[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4903911B2 - Chemical substance sensing device and chemical substance sensing system including the same - Google Patents

Chemical substance sensing device and chemical substance sensing system including the same Download PDF

Info

Publication number
JP4903911B2
JP4903911B2 JP2011504798A JP2011504798A JP4903911B2 JP 4903911 B2 JP4903911 B2 JP 4903911B2 JP 2011504798 A JP2011504798 A JP 2011504798A JP 2011504798 A JP2011504798 A JP 2011504798A JP 4903911 B2 JP4903911 B2 JP 4903911B2
Authority
JP
Japan
Prior art keywords
chemical substance
substance sensing
molecular sieve
sieve membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011504798A
Other languages
Japanese (ja)
Other versions
JPWO2010106898A1 (en
Inventor
美恵子 音無
倫久 川田
幹宏 山中
克俊 高尾
義朗 山本
恵美 肱黒
圭太 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011504798A priority Critical patent/JP4903911B2/en
Application granted granted Critical
Publication of JP4903911B2 publication Critical patent/JP4903911B2/en
Publication of JPWO2010106898A1 publication Critical patent/JPWO2010106898A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、化学物質センシング装置およびそれを備える化学物質センシングシステムに関し、特に特定の呼気マーカ物質を選択的に検出することができる化学物質センシング装置およびそれを備える化学物質センシングシステムに関する。   The present invention relates to a chemical substance sensing apparatus and a chemical substance sensing system including the chemical substance sensing apparatus, and more particularly to a chemical substance sensing apparatus capable of selectively detecting a specific breath marker substance and a chemical substance sensing system including the chemical substance sensing apparatus.

現在、日本では、医療費の増大、医療保険制度崩壊等が危惧されており、医療に頼ることを未然に防ぐことができる予防医療社会の実現が急務である。そこで、予防医療社会を実現するために、個人で手軽かつ迅速に健康状態をチェックできるシステムを各人が備える必要があると言われている。   At present, in Japan, there are concerns about an increase in medical expenses and a collapse of the medical insurance system, and there is an urgent need to realize a preventive medical society that can prevent reliance on medical care. In order to realize a preventive medical society, it is said that each person needs to have a system that can easily and quickly check a health condition.

個人で手軽かつ迅速に健康状態を把握するために用いられる生体検体としては、血液、尿、汗、唾液、呼気等が一般的に知られている。中でも呼気は、体内の肺胞の空気と毛細血管中の血液とが非常に薄い膜で隔てられているだけであることから、疾病に関する生体情報を多く含んでいることが知られている。   Blood, urine, sweat, saliva, exhalation and the like are generally known as biological specimens used for easily and quickly grasping the health condition of an individual. In particular, exhaled breath is known to contain a large amount of biological information related to diseases because the air in the alveoli in the body and the blood in the capillaries are only separated by a very thin membrane.

そこで、ヒトの呼気中に微量に存在する揮発性物質の濃度を測定することにより、その揮発性物質の濃度の測定データを得て、当該測定データに基づいて健康状態(代謝反応、生化学的病態メカニズム等)を把握する方法の研究が進められている。呼気は、非侵襲に生体情報を検出することができることから、手軽で迅速に健康状態をチェックできるシステムとして汎用化が期待されている。   Therefore, by measuring the concentration of a volatile substance present in a minute amount in human breath, measurement data of the concentration of the volatile substance is obtained, and based on the measurement data, the health condition (metabolic reaction, biochemical Research is ongoing on how to understand the pathological mechanism. Since exhaled breath can detect living body information non-invasively, it is expected to be widely used as a system that can easily and quickly check a health condition.

たとえば、呼気に含まれるエタン、ペンタン、H22等は酸化ストレスとの相関が高く、呼気中のこれらの濃度が高くなると脂質酸化、喘息、気管支炎等という症状を持つ傾向がある。また、呼気に含まれるNO、CO、H22は肺疾患との相関が高く、呼気中のこれらの濃度が高くなると喘息、慢性閉塞性肺炎等の症状を持つ傾向がある。また、呼気に含まれるH2、カーボンアイソトープは胃腸疾患との相関が高く、呼気中のこれらの濃度が高くなると消化不良、胃炎、十二指腸潰瘍等の症状が見られる。For example, ethane, pentane, H 2 O 2 and the like contained in exhaled breath have a high correlation with oxidative stress, and when these concentrations in exhaled breath increase, they tend to have symptoms such as lipid oxidation, asthma and bronchitis. Further, NO, CO, and H 2 O 2 contained in exhaled breath have a high correlation with lung diseases, and when these concentrations in exhaled breath increase, they tend to have symptoms such as asthma and chronic obstructive pneumonia. Further, H 2 and carbon isotopes contained in exhaled breath have a high correlation with gastrointestinal diseases, and symptoms such as indigestion, gastritis, and duodenal ulcer are observed when these concentrations in exhaled breath increase.

また、呼気に含まれるアセトンは代謝異常との相関が高く、呼気中のアセトン濃度が高くなると糖尿病の症状を持つ傾向があるのに対し、呼気に含まれるアセトン濃度が低くなると、メタボリック症候群の傾向がある。   In addition, acetone contained in exhaled breath has a high correlation with metabolic abnormalities, and when the concentration of acetone in the exhaled breath tends to have diabetes symptoms, a decrease in the concentration of acetone contained in exhaled breath tends to cause metabolic syndrome. There is.

このように被験者の呼気に含まれるガスの濃度を検出することにより、被験者が抱える症状の傾向を未然に把握することができる。上述のように疾病に連動して呼気中の濃度が顕著に増減する特有ガスのことを「呼気マーカ物質」と定義する。このような呼気マーカ物質の濃度を把握することにより、疾病傾向を診断する呼気測定機器が近年いくつか開発されている。   Thus, by detecting the concentration of the gas contained in the exhalation of the subject, the tendency of the symptoms that the subject has can be grasped beforehand. As described above, a specific gas whose concentration in the breath significantly increases or decreases in conjunction with a disease is defined as “expiration marker substance”. In recent years, several breath measuring devices for diagnosing a disease tendency by grasping the concentration of such a breath marker substance have been developed.

たとえば特開2001−349888号公報(以下「特許文献1」とも記す)には、ガスセンサに広く用いられている酸化物半導体センサを用いて、呼気に含まれる特定の呼気マーカ物質を検知する呼気測定装置が開示されている。この呼気測定装置に用いる酸化物半導体センサは、その表面がSnO2またはZnO等のn型半導体からなるものである。このn型半導体が呼気マーカ物質を吸着すると、呼気マーカ物質と酸素とが反応して電気抵抗が変化する。この電気抵抗の変化を測定することにより、呼気マーカ物質のうちの特定の呼気マーカ物質(たとえばアセトン)を検出するというシステムである。For example, Japanese Patent Laid-Open No. 2001-349888 (hereinafter also referred to as “Patent Document 1”) uses an oxide semiconductor sensor widely used in a gas sensor to detect a specific breath marker substance contained in the breath. An apparatus is disclosed. The oxide semiconductor sensor used in the breath measuring device has a surface made of an n-type semiconductor such as SnO 2 or ZnO. When the n-type semiconductor adsorbs the exhalation marker substance, the exhalation marker substance and oxygen react to change the electrical resistance. By measuring this change in electrical resistance, a specific exhalation marker substance (for example, acetone) among the exhalation marker substances is detected.

このように酸化物半導体センサは、反応する酸素量を参照することにより、呼気マーカ物質を特定するという性質のものである。このため、炭素数の多い呼気マーカ物質および不飽和度の高い呼気マーカ物質のように、反応する酸素量が多い呼気マーカ物質ほど高い精度で測定することができる。このような酸化物半導体センサを用いることにより、小型で、かつ特定の呼気マーカ物質を検出する呼気測定装置を提供することができる。   As described above, the oxide semiconductor sensor has a property of specifying the breath marker substance by referring to the amount of oxygen that reacts. Therefore, an exhalation marker substance having a large amount of reacting oxygen, such as an exhalation marker substance having a large number of carbon atoms and an exhalation marker substance having a high degree of unsaturation, can be measured with higher accuracy. By using such an oxide semiconductor sensor, it is possible to provide a breath measuring device that is small and detects a specific breath marker substance.

通常呼気には80%もの水分が含まれているが、このままの状態で呼気を酸化物半導体センサに導入すると、水分により酸化物半導体センサが劣化するという問題がある。また、呼気に水分を含んだままの状態では、水分が呼気マーカ物質の検出を阻害し、ppm〜ppbレベルの低濃度の呼気マーカ物質を酸化物半導体センサが検出できないという問題もあった。   Normally, exhaled air contains as much as 80% of moisture, but if exhaled air is introduced into the oxide semiconductor sensor in this state, there is a problem that the oxide semiconductor sensor deteriorates due to moisture. Further, in a state where moisture is still contained in the exhaled breath, there is a problem that the moisture inhibits the detection of the exhaled marker substance, and the oxide semiconductor sensor cannot detect the exhaled marker substance having a low concentration of ppm to ppb level.

そこで、水分を含むガスを精度よく測定するためには、特開平11−281605号公報(以下、「特許文献2」とも記す)に開示されているような土壌中のガスを測定する水分除去手段が必要となる。特許文献2に示されるような水分除去手段を備えることにより、上述したような水分による測定精度の低下は回避することができる。   Therefore, in order to accurately measure the moisture-containing gas, the moisture removing means for measuring the gas in the soil as disclosed in Japanese Patent Application Laid-Open No. 11-281605 (hereinafter also referred to as “Patent Document 2”). Is required. By providing the moisture removing means as shown in Patent Document 2, it is possible to avoid a decrease in measurement accuracy due to moisture as described above.

しかしながら、特許文献1に示される酸化物半導体センサは、酸化に必要な酸素量が同程度の呼気マーカ物質を測定したときには同程度の感度となるものである。このため200種類以上の呼気マーカ物質のうちから特定の呼気マーカ物質(たとえばアセトン)のみを選択的に検出することは原理的に不可能であった。   However, the oxide semiconductor sensor disclosed in Patent Document 1 has the same sensitivity when measuring an exhalation marker substance having the same amount of oxygen necessary for oxidation. For this reason, it is impossible in principle to selectively detect only a specific exhalation marker substance (for example, acetone) from 200 kinds or more of exhalation marker substances.

また、上記の酸化物半導体センサは、300℃程度の加熱をして呼気マーカ物質を燃焼させることにより、呼気マーカ物質を検出する。このため、加熱することにより呼気測定装置の消費電力が大幅にロスし、結果として呼気測定装置の充電の消耗が早くなり、呼気測定装置の利用時間が極めて短くなるという問題もあった。   Moreover, said oxide semiconductor sensor detects an exhalation marker substance by heating about 300 degreeC and burning an exhalation marker substance. For this reason, the power consumption of the breath measuring device is greatly lost by heating, and as a result, the consumption of the breath measuring device is expedited, and there is a problem that the use time of the breath measuring device becomes extremely short.

そこで、これらの問題を回避するために、上述の酸化物半導体センサ以外の呼気マーカ物質を検出するセンサとして、米国特許出願公開第2007/0048180号公報(以下「特許文献3」とも記す)には、カーボンナノチューブ(以下においては単に「CNT」とも称する)に代表されるナノ構造体を用いたナノ構造体センサも開示されている。   In order to avoid these problems, US Patent Application Publication No. 2007/0048180 (hereinafter also referred to as “Patent Document 3”) discloses a sensor for detecting an exhalation marker substance other than the above-described oxide semiconductor sensor. A nanostructure sensor using a nanostructure represented by a carbon nanotube (hereinafter also simply referred to as “CNT”) is also disclosed.

このようなCNTを用いたナノ構造体センサは、超小型であって、低消費電力で、しかも超高感度のガスセンサであり、かつ非侵襲で呼気を測定できることから、次世代のセンサとしての期待が寄せられている。   Such a nanostructure sensor using CNTs is expected to be a next-generation sensor because it is ultra-compact, has low power consumption, is an ultra-sensitive gas sensor, and can measure exhalation in a non-invasive manner. Has been sent.

特開2001−349888号公報JP 2001-349888 A 特開平11−281605号公報Japanese Patent Laid-Open No. 11-281605 米国特許出願公開第2007/0048180号公報US Patent Application Publication No. 2007/0048180

上記のようなナノ構造体センサを用いることにより、200種類以上の呼気マーカ物質のうちから特定の呼気マーカ物質を検出することができる。しかし、その検出の精度は未だ十分なものとは言えず、さらに高い精度で呼気マーカ物質を検出することが要求されている。   By using the nanostructure sensor as described above, a specific exhalation marker substance can be detected from 200 or more exhalation marker substances. However, the accuracy of the detection is still not sufficient, and it is required to detect the expiration marker substance with higher accuracy.

また、呼気マーカ物質とナノ構造体センサとの選択性を高めることにより、呼気に含まれる他成分の呼気マーカ物質のうちから特定の呼気マーカ物質を検出することも要求されている。   It is also required to detect a specific exhalation marker substance from other exhalation marker substances contained in exhaled breath by enhancing the selectivity between the exhalation marker substance and the nanostructure sensor.

本発明は、このような現状に鑑みてなされたものであって、その目的とするところは、特定の呼気マーカ物質をより高精度に検出することができる化学物質センシング装置、およびそれを備えた化学物質センシングシステムを提供することである。   The present invention has been made in view of such a current situation, and an object thereof is to provide a chemical substance sensing device capable of detecting a specific exhalation marker substance with higher accuracy, and the same. It is to provide a chemical substance sensing system.

本発明者らは、呼気が化学物質センシング素子に到達する前に、呼気に含まれる測定不要な呼気マーカ物質および水分を排除することにより、特定の呼気マーカ物質を高精度に検出することができるという着想を得た。そして当該着想に基づき化学物質センシング装置の構成について種々の検討を重ねた。   The present inventors can detect a specific exhalation marker substance with high accuracy by eliminating exhalation marker substances and moisture that are not required to be contained in the exhalation before the exhalation reaches the chemical substance sensing element. I got the idea. Based on this idea, various studies were made on the configuration of the chemical substance sensing device.

その結果、チャンバ内に導入分子篩膜と排出分子篩膜とを設けることにより、測定する必要のない呼気マーカ物質および水分を効率的に排除し、もって特定の呼気マーカ物質をより高精度で検出することができることを見出した。   As a result, by providing an introduction molecular sieve membrane and an exhaust molecular sieve membrane in the chamber, it is possible to efficiently eliminate exhalation marker substances and moisture that do not need to be measured, and to detect specific exhalation marker substances with higher accuracy. I found out that I can.

また、化学物質センシングシステムに備えられる水分除去部に中空糸を配置することにより、呼気に含まれる水分を効率的に除去することができ、もって呼気に含まれる低濃度の呼気マーカ物質を検出することができることを見出し、本発明の完成に至った。   In addition, by disposing a hollow fiber in the moisture removing section provided in the chemical substance sensing system, moisture contained in exhaled air can be efficiently removed, thereby detecting a low concentration exhaled marker substance contained in exhaled breath. As a result, the present invention has been completed.

すなわち、本発明の化学物質センシング装置は、導入分子篩膜および排出分子篩膜により3つの空間に分割されたチャンバと、導入分子篩膜と排出分子篩膜とにより挟まれる空間のチャンバに接する化学物質センシング素子とを備えることを特徴とする。   That is, the chemical substance sensing device of the present invention includes a chamber divided into three spaces by an introduced molecular sieve membrane and an exhausted molecular sieve membrane, and a chemical substance sensing element in contact with the chamber in the space sandwiched between the introduced molecular sieve membrane and the exhausted molecular sieve membrane It is characterized by providing.

また、導入分子篩膜および排出分子篩膜は、ゼオライトからなることが好ましい。また、導入分子篩膜の平均細孔径は、排出分子篩膜の平均細孔径よりも大きいことが好ましい。   The introduced molecular sieve membrane and the discharged molecular sieve membrane are preferably made of zeolite. The average pore diameter of the introduced molecular sieve membrane is preferably larger than the average pore diameter of the discharged molecular sieve membrane.

また、導入分子篩膜の外表面および排出分子篩膜の外表面に、加熱装置を備えることが好ましい。   Moreover, it is preferable to provide a heating device on the outer surface of the introduced molecular sieve membrane and the outer surface of the discharged molecular sieve membrane.

また、化学物質センシング素子は、ナノ構造体センサであることが好ましい。また、ナノ構造体センサは、そのセンシング部が金属錯体により表面修飾したカーボンナノチューブから構成されることが好ましい。   The chemical substance sensing element is preferably a nanostructure sensor. The nanostructure sensor is preferably composed of carbon nanotubes whose surface is modified with a metal complex in the sensing part.

本発明は、上述の化学物質センシング装置と、化学物質センシング装置に気体を導入するための気体導入経路と、気体導入経路と化学物質センシング装置との間に配置され、かつ気体導入経路からの気体の水分を吸着するための水分除去部と、化学物質センシング装置から気体を排出するための気体排出経路とを備える化学物質センシングシステムでもある。   The present invention includes the above-described chemical substance sensing device, a gas introduction path for introducing gas into the chemical substance sensing apparatus, a gas introduced from the gas introduction path and the chemical substance sensing apparatus, and gas from the gas introduction path It is also a chemical substance sensing system comprising a moisture removing unit for adsorbing the moisture and a gas discharge path for discharging gas from the chemical substance sensing device.

化学物質センシング装置と水分除去部との間には、逆止弁が設置され、化学物質センシング装置と気体排出経路との間には、逆止弁が設置されることが好ましい。水分除去部は、中空糸を備えることが好ましい。当該中空糸は、フッ素樹脂からなることが好ましい。   It is preferable that a check valve is installed between the chemical substance sensing device and the moisture removing unit, and a check valve is installed between the chemical substance sensing device and the gas discharge path. It is preferable that the moisture removing unit includes a hollow fiber. The hollow fiber is preferably made of a fluororesin.

本発明によれば、多成分系の呼気から特定の呼気マーカ物質を高精度で検出することができる化学物質センシング装置、およびこれを備える化学物質センシングシステムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical substance sensing apparatus which can detect a specific expiration | expired_air marker substance from multi-component type expiration with high precision, and a chemical substance sensing system provided with the same can be provided.

本発明の化学物質センシング装置によれば、低分子および高分子の呼気マーカ物質を排除することができ、化学物質センシング素子の劣化を抑制することができる。   According to the chemical substance sensing device of the present invention, it is possible to exclude low molecular and high molecular exhalation marker substances, and to suppress deterioration of the chemical substance sensing element.

また、疾患に依存した生体情報を検出することができ、非侵襲、超小型、低消費電力、超高感度、および高選択性の化学物質センシング素子を提供することができる。これにより使用時にユーザーのストレスが少ない化学物質センシング装置、およびこれを備えた化学物質センシングシステムを提供することができる。   In addition, biological information depending on a disease can be detected, and a chemical substance sensing element that is non-invasive, ultra-compact, low power consumption, ultra-sensitive, and highly selective can be provided. Accordingly, it is possible to provide a chemical substance sensing device with less stress on the user during use, and a chemical substance sensing system including the chemical substance sensing apparatus.

本発明の化学物質センシングシステムの一形態を示す模式図である。It is a schematic diagram which shows one form of the chemical substance sensing system of this invention. (a)本発明の化学物質センシング装置に用いられる基材の形状の一例を示す図であり、(b)は、(a)とは別の基材の形状の一例を示す図である。(c)本発明の化学物質センシング装置において、排出分子篩膜を含む面でチャンバを切断したときの模式的な断面図である。(A) It is a figure which shows an example of the shape of the base material used for the chemical substance sensing apparatus of this invention, (b) is a figure which shows an example of the shape of the base material different from (a). (C) In the chemical substance sensing apparatus of this invention, it is typical sectional drawing when a chamber is cut | disconnected by the surface containing a discharge | emission molecular sieve membrane. 化学物質センシング素子として用いることができる半導体センサの一例を示す模式図である。It is a schematic diagram which shows an example of the semiconductor sensor which can be used as a chemical substance sensing element. 金属錯体により表面修飾されたカーボンナノチューブから構成されるセンシング部を備えたナノ構造体センサの一例を示す模式図である。It is a schematic diagram which shows an example of the nanostructure sensor provided with the sensing part comprised from the carbon nanotube surface-modified by the metal complex. (a)実施例1の化学物質センシング装置から排出されたガスをGC−MSで測定したときの結果を示すグラフであり、(b)比較例1の化学物質センシング装置から排出されたガスをGC−MSで測定したときの結果を示すグラフである。(A) It is a graph which shows the result when the gas discharged | emitted from the chemical substance sensing apparatus of Example 1 is measured by GC-MS, (b) The gas discharged | emitted from the chemical substance sensing apparatus of the comparative example 1 is GC. -It is a graph which shows a result when measured by MS. 実施例1および比較例1の化学物質センシング装置に、サンプルガスを導入したときの抵抗変化を示すグラフである。It is a graph which shows resistance change when sample gas is introduce | transduced into the chemical substance sensing apparatus of Example 1 and Comparative Example 1. FIG. 実施例2および比較例2の化学物質センシングシステムに、サンプルガスを導入したときの抵抗変化を示すグラフである。It is a graph which shows resistance change when sample gas is introduce | transduced into the chemical substance sensing system of Example 2 and Comparative Example 2. FIG. 本発明の化学物質センシングシステムと端末装置との接続方法の一形態を示す模式的な図である。It is a schematic diagram which shows one form of the connection method of the chemical substance sensing system of this invention and a terminal device. 本発明の化学物質センシングシステムと端末装置との接続方法の他の一形態を示す模式的な図である。It is a schematic diagram which shows another form of the connection method of the chemical substance sensing system of this invention and a terminal device. (a)および(b)は、端末装置の表示画面を拡大した図である。(A) And (b) is the figure which expanded the display screen of the terminal device.

以下、図面に基づいて本発明の実施の形態を説明する。以下の図面において同一または相当する部分には、同一の参照符号を付することとし、その説明は繰り返さないものとする。なお、図面における長さ、大きさ、幅等の寸法は、図面の明瞭化および簡略化のため適宜に変更されたものであり、実際の寸法を表すものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. In addition, dimensions, such as length, a magnitude | size, a width | variety, etc. in drawing are changed suitably for clarification and simplification of drawing, and do not represent an actual dimension.

<化学物質センシングシステム>
図1は、本発明の化学物質センシングシステムの構造を示す模式図である。本発明の化学物質センシングシステム1は、図1に示されるように、化学物質センシング装置2と、化学物質センシング装置2に気体を導入するための気体導入経路13と、気体導入経路13と化学物質センシング装置2との間に配置され、かつ気体導入経路13からの気体の水分を吸着するための水分除去部12と、化学物質センシング装置2から気体を排出するための気体排出経路14とを備えることを特徴とする。
<Chemical substance sensing system>
FIG. 1 is a schematic diagram showing the structure of the chemical substance sensing system of the present invention. As shown in FIG. 1, the chemical substance sensing system 1 of the present invention includes a chemical substance sensing device 2, a gas introduction path 13 for introducing gas into the chemical substance sensing apparatus 2, a gas introduction path 13, and a chemical substance. A moisture removing unit 12 that is disposed between the sensing device 2 and adsorbs moisture in the gas from the gas introduction path 13 and a gas discharge path 14 that discharges the gas from the chemical substance sensing device 2 are provided. It is characterized by that.

このように本発明の化学物質センシングシステム1において、呼気は気体導入経路13から水分除去部12を通って、化学物質センシング装置2内に導入される。そして、当該呼気は、化学物質センシング装置2のチャンバ11内で、特定の呼気マーカ物質を検出した後に、気体排出経路14を通じて外気に放出される。このような気体導入経路13および気体排出経路14に用いられる材料は、軽量で適切な耐久性を持つものであれば特に限定されることはなく、たとえばアクリル製のもの、ポリプロピレン製のもの等を用いることができる。   As described above, in the chemical substance sensing system 1 of the present invention, exhaled air is introduced into the chemical substance sensing device 2 from the gas introduction path 13 through the moisture removing unit 12. And the said exhaled air is discharge | released to external air through the gas exhaust path 14, after detecting the specific exhalation marker substance in the chamber 11 of the chemical substance sensing apparatus 2. FIG. The material used for the gas introduction path 13 and the gas discharge path 14 is not particularly limited as long as it is lightweight and has an appropriate durability. For example, an acrylic one, a polypropylene one or the like can be used. Can be used.

ここで、化学物質センシング装置内に呼気を供給する方法としては、マウスピースのようなものを使用して化学物質センシング装置内に呼気を供給する方法が一般的である。このようにマウスピースを用いて呼気を供給する場合、水分除去部12と化学物質センシング装置2との間には、化学物質センシング装置2内への呼気の供給を一定にするための逆止弁15を設けることが好ましい。また、化学物質センシング装置2と気体排出経路14との間には、化学物質センシング装置2から外部に速やかに呼気を排出できるように逆止弁15を設けることが好ましい。   Here, as a method of supplying exhalation into the chemical substance sensing device, a method of supplying exhalation into the chemical substance sensing device using a mouthpiece is generally used. When supplying exhalation using the mouthpiece in this way, a check valve for making the supply of exhalation into the chemical substance sensing device 2 constant between the water removing unit 12 and the chemical substance sensing device 2. 15 is preferably provided. In addition, it is preferable to provide a check valve 15 between the chemical substance sensing device 2 and the gas discharge path 14 so that exhaled air can be quickly discharged from the chemical substance sensing device 2 to the outside.

このように逆止弁15を設けることにより、化学物質センシング装置2内に所定の流速で呼気を供給することができる。これにより一定の圧力および流速で化学物質センシング装置2内に供給された呼気を分析することができ、特定の呼気マーカ物質を測定する精度を高めることができる。なお、化学物質センシング装置2内に呼気を導入する方法としては、マウスピースを用いた供給方法のみに限られるものではなく、たとえばテドラーバックに一旦採取した上で、当該テドラーバックから化学物質センシング装置2に呼気を供給してもよい。   By providing the check valve 15 in this way, exhaled air can be supplied into the chemical substance sensing device 2 at a predetermined flow rate. Thereby, the exhaled breath supplied into the chemical substance sensing device 2 at a constant pressure and flow rate can be analyzed, and the accuracy of measuring a specific exhaled marker substance can be increased. In addition, the method of introducing exhalation into the chemical substance sensing device 2 is not limited to the supply method using the mouthpiece. For example, once collected in a Tedlar back, the Tedlar back to the chemical substance sensing device 2 is collected. Exhalation may be supplied.

このような逆止弁15に用いられる材料は、適切な耐久性を有するものであれば特に限定されることはなく、たとえばテフロン(登録商標)等を用いることができる。   The material used for such a check valve 15 is not particularly limited as long as it has appropriate durability, and for example, Teflon (registered trademark) or the like can be used.

<水分除去部>
本発明の化学物質センシングシステム1は、化学物質センシング装置2と気体導入経路13との間に水分除去部12を設けることを特徴とする。水分除去部12は、気体導入経路13から導入された呼気中の水分を除去するために設けられるものである。このように化学物質センシングシステム1に水分除去部12を設けることにより、呼気中に含まれる水分を除去することができる。そして、このように呼気に含まれる水分を除去することにより、ppm〜ppbレベルの極めて低濃度の呼気マーカ物質を検知することができる。また、水分除去部12を設けることにより、水分による化学物質センシング素子10の劣化を抑制することもできる。
<Moisture removal part>
The chemical substance sensing system 1 of the present invention is characterized in that a moisture removing unit 12 is provided between the chemical substance sensing device 2 and the gas introduction path 13. The moisture removing unit 12 is provided for removing moisture in the exhaled breath introduced from the gas introduction path 13. As described above, by providing the chemical substance sensing system 1 with the water removing unit 12, it is possible to remove the water contained in the exhaled breath. And the exhalation marker substance of the extremely low density | concentration of a ppm-ppb level is detectable by removing the water | moisture content contained in exhalation in this way. In addition, by providing the moisture removing unit 12, it is possible to suppress deterioration of the chemical substance sensing element 10 due to moisture.

このような水分除去部12は、中空糸、シリカゲル、塩化カルシウム等の吸水性を示すものを備えることが好ましい。これらの吸水性を示すものの中でも、中空糸は吸着型の水分除去機構ではないことから、呼気の圧力が損失することなく呼気中の水分を除去し、もって呼気を供給するユーザーの負担を軽減する。しかも、中空糸は、小型であって、他の呼気マーカ物質の着脱する懸念が少ないことからも有効である。   It is preferable that such a water removal part 12 is equipped with what shows water absorption, such as a hollow fiber, a silica gel, and calcium chloride. Among these water-absorbing materials, the hollow fiber is not an adsorption-type moisture removal mechanism, so that moisture in the expired air is removed without losing the pressure of the expired air, thereby reducing the burden on the user supplying the expired air. . Moreover, the hollow fiber is effective because it is small in size and has little fear of attaching or detaching other exhalation marker substances.

このような中空糸の材料は、耐熱性および耐薬品性を有するという観点から、フッ素樹脂を用いることが好ましい。また、中空糸は、呼気中の水分を効率的に除去するという観点から、0.1〜2.0mmの間隔のらせん状の構造であることが好ましく、その中でも1.0mmの間隔のらせん状の構造であることがより好ましい。   Such a hollow fiber material is preferably a fluororesin from the viewpoint of heat resistance and chemical resistance. The hollow fiber preferably has a helical structure with an interval of 0.1 to 2.0 mm from the viewpoint of efficiently removing moisture in the breath, and among them, a helical structure with an interval of 1.0 mm is preferable. The structure is more preferable.

<化学物質センシング装置>
本発明の化学物質センシング装置2は、図1に示されるように、導入分子篩膜16および排出分子篩膜17により3つの空間に分割されたチャンバ11と、導入分子篩膜16と排出分子篩膜17とにより挟まれた空間のチャンバに接して配置される化学物質センシング素子10とを備えることを特徴とする。この導入分子篩膜16および排出分子篩膜17によりチャンバ11が3つの空間に分割されたものとなる。
<Chemical substance sensing device>
As shown in FIG. 1, the chemical substance sensing device 2 of the present invention includes a chamber 11 divided into three spaces by an introduced molecular sieve membrane 16 and an exhausted molecular sieve membrane 17, and an introduced molecular sieve membrane 16 and an exhausted molecular sieve membrane 17. And a chemical substance sensing element 10 disposed in contact with a chamber in the sandwiched space. The introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 divide the chamber 11 into three spaces.

このようにチャンバ11内に導入分子篩膜16と排出分子篩膜17とを備えることにより、化学物質センシング素子10を含むチャンバ11内の空間に、特定の分子径を有する呼気マーカ物質のみが濃縮されることとなり、化学物質センシング素子10が特定の分子径を有する呼気マーカ物質を高精度で検出することができる。   Thus, by providing the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17 in the chamber 11, only the exhalation marker substance having a specific molecular diameter is concentrated in the space in the chamber 11 including the chemical substance sensing element 10. This means that the chemical substance sensing element 10 can detect a breath marker substance having a specific molecular diameter with high accuracy.

これは、呼気に含まれる呼気マーカ物質のうち分子径の大きい呼気マーカ物質は、導入分子篩膜16によりチャンバ11内への透過が妨げられるとともに、分子径の小さい呼気マーカ物質は、排出分子篩膜17を透過してチャンバ11内から外部に排出され、化学物質センシング素子10を含むチャンバ11内の空間には、特定の分子径を有する呼気マーカ物質のみが残存するためである。   This is because the exhalation marker substance having a large molecular diameter among the exhalation marker substances contained in the exhalation is prevented from permeating into the chamber 11 by the introduction molecular sieve membrane 16, and the exhalation marker substance having a small molecular diameter is excluded from the exhaust molecular sieve membrane 17. This is because only the exhalation marker substance having a specific molecular diameter remains in the space in the chamber 11 including the chemical substance sensing element 10 through the gas and discharged to the outside from the chamber 11.

以下においては、化学物質センシング装置を構成する各部材を説明する。
(チャンバ)
チャンバ11は、その内部に化学物質センシング素子10を支持し、当該化学物質センシング素子10を含む空間が特定の呼気マーカ物質のみを検出することができるように、導入分子篩膜16および排出分子篩膜17を備える中空部材である。チャンバ11の表面のうちの一方の面には水分除去部12を介して気体導入経路13が接続されており、その他方の面には気体排出経路14が接続されている。
Below, each member which comprises a chemical substance sensing apparatus is demonstrated.
(Chamber)
The chamber 11 supports the chemical substance sensing element 10 therein, and the introduction molecular sieve film 16 and the exhaust molecular sieve film 17 so that the space containing the chemical substance sensing element 10 can detect only a specific breath marker substance. It is a hollow member provided with. A gas introduction path 13 is connected to one surface of the surface of the chamber 11 via a moisture removing unit 12, and a gas discharge path 14 is connected to the other surface.

このようなチャンバ11の形状は、図1に示されるような円柱状のもののみに限られるものではなく、化学物質センシング素子10を支持することができる中空部材であれば長方体、立方体、球体等であってもよい。また、チャンバ11は、軽量で耐久性の高い材料により構成されることが好ましく、このような材料としては、たとえば、アクリル樹脂、ポリプロピレン樹脂等の樹脂材料を挙げることができる。   The shape of the chamber 11 is not limited to a cylindrical shape as shown in FIG. 1, but may be a rectangular shape, a cube, or the like as long as it is a hollow member that can support the chemical substance sensing element 10. A sphere or the like may be used. Moreover, it is preferable that the chamber 11 is comprised with a lightweight and highly durable material, As such a material, resin materials, such as an acrylic resin and a polypropylene resin, can be mentioned, for example.

また、チャンバ11は、化学物質センシング素子10からのセンサ信号変化を送受信するために必要な構造を備える。ここでの「必要な構造」とは、たとえば化学物質センシング素子10から接続された信号測定用導線19を通す穴等を有することを意味する。このような構造にすることにより、センサ信号測定用の低電圧電源装置(図示せず)、デジタルマルチメータ(図示せず)、およびディスプレイ等の表示装置(図示せず)と、化学物質センシング素子10とを導線により接続することができ、化学物質センシング素子10が得た情報を外部へ出力することができる。   The chamber 11 has a structure necessary for transmitting and receiving a sensor signal change from the chemical substance sensing element 10. Here, “necessary structure” means, for example, having a hole or the like through which the signal measuring conductor 19 connected from the chemical substance sensing element 10 is passed. With such a structure, a low voltage power supply device (not shown) for sensor signal measurement, a digital multimeter (not shown), a display device (not shown) such as a display, and a chemical substance sensing element 10 can be connected to each other by a conductive wire, and information obtained by the chemical substance sensing element 10 can be output to the outside.

(導入分子篩膜)
導入分子篩膜16は、水分除去部12からチャンバ11内に導入される呼気のうち、分子径の大きな呼気マーカ物質が透過するのを防ぐために設けられるものである。このような導入分子篩膜16は、機械的強度が強く、かつ耐圧性および耐熱性に優れるという観点から、ゼオライト膜を用いることが好ましく、ゼオライト膜の中でもMOR膜(平均細孔径:0.56nm)、BEA膜(平均細孔径:0.76nm)、FAU膜(平均細孔径:0.72nm)、MFI膜(平均細孔径:0.56nm)のいずれかであることがより好ましい。
(Introduced molecular sieve membrane)
The introduced molecular sieve membrane 16 is provided to prevent permeation of an exhalation marker substance having a large molecular diameter in the exhaled breath introduced from the moisture removing unit 12 into the chamber 11. The introduced molecular sieve membrane 16 is preferably a zeolite membrane from the viewpoints of high mechanical strength and excellent pressure resistance and heat resistance. Among the zeolite membranes, an MOR membrane (average pore diameter: 0.56 nm) is preferable. BEA membrane (average pore size: 0.76 nm), FAU membrane (average pore size: 0.72 nm), or MFI membrane (average pore size: 0.56 nm) is more preferable.

このような導入分子篩膜16の平均細孔径は、排出分子篩膜17の平均細孔径よりも大きいことが好ましく、0.5nm以上0.8nm以下であることが好ましく、0.50nm以上0.56nm以下であることがより好ましい。導入分子篩膜16の平均細孔径が0.5nm未満であると化学物質センシング素子10に呼気マーカ物質を十分に供給することができず、0.8nmを超えると分子径の大きな呼気マーカ物質をも透過させることとなり、呼気マーカ物質の選択性が低下することとなる。また、導入分子篩膜16の厚みは、5μm程度のものを用いることが好ましい。   The average pore size of the introduced molecular sieve membrane 16 is preferably larger than the average pore size of the discharged molecular sieve membrane 17, preferably 0.5 nm or more and 0.8 nm or less, and 0.50 nm or more and 0.56 nm or less. It is more preferable that If the average pore diameter of the introduced molecular sieve membrane 16 is less than 0.5 nm, the expiration marker substance cannot be sufficiently supplied to the chemical substance sensing element 10, and if it exceeds 0.8 nm, It will permeate, and the selectivity of the exhalation marker substance will decrease. Moreover, it is preferable to use the introduced molecular sieve membrane 16 having a thickness of about 5 μm.

また、導入分子篩膜16と水分除去部12との間のチャンバ11に気体排出口21を設けることが好ましい。これにより導入分子篩膜16を透過しないような分子径の大きな呼気マーカ物質が、導入分子篩膜16と水分除去部12との間のチャンバ11に残留することを防止することができる。気体排出口21とチャンバ11との接続には逆止弁15を設置することが好ましい。これによりチャンバ11内の圧力を一定に保ちつつ呼気を排出することができる。   Further, it is preferable to provide a gas discharge port 21 in the chamber 11 between the introduced molecular sieve membrane 16 and the water removing unit 12. As a result, an exhalation marker substance having a large molecular diameter that does not pass through the introduced molecular sieve membrane 16 can be prevented from remaining in the chamber 11 between the introduced molecular sieve membrane 16 and the water removing unit 12. A check valve 15 is preferably installed in the connection between the gas outlet 21 and the chamber 11. Thus, exhaled air can be discharged while keeping the pressure in the chamber 11 constant.

(排出分子篩膜)
排出分子篩膜17は、チャンバ11から気体排出経路14に排出する呼気のうち、分子径の小さな分子のみを気体排出経路14に透過させるために設けられるものである。このような排出分子篩膜17は、上述した導入分子篩膜16と同様の観点からゼオライト膜であることが好ましく、ゼオライト膜の中でも、DDR膜(平均細孔径:約0.44nm)であることがより好ましい。排出分子篩膜17の平均細孔径は、0.36nm以上0.44nm以下であることがより好ましい。また、排出分子篩膜17の厚みは、5μm程度のものを用いることが好ましい。
(Exhaust molecular sieve membrane)
The exhaust molecular sieve membrane 17 is provided to allow only molecules having a small molecular diameter to pass through the gas exhaust path 14 out of the exhaled gas exhausted from the chamber 11 to the gas exhaust path 14. Such an exhaust molecular sieve membrane 17 is preferably a zeolite membrane from the same viewpoint as the introduced molecular sieve membrane 16 described above, and more preferably a DDR membrane (average pore diameter: about 0.44 nm) among the zeolite membranes. preferable. The average pore diameter of the discharged molecular sieve membrane 17 is more preferably 0.36 nm or more and 0.44 nm or less. Further, it is preferable to use a discharge molecular sieve membrane 17 having a thickness of about 5 μm.

このように導入分子篩膜16および排出分子篩膜17の平均細孔径を規定することにより、呼気マーカ物質のうちの分子径の大きな分子は導入分子篩膜16を透過しない。また測定に用いない分子径の小さい分子は排出分子篩膜17を通過する。このようにして検出に必要な呼気マーカ物質のみを化学物質センシング素子10に供給し、その検出精度を高めることができる。   By defining the average pore size of the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 in this way, molecules having a large molecular diameter among the exhalation marker substances do not permeate the introduced molecular sieve membrane 16. Further, molecules having a small molecular diameter that are not used for measurement pass through the discharged molecular sieve membrane 17. In this way, only the exhalation marker substance necessary for detection can be supplied to the chemical substance sensing element 10, and the detection accuracy can be improved.

(基材)
基材20は、呼気の供給および排出を妨げることなく、導入分子篩膜16および排出分子篩膜17を支持するために設けられるものである。すなわち、呼気がチャンバ11内に高圧で導入されたとしても、チャンバ11内に基材20を設けることにより、導入分子篩膜16および排出分子篩膜17が気体排出経路14側にずれることを防止することができる。
(Base material)
The base material 20 is provided to support the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 without hindering the supply and discharge of exhaled air. That is, even if exhaled air is introduced into the chamber 11 at a high pressure, by providing the base material 20 in the chamber 11, it is possible to prevent the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 from shifting to the gas exhaust path 14 side. Can do.

このような基材20は、図1に示されるように、導入分子篩膜16および排出分子篩膜17の両方に各1個ずつ合計2個の基材20を設けることが好ましい。そして、チャンバ11内の導入分子篩膜16の気体排出経路14側に設けられることが好ましい。また、排出分子篩膜17の気体排出経路14側にも設けられることが好ましい。また、基材20に用いられる材料は、軽量なものであれば特に限定されるものではなく、たとえばアクリル製、ポリプロピレン製等を用いることができる。   As shown in FIG. 1, such a base material 20 is preferably provided with a total of two base materials 20, one on each of the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17. And it is preferable to be provided on the gas discharge path 14 side of the introduced molecular sieve membrane 16 in the chamber 11. Moreover, it is preferable to be provided also on the gas discharge path 14 side of the discharge molecular sieve membrane 17. Moreover, the material used for the base material 20 will not be specifically limited if it is lightweight, For example, the product made from acrylic, a product made from a polypropylene, etc. can be used.

図2(a)および(b)は、導入分子篩膜および排出分子篩膜を支持するための基材の模式的な図であり、図2(c)は、排出分子篩膜を含む面でチャンバを切断したときの断面を示す図である。   FIGS. 2 (a) and 2 (b) are schematic views of a substrate for supporting the introduced molecular sieve membrane and the exhausted molecular sieve membrane, and FIG. 2 (c) shows the chamber cut along the surface including the exhausted molecular sieve membrane. It is a figure which shows the cross section when it did.

本発明に用いられる基材20は、図2(a)に示されるように、その内部に1つの穴が形成されたものであってもよいし、図2(b)に示されるように、その内部にメッシュ状に9個の穴が形成されたものであってもよい。このように基材20は、呼気の通り道となる穴が設けられているものであれば、いかなるものでもよい。ただし、導入分子篩膜16および排出分子篩膜17をより安定して支持するという観点から、メッシュ状の形状であることが好ましい。   The base material 20 used in the present invention may be one in which one hole is formed as shown in FIG. 2 (a), or as shown in FIG. 2 (b), Nine holes may be formed inside the mesh. Thus, as long as the base material 20 is provided with the hole used as the path of exhalation, what kind of thing may be sufficient as it. However, from the viewpoint of more stably supporting the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17, a mesh shape is preferable.

(加熱装置)
加熱装置18は、化学物質センシング装置2に設置される導入分子篩膜16および排出分子篩膜17に付着した呼気マーカ物質を脱離させるために設けられるものである。すなわち、加熱装置18が導入分子篩膜16および排出分子篩膜17を温めることにより、導入分子篩膜16および排出分子篩膜17に吸着している呼気マーカ物質の脱着を行なうことができ、これにより呼気マーカ物質の測定精度を高めることができる。
(Heating device)
The heating device 18 is provided for detaching the exhalation marker substance adhering to the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 installed in the chemical substance sensing device 2. That is, when the heating device 18 warms the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17, the exhalation marker substance adsorbed on the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 can be desorbed, and thereby the exhalation marker substance Measurement accuracy can be increased.

また、化学物質センシング装置2を長期間使用して、導入分子篩膜16および排出分子篩膜17の分子篩としての性能が低下したときにも、加熱装置18を加熱すれば、それらの性能を回復させることもできる。   Moreover, even when the chemical substance sensing device 2 is used for a long time and the performance as the molecular sieve of the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 is lowered, the performance can be recovered by heating the heating device 18. You can also.

このような加熱装置18は、導入分子篩膜16および排出分子篩膜17の外表面に配置されていることが好ましく、図2(c)に示されるように、導入分子篩膜16および排出分子篩膜17の外側面を囲むように配置されることがより好ましい。このように加熱装置18を配置することにより、導入分子篩膜16および排出分子篩膜17に均一に温度を加えることができ、不均一に呼気マーカ物質が脱着されるのを抑制することができる。   Such a heating device 18 is preferably disposed on the outer surface of the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17, and as shown in FIG. 2C, the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17. More preferably, it is arranged so as to surround the outer surface. By disposing the heating device 18 in this way, it is possible to apply a temperature uniformly to the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 and to suppress the exhalation marker substance from being desorbed non-uniformly.

また、導入分子篩膜16側のチャンバ11の側面に気体排出口21を設けることが好ましい。このような位置に気体排出口21を設けることにより、分子系の大きい分子を含む呼気を外部に排出することができる。   Further, it is preferable to provide a gas outlet 21 on the side surface of the chamber 11 on the introduction molecular sieve membrane 16 side. By providing the gas discharge port 21 at such a position, exhaled air containing molecules having a large molecular system can be discharged to the outside.

(化学物質センシング素子)
化学物質センシング素子10は、特定の呼気マーカ物質を選択的に検出することができるセンサである。そして、化学物質センシング素子10は、導入分子篩膜16と排出分子篩膜17とに挟まれた空間のチャンバに接して配置されるものである。
(Chemical substance sensing element)
The chemical substance sensing element 10 is a sensor that can selectively detect a specific exhalation marker substance. The chemical substance sensing element 10 is disposed in contact with a chamber in a space sandwiched between the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17.

図1においては、チャンバ11内に化学物質センシング素子10が1つ設けられたものが示されているが、チャンバ11内に設けられる化学物質センシング素子10の個数は、1つに限られるものではなく、2つ以上設けてもよい。2つ以上の化学物質センシング素子10を設けることにより、複数種の呼気マーカ物質を検出することができる。   In FIG. 1, one chemical substance sensing element 10 is provided in the chamber 11, but the number of chemical substance sensing elements 10 provided in the chamber 11 is not limited to one. There may be two or more. By providing two or more chemical substance sensing elements 10, a plurality of types of exhalation marker substances can be detected.

また、化学物質センシング素子10は、チャンバ11内に設けるのみに限られるものではなく、気体排出経路14に設けてもよい。気体排出経路14に化学物質センシング素子10を設けることにより、チャンバ11内に設けられた化学物質センシング素子10よりも、分子径の小さい呼気マーカ物質を検出することができる。   The chemical substance sensing element 10 is not limited to being provided in the chamber 11 but may be provided in the gas discharge path 14. By providing the chemical substance sensing element 10 in the gas discharge path 14, an exhalation marker substance having a smaller molecular diameter than the chemical substance sensing element 10 provided in the chamber 11 can be detected.

上記のような化学物質センシング素子10は、半導体センサ、ナノ構造体センサ等を用いることができ、呼気マーカ物質の種類に応じて、半導体センサまたはナノ構造体センサのうちのいずれか一方もしくは両方を用いればよい。   As the chemical substance sensing element 10 as described above, a semiconductor sensor, a nanostructure sensor, or the like can be used. Depending on the type of the breath marker substance, either one or both of the semiconductor sensor and the nanostructure sensor is used. Use it.

図3は、本発明に用いられる化学物質センシング素子の一例を示す模式図である。化学物質センシング素子10は、図3に示されるように、正極110と負極111とを有し、さらに正極110および負極111に接触するように配置されたセンシング部104と、正極110、負極111およびセンシング部104に接する絶縁体105と、定抵抗106とを有するものである。   FIG. 3 is a schematic diagram showing an example of a chemical substance sensing element used in the present invention. As shown in FIG. 3, the chemical substance sensing element 10 has a positive electrode 110 and a negative electrode 111, and further includes a sensing unit 104 disposed so as to be in contact with the positive electrode 110 and the negative electrode 111, a positive electrode 110, a negative electrode 111, and An insulator 105 in contact with the sensing unit 104 and a constant resistance 106 are provided.

ここで、センシング部104とチャンバ11内に導入された呼気とを接触させる方法としては、たとえばボタン等を押すことにより、センシング部104とチャンバ11との間に設けられた窓がある一定の時間開くような構造にすること等が挙げられる。このように測定するときのみ、チャンバ11内の空気がセンシング部104に接触するような構造にすることにより、センシング部104の劣化を抑制することができる。   Here, as a method of bringing the sensing unit 104 into contact with the exhaled air introduced into the chamber 11, for example, by pressing a button or the like, a window provided between the sensing unit 104 and the chamber 11 is provided for a certain period of time. For example, an open structure may be used. Deterioration of the sensing unit 104 can be suppressed by adopting a structure in which the air in the chamber 11 is in contact with the sensing unit 104 only when measuring in this way.

センシング部104は、特定の呼気マーカ物質を検出するために設けられるものである。センシング部104は、主に金属酸化物からなり、空気中の酸素を吸着する性質をもつ。この際、吸着酸素はセンシング部104中の自由電子をトラップしており、この状態ではセンシング部104の抵抗値は高い。当該センシング部104に対して、呼気マーカ物質を含む検体ガス、たとえばCOを含む空気を接触させると、センシング部104の表面の酸素とCOが反応してCO2となり、吸着酸素がセンシング部104から離れる。つまり、センシング部104の表面の酸素が減少し、トラップされていた電子が解放されるため、これによりセンシング部104の抵抗値が減少する。この抵抗値の変動を、定抵抗106における電圧VRLの変化を測定することにより算出し、特定の呼気マーカ物質の有無および含有量を検出することができる。The sensing unit 104 is provided to detect a specific exhalation marker substance. The sensing unit 104 is mainly made of a metal oxide and has a property of adsorbing oxygen in the air. At this time, the adsorbed oxygen traps free electrons in the sensing unit 104, and the resistance value of the sensing unit 104 is high in this state. When a sample gas containing an exhalation marker substance, for example, air containing CO, is brought into contact with the sensing unit 104, oxygen on the surface of the sensing unit 104 and CO react to become CO 2 , and adsorbed oxygen is transferred from the sensing unit 104. Leave. That is, oxygen on the surface of the sensing unit 104 is reduced, and the trapped electrons are released, thereby reducing the resistance value of the sensing unit 104. The fluctuation of the resistance value is calculated by measuring the change in the voltage V RL at the constant resistance 106, and the presence and content of a specific exhalation marker substance can be detected.

このような半導体センサは、アセトン、CO、炭素原子を含む有機ガス(たとえば、炭化水素ガス、アルコール等)、H2等の可燃性ガス等の呼気マーカ物質を検出するためのセンサ素子として好適に用いることができる。Such a semiconductor sensor is preferably used as a sensor element for detecting an exhalation marker substance such as acetone, CO, an organic gas containing carbon atoms (for example, hydrocarbon gas, alcohol, etc.), and a flammable gas such as H 2. Can be used.

また、化学物質センシング素子10に用いられるナノ構造体センサは、センシング部104がナノスケールの導電性物質により構成されること、および、センサ温度制御手段および絶縁体を伴わないこと以外はすべて上記半導体センサの構造と同一にすることができ、たとえばナノチューブ、ナノワイヤ、フラーレン等のような構造体を用いることができる。   In addition, the nanostructure sensor used in the chemical substance sensing element 10 is the same as the above semiconductor except that the sensing unit 104 is composed of a nanoscale conductive material and that the sensor temperature control means and the insulator are not accompanied. The structure of the sensor can be the same. For example, a structure such as a nanotube, a nanowire, or fullerene can be used.

そして、ナノスケールの導電性物質としては、後述するカーボンナノチューブの他に、カーボンナノファイバー等が好適に用いられる。カーボンナノチューブ等のナノスケールの導電性物質を、センシング部を構成する材料として用いることにより、小型、軽量で常温にて高感度な化学物質センシング素子10を実現することができる。   And as a nanoscale electroconductive substance, carbon nanofiber etc. are used suitably other than the carbon nanotube mentioned later. By using a nanoscale conductive material such as a carbon nanotube as a material constituting the sensing unit, the chemical substance sensing element 10 that is small, light, and highly sensitive at room temperature can be realized.

カーボンナノチューブから構成されたセンシング部を備えるナノ構造体センサにおいて、当該センシング部104は、表面修飾を施したカーボンナノチューブの集合体108からなる。このセンシング部に対して、呼気マーカ物質を含む呼気を接触させると、センシング部の表面に呼気マーカ物質が吸着し、これによりナノ構造体センサ全体の抵抗値が変化する。この抵抗値の変動を、定抵抗における電圧VRLの変化を測定することにより算出し、呼気中の呼気マーカ物質の有無および含有量を明らかにすることができる。In the nanostructure sensor including a sensing unit composed of carbon nanotubes, the sensing unit 104 includes an aggregate 108 of carbon nanotubes subjected to surface modification. When exhalation containing an exhalation marker substance is brought into contact with the sensing unit, the exhalation marker substance is adsorbed on the surface of the sensing unit, thereby changing the resistance value of the entire nanostructure sensor. The fluctuation of the resistance value can be calculated by measuring the change in the voltage V RL at the constant resistance, and the presence and content of the expiration marker substance in expiration can be clarified.

カーボンナノチューブから構成されるセンシング部の作製方法としては、フィルム状カーボンナノチューブを溶媒中に分散させた後、メンブレンフィルタなどでろ過して作製する方法、マイクロ波プラズマCVD装置などを用いて基板上にカーボンナノチューブを直接成長させる方法等がある。   As a method for producing a sensing unit composed of carbon nanotubes, film carbon nanotubes are dispersed in a solvent and then filtered through a membrane filter or the like, or a microwave plasma CVD apparatus is used on a substrate. There are methods for directly growing carbon nanotubes.

また、ナノ構造体センサのセンシング部が金属錯体により表面修飾されたカーボンナノチューブから構成されるものを用いることも有効である。カーボンナノチューブに金属錯体による表面修飾を施すことにより、特定の呼気マーカ物質に対する吸着選択性をさらに向上させることができ、これにより特定の呼気マーカ物質の検出精度をより向上させることができる。   It is also effective to use a sensing part of the nanostructure sensor that is composed of carbon nanotubes whose surface is modified with a metal complex. By subjecting the carbon nanotube to surface modification with a metal complex, the adsorption selectivity for a specific breath marker substance can be further improved, and thereby the detection accuracy of the specific breath marker substance can be further improved.

図4は、金属錯体により表面修飾されたカーボンナノチューブから構成されるセンシング部を備えたナノ構造体センサの一例を示す模式図である。本発明におけるナノ構造体センサは、図4に示されるように、正極110、負極111からなる2つの電極;当該2つの電極に接触するように配置された、呼気マーカ物質を検出する部位であるセンシング部104;および定抵抗106からなる。センシング部104は、金属錯体109により表面修飾されたカーボンナノチューブの集合体からなる。このセンシング部104に対して、呼気マーカ物質を含む検体ガスを接触させると、センシング部104の金属錯体109の一部に特定の呼気マーカ物質が選択的に吸着し、これによりナノ構造体センサ全体の抵抗値が変化する。この抵抗値の変動を、定抵抗106における電圧VRLの変化を測定することにより算出し、呼気中の呼気マーカ物質の有無および含有量を明らかにすることができる。FIG. 4 is a schematic diagram showing an example of a nanostructure sensor provided with a sensing unit composed of carbon nanotubes whose surface is modified with a metal complex. As shown in FIG. 4, the nanostructure sensor in the present invention is a part for detecting an exhalation marker substance, which is arranged so as to be in contact with two electrodes; a positive electrode 110 and a negative electrode 111; A sensing unit 104; and a constant resistance 106. The sensing unit 104 is composed of an aggregate of carbon nanotubes whose surface is modified with a metal complex 109. When a specimen gas containing an exhalation marker substance is brought into contact with the sensing unit 104, a specific exhalation marker substance is selectively adsorbed on a part of the metal complex 109 of the sensing unit 104, thereby the entire nanostructure sensor. The resistance value of changes. The fluctuation of the resistance value is calculated by measuring the change of the voltage V RL at the constant resistance 106, and the presence and content of the expiration marker substance in the expiration can be clarified.

上記の金属錯体は、特定の呼気マーカ物質を選択的に吸着するものが好ましい。すなわちたとえば、金属錯体としては、一酸化窒素を選択的に吸着するコバルト(II)フタロシアニン;一酸化炭素を選択的に吸着する鉄(II)フタロシアニン;ペンタンを吸着する銅(II)フタロシアニン;アセトンを選択的に吸着するマンガン(II)フタロシアニンなどを挙げることができる。   The metal complex is preferably one that selectively adsorbs a specific exhalation marker substance. That is, for example, as a metal complex, cobalt (II) phthalocyanine that selectively adsorbs nitric oxide; iron (II) phthalocyanine that selectively adsorbs carbon monoxide; copper (II) phthalocyanine that adsorbs pentane; acetone Mention may be made of manganese (II) phthalocyanine which is selectively adsorbed.

センシング部104の作製方法としては、あらかじめカーボンナノチューブに金属錯体を付着、および含有させ、該ナノチューブを溶媒中に分散させた後、メンブレンフィルタなどでろ過して作製する方法の他、マイクロ波プラズマCVD装置などを用いて基板上にカーボンナノチューブを直接成長させた後、金属錯体を含む溶液をインクジェット等により噴霧して塗布する方法などがある。   As a method for producing the sensing unit 104, in addition to a method in which a metal complex is attached and contained in advance in a carbon nanotube, the nanotube is dispersed in a solvent, and then filtered through a membrane filter or the like, or by microwave plasma CVD. There is a method in which carbon nanotubes are directly grown on a substrate using an apparatus or the like, and then a solution containing a metal complex is applied by spraying with an inkjet or the like.

(呼気マーカ物質)
本発明の化学物質センシング装置は、呼気に含まれる約200種以上の呼気マーカ物質のうちから、特定の呼気マーカ物質を検出するためのものである。生体情報を示す呼気マーカ物質としては、一酸化窒素、一酸化炭素、メチルメルカプタン、エタン、ペンタン、アセトン、アンモニア等を挙げることができる。上記の呼気マーカ物質の中でも、アセトンは、脂質の燃焼具合、糖尿病等を把握することができる。
(Exhalation marker substance)
The chemical substance sensing device of the present invention is for detecting a specific exhalation marker substance from about 200 or more exhalation marker substances contained in exhalation. Examples of the breath marker substance showing biological information include nitric oxide, carbon monoxide, methyl mercaptan, ethane, pentane, acetone, ammonia and the like. Among the above breath marker substances, acetone can grasp the state of lipid burning, diabetes and the like.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<化学物質センシング装置>
≪検討1:導入分子篩膜および排出分子篩膜の効果≫
(実施例1)
実施例1では、図1に示される化学物質センシング装置2を作製した。実施例1の化学物質センシング装置2は、チャンバ11内に導入分子篩膜16として厚み5μmのMFI膜(平均細孔径:0.56nm)を備え、排出分子篩膜17として厚み5μmのDDR膜(平均細孔径:0.44nm)を備えたものである。また、この化学物質センシング装置に用いられる化学物質センシング素子10のセンシング部には、アセトンと特異的に吸着するマンガンフタロシアニンを修飾したナノ構造体センサを用いた。
<Chemical substance sensing device>
≪Study 1: Effect of introduced molecular sieve membrane and discharged molecular sieve membrane≫
Example 1
In Example 1, the chemical substance sensing device 2 shown in FIG. 1 was produced. The chemical substance sensing apparatus 2 of Example 1 is provided with a 5 μm thick MFI film (average pore diameter: 0.56 nm) as the introduced molecular sieve film 16 in the chamber 11, and a 5 μm thick DDR film (average fine film) as the discharged molecular sieve film 17. (Pore diameter: 0.44 nm). Moreover, the nanostructure sensor which modified manganese phthalocyanine which adsorb | sucks specifically with acetone was used for the sensing part of the chemical substance sensing element 10 used for this chemical substance sensing apparatus.

まず、化学物質センシング装置2のチャンバ11に水分を40%含むN2ガスを4分間暴露した。そして、化学物質センシング素子10とチャンバ11とを隔てていた窓を開放し、化学物質センシング素子10の抵抗変化を1分間測定した。First, N 2 gas containing 40% of moisture was exposed to the chamber 11 of the chemical substance sensing device 2 for 4 minutes. And the window which separated the chemical substance sensing element 10 and the chamber 11 was opened, and the resistance change of the chemical substance sensing element 10 was measured for 1 minute.

次に、アセトン15ppm、エタノール32ppm、メタノール27ppm、および酢酸5ppmを含む窒素ガスをベースガスとして、当該ベースガスに40%の水分を含むサンプルガスを250mL/分の流量で4分間、気体導入経路13から化学物質センシング装置2に導入した。そして、化学物質センシング素子10とチャンバ11とを隔てていた窓を開放して化学物質センシング素子10の抵抗変化を1分間測定した。   Next, a nitrogen gas containing 15 ppm of acetone, 32 ppm of ethanol, 27 ppm of methanol, and 5 ppm of acetic acid is used as a base gas, and a sample gas containing 40% of moisture is added to the base gas at a flow rate of 250 mL / min for 4 minutes. Was introduced into the chemical substance sensing device 2. And the window which separated the chemical substance sensing element 10 and the chamber 11 was opened, and the resistance change of the chemical substance sensing element 10 was measured for 1 minute.

なお、上記の化学物質センシング素子10の抵抗変化は、定電圧電源装置(製品名:デジタルマルチメータ(アジレント製))を用いて測定した。また、気体排出経路14から排出されたガスを採取し、質量分析法ガスクロマトグラフィ(GC−MS:Gas Chromatography‐Mass Spectroscopy 製品名:JMS−K9(JEOL製))を用いて当該ガスの分析を行なった。   In addition, the resistance change of said chemical substance sensing element 10 was measured using the constant voltage power supply device (Product name: Digital multimeter (made by Agilent)). In addition, the gas discharged from the gas discharge path 14 is collected and analyzed using mass spectrometry gas chromatography (GC-MS: Gas Chromatography-Mass Spectroscopy product name: JMS-K9 (manufactured by JEOL)). It was.

(比較例1)
比較例1の化学物質センシング装置は、実施例1の化学物質センシング装置に備えられる、導入分子篩膜16および排出分子篩膜17を除いた他は、実施例1と同様の化学物質センシング装置を用いた。そして、比較例1の化学物質センシング装置に対しても、実施例1と同様の方法により抵抗変化を測定するとともに、気体排出経路14から排出されたガスの分析を行なった。
(Comparative Example 1)
The chemical substance sensing apparatus of Comparative Example 1 was the same as the chemical substance sensing apparatus of Example 1 except that the chemical substance sensing apparatus of Example 1 was equipped with the introduction molecular sieve film 16 and the exhaust molecular sieve film 17 removed. . And also with respect to the chemical substance sensing apparatus of the comparative example 1, while measuring resistance change by the method similar to Example 1, the gas discharged | emitted from the gas exhaust path 14 was analyzed.

図5(a)は、実施例1の化学物質センシング装置の気体排出経路から排出されたガスの質量分析法ガスクロマトグラフィの測定結果を示すグラフであり、図5(b)は、比較例1の化学物質センシング装置の気体排出経路から排出されたガスの質量分析法ガスクロマトグラフィの測定結果を示すグラフである。   FIG. 5A is a graph showing a measurement result of mass spectrometry gas chromatography of the gas discharged from the gas discharge path of the chemical substance sensing apparatus of Example 1, and FIG. It is a graph which shows the measurement result of the mass spectrometry gas chromatography of the gas discharged | emitted from the gas discharge path | route of a chemical substance sensing apparatus.

図5(a)および(b)のスペクトルを対比してみると、図5(b)のスペクトルは、図5(a)のスペクトルでは検出されなかったアセトンおよび酢酸のピークが検出された。この結果から、実施例1の化学物質センシング装置は、導入分子篩膜および排出分子篩膜を備えることにより、アセトンおよび酢酸はチャンバ内に留まったために、図5(a)のスペクトルでアセトンおよび酢酸のピークが検出されなかったものと考えられる。   When comparing the spectra of FIGS. 5 (a) and 5 (b), acetone and acetic acid peaks that were not detected in the spectrum of FIG. 5 (a) were detected in the spectrum of FIG. 5 (b). From this result, since the chemical substance sensing device of Example 1 was provided with the introduction molecular sieve membrane and the exhaust molecular sieve membrane, acetone and acetic acid remained in the chamber, and therefore the peaks of acetone and acetic acid in the spectrum of FIG. It is probable that was not detected.

また、図5(a)および(b)のスペクトルにおいて、図5(a)のスペクトルの方が、より鋭くメタノールおよびエタノールのピークを検出した。このことから、実施例1の化学物質センシング装置は、比較例1の化学物質センシング装置よりもメタノールおよびエタノールを選択的に排除しているといえる。   In addition, in the spectra of FIGS. 5A and 5B, the peaks of methanol and ethanol were detected more sharply in the spectrum of FIG. 5A. From this, it can be said that the chemical substance sensing apparatus of Example 1 selectively excludes methanol and ethanol more than the chemical substance sensing apparatus of Comparative Example 1.

図6は、実施例1および比較例1の化学物質センシング装置に備えられる化学物質センシング素子の抵抗変化を示すグラフである。ここで、図6の横軸は時間(秒)を示し、縦軸は化学物質センシング素子の電気抵抗変化を示している。実施例1および比較例1の化学物質センシング素子の抵抗変化は、図6に示されるように、水分40%を含む窒素ガスを導入したときには差異が見られなかったのに対し、水分40%を含むサンプルガスを導入したときの実施例1の化学物質センシング素子は、比較例1の化学物質センシング素子よりも抵抗変化が大きかった。   FIG. 6 is a graph showing a change in resistance of the chemical substance sensing element provided in the chemical substance sensing devices of Example 1 and Comparative Example 1. Here, the horizontal axis of FIG. 6 indicates time (seconds), and the vertical axis indicates a change in electrical resistance of the chemical substance sensing element. As shown in FIG. 6, the resistance change of the chemical substance sensing elements of Example 1 and Comparative Example 1 showed no difference when nitrogen gas containing 40% of moisture was introduced, whereas 40% of moisture was changed. The chemical substance sensing element of Example 1 when introducing the containing sample gas had a larger resistance change than the chemical substance sensing element of Comparative Example 1.

この理由は、実施例1の化学物質センシング装置に導入分子篩膜および排出分子篩膜が設けられていることにより、チャンバ内に測定対象のアセトンが濃縮されることとなり、実施例1のナノ構造体センサが、比較例1のそれよりもアセトンを選択的に吸着したことによるものと考えられる。   This is because the chemical substance sensing device of Example 1 is provided with the introduced molecular sieve membrane and the discharged molecular sieve membrane, so that acetone to be measured is concentrated in the chamber, and the nanostructure sensor of Example 1 However, it is considered that acetone was selectively adsorbed over that of Comparative Example 1.

また、本実施例および比較例の結果から、導入分子篩膜および排出分子篩膜に用いられるゼオライト膜の種類および組み合わせを代えることにより、アセトン以外のガスに関しても実施例1のアセトンと同様に、チャンバ内に留めることができるようになるものと考えられる。   Further, from the results of the present example and the comparative example, by changing the type and combination of the zeolite membranes used for the introduced molecular sieve membrane and the discharged molecular sieve membrane, the gas other than acetone is also contained in the chamber in the same manner as the acetone in Example 1. It is thought that it will be possible to stay in.

(実施例2)
<化学物質センシングシステム>
≪検討2:中空糸の効果≫
実施例2は、図1に示される化学物質センシングシステムを作製した。当該化学物質センシングシステム1は、実施例1の化学物質センシング装置2に対し、さらに化学物質センシング装置2に気体を導入するための気体導入経路13と、気体導入経路13からの気体の水分を吸着するための水分除去部12と、気体を排出するための気体排出経路14とを備えたものである。なお、水分除去部12には、1.0nmの間隔のらせん状の構造をした中空糸を設け、当該中空糸は、フッ素樹脂からなるものを用いた。
(Example 2)
<Chemical substance sensing system>
<< Examination 2: Effect of hollow fiber >>
In Example 2, the chemical substance sensing system shown in FIG. 1 was produced. The chemical substance sensing system 1 adsorbs gas moisture from the gas introduction path 13 to the chemical substance sensing apparatus 2 of the first embodiment and a gas introduction path 13 for introducing gas into the chemical substance sensing apparatus 2. The water removal part 12 for performing and the gas discharge path 14 for discharging | emitting gas are provided. The moisture removing unit 12 was provided with a hollow fiber having a helical structure with an interval of 1.0 nm, and the hollow fiber made of a fluororesin was used.

このような実施例2の化学物質センシングシステムに対し、水分を85%含む窒素ガスと、水分を含まない窒素ガスとを交互に各1分ずつ、いずれも250mL/分の流量で導入し、これらの検体を化学物質センシング素子に接触させた。   To such a chemical substance sensing system of Example 2, nitrogen gas containing 85% moisture and nitrogen gas containing no moisture were alternately introduced for 1 minute each, and each was introduced at a flow rate of 250 mL / min. The specimen was brought into contact with the chemical substance sensing element.

なお、上記の検体を導入している間は、化学物質センシング素子10とチャンバ11とを隔てている窓を開放し、呼気マーカ物質が化学物質センシング素子10に接触するようにした。このようにして化学物質センシング素子10の抵抗変化を確認した。なお、抵抗変化は、実施例1と同一の装置を用いて同様の方法により測定した。   During the introduction of the specimen, the window separating the chemical substance sensing element 10 and the chamber 11 was opened so that the breath marker substance was in contact with the chemical substance sensing element 10. Thus, the resistance change of the chemical substance sensing element 10 was confirmed. The resistance change was measured by the same method using the same apparatus as in Example 1.

(比較例2)
比較例2の化学物質センシングシステムは、実施例2の化学物質センシングシステムの水分除去部を除いたこと以外は、実施例2と同様の化学物質センシングシステムを用いた。また、比較例2の化学物質センシングシステムに導入する検体は、実施例2で用いた検体と同様のものを用い、同様の方法により抵抗変化を測定した。
(Comparative Example 2)
The chemical substance sensing system of Comparative Example 2 was the same as the chemical substance sensing system of Example 2, except that the moisture removing unit of the chemical substance sensing system of Example 2 was excluded. The sample introduced into the chemical substance sensing system of Comparative Example 2 was the same as the sample used in Example 2, and the resistance change was measured by the same method.

図7は、実施例2および比較例2に用いられる化学物質センシング素子における電気抵抗変化を示すグラフである。このグラフの横軸は検体を導入してからの時間(秒)を示しており、縦軸は化学物質センシング素子の抵抗変化を示している。   FIG. 7 is a graph showing a change in electrical resistance in the chemical substance sensing element used in Example 2 and Comparative Example 2. The horizontal axis of this graph indicates the time (seconds) after the introduction of the specimen, and the vertical axis indicates the resistance change of the chemical substance sensing element.

実施例2に用いられる化学物質センシング素子は、水分を含まない窒素ガスを1分間導入した後に、85%の水分を含む窒素ガスを1分間導入しても、これらの間での化学物質センシング素子に検出される抵抗に変化は見られなかった。   The chemical substance sensing element used in Example 2 is a chemical substance sensing element between them even if nitrogen gas containing 85% moisture is introduced for 1 minute after introducing nitrogen gas containing no moisture for 1 minute. There was no change in the resistance detected.

これに対し、比較例2に用いられる化学物質センシング素子は、水分を含まない窒素ガスを1分間導入した後に、85%の水分を含む窒素ガスを1分間導入した場合に、これらの間での抵抗変化が見られた。   On the other hand, the chemical substance sensing element used in Comparative Example 2 introduced nitrogen gas containing no moisture for 1 minute, and then introduced nitrogen gas containing 85% moisture for 1 minute. A change in resistance was observed.

これは、比較例1の化学物質センシングシステムには、中空糸を有する水分除去部を有しないため、水分が除去されることなくチャンバ内に検体が導入されることとなり、水分を含まない窒素ガスを導入したときと、85%の水分を含む窒素ガスを導入したときとで、抵抗変化に差異が生じたものと考えられる。   This is because the chemical substance sensing system of Comparative Example 1 does not have a moisture removal unit having a hollow fiber, so that the sample is introduced into the chamber without removing moisture, and nitrogen gas does not contain moisture. It is considered that there was a difference in resistance change between the introduction of nitrogen and the introduction of nitrogen gas containing 85% moisture.

すなわち、実施例2の化学物質センシングシステムは、中空糸を有する水分除去部を設けることにより、水分を効率的に除去することができ、安定して呼気マーカ物質を測定できることが明らかとなった。   That is, it has been clarified that the chemical substance sensing system of Example 2 can efficiently remove moisture by providing a moisture removal unit having a hollow fiber, and can stably measure an expiration marker substance.

≪結果の表示≫
図8は、本発明の化学物質センシングシステムと端末装置との接続関係を示す模式図である。本発明の化学物質センシングシステム1は、図8に示されるように、化学物質センシングシステム1を構成する化学物質センシング素子と、端末装置203とは通信ケーブル202を介して接続することにより、化学物質センシング素子で検出したデータを端末装置203に送信することができる。
≪Display results≫
FIG. 8 is a schematic diagram showing a connection relationship between the chemical substance sensing system of the present invention and a terminal device. As shown in FIG. 8, the chemical substance sensing system 1 of the present invention is configured such that the chemical substance sensing element constituting the chemical substance sensing system 1 and the terminal device 203 are connected via a communication cable 202. Data detected by the sensing element can be transmitted to the terminal device 203.

なお、化学物質センシング素子と、端末装置203との接続は、通信ケーブル202のような有線手段による電気的な接続のみに限られるものではなく、無線手段(たとえばBluetooth等)による通信により接続してもよい。このような通信手段により得られた測定値を基に健康状態を判断された結果が、端末装置203のディスプレイ201に表示されることとなる。   The connection between the chemical substance sensing element and the terminal device 203 is not limited to an electrical connection by a wired means such as the communication cable 202, but is connected by a communication by a wireless means (for example, Bluetooth). Also good. The result of determining the health condition based on the measurement value obtained by such communication means is displayed on the display 201 of the terminal device 203.

図9は、本発明の化学物質センシングシステムと端末装置との接続関係を示す模式図である。本発明の化学物質センシングシステム1と接続する端末装置203は、図8に示されるようなノート型パソコンのみに限られるものではなく、結果を表示できるディスプレイを持つ電子機器であればどのようなものであってもよく、たとえば図9に示されるような携帯電話であってもよい。   FIG. 9 is a schematic diagram showing a connection relationship between the chemical substance sensing system of the present invention and a terminal device. The terminal device 203 connected to the chemical substance sensing system 1 of the present invention is not limited to a notebook personal computer as shown in FIG. 8, but any electronic device having a display capable of displaying the result. For example, a mobile phone as shown in FIG. 9 may be used.

図10(a)および(b)は、化学物質センシング素子10が呼気マーカ物質を検出した結果を表示したディスプレイの模式図である。   10A and 10B are schematic views of a display that displays the result of detection of the expiration marker substance by the chemical substance sensing element 10.

呼気マーカ物質の濃度は、予め既知の濃度で作成した特性値に対する検量線を用いて算出される。すなわち、当該特性値は(ピークトップのコンダクタンス−電気抵抗変化直前のコンダクタンス)/(電気抵抗変化直前のコンダクタンス)を百分率で表した値である。   The concentration of the exhalation marker substance is calculated using a calibration curve for the characteristic value created in advance at a known concentration. That is, the characteristic value is a value representing (peak top conductance−conductance immediately before change in electric resistance) / (conductance immediately before change in electric resistance) as a percentage.

ディスプレイ201にはその算出したアセトン濃度を表示されるとともに、標準よりアセトン濃度が大きい値を示す場合、図10(a)に示されるように、糖尿病の可能性等の注意を促す表示を行なう。一方、標準よりアセトン濃度が小さな値を示す場合、図10(b)に示されるように、運動を促す表示を行なう。このようにして被験者は自分の体調を容易に知ることができる。   On the display 201, the calculated acetone concentration is displayed, and when the acetone concentration shows a value larger than the standard, as shown in FIG. 10A, a display for prompting attention such as the possibility of diabetes is performed. On the other hand, when the acetone concentration is smaller than the standard value, as shown in FIG. In this way, the subject can easily know his / her physical condition.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明により、被験者の疾患に関与する生体情報を検出でき、従来に無かった非侵襲、超小型、低消費電力、超高感度、高選択性のユーザーに対する使用時のストレスが少ない化学物質センシングシステムを提供することができ、医療予防社会の実現に向けた着実な進歩が確認された。   According to the present invention, a chemical substance sensing system that can detect biological information related to a subject's disease and has low stress during use for a non-invasive, ultra-compact, low power consumption, ultra-sensitive, and highly selective user. It has been confirmed that steady progress has been made toward the realization of a medical prevention society.

1 化学物質センシングシステム、2 化学物質センシング装置、10 化学物質センシング素子、11 チャンバ、12 水分除去部、13 気体導入経路、14 気体排出経路、15 逆止弁、16 導入分子篩膜、17 排出分子篩膜、18 加熱装置、19 信号測定用導線、20 基材、21 気体排出口、104 センシング部、105 絶縁体、106 定抵抗、108 集合体、109 金属錯体、110 正極、111 負極、201 ディスプレイ、202 通信ケーブル、203 端末装置。   DESCRIPTION OF SYMBOLS 1 Chemical substance sensing system, 2 Chemical substance sensing apparatus, 10 Chemical substance sensing element, 11 Chamber, 12 Moisture removal part, 13 Gas introduction path, 14 Gas discharge path, 15 Check valve, 16 Introducing molecular sieve film, 17 Exhausting molecular sieve film , 18 Heating device, 19 Signal measuring conductor, 20 Base material, 21 Gas outlet, 104 Sensing part, 105 Insulator, 106 Constant resistance, 108 Aggregate, 109 Metal complex, 110 Positive electrode, 111 Negative electrode, 201 Display, 202 Communication cable, 203 terminal device.

Claims (10)

導入分子篩膜(16)および排出分子篩膜(17)により3つの空間に分割されたチャンバ(11)と、
前記導入分子篩膜(16)と前記排出分子篩膜(17)とにより挟まれる空間のチャンバ(11)に接する化学物質センシング素子(10)とを備える、化学物質センシング装置(2)。
A chamber (11) divided into three spaces by an introduced molecular sieve membrane (16) and an exhaust molecular sieve membrane (17);
A chemical substance sensing device (2) comprising a chemical substance sensing element (10) in contact with a chamber (11) in a space sandwiched between the introduced molecular sieve membrane (16) and the discharged molecular sieve membrane (17).
前記導入分子篩膜(16)および前記排出分子篩膜(17)は、ゼオライトからなる、請求の範囲1に記載の化学物質センシング装置(2)。  The chemical substance sensing device (2) according to claim 1, wherein the introduction molecular sieve membrane (16) and the exhaust molecular sieve membrane (17) are made of zeolite. 前記導入分子篩膜(16)の平均細孔径は、前記排出分子篩膜(17)の平均細孔径よりも大きい、請求の範囲1に記載の化学物質センシング装置(2)。  The chemical substance sensing device (2) according to claim 1, wherein an average pore diameter of the introduced molecular sieve membrane (16) is larger than an average pore diameter of the discharged molecular sieve membrane (17). 前記導入分子篩膜(16)の外表面および前記排出分子篩膜(17)の外表面に、加熱装置(18)を備える、請求の範囲1に記載の化学物質センシング装置(2)。  The chemical substance sensing device (2) according to claim 1, comprising a heating device (18) on an outer surface of the introduced molecular sieve membrane (16) and an outer surface of the discharged molecular sieve membrane (17). 前記化学物質センシング素子(10)は、ナノ構造体センサである、請求の範囲1に記載の化学物質センシング装置(2)。  The chemical substance sensing device (2) according to claim 1, wherein the chemical substance sensing element (10) is a nanostructure sensor. 前記ナノ構造体センサは、そのセンシング部(104)が金属錯体により表面修飾したカーボンナノチューブから構成される、請求の範囲5に記載の化学物質センシング装置(2)。  The chemical substance sensing device (2) according to claim 5, wherein the nanostructure sensor is composed of carbon nanotubes whose surface is modified with a metal complex in the sensing part (104). 請求の範囲1に記載の化学物質センシング装置(2)と、
前記化学物質センシング装置(2)に気体を導入するための気体導入経路(13)と、
前記気体導入経路(13)と前記化学物質センシング装置(2)との間に配置され、かつ前記気体導入経路(13)からの気体の水分を吸着するための水分除去部(12)と、
前記化学物質センシング装置(2)から気体を排出するための気体排出経路(14)とを備える、化学物質センシングシステム(1)。
The chemical substance sensing device (2) according to claim 1,
A gas introduction path (13) for introducing gas into the chemical substance sensing device (2);
A water removal unit (12) disposed between the gas introduction path (13) and the chemical substance sensing device (2), and for adsorbing moisture of the gas from the gas introduction path (13);
A chemical substance sensing system (1) comprising a gas discharge path (14) for discharging gas from the chemical substance sensing device (2).
請求の範囲1に記載の化学物質センシング装置(2)と、前記水分除去部(12)との間には、逆止弁(15)が設置され、前記化学物質センシング装置(2)と、前記気体排出経路(14)との間には、逆止弁(15)が設置される、請求の範囲7に記載の化学物質センシングシステム(1)。  A check valve (15) is installed between the chemical substance sensing device (2) according to claim 1 and the moisture removing unit (12), and the chemical substance sensing device (2), The chemical substance sensing system (1) according to claim 7, wherein a check valve (15) is installed between the gas discharge path (14). 前記水分除去部(12)は、中空糸を備える、請求の範囲7に記載の化学物質センシングシステム(1)。  The chemical substance sensing system (1) according to claim 7, wherein the moisture removing unit (12) includes a hollow fiber. 前記中空糸は、フッ素樹脂からなる、請求の範囲9に記載の化学物質センシングシステム(1)。  The chemical substance sensing system (1) according to claim 9, wherein the hollow fiber is made of a fluororesin.
JP2011504798A 2009-03-16 2010-03-01 Chemical substance sensing device and chemical substance sensing system including the same Expired - Fee Related JP4903911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504798A JP4903911B2 (en) 2009-03-16 2010-03-01 Chemical substance sensing device and chemical substance sensing system including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009062697 2009-03-16
JP2009062697 2009-03-16
PCT/JP2010/053201 WO2010106898A1 (en) 2009-03-16 2010-03-01 Chemical substance sensing device, and chemical substance sensing system equipped with the device
JP2011504798A JP4903911B2 (en) 2009-03-16 2010-03-01 Chemical substance sensing device and chemical substance sensing system including the same

Publications (2)

Publication Number Publication Date
JP4903911B2 true JP4903911B2 (en) 2012-03-28
JPWO2010106898A1 JPWO2010106898A1 (en) 2012-09-20

Family

ID=42739562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504798A Expired - Fee Related JP4903911B2 (en) 2009-03-16 2010-03-01 Chemical substance sensing device and chemical substance sensing system including the same

Country Status (2)

Country Link
JP (1) JP4903911B2 (en)
WO (1) WO2010106898A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359005B2 (en) * 2012-03-23 2018-07-18 マサチューセッツ インスティテュート オブ テクノロジー Ethylene sensor
US9147398B2 (en) * 2013-01-23 2015-09-29 Nokia Technologies Oy Hybrid input device for touchless user interface
US11435340B2 (en) 2014-06-09 2022-09-06 Biometry Inc. Low cost test strip and method to measure analyte
US11175268B2 (en) 2014-06-09 2021-11-16 Biometry Inc. Mini point of care gas chromatographic test strip and method to measure analytes
US11255840B2 (en) 2016-07-19 2022-02-22 Biometry Inc. Methods of and systems for measuring analytes using batch calibratable test strips
EP3535580A1 (en) * 2016-11-01 2019-09-11 ETH Zurich Device and method for detecting gas
CN110669671B (en) * 2019-09-04 2022-10-14 杭州师范大学 Continuous monitoring device and method for cell metabolism based on hollow fiber membrane
WO2024225206A1 (en) * 2023-04-24 2024-10-31 合同会社エイン Exhalation sensor and blood sugar level measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115597A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Gas sensor
JP2003505180A (en) * 1999-08-02 2003-02-12 ヘルセテック インコーポレイテッド Metabolic calorimeter using respiratory gas analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115597A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Gas sensor
JP2003505180A (en) * 1999-08-02 2003-02-12 ヘルセテック インコーポレイテッド Metabolic calorimeter using respiratory gas analysis

Also Published As

Publication number Publication date
JPWO2010106898A1 (en) 2012-09-20
WO2010106898A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
JP4903911B2 (en) Chemical substance sensing device and chemical substance sensing system including the same
WO2010110051A1 (en) Chemical substance detection apparatus
Kuzmych et al. Carbon nanotube sensors for exhaled breath components
JP4744618B2 (en) Gas component detector
US20100282245A1 (en) Detection of nitric oxide
Kim et al. Realization of ppb-scale toluene-sensing abilities with Pt-functionalized SnO2–ZnO core–shell nanowires
JP6749912B2 (en) Minipoint of Care Gas Chromatography Test Strips and Methods for Measuring Specimens
Yang et al. Ultraviolet illumination effect on monolayer graphene-based resistive sensor for acetone detection
JP5160939B2 (en) Gas sensor device
JP6175492B2 (en) Sensor composition for detecting acetone in breath
JP6774127B2 (en) Formaldehyde detection sensor and system using it
JP5062695B2 (en) Chemical substance sensing element, gas analyzer and breath analyzer equipped with the same, and acetone concentration detection method using chemical substance sensing element
JP2010025719A (en) Chemical substance sensing element, chemical substance sensing device and manufacturing method of chemical substance sensing element
JP5062697B2 (en) Chemical substance sensing element, gas analyzer, and method for detecting ethanol concentration using chemical substance sensing element
Hajivand et al. Application of metal-organic frameworks for sensing of VOCs and other volatile biomarkers
JP2011080798A (en) Method of manufacturing chemical substance sensing element
Freddi et al. Enhanced selectivity of target gas molecules through a minimal array of gas sensors based on nanoparticle-decorated SWCNTs
JP2009507241A (en) Nitric oxide detection
JP2007526476A (en) Detection of NO using compound semiconductor and sensor and device for detecting NO
Abdulla et al. Development of low-cost hybrid multi-walled carbon nanotube-based ammonia gas-sensing strips with an integrated sensor read-out system for clinical breath analyzer applications
JP5522669B2 (en) Acetone analyzer
Macagnano et al. Sensing asthma with portable devices equipped with ultrasensitive sensors based on electrospun nanomaterials
JP5535674B2 (en) Breath analysis device
US12117429B2 (en) Mini point of care gas chromatographic test strip and method to measure analytes
Ghawanmeh et al. The recent progress on nanomaterial-based chemosensors for diagnosis of human exhaled breath: a review

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees