023-10-26
TW202344587A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN114072440A (en) Resin composition for producing phenolic foam, and method for producing phenolic foam
WO2020031863A1 (en) Resin composition for phenolic foam production
JP7011048B2 (en) Phenol resin foam laminated board and its manufacturing method
JP2023026455A (en) Phenolic resin foam laminated plate and composite plate
JP7223201B1 (en) Phenolic Foam Laminate
WO2023204283A1 (en) Foamed phenolic-resin object and laminate thereof
JP5809738B1 (en) Phenol resin foam laminate and method for producing the same
JP6946038B2 (en) Phenol resin foam laminate and its manufacturing method
RU2791537C1 (en) Foamed phenolic resin laminated board
JP7027078B2 (en) Phenol resin foam laminated board and its manufacturing method
KR20230095122A (en) Flame-retardant phenol resin foam
KR102728357B1 (en) Phenolic resin foam laminate
JP7221083B2 (en) Method for producing phenolic resin foam
WO2024225405A1 (en) Phenolic resin foam and method for producing same
JP7014566B2 (en) Phenol resin foam plate and its manufacturing method
JP7045169B2 (en) Phenol resin foam laminated board and its manufacturing method
JP7010643B2 (en) Phenol resin foam laminated board
JP7026468B2 (en) Phenol resin foam laminated board and its manufacturing method
JP5795410B1 (en) Phenol resin foam laminate and method for producing the same
JP2000169616A (en) Phenolic resin foaming composition and production of foam using the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516318

Country of ref document: JP

Kind code of ref document: A