WO2024225206A1 - Exhalation sensor and blood sugar level measurement device - Google Patents
Exhalation sensor and blood sugar level measurement device Download PDFInfo
- Publication number
- WO2024225206A1 WO2024225206A1 PCT/JP2024/015652 JP2024015652W WO2024225206A1 WO 2024225206 A1 WO2024225206 A1 WO 2024225206A1 JP 2024015652 W JP2024015652 W JP 2024015652W WO 2024225206 A1 WO2024225206 A1 WO 2024225206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- breath
- blood glucose
- heating wire
- breath sensor
- electrical resistance
- Prior art date
Links
- 239000008280 blood Substances 0.000 title claims abstract description 110
- 210000004369 blood Anatomy 0.000 title claims abstract description 110
- 238000005259 measurement Methods 0.000 title abstract description 28
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 104
- 239000008103 glucose Substances 0.000 claims abstract description 104
- 238000010438 heat treatment Methods 0.000 claims abstract description 76
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910003472 fullerene Inorganic materials 0.000 claims abstract description 33
- 230000002093 peripheral effect Effects 0.000 claims abstract description 8
- 239000002717 carbon nanostructure Substances 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 45
- 230000008859 change Effects 0.000 claims description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000002070 nanowire Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 56
- 229910052799 carbon Inorganic materials 0.000 abstract description 51
- 239000002135 nanosheet Substances 0.000 abstract description 51
- 238000011084 recovery Methods 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 38
- 238000000034 method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000007664 blowing Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 206010012601 diabetes mellitus Diseases 0.000 description 9
- 239000002086 nanomaterial Substances 0.000 description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000004904 shortening Methods 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Definitions
- the present invention relates to a breath sensor and blood glucose level measuring device that can detect with high accuracy the change in electrical resistance caused by the adsorption of components such as acetone in breath, and also calculates blood glucose levels with high accuracy based on the detected results.
- blood glucose levels have generally been measured using blood glucose test kits.
- the method of measuring blood glucose levels using these test kits involves using a puncture device or needle included in the test kit to collect blood from the patient's fingertip or other part, and then inputting the blood into a blood glucose meter (measuring chip) also included in the test kit to confirm the measurement results, but this places a heavy burden on the patient in terms of blood collection, etc.
- Patent Document 1 discloses a sensing element that uses nanostructures such as carbon nanotubes to detect the acetone concentration in breath at room temperature levels.
- Patent Document 2 various sensors and devices are described as Examples 1 to 9, and in Example 6, it is described that the acetone concentration is detected from the change in electrical resistance caused by the oxidation reaction between acetone and atmospheric oxygen adsorbed on the surface of a semiconductor sensor containing a surface modification paste such as tin oxide or zinc oxide.
- the semiconductor sensor is heated to 300 to 400°C by a heater wire (see the description in paragraphs 0036, 0037, etc. of Patent Document 2).
- nanostructures such as carbon nanotubes are used to detect the concentration of acetone and other substances contained in breath, but because the detection is performed at room temperature, the activation of the components in the breath to be detected does not progress sufficiently, and the electrical resistance also changes slowly, making it difficult to grasp the final detected value that has completely changed, and therefore difficult to detect the exact concentration.
- the semiconductor sensor is heated to 300-400°C by a heater wire, which provides sufficient heat to the components in the breath and promotes reactions such as oxidation.
- a heater wire which provides sufficient heat to the components in the breath and promotes reactions such as oxidation.
- nanostructures such as carbon nanotubes
- it is difficult to reliably adsorb the components contained in the breath, and as a result, there is a problem that it is difficult to detect changes in electrical resistance with high accuracy.
- the present invention was made in consideration of these circumstances, and aims to provide a breath sensor and blood glucose measuring device that uses nanostructures to detect changes in electrical resistance due to the adhesion of components in breath, resulting in a clear change in electrical resistance value, making it easier to grasp the detected value with high accuracy.
- the present invention also aims to provide a breath sensor and blood glucose measuring device that are easier to use by shortening the time it takes to recover from a detection to a state where the next detection is possible.
- the present invention provides a breath sensor equipped with a carbon nanostructure that has the property of changing its electrical resistance when components contained in the breath adhere to it, the carbon nanostructure is formed in a cylindrical shape, and is equipped with a heating wire member disposed inside the carbon nanostructure and a pair of electrodes electrically connected to the carbon nanostructure, and an opening formed on one end side of the carbon nanostructure serves as an intake port for the breath.
- a heating wire member is placed inside a cylindrical carbon nanostructure, and an opening on one end of the cylindrical carbon nanostructure serves as an intake port for exhaled air, so that the exhaled air containing the components to be detected flows smoothly into the cylindrical carbon nanostructure and is heated by the heating wire member placed inside.
- the components contained in the exhaled air are heated in this way, the components are activated and reactions such as oxidation are promoted, and the electrical resistance of the carbon nanostructure to which the heated components are attached tends to change significantly, making it possible to detect changes in electrical resistance with high accuracy.
- the present invention is characterized in that it includes an annular insulating member disposed inside the carbon nanostructure, and the heating wire member is disposed inside the insulating member.
- a ring-shaped insulating member is placed inside the carbon nanostructure, and a heating wire member is placed inside the insulating member, so that the insulating member is between the heating wire member and the carbon nanostructure, and the heat generated by the heating wire member is less likely to be transmitted to the carbon nanostructure by the insulating member.
- the present invention is characterized in that a fullerene layer is formed on the inner peripheral surface of the annular insulating member.
- a fullerene layer is formed on the inner circumferential surface of the insulating member, so that the detection results for changes in electrical resistance become stable and the time until the next detection becomes possible is shortened.
- fullerenes have insulating properties
- the insulating properties of the insulating member are enhanced.
- the heat generated by the heating wire member placed inside the insulating member is further inhibited from being transmitted to the carbon nanostructure, the thermal effect on the carbon nanostructure is further suppressed, and changes in electrical resistance can be detected more stably.
- fullerenes have the property of efficiently adsorbing and absorbing components contained in the surrounding gas
- a fullerene layer is formed on the inner surface of the insulating member. This fullerene layer adsorbs the remaining components (unnecessary gas components) and moisture components floating inside the carbon nanostructure, reducing these components. This makes it easier to determine the detection results of changes in electrical resistance, enabling stable detection and also shortening the time until the next detection is possible.
- the present invention is characterized in that the negative electrode of the pair of electrodes contains fullerene.
- fullerene is contained in the negative electrode of the electrode.
- Fullerene has excellent conductive properties and, as described above, has the property of efficiently adsorbing components in gas. This makes it easier to detect changes in the electrical resistance of the carbon nanostructures that adsorb components in the breath, and also contributes to shortening the time until the next detection.
- the present invention is characterized in that the heating wire member is made of copper nanowires coated with nanosilver.
- the heating wire member made of copper nanowire is coated with nanosilver, which ensures efficient heating of the components in the breath and contributes to shortening the time until the next detection is possible.
- the heating wire member uses copper nanowire, which makes it possible to efficiently heat the components in the breath, but the heating process makes the surface of the copper nanowire itself prone to oxidation. If the surface of the copper nanowire is oxidized, it will affect the next detection and it will take time to return to a detectable state.
- the heating wire member made of copper nanowire can be stabilized and also helps to shorten the time until the next detection is possible.
- the coating with nanosilver can be applied to the entire surface of the heating wire member, or it can be applied partially so that part of the surface is exposed.
- the present invention is characterized in that the heating wire member has a wound coil portion and a net-like mesh portion formed around the coil portion.
- a net-like mesh portion is formed around the wound coil portion as the heating wire member, so that the breath taken into the carbon nanostructure not only flows in so as to come into contact with the coil portion, but also flows so as to pass through the mesh portion, increasing the degree of contact with the heating wire member.
- the components in the breath are heated efficiently, and the change in the electrical resistance of the carbon nanostructure becomes more noticeable, improving detection accuracy.
- the present invention is characterized in that the blood glucose level measuring device comprises the above-mentioned breath sensor, an electrical resistance detection means for detecting a change in the electrical resistance of the carbon nanostructure contained in the breath sensor, a blood glucose level calculation means for calculating the blood glucose level based on the detection result of the electrical resistance detection means, and an output means for outputting the calculation result of the blood glucose level calculation means.
- the above-mentioned breath sensor is used to calculate blood glucose levels based on the detection results of changes in the electrical resistance of the carbon nanostructures, making it possible to calculate blood glucose levels with high accuracy, and the time required to perform the next blood glucose level calculation after one calculation can be shortened compared to conventional methods, greatly improving usability.
- the components in the breath that are to be attached to the carbon nanostructures are heated, which makes the change in the electrical resistance of the carbon nanostructures more noticeable than in the past, thereby improving detection accuracy.
- the heat generated by the heating wire is less likely to be transmitted to the carbon nanostructure by using a heat insulating material, which prevents high temperatures from affecting the detection of changes in electrical resistance and enables stable detection of changes in resistance.
- fullerene is used for the negative electrode, which allows for good detection of changes in electrical resistance and contributes to shortening the time until the next detection is possible.
- the heating wire member made of copper nanowire is coated with nanosilver, which allows the components in the breath to be heated efficiently and shortens the time until the next detection is possible.
- the heating wire member has a net-like mesh portion around the wound coil portion, which increases the degree to which the breath taken into the carbon nanostructure comes into contact with the heating wire member, efficiently heating the components in the breath and contributing to improved accuracy in detecting electrical resistance.
- a breath sensor such as that described above is used to calculate blood glucose levels based on the detection results of changes in the electrical resistance of the carbon nanostructures, so blood glucose levels can be calculated with high accuracy, and the time until the next blood glucose level calculation can be performed can be shortened compared to conventional methods, improving ease of use.
- FIG. 1 is a schematic perspective view showing the appearance of a blood glucose measuring device according to an embodiment of the present invention.
- FIG. 2 is a block diagram of the main electric circuits of a control system of the blood glucose measuring device.
- 1 is a perspective view showing an overall appearance of a breath sensor unit according to an embodiment of the present invention;
- FIG. 2 is a schematic perspective view showing a disassembled state of the breath sensor unit.
- (a) is a cross-sectional oblique view of a cylindrical carbon nanosheet cut in half vertically to show the inside of the breath sensor
- (b) is a cross-sectional oblique view of the main parts of the annular insulating member cut vertically in the same manner to show the heating wire member inside.
- FIG. 2 is a schematic perspective view showing a state in which a heating line member is disposed inside a heat insulating member.
- FIG. 1 is a schematic perspective view showing a state in which a carbon nanosheet is wrapped around a heat insulating member having a heating line member disposed therein to form a cylindrical shape.
- FIG. 2 is a schematic perspective view showing a state in which a pair of electrodes is disposed inside a cylindrical carbon nanosheet.
- 1A is a front view of the breath sensor
- FIG. 1B is a plan view of the breath sensor
- FIG. 1C is a cross-sectional view of the breath sensor in the front view of FIG. 1A taken along line AA.
- FIG. 4A and 4B show a state in which a breath sensor is held by a sensor holder, with FIG. 4A being a schematic perspective view and FIG.
- FIG. 2 is an electric circuit diagram showing an electrical connection state regarding a positive electrode and a negative electrode.
- FIG. 2 is a schematic diagram showing a situation in which exhaled air is taken into a breath sensor.
- 1 is a part of a graph comparing the blood glucose measurement results obtained by the blood glucose measuring device according to the present invention and a conventional device.
- 11 is the remaining portion of a graph comparing the blood glucose measurement results obtained by the blood glucose measuring device according to the present invention and a conventional device.
- FIG. 1 shows the appearance of a blood glucose measuring device 1, which is an example of an embodiment of the present invention.
- the blood glucose measuring device 1 of this embodiment is small and portable, with a pipe-shaped blowing section 3 protruding from the top surface 2a of a box-shaped housing 2, a display 5 that displays the measurement results exposed on the top surface 2a, and a power switch 4 located on one side surface 2b around the housing 2.
- This blood glucose measuring device 1 is designed to measure the blood glucose level of a subject by having the subject hold the open tip 3a of the pipe-shaped blowing section 3 and blow (exhale) into it. Inside the blowing section 3 is placed a breath sensor unit 10, which plays a central role in the present invention, and the use of this breath sensor unit 10 makes it possible to measure blood glucose levels with higher accuracy than those disclosed in the above-mentioned Patent Document 1 or Patent Document 2, and is characterized by the fact that it shortens the time from the end of a measurement until the next measurement is possible. This will be explained in detail below.
- Figure 2 shows a main electrical circuit block diagram of the control system in the blood glucose measuring device 1.
- part units related to the electrical circuit of the blood glucose measuring device 1 include the breath sensor unit 10 and display 5 described above, as well as a processor unit 6 and a transducer 7.
- the breath sensor unit 10 and the transducer 7 are connected by a first connection line d1 (the first connection line d1 is composed of multiple conductive lines), the transducer 7 and the processor unit 6 are connected by a second connection line d2, and the processor unit 6 and the display 5 are connected by a third connection line d3.
- each of these part units such as the display 5, processor unit 6, transducer 7, and breath sensor unit 10, are arranged inside the housing 2 of the blood glucose measuring device 1 (the display screen of the display 5 is exposed from the top surface 2a of the housing 2).
- the blood glucose measuring device 1 also has a battery 8 arranged inside the housing 2 for power supply, and power from the battery 8 is supplied to each of the above-mentioned part units through a power supply circuit (not shown), thereby applying a predetermined voltage to the breath sensor unit 10.
- This power supply circuit includes the power switch 4 shown in FIG. 1, and turning the power switch 4 on and off makes it possible to switch between a power supply state and a non-power supply state from the battery 8.
- the transducer 7 When a predetermined voltage is applied to the breath sensor unit 10 by turning on the power switch 4, an analog current is output from the breath sensor unit 10 to the transducer 7 through the first connection line d1.
- the transducer 7 amplifies and digitally converts the analog current input through the first connection line d1 to generate a converted signal that can be processed by the processor unit 5, and outputs the converted signal to the processor unit 6 through the second connection line d2.
- the processor unit 6 detects the electrical resistance value related to the breath sensor unit 10 based on the input signal (input conversion signal) from the transducer 7, and calculates the blood glucose level based on the detected electrical resistance value. It is a unit in which the control unit 6a, memory 6b, RAM 6c, etc. are arranged on a printed circuit board.
- the control unit 6a is a processor that functions as a means for performing various processes based on the programming contents of the program P stored in the memory 6b (the contents of the algorithm corresponding to the program).
- the control unit 6a mainly performs the process of detecting the electrical resistance value based on the input signal from the transducer 7 as the electrical resistance detection means, the process of calculating the blood glucose level based on the value obtained by the electrical resistance detection process as the blood glucose level calculation means, and the process of displaying and outputting the calculated blood glucose level on the display 5 as the output means.
- the breath of the subject is blown onto the breath sensor unit 10.
- components in the subject's breath e.g., components such as volatile organic compounds, specifically components such as acetone, ketones, and ethanol
- the electrical resistance value of the breath sensor unit 10 changes, and the control unit 6a detects this change in electrical resistance value based on the input signal from the transducer 7.
- control unit 6a detects the electrical resistance value when the power switch 4 is turned on and power supply is started, and when the subject's breath is not being blown into the sensor, and also detects the electrical resistance value after the breath is blown into the sensor.
- the degree of change in the electrical resistance value is determined according to the amount of components in the breath that adhere to the breath sensor unit 10, and the greater the amount of components that adhere, the greater the degree of change.
- the control unit 6a first detects the concentration of components in the exhaled breath from the detected electrical resistance value, then converts the detected concentration of components into a blood glucose level based on a predetermined conversion formula, and finally calculates the blood glucose level of the subject who blew in the exhaled breath.
- the predetermined conversion formula used in this calculation is either stored in advance in the memory 6b or is included in the program P.
- the concentration of components in the breath related to blood glucose levels is detected in ppm (parts per million) units.
- the detected component concentration is approximately 0.3 to 0.9 ppm.
- the detected component concentration is generally a value exceeding 0.9 ppm. Note that in this embodiment, it is possible to calculate values up to approximately 10 ppm (and the control unit 6a may also be able to calculate the concentration in detail in units of several ppb (parts per billion)).
- control unit 6a When the control unit 6a detects the concentration of components including acetone, as described above, it substitutes the detected numerical value of the concentration of the components into the predetermined conversion formula described above to calculate the blood glucose level (glucometer count). Then, in order to display the calculated blood glucose level on the display 5, the control unit 6a generates measurement result information including the blood glucose level and outputs it to the display 5 via the third connection line d3. The control unit 6a also performs a process of temporarily storing the calculated blood glucose level, the detected concentration of the components, the electrical resistance value, etc. in the RAM 6c.
- the control unit 6a in this embodiment performs a process of counting the time required for the heating wire member 14 to generate heat up to a predetermined temperature. In this embodiment, it determines whether the reference time stored in advance in the memory 6b is reached, and if it determines that the reference time has been reached, it counts up and starts the above-mentioned process of detecting the electrical resistance value. Also, while the control unit 6a is counting the time, it outputs information indicating the count status to the display 5.
- the display 5 is a display panel such as a liquid crystal or organic electroluminescence display, and when it receives information output from the control unit 6a via the third connection line d3, it displays the received information on the display screen. This allows the subject, or user, to easily know his or her own blood glucose level by viewing the display 5.
- the breath sensor unit 10 which is the core of the present invention, will be described in detail.
- Fig. 3 shows the overall appearance of the breath sensor unit 10 according to this embodiment
- Fig. 4 shows an exploded view of the same.
- the breath sensor unit 10 according to this embodiment is mainly composed of a sensor holder 30, a breath sensor 11, and a sensor cover 20.
- the X-axis shown in Figs. 3 and 4 indicates one direction on a horizontal plane
- the Y-axis indicates a direction perpendicular to the X-axis on the same horizontal plane
- the Z-axis indicates a direction perpendicular to the X-axis and Y-axis.
- the X-axis represents the width direction of the breath sensor unit 10
- the Y-axis represents the depth direction of the breath sensor unit 10
- the Z-axis represents the height direction of the breath sensor unit 10 (the orientations of the X, Y, and Z-axes are the same in the other figures).
- the sensor holder 30 is a member for holding the breath sensor 11, and has a donut-shaped holder body 31 and a total of six conductive pins, first to sixth, 32a, 32b, 33a, 33b, 34a, and 34b, that penetrate the holder body 31 in the height direction (Z-axis direction).
- the holder body 31 is a nickel-plated copper member with a stepped upper surface 31a and a flat lower surface 31b, and a hollow portion 31c that penetrates in the height direction (Z-axis direction) in the center.
- the thickness (height in the Z-axis direction) of the holder body 31 at the outer periphery is set to approximately 12 mm
- the inner diameter of the hollow portion 31c of the holder body 31 is set to a value corresponding to the outer diameter of the breath sensor 11, so that the breath sensor 11 can be fitted into and held in the hollow portion 31c.
- the first to sixth conductive pins 32a, 32b, 33a, 33b, 34a, 34b penetrate from the stepped upper surface 31a to the lower surface 31b of the holder body 31, and each of the six conductive pins 32a to 34b is a conductive nickel-plated pin member and is arranged at intervals in the circumferential direction of the holder body 31 in a plan view (see FIG. 10(b)).
- the first and second conductive pins 32a, 32b are for connection to the heating wire member 14 included in the breath sensor 11
- the third and fourth conductive pins 33a, 33b are for connection to the positive electrode 16 included in the breath sensor 11
- the fifth and sixth conductive pins 34a, 34b are for connection to the negative electrode 17 included in the breath sensor 11.
- the sensor cover 20 is a cover for covering and protecting the breath sensor 11 held in the holder body 31, and has a cover portion 21 protruding from an annular flange portion 22.
- the cover portion 21 is a mesh member made of stainless steel mesh, and has a mesh size sufficient to allow breath to pass through.
- the annular flange portion 22 is also formed to fit into the step on the upper surface 31a of the sensor holder 30 described above.
- the breath sensor 11 is the main part of the breath sensor unit 10 and is used to detect the concentration of components in the breath, and is directly used to detect changes in electrical resistance caused by the adhesion of components in the breath.
- the breath sensor 11 has a tubular (cylindrical) overall appearance, with a total of six lead wires T1 to T4, H1, and H2 extending outwards from the periphery.
- the portion that constitutes the tubular (cylindrical) appearance of the breath sensor 11 is made of a carbon nanostructure, and in this embodiment, a carbon nanosheet 12 with excellent electrical conductivity is used as the carbon nanostructure.
- the carbon nanosheet 12 has numerous nano-sized depressions on its sheet-like surface, and these depressions make it easy for the components in the breath to adhere to it.
- the carbon nanosheet 12 (carbon nanostructure) has the property that its electrical properties change when components contained in the breath adhere to it; specifically, the electrical resistance changes, and the degree of this change in electrical resistance increases as more components adhere to it.
- the breath sensor 11 has a ring-shaped insulating member 13 and a pair of electrodes 15 arranged inside the carbon nanosheet 12.
- the ring-shaped insulating member 13 is arranged near the upper end of the breath sensor 11 in the height direction (Z-axis direction) (the side of the upper end 12a of the carbon nanosheet 12), while the pair of electrodes 15 are arranged near the lower end of the breath sensor 11 in the height direction (Z-axis direction) (the side of the lower end 12b of the carbon nanosheet 12).
- the insulating member 13 is a ring-shaped (tubular) member having a predetermined height, and in this embodiment, a ceramic member is used (for example, a tubular member formed by stacking multiple ceramic layers).
- the insulating member 13 has a fullerene layer 18 formed on its inner peripheral surface 13b.
- the size of the insulating member 13 in this embodiment is set to approximately 16 mm in the radial dimension (outer diameter) and approximately 8 mm in height.
- the fullerene layer 18 is formed by mixing powdered fullerene with a solvent or the like to a predetermined viscosity (for example, a paste) and applying (spraying) it to the inner circumferential surface 13b of the heat insulating member 13.
- the fullerenes used are basically types C60 and C70, but types C76, C78, C82, C84, C90, and C96 can also be used.
- a heating wire member 14 is disposed inside the insulating member 13.
- the heating wire member 14 is for heating the components in the breath blown in by the subject, and is composed of wire (heat wire).
- the heating wire member 14 of this embodiment has a coil section 14a wound with wire at its center, and a mesh section 14b made of wire woven in a mesh pattern is integrally formed around the coil section 14a.
- the coil portion 14a is wound at a pitch (spacing) that does not prevent the passage of exhaled breath components (gas components), and the mesh size of the mesh portion 14b is set to a dimension that does not prevent the passage of exhaled breath components (gas components).
- the outer peripheral contour of the coil portion 14a is circular, and the radial dimension is set to a value that corresponds to the inner diameter dimension of the insulating member 13 described above, so that the heating wire member 14 can be fitted and positioned inside the insulating member 13.
- the heating wire member 14 of this embodiment uses copper nanowires as the wire material (heat wire), and the surface of the copper nanowires is coated with nanosilver by electroplating.
- the copper nanowires are produced through a process of reducing Cu(OH) 2 with a reducing agent (hydrazine N2H4 ).
- the copper nanowires are obtained by performing a process of reducing Cu(OH) 2 with a reducing agent (hydrazine N2H4 ) in an aqueous solution containing sodium hydroxide (NaOH) and ethylenediamine .
- the heating wire member 14 as described above has heating leads H1 and H2 extending from the outer periphery along the longitudinal direction of the coil portion 14a (points corresponding to both ends of the diameter that pass through the coil portion 14a). These leads H1 and H2 are electrically connected to the wire that constitutes the heating wire member 14, and when a current from the battery 8 is passed through the leads H1 and H2 to the heating wire member 14, the heating wire member 14 generates heat, reaching approximately 200°C (note that in order to accurately detect changes in electrical resistance, it is preferable for the heating wire member 14 to generate heat to at least approximately 140°C).
- a pair of electrodes 15 arranged on the side of the lower end 12b (the other end) of the carbon nanosheet 12 has a positive electrode 16 and a negative electrode 17, which are small pieces (small plate-shaped) of material.
- the positive electrode 16 and the negative electrode 17 contain gold nanoparticles.
- positive electrode lead wires T1 and T2 are connected to the outer surface 16a of the positive electrode 16, and negative electrode lead wires T3 and T4 are connected to the outer surface 17a of the negative electrode 17. Platinum wires are used for these lead wires T1 to T4 in order to ensure a certain level of conductivity.
- the electrical circuit diagram shown in Figure 11 shows the electrical connection status of the positive electrode 16 and negative electrode 17.
- the power switch 4 and battery 8 are connected in series, and the power switch 4 is connected to the positive electrode 16, and the negative electrode of the battery 8 is connected to the negative electrode 17.
- a carbon nanosheet 12 is interposed between the positive electrode 16 and the negative electrode 17. When the power switch 4 is turned on, a predetermined voltage is applied between the positive electrode 16 and the negative electrode 17, and a current flows from the positive electrode 16 to the negative electrode 17 through the carbon nanosheet 12.
- the current flowing in this manner is output to the transducer 7 as described above.
- the battery 8 is also electrically connected to the heating wire member 14 described above, and power supply from the battery 8 to the heating wire member 14 can be switched by turning the power switch 4 on and off.
- the heating wire member 14 which has been prepared in advance, is inserted into the heat insulating member 13 from the lower end 13c.
- the height at which the heating wire member 14 is placed is preferably in the middle of the heat insulating member 13 in the height direction (Z-axis direction) to ensure stable placement.
- the lead wires H1 and H2 extending from the heating wire member 14 placed inside the heat insulating member 13 are pulled outward from the lower end 13c of the heat insulating member 13.
- the rectangular carbon nanosheet 12 is wrapped around the outer peripheral surface 13a of the heat insulating member 13 to form a tube (cylindrical shape).
- one vertical side 12c (side along the Z-axis direction) of the carbon nanosheet 12 is overlapped with the other vertical side 12d and bonded together with a conductive adhesive.
- a heat-resistant adhesive is used.
- the lead wires H1 and H2 extending from the heating wire member 14 are passed through the carbon nanosheet 12 and taken out to the outside.
- a pair of electrodes 15 are inserted into the carbon nanosheet 12 from the lower end 12b side of the cylindrically formed carbon nanosheet 12, and arranged in a state where they are electrically connected to the carbon nanosheet 12.
- the positive electrode 16 and negative electrode 17 of the electrodes 15 arranged inside in this manner are fixed in a state where they are in contact with the inner surface 12e of the carbon nanosheet 12 (see FIG. 7 and FIG. 9(c)).
- a conductive adhesive is applied to the left and right vertical side portions 16b, 16c (see FIG. 8, sides parallel to the Z-axis direction) on the outer surface 16a of the positive electrode 16, and the left and right vertical side portions 16b, 16c are pressed against and adhered to the inner surface 12e of the carbon nanosheet 12, thereby fixing the positive electrode 16 to the inner surface 12e of the carbon nanosheet 12.
- the left and right vertical side portions 17b, 17c (with the conductive adhesive applied) on the outer surface 17a of the negative electrode 17 are pressed against and adhered to the inner surface 12e of the carbon nanosheet 12 at a position opposite the positive electrode 16, thereby fixing the negative electrode 17 to the inner surface 12e of the carbon nanosheet 12.
- the positive electrode 16 and the negative electrode 17 are fixed in a state of electrical conduction (connection) with the carbon nanosheet 12.
- the lead wires T1, T2 extending from the outer surface 16a of the positive electrode 16 and the lead wires T3, T4 extending from the outer surface 17a of the negative electrode 17 penetrate the carbon nanosheet 12 and are taken out to the outside, similar to the lead wires H1, H2 of the heating wire member 14 described above.
- the breath sensor 11 is completed through the manufacturing process described above.
- the completed breath sensor 11 is fixed by fitting it from below into the hollow portion 31c of the sensor holder 30 described above (see Figure 4).
- the breath sensor 11 is oriented in the circumferential direction so that the lead wires H1 and H2 extending from the periphery of the breath sensor 11 (carbon nanosheet 12) face the first and second conductive pins 32a and 32b of the sensor holder 30.
- the lead wires H1, H2, T1-T4 are then connected to the upper ends of the first through sixth conductive pins 32a, 32b, 33a, 33b, 34a, and 34b by soldering or the like (see Figures 9(a) and 9(b)).
- the sensor cover 20 is attached so as to cover the breath sensor 11 and the upper surface 31a of the sensor holder 30 (holder body 31), completing the breath sensor unit 10 (see Figures 3 and 4).
- the completed breath sensor unit 10 is electrically connected and then placed inside the blood glucose measuring device 1 shown in FIG. 1.
- the lower ends of the first and second conductive pins 32a and 32b are connected to a power supply circuit with the battery 8 placed inside the blood glucose measuring device 1, thereby allowing current to flow to the heating wire member 14, thereby enabling heating by the heating wire member 14.
- the multiple conductive wires constituting the first connection line d1 for connection to the transducer 7 are connected to the lower ends of the third conductive pin 33a and the fifth conductive pin 34a, respectively, and the lower ends of the fourth conductive pin 33b and the sixth conductive pin 34b are connected to the positive and negative sides of the battery 8, respectively, as shown in the electrical circuit diagram in FIG. 11, to perform electrical circuit connection.
- the breath sensor unit 10 is positioned so that the sensor cover 20 fits inside the pipe-shaped blowing section 3 that protrudes from the top surface 2a of the housing 2 of the blood glucose measuring device 1. With the breath sensor unit 10 positioned in this way, the Z-axis direction of the breath sensor unit 10 is aligned with the protruding direction of the blowing section 3.
- the breath blown into the open tip 3a of the blowing section 3 is taken in through an opening formed on the side (one end side) of the upper end 12a of the carbon nanosheet 12 of the breath sensor 11. Therefore, the opening formed on the upper end 12a of the carbon nanosheet 12 in the breath sensor 11 functions as the breath intake 11a (see Figures 4, 12, etc.).
- the subject first turns on the power switch 4.
- power supply voltage application
- the processor unit 6 and other components included in the circuit block shown in FIG. 2 are started, heating is started by the heating wire member 14, and a predetermined voltage of 1.8 to 2.2 V is applied to the electrode 15 (between the positive electrode 16 and the negative electrode 17) of the breath sensor 11, causing a stable current to flow through the carbon nanosheet 12 between the positive electrode 16 and the negative electrode 17.
- control unit 6a of the processor unit 6 When the control unit 6a of the processor unit 6 is started, it performs a timing process until the heating wire member 14 reaches a temperature sufficient for the detection process (for example, about 200°C), and also performs a process of outputting timing information indicating the status during timing (time count status) to the display 5. As a result, the time count status is displayed on the display screen of the display 5, and the subject (user) waits until the time counts up.
- a temperature sufficient for the detection process for example, about 200°C
- the control unit 6a determines whether the measured time reaches the reference time stored in the memory 6b.
- the reference time can be any time within the range of approximately 60 to 180 seconds, and in this embodiment, 70 seconds is used as the reference time.
- the control unit 6a starts counting up and performs a series of processes such as the above-mentioned electrical resistance detection process, component concentration detection process, and blood glucose calculation process, and outputs numerical information indicating the calculated blood glucose level to the display 5.
- the number displayed on the display screen of the display 5 after counting up from powering on is based on the components contained in normal air before exhalation, and generally shows a value of about 60 to 70 (the unit of blood glucose level is mg/dl. The same applies below, and unit notation is omitted).
- the number displayed on the display screen is 70 or less, it is considered to be in a usable (detectable) state.
- the subject checks whether the displayed number is 70 or less, and if the displayed number is 70 or less, holds the blowing part 3 in his/her mouth and blows into it. Note that if the number displayed on the display screen exceeds 70, the subject (user) waits until the displayed number becomes 70 or less before blowing into it.
- Figure 12 shows the state in which breath (exhaled air F) blown into the blowing section 3 is taken into the exhaled air sensor 11 built into the exhaled air sensor unit 10.
- the exhaled air F flows into the sensor from the open intake port 11a and passes through the heating wire member 14 arranged inside the carbon nanosheet 12.
- the heating wire member 14 When passing through this heating wire member 14, the components contained in the exhaled air F are heated, promoting various reactions such as oxidation, activating the electrons in the components, and the activated components adhere to the carbon nanosheet 12, making it easy for the electrical resistance of the carbon nanosheet 12 between the positive electrode 16 and the negative electrode 17 to which a voltage is applied to change significantly.
- the copper nanowires constituting the heating wire member 14 have some uncoated surfaces, and in these uncoated areas, heating causes an oxidation reaction of the copper components, generating copper oxide (CuO).
- CuO copper oxide
- components in the exhaled breath pass through the heating wire member 14, they react with this copper oxide (CuO).
- acetone CH3COCH3
- a reaction occurs between the copper oxide and acetone .
- Acetone ( CH3COCH3 ) is decomposed (pyrolyzed) into components such as ketene ( CH2CO ) and methane ( CH4 ), and the components produced by such a reaction adhere to the inner surface 12e of the carbon nanosheet 12 of the breath sensor 11, causing a change in the electrical resistance of the breath sensor 11 (carbon nanosheet 12).
- the components of the breath taken into the breath sensor 11 are heated by the heating wire member 14, which makes it easier for the electrical resistance to change quickly.
- the heating wire member 14 if too much heat is transmitted from the heating wire member 14 to the carbon nanosheet 12, it will affect the change in electrical resistance caused by the adhesion of the breath components, and there is a concern that this will worsen the accuracy of detecting the electrical resistance based on the adhesion of the breath components.
- the heating wire member 14 is disposed inside the insulating member 13, and the insulating performance of the insulating member 13 is reinforced by the fullerene layer 18 on the inner surface 13a, so that the heat generated by the heating wire member 14 is prevented from being transmitted to the carbon nanosheet 12 and affecting the electrical resistance value of the carbon nanosheet 12 as much as possible.
- the blood glucose measuring device 1 of the present invention makes the change in electrical resistance due to the components in the breath more noticeable, making it possible to detect the change in electrical resistance due to the components in the breath with high accuracy.
- the blood glucose measuring device 1 (control unit 6a) then detects the concentration of the components contained in the breath taken into the breath sensor 11 based on the calculation results regarding the change in electrical resistance described above, and the final blood glucose level is calculated based on the detected concentration, with the final calculated blood glucose level changing according to the changed electrical resistance.
- the blood glucose level thus changing is displayed on the display screen of the blood glucose measuring device 1, so that the subject (user) can ascertain their own blood glucose level by simply blowing a breath (exhaled air) into the blood glucose measuring device 1 and viewing the numerical value displayed on the display screen.
- the number (blood glucose level) displayed on the display screen after breathing (exhalation) will change significantly from the number displayed on the display screen before breathing (exhalation).
- the control unit 6a performs timing processing until the reference time (e.g., 70 seconds) is reached, and when the timing processing ends, the value calculated at that time (a value corresponding to the blood glucose level) is displayed on the display screen.
- the reference time e.g. 70 seconds
- the blood glucose measuring device 1 is also characterized by the fact that it quickly recovers to a state where the next measurement is possible after the previous measurement is completed.
- the changed electrical resistance value of the carbon nanosheet 12 is slow to return to normal due to residual components and moisture components floating inside the breath sensor 11 (carbon nanosheet 12), and as a result, it takes time for the blood glucose level to fall below 70.
- the blood glucose measuring device 1 of the present invention forms a fullerene layer 18 on the inner surface 13b of the insulating member 13, and the fullerenes that make up this fullerene layer 18 have the property of efficiently adsorbing and absorbing components in gas.
- the remaining components and moisture components floating inside the breath sensor 11 are adsorbed and absorbed by the fullerene layer 18, so that the blood glucose level smoothly settles below 70 after the measurement is completed.
- Figures 13 and 14 are tables showing the results of an experiment comparing blood glucose levels calculated using the blood glucose measuring device 1 of the present invention with blood glucose levels calculated using a conventional blood sampling device with a test kit for a total of 48 subjects (subjects No. 1 to 48).
- the blood glucose measuring device 1 of the present invention and the conventional device were used at roughly the same time to calculate blood glucose levels with each device (specifically, the blood glucose level was calculated first with the blood glucose measuring device 1, and then immediately with the conventional device).
- the blood glucose measuring device 1 equipped with the breath sensor 11 according to the present invention is useful and easy to use for measuring blood glucose levels, since it can measure blood glucose levels with high accuracy and requires a short time to recover from the completion of a blood glucose measurement until the next measurement is possible.
- the blood glucose measuring device 1 equipped with the breath sensor 11 according to the present invention is not limited to the above-mentioned form, and various modified examples are envisioned.
- a carbon nanosheet 12 is used around the breath sensor 11, but other carbon nanostructures may be used as long as they have the property of changing electrical resistance when components contained in breath adhere to them (for example, a tubular body may be formed around the breath sensor 11 using carbon nanotubes).
- the tubular body that forms the periphery of the breath sensor 11 is not limited to a cylindrical shape, and tubular shapes with polygons (square, pentagon, hexagon, heptagon, octagon, etc.) can also be used.
- the negative electrode 17 in the pair of electrodes 15 contains gold nanoparticles (negative electrodes using gold nanoparticles are easy to manufacture), it is also possible to use other materials that contain fullerenes (C60, C70, etc.) that have excellent conductive properties in order to improve conductivity. As a form that contains fullerenes, it is possible to form a negative electrode by mixing graphite oxide and fullerenes. By using such a negative electrode 17 that contains fullerenes, it becomes easier to detect changes in electrical resistance with high accuracy.
- the heating wire member 14 is not limited to the configuration shown in Figures 5(b) and 6 (a configuration in which a mesh portion 14b is formed around a coil portion 14a), but may be, for example, a configuration in which the mesh portion 14b is omitted and only the coil portion 14a is provided (such as a configuration in which multiple coil portions 14a are arranged in parallel), or conversely, a configuration in which the coil portion 14a is omitted and only the mesh portion 14b is provided.
- the coating of the heating wire member 14 is not limited to nanosilver, but other nano coating materials or coating materials of a completely different system may be used, and the coated wire member is not limited to copper nanowire, but any material that generates heat when electricity is passed through it can be used. Furthermore, depending on the material used, the coating with a coating material such as nanosilver may be omitted.
- the above description of the various processing contents by the program P used in the blood glucose measuring device 1 is just one example, and it is of course possible to define or add other processing contents.
- the comparison table of experimental results shown in Figures 13 and 14 it can be seen that when the measured blood glucose level exceeds 200, there is a tendency for the difference from the measurement results by conventional devices to become larger (the error tends to become larger), so it is possible to add programming contents to the program P based on an algorithm (an algorithm that performs error dispersion, etc.) that corrects the measured blood glucose level when the measured blood glucose level exceeds 200.
- the present invention makes it possible to measure blood glucose levels with high accuracy simply by blowing into the device, and also shortens the recovery time from one measurement to the next, making it suitable for use by people with diabetes or a tendency toward diabetes to measure their blood glucose levels on a daily basis.
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
[Problem] To measure a blood sugar level with high accuracy from a component included in exhaled breath of a user, and to shorten recovery time until the next measurement becomes possible.
[Solution] An exhalation sensor 11 included in an exhalation sensor unit 10 built into a blood sugar level measurement device includes, inside a cylindrical carbon nanosheet 12, a heat insulation member 13 and a pair of electrodes 15. A fullerene layer 18 is formed on the inner peripheral surface of the heat insulating member 13, and a heating wire member 14 is disposed inside the heat insulating member 13. A component in exhaled breath of the user is taken into the exhalation sensor 11 and heated by the heating wire member 14 to adhere to the inner peripheral surface of the carbon nanosheet 12, thereby changing the electric resistance value of the carbon nanosheet 12. Based on the changed electric resistance value, the blood glucose level is finally calculated and presented to the user.
Description
本発明は、呼気中のアセトン等の成分の吸着に伴う電気抵抗の変化を高精度で検出可能にすると共に、検出した結果に基づき血糖値の算出も高精度で行う呼気センサ及び血糖値測定装置に関する。
The present invention relates to a breath sensor and blood glucose level measuring device that can detect with high accuracy the change in electrical resistance caused by the adsorption of components such as acetone in breath, and also calculates blood glucose levels with high accuracy based on the detected results.
従来、人体の血糖値を測定するには一般に、血糖値測定用の検査キットが使われる。この検査キットによる血糖値測定の仕方としては、検査キットに含まれる穿刺器具叉は穿刺針により、患者の血液を指先等から採取して検査キットに含まれる血糖測定器(測定用チップ)に取り込んで測定結果を確認することになるが、血液の採取等に対する患者の負担が大きいものになっている。
Traditionally, blood glucose levels have generally been measured using blood glucose test kits. The method of measuring blood glucose levels using these test kits involves using a puncture device or needle included in the test kit to collect blood from the patient's fingertip or other part, and then inputting the blood into a blood glucose meter (measuring chip) also included in the test kit to confirm the measurement results, but this places a heavy burden on the patient in terms of blood collection, etc.
また、人体の呼気に含まれる各種成分を検出し、その検出結果に基づき人体の症状等を分析することが行われており、このような呼気に含まれる成分(主にアセトン)の濃度を検出することで、血糖値を測定する試みも行われている。例えば、下記の特許文献1では、カーボンナノチューブに代表されるナノ構造体を利用して、呼気中のアセトン濃度を室温レベルで検出するセンシング素子等についての開示がある。
In addition, various components contained in the human breath are detected and human symptoms are analyzed based on the detection results, and attempts have been made to measure blood glucose levels by detecting the concentration of such components (mainly acetone) contained in the breath. For example, the following Patent Document 1 discloses a sensing element that uses nanostructures such as carbon nanotubes to detect the acetone concentration in breath at room temperature levels.
具体的には、ナノ構造体に電圧を印加した状態で、呼気中のアセトンがナノ構造体に付着すると、ナノ構想体に流れる電流値が変化し、それに伴いナノ構造体の電気抵抗の値も変化するので、この電気抵抗の変化を検出することで、ナノ構造体に付着したアセトンの濃度、すなわち、呼気中のアセトン濃度を検出可能にしている。なお、呼気中のアセトン濃度は、糖尿病との関連性が高いことが知られており、呼気中のアセトン濃度が高まると、一般に糖尿病の症状が生じやすくなる(特許文献1の段落0038、0043~0045、0057等の記載参照)。
Specifically, when acetone in the breath adheres to the nanostructure while a voltage is applied to the nanostructure, the value of the current flowing through the nanostructure changes, and the electrical resistance of the nanostructure also changes accordingly; by detecting this change in electrical resistance, it is possible to detect the concentration of acetone adhered to the nanostructure, i.e., the acetone concentration in the breath. It is known that the acetone concentration in the breath is highly related to diabetes, and when the acetone concentration in the breath increases, the symptoms of diabetes generally become more likely to occur (see paragraphs 0038, 0043-0045, 0057, etc. of Patent Document 1).
また、下記の特許文献2には、実施例1~9として各種センサや装置等が説明されており、それらの中で、実施例6では、酸化錫、酸化亜鉛などの表面修飾ペーストを含む半導体センサの表面に吸着させた大気中酸素とアセトンの酸化反応により生じる電気抵抗の変化から、アセトン濃度を検知することが説明されている。このようなアセトン濃度の測定の際、半導体センサはヒーター線により300~400℃に加熱される(特許文献2の段落0036、0037等の記載参照)。
Furthermore, in the following Patent Document 2, various sensors and devices are described as Examples 1 to 9, and in Example 6, it is described that the acetone concentration is detected from the change in electrical resistance caused by the oxidation reaction between acetone and atmospheric oxygen adsorbed on the surface of a semiconductor sensor containing a surface modification paste such as tin oxide or zinc oxide. When measuring the acetone concentration in this way, the semiconductor sensor is heated to 300 to 400°C by a heater wire (see the description in paragraphs 0036, 0037, etc. of Patent Document 2).
上述した特許文献1では、カーボンナノチューブのようなナノ構造体を利用して、呼気中に含まれるアセトン等の濃度を検出するが、室温レベルで検出を行うため、検出対象となる呼気中の成分の活性化が充分に進まず、電気抵抗も穏やかに変化し、最終的に変化し尽くした検出値を把握しづらく、それに伴い正確な濃度の検出も困難になるという問題がある。
In the above-mentioned Patent Document 1, nanostructures such as carbon nanotubes are used to detect the concentration of acetone and other substances contained in breath, but because the detection is performed at room temperature, the activation of the components in the breath to be detected does not progress sufficiently, and the electrical resistance also changes slowly, making it difficult to grasp the final detected value that has completely changed, and therefore difficult to detect the exact concentration.
一方、上述した特許文献2では、半導体センサをヒーター線により300~400℃に加熱することから、呼気中の成分への加熱も充分なものとなり、酸化等の反応も促進されるが、カーボンナノチューブのようなナノ構造体を用いていないため、呼気中に含まれる成分を確実に吸着させるのが難しく、それにより電気抵抗も変化を高精度で検出しにくいという問題がある。
In the above-mentioned Patent Document 2, the semiconductor sensor is heated to 300-400°C by a heater wire, which provides sufficient heat to the components in the breath and promotes reactions such as oxidation. However, because it does not use nanostructures such as carbon nanotubes, it is difficult to reliably adsorb the components contained in the breath, and as a result, there is a problem that it is difficult to detect changes in electrical resistance with high accuracy.
また、特許文献1、2の両方において、検出を行った後は、呼気中の不要となる気体成分や湿気成分等がセンサ内等に残存する関係上、次回の検出までに十分な時間を開ける必要があるため、検出可能な状態に回復するまでに要する時間が長くなり、使い勝手が良くないという問題もある。
In addition, in both Patent Documents 1 and 2, after detection, unnecessary gas components and moisture components in the breath remain in the sensor, so it is necessary to wait a sufficient amount of time before the next detection, which means that it takes a long time to recover to a detectable state, making it difficult to use.
本発明は、斯かる事情に鑑みてなされたものであり、ナノ構造体を利用して呼気中の成分の付着による電気抵抗の変化を検出する際、明確に電気抵抗値が変化して、検出値を高精度で把握しやすくした呼気センサ、及び血糖値測定装置を提供することを目的とする。
The present invention was made in consideration of these circumstances, and aims to provide a breath sensor and blood glucose measuring device that uses nanostructures to detect changes in electrical resistance due to the adhesion of components in breath, resulting in a clear change in electrical resistance value, making it easier to grasp the detected value with high accuracy.
また、本発明は、検出を行った後に次回の検出が可能となる状態へ回復するまでの時間を短縮して、使い勝手を向上させた呼気センサ、及び血糖値測定装置を提供することを目的とする。
The present invention also aims to provide a breath sensor and blood glucose measuring device that are easier to use by shortening the time it takes to recover from a detection to a state where the next detection is possible.
上記課題を解決するために本発明は、呼気に含まれる成分が付着することで、電気抵抗が変化する特性を有するカーボンナノ構造体を備える呼気センサにおいて、前記カーボンナノ構造体は、筒状に形成してあり、前記カーボンナノ構造体の内部に配置した加熱線部材と、前記カーボンナノ構造体と電気的に接続された一対の電極とを備え、前記カーボンナノ構造体の一端側に形成された開口を、呼気の取入口にしてあることを特徴とする。
In order to solve the above problems, the present invention provides a breath sensor equipped with a carbon nanostructure that has the property of changing its electrical resistance when components contained in the breath adhere to it, the carbon nanostructure is formed in a cylindrical shape, and is equipped with a heating wire member disposed inside the carbon nanostructure and a pair of electrodes electrically connected to the carbon nanostructure, and an opening formed on one end side of the carbon nanostructure serves as an intake port for the breath.
本発明にあっては、筒状に形成したカーボンナノ構造体の内部に、加熱線部材を配置すると共に、筒状のカーボンナノ構造体の一端側の開口を、呼気の取入口にしてあるので、検出対象の成分を含む呼気は、筒状のカーボンナノ構造体の内部へスムーズに流入し、その内部に配置された加熱線部材により加熱されることになる。このように呼気を含む成分が加熱されると、成分が活性化されて酸化等の反応が促進され、加熱された成分が付着したカーボンナノ構造体も電気抵抗も顕著に変化しやすくなり、それにより高精度で電気抵抗の変化も検出可能となる。
In the present invention, a heating wire member is placed inside a cylindrical carbon nanostructure, and an opening on one end of the cylindrical carbon nanostructure serves as an intake port for exhaled air, so that the exhaled air containing the components to be detected flows smoothly into the cylindrical carbon nanostructure and is heated by the heating wire member placed inside. When the components contained in the exhaled air are heated in this way, the components are activated and reactions such as oxidation are promoted, and the electrical resistance of the carbon nanostructure to which the heated components are attached tends to change significantly, making it possible to detect changes in electrical resistance with high accuracy.
本発明は、前記カーボンナノ構造体の内部に配置した環状の断熱部材を備え、前記加熱線部材は、前記断熱部材の内部に配置してあることを特徴とする。
The present invention is characterized in that it includes an annular insulating member disposed inside the carbon nanostructure, and the heating wire member is disposed inside the insulating member.
本発明にあっては、カーボンナノ構造体の内部に環状の断熱部材を配置すると共に、その断熱部材の内部に加熱線部材を配置したので、加熱線部材とカーボンナノ構造体の間には断熱部材が介在し、加熱線部材の発する熱が断熱部材によって、カーボンナノ構造体へ伝わりにくくなる。それによりカーボンナノ構造体が高温になりすぎるのを防いで、呼気中の成分を加熱線部材で加熱しても、カーボンナノ構造体へは熱的な影響が生じるのが抑制され、抵抗変化の検出を安定して行えるようになる。
In the present invention, a ring-shaped insulating member is placed inside the carbon nanostructure, and a heating wire member is placed inside the insulating member, so that the insulating member is between the heating wire member and the carbon nanostructure, and the heat generated by the heating wire member is less likely to be transmitted to the carbon nanostructure by the insulating member. This prevents the carbon nanostructure from becoming too hot, and even if the components in the exhaled breath are heated by the heating wire member, the thermal effect on the carbon nanostructure is suppressed, making it possible to stably detect resistance changes.
本発明は、前記環状の断熱部材の内周面に、フラーレン層が形成してあることを特徴とする。
The present invention is characterized in that a fullerene layer is formed on the inner peripheral surface of the annular insulating member.
本発明にあっては、断熱部材の内周面にフラーレン層を形成したので、電気抵抗の変化についての検出結果が安定するようになると共に、次回の検出が可能になるまでの時間が短縮される。まず、フラーレンは断熱特性を具備することから、断熱部材の内周面にフラーレン層を形成することで、断熱部材の断熱特性が増強されるようになる。それにより、断熱部材の内部に配置される加熱線部材の発する熱がカーボンナノ構造体へ更に伝わりにくくなり、カーボンナノ構造体への熱影響が一段と抑えられて、より安定的に電気抵抗の変化が検出できるようになる。
In the present invention, a fullerene layer is formed on the inner circumferential surface of the insulating member, so that the detection results for changes in electrical resistance become stable and the time until the next detection becomes possible is shortened. First, since fullerenes have insulating properties, by forming a fullerene layer on the inner circumferential surface of the insulating member, the insulating properties of the insulating member are enhanced. As a result, the heat generated by the heating wire member placed inside the insulating member is further inhibited from being transmitted to the carbon nanostructure, the thermal effect on the carbon nanostructure is further suppressed, and changes in electrical resistance can be detected more stably.
また、カーボンナノ構造体の内部に取り入れられた呼気中の成分は、全てがすぐにカーボンナノ構造体に付着するわけでは無く、カーボンナノ構造体の内部に浮遊する残存成分(不要な気体成分)が生じる。このような残存成分が時間の経過に伴い段階的にカーボンナノ構造体の内部へ吸着されていくと、電気抵抗の値が随時変化して定まらず、電気抵抗の安定した検出に影響を及ぼす。また、呼気が吹き込まれることで、カーボンナノ構造体の内部には、湿気成分も増加し、このような湿気成分も電気抵抗の変化に影響を及ぼす。
In addition, not all of the components in the breath taken into the carbon nanostructure immediately adhere to the carbon nanostructure, and residual components (unnecessary gas components) are generated that float inside the carbon nanostructure. When these residual components are gradually adsorbed into the carbon nanostructure over time, the value of the electrical resistance changes from time to time and becomes unstable, affecting the stable detection of electrical resistance. In addition, when breath is blown into the carbon nanostructure, the amount of moisture increases inside the carbon nanostructure, and this moisture also affects the change in electrical resistance.
さらに、一旦、電気抵抗の変化の検出が終了しても、カーボンナノ構造体の内部に、そのような残存成分や湿気成分が浮遊したままになると、次回の検出に影響が生じないレベルに減少するまで、次回の検出を行うのを待つ必要がある。
Furthermore, even if detection of changes in electrical resistance has been completed, if such residual components or moisture remain suspended inside the carbon nanostructure, it will be necessary to wait until the next detection is performed until the components have decreased to a level that does not affect the next detection.
しかし、フラーレンは、周囲の気体に含まれる成分を効率良く吸着・吸収する特性を有することから、本発明では上述したように、断熱部材の内周面にフラーレン層を形成したので、このフラーレン層が、カーボンナノ構造体の内部に浮遊する残存成分(不要となった気体成分)や湿気成分を吸着することで、これらの成分を減少させ、それにより、電気抵抗の変化の検出結果が定まりやすくなり、安定した検出が可能になると共に、次回の検出が可能になるまでの時間短縮も図れるようになる。
However, since fullerenes have the property of efficiently adsorbing and absorbing components contained in the surrounding gas, in the present invention, as described above, a fullerene layer is formed on the inner surface of the insulating member. This fullerene layer adsorbs the remaining components (unnecessary gas components) and moisture components floating inside the carbon nanostructure, reducing these components. This makes it easier to determine the detection results of changes in electrical resistance, enabling stable detection and also shortening the time until the next detection is possible.
本発明は、前記一対の電極における負極が、フラーレンを含むことを特徴とする。
The present invention is characterized in that the negative electrode of the pair of electrodes contains fullerene.
本発明にあっては、電極の負極にフラーレンが含まれるようにしており、フラーレンは導通特性が優れると共に、上述したように気体中の成分を効率良く吸着する特性を有することから、呼気中の成分が吸着するカーボンナノ構造体の電気抵抗の変化の検出を行いやすくなる上、次回の検出までの時間短縮に貢献できるようになる。
In the present invention, fullerene is contained in the negative electrode of the electrode. Fullerene has excellent conductive properties and, as described above, has the property of efficiently adsorbing components in gas. This makes it easier to detect changes in the electrical resistance of the carbon nanostructures that adsorb components in the breath, and also contributes to shortening the time until the next detection.
本発明は、前記加熱線部材が、ナノシルバーで被覆した銅ナノワイヤーで形成してあることを特徴とする。
The present invention is characterized in that the heating wire member is made of copper nanowires coated with nanosilver.
本発明にあっては、銅ナノワイヤー製の加熱線部材をナノシルバーで被覆(コーティング)するので、呼気中成分の効率的な加熱性を確保した上で、次回の検出可能になるまでの時間短縮に貢献できるようになる。すなわち、加熱線部材は、銅ナノワイヤーを用いることで、呼気中の成分を効率的に加熱することが可能となるが、その加熱を行うことで、銅ナノワイヤー自身の表面が酸化しやすい状況となる。銅ナノワイヤーの表面が酸化してしまうと、次回の検出に対して影響を生じ、検出可能な状況に戻すのに時間を要することになるが、抗菌・抗ウィルス作用があるナノシルバーで銅ナノワイヤーを被覆することで、銅ナノワイヤー製の加熱線部材の安定化を図れ、次回の検出が可能になるまでの時間短縮にも役立つ。なお、ナノシルバーによる被覆は、加熱線部材の全周表面に対して行われる他に、一部の表面が露出するように部分的に行われてもよい。
In the present invention, the heating wire member made of copper nanowire is coated with nanosilver, which ensures efficient heating of the components in the breath and contributes to shortening the time until the next detection is possible. In other words, the heating wire member uses copper nanowire, which makes it possible to efficiently heat the components in the breath, but the heating process makes the surface of the copper nanowire itself prone to oxidation. If the surface of the copper nanowire is oxidized, it will affect the next detection and it will take time to return to a detectable state. However, by coating the copper nanowire with nanosilver, which has antibacterial and antiviral properties, the heating wire member made of copper nanowire can be stabilized and also helps to shorten the time until the next detection is possible. The coating with nanosilver can be applied to the entire surface of the heating wire member, or it can be applied partially so that part of the surface is exposed.
本発明は、前記加熱線部材が、巻回したコイル部、及び前記コイル部の周囲に形成した網状のメッシュ部を有することを特徴とする。
The present invention is characterized in that the heating wire member has a wound coil portion and a net-like mesh portion formed around the coil portion.
本発明にあっては、加熱線部材として、巻回したコイル部の周囲に網状のメッシュ部を形成したので、カーボンナノ構造体の内部へ取り入れられた呼気は、コイル部に触れるように流入することに加えて、メッシュ部も通過するように流れることになり、加熱線部材との接触程度が増加し、それにより、効率的に呼気中の成分が加熱され、カーボンナノ構造体の電気抵抗の変化も顕著に表れて検出精度も向上することになる。
In the present invention, a net-like mesh portion is formed around the wound coil portion as the heating wire member, so that the breath taken into the carbon nanostructure not only flows in so as to come into contact with the coil portion, but also flows so as to pass through the mesh portion, increasing the degree of contact with the heating wire member. As a result, the components in the breath are heated efficiently, and the change in the electrical resistance of the carbon nanostructure becomes more noticeable, improving detection accuracy.
本発明は、血糖値測定装置が、上記の呼気センサと、前記呼気センサに含まれる前記カーボンナノ構造体の電気抵抗の変化を検出する電気抵抗検出手段と、前記電気抵抗検出手段の検出結果に基づき、血糖値を算出する血糖値算出手段と、前記血糖値算出手段の算出結果を出力する出力手段とを備えることを特徴とする。
The present invention is characterized in that the blood glucose level measuring device comprises the above-mentioned breath sensor, an electrical resistance detection means for detecting a change in the electrical resistance of the carbon nanostructure contained in the breath sensor, a blood glucose level calculation means for calculating the blood glucose level based on the detection result of the electrical resistance detection means, and an output means for outputting the calculation result of the blood glucose level calculation means.
本発明にあっては、上述した呼気センサを用いて、カーボンナノ構造体の電気抵抗の変化の検出結果に基づき、血糖値を算出するので、高精度で血糖値を算出可能になると共に、一度、血糖値の算出を行った後、次に算出を行えるようになるまでの時間を、従来のものに比べて短縮できるようになり、使い勝手が大幅に向上する。
In the present invention, the above-mentioned breath sensor is used to calculate blood glucose levels based on the detection results of changes in the electrical resistance of the carbon nanostructures, making it possible to calculate blood glucose levels with high accuracy, and the time required to perform the next blood glucose level calculation after one calculation can be shortened compared to conventional methods, greatly improving usability.
本発明では、カーボンナノ構造体へ付着させる呼気中の成分を加熱するので、カーボンナノ構造体の電気抵抗の変化を従来に比べて顕著にでき、それに伴い検出精度も向上できる。
In the present invention, the components in the breath that are to be attached to the carbon nanostructures are heated, which makes the change in the electrical resistance of the carbon nanostructures more noticeable than in the past, thereby improving detection accuracy.
また、本発明では、加熱線部材の発する熱を、断熱部材の介在により、カーボンナノ構造体へ伝わりにくくしたので、電気抵抗の変化の検出に対して、高温による影響が生じるのを防ぎ、安定した抵抗変化の検出を行える。
In addition, in this invention, the heat generated by the heating wire is less likely to be transmitted to the carbon nanostructure by using a heat insulating material, which prevents high temperatures from affecting the detection of changes in electrical resistance and enables stable detection of changes in resistance.
さらに、本発明では、断熱部材の内周面のフラーレン層の形成により、安定した電気抵抗の検出結果を高精度で得られると共に、次回の検出が可能になるまでの時間を従来のものに比べて短縮できる。
Furthermore, in the present invention, by forming a fullerene layer on the inner peripheral surface of the insulating member, stable electrical resistance detection results can be obtained with high accuracy, and the time until the next detection is possible can be shortened compared to conventional methods.
さらにまた、本発明では、負極にフラーレンを用いるので、電気抵抗の変化の検出を良好に行えると共に、次回の検出が可能になるまでの時間短縮に貢献できる。
Furthermore, in the present invention, fullerene is used for the negative electrode, which allows for good detection of changes in electrical resistance and contributes to shortening the time until the next detection is possible.
本発明では、銅ナノワイヤー製の加熱線部材をナノシルバーで被覆するので、呼気中成分を効率良く加熱できると共に、次回の検出が可能になるまでの時間を短縮できる。
In the present invention, the heating wire member made of copper nanowire is coated with nanosilver, which allows the components in the breath to be heated efficiently and shortens the time until the next detection is possible.
また、本発明では、巻回したコイル部の周囲に網状のメッシュ部を加熱線部材が有するので、カーボンナノ構造体の内部へ取り入れられた呼気が加熱線部材と接触する程度を増加でき、効率的に呼気中の成分を加熱して、電気抵抗の検出精度の向上に貢献できる。
In addition, in the present invention, the heating wire member has a net-like mesh portion around the wound coil portion, which increases the degree to which the breath taken into the carbon nanostructure comes into contact with the heating wire member, efficiently heating the components in the breath and contributing to improved accuracy in detecting electrical resistance.
本発明では、上述したような呼気センサを用いて、カーボンナノ構造体の電気抵抗の変化の検出結果に基づき血糖値を算出するので、血糖値を高精度で算出できると共に、次回の血糖値算出を行えるまでの時間を、従来のものに比べて短縮でき、使い安さの向上を図れる。
In the present invention, a breath sensor such as that described above is used to calculate blood glucose levels based on the detection results of changes in the electrical resistance of the carbon nanostructures, so blood glucose levels can be calculated with high accuracy, and the time until the next blood glucose level calculation can be performed can be shortened compared to conventional methods, improving ease of use.
図1は、本発明に係る実施形態の例である血糖値測定装置1の外観を示す。本実施形態の血糖値測定装置1は、携帯可能な小型のものであり、ボックス状の筐体2の天面2aからパイプ状の吹込部3を突出させると共に、測定結果を表示するディスプレイ5を天面2aに表出しており、筐体2の周囲の一側面2bには電源スイッチ4を配置している。
Figure 1 shows the appearance of a blood glucose measuring device 1, which is an example of an embodiment of the present invention. The blood glucose measuring device 1 of this embodiment is small and portable, with a pipe-shaped blowing section 3 protruding from the top surface 2a of a box-shaped housing 2, a display 5 that displays the measurement results exposed on the top surface 2a, and a power switch 4 located on one side surface 2b around the housing 2.
この血糖値測定装置1は、パイプ状の吹込部3の開口した先端側3aを、被験者が咥えて息(呼気)を吹き込むことにより、その被験者の血糖値を測定するようになっている。吹込部3の内部には、本発明で中心的な役割を担う呼気センサユニット10を配置しており、この呼気センサユニット10を用いることで、上述した特許文献1叉は特許文献2に開示されるものに比べて、高精度で血糖値を測定可能にすると共に、測定が終了して次回の測定が可能になるまでの時間を短縮したことが特徴になっている。以下、詳しく説明していく。
This blood glucose measuring device 1 is designed to measure the blood glucose level of a subject by having the subject hold the open tip 3a of the pipe-shaped blowing section 3 and blow (exhale) into it. Inside the blowing section 3 is placed a breath sensor unit 10, which plays a central role in the present invention, and the use of this breath sensor unit 10 makes it possible to measure blood glucose levels with higher accuracy than those disclosed in the above-mentioned Patent Document 1 or Patent Document 2, and is characterized by the fact that it shortens the time from the end of a measurement until the next measurement is possible. This will be explained in detail below.
図2は、血糖値測定装置1における制御系の主要な電気回路ブロック図を示す。この電気回路ブロック図で示すように、血糖値測定装置1の電気的な回路に関連するパーツユニットとして、上述した呼気センサユニット10及びディスプレイ5に加えて、プロセッサユニット6及びトランスデューサー7を含む。呼気センサユニット10とトランスデューサー7は第1接続線d1で接続されており(第1接続線d1は複数の導通線で構成される)、トランスデューサー7とプロセッサユニット6は第2接続線d2で接続されており、プロセッサユニット6とディスプレイ5は第3接続線d3で接続される。
Figure 2 shows a main electrical circuit block diagram of the control system in the blood glucose measuring device 1. As shown in this electrical circuit block diagram, part units related to the electrical circuit of the blood glucose measuring device 1 include the breath sensor unit 10 and display 5 described above, as well as a processor unit 6 and a transducer 7. The breath sensor unit 10 and the transducer 7 are connected by a first connection line d1 (the first connection line d1 is composed of multiple conductive lines), the transducer 7 and the processor unit 6 are connected by a second connection line d2, and the processor unit 6 and the display 5 are connected by a third connection line d3.
これらのディスプレイ5、プロセッサユニット6、トランスデューサー7、及び呼気センサユニット10と云った各パーツユニットは血糖値測定装置1の筐体2等の内部に配置されている(ディスプレイ5については、そのディスプレイ画面が筐体2の天面2aから表出する)。また、図2では示していないが、血糖値測定装置1は、筐体2の内部に給電用のバッテリ8も配置しており、図示しない給電回路を通じて、バッテリ8の電力を上述した各パーツユニットに供給し、それにより、呼気センサユニット10に所定の電圧を印加するようにしている。なお、このような給電回路には、図1に示す電源スイッチ4が含まれており、電源スイッチ4のオン・オフ操作により、バッテリ8による給電と非給電状態を切替可能にしている。
Each of these part units, such as the display 5, processor unit 6, transducer 7, and breath sensor unit 10, are arranged inside the housing 2 of the blood glucose measuring device 1 (the display screen of the display 5 is exposed from the top surface 2a of the housing 2). Although not shown in FIG. 2, the blood glucose measuring device 1 also has a battery 8 arranged inside the housing 2 for power supply, and power from the battery 8 is supplied to each of the above-mentioned part units through a power supply circuit (not shown), thereby applying a predetermined voltage to the breath sensor unit 10. This power supply circuit includes the power switch 4 shown in FIG. 1, and turning the power switch 4 on and off makes it possible to switch between a power supply state and a non-power supply state from the battery 8.
電源スイッチ4のオン操作により呼気センサユニット10に所定の電圧が印加されると、第1接続線d1を通じて呼気センサユニット10からアナログ電流がトランスデューサー7へ出力される。トランスデューサー7は、第1接続伝d1を通じて入力されるアナログ電流に対して、プロセッサユニット5が処理を行えるように、増幅してデジタル変換した変換信号を生成し、第2接続線d2を通じてプロセッサユニット6へ出力する処理を行う。
When a predetermined voltage is applied to the breath sensor unit 10 by turning on the power switch 4, an analog current is output from the breath sensor unit 10 to the transducer 7 through the first connection line d1. The transducer 7 amplifies and digitally converts the analog current input through the first connection line d1 to generate a converted signal that can be processed by the processor unit 5, and outputs the converted signal to the processor unit 6 through the second connection line d2.
プロセッサユニット6は、トランスデューサー7からの入力信号(入力される変換信号)に基づき、呼気センサユニット10に係る電気抵抗値の検出処理を行うと共に、検出した電気抵抗値に基づき血糖値の算出処理を行うものであり、制御部6a、メモリ6b、RAM6c等をプリント基板上に配置したユニットになっている。
The processor unit 6 detects the electrical resistance value related to the breath sensor unit 10 based on the input signal (input conversion signal) from the transducer 7, and calculates the blood glucose level based on the detected electrical resistance value. It is a unit in which the control unit 6a, memory 6b, RAM 6c, etc. are arranged on a printed circuit board.
制御部6aは、メモリ6bに記憶されるプログラムPのプログラミングの内容(ブログラムに応じたアルゴリズムの内容)に基づき各種処理を行う手段として機能するプロセッサである。本実施形態では、制御部6aは主に、電気抵抗検出手段としてトランスデューサー7からの入力信号に基づく電気抵抗値の検出処理を行い、血糖値算出手段として電気抵抗の検出処理で得られた値に基づき血糖値を算出する処理を行い、出力手段として算出した血糖値をディスプレイ5で表示出力する処理等を行うことになる。
The control unit 6a is a processor that functions as a means for performing various processes based on the programming contents of the program P stored in the memory 6b (the contents of the algorithm corresponding to the program). In this embodiment, the control unit 6a mainly performs the process of detecting the electrical resistance value based on the input signal from the transducer 7 as the electrical resistance detection means, the process of calculating the blood glucose level based on the value obtained by the electrical resistance detection process as the blood glucose level calculation means, and the process of displaying and outputting the calculated blood glucose level on the display 5 as the output means.
呼気センサユニット10は、後述するように、被験者の呼気が吹きかけられるようになっており、その被験者の呼気中の成分(例えば、揮発性有機化合物等の成分、具体的にはアセトン、ケトン、エタノール等の成分)が付着すると、呼気センサユニット10に係る電気抵抗値が変化することになり、このような電気抵抗値の変化を制御部6aは、トランスデューサー7からの入力信号に基づき検出する。
As described below, the breath of the subject is blown onto the breath sensor unit 10. When components in the subject's breath (e.g., components such as volatile organic compounds, specifically components such as acetone, ketones, and ethanol) adhere to the breath sensor unit 10, the electrical resistance value of the breath sensor unit 10 changes, and the control unit 6a detects this change in electrical resistance value based on the input signal from the transducer 7.
具体的に制御部6aは、電源スイッチ4がオンされて給電が開始されて、被験者の呼気が吹きかけられていない状況の電気抵抗値を検出すると共に、呼気が吹きかけられて変化した状態の電気抵抗値の検出を行う。なお、電気抵抗値の変化の程度は、呼気センサユニット10に付着した呼気中の成分の量に応じて定まり、付着する成分量が多いほど、変化の程度も大きくなる。
Specifically, the control unit 6a detects the electrical resistance value when the power switch 4 is turned on and power supply is started, and when the subject's breath is not being blown into the sensor, and also detects the electrical resistance value after the breath is blown into the sensor. The degree of change in the electrical resistance value is determined according to the amount of components in the breath that adhere to the breath sensor unit 10, and the greater the amount of components that adhere, the greater the degree of change.
また、変化した電気抵抗の検出処理で得られた値に基づき血糖値を算出する処理において、制御部6aは先ず、検出した電気抵抗値の値より、呼気中の成分濃度の検出処理を行い、その検出した成分濃度を所定の変換式に基づき血糖値へ変換する処理を行って、最終的に、呼気を吹き込んだ被験者の血糖値を算出するようにしている。なお、この算出で用いる所定の変換式は予め、メモリ6bに記憶されるか、又はプログラムPの中に含まれるものとなる。
In addition, in the process of calculating the blood glucose level based on the value obtained in the process of detecting the changed electrical resistance, the control unit 6a first detects the concentration of components in the exhaled breath from the detected electrical resistance value, then converts the detected concentration of components into a blood glucose level based on a predetermined conversion formula, and finally calculates the blood glucose level of the subject who blew in the exhaled breath. The predetermined conversion formula used in this calculation is either stored in advance in the memory 6b or is included in the program P.
本実施形態では、血糖値に関連する呼気中の成分として、主にアセトンを含む成分濃度をppm(parts per million)単位で検出するようにしており、通常、非糖尿病患者が被験者である場合、検出される成分濃度は、0.3~0.9ppm程度の数値となる。一方、糖尿病患者が被験者である場合、検出される成分濃度は一般に、0.9ppmを超えるような値になる。なお、本実施形態では最大10ppm程度までの数値を算出できるようにしている(また、制御部6aは、数ppb(parts per billion)単位で詳細に濃度を算出できるようにしてもよい)。
In this embodiment, the concentration of components in the breath related to blood glucose levels, mainly acetone, is detected in ppm (parts per million) units. Typically, when the subject is a non-diabetic patient, the detected component concentration is approximately 0.3 to 0.9 ppm. On the other hand, when the subject is a diabetic patient, the detected component concentration is generally a value exceeding 0.9 ppm. Note that in this embodiment, it is possible to calculate values up to approximately 10 ppm (and the control unit 6a may also be able to calculate the concentration in detail in units of several ppb (parts per billion)).
制御部6aは、上述したようにアセトン等を含む成分濃度を検出すると、その検出した成分濃度の数値を、上述した所定の変換式に代入して血糖値(グルコメーターカウント)を算出する。そして、制御部6aは、算出した血糖値をディスプレイ5で表示するために、その血糖値を含む測定結果情報を生成し、ディスプレイ5に第3接続線d3を通じて出力する処理を行う。また、制御部6aは、算出した血糖値、検出した成分濃度、電気抵抗値等をRAM6cに一時的に記憶させる処理も行う。
When the control unit 6a detects the concentration of components including acetone, as described above, it substitutes the detected numerical value of the concentration of the components into the predetermined conversion formula described above to calculate the blood glucose level (glucometer count). Then, in order to display the calculated blood glucose level on the display 5, the control unit 6a generates measurement result information including the blood glucose level and outputs it to the display 5 via the third connection line d3. The control unit 6a also performs a process of temporarily storing the calculated blood glucose level, the detected concentration of the components, the electrical resistance value, etc. in the RAM 6c.
なお、本実施形態の制御部6aは、電源スイッチ4がオンされた直後は、加熱線部材14が所定の温度まで発熱するのに必要な時間をカウントする処理を行っており、本実施形態ではメモリ6bに予め記憶される基準時間に達するかを判断し、基準時間に達したことを判断すると、カウントアップしたとして、上述した電気抵抗値の検出処理を開始する。また、制御部6aは時間のカウント中、カウント状態を示す情報をディスプレイ5へ出力することになる。
In addition, immediately after the power switch 4 is turned on, the control unit 6a in this embodiment performs a process of counting the time required for the heating wire member 14 to generate heat up to a predetermined temperature. In this embodiment, it determines whether the reference time stored in advance in the memory 6b is reached, and if it determines that the reference time has been reached, it counts up and starts the above-mentioned process of detecting the electrical resistance value. Also, while the control unit 6a is counting the time, it outputs information indicating the count status to the display 5.
ディスプレイ5は、液晶又は有機EL等の表示パネルであり、制御部6aから出力されてくる情報を、第3接続線d3を通じて受け付けると、その受け付けた情報をディスプレイ画面上に表示する。それにより、このようなディスプレイ5の表示により、被験者であるユーザは自身の血糖値を容易に知ることが可能となる。次に、本発明の中心となる呼気センサユニット10について詳しく説明していく。
The display 5 is a display panel such as a liquid crystal or organic electroluminescence display, and when it receives information output from the control unit 6a via the third connection line d3, it displays the received information on the display screen. This allows the subject, or user, to easily know his or her own blood glucose level by viewing the display 5. Next, the breath sensor unit 10, which is the core of the present invention, will be described in detail.
図3は本実施形態に係る呼気センサユニット10の全体的な外観を示し、図4は、その分解図を示す。本実施形態の呼気センサユニット10は主に、センサホルダ30、呼気センサ11、及びセンサカバー20で構成される。なお、図3、4等に示すX軸は水平面上での一方向を示し、Y軸は同一の水平面上でX軸に直交する方向を示し、Z軸はX軸及びY軸に直交する方向を示し、それにより、具体的にX軸は呼気センサユニット10の巾方向を表し、Y軸は呼気センサユニット10の奥行きの方向を表し、Z軸は呼気センサユニット10の高さ方向を表す(X、Y、Z軸の向きは、他の図でも同様)。
Fig. 3 shows the overall appearance of the breath sensor unit 10 according to this embodiment, and Fig. 4 shows an exploded view of the same. The breath sensor unit 10 according to this embodiment is mainly composed of a sensor holder 30, a breath sensor 11, and a sensor cover 20. Note that the X-axis shown in Figs. 3 and 4 indicates one direction on a horizontal plane, the Y-axis indicates a direction perpendicular to the X-axis on the same horizontal plane, and the Z-axis indicates a direction perpendicular to the X-axis and Y-axis. Thus, specifically, the X-axis represents the width direction of the breath sensor unit 10, the Y-axis represents the depth direction of the breath sensor unit 10, and the Z-axis represents the height direction of the breath sensor unit 10 (the orientations of the X, Y, and Z-axes are the same in the other figures).
センサホルダ30は、呼気センサ11を保持するための部材であり、ドーナツ状のホルダ本体31、及びそのホルダ本体31を高さ方向(Z軸方向)に貫通する計6本の第1~第6導通ピン32a、32b、33a、33b、34a、34bを有する。
The sensor holder 30 is a member for holding the breath sensor 11, and has a donut-shaped holder body 31 and a total of six conductive pins, first to sixth, 32a, 32b, 33a, 33b, 34a, and 34b, that penetrate the holder body 31 in the height direction (Z-axis direction).
ホルダ本体31は、ニッケルメッキ銅製の部材であり、上面31aを段差状に形成すると共に、下面31bをフラット形状に形成し、中央に高さ方向(Z軸方向)に貫通する空洞部31cを有する。なお、本実施形態のホルダ本体31、外周輪郭での厚み部分(Z軸方向の高さ)を約12mmに設定しおり、また、ホルダ本体31の空洞部31cは、その内径寸法を、呼気センサ11の外径寸法に応じた値に設定し、呼気センサ11を空洞部31cに嵌め込んで保持できるようにしている。
The holder body 31 is a nickel-plated copper member with a stepped upper surface 31a and a flat lower surface 31b, and a hollow portion 31c that penetrates in the height direction (Z-axis direction) in the center. In this embodiment, the thickness (height in the Z-axis direction) of the holder body 31 at the outer periphery is set to approximately 12 mm, and the inner diameter of the hollow portion 31c of the holder body 31 is set to a value corresponding to the outer diameter of the breath sensor 11, so that the breath sensor 11 can be fitted into and held in the hollow portion 31c.
第1~第6導通ピン32a、32b、33a、33b、34a、34bは、ホルダ本体31の段差状に高くなった上面31aから下面31bへ貫通しており、これら計6本の各導通ピン32a~34bは、導通性を有するニッケルメッキ製のピン部材であり、ホルダ本体31に対し平面視において周方向に間隔をあけて配置される(図10(b)参照)。第1、2導通ピン32a、32bは、呼気センサ11に含まれる加熱線部材14との接続用であり、第3、4導通ピン33a、33bは、呼気センサ11に含まれる正極16との接続用であり、第5、6導通ピン34a、34bは、呼気センサ11に含まれる負極17との接続用である。
The first to sixth conductive pins 32a, 32b, 33a, 33b, 34a, 34b penetrate from the stepped upper surface 31a to the lower surface 31b of the holder body 31, and each of the six conductive pins 32a to 34b is a conductive nickel-plated pin member and is arranged at intervals in the circumferential direction of the holder body 31 in a plan view (see FIG. 10(b)). The first and second conductive pins 32a, 32b are for connection to the heating wire member 14 included in the breath sensor 11, the third and fourth conductive pins 33a, 33b are for connection to the positive electrode 16 included in the breath sensor 11, and the fifth and sixth conductive pins 34a, 34b are for connection to the negative electrode 17 included in the breath sensor 11.
センサカバー20は、ホルダ本体31に保持される呼気センサ11を覆って保護するためのカバーであり、環状の鍔部22から突出するカバー部21を有する。カバー部21は、ステンレス製のメッシュからなる網状部材であり、呼気が通過するのに充分な網目寸法が採用されている。また、環状の鍔部22は、上述したセンサホルダ30の上面31aの段差に嵌合するように形成されている。
The sensor cover 20 is a cover for covering and protecting the breath sensor 11 held in the holder body 31, and has a cover portion 21 protruding from an annular flange portion 22. The cover portion 21 is a mesh member made of stainless steel mesh, and has a mesh size sufficient to allow breath to pass through. The annular flange portion 22 is also formed to fit into the step on the upper surface 31a of the sensor holder 30 described above.
呼気センサ11は、呼気センサユニット10の主要パーツであり、呼気中の成分濃度を検出するために使用されるものであり、直接的には呼気中の成分の付着による電気抵抗の変化の検出に利用される。呼気センサ11は、全体的な外観を筒状(円筒形状)にしており、周囲外方へ計6本のリード線T1~T4、H1、H2を延出している。
The breath sensor 11 is the main part of the breath sensor unit 10 and is used to detect the concentration of components in the breath, and is directly used to detect changes in electrical resistance caused by the adhesion of components in the breath. The breath sensor 11 has a tubular (cylindrical) overall appearance, with a total of six lead wires T1 to T4, H1, and H2 extending outwards from the periphery.
呼気センサ11の筒状(円筒形状)の外観を構成する部分は、カーボンナノ構造体によるものであり、本実施形態では、カーボンナノ構造体として、優れた導電性を有するカーボンナノシート12を用いる。カーボンナノシート12は、シート状の表面にナノサイズの多数の窪みを有し、これら窪みにより、呼気中の成分が付着しやすくなっている。また、カーボンナノシート12(カーボンナノ構造体)は、呼気に含まれる成分が付着すると、電気的な性質が変化する特性を有し、具体的には、電気抵抗が変化し、このような電気抵抗の変化の度合いは、付着する成分が多くなるほど大きくなる。
The portion that constitutes the tubular (cylindrical) appearance of the breath sensor 11 is made of a carbon nanostructure, and in this embodiment, a carbon nanosheet 12 with excellent electrical conductivity is used as the carbon nanostructure. The carbon nanosheet 12 has numerous nano-sized depressions on its sheet-like surface, and these depressions make it easy for the components in the breath to adhere to it. In addition, the carbon nanosheet 12 (carbon nanostructure) has the property that its electrical properties change when components contained in the breath adhere to it; specifically, the electrical resistance changes, and the degree of this change in electrical resistance increases as more components adhere to it.
図5(a)にも示すように、呼気センサ11は、カーボンナノシート12の内部に、リング状の断熱部材13及び一対の電極15を配置している。具体的に、リング状の断熱部材13は、呼気センサ11の高さ方向(Z軸方向)の上端寄りの箇所(カーボンナノシート12の上端12aの側となる箇所)に配置され、一方、呼気センサ11の高さ方向(Z軸方向)の下端寄りの箇所(カーボンナノシート12の下端12bの側となる箇所)に、一対の電極15が配置される。
As also shown in FIG. 5(a), the breath sensor 11 has a ring-shaped insulating member 13 and a pair of electrodes 15 arranged inside the carbon nanosheet 12. Specifically, the ring-shaped insulating member 13 is arranged near the upper end of the breath sensor 11 in the height direction (Z-axis direction) (the side of the upper end 12a of the carbon nanosheet 12), while the pair of electrodes 15 are arranged near the lower end of the breath sensor 11 in the height direction (Z-axis direction) (the side of the lower end 12b of the carbon nanosheet 12).
図5、6に示すように、断熱部材13は、所定の高さを有する輪状(管状)の部材であり、本実施形態ではセラミック製のものを用いている(例えば、複数のセラミック層を積層した管状のもの)。また、断熱部材13は、その内周面13bに、フラーレン層18が形成されている。なお、本実施形態の断熱部材13は、サイズ感として、外径となる径方向の寸法を約16mm、高さ寸法を約8mm程度に設定している。
As shown in Figures 5 and 6, the insulating member 13 is a ring-shaped (tubular) member having a predetermined height, and in this embodiment, a ceramic member is used (for example, a tubular member formed by stacking multiple ceramic layers). The insulating member 13 has a fullerene layer 18 formed on its inner peripheral surface 13b. The size of the insulating member 13 in this embodiment is set to approximately 16 mm in the radial dimension (outer diameter) and approximately 8 mm in height.
フラーレン層18は、粉末状のフラーレンを溶剤等に混ぜて所定の粘度にしたもの(例えば、ペースト状にしたもの)を、断熱部材13の内周面13bに適用(塗布)することで形成される。使用されるフラーレンとしては、C60、C70というタイプのものを基本的に使用するが、C76、C78、C82、C84、C90、C96と云ったタイプのものを用いることも可能である。
The fullerene layer 18 is formed by mixing powdered fullerene with a solvent or the like to a predetermined viscosity (for example, a paste) and applying (spraying) it to the inner circumferential surface 13b of the heat insulating member 13. The fullerenes used are basically types C60 and C70, but types C76, C78, C82, C84, C90, and C96 can also be used.
また、図5(b)、図6、図9(b)、図10(b)等に示すように、断熱部材13の内部には、加熱線部材14を配置している。加熱線部材14は、被験者から吹き込まれた呼気中の成分を加熱するためのものであり、線材(ヒートワイヤー)により構成される。具体的に、本実施形態の加熱線部材14は、より多くの熱を発するようにするため、線材を巻回したコイル部14aを中心に有すると共に、線材を網目状に織り込んだメッシュ部14bを、コイル部14aの周囲に一体的に形成している。
Also, as shown in Figures 5(b), 6, 9(b), 10(b), etc., a heating wire member 14 is disposed inside the insulating member 13. The heating wire member 14 is for heating the components in the breath blown in by the subject, and is composed of wire (heat wire). Specifically, in order to generate more heat, the heating wire member 14 of this embodiment has a coil section 14a wound with wire at its center, and a mesh section 14b made of wire woven in a mesh pattern is integrally formed around the coil section 14a.
なお、コイル部14aは、呼気成分(気体成分)の通過を妨げない程度のピッチ(間隔)で巻回されると共に、メッシュ部14bのメッシュサイズも呼気成分(気体成分)の通過を妨げない寸法に設定されている。なお、コイル部14aの外周輪郭は円形状になっており、径方向の寸法は、上述した断熱部材13の内径寸法に応じた値に設定することで、加熱線部材14を、断熱部材13の内部に嵌め込んで配置できるようにしている。
The coil portion 14a is wound at a pitch (spacing) that does not prevent the passage of exhaled breath components (gas components), and the mesh size of the mesh portion 14b is set to a dimension that does not prevent the passage of exhaled breath components (gas components). The outer peripheral contour of the coil portion 14a is circular, and the radial dimension is set to a value that corresponds to the inner diameter dimension of the insulating member 13 described above, so that the heating wire member 14 can be fitted and positioned inside the insulating member 13.
さらに、本実施形態の加熱線部材14は、線材(ヒートワイヤー)として、銅ナノワイヤーを用いると共に、その銅ナノワイヤーの表面をナノシルバーで電気メッキにより被覆している。銅ナノワイヤーは、Cu(OH)2を還元剤(ヒドラジンN2H4)で還元する工程を経て生成されており、例えば、水酸化ナトリウム(NaOH)とエチレンジアミンを含む水溶液中で、Cu(OH)2を還元剤(ヒドラジンN2H4)で還元するプロセスを行うことで銅ナノワイヤーを得るようにしている。
Furthermore, the heating wire member 14 of this embodiment uses copper nanowires as the wire material (heat wire), and the surface of the copper nanowires is coated with nanosilver by electroplating. The copper nanowires are produced through a process of reducing Cu(OH) 2 with a reducing agent (hydrazine N2H4 ). For example, the copper nanowires are obtained by performing a process of reducing Cu(OH) 2 with a reducing agent (hydrazine N2H4 ) in an aqueous solution containing sodium hydroxide (NaOH) and ethylenediamine .
より具体的には、18リットルの水酸化ナトリウム(NaOH)、0.36molのCu(OH)2、135mlのEDA、及び18ml(35重量%)のヒドラジンを、20リットルの反応器に入れて、80℃で30分間加熱して、Cu2+を金属銅に100%の割合で還元して調整することにより、銅ナノワイヤーを得ている。このようにして得られた銅ナノワイヤーの表面を、ナノシルバーで電気メッキにより被覆するが、本実施形態では、銅ナノワイヤーの表面全体をナノシルバーで被覆するのではなく、被覆していない箇所を部分的に残すようにして、加熱の際、被覆していない箇所で酸化反応が生じるようにしている。
More specifically, 18 liters of sodium hydroxide (NaOH), 0.36 mol of Cu(OH) 2 , 135 ml of EDA, and 18 ml (35 wt%) of hydrazine are placed in a 20 liter reactor and heated at 80° C. for 30 minutes to reduce Cu2+ to metallic copper at a rate of 100%, thereby obtaining copper nanowires. The surface of the copper nanowires thus obtained is coated with nanosilver by electroplating, but in this embodiment, the entire surface of the copper nanowires is not coated with nanosilver, but rather some uncoated areas are left uncoated, so that an oxidation reaction occurs in the uncoated areas during heating.
上記のような加熱線部材14は、コイル部14aの長手方向に沿って外周縁の箇所(コイル部14aを通るような直径の両端に応じた箇所)から、加熱用のリード線H1、H2を延出している。これらリード線H1、H2は、加熱線部材14を構成する線材と電気的に接続しており、バッテリ8からの電流をリード線H1、H2を通じて加熱線部材14へ流すと、加熱線部材14は発熱し、約200℃にまで達することになる(なお、電気抵抗の変化を精度良く検出するには、最低でも約140℃まで発熱することが好ましい)。
The heating wire member 14 as described above has heating leads H1 and H2 extending from the outer periphery along the longitudinal direction of the coil portion 14a (points corresponding to both ends of the diameter that pass through the coil portion 14a). These leads H1 and H2 are electrically connected to the wire that constitutes the heating wire member 14, and when a current from the battery 8 is passed through the leads H1 and H2 to the heating wire member 14, the heating wire member 14 generates heat, reaching approximately 200°C (note that in order to accurately detect changes in electrical resistance, it is preferable for the heating wire member 14 to generate heat to at least approximately 140°C).
また、図5(a)、図8、図9(c)等に示すように、カーボンナノシート12の下端12bの側(他端側)となる箇所に配置される一対の電極15は、小片状(小プレート状)の部材である正極16及び負極17を有する。本実施形態では所定の導電性を確保するために、正極16及び負極17には、金ナノ粒子を含んだものを用いている。また、正極16の外面16aには正極用のリード線T1、T2を接続し、負極17の外面17aには負極用のリード線T3、T4を接続している。これらリード線T1~T4には、所定の導通性を確保するため、白金線を用いている。
As shown in Figures 5(a), 8, 9(c), etc., a pair of electrodes 15 arranged on the side of the lower end 12b (the other end) of the carbon nanosheet 12 has a positive electrode 16 and a negative electrode 17, which are small pieces (small plate-shaped) of material. In this embodiment, in order to ensure a certain level of conductivity, the positive electrode 16 and the negative electrode 17 contain gold nanoparticles. In addition, positive electrode lead wires T1 and T2 are connected to the outer surface 16a of the positive electrode 16, and negative electrode lead wires T3 and T4 are connected to the outer surface 17a of the negative electrode 17. Platinum wires are used for these lead wires T1 to T4 in order to ensure a certain level of conductivity.
図11に示す電気回路図は、これら正極16及び負極17に関する電気的な接続状況を表している。電源スイッチ4とバッテリ8は直列的に接続されており、また、電源スイッチ4と正極16とが接続されると共に、バッテリ8の陰極側と負極17が接続される。正極16と負極17の間にはカーボンナノシート12が介在しており、電源スイッチ4をオンにすると、正極16及び負極17の間に所定の電圧が印加された状態となり、カーボンナノシート12を通じて正極16から負極17へ電流が流れる。
The electrical circuit diagram shown in Figure 11 shows the electrical connection status of the positive electrode 16 and negative electrode 17. The power switch 4 and battery 8 are connected in series, and the power switch 4 is connected to the positive electrode 16, and the negative electrode of the battery 8 is connected to the negative electrode 17. A carbon nanosheet 12 is interposed between the positive electrode 16 and the negative electrode 17. When the power switch 4 is turned on, a predetermined voltage is applied between the positive electrode 16 and the negative electrode 17, and a current flows from the positive electrode 16 to the negative electrode 17 through the carbon nanosheet 12.
このように流れる電流は、上述したようにトランスデューサー7へ出力されることになる。なお、図11の電気回路図では示していないが、バッテリ8は、上述した加熱線部材14にも電気的に接続されており、電源スイッチ4のオン/オフ操作により、バッテリ8から加熱線部材14への給電を切替可能にしている。次に、上述した呼気センサ11について、製造工程の手順を説明する。
The current flowing in this manner is output to the transducer 7 as described above. Although not shown in the electrical circuit diagram of FIG. 11, the battery 8 is also electrically connected to the heating wire member 14 described above, and power supply from the battery 8 to the heating wire member 14 can be switched by turning the power switch 4 on and off. Next, the steps of the manufacturing process for the breath sensor 11 described above will be described.
先ず、図6で示すように、予め作成しておいた加熱線部材14を、断熱部材13の下端13cから内部へ入れ込んで配置する。なお、加熱線部材14を配置する高さとしては、断熱部材13の高さ方向(Z軸方向)において真ん中あたりとなる箇所が、安定した配置を確保できて好適となる。なお、断熱部材13の内部に配置された加熱線部材14から延出するリード線H1、H2は、断熱部材13の下端13cから外方へ引き出す。
First, as shown in FIG. 6, the heating wire member 14, which has been prepared in advance, is inserted into the heat insulating member 13 from the lower end 13c. The height at which the heating wire member 14 is placed is preferably in the middle of the heat insulating member 13 in the height direction (Z-axis direction) to ensure stable placement. The lead wires H1 and H2 extending from the heating wire member 14 placed inside the heat insulating member 13 are pulled outward from the lower end 13c of the heat insulating member 13.
次に、図7で示すように、断熱部材13を包み込むように、長方形のシート状のカーボンナノシート12を、断熱部材13の外周面13aに沿って密着するように周回させて筒状(円筒形状)に形成する。このような筒状の状態を維持するため、カーボンナノシート12の一方の縦辺部12c(Z軸方向に沿った辺部)と、他方の縦辺部12dを重ねて、導電性接着剤で貼り合わせる。なお、断熱部材13と、カーボンナノシート12がズレ無いようにするため、断熱部材13の周囲に接着剤を塗布し、カーボンナノシート12と接着するのが好ましく、この場合、接着剤には耐熱性のものを用いることになる。また、加熱線部材14から延出するリード線H1、H2については、カーボンナノシート12を貫通させて外方へ取り出す。
Next, as shown in FIG. 7, the rectangular carbon nanosheet 12 is wrapped around the outer peripheral surface 13a of the heat insulating member 13 to form a tube (cylindrical shape). To maintain this tube shape, one vertical side 12c (side along the Z-axis direction) of the carbon nanosheet 12 is overlapped with the other vertical side 12d and bonded together with a conductive adhesive. In order to prevent the heat insulating member 13 and the carbon nanosheet 12 from shifting, it is preferable to apply an adhesive to the periphery of the heat insulating member 13 and bond it to the carbon nanosheet 12. In this case, a heat-resistant adhesive is used. The lead wires H1 and H2 extending from the heating wire member 14 are passed through the carbon nanosheet 12 and taken out to the outside.
それから、図8で示すように、筒状に形成されたカーボンナノシート12の下端12bの側より、一対の電極15を、カーボンナノシート12の内部へ入れ込んで,電気的にカーボンナノシート12と接続された状態で配置する。このように内部へ配置する電極15の正極16及び負極17は、カーボンナノシート12の内周面12e(図7、図9(c)参照)に接する状態で固定するようにしている。
Then, as shown in FIG. 8, a pair of electrodes 15 are inserted into the carbon nanosheet 12 from the lower end 12b side of the cylindrically formed carbon nanosheet 12, and arranged in a state where they are electrically connected to the carbon nanosheet 12. The positive electrode 16 and negative electrode 17 of the electrodes 15 arranged inside in this manner are fixed in a state where they are in contact with the inner surface 12e of the carbon nanosheet 12 (see FIG. 7 and FIG. 9(c)).
具体的には、図9(c)で示すように、正極16の外面16aの側における左右の縦辺部16b、16c(図8参照、Z軸方向に平行な辺部)に導電性接着剤を塗布し、それら左右の縦辺部16b、16cを、カーボンナノシート12の内周面12eに押し当てて接着し、正極16をカーボンナノシート12の内周面12eに固定する。また、負極17は、正極16と対向する位置で、その外面17aの側における左右の縦辺部17b、17c(導電性接着剤を塗布済み)を、カーボンナノシート12の内周面12eに押し当てて接着し、負極17をカーボンナノシート12の内周面12eに固定する。
Specifically, as shown in FIG. 9(c), a conductive adhesive is applied to the left and right vertical side portions 16b, 16c (see FIG. 8, sides parallel to the Z-axis direction) on the outer surface 16a of the positive electrode 16, and the left and right vertical side portions 16b, 16c are pressed against and adhered to the inner surface 12e of the carbon nanosheet 12, thereby fixing the positive electrode 16 to the inner surface 12e of the carbon nanosheet 12. In addition, the left and right vertical side portions 17b, 17c (with the conductive adhesive applied) on the outer surface 17a of the negative electrode 17 are pressed against and adhered to the inner surface 12e of the carbon nanosheet 12 at a position opposite the positive electrode 16, thereby fixing the negative electrode 17 to the inner surface 12e of the carbon nanosheet 12.
上述したように正極16及び負極17をカーボンナノシート12に固定することで、正極16及び負極17は、カーボンナノシート12と電気的に導通(接続)した状態で固定される。なお、正極16の外面16aから延出するリード線T1、T2、及び負極17の外面17aから延出するリード線T3、T4は、上述した加熱線部材14のリード線H1、H2と同様に、カーボンナノシート12を貫通させて外方へ取り出す。以上のような製造工程を経て呼気センサ11は完成する。
By fixing the positive electrode 16 and the negative electrode 17 to the carbon nanosheet 12 as described above, the positive electrode 16 and the negative electrode 17 are fixed in a state of electrical conduction (connection) with the carbon nanosheet 12. Note that the lead wires T1, T2 extending from the outer surface 16a of the positive electrode 16 and the lead wires T3, T4 extending from the outer surface 17a of the negative electrode 17 penetrate the carbon nanosheet 12 and are taken out to the outside, similar to the lead wires H1, H2 of the heating wire member 14 described above. The breath sensor 11 is completed through the manufacturing process described above.
完成した呼気センサ11は、その下側から、上述したセンサホルダ30の空洞部31cに嵌め込んで固定する(図4参照)。この際、しっかりと固定を確保するためには、予め、空洞部31cの内周面に接着剤を塗布しておき、接着剤により、呼気センサ11をセンサホルダ30の空洞部31cへ固着させることが好ましい。また、固定する際の、呼気センサ11の周方向の向きとしては、呼気センサ11(カーボンナノシート12)の周囲から延出するリード線H1、H2が、センサホルダ30の第1、2導通ピン32a、32bと対向するような配置の向きにする。
The completed breath sensor 11 is fixed by fitting it from below into the hollow portion 31c of the sensor holder 30 described above (see Figure 4). In order to ensure a firm fixation, it is preferable to apply adhesive to the inner surface of the hollow portion 31c in advance and use the adhesive to fix the breath sensor 11 to the hollow portion 31c of the sensor holder 30. In addition, when fixing, the breath sensor 11 is oriented in the circumferential direction so that the lead wires H1 and H2 extending from the periphery of the breath sensor 11 (carbon nanosheet 12) face the first and second conductive pins 32a and 32b of the sensor holder 30.
呼気センサ11の固定が完了すると次に、リード線H1、H2、T1~T4を、半田等によって第1~第6導通ピン32a、32b、33a、33b、34a、34bの各上端あたりと接続する(図9(a)(b)参照)。最後に、呼気センサ11及びセンサホルダ30(ホルダ本体31)の上面31aを覆うようにセンサカバー20を取り付けることで、呼気センサユニット10を完成する(図3、4参照)。
Once the breath sensor 11 has been fixed, the lead wires H1, H2, T1-T4 are then connected to the upper ends of the first through sixth conductive pins 32a, 32b, 33a, 33b, 34a, and 34b by soldering or the like (see Figures 9(a) and 9(b)). Finally, the sensor cover 20 is attached so as to cover the breath sensor 11 and the upper surface 31a of the sensor holder 30 (holder body 31), completing the breath sensor unit 10 (see Figures 3 and 4).
完成した呼気センサユニット10は、電気的な接続を行った上で、図1に示す血糖値測定装置1の内部に配置する。電気的な接続としては、血糖値測定装置1の内部に配置されるバッテリ8との給電系の回路に第1、第2導通ピン32a、32bの下端側を接続することになり、それにより、加熱線部材14へ電流を流せるようにして、加熱線部材14での加熱を行えるようにする。また、図2に示す回路ブロックにおいて、トランスデューサー7との接続用となる第1接続線d1を構成する複数の導通線を、第3導通ピン33a及び第5導通ピン34aの下端側とそれぞれ接続すると共に、第4導通ピン33b及び第6導通ピン34bの下端側を図11の電気回路図で示すように、バッテリ8の正極側及び陰極側にそれぞれ接続して、電気的な回路接続を行う。
The completed breath sensor unit 10 is electrically connected and then placed inside the blood glucose measuring device 1 shown in FIG. 1. The lower ends of the first and second conductive pins 32a and 32b are connected to a power supply circuit with the battery 8 placed inside the blood glucose measuring device 1, thereby allowing current to flow to the heating wire member 14, thereby enabling heating by the heating wire member 14. In the circuit block shown in FIG. 2, the multiple conductive wires constituting the first connection line d1 for connection to the transducer 7 are connected to the lower ends of the third conductive pin 33a and the fifth conductive pin 34a, respectively, and the lower ends of the fourth conductive pin 33b and the sixth conductive pin 34b are connected to the positive and negative sides of the battery 8, respectively, as shown in the electrical circuit diagram in FIG. 11, to perform electrical circuit connection.
電気的な接続の完了した呼気センサユニット10は、センサカバー20の部分が、血糖値測定装置1の筐体2の天面2aから突出するパイプ状の吹込部3の内部に収まるように配置される。このように呼気センサユニット10が配置された状態では、吹込部3の突出方向に、呼気センサユニット10のZ軸方向が一致する向きになっている。
Once the electrical connections are complete, the breath sensor unit 10 is positioned so that the sensor cover 20 fits inside the pipe-shaped blowing section 3 that protrudes from the top surface 2a of the housing 2 of the blood glucose measuring device 1. With the breath sensor unit 10 positioned in this way, the Z-axis direction of the breath sensor unit 10 is aligned with the protruding direction of the blowing section 3.
上記のように呼気センサユニット10を配置することで、吹込部3の開口した先端3aより吹き込まれた呼気は、呼気センサ11のカーボンナノシート12の上端12aの側(一端側)に形成される開口から取り入れられるようになる。そのため、呼気センサ11におけるカーボンナノシート12の上端12aに形成される開口は、呼気の取入口11aとして機能する(図4、12等参照)。
By positioning the breath sensor unit 10 as described above, the breath blown into the open tip 3a of the blowing section 3 is taken in through an opening formed on the side (one end side) of the upper end 12a of the carbon nanosheet 12 of the breath sensor 11. Therefore, the opening formed on the upper end 12a of the carbon nanosheet 12 in the breath sensor 11 functions as the breath intake 11a (see Figures 4, 12, etc.).
次に、血糖値測定装置1の使用状況について説明する。被験者(ユーザ)は最初に、電源スイッチ4をオンにする操作を行う。この電源スイッチ4のオンに伴い、バッテリからの給電回路を通じての給電(電圧印加)が開始され、図2に示す回路ブロックに含まれるプロセッサユニット6等が起動し、また、加熱線部材14による加熱が開始されると共に、呼気センサ11の電極15(正極16と負極17の間)に1.8~2.2Vの所定電圧が印加されて、正極16と負極17の間で、カーボンナノシート12を通じて安定した電流が流れるようになる。
Next, the usage of the blood glucose measuring device 1 will be described. The subject (user) first turns on the power switch 4. When the power switch 4 is turned on, power supply (voltage application) from the battery through the power supply circuit is started, the processor unit 6 and other components included in the circuit block shown in FIG. 2 are started, heating is started by the heating wire member 14, and a predetermined voltage of 1.8 to 2.2 V is applied to the electrode 15 (between the positive electrode 16 and the negative electrode 17) of the breath sensor 11, causing a stable current to flow through the carbon nanosheet 12 between the positive electrode 16 and the negative electrode 17.
プロセッサユニット6の制御部6aは起動すると、加熱線部材14が検出処理に対して十分な温度(例えば、約200℃)になるまでの計時処理を行うと共に、計時中の状況(時間のカウント状況)を示す計時情報をディスプレイ5へ出力する処理を行う。それにより、ディスプレイ5のディスプレイ画面には時間をカウントする状況が表示されるので、被験者(ユーザ)は計時時間がカウントアップするまで待つことになる。
When the control unit 6a of the processor unit 6 is started, it performs a timing process until the heating wire member 14 reaches a temperature sufficient for the detection process (for example, about 200°C), and also performs a process of outputting timing information indicating the status during timing (time count status) to the display 5. As a result, the time count status is displayed on the display screen of the display 5, and the subject (user) waits until the time counts up.
制御部6aは、計時した時間が、メモリ6bに記憶される基準時間に達するかを判断している。なお、基準時間としては約60秒~180秒程度の範囲中に含まれる時間を適用でき、本実施形態では70秒を基準時間として使用する。
The control unit 6a determines whether the measured time reaches the reference time stored in the memory 6b. The reference time can be any time within the range of approximately 60 to 180 seconds, and in this embodiment, 70 seconds is used as the reference time.
制御部6aの計時処理により、計時時間が基準時間に達すると、カウントアップとなり、上述した電気抵抗値の検出処理、成分濃度の検出処理、及び血糖値の算出処理と云った一連の処理を行い、算出した血糖値を示す数値情報をディスプレイ5へ出力する処理を行う。電源オンからカウントアップを経て、ディスプレイ5のディスプレイ画面に表示される数値は、呼気を吹き込む前では通常の空気中に含まれる成分に基づく値となり、一般的に約60~70程度の数値が示される(血糖値の数値単位はmg/dl。以下同様であり、単位表記は省略する)。本実施形態の血糖値測定装置1では、ディスプレイ画面に表示される数値が70以下になる場合を、使用可能(検出可能)になった状況にしている。
When the time reaches a reference time, the control unit 6a starts counting up and performs a series of processes such as the above-mentioned electrical resistance detection process, component concentration detection process, and blood glucose calculation process, and outputs numerical information indicating the calculated blood glucose level to the display 5. The number displayed on the display screen of the display 5 after counting up from powering on is based on the components contained in normal air before exhalation, and generally shows a value of about 60 to 70 (the unit of blood glucose level is mg/dl. The same applies below, and unit notation is omitted). In the blood glucose measuring device 1 of this embodiment, when the number displayed on the display screen is 70 or less, it is considered to be in a usable (detectable) state.
そのため、被験者(ユーザ)は、ディスプレイ画面の表示が、カウントする状況から数値情報に切り替わると、その表示される数値が70以下であるかを確認し、表示される数値が70以下であれば、吹込部3を咥えて息を吹き込む。なお、ディスプレイ画面に表示される数値が70を超過する場合、被験者(ユーザ)は、表示数値が70以下になるのを待ってから、息い吹き込むことになる。
Therefore, when the display screen switches from a counting state to numerical information, the subject (user) checks whether the displayed number is 70 or less, and if the displayed number is 70 or less, holds the blowing part 3 in his/her mouth and blows into it. Note that if the number displayed on the display screen exceeds 70, the subject (user) waits until the displayed number becomes 70 or less before blowing into it.
図12は、吹込部3から吹き込まれた息(呼気F)が、呼気センサユニット10に組み込まれた呼気センサ11へ取り入れられる状況を示している。この図12で示すように、呼気Fは、開口した取入口11aからセンサ内部に流入し、カーボンナノシート12の内部に配置した加熱線部材14を通過する。この加熱線部材14を通過する際、呼気Fに含まれる成分が加熱され、酸化等の各種反応が促進され、成分中の電子が活性化し、活性化した成分がカーボンナノシート12に付着することで、電圧が印加される正極16と負極17の間のカーボンナノシート12の電気抵抗が顕著に変化しやすい状態となる。
Figure 12 shows the state in which breath (exhaled air F) blown into the blowing section 3 is taken into the exhaled air sensor 11 built into the exhaled air sensor unit 10. As shown in Figure 12, the exhaled air F flows into the sensor from the open intake port 11a and passes through the heating wire member 14 arranged inside the carbon nanosheet 12. When passing through this heating wire member 14, the components contained in the exhaled air F are heated, promoting various reactions such as oxidation, activating the electrons in the components, and the activated components adhere to the carbon nanosheet 12, making it easy for the electrical resistance of the carbon nanosheet 12 between the positive electrode 16 and the negative electrode 17 to which a voltage is applied to change significantly.
具体的には、まず加熱線部材14を構成する銅ナノワイヤーは部分的に表面が被覆されていない箇所があるので、この被覆されていない箇所では、加熱により銅成分の酸化反応が生じ、酸化銅(CuO)が発生する。呼気中の成分は、加熱線部材14を通過する際、この酸化銅(CuO)と反応することになり、例えば、呼気中の成分に含まれるアセトン(CH3COCH3)の場合、酸化銅とアセトンの相互に反応が生じる。
Specifically, the copper nanowires constituting the heating wire member 14 have some uncoated surfaces, and in these uncoated areas, heating causes an oxidation reaction of the copper components, generating copper oxide (CuO). When components in the exhaled breath pass through the heating wire member 14, they react with this copper oxide (CuO). For example, in the case of acetone ( CH3COCH3 ), which is a component in the exhaled breath, a reaction occurs between the copper oxide and acetone .
アセトン(CH3COCH3)については、ケテン(CH2CO)とメタン(CH4)といった成分に分解(熱分解)され、このような反応により生じた成分が呼気センサ11のカーボンナノシート12の内周面12eの付着することで、呼気センサ11(カービンナノシート12)の電気抵抗が変化する。
Acetone ( CH3COCH3 ) is decomposed (pyrolyzed) into components such as ketene ( CH2CO ) and methane ( CH4 ), and the components produced by such a reaction adhere to the inner surface 12e of the carbon nanosheet 12 of the breath sensor 11, causing a change in the electrical resistance of the breath sensor 11 (carbon nanosheet 12).
上述したように、呼気センサ11の内部に取り入れられた呼気の成分は、加熱線部材14により加熱されて、電気抵抗の変化が迅速に進みやすくなるが、加熱線部材14から発する熱がカーボンナノシート12へ伝わりすぎると、呼気成分の付着による電気抵抗の変化に影響が生じ、呼気成分の付着に基づく電気抵抗の検出に関する精度を悪化させることが懸念される。
As mentioned above, the components of the breath taken into the breath sensor 11 are heated by the heating wire member 14, which makes it easier for the electrical resistance to change quickly. However, if too much heat is transmitted from the heating wire member 14 to the carbon nanosheet 12, it will affect the change in electrical resistance caused by the adhesion of the breath components, and there is a concern that this will worsen the accuracy of detecting the electrical resistance based on the adhesion of the breath components.
しかし、本実施形態で用いられる呼気センサ11では、加熱線部材14が断熱部材13の内部に配置されると共に、その断熱部材13の断熱性能は、内周面13aのフラーレン層18で補強されているため、加熱線部材14の発する熱がカーボンナノシート12に伝わって、カーボンナノシート12の電気抵抗値に影響を及ぼすことを極力抑えられる。
However, in the breath sensor 11 used in this embodiment, the heating wire member 14 is disposed inside the insulating member 13, and the insulating performance of the insulating member 13 is reinforced by the fullerene layer 18 on the inner surface 13a, so that the heat generated by the heating wire member 14 is prevented from being transmitted to the carbon nanosheet 12 and affecting the electrical resistance value of the carbon nanosheet 12 as much as possible.
また、呼気センサ11(カーボンナノシート12)の内部に取り入れられた成分の中で、電気抵抗の検出に不要な成分は、断熱部材13の内周面13aのフラーレン層18で吸着・吸収等されるので、カーボンナノシート12の電気抵抗の変化は、主に呼気中の中で電気抵抗の変化に関係する成分がカーボンナノシート12に吸着したことに依存したものになる。以上のことから、本発明の血糖値測定装置1では、呼気中の成分による電気抵抗の変化を顕著にして、呼気中の成分に基づく電気抵抗の変化を高精度に検出可能にしている。
Furthermore, among the components taken into the breath sensor 11 (carbon nanosheet 12), those not necessary for detecting electrical resistance are adsorbed or absorbed by the fullerene layer 18 on the inner surface 13a of the insulating member 13, so the change in electrical resistance of the carbon nanosheet 12 depends mainly on the components in the breath that are related to the change in electrical resistance being adsorbed to the carbon nanosheet 12. As a result, the blood glucose measuring device 1 of the present invention makes the change in electrical resistance due to the components in the breath more noticeable, making it possible to detect the change in electrical resistance due to the components in the breath with high accuracy.
そして、血糖値測定装置1(制御部6a)では、上述した電気抵抗の変化に関する算出結果に基づき、呼気センサ11に取り入れられた呼気に含まれる成分の濃度が検出され、さらに、その検出された濃度に基づき、最終的に血糖値が算出されており、変化した電気抵抗の値に応じて、最終的に算出される血糖値も変化する。このように変化する血糖値は血糖値測定装置1のディスプレイ画面に表示されるので、被験者(ユーザ)は、息(呼気)を血糖値測定装置1へ吹き込むだけで、ディスプレイ画面に表示される数値を見て、自身の血糖値を把握できる。
The blood glucose measuring device 1 (control unit 6a) then detects the concentration of the components contained in the breath taken into the breath sensor 11 based on the calculation results regarding the change in electrical resistance described above, and the final blood glucose level is calculated based on the detected concentration, with the final calculated blood glucose level changing according to the changed electrical resistance. The blood glucose level thus changing is displayed on the display screen of the blood glucose measuring device 1, so that the subject (user) can ascertain their own blood glucose level by simply blowing a breath (exhaled air) into the blood glucose measuring device 1 and viewing the numerical value displayed on the display screen.
なお、糖尿病の被験者又は糖尿病の傾向のある被験者の場合は、息(呼気)を吹き込む前にディスプレイ画面に表示される数値から、息(呼気)を吹き込んだ後にディスプレイ画面に表示される数値(血糖値)が大きく変化することになる。
In addition, in the case of subjects with diabetes or a tendency to develop diabetes, the number (blood glucose level) displayed on the display screen after breathing (exhalation) will change significantly from the number displayed on the display screen before breathing (exhalation).
上述した処理を経て、算出された血糖値のピーク値になると、その値が保持されて、血糖値測定装置1のディスプレイ画面に表示され続けることになり、この状態で、血糖値の測定は完了となる。
When the calculated blood glucose level reaches its peak value through the above-mentioned process, that value is held and continues to be displayed on the display screen of the blood glucose measuring device 1, and the blood glucose measurement is completed in this state.
測定完了後は、被験者(ユーザ)が電源スイッチ4をオフすることで、算出された血糖値の結果がリセットされる。また、次回の検出を行う際には、被験者(ユーザ)が電源スイッチ4をオンすることになるが、このときも、上述した場合と同様に、制御部6aが基準時間(例えば、70秒)に達するまで計時処理を行い、計時処理が終了すると、その時点において算出された数値(血糖値に応じた数値)がディスプレイ画面に表示される。
After the measurement is complete, the subject (user) turns off the power switch 4, which resets the calculated blood glucose level. Furthermore, when the next detection is to be performed, the subject (user) turns on the power switch 4. In this case, as in the case described above, the control unit 6a performs timing processing until the reference time (e.g., 70 seconds) is reached, and when the timing processing ends, the value calculated at that time (a value corresponding to the blood glucose level) is displayed on the display screen.
この場合、前回の測定完了後から十分な時間を経過せずに、電源スイッチ4をオンにすると、呼気センサ11の内部に残存する浮遊成分等の影響により、ディスプレイ画面に表示される数値が70以下にならず、検出及び測定が可能な状態になるまで息の吹き込むのを待つ必要が生じる。
In this case, if the power switch 4 is turned on before sufficient time has passed since the completion of the previous measurement, the number displayed on the display screen will not fall below 70 due to the influence of floating components remaining inside the breath sensor 11, and it will be necessary to wait until the breath is blown into the sensor until it becomes capable of detection and measurement.
本発明に係る血糖値測定装置1は、前回の測定の完了後、次回の測定が可能な状態に回復するまでの時間が早いことも特徴になっている。すなわち、測定の完了後に、呼気センサ11(カーボンナノシート12)の内部に浮遊する残存成分や湿気成分等により、カーボンナノシート12の変化した電気抵抗値が元に戻るのが遅くなり、それに伴い、血糖値が70以下になるにも時間を要することになる。
The blood glucose measuring device 1 according to the present invention is also characterized by the fact that it quickly recovers to a state where the next measurement is possible after the previous measurement is completed. In other words, after the measurement is completed, the changed electrical resistance value of the carbon nanosheet 12 is slow to return to normal due to residual components and moisture components floating inside the breath sensor 11 (carbon nanosheet 12), and as a result, it takes time for the blood glucose level to fall below 70.
しかし、本発明の血糖値測定装置1は上述したように、断熱部材13の内周面13bにフラーレン層18を形成しており、このフラーレン層18を構成するフラーレンは、気体中の成分を効率良く吸着・吸収する特性を有するため、呼気センサ11の内部に浮遊する残存成分や湿気成分がフラーレン層18に吸着・吸収されていくので、測定完了後に血糖値が70以下へスムーズに収まるようになる。それにより本発明の血糖値測定装置1(呼気センサ11)は次回の検出及び測定が可能となる状態まで、短い時間で回復できる。なお、カーボンナノシート12に付着した成分については、自然と気化して除去されることになる。
However, as described above, the blood glucose measuring device 1 of the present invention forms a fullerene layer 18 on the inner surface 13b of the insulating member 13, and the fullerenes that make up this fullerene layer 18 have the property of efficiently adsorbing and absorbing components in gas. As a result, the remaining components and moisture components floating inside the breath sensor 11 are adsorbed and absorbed by the fullerene layer 18, so that the blood glucose level smoothly settles below 70 after the measurement is completed. This allows the blood glucose measuring device 1 (breath sensor 11) of the present invention to recover in a short time to a state where the next detection and measurement are possible. Note that the components attached to the carbon nanosheet 12 will naturally evaporate and be removed.
本出願人による実験では、フラーレン層18を設けない場合では、測定の完了後から次回の測定が可能な状態に回復に至るのに最低でも約10分程度(約600秒程度)が必要であったが、フラーレン層18を設けた場合、次回の検出及び測定が可能な状態に回復に至るのに約1~5分程度にまで短縮できたことを確認している。
In experiments conducted by the applicant, it was confirmed that without the fullerene layer 18, it took at least about 10 minutes (about 600 seconds) after the completion of a measurement for the sensor to recover to a state where the next measurement was possible, but with the fullerene layer 18, the recovery time for the sensor to recover to a state where the next detection and measurement was possible was reduced to about 1 to 5 minutes.
図13、14は、計48人の被験者(被験者No.1~48)に対して、本発明に係る血糖値測定装置1を用いて算出した血糖値と、従来の検査キットによる採血式の装置で血糖値を求めた場合の結果を対比した実験結果を示す表である。この実験では、被験者ごとに、本発明に係る血糖値測定装置1と、従来の装置を、ほぼ同時期に使用して、それぞれの装置で血糖値を求めている(具体的には、先に血糖値測定装置1で血糖値を求め、その後、すぐに従来の装置で血糖値を求めている)。
Figures 13 and 14 are tables showing the results of an experiment comparing blood glucose levels calculated using the blood glucose measuring device 1 of the present invention with blood glucose levels calculated using a conventional blood sampling device with a test kit for a total of 48 subjects (subjects No. 1 to 48). In this experiment, for each subject, the blood glucose measuring device 1 of the present invention and the conventional device were used at roughly the same time to calculate blood glucose levels with each device (specifically, the blood glucose level was calculated first with the blood glucose measuring device 1, and then immediately with the conventional device).
これら図13、14で示す計48人の比較結果の差の平均は「6.17(小数点以下第3位を四捨五入)」となっており、最も差が大きいのは、被験者No.32の「14」であり(従来の装置の結果が「306」であり、本発明の装置による結果が「292」)、最も差が小さいのは、被験者No.28の「0」である(従来の装置及び本発明の装置による結果は共に「100」)。このような図13、14に示す表より、本発明に係る血糖値測定装置1は十分な測定精度を確保した有用な想定であることが分かる。
The average difference in the comparison results for the total of 48 people shown in Figures 13 and 14 is "6.17 (rounded to two decimal places)," with the largest difference being "14" for subject No. 32 (result for the conventional device was "306" and result for the device of the present invention was "292"), and the smallest difference being "0" for subject No. 28 (results for both the conventional device and the device of the present invention were "100"). From the tables shown in Figures 13 and 14, it can be seen that the blood glucose measuring device 1 of the present invention is a useful assumption that ensures sufficient measurement accuracy.
なお、血糖値は一般に、その値が高いほど、測定結果の誤差が大きくなる傾向があることが知られており、図13、14に示す比較結果の表においても、両者の差が大きいのは、測定された血糖値が大きめの被験者であることが読み取れる(例えば、被験者No.19、27、32、47は血糖値が200を超えているので、両者の差も大きめになっていることが読み取れる。また、一般に血糖値が200を超えると糖尿病型であると判定される)。
It is generally known that the higher the blood glucose level, the greater the error in the measurement results. In the comparison result tables shown in Figures 13 and 14, it can be seen that subjects with higher measured blood glucose levels have a larger difference between the two (for example, subjects No. 19, 27, 32, and 47 had blood glucose levels over 200, so the difference between the two is also large. Also, a blood glucose level over 200 is generally considered to be diabetic).
以上に説明したように、本発明に係る呼気センサ11を備えた血糖値測定装置1は、血糖値の測定を高精度で行えると共に、血糖値の測定が完了してから次回の測定が可能になるまで回復するのに要する時間も短いことから、血糖値の測定に対して有用で且つ使い勝手の良いものになっている。なお、本発明に係る呼気センサ11を備えた血糖値測定装置1は上述した形態に限定されるものではなく、種々の変形例が想定される。
As described above, the blood glucose measuring device 1 equipped with the breath sensor 11 according to the present invention is useful and easy to use for measuring blood glucose levels, since it can measure blood glucose levels with high accuracy and requires a short time to recover from the completion of a blood glucose measurement until the next measurement is possible. Note that the blood glucose measuring device 1 equipped with the breath sensor 11 according to the present invention is not limited to the above-mentioned form, and various modified examples are envisioned.
例えば、上述した説明では、呼気センサ11の周囲にはカーボンナノシート12を用いたが、呼気に含まれる成分が付着して電気抵抗が変化する特性を有するカーボンナノ構造体であれば、他のものを用いてもよい(例えば、カーボンナノチューブを用いて、呼気センサ11の周囲を筒状体で構成してもよい)。また、呼気センサ11の周囲を構成する筒状体は、円筒形状に限定されるものではなく、多角形(四角形、五角形、六角形、七角形、八角形等)による筒形状も適用可能である。
For example, in the above description, a carbon nanosheet 12 is used around the breath sensor 11, but other carbon nanostructures may be used as long as they have the property of changing electrical resistance when components contained in breath adhere to them (for example, a tubular body may be formed around the breath sensor 11 using carbon nanotubes). In addition, the tubular body that forms the periphery of the breath sensor 11 is not limited to a cylindrical shape, and tubular shapes with polygons (square, pentagon, hexagon, heptagon, octagon, etc.) can also be used.
また、一対の電極15における負極17には、金ナノ粒子を含んだものを用いるように説明したが(金ナノ粒子を用いた負極は製造しやすい)、その他のものとして、導電性を向上させる観点では、優れた導電性能を有するフラーレン(C60、C70等)を含むものを用いることも可能である。フラーレンを含む形態としては、グラファイト酸化物及びフラーレンを混ぜ合わせて負極を形成することが可能である。このようなフラーレンを含む負極17を用いることで、電気抵抗の変化を精度良く検出しやすくなる。
In addition, while it has been described that the negative electrode 17 in the pair of electrodes 15 contains gold nanoparticles (negative electrodes using gold nanoparticles are easy to manufacture), it is also possible to use other materials that contain fullerenes (C60, C70, etc.) that have excellent conductive properties in order to improve conductivity. As a form that contains fullerenes, it is possible to form a negative electrode by mixing graphite oxide and fullerenes. By using such a negative electrode 17 that contains fullerenes, it becomes easier to detect changes in electrical resistance with high accuracy.
一方、検出可能な状態に回復するまでの時間短縮が、それほど必要で無いときなどは、断熱部材13の内周面13bに形成していたフラーレン層18を省略することも可能である。さらには、呼気センサ11の外径寸法の設定具体等により、それほど加熱線部材14による発熱の影響が受けないような場合は、断熱部材13を省略することも可能である。
On the other hand, when there is no need to reduce the time required to recover to a detectable state, it is possible to omit the fullerene layer 18 formed on the inner surface 13b of the insulating member 13. Furthermore, when the external diameter dimensions of the breath sensor 11 are set in a way that the sensor is not significantly affected by heat generated by the heating wire member 14, it is also possible to omit the insulating member 13.
また、加熱線部材14についても、図5(b)、図6等に示すような構成(コイル部14aの周囲にメッシュ部14bを形成した構成)に限定されるものではなく、例えば、メッシュ部14bを省略してコイル部14aのみを設ける構成(複数のコイル部14aを平行的に配置する構成等)や、逆に、コイル部14aを省略して、メッシュ部14bのみにする構成等も想定できる。
Furthermore, the heating wire member 14 is not limited to the configuration shown in Figures 5(b) and 6 (a configuration in which a mesh portion 14b is formed around a coil portion 14a), but may be, for example, a configuration in which the mesh portion 14b is omitted and only the coil portion 14a is provided (such as a configuration in which multiple coil portions 14a are arranged in parallel), or conversely, a configuration in which the coil portion 14a is omitted and only the mesh portion 14b is provided.
さらに、加熱線部材14は、線部材の被覆に用いるのは、ナノシルバーに限定されるものではなく、他のナノ被覆材や、全く別の系統の被覆材を使用してもよく、被覆される線部材も銅ナノワイヤーに限定されず、通電により発熱する素材であれば利用可能となる。さらにまた、利用する素材によっては、ナノシルバー等の被覆材による被覆を省略してもよい。
Furthermore, the coating of the heating wire member 14 is not limited to nanosilver, but other nano coating materials or coating materials of a completely different system may be used, and the coated wire member is not limited to copper nanowire, but any material that generates heat when electricity is passed through it can be used. Furthermore, depending on the material used, the coating with a coating material such as nanosilver may be omitted.
また、血糖値測定装置1に用いられるプログラムPによる各種処理内容について、上述した説明内容は一例であり、他の処理内容を規定することや追加することは勿論可能である。例えば、図13、14に示す実験結果の比較表によれば、測定された血糖値の値が200を超えると、従来の装置による測定結果との差が大きくなる傾向(誤差が大きくなる傾向)が生じるという見方もできるので、測定された血糖値が200を超えるときは、測定された血糖値を是正するようなアルゴリズム(誤差分散等を行うアルゴリズム)に基づいたプログラミング内容を、プログラムPに追加すること等が考えられる。
Furthermore, the above description of the various processing contents by the program P used in the blood glucose measuring device 1 is just one example, and it is of course possible to define or add other processing contents. For example, according to the comparison table of experimental results shown in Figures 13 and 14, it can be seen that when the measured blood glucose level exceeds 200, there is a tendency for the difference from the measurement results by conventional devices to become larger (the error tends to become larger), so it is possible to add programming contents to the program P based on an algorithm (an algorithm that performs error dispersion, etc.) that corrects the measured blood glucose level when the measured blood glucose level exceeds 200.
本発明は、息を吹き込むだけで血糖値を高精度で測定可能にすると共に、一旦、測定を行ってから次回の測定が可能になるまでの回復時間も短くしたので、糖尿病や糖尿病の傾向のあるユーザが日常的に血糖値を測定するのに利用可能である。
The present invention makes it possible to measure blood glucose levels with high accuracy simply by blowing into the device, and also shortens the recovery time from one measurement to the next, making it suitable for use by people with diabetes or a tendency toward diabetes to measure their blood glucose levels on a daily basis.
1 血糖値測定装置
2 筐体
3 吹込部
4 電源スイッチ
5 ディスプレイ
6 プロセッサユニット
6a 制御部
10 呼気センサユニット
11 呼気センサ
11a 取入口
12 カーボンナノシート
13 断熱部材
14 加熱線部材
15 電極
16 正極
17 負極
18 フラーレン層
20 センサカバー
30 センサホルダ
P プログラム REFERENCE SIGNSLIST 1 Blood glucose measuring device 2 Housing 3 Blowing section 4 Power switch 5 Display 6 Processor unit 6a Control section 10 Breath sensor unit 11 Breath sensor 11a Intake port 12 Carbon nanosheet 13 Heat insulating member 14 Heating wire member 15 Electrode 16 Positive electrode 17 Negative electrode 18 Fullerene layer 20 Sensor cover 30 Sensor holder P Program
2 筐体
3 吹込部
4 電源スイッチ
5 ディスプレイ
6 プロセッサユニット
6a 制御部
10 呼気センサユニット
11 呼気センサ
11a 取入口
12 カーボンナノシート
13 断熱部材
14 加熱線部材
15 電極
16 正極
17 負極
18 フラーレン層
20 センサカバー
30 センサホルダ
P プログラム REFERENCE SIGNS
Claims (9)
- 呼気に含まれる成分が付着することで、電気抵抗が変化する特性を有するカーボンナノ構造体を備える呼気センサにおいて、
前記カーボンナノ構造体は、筒状に形成してあり、
前記カーボンナノ構造体の内部に配置した加熱線部材と、
前記カーボンナノ構造体と電気的に接続された一対の電極と
を備え、
前記カーボンナノ構造体の一端側に形成された開口を、呼気の取入口にしてあることを特徴とする呼気センサ。 A breath sensor having a carbon nanostructure that has a characteristic that its electrical resistance changes when a component contained in breath adheres to the carbon nanostructure,
The carbon nanostructure is formed in a cylindrical shape,
A heating wire member disposed inside the carbon nanostructure;
a pair of electrodes electrically connected to the carbon nanostructure;
An breath sensor characterized in that an opening formed on one end side of the carbon nanostructure is used as an intake port for breath. - 前記カーボンナノ構造体の内部に配置した環状の断熱部材を備え、
前記加熱線部材は、前記断熱部材の内部に配置してある請求項1に記載の呼気センサ。 a ring-shaped heat insulating member disposed inside the carbon nanostructure;
2. The breath sensor according to claim 1, wherein the heating wire member is disposed inside the heat insulating member. - 前記環状の断熱部材の内周面には、フラーレン層が形成してある請求項2に記載の呼気センサ。 The breath sensor according to claim 2, wherein a fullerene layer is formed on the inner peripheral surface of the annular insulating member.
- 前記一対の電極における負極は、フラーレンを含む請求項1に記載の呼気センサ。 The breath sensor of claim 1, wherein the negative electrode of the pair of electrodes contains fullerene.
- 前記加熱線部材は、ナノシルバーで被覆した銅ナノワイヤーで形成してある請求項1乃至請求項4のいずれか1項に記載の呼気センサ。 The breath sensor according to any one of claims 1 to 4, wherein the heating wire member is formed of copper nanowires coated with nanosilver.
- 前記加熱線部材は、巻回したコイル部、及び前記コイル部の周囲に形成した網状のメッシュ部を有する請求項2に記載の呼気センサ。 The breath sensor according to claim 2, wherein the heating wire member has a wound coil portion and a net-like mesh portion formed around the coil portion.
- 請求項1乃至請求項4のいずれか1項に記載の呼気センサと、
前記呼気センサに含まれる前記カーボンナノ構造体の電気抵抗の変化を検出する電気抵抗検出手段と、
前記電気抵抗検出手段の検出結果に基づき、血糖値を算出する血糖値算出手段と、
前記血糖値算出手段の算出結果を出力する出力手段と
を備えることを特徴とする血糖値測定装置。 The breath sensor according to any one of claims 1 to 4,
An electrical resistance detection means for detecting a change in the electrical resistance of the carbon nanostructure included in the breath sensor;
a blood glucose level calculation means for calculating a blood glucose level based on a detection result of the electrical resistance detection means;
and an output means for outputting a calculation result of the blood glucose level calculation means. - 前記呼気センサに含まれる前記加熱線部材は、ナノシルバーで被覆した銅ナノワイヤーで形成してある請求項7に記載の血糖値測定装置。 The blood glucose measuring device according to claim 7, wherein the heating wire member included in the breath sensor is formed of copper nanowire coated with nanosilver.
- 前記加熱線部材は、巻回したコイル部、及び前記コイル部の周囲に形成した網状のメッシュ部を有する請求項7に記載の血糖値測定装置。 The blood glucose measuring device according to claim 7, wherein the heating wire member has a wound coil portion and a net-like mesh portion formed around the coil portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-070912 | 2023-04-24 | ||
JP2023070912A JP2024156444A (en) | 2023-04-24 | Breath sensor and blood glucose measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024225206A1 true WO2024225206A1 (en) | 2024-10-31 |
Family
ID=93256347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/015652 WO2024225206A1 (en) | 2023-04-24 | 2024-04-19 | Exhalation sensor and blood sugar level measurement device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024225206A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012352A (en) * | 2002-06-07 | 2004-01-15 | Fis Inc | Exhalation inspection device |
JP2009257772A (en) * | 2008-04-11 | 2009-11-05 | Sharp Corp | Gas sensor device |
JP2010107310A (en) * | 2008-10-29 | 2010-05-13 | Sharp Corp | Chemical material sensing element, gas analyzer and breath analyzer with the same, and acetone concentration detection method using chemical material sensing element |
WO2010106898A1 (en) * | 2009-03-16 | 2010-09-23 | シャープ株式会社 | Chemical substance sensing device, and chemical substance sensing system equipped with the device |
US20110098591A1 (en) * | 2008-05-29 | 2011-04-28 | Technion Research And Development Foundation Ltd. | Carbon nanotube structures in sensor apparatuses for analyzing biomarkers in breath samples |
JP2019152511A (en) * | 2018-03-02 | 2019-09-12 | 株式会社日本触媒 | Gas sensitive medium, gas sensor, and manufacturing method for gas sensitive medium |
US20200281504A1 (en) * | 2015-05-14 | 2020-09-10 | Invoy Holdings, Llc | Breath analysis system, device and method employing nanoparticle-based sensor |
US20230044505A1 (en) * | 2020-01-06 | 2023-02-09 | Virtual Sense Global Technologies Private Limited | Method and apparatus for breath-based biomarker detection and analysis |
-
2024
- 2024-04-19 WO PCT/JP2024/015652 patent/WO2024225206A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012352A (en) * | 2002-06-07 | 2004-01-15 | Fis Inc | Exhalation inspection device |
JP2009257772A (en) * | 2008-04-11 | 2009-11-05 | Sharp Corp | Gas sensor device |
US20110098591A1 (en) * | 2008-05-29 | 2011-04-28 | Technion Research And Development Foundation Ltd. | Carbon nanotube structures in sensor apparatuses for analyzing biomarkers in breath samples |
JP2010107310A (en) * | 2008-10-29 | 2010-05-13 | Sharp Corp | Chemical material sensing element, gas analyzer and breath analyzer with the same, and acetone concentration detection method using chemical material sensing element |
WO2010106898A1 (en) * | 2009-03-16 | 2010-09-23 | シャープ株式会社 | Chemical substance sensing device, and chemical substance sensing system equipped with the device |
US20200281504A1 (en) * | 2015-05-14 | 2020-09-10 | Invoy Holdings, Llc | Breath analysis system, device and method employing nanoparticle-based sensor |
JP2019152511A (en) * | 2018-03-02 | 2019-09-12 | 株式会社日本触媒 | Gas sensitive medium, gas sensor, and manufacturing method for gas sensitive medium |
US20230044505A1 (en) * | 2020-01-06 | 2023-02-09 | Virtual Sense Global Technologies Private Limited | Method and apparatus for breath-based biomarker detection and analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | High-sensitivity wearable and flexible humidity sensor based on graphene oxide/non-woven fabric for respiration monitoring | |
Ghosh et al. | Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices | |
Varghese et al. | A transcutaneous hydrogen sensor: From design to application | |
US20060213251A1 (en) | Carbon nanotube films for hydrogen sensing | |
Thiyagarajan et al. | Flexible, highly sensitive paper-based screen printed MWCNT/PDMS composite breath sensor for human respiration monitoring | |
Balakrishnan et al. | Based electronics using graphite and silver nanoparticles for respiration monitoring | |
Kim et al. | Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring | |
US20100175699A1 (en) | Respiratory sensor | |
Aroutiounian et al. | Thin-film SnO 2 and ZnO detectors of hydrogen peroxide vapors | |
WO2008088780A1 (en) | Detection of nitric oxide by nanostructured sensor | |
WO2008137788A1 (en) | Gas sensor comprising filled carbon nanotube | |
JP2010025719A (en) | Chemical substance sensing element, chemical substance sensing device and manufacturing method of chemical substance sensing element | |
JP2010038840A (en) | Chemical substance sensing element, chemical msubstance sensing apparatus, manufacturing method of surface decoration carbon nano structure, and manufacturing method of chemical substance sensing element | |
CN103975236A (en) | Lead-free oxygen sensor | |
EP3518762B1 (en) | A lung condition monitoring device | |
TWI603080B (en) | Micro gas sensor and its manufacturing method | |
JP4903911B2 (en) | Chemical substance sensing device and chemical substance sensing system including the same | |
WO2024225206A1 (en) | Exhalation sensor and blood sugar level measurement device | |
Adepu et al. | A highly electropositive ReS 2 based ultra-sensitive flexible humidity sensor for multifunctional applications | |
Caccami et al. | An epidermal graphene oxide-based RFID sensor for the wireless analysis of human breath | |
Jin et al. | Fully integrated wearable humidity sensor for respiration monitoring | |
JP2024156444A (en) | Breath sensor and blood glucose measuring device | |
JP5062695B2 (en) | Chemical substance sensing element, gas analyzer and breath analyzer equipped with the same, and acetone concentration detection method using chemical substance sensing element | |
Abdulla et al. | Development of low-cost hybrid multi-walled carbon nanotube-based ammonia gas-sensing strips with an integrated sensor read-out system for clinical breath analyzer applications | |
JP2011529192A (en) | Air quality measuring device |