WO2024219326A1 - Metal laminate, method for manufacturing same, and printed wiring board - Google Patents
Metal laminate, method for manufacturing same, and printed wiring board Download PDFInfo
- Publication number
- WO2024219326A1 WO2024219326A1 PCT/JP2024/014800 JP2024014800W WO2024219326A1 WO 2024219326 A1 WO2024219326 A1 WO 2024219326A1 JP 2024014800 W JP2024014800 W JP 2024014800W WO 2024219326 A1 WO2024219326 A1 WO 2024219326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- layer
- dielectric film
- low dielectric
- foil
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 513
- 239000002184 metal Substances 0.000 title claims abstract description 510
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000011888 foil Substances 0.000 claims abstract description 134
- 230000005291 magnetic effect Effects 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims description 289
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 89
- 239000002648 laminated material Substances 0.000 claims description 88
- 239000011889 copper foil Substances 0.000 claims description 61
- 238000000992 sputter etching Methods 0.000 claims description 42
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 37
- 238000005096 rolling process Methods 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 8
- 239000012044 organic layer Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000003475 lamination Methods 0.000 abstract description 21
- 229920000106 Liquid crystal polymer Polymers 0.000 description 42
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 42
- 239000010949 copper Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 25
- 229910052802 copper Inorganic materials 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 20
- 230000005294 ferromagnetic effect Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 19
- 150000002739 metals Chemical class 0.000 description 18
- 238000005530 etching Methods 0.000 description 17
- -1 polyethylene fluoride Polymers 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 238000001994 activation Methods 0.000 description 12
- 230000004913 activation Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000006087 Silane Coupling Agent Substances 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000012964 benzotriazole Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000009823 thermal lamination Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002365 multiple layer Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 101001134276 Homo sapiens S-methyl-5'-thioadenosine phosphorylase Proteins 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 102100022050 Protein canopy homolog 2 Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 206010042674 Swelling Diseases 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- AZUHEGMJQWJCFQ-UHFFFAOYSA-N 1,1-bis(2h-benzotriazol-4-ylmethyl)urea Chemical compound C1=CC2=NNN=C2C(CN(CC=2C3=NNN=C3C=CC=2)C(=O)N)=C1 AZUHEGMJQWJCFQ-UHFFFAOYSA-N 0.000 description 1
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical compound S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- KFJDQPJLANOOOB-UHFFFAOYSA-N 2h-benzotriazole-4-carboxylic acid Chemical compound OC(=O)C1=CC=CC2=NNN=C12 KFJDQPJLANOOOB-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- VDGMIGHRDCJLMN-UHFFFAOYSA-N [Cu].[Co].[Ni] Chemical compound [Cu].[Co].[Ni] VDGMIGHRDCJLMN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- NVIVJPRCKQTWLY-UHFFFAOYSA-N cobalt nickel Chemical compound [Co][Ni][Co] NVIVJPRCKQTWLY-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Definitions
- the present invention relates to a metal laminate material, a manufacturing method thereof, and a printed wiring board.
- metal laminate materials in which a metal foil such as copper foil is laminated onto a low dielectric film have been known as a substrate for producing printed wiring boards.
- 5G fifth-generation mobile communication system
- Patent Document 1 discloses such a metal laminate material as a treated copper foil for copper-clad laminates having a roughened layer on at least one surface of untreated copper foil and an oxidation-resistant layer on the roughened layer, the oxidation-resistant layer containing molybdenum and cobalt, and a copper-clad laminate in which the treated copper foil for copper-clad laminates is laminated to an insulating resin substrate.
- a layer containing a metal such as nickel (Ni) or cobalt (Co) is formed on the surface of the low dielectric film and then bonded to a metal foil.
- ferromagnetic metals also called high magnetic permeability metals
- Ni and Co are present at the lamination interface between the low dielectric film and the metal layer, the transmission characteristics of the metal laminate material in the high frequency band deteriorate.
- the object of the present invention is to provide a metal laminate material that combines high-frequency characteristics with adhesion at the lamination interface.
- the present inventors have found that by using a material that does not have a ferromagnetic metal on its surface to produce a metal laminate by a surface activated bonding method, it is possible to achieve both high frequency characteristics and adhesion at the laminate interface, and have completed the invention. That is, the gist of the present invention is as follows.
- the present invention makes it possible to provide a metal laminate material that combines high-frequency characteristics with adhesion at the laminate interface.
- FIG. 1 is a schematic cross-sectional view showing a metal laminate material according to one embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing a metal laminate according to another embodiment of the present invention.
- 1 is a schematic cross-sectional view showing a metal laminate material having a chromate treatment layer according to one embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing a metal laminate having a chromate treatment layer according to another embodiment of the present invention.
- the cross-sectional views of the metal laminate materials of Example 1 and Comparative Examples 2 and 3 showing the presence or absence of voids at the bonding interface are shown.
- the present invention relates to a metal laminate material in which a metal layer consisting of at least one layer including a metal foil is laminated on at least one surface of a low dielectric film.
- the metal laminate material of the present invention includes a low dielectric film having a metal layer laminated on one surface thereof, and a low dielectric film having a metal layer laminated on both surfaces thereof.
- the metal contained at the interface between the low dielectric film and the metal layer is made of a non-magnetic metal, and no ferromagnetic metal is present at the interface. Therefore, the metal laminate material has excellent high frequency characteristics, and the low dielectric film and the metal layer have sufficient adhesion.
- FIG. 1 is a schematic cross-sectional view showing a metal laminated material according to one embodiment of the present invention. As shown in Fig. 1, the metal laminated material 1A has a metal layer 10 made of a metal foil laminated on one surface of a low dielectric film 20.
- FIG 2 is a schematic cross-sectional view showing another embodiment of a metal laminate of the present invention.
- a carrier-attached metal foil having an extremely thin metal layer, a release layer, and a carrier layer is used as the metal foil.
- the metal laminate 1B of the present invention has a metal layer 10 made of a carrier-attached metal foil laminated on one surface of a low dielectric film 20.
- the metal layer 10 is laminated in the order of extremely thin metal layer 14, release layer 13, and carrier layer 12 from the low dielectric film 20 side.
- the low-dielectric film may be made of any low-dielectric polymer material that can be used as a flexible substrate, such as a material with a relative dielectric constant ⁇ r of 3.3 or less and a dielectric loss tangent tan ⁇ of 0.006 or less, but is not limited thereto.
- the low-dielectric film may be appropriately selected from materials such as liquid crystal polymer, polyethylene fluoride (fluorine-based resin such as polytetrafluoroethylene), polyamide, isocyanate compound, polyamideimide, polyimide, low-dielectric constant polyimide, polyethylene terephthalate, polyetherimide, and cycloolefin polymer.
- the low-dielectric film is a liquid crystal polymer, polyethylene fluoride, polyamide, or low-dielectric constant polyimide, and more preferably, a liquid crystal polymer.
- the low-dielectric film is a single-layer film or a laminate consisting of multiple layers, and in the case of a multiple-layer film, at least one of the multiple layers may be a layer consisting of the low-dielectric polymer material. Layers other than the layer consisting of the low-dielectric polymer material may be made of various conventionally known materials such as epoxy resin.
- the liquid crystal polymer refers to an aromatic polyester resin having a basic structure such as parahydroxybenzoic acid, which exhibits liquid crystal properties in a molten state.
- the thickness of the low dielectric film can be appropriately set according to the application of the metal laminate.
- the thickness is usually 10 ⁇ m to 150 ⁇ m, preferably 25 ⁇ m to 150 ⁇ m, more preferably 25 ⁇ m to 120 ⁇ m, and particularly preferably 25 ⁇ m to 100 ⁇ m.
- the thickness of the low dielectric film refers to the average value of the values obtained by taking an optical microscope photograph of the cross section of the metal laminate and measuring the thickness of the low dielectric film at any 10 points on the optical microscope photograph.
- the thickness of the low dielectric film before bonding can be measured with a micrometer or the like, and refers to the average value of the thickness measured at 10 points randomly selected from the surface of the target low dielectric film.
- the deviation from the average value of the measured values at 10 points is preferably within 20% for all measured values, more preferably within 10%.
- the metal layer is not particularly limited as long as it contains a metal foil, and may be made of the metal foil or may further include another layer in addition to the metal foil. When the metal layer has another layer in addition to the metal foil, it is preferable that the other layer is between the low dielectric film and the metal foil.
- the metal foil is preferably a rolled metal foil, a metal foil with a carrier, or an electrolytic metal foil, and more preferably a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
- the metal foil may be a single-layer foil or a laminated foil of these.
- the type of metal constituting the metal foil varies depending on the application of the metal laminate material and is not particularly limited, but examples include copper, iron, nickel, zinc, tin, chromium, gold, silver, platinum, cobalt, titanium, and alloys thereof.
- Metal foils made of non-magnetic metals such as copper, zinc, tin, chromium, gold, silver, platinum, and titanium are preferred as the metal foil, and copper foil or copper alloy foil is particularly preferred.
- the copper alloy foil referred to here is one made of copper and a non-magnetic metal. This is because, for example, a flexible substrate for forming fine wiring can be obtained by rolling and joining these with a low dielectric film.
- the metals constituting the metal foil include ferromagnetic metals such as iron, nickel, cobalt, and alloys thereof
- ferromagnetic metals such as iron, nickel, cobalt, and alloys thereof
- non-magnetic metals include copper, zinc, tin, chromium, gold, silver, platinum, and titanium.
- the thickness of the metal foil is not particularly limited because it varies depending on the application of the metal laminate material.
- the thickness is preferably 3 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and particularly preferably 10 ⁇ m to 35 ⁇ m.
- the thickness of the nonmagnetic metal layer composed on the upper layer of the surface on the low dielectric film side of the metal foil is preferably 1.3 ⁇ m to 50 ⁇ m, more preferably 1.3 ⁇ m to 15 ⁇ m, and particularly preferably 1.5 ⁇ m to 10 ⁇ m.
- the thickness of the metal foil or nonmagnetic metal layer refers to the average value obtained by taking an optical microscope photograph of the cross section of the metal laminate material, measuring the thickness of the metal foil or nonmagnetic metal layer at any 10 points on the optical microscope photograph.
- the rolled copper foil is not particularly limited, but examples thereof include HA-V2 manufactured by JX Nippon Mining Co., Ltd. and C1020R-H manufactured by Mitsui Sumitomo Metal Mining Co., Ltd.
- the electrolytic copper foil is not particularly limited, but examples thereof include CF-PLFA manufactured by Fukuda Metal Foil and Powder Co., Ltd.
- metal foil with a carrier having an extremely thin metal layer, a release layer, and a carrier layer as the metal foil.
- the metal foil with a carrier is laminated in the order of extremely thin metal layer, release layer, and carrier layer from the low dielectric film side, as shown in Figure 2.
- metal foil with a carrier the "metal foil" in the resulting metal laminate material refers to the portion consisting of the extremely thin metal layer, release layer, and carrier layer.
- the carrier layer of the carrier-attached metal foil has a sheet shape and functions as a support material or protective layer to prevent wrinkles or folds in the metal laminate and scratches on the ultra-thin metal layer.
- the carrier layer include foils or plates made of copper, aluminum, nickel, and their alloys (stainless steel, brass, etc.), resins with a metal coating on the surface, etc.
- the carrier layer is preferably copper foil.
- the thickness of the carrier layer is not particularly limited, but is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
- the release layer of the carrier-attached metal foil reduces the peel strength of the carrier layer and also has the function of suppressing mutual diffusion that may occur between the carrier layer and the ultrathin metal layer due to heat treatment.
- the release layer may be either an organic release layer or an inorganic release layer, and examples of components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids.
- nitrogen-containing organic compounds include triazole compounds and imidazole compounds.
- triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole, and 3-amino-1H-1,2,4-triazole.
- Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, and 2-benzimidazolethiol.
- Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids.
- examples of components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, chromate-treated films, etc.
- the thickness of the release layer is usually 1 nm or more and 1 ⁇ m or less, and preferably 5 nm or more and 500 nm or less.
- the metal constituting the ultra-thin metal layer of the carrier-attached metal foil varies depending on the application of the metal laminate material and is not particularly limited, but examples include copper, zinc, tin, chromium, gold, silver, platinum, titanium, and alloys thereof.
- the ultra-thin metal layer is preferably a layer of copper or a copper alloy.
- the thickness of the ultra-thin metal layer is usually 1.5 ⁇ m or more and 10 ⁇ m or less, and preferably 1.5 ⁇ m or more and 7 ⁇ m or less.
- the carrier-attached metal foil is preferably one in which the carrier layer and the ultra-thin metal layer are made of copper or a copper alloy, and more preferably a carrier-attached copper foil in which both are copper.
- the metal layer may have a chromate treatment layer between the low dielectric film and the metal foil.
- the metal foil is an electrolytic metal foil or a metal foil with a carrier
- the metal layer preferably has a chromate treatment layer between the low dielectric film and the metal foil.
- the chromate treatment layer can function as an anti-rust layer.
- the chromate treatment layer is preferably formed on the surface of the metal foil. In particular, when the metal layer is a metal foil surface having a chromate treatment layer and a low dielectric film is laminated, this is preferable because it can further increase the adhesion between the metal layer and the low dielectric film.
- the chromate treatment layer is preferably in contact with the surfaces of both the low dielectric film and the metal foil.
- the thickness of the chromate treatment layer is usually more than 0 nm and not more than 20 nm, and preferably 1 nm or more and not more than 10 nm.
- methods for measuring the thickness of the chromate treatment layer include, but are not limited to, thickness measurements using X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES).
- the chromate treatment layer refers to a layer formed using a solution containing chromic anhydride, chromic acid, dichromate, or dichromate (also called a chromate treatment solution).
- the chromate treatment layer is preferably made of chromate.
- Figure 3 is a schematic cross-sectional view showing a metal laminate material having a chromate treatment layer according to one embodiment of the present invention.
- the metal laminate material 1C of the present invention has a metal layer 10 laminated on one surface of a low dielectric film 20.
- the metal laminate material 1C has a chromate treatment layer 15 between the low dielectric film 20 and the metal foil 11.
- the chromate treatment layer 15 is in contact with the surfaces of both the low dielectric film 20 and the metal foil 11.
- the metal laminate material 1C is laminated in the order of the low dielectric film 20, the chromate treatment layer 15, and the metal foil 11.
- FIG. 4 is a schematic cross-sectional view showing a metal laminate having a chromate treatment layer according to another embodiment of the present invention.
- a carrier-attached metal foil having an extremely thin metal layer, a peeling layer, and a carrier layer is used as the metal foil.
- the metal laminate 1D of the present invention has a metal layer 10 laminated on one surface of a low dielectric film 20.
- the metal laminate 1D has a chromate treatment layer 15 between the low dielectric film 20 and a metal foil 11 having an extremely thin metal layer 14, a peeling layer 13, and a carrier layer 12.
- the chromate treatment layer 15 is in contact with both the surfaces of the low dielectric film 20 and the metal foil 11.
- the metal laminate 1D is laminated in the order of the low dielectric film 20, the chromate treatment layer 15, the extremely thin metal layer 14, the peeling layer 13, and the carrier layer 12.
- the metal laminate material may have an organic layer, such as a treatment layer with a silane coupling agent, on the surface of the metal layer on the low dielectric film side.
- silane coupling agents include, but are not limited to, olefin-based silanes, epoxy-based silanes, acrylic-based silanes, amino-based silanes, and mercapto-based silanes.
- the silane coupling agent may be applied by spraying, applying with a coater, immersing, or other suitable method.
- the metal laminate material may also have a treatment layer with a benzotriazole (BTA) compound on the surface of the metal layer on the low dielectric film side.
- BTA benzotriazole
- the metal laminate preferably does not have an organic layer such as a treatment layer with a silane coupling agent or a benzotriazole compound on the surface of the metal layer on the low dielectric film side.
- the silicon (Si) content on the surface of the metal layer on the low dielectric film side is preferably 0.03 ⁇ g/cm 2 or less, more preferably 0.025 ⁇ g/cm 2 or less.
- the Si content can be measured, for example, by fluorescent X-ray analysis.
- the metal laminate preferably does not have a roughened particle layer or a heat-resistant layer on the surface of the metal foil.
- These layers usually contain ferromagnetic metals such as Ni and Co, and the presence of ferromagnetic metals at the lamination interface of the metal laminate would degrade the high-frequency characteristics of the metal laminate.
- the roughened particle layer contains, for example, any one metal selected from the group consisting of Cu, Co, and Ni, or an alloy thereof, and specific examples thereof include a cobalt-nickel alloy plating layer, a copper-cobalt-nickel alloy plating layer, etc.
- the heat-resistant layer contains, for example, any one metal selected from the group consisting of Co, Ni, and Mo, or an alloy thereof, and specific examples thereof include a Ni plating layer, etc.
- the metal laminate of the present invention has excellent high frequency characteristics because no ferromagnetic metal (also called high magnetic permeability metal) is present at the interface between the low dielectric film and the metal layer, i.e., the metal contained at the interface between the low dielectric film and the metal layer is a non-magnetic metal.
- no ferromagnetic metal also called high magnetic permeability metal
- the analysis of the components contained in the interface between the low dielectric film and the metal layer can be performed, for example, by glow discharge optical emission surface analysis (GDS).
- GDS glow discharge optical emission surface analysis
- the components contained in the range of 1.3 ⁇ m or less from the surface of the metal layer on the low dielectric film side toward the metal layer side can be measured, for example, by GDS. Therefore, in the metal laminate material of the present invention, at the interface between the low dielectric film and the metal layer, the metal contained in the range of 1.3 ⁇ m or less from the surface of the metal layer on the low dielectric film side toward the metal layer side (in the thickness direction) is made of a non-magnetic metal.
- GDS is an analytical technique that performs elemental analysis in the depth direction of a sample, and is a destructive analysis using sputtering.
- analysis of components contained in the interface can also be performed using X-ray photoelectron spectroscopy (XPS).
- XPS X-ray photoelectron spectroscopy
- non-magnetic metal refers to metals other than ferromagnetic metals (e.g., iron, nickel, cobalt, etc.).
- ferromagnetic metals are also called high magnetic permeability metals, and refer to, for example, metals with a relative magnetic permeability of 10.0 or more.
- the relative magnetic permeability of non-magnetic metals is, for example, 1.5 or less.
- non-magnetic metals include copper, zinc, tin, chromium, gold, silver, platinum, and titanium, and among these, copper or chromium is preferred.
- the non-magnetic metals present at the lamination interface of the metal laminate material are copper and chromium. In one embodiment, iron, nickel, and cobalt are not present at the lamination interface of the metal laminate material.
- the non-magnetic metal contained within a range of 1.3 ⁇ m or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is preferably a single layer (one layer).
- the metal layer composed of a non-magnetic metal is a single layer composed of metal foil (excluding the chromate treatment layer). It is considered that a single layer configuration provides better high-frequency characteristics and suppresses voids at the bonding interface between the metal layer and the low dielectric film.
- the metal layer has two or more layers composed of a non-magnetic metal (for example, a metal layer/metal foil composition composed of a non-magnetic metal) within a range of 1.3 ⁇ m or less from the surface of the low dielectric film side toward the metal layer side, voids may occur at the lamination interface between each metal layer during bonding, which is undesirable because it is possible that swelling may occur during the solder reflow process when applied to a printed wiring board.
- a non-magnetic metal for example, a metal layer/metal foil composition composed of a non-magnetic metal
- the metal laminate of the present invention has a peel strength between the low dielectric film and the metal layer of 1.0 N/cm or more, preferably 3.0 N/cm or more, and more preferably 5.0 N/cm or more.
- a peel strength of 1.0 N/cm or more can improve the reliability of the fine wiring of the printed wiring board.
- a test piece is first prepared from the metal laminate, and a 1 cm wide cut is made in the metal layer using a knife or the like. After the metal layer and the low dielectric film are partially peeled off, the low dielectric film is fixed to a support, and the metal layer is pulled in a 90° direction to the low dielectric film at a speed of 50 mm/min. The force required to peel it off at this time is taken as the peel strength (unit: N/cm). If the metal layer is thin and brittle, it may break when measuring the peel strength.
- the surface of the metal layer may be electrolytically plated (for example, copper plating when the metal layer is copper) to increase the thickness of the metal layer to about 5 ⁇ m to about 50 ⁇ m, and then the peel strength may be measured.
- the method for measuring the peel strength is specified in JIS C6471.
- peel strength between a low dielectric film and a metal layer refers to the peel strength when peeling occurs at the interface between the low dielectric film and the metal layer, as well as the peel strength when peeling occurs due to internal destruction of the metal layer and the peel strength when peeling occurs due to internal destruction of the low dielectric film.
- a chromate treatment layer or a treatment layer using a silane coupling agent or a benzotriazole compound is laminated between the low dielectric film and the metal foil, in addition to the peel strength when peeling occurs at the interface between the low dielectric film and the treatment layer, it also refers to the peel strength when peeling occurs at the interface between the metal foil and the treatment layer and the peel strength when peeling occurs due to internal destruction of the treatment layer.
- the metal laminate of the present invention has a smooth lamination interface and therefore has superior high frequency characteristics compared to conventional metal laminates produced by thermal lamination.
- the smoothness of the lamination interface of the metal laminate can be confirmed by measuring the surface roughness of the surface on the metal layer side of the low dielectric film. For example, after removing the metal layer from the metal laminate by etching or the like, the surface (bonding surface) of the low dielectric film can be measured in accordance with ISO25178 using an atomic force microscope (AFM).
- AFM atomic force microscope
- the metal laminate of the present invention has an arithmetic mean height Sa of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO 25178, of preferably 60 nm or less, more preferably 50 nm or less, and particularly preferably 20 nm or less.
- the metal laminate of the present invention has a maximum height Sz of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO 25178, of preferably 700 nm or less, more preferably 600 nm or less, even more preferably 450 nm or less, and particularly preferably 300 nm or less.
- the metal laminate of the present invention has a developed surface area ratio Sdr of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO25178, of preferably 35% or less, more preferably 10% or less, even more preferably 5% or less, and particularly preferably 1.5% or less.
- the present invention also relates to a manufacturing method of the metal laminate.
- the metal laminate of the present invention can be manufactured by a surface activation bonding method. Since a strong bond is formed at the bonding interface by the surface activation treatment, the adhesion of the interface can be ensured even if a ferromagnetic metal such as Ni or Co is not present at the interface. In addition, the adhesion of the lamination interface can be ensured without relying on the physical anchor effect of roughening particles as in the case of a metal laminate manufactured by a thermal lamination method. Furthermore, by manufacturing by the surface activation bonding method, the metal foil can be laminated on the low dielectric film while maintaining the smoothness of its surface. From these points, the metal laminate has excellent high frequency characteristics and adhesion of the lamination interface.
- the method for manufacturing a metal laminate of the present invention includes the steps of preparing a low dielectric film and a metal foil (step 1), activating at least one surface of the low dielectric film by sputter etching (step 2-1), activating the surface of the metal foil by sputter etching (step 2-2), and rolling-bonding the activated surfaces of the low dielectric film and the metal foil together at a rolling reduction of 0 to 30% (step 3).
- steps 1, 2 (steps 2-1 and 2-2), and 3 are performed sequentially, but steps 2-1 and 2-2 can be performed simultaneously or sequentially.
- step 1 a low dielectric film and a metal foil are prepared.
- the low dielectric film and the metal foil those described above for the metal laminate can be used.
- a metal foil having no ferromagnetic metal on the surface preferably having no roughening treatment layer on the surface, when the metal foil and the low dielectric film are laminated, a metal laminate having no ferromagnetic metal at the lamination interface can be obtained.
- step 2-1 Surface activation step of low dielectric film
- the sputter etching process can be performed, for example, by preparing a low dielectric film as a long coil with a width of 100 mm to 600 mm, using the joint surface of the low dielectric film as one electrode grounded to earth, applying an AC current of 1 MHz to 50 MHz between the low dielectric film and the other electrode supported insulated to generate a glow discharge, and setting the area of the electrode exposed to the plasma generated by the glow discharge to 1/3 or less of the area of the other electrode.
- the earthed electrode takes the form of a cooling roll to prevent the temperature of the transported material from increasing.
- the surface to be joined of the low dielectric film is sputtered under vacuum with an active gas or an inert gas to completely remove any adsorbed matter on the surface.
- an active gas oxygen or a mixed gas containing oxygen can be used.
- oxygen or a mixed gas containing oxygen can be used.
- the inert gas argon, neon, xenon, krypton, nitrogen, etc., or a mixed gas containing at least one of these can be used.
- Oxygen is preferred as the gas used in the sputter etching process of the low dielectric film.
- oxygen By using oxygen, functional groups such as carboxyl groups and hydroxyl groups can be added to the surface of the low dielectric film, and the adhesion between the low dielectric film and the metal layer can be improved compared to when an inert gas such as argon or nitrogen is used.
- the treatment conditions for sputter etching can be appropriately set, and for example, sputter etching can be performed under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min. Even when oxygen gas is used, the treatment conditions for sputter etching are, for example, under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min.
- the degree of vacuum is preferably high in order to prevent re-adsorption onto the surface, and may be, for example, 1 ⁇ 10 ⁇ 5 Pa to 10 Pa.
- step 2-2 Metal Foil Surface Activation Step
- the surface of the metal foil is activated by sputter etching.
- the sputter etching process in the surface activation process can be carried out, for example, by preparing the metal foil to be joined as a long coil with a width of 100 mm to 600 mm, using the joining surface of the metal foil as one electrode grounded to earth, and applying an alternating current of 1 MHz to 50 MHz between it and the other electrode that is insulated and supported to generate a glow discharge, with the area of the electrode exposed to the plasma generated by the glow discharge being 1/3 or less of the area of the other electrode.
- the earthed electrode takes the form of a cooling roll to prevent the temperature of the transported material from rising.
- the surface to be joined of the metal foil is sputtered with an inert gas under vacuum to completely remove the adsorbed matter on the surface and to remove part or all of the oxide layer on the surface. It is preferable to completely remove the oxide layer.
- an inert gas argon, neon, xenon, krypton, etc., or a mixed gas containing at least one of these can be applied, but argon is preferable.
- the adsorbed matter on the surface of the metal foil can be completely removed with an etching amount of about 1 nm, and in particular, the oxide layer of copper can usually be removed with an etching amount of about 5 nm to 12 nm ( SiO2 equivalent).
- the treatment conditions for sputter etching can be appropriately set depending on the type of metal foil, etc. For example, it can be performed under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min.
- the degree of vacuum at this time is preferably high in order to prevent re-adsorption onto the surface, but a value of 1 ⁇ 10 ⁇ 5 Pa to 10 Pa will suffice.
- the surface of the metal foil before activation by sputter etching may be subjected to a chromate treatment, a silane coupling agent treatment, a treatment with a benzotriazole compound, or the like. That is, a metal foil having a chromate treatment layer, a silane coupling agent treatment layer, or a benzotriazole compound treatment layer on the surface can be used.
- a treatment layer is provided on the surface of the metal foil, the surface of the treatment layer is activated by sputter etching. At that time, the treatment layer may be completely removed by sputter etching, or may remain without being removed.
- an organic layer such as a silane coupling agent treatment layer or a benzotriazole compound treatment layer is removed from the surface of the metal foil by sputter etching.
- the amount of etching is usually 1 nm to 100 nm.
- a chromate treatment layer is provided on the surface of the metal foil before activation by sputter etching, it is preferable to activate the surface by sputter etching so that the treatment layer remains, since this can increase the adhesion when bonding with the above-mentioned low dielectric film.
- the low dielectric film and the metal foil are firmly bonded, which is preferable because it can significantly increase adhesion.
- step 3 the pressure bonding (rolling bonding) between the surfaces activated by sputter etching can be performed by roll bonding.
- the rolling wire load of the roll bonding is not particularly limited, and can be set to, for example, a range of 0.1 tf/cm to 10 tf/cm.
- the rolling wire load is not limited to this numerical range.
- the rolling wire load is too high, not only the surface layer of the low dielectric film or metal foil but also the bonding interface is likely to deform, so that the thickness accuracy of each layer in the metal laminate material may decrease.
- the rolling wire load is high, the processing strain applied during bonding may be large.
- the reduction ratio during roll bonding is 0 to 30%, preferably 0 to 15%.
- the above-mentioned surface activated bonding method allows the reduction ratio to be low, so a metal layer with excellent thickness precision can be formed without wrinkles or cracks. Furthermore, since the waviness at the interface between the metal foil and the low dielectric film can be reduced, when wiring is formed by pattern etching of the metal foil, precise wiring can be obtained due to excellent thickness precision.
- the temperature during roll bonding is, for example, 15°C to 100°C, preferably 15°C to 60°C, and more preferably room temperature.
- Joining by roll pressure is preferably performed in a non-oxidizing atmosphere, such as a vacuum atmosphere or an inert gas atmosphere such as Ar, to prevent a decrease in adhesion at the laminate interface due to re-adsorption of oxygen to the metal foil.
- a non-oxidizing atmosphere such as a vacuum atmosphere or an inert gas atmosphere such as Ar
- the metal laminate obtained by pressure welding can be further heat-treated as necessary, and preferably is.
- Heat treatment removes distortion in the metal layer and improves adhesion between the layers.
- the heat treatment temperature can be in the range of -150°C to the melting point of the low dielectric film +10°C.
- the temperature is 150°C to 350°C, preferably 160°C to 340°C, and more preferably 260°C to 340°C.
- the atmosphere in which the heat treatment is performed is not particularly limited, but a vacuum atmosphere or an inert gas atmosphere such as N2 or Ar is preferable, because this can prevent the metal layer from being oxidized by the heat treatment and the adhesion between the metal layer and the low dielectric film from decreasing.
- the time for the heat treatment is not particularly limited as long as it can sufficiently increase the adhesion between the metal layer and the low dielectric film.
- the soaking time is preferably 0 to 25,200 seconds, more preferably 0 to 18,000 seconds, and particularly preferably 180 to 15,000 seconds.
- the time at or above the lower limit of these ranges sufficient adhesion between the metal layer and the low dielectric film can be ensured, and by setting the time at or below the upper limit of these ranges, high production efficiency and low cost of the metal laminate material can be achieved. Note that even if the soaking time mentioned above is 0 seconds (i.e., cooling is performed immediately after reaching the target temperature without a soaking time), it is possible to sufficiently increase the adhesion between the metal layer and the low dielectric film.
- the method of performing the heat treatment includes, for example, a method of maintaining the metal laminate material at a desired heat treatment temperature for a desired time in a desired atmosphere (for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar) using a batch heat treatment furnace.
- a desired atmosphere for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar
- the heat treatment may be performed by a roll-to-roll method using a continuous heat treatment furnace.
- At least the heating part and the cooling part in the continuous heat treatment furnace are set to a desired atmosphere (for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar) and maintained at a desired temperature, and the metal laminate material is passed through the heating part and the cooling part at a desired speed to maintain the metal laminate material at the desired heat treatment temperature for a desired time.
- a desired atmosphere for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar
- the metal laminate of the present invention can be utilized as a metal-clad laminate for producing a flexible printed circuit board.
- the metal laminate of the present invention can be used to obtain a printed wiring board with fine wiring formed thereon.
- the present invention also relates to a printed wiring board in which a circuit is formed on a metal laminate.
- an additional metal layer can be formed only on the wiring portion.
- a printed wiring board can be obtained by appropriately using a conventionally known method such as the modified semi-additive method (MSAP method), the semi-additive method (SAP method), or the subtractive method.
- a printed wiring board can be manufactured by masking the non-wiring portion on the metal layer of the metal laminate, forming an additional metal layer by copper plating or the like on the unmasked portion, removing the mask, and removing the metal layer hidden by the mask by etching.
- the "printed wiring board” in the present invention includes not only a laminate with wiring formed thereon, but also a board on which electronic components such as ICs are mounted after wiring is formed.
- a metal laminate material is described in which a metal layer is laminated on one surface of a low dielectric film, but the metal laminate material is not limited to this. In other words, if necessary, metal layers may be provided on both surfaces of the low dielectric film.
- a metal laminate material in which metal layers are provided on both surfaces of a low dielectric film, a flexible printed circuit board in which wiring is formed on both surfaces of the low dielectric film can be obtained.
- Example 1 A liquid crystal polymer film having a thickness of 50 ⁇ m (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 12 ⁇ m thick electrolytic copper foil (CF-PLFA manufactured by Fukuda Metal Foil and Powder Co., Ltd.) having a chromate treatment layer on the surface and made of copper was prepared as the metal foil.
- Vexstar CTQ manufactured by Kuraray Co., Ltd.
- CF-PLFA electrolytic copper foil having a chromate treatment layer on the surface and made of copper
- Example 1 Example 1 (layer structure: electrolytic copper foil / liquid crystal polymer film).
- Example 2 A liquid crystal polymer film having a thickness of 50 ⁇ m (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 12 ⁇ m and made of copper having a benzotriazole compound treatment layer (organic layer) on the surface was prepared as the metal foil (HA-V2 manufactured by JX Metals Co., Ltd.).
- one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and the surface of the rolled copper foil was activated by completely removing the treatment layer by sputter etching with Ar gas (etching amount 2 nm), and the activated surfaces of the liquid crystal polymer film and the rolled copper foil were rolled and bonded with a line load of 1.5 tf / cm to produce a metal laminate material.
- the rolling reduction rate was 2.0%.
- the metal laminate material was subjected to a heat treatment at 310 ° C. to obtain a metal laminate material of Example 2 (layer structure: rolled copper foil / liquid crystal polymer film).
- Example 3 A 25 ⁇ m thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 18 ⁇ m thick rolled copper foil (C1020R-H manufactured by Mitsui Sumitomo Metal Mining Co., Ltd.) was prepared. One surface of the liquid crystal polymer film was activated by sputter etching with Ar gas (etching amount 10 nm). The same procedure as in Example 2 was followed to obtain a metal laminate material (layer structure: rolled copper foil/liquid crystal polymer film) of Example 3.
- Example 4 A metal laminate material (layer structure: rolled copper foil / liquid crystal polymer film) of Example 4 was obtained in the same manner as in Example 3, except that one surface of the liquid crystal polymer film was activated by sputter etching (etching amount 140 nm) with N2 gas.
- Comparative Example 1 A metal laminate material (layer structure: electrolytic copper foil/liquid crystal polymer film) of Comparative Example 1 was obtained in the same manner as in Example 1, except that an electrolytic copper foil having a thickness of 12 ⁇ m and having a surface with an anticorrosive layer containing Co or the like (CF-T9DA-SV manufactured by Fukuda Metal Foil and Powder Co., Ltd.) was used as the electrolytic copper foil.
- an electrolytic copper foil having a thickness of 12 ⁇ m and having a surface with an anticorrosive layer containing Co or the like CF-T9DA-SV manufactured by Fukuda Metal Foil and Powder Co., Ltd.
- Example 2 A liquid crystal polymer film having a thickness of 25 ⁇ m (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 ⁇ m (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 5 nm NiCr alloy sputter layer was sputter-formed as a base layer on the activated surface, and a 10 nm Cu sputter layer was sputter-formed as an upper layer to form a metal layer.
- O 2 gas etching amount 300 nm
- the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate.
- the rolling reduction was 2.3%.
- the metal laminate was subjected to a heat treatment at 300° C. to obtain a metal laminate of Comparative Example 2 (layer structure: rolled copper foil/metal layer/liquid crystal polymer film).
- Example 3 A liquid crystal polymer film having a thickness of 25 ⁇ m (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 ⁇ m (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 28 nm NiCr alloy sputter layer was sputter-deposited on the activated surface to form a metal layer.
- O 2 gas etching amount 300 nm
- the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate.
- the rolling reduction rate was 2.3%.
- the metal laminate was subjected to a heat treatment at 300 ° C. to obtain a metal laminate of Comparative Example 3 (layer structure: rolled copper foil / metal layer / liquid crystal polymer film).
- Comparative Example 4 By a thermal lamination method, an 18 ⁇ m-thick electrolytic copper foil having a treatment layer made of a roughening particle layer or the like on one side was thermocompressed to both surfaces of a 50 ⁇ m-thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) at a temperature of 310° C. or higher to produce a metal laminate material of Comparative Example 4 (layer structure: electrolytic copper foil (roughened)/liquid crystal polymer film/electrolytic copper foil (roughened)).
- a 50 ⁇ m-thick liquid crystal polymer film Vexstar CTQ manufactured by Kuraray Co., Ltd.
- GDS measurement device High-frequency glow discharge optical emission spectrometer (Horiba, GD-Profiler 2) Excitation mode: Normal Light source pressure: 600 Pa Light source output: 30W Anode diameter: 4 mm
- the transmission line was a single-ended microstrip transmission line with a wiring height of 25 ⁇ m, width of 110 ⁇ m, and length of 100 mm. Measurements were performed at a frequency of 40 GHz using a network analyzer N5227B (Keysight Technologies, Inc.). Note that in Examples 1-2 and Comparative Examples 1-2, a microstrip line was created on the laminated copper foil side and measurements were performed.
- Table 1 shows the configurations and evaluation results of the metal laminate materials of Examples 1 to 4 and Comparative Examples 1 to 4.
- LCP stands for liquid crystal polymer film.
- the metal laminates of Examples 1 and 2 which do not have a ferromagnetic metal at the lamination interface of the metal laminate, had smaller transmission loss (S21) at high frequencies and superior high frequency transmission characteristics compared to the metal laminates of Comparative Examples 1 to 2 and 4, which have a ferromagnetic metal (Ni, Co) at the lamination interface of the metal laminate.
- the metal laminates of Examples 1 and 2 when compared to Comparative Example 4, which has a roughened particle layer, the metal laminates of Examples 1 and 2 have a smoother interface and no ferromagnetic metal at the lamination interface, so it was confirmed that the metal laminates of Examples 1 and 2 have smaller transmission loss (S21) at high frequencies and superior high frequency transmission characteristics.
- the metal laminate of Examples 1 to 4 had sufficient peel strength, although the ferromagnetic metal that contributes to the adhesion of the laminate interface was not present at the interface and the interface was smooth. This is thought to be because in the metal laminate of Examples 1 to 4, a strong bond is formed at the interface between the liquid crystal polymer film and the copper foil by the surface activation treatment, so that the adhesion of the laminate interface can be ensured without relying on the physical anchor effect of the roughening particles.
- the metal laminate of Examples 1 and 2 in which the surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas, had a stronger bond between the interface of the liquid crystal polymer film and the copper foil and had excellent peel strength, compared to the metal laminate of Examples 3 and 4, in which the surface of the liquid crystal polymer film was activated by sputter etching with Ar gas or N 2 gas.
- Example 1 which has a chromate treatment layer on the surface (liquid crystal polymer film side) of the metal foil of the metal laminate, has a stronger bond at the interface between the liquid crystal polymer film and the copper foil and has better peel strength than Example 2, which does not have a chromate treatment layer on the surface of the metal foil of the metal laminate.
- Table 1 shows the evaluation results of the metal laminate materials of Examples 1 to 4 and Comparative Examples 1 to 4, and Figure 5 shows cross-sectional views of the metal laminate materials of Example 1 and Comparative Examples 2 to 3 showing the presence or absence of voids at the bonding interface.
- the metal laminate materials of Examples 1 to 4 in which the metal contained within a range of 1.3 ⁇ m or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is a single layer (one layer), have no voids at the bonding interface, and it was confirmed that they can be suitably used in the solder reflow process when applied as a printed wiring board.
- the metal laminate materials of Comparative Examples 2 to 3 in which the metal contained within a range of 1.3 ⁇ m or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is composed of two or more layers (metal layer/copper foil), have voids at the bonding interface, and it was confirmed that there is a risk of swelling due to these voids during the solder reflow process when applied as a printed wiring board.
- the thickness of the sputtered layer (metal layer) was greater than in Comparative Example 2, resulting in more voids at the bonding interface.
Landscapes
- Laminated Bodies (AREA)
Abstract
The purpose of the present invention is to provide a metal laminate that exhibits both high frequency characteristics and high adhesiveness at a lamination interface. The present invention relates to a metal laminate comprising a metal layer that includes at least one layer including a metal foil, the metal layer being laminated on at least one surface of a low dielectric film. In an interface between the low dielectric film and the metal layer of the metal laminate, a metal included in a range of less than or equal to 1.3 μm from the surface of the metal layer on the low dielectric film side toward the metal layer side is a non-magnetic metal, and the peel strength of the low dielectric film and the metal layer is greater than or equal to 1.0 N/cm. The present invention also relates to a method for manufacturing the metal laminate and a printed wiring board.
Description
本発明は、金属積層材及びその製造方法、並びにプリント配線板に関する。
The present invention relates to a metal laminate material, a manufacturing method thereof, and a printed wiring board.
従来、プリント配線板作製用の基材として、低誘電性フィルムに銅箔等の金属箔を積層させた金属積層材が知られている。近年、第5世代移動通信システム(5G)のサービスが各国において開始されており、5Gでの周波数帯、つまり高周波特性に優れた金属積層材が求められている。
Conventionally, metal laminate materials in which a metal foil such as copper foil is laminated onto a low dielectric film have been known as a substrate for producing printed wiring boards. In recent years, fifth-generation mobile communication system (5G) services have been launched in many countries, and there is a demand for metal laminate materials that are compatible with the 5G frequency band, i.e., have excellent high-frequency characteristics.
金属積層材としては、一般的には、低誘電性フィルムに対する密着性の観点から、圧着面を粗面化した金属箔を熱圧着する熱ラミネート法を用いて作製されるものが知られている。このような金属積層材として、例えば、特許文献1には、未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に酸化防止処理層を備えた銅張積層板用処理銅箔であって、前記酸化防止処理層はモリブデンとコバルトを含有する銅張積層板用処理銅箔、及びこれを絶縁性樹脂基材に張り合わせた銅張積層板が開示されている。
A metal laminate material is generally known that is produced using a thermal lamination method in which a metal foil with a roughened surface is thermally compressed from the viewpoint of adhesion to a low dielectric film. For example, Patent Document 1 discloses such a metal laminate material as a treated copper foil for copper-clad laminates having a roughened layer on at least one surface of untreated copper foil and an oxidation-resistant layer on the roughened layer, the oxidation-resistant layer containing molybdenum and cobalt, and a copper-clad laminate in which the treated copper foil for copper-clad laminates is laminated to an insulating resin substrate.
また、熱ラミネート法では、熱圧着工程において、低誘電性フィルムと金属層との密着性を確保するために、ニッケル(Ni)、コバルト(Co)等の金属を含む層を低誘電性フィルムの表面に形成させ、これを金属箔と接合することも行われていた。しかし、Ni、Co等の強磁性金属(高透磁率金属ともいう)が低誘電性フィルムと金属層との積層界面に存在すると、金属積層材の高周波帯域における伝送特性が悪化してしまう。
In addition, in the thermal lamination method, in order to ensure adhesion between the low dielectric film and the metal layer during the thermocompression bonding process, a layer containing a metal such as nickel (Ni) or cobalt (Co) is formed on the surface of the low dielectric film and then bonded to a metal foil. However, if ferromagnetic metals (also called high magnetic permeability metals) such as Ni and Co are present at the lamination interface between the low dielectric film and the metal layer, the transmission characteristics of the metal laminate material in the high frequency band deteriorate.
前記のように、熱ラミネート法により作製された従来の金属積層材では、低誘電性フィルムと金属層との積層界面にNi、Co等の強磁性金属が存在することにより高周波特性が十分ではない場合があった。そこで本発明は、高周波特性及び積層界面の密着性を両立した金属積層材を提供することを目的とする。
As mentioned above, in conventional metal laminate materials produced by thermal lamination, the presence of ferromagnetic metals such as Ni and Co at the lamination interface between the low dielectric film and the metal layer can result in insufficient high-frequency characteristics. Therefore, the object of the present invention is to provide a metal laminate material that combines high-frequency characteristics with adhesion at the lamination interface.
本発明者らは、前記課題を解決するため鋭意検討を行った結果、表面に強磁性金属が存在しない材料を用いて、表面活性化接合法により金属積層材を作製することにより、高周波特性及び積層界面の密着性を両立することができることを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。
(1)低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材であって、前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上である、金属積層材。
(2)前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、前記(1)に記載の金属積層材。
(3)前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、前記(1)又は(2)に記載の金属積層材。
(4)前記金属層が、前記低誘電性フィルムと前記金属箔との間にクロメート処理層を有する、前記(1)~(3)のいずれかに記載の金属積層材。
(5)前記金属層の低誘電性フィルム側の表面に有機物層を有していない、前記(1)~(4)のいずれかに記載の金属積層材。
(6)低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材の製造方法であって、
前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上であり、
該方法が、
低誘電性フィルムと金属箔とを準備する工程と、
前記低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する工程と、
前記金属箔の表面をスパッタエッチングにより活性化する工程と、
前記低誘電性フィルム及び前記金属箔の活性化した表面同士を0~30%の圧下率で圧延接合する工程と
を含む、金属積層材の製造方法。
(7)前記金属積層材において、前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、前記(6)に記載の金属積層材の製造方法。
(8)前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、前記(6)又は(7)に記載の金属積層材の製造方法。
(9)前記金属箔が、表面にクロメート処理層を有する金属箔である、前記(6)~(8)のいずれかに記載の金属積層材の製造方法。
(10)前記低誘電性フィルムの少なくとも一方の表面を酸素によるスパッタエッチングにより活性化する、前記(6)~(9)のいずれかに記載の金属積層材の製造方法。
(11)前記金属箔の表面をスパッタエッチングにより活性化する工程が、前記金属箔の表面から有機物層を除去することを含む、前記(6)~(10)のいずれかに記載の金属積層材の製造方法。
(12)前記(1)~(5)のいずれかに記載の金属積層材に回路が形成されてなるプリント配線板。
本明細書は本願の優先権の基礎となる日本国特許出願番号2023-068300号の開示内容を包含する。 As a result of intensive research to solve the above problems, the present inventors have found that by using a material that does not have a ferromagnetic metal on its surface to produce a metal laminate by a surface activated bonding method, it is possible to achieve both high frequency characteristics and adhesion at the laminate interface, and have completed the invention. That is, the gist of the present invention is as follows.
(1) A metal laminate material in which a metal layer consisting of at least one layer including a metal foil is laminated on at least one surface of a low dielectric film, wherein at the interface between the low dielectric film and the metal layer, the metal contained within a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a non-magnetic metal, and the peel strength of the low dielectric film and the metal layer is 1.0 N/cm or more.
(2) The metal laminate material according to (1) above, wherein the arithmetic mean height Sa of the surface on the metal layer side of the low dielectric film is 60 nm or less.
(3) The metal laminate material according to (1) or (2), wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
(4) The metal laminate material according to any one of (1) to (3), wherein the metal layer has a chromate treatment layer between the low dielectric film and the metal foil.
(5) The metal laminate material according to any one of (1) to (4), wherein the metal layer does not have an organic layer on the surface on the low dielectric film side.
(6) A method for producing a metal laminate material in which a metal layer including at least one layer including a metal foil is laminated on at least one surface of a low dielectric film,
At the interface between the low dielectric film and the metal layer, a metal included in a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a nonmagnetic metal, and the peel strength between the low dielectric film and the metal layer is 1.0 N/cm or more,
The method comprises:
Providing a low dielectric film and a metal foil;
activating at least one surface of the low dielectric film by sputter etching;
activating the surface of the metal foil by sputter etching;
and rolling-bonding the activated surfaces of the low dielectric film and the metal foil together at a rolling reduction of 0 to 30%.
(7) The method for producing a metal laminate material according to (6) above, wherein the arithmetic mean height Sa of the surface of the low dielectric film on the metal layer side in the metal laminate material is 60 nm or less.
(8) The method for producing a metal laminate material according to (6) or (7), wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
(9) The method for producing a metal laminate material according to any one of (6) to (8), wherein the metal foil has a chromate treatment layer on a surface thereof.
(10) The method for producing a metal laminate material according to any one of (6) to (9), wherein at least one surface of the low dielectric film is activated by sputter etching with oxygen.
(11) The method for producing a metal laminate material according to any one of (6) to (10), wherein the step of activating the surface of the metal foil by sputter etching includes removing an organic layer from the surface of the metal foil.
(12) A printed wiring board having a circuit formed on the metal laminate material according to any one of (1) to (5) above.
This specification includes the disclosure of Japanese Patent Application No. 2023-068300, which is the priority basis of this application.
(1)低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材であって、前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上である、金属積層材。
(2)前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、前記(1)に記載の金属積層材。
(3)前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、前記(1)又は(2)に記載の金属積層材。
(4)前記金属層が、前記低誘電性フィルムと前記金属箔との間にクロメート処理層を有する、前記(1)~(3)のいずれかに記載の金属積層材。
(5)前記金属層の低誘電性フィルム側の表面に有機物層を有していない、前記(1)~(4)のいずれかに記載の金属積層材。
(6)低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材の製造方法であって、
前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上であり、
該方法が、
低誘電性フィルムと金属箔とを準備する工程と、
前記低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する工程と、
前記金属箔の表面をスパッタエッチングにより活性化する工程と、
前記低誘電性フィルム及び前記金属箔の活性化した表面同士を0~30%の圧下率で圧延接合する工程と
を含む、金属積層材の製造方法。
(7)前記金属積層材において、前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、前記(6)に記載の金属積層材の製造方法。
(8)前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、前記(6)又は(7)に記載の金属積層材の製造方法。
(9)前記金属箔が、表面にクロメート処理層を有する金属箔である、前記(6)~(8)のいずれかに記載の金属積層材の製造方法。
(10)前記低誘電性フィルムの少なくとも一方の表面を酸素によるスパッタエッチングにより活性化する、前記(6)~(9)のいずれかに記載の金属積層材の製造方法。
(11)前記金属箔の表面をスパッタエッチングにより活性化する工程が、前記金属箔の表面から有機物層を除去することを含む、前記(6)~(10)のいずれかに記載の金属積層材の製造方法。
(12)前記(1)~(5)のいずれかに記載の金属積層材に回路が形成されてなるプリント配線板。
本明細書は本願の優先権の基礎となる日本国特許出願番号2023-068300号の開示内容を包含する。 As a result of intensive research to solve the above problems, the present inventors have found that by using a material that does not have a ferromagnetic metal on its surface to produce a metal laminate by a surface activated bonding method, it is possible to achieve both high frequency characteristics and adhesion at the laminate interface, and have completed the invention. That is, the gist of the present invention is as follows.
(1) A metal laminate material in which a metal layer consisting of at least one layer including a metal foil is laminated on at least one surface of a low dielectric film, wherein at the interface between the low dielectric film and the metal layer, the metal contained within a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a non-magnetic metal, and the peel strength of the low dielectric film and the metal layer is 1.0 N/cm or more.
(2) The metal laminate material according to (1) above, wherein the arithmetic mean height Sa of the surface on the metal layer side of the low dielectric film is 60 nm or less.
(3) The metal laminate material according to (1) or (2), wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
(4) The metal laminate material according to any one of (1) to (3), wherein the metal layer has a chromate treatment layer between the low dielectric film and the metal foil.
(5) The metal laminate material according to any one of (1) to (4), wherein the metal layer does not have an organic layer on the surface on the low dielectric film side.
(6) A method for producing a metal laminate material in which a metal layer including at least one layer including a metal foil is laminated on at least one surface of a low dielectric film,
At the interface between the low dielectric film and the metal layer, a metal included in a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a nonmagnetic metal, and the peel strength between the low dielectric film and the metal layer is 1.0 N/cm or more,
The method comprises:
Providing a low dielectric film and a metal foil;
activating at least one surface of the low dielectric film by sputter etching;
activating the surface of the metal foil by sputter etching;
and rolling-bonding the activated surfaces of the low dielectric film and the metal foil together at a rolling reduction of 0 to 30%.
(7) The method for producing a metal laminate material according to (6) above, wherein the arithmetic mean height Sa of the surface of the low dielectric film on the metal layer side in the metal laminate material is 60 nm or less.
(8) The method for producing a metal laminate material according to (6) or (7), wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
(9) The method for producing a metal laminate material according to any one of (6) to (8), wherein the metal foil has a chromate treatment layer on a surface thereof.
(10) The method for producing a metal laminate material according to any one of (6) to (9), wherein at least one surface of the low dielectric film is activated by sputter etching with oxygen.
(11) The method for producing a metal laminate material according to any one of (6) to (10), wherein the step of activating the surface of the metal foil by sputter etching includes removing an organic layer from the surface of the metal foil.
(12) A printed wiring board having a circuit formed on the metal laminate material according to any one of (1) to (5) above.
This specification includes the disclosure of Japanese Patent Application No. 2023-068300, which is the priority basis of this application.
本発明によれば、高周波特性及び積層界面の密着性を両立した金属積層材を提供することができる。
The present invention makes it possible to provide a metal laminate material that combines high-frequency characteristics with adhesion at the laminate interface.
以下、本発明を詳細に説明する。本発明は、低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材に関する。本発明の金属積層材は、低誘電性フィルムの一方の面に金属層が積層されたもの、及び低誘電性フィルムの両方の面に金属層が積層されたものを含む。本発明の金属積層材は、低誘電性フィルムと金属層との界面に含まれる金属が非磁性金属からなり、界面に強磁性金属が存在しないため、金属積層材が高周波特性に優れ、且つ低誘電性フィルムと金属層が十分な密着性を有するものである。
The present invention will be described in detail below. The present invention relates to a metal laminate material in which a metal layer consisting of at least one layer including a metal foil is laminated on at least one surface of a low dielectric film. The metal laminate material of the present invention includes a low dielectric film having a metal layer laminated on one surface thereof, and a low dielectric film having a metal layer laminated on both surfaces thereof. In the metal laminate material of the present invention, the metal contained at the interface between the low dielectric film and the metal layer is made of a non-magnetic metal, and no ferromagnetic metal is present at the interface. Therefore, the metal laminate material has excellent high frequency characteristics, and the low dielectric film and the metal layer have sufficient adhesion.
A.金属積層材
図1は、本発明の一実施形態の金属積層材を示す概略断面図である。図1に示すように、金属積層材1Aは、低誘電性フィルム20の一方の表面に金属箔からなる金属層10が積層されている。 A. Metal Laminated Material Fig. 1 is a schematic cross-sectional view showing a metal laminated material according to one embodiment of the present invention. As shown in Fig. 1, the metal laminatedmaterial 1A has a metal layer 10 made of a metal foil laminated on one surface of a low dielectric film 20.
図1は、本発明の一実施形態の金属積層材を示す概略断面図である。図1に示すように、金属積層材1Aは、低誘電性フィルム20の一方の表面に金属箔からなる金属層10が積層されている。 A. Metal Laminated Material Fig. 1 is a schematic cross-sectional view showing a metal laminated material according to one embodiment of the present invention. As shown in Fig. 1, the metal laminated
図2は、本発明の別の実施形態の金属積層材を示す概略断面図である。この実施形態においては、金属箔として、極薄金属層、剥離層、及びキャリア層を有するキャリア付金属箔が用いられている。図2に示すように、本発明の金属積層材1Bは、低誘電性フィルム20の一方の表面に、キャリア付金属箔からなる金属層10が積層されている。金属層10は、低誘電性フィルム20側から、極薄金属層14、剥離層13、及びキャリア層12の順番になるように積層されている。
Figure 2 is a schematic cross-sectional view showing another embodiment of a metal laminate of the present invention. In this embodiment, a carrier-attached metal foil having an extremely thin metal layer, a release layer, and a carrier layer is used as the metal foil. As shown in Figure 2, the metal laminate 1B of the present invention has a metal layer 10 made of a carrier-attached metal foil laminated on one surface of a low dielectric film 20. The metal layer 10 is laminated in the order of extremely thin metal layer 14, release layer 13, and carrier layer 12 from the low dielectric film 20 side.
以下に、本発明の金属積層材の各構成について詳細に説明する。
The components of the metal laminate material of the present invention are described in detail below.
1.低誘電性フィルム
低誘電性フィルムの材質としては、フレキシブル基板として用い得る低誘電性のポリマー材料であれば適用可能であり、例えば、比誘電率εrが3.3以下、誘電正接tanδの値が0.006以下であるような材料であるが、これに限定されなくても良い。具体的には、液晶ポリマー、ポリフッ化エチレン(ポリテトラフルオロエチレン等のフッ素系樹脂)、ポリアミド、イソシアネート化合物、ポリアミドイミド、ポリイミド、低誘電率ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド、シクロオレフィンポリマー等の材料から適宜選択して用いることができる。好ましくは、液晶ポリマー、ポリフッ化エチレン、ポリアミド又は低誘電率ポリイミドであり、より好ましくは液晶ポリマーである。低誘電性フィルムは、単層のフィルムであるか、又は複数層からなる積層体であり、複数層である場合は、その複数層のうちのいずれか1層以上が上記の低誘電性のポリマー材料からなる層であれば良い。低誘電性のポリマー材料からなる層以外の層は、エポキシ樹脂等の従来知られた種々の材料から構成することができる。なお、液晶ポリマーとは、溶融状態で液晶の性質を示すような、パラヒドロキシ安息香酸等を基本構造とする芳香族ポリエステル系樹脂をいう。 1. Low-dielectric film The low-dielectric film may be made of any low-dielectric polymer material that can be used as a flexible substrate, such as a material with a relative dielectric constant εr of 3.3 or less and a dielectric loss tangent tanδ of 0.006 or less, but is not limited thereto. Specifically, the low-dielectric film may be appropriately selected from materials such as liquid crystal polymer, polyethylene fluoride (fluorine-based resin such as polytetrafluoroethylene), polyamide, isocyanate compound, polyamideimide, polyimide, low-dielectric constant polyimide, polyethylene terephthalate, polyetherimide, and cycloolefin polymer. Preferably, the low-dielectric film is a liquid crystal polymer, polyethylene fluoride, polyamide, or low-dielectric constant polyimide, and more preferably, a liquid crystal polymer. The low-dielectric film is a single-layer film or a laminate consisting of multiple layers, and in the case of a multiple-layer film, at least one of the multiple layers may be a layer consisting of the low-dielectric polymer material. Layers other than the layer consisting of the low-dielectric polymer material may be made of various conventionally known materials such as epoxy resin. The liquid crystal polymer refers to an aromatic polyester resin having a basic structure such as parahydroxybenzoic acid, which exhibits liquid crystal properties in a molten state.
低誘電性フィルムの材質としては、フレキシブル基板として用い得る低誘電性のポリマー材料であれば適用可能であり、例えば、比誘電率εrが3.3以下、誘電正接tanδの値が0.006以下であるような材料であるが、これに限定されなくても良い。具体的には、液晶ポリマー、ポリフッ化エチレン(ポリテトラフルオロエチレン等のフッ素系樹脂)、ポリアミド、イソシアネート化合物、ポリアミドイミド、ポリイミド、低誘電率ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド、シクロオレフィンポリマー等の材料から適宜選択して用いることができる。好ましくは、液晶ポリマー、ポリフッ化エチレン、ポリアミド又は低誘電率ポリイミドであり、より好ましくは液晶ポリマーである。低誘電性フィルムは、単層のフィルムであるか、又は複数層からなる積層体であり、複数層である場合は、その複数層のうちのいずれか1層以上が上記の低誘電性のポリマー材料からなる層であれば良い。低誘電性のポリマー材料からなる層以外の層は、エポキシ樹脂等の従来知られた種々の材料から構成することができる。なお、液晶ポリマーとは、溶融状態で液晶の性質を示すような、パラヒドロキシ安息香酸等を基本構造とする芳香族ポリエステル系樹脂をいう。 1. Low-dielectric film The low-dielectric film may be made of any low-dielectric polymer material that can be used as a flexible substrate, such as a material with a relative dielectric constant εr of 3.3 or less and a dielectric loss tangent tanδ of 0.006 or less, but is not limited thereto. Specifically, the low-dielectric film may be appropriately selected from materials such as liquid crystal polymer, polyethylene fluoride (fluorine-based resin such as polytetrafluoroethylene), polyamide, isocyanate compound, polyamideimide, polyimide, low-dielectric constant polyimide, polyethylene terephthalate, polyetherimide, and cycloolefin polymer. Preferably, the low-dielectric film is a liquid crystal polymer, polyethylene fluoride, polyamide, or low-dielectric constant polyimide, and more preferably, a liquid crystal polymer. The low-dielectric film is a single-layer film or a laminate consisting of multiple layers, and in the case of a multiple-layer film, at least one of the multiple layers may be a layer consisting of the low-dielectric polymer material. Layers other than the layer consisting of the low-dielectric polymer material may be made of various conventionally known materials such as epoxy resin. The liquid crystal polymer refers to an aromatic polyester resin having a basic structure such as parahydroxybenzoic acid, which exhibits liquid crystal properties in a molten state.
低誘電性フィルムの厚みは、金属積層材の用途等に応じて適宜設定することができる。例えば、フレキシブルなプリント配線板として用いる場合は、厚みは通常10μm以上150μm以下であり、好ましくは25μm以上150μm以下であり、より好ましくは25μm以上120μm以下であり、特に好ましくは25μm以上100μm以下である。低誘電性フィルムの厚みは、金属積層材の断面の光学顕微鏡写真を取得し、その光学顕微鏡写真において任意の10点における低誘電性フィルムの厚みを計測し、得られた値の平均値をいう。なお、接合前の低誘電性フィルムの厚みは、マイクロメータ等によって測定可能であり、対象とする低誘電性フィルムの表面上からランダムに選択した10点において測定した厚みの平均値をいう。また、用いる低誘電性フィルムについては、10点の測定値の平均値からの偏差が全ての測定値で20%以内であることが好ましく、より好ましくは10%以内である。
The thickness of the low dielectric film can be appropriately set according to the application of the metal laminate. For example, when used as a flexible printed wiring board, the thickness is usually 10 μm to 150 μm, preferably 25 μm to 150 μm, more preferably 25 μm to 120 μm, and particularly preferably 25 μm to 100 μm. The thickness of the low dielectric film refers to the average value of the values obtained by taking an optical microscope photograph of the cross section of the metal laminate and measuring the thickness of the low dielectric film at any 10 points on the optical microscope photograph. The thickness of the low dielectric film before bonding can be measured with a micrometer or the like, and refers to the average value of the thickness measured at 10 points randomly selected from the surface of the target low dielectric film. In addition, for the low dielectric film used, the deviation from the average value of the measured values at 10 points is preferably within 20% for all measured values, more preferably within 10%.
2.金属層
金属層は、金属箔を含むものであれば特に限定されず、当該金属箔からなるものでも良いし、当該金属箔に加え、他の層をさらに有するものでも良い。なお金属層が、金属箔に加え他の層を有する場合、低誘電性フィルムと金属箔との間に当該他の層を有することが好ましい。 2. Metal Layer The metal layer is not particularly limited as long as it contains a metal foil, and may be made of the metal foil or may further include another layer in addition to the metal foil. When the metal layer has another layer in addition to the metal foil, it is preferable that the other layer is between the low dielectric film and the metal foil.
金属層は、金属箔を含むものであれば特に限定されず、当該金属箔からなるものでも良いし、当該金属箔に加え、他の層をさらに有するものでも良い。なお金属層が、金属箔に加え他の層を有する場合、低誘電性フィルムと金属箔との間に当該他の層を有することが好ましい。 2. Metal Layer The metal layer is not particularly limited as long as it contains a metal foil, and may be made of the metal foil or may further include another layer in addition to the metal foil. When the metal layer has another layer in addition to the metal foil, it is preferable that the other layer is between the low dielectric film and the metal foil.
金属箔は、好ましくは圧延金属箔、キャリア付金属箔又は電解金属箔であり、より好ましくは圧延銅箔、キャリア付銅箔又は電解銅箔である。また、金属箔は、単層箔であっても良く、これらの積層箔であっても良い。
The metal foil is preferably a rolled metal foil, a metal foil with a carrier, or an electrolytic metal foil, and more preferably a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil. The metal foil may be a single-layer foil or a laminated foil of these.
金属箔として、圧延金属箔又は電解金属箔を用いる場合、金属箔を構成する金属の種類は、金属積層材の用途により異なり特に限定されないが、例えば、銅、鉄、ニッケル、亜鉛、スズ、クロム、金、銀、白金、コバルト、チタン及びその合金が挙げられる。金属箔として、非磁性金属である銅、亜鉛、スズ、クロム、金、銀、白金、チタンからなる金属箔が好ましく、中でも銅箔又は銅合金箔が好ましい。なお、ここでいう銅合金箔は、銅と、非磁性金属から構成されたものをいう。これらを低誘電性フィルムと圧延接合することで、例えば微細な配線形成用のフレキシブル基板を得ることができるからである。なお、金属箔を構成する金属に、強磁性金属である鉄、ニッケル、コバルト及びその合金が含まれている場合、金属箔の低誘電性フィルム側の表面の上層に、非磁性金属から構成された層を有する積層箔を用いることが望ましい。このような積層箔と低誘電性フィルムを積層すると、金属積層材の積層界面に強磁性金属が存在しないようにすることができる。非磁性金属としては、例えば、銅、亜鉛、スズ、クロム、金、銀、白金、チタンが挙げられる。
When a rolled metal foil or an electrolytic metal foil is used as the metal foil, the type of metal constituting the metal foil varies depending on the application of the metal laminate material and is not particularly limited, but examples include copper, iron, nickel, zinc, tin, chromium, gold, silver, platinum, cobalt, titanium, and alloys thereof. Metal foils made of non-magnetic metals such as copper, zinc, tin, chromium, gold, silver, platinum, and titanium are preferred as the metal foil, and copper foil or copper alloy foil is particularly preferred. The copper alloy foil referred to here is one made of copper and a non-magnetic metal. This is because, for example, a flexible substrate for forming fine wiring can be obtained by rolling and joining these with a low dielectric film. When the metals constituting the metal foil include ferromagnetic metals such as iron, nickel, cobalt, and alloys thereof, it is desirable to use a laminate foil having a layer made of a non-magnetic metal on the upper layer of the surface of the low dielectric film side of the metal foil. By laminating such a laminate foil and a low dielectric film, it is possible to prevent the presence of ferromagnetic metals at the lamination interface of the metal laminate material. Examples of non-magnetic metals include copper, zinc, tin, chromium, gold, silver, platinum, and titanium.
金属箔として、圧延金属箔又は電解金属箔を用いる場合、金属箔の厚みは、金属積層材の用途により異なるため特に限定されないが、例えば、フレキシブルプリント配線基板用途であれば、3μm以上100μm以下が好ましく、10μm以上50μm以下がより好ましく、10μm以上35μm以下が特に好ましい。また、金属箔の低誘電性フィルム側の表面の上層に、非磁性金属から構成された層を有する積層箔の場合には、その金属箔の低誘電性フィルム側の表面の上層に構成される非磁性金属層の厚みとして、1.3μm以上50μm以下が好ましく、1.3μm以上15μm以下がより好ましく、1.5μm以上10μm以下が特に好ましい。ここで、金属箔又は非磁性金属層の厚みは、金属積層材の断面の光学顕微鏡写真を取得し、その光学顕微鏡写真において任意の10点における金属箔又は非磁性金属層の厚みを計測し、得られた値の平均値をいう。
When a rolled metal foil or an electrolytic metal foil is used as the metal foil, the thickness of the metal foil is not particularly limited because it varies depending on the application of the metal laminate material. For example, for flexible printed wiring board applications, the thickness is preferably 3 μm to 100 μm, more preferably 10 μm to 50 μm, and particularly preferably 10 μm to 35 μm. In addition, in the case of a laminated foil having a layer composed of a nonmagnetic metal on the upper layer of the surface on the low dielectric film side of the metal foil, the thickness of the nonmagnetic metal layer composed on the upper layer of the surface on the low dielectric film side of the metal foil is preferably 1.3 μm to 50 μm, more preferably 1.3 μm to 15 μm, and particularly preferably 1.5 μm to 10 μm. Here, the thickness of the metal foil or nonmagnetic metal layer refers to the average value obtained by taking an optical microscope photograph of the cross section of the metal laminate material, measuring the thickness of the metal foil or nonmagnetic metal layer at any 10 points on the optical microscope photograph.
金属箔として圧延銅箔を用いる場合、圧延銅箔としては、特に限定されないが、例えば、JX金属(株)製HA-V2や三井住友金属鉱山伸銅(株)製C1020R-H等が挙げられる。また金属箔として電解銅箔を用いる場合、電解銅箔としては、特に限定されないが、例えば、福田金属箔粉工業(株)製CF-PLFA等が挙げられる。
When rolled copper foil is used as the metal foil, the rolled copper foil is not particularly limited, but examples thereof include HA-V2 manufactured by JX Nippon Mining Co., Ltd. and C1020R-H manufactured by Mitsui Sumitomo Metal Mining Co., Ltd. When electrolytic copper foil is used as the metal foil, the electrolytic copper foil is not particularly limited, but examples thereof include CF-PLFA manufactured by Fukuda Metal Foil and Powder Co., Ltd.
微細な配線形成用のフレキシブル基板を作製する場合は、金属箔として、極薄金属層、剥離層及びキャリア層を有するキャリア付金属箔を用いることが好ましい。キャリア付金属箔を使用する場合、図2に示すように、低誘電性フィルム側から極薄金属層、剥離層及びキャリア層の順番になるようにキャリア付金属箔を積層させる。キャリア付金属箔を用いる場合、得られる金属積層材における「金属箔」とは、極薄金属層、剥離層及びキャリア層からなる部分をいう。
When producing a flexible substrate for forming fine wiring, it is preferable to use a metal foil with a carrier having an extremely thin metal layer, a release layer, and a carrier layer as the metal foil. When using metal foil with a carrier, the metal foil with a carrier is laminated in the order of extremely thin metal layer, release layer, and carrier layer from the low dielectric film side, as shown in Figure 2. When using metal foil with a carrier, the "metal foil" in the resulting metal laminate material refers to the portion consisting of the extremely thin metal layer, release layer, and carrier layer.
キャリア付金属箔のキャリア層は、シート形状を有するものであり、金属積層材への皺や折れの発生、極薄金属層への傷を防止するための支持材料或いは保護層として機能する。キャリア層としては、銅、アルミニウム、ニッケル、及びその合金類(ステンレス、真鍮等)、表面に金属をコーティングした樹脂等からなる箔若しくは板状のものが挙げられる。キャリア層は、好ましくは銅箔である。キャリア層の厚みは、特に限定されないが、例えば10μm以上100μm以下である。
The carrier layer of the carrier-attached metal foil has a sheet shape and functions as a support material or protective layer to prevent wrinkles or folds in the metal laminate and scratches on the ultra-thin metal layer. Examples of the carrier layer include foils or plates made of copper, aluminum, nickel, and their alloys (stainless steel, brass, etc.), resins with a metal coating on the surface, etc. The carrier layer is preferably copper foil. The thickness of the carrier layer is not particularly limited, but is, for example, 10 μm or more and 100 μm or less.
キャリア付金属箔の剥離層は、キャリア層の剥離強度を小さくし、さらに、熱処理によりキャリア層と極薄金属層の間で起こり得る相互拡散を抑制する機能も有する。剥離層は、有機系剥離層及び無機系剥離層のいずれであっても良く、有機系剥離層に用いられる成分としては、例えば、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物としては、トリアゾール化合物、イミダゾール化合物等が挙げられる。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。また、無機系剥離層に用いられる成分としては、例えば、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。剥離層の厚みは、通常1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。
The release layer of the carrier-attached metal foil reduces the peel strength of the carrier layer and also has the function of suppressing mutual diffusion that may occur between the carrier layer and the ultrathin metal layer due to heat treatment. The release layer may be either an organic release layer or an inorganic release layer, and examples of components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of nitrogen-containing organic compounds include triazole compounds and imidazole compounds. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole, and 3-amino-1H-1,2,4-triazole. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, and 2-benzimidazolethiol. Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids. In addition, examples of components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, chromate-treated films, etc. The thickness of the release layer is usually 1 nm or more and 1 μm or less, and preferably 5 nm or more and 500 nm or less.
キャリア付金属箔の極薄金属層を構成する金属は、金属積層材の用途により異なり特に限定されないが、例えば、銅、亜鉛、スズ、クロム、金、銀、白金、チタン及びその合金等が挙げられる。極薄金属層は、銅又は銅合金の層であることが好ましい。極薄金属層の厚みは、通常1.5μm以上10μm以下であり、好ましくは1.5μm以上7μm以下である。
The metal constituting the ultra-thin metal layer of the carrier-attached metal foil varies depending on the application of the metal laminate material and is not particularly limited, but examples include copper, zinc, tin, chromium, gold, silver, platinum, titanium, and alloys thereof. The ultra-thin metal layer is preferably a layer of copper or a copper alloy. The thickness of the ultra-thin metal layer is usually 1.5 μm or more and 10 μm or less, and preferably 1.5 μm or more and 7 μm or less.
キャリア付金属箔としては、キャリア層及び極薄金属層が、銅又は銅合金であるものが好ましく、これらが銅であるキャリア付銅箔がより好ましい。
The carrier-attached metal foil is preferably one in which the carrier layer and the ultra-thin metal layer are made of copper or a copper alloy, and more preferably a carrier-attached copper foil in which both are copper.
金属層は、低誘電性フィルムと金属箔との間にクロメート処理層を有していても良い。金属箔が電解金属箔又はキャリア付金属箔である場合、金属層は、好ましくは、低誘電性フィルムと金属箔との間にクロメート処理層を有する。クロメート処理層は防錆層として機能することができる。クロメート処理層は、好ましくは金属箔の表面に形成している。特に、金属層として、金属箔の表面にクロメート処理層を有する面と、低誘電性フィルムとを積層した際、金属層と低誘電性フィルムの密着性をより高めることができるため好ましい。
The metal layer may have a chromate treatment layer between the low dielectric film and the metal foil. When the metal foil is an electrolytic metal foil or a metal foil with a carrier, the metal layer preferably has a chromate treatment layer between the low dielectric film and the metal foil. The chromate treatment layer can function as an anti-rust layer. The chromate treatment layer is preferably formed on the surface of the metal foil. In particular, when the metal layer is a metal foil surface having a chromate treatment layer and a low dielectric film is laminated, this is preferable because it can further increase the adhesion between the metal layer and the low dielectric film.
クロメート処理層は、好ましくは低誘電性フィルムと金属箔の両方の表面に接している。クロメート処理層の厚みは、通常0nm超20nm以下であり、好ましくは1nm以上10nm以下である。ここで、クロメート処理層の厚みの測定方法は、X線光電子分光法(XPS)やオージェ電子分光法(AES)での厚み測定等が挙げられるが、これに限られるものではない。
The chromate treatment layer is preferably in contact with the surfaces of both the low dielectric film and the metal foil. The thickness of the chromate treatment layer is usually more than 0 nm and not more than 20 nm, and preferably 1 nm or more and not more than 10 nm. Here, methods for measuring the thickness of the chromate treatment layer include, but are not limited to, thickness measurements using X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES).
本発明において、クロメート処理層とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む溶液(クロメート処理液ともいう)を用いて形成される層をいう。クロメート処理層は、好ましくはクロメートからなる。
In the present invention, the chromate treatment layer refers to a layer formed using a solution containing chromic anhydride, chromic acid, dichromate, or dichromate (also called a chromate treatment solution). The chromate treatment layer is preferably made of chromate.
図3は、本発明の一実施形態のクロメート処理層を有する金属積層材を示す概略断面図である。図3に示すように、本発明の金属積層材1Cは、低誘電性フィルム20の一方の表面に金属層10が積層されている。金属積層材1Cは、低誘電性フィルム20と金属箔11との間にクロメート処理層15を有する。金属積層材1Cにおいて、クロメート処理層15は低誘電性フィルム20と金属箔11の両方の表面に接している。金属積層材1Cは、低誘電性フィルム20、クロメート処理層15、金属箔11の順番になるように積層されている。
Figure 3 is a schematic cross-sectional view showing a metal laminate material having a chromate treatment layer according to one embodiment of the present invention. As shown in Figure 3, the metal laminate material 1C of the present invention has a metal layer 10 laminated on one surface of a low dielectric film 20. The metal laminate material 1C has a chromate treatment layer 15 between the low dielectric film 20 and the metal foil 11. In the metal laminate material 1C, the chromate treatment layer 15 is in contact with the surfaces of both the low dielectric film 20 and the metal foil 11. The metal laminate material 1C is laminated in the order of the low dielectric film 20, the chromate treatment layer 15, and the metal foil 11.
図4は、本発明の別の実施形態のクロメート処理層を有する金属積層材を示す概略断面図である。この実施形態においては、金属箔として、極薄金属層、剥離層、及びキャリア層を有するキャリア付金属箔が用いられている。図4に示すように、本発明の金属積層材1Dは、低誘電性フィルム20の一方の表面に金属層10が積層されている。金属積層材1Dは、低誘電性フィルム20と、極薄金属層14、剥離層13、及びキャリア層12を有する金属箔11との間にクロメート処理層15を有する。金属積層材1Dにおいて、クロメート処理層15は低誘電性フィルム20と金属箔11の両方の表面に接している。金属積層材1Dは、低誘電性フィルム20、クロメート処理層15、極薄金属層14、剥離層13、及びキャリア層12の順番になるように積層されている。
FIG. 4 is a schematic cross-sectional view showing a metal laminate having a chromate treatment layer according to another embodiment of the present invention. In this embodiment, a carrier-attached metal foil having an extremely thin metal layer, a peeling layer, and a carrier layer is used as the metal foil. As shown in FIG. 4, the metal laminate 1D of the present invention has a metal layer 10 laminated on one surface of a low dielectric film 20. The metal laminate 1D has a chromate treatment layer 15 between the low dielectric film 20 and a metal foil 11 having an extremely thin metal layer 14, a peeling layer 13, and a carrier layer 12. In the metal laminate 1D, the chromate treatment layer 15 is in contact with both the surfaces of the low dielectric film 20 and the metal foil 11. The metal laminate 1D is laminated in the order of the low dielectric film 20, the chromate treatment layer 15, the extremely thin metal layer 14, the peeling layer 13, and the carrier layer 12.
金属積層材は、金属層の低誘電性フィルム側の表面に、シランカップリング剤による処理層等の有機物層を有していても良い。シランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらに限定されるものではない。シランカップリング剤の塗布は、スプレーによる吹付け、コーターによる塗布、浸漬等の方法を適宜用いて行うことができる。また、金属積層材は、金属層の低誘電性フィルム側の表面に、ベンゾトリアゾール(BTA)化合物による処理層を有していても良い。
The metal laminate material may have an organic layer, such as a treatment layer with a silane coupling agent, on the surface of the metal layer on the low dielectric film side. Examples of silane coupling agents include, but are not limited to, olefin-based silanes, epoxy-based silanes, acrylic-based silanes, amino-based silanes, and mercapto-based silanes. The silane coupling agent may be applied by spraying, applying with a coater, immersing, or other suitable method. The metal laminate material may also have a treatment layer with a benzotriazole (BTA) compound on the surface of the metal layer on the low dielectric film side.
金属積層材は、好ましくは、金属層の低誘電性フィルム側の表面に、シランカップリング剤やベンゾトリアゾール化合物による処理層等の有機物層を有していない。金属積層材がシランカップリング剤による処理層を有していない場合、金属層の低誘電性フィルム側の表面(例えば、最表面から厚み方向に100nm以下の範囲)において、ケイ素(Si)含有量は、好ましくは0.03μg/cm2以下であり、より好ましくは0.025μg/cm2以下である。Si含有量は、例えば蛍光X線分析法によって測定することができる。
The metal laminate preferably does not have an organic layer such as a treatment layer with a silane coupling agent or a benzotriazole compound on the surface of the metal layer on the low dielectric film side. When the metal laminate does not have a treatment layer with a silane coupling agent, the silicon (Si) content on the surface of the metal layer on the low dielectric film side (for example, in a range of 100 nm or less from the outermost surface in the thickness direction) is preferably 0.03 μg/cm 2 or less, more preferably 0.025 μg/cm 2 or less. The Si content can be measured, for example, by fluorescent X-ray analysis.
金属積層材は、好ましくは、金属箔の表面に、粗化粒子層及び耐熱層を有していない。これらの層は、通常、Ni、Co等の強磁性金属を含むため、金属積層材の積層界面に強磁性金属が存在することにより、金属積層材の高周波特性が低下してしまうからである。粗化粒子層は、例えば、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含むものであり、具体的には、コバルト-ニッケル合金めっき層、銅-コバルト-ニッケル合金めっき層等が挙げられる。また、耐熱層は、例えばCo、Ni及びMoからなる群より選択されるいずれか一種の金属又はその合金を含むものであり、具体的にはNiめっき層等を挙げることができる。
The metal laminate preferably does not have a roughened particle layer or a heat-resistant layer on the surface of the metal foil. These layers usually contain ferromagnetic metals such as Ni and Co, and the presence of ferromagnetic metals at the lamination interface of the metal laminate would degrade the high-frequency characteristics of the metal laminate. The roughened particle layer contains, for example, any one metal selected from the group consisting of Cu, Co, and Ni, or an alloy thereof, and specific examples thereof include a cobalt-nickel alloy plating layer, a copper-cobalt-nickel alloy plating layer, etc. The heat-resistant layer contains, for example, any one metal selected from the group consisting of Co, Ni, and Mo, or an alloy thereof, and specific examples thereof include a Ni plating layer, etc.
本発明の金属積層材は、低誘電性フィルムと金属層との界面に強磁性金属(高透磁率金属ともいう)が存在せず、すなわち、低誘電性フィルムと金属層との界面に含まれる金属が非磁性金属からなるため、高周波特性に優れる。
The metal laminate of the present invention has excellent high frequency characteristics because no ferromagnetic metal (also called high magnetic permeability metal) is present at the interface between the low dielectric film and the metal layer, i.e., the metal contained at the interface between the low dielectric film and the metal layer is a non-magnetic metal.
本発明において、低誘電性フィルムと金属層との界面に含まれる成分の分析は、例えばグロー放電発光表面分析法(GDS)によって行うことができ、具体的には、金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる成分を、例えばGDSによって測定することによって行うことができる。よって、本発明の金属積層材は、低誘電性フィルムと金属層との界面において、金属層の低誘電性フィルム側の表面から金属層側に向かって(厚み方向に)1.3μm以下の範囲に含まれる金属が非磁性金属からなる。
In the present invention, the analysis of the components contained in the interface between the low dielectric film and the metal layer can be performed, for example, by glow discharge optical emission surface analysis (GDS). Specifically, the components contained in the range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side can be measured, for example, by GDS. Therefore, in the metal laminate material of the present invention, at the interface between the low dielectric film and the metal layer, the metal contained in the range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side (in the thickness direction) is made of a non-magnetic metal.
GDSは試料の深さ方向の元素分析を行う分析手法であり、スパッタリングによる破壊分析である。また、界面に含まれる成分の分析はX線光電子分光法(XPS)によって行うこともできる。
GDS is an analytical technique that performs elemental analysis in the depth direction of a sample, and is a destructive analysis using sputtering. In addition, analysis of components contained in the interface can also be performed using X-ray photoelectron spectroscopy (XPS).
本発明において、非磁性金属とは、強磁性金属(例えば鉄、ニッケル、コバルト等)以外の金属をいう。本発明において、強磁性金属は、高透磁率金属ともいい、例えば、比透磁率が10.0以上の金属をいう。また、非磁性金属の比透磁率は、例えば1.5以下である。非磁性金属としては、例えば、銅、亜鉛、スズ、クロム、金、銀、白金、チタンが挙げられ、中でも銅又はクロムが好ましい。特に、低誘電性フィルムと金属層との界面に含まれる成分としてクロムを含む場合、低誘電性フィルムと金属層との密着性をより高めることができるため好ましい。一実施形態において、金属積層材の積層界面に存在する非磁性金属は、銅及びクロムである。一実施形態において、金属積層材の積層界面に、鉄、ニッケル及びコバルトは存在しない。
In the present invention, non-magnetic metal refers to metals other than ferromagnetic metals (e.g., iron, nickel, cobalt, etc.). In the present invention, ferromagnetic metals are also called high magnetic permeability metals, and refer to, for example, metals with a relative magnetic permeability of 10.0 or more. The relative magnetic permeability of non-magnetic metals is, for example, 1.5 or less. Examples of non-magnetic metals include copper, zinc, tin, chromium, gold, silver, platinum, and titanium, and among these, copper or chromium is preferred. In particular, when chromium is contained as a component contained in the interface between the low dielectric film and the metal layer, it is preferable because the adhesion between the low dielectric film and the metal layer can be further improved. In one embodiment, the non-magnetic metals present at the lamination interface of the metal laminate material are copper and chromium. In one embodiment, iron, nickel, and cobalt are not present at the lamination interface of the metal laminate material.
なお本発明において、好ましくは、金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる非磁性金属が、単層(1層)構成である。つまり、非磁性金属から構成される金属層が、金属箔からなる単層構成(クロメート処理層を除く)であることが好ましい。単層構成とすることで、より高周波特性が優れ、さらに金属層と低誘電性フィルムとの接合界面における空隙を抑制できるものと考えられる。一方、金属層が、低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲において、非磁性金属からなる2層以上の層(例えば、非磁性金属からなる金属層/金属箔の構成など)を有する場合、各金属層間における積層界面において、接合時に空隙が生じて、プリント配線板として適用した際のはんだリフロー工程によって、膨れが生じる可能性が考えられるため好ましくない。
In the present invention, the non-magnetic metal contained within a range of 1.3 μm or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is preferably a single layer (one layer). In other words, it is preferable that the metal layer composed of a non-magnetic metal is a single layer composed of metal foil (excluding the chromate treatment layer). It is considered that a single layer configuration provides better high-frequency characteristics and suppresses voids at the bonding interface between the metal layer and the low dielectric film. On the other hand, if the metal layer has two or more layers composed of a non-magnetic metal (for example, a metal layer/metal foil composition composed of a non-magnetic metal) within a range of 1.3 μm or less from the surface of the low dielectric film side toward the metal layer side, voids may occur at the lamination interface between each metal layer during bonding, which is undesirable because it is possible that swelling may occur during the solder reflow process when applied to a printed wiring board.
本発明の金属積層材は、低誘電性フィルムと金属層のピール強度が1.0N/cm以上であり、好ましくは3.0N/cm以上であり、より好ましくは5.0N/cm以上である。ピール強度が1.0N/cm以上であると、プリント配線板の微細配線の信頼性を向上できる。
The metal laminate of the present invention has a peel strength between the low dielectric film and the metal layer of 1.0 N/cm or more, preferably 3.0 N/cm or more, and more preferably 5.0 N/cm or more. A peel strength of 1.0 N/cm or more can improve the reliability of the fine wiring of the printed wiring board.
前記ピール強度の値を測定するには、まず金属積層材からの試験片を作製し、金属層にナイフ等を用いて幅1cmの切込みを入れる。そして、金属層と低誘電性フィルムを一部剥離後、低誘電性フィルムを支持体へ固定し、金属層を、低誘電性フィルムに対して90°方向へ50mm/min.の速度で引っ張る。その際の引き剥がすのに要する力をもってピール強度とする(単位:N/cm)。また、金属層が薄く脆弱な場合は、ピール強度を測定する際に破断するおそれがある。その場合は金属層表面に電解めっき等(金属層が銅である場合、例えば銅めっき)を施して、金属層の厚みを約5μm~約50μmに増やしてから上記ピール強度を測定しても良い。上記ピール強度の値の測定方法は、JIS C6471に規定された測定方法である。
To measure the peel strength, a test piece is first prepared from the metal laminate, and a 1 cm wide cut is made in the metal layer using a knife or the like. After the metal layer and the low dielectric film are partially peeled off, the low dielectric film is fixed to a support, and the metal layer is pulled in a 90° direction to the low dielectric film at a speed of 50 mm/min. The force required to peel it off at this time is taken as the peel strength (unit: N/cm). If the metal layer is thin and brittle, it may break when measuring the peel strength. In that case, the surface of the metal layer may be electrolytically plated (for example, copper plating when the metal layer is copper) to increase the thickness of the metal layer to about 5 μm to about 50 μm, and then the peel strength may be measured. The method for measuring the peel strength is specified in JIS C6471.
本明細書において、「低誘電性フィルムと金属層のピール強度」というときは、低誘電性フィルムと金属層の界面で剥離する場合のピール強度をいう他、金属層の内部が破壊されることにより剥離する場合のピール強度、及び低誘電性フィルムの内部が破壊されることにより剥離する場合のピール強度も意味する。さらに、前記のように、低誘電性フィルムと金属箔との間に、クロメート処理層や、シランカップリング剤又はベンゾトリアゾール化合物による処理層が積層しているときは、低誘電性フィルムと処理層との界面で剥離する場合のピール強度の他に、金属箔と処理層との界面で剥離する場合のピール強度、及び処理層の内部が破壊されることにより剥離する場合のピール強度も意味する。
In this specification, the term "peel strength between a low dielectric film and a metal layer" refers to the peel strength when peeling occurs at the interface between the low dielectric film and the metal layer, as well as the peel strength when peeling occurs due to internal destruction of the metal layer and the peel strength when peeling occurs due to internal destruction of the low dielectric film. Furthermore, as described above, when a chromate treatment layer or a treatment layer using a silane coupling agent or a benzotriazole compound is laminated between the low dielectric film and the metal foil, in addition to the peel strength when peeling occurs at the interface between the low dielectric film and the treatment layer, it also refers to the peel strength when peeling occurs at the interface between the metal foil and the treatment layer and the peel strength when peeling occurs due to internal destruction of the treatment layer.
本発明の金属積層材は、積層界面が平滑であるため、熱ラミネート法により作製された従来の金属積層材と比較して高周波特性に優れる。本発明において、金属積層材の積層界面の平滑性は、低誘電性フィルムの金属層側の表面の表面粗さを測定することにより確認できる。例えば、金属積層材から金属層をエッチング除去等により除去した後、低誘電性フィルムの表面(接合面)を原子間力顕微鏡(Atomic Force Microscope:AFM)によりISO25178に準拠して測定することができる。
The metal laminate of the present invention has a smooth lamination interface and therefore has superior high frequency characteristics compared to conventional metal laminates produced by thermal lamination. In the present invention, the smoothness of the lamination interface of the metal laminate can be confirmed by measuring the surface roughness of the surface on the metal layer side of the low dielectric film. For example, after removing the metal layer from the metal laminate by etching or the like, the surface (bonding surface) of the low dielectric film can be measured in accordance with ISO25178 using an atomic force microscope (AFM).
本発明の金属積層材は、ISO25178に準拠して測定される、低誘電性フィルムの金属層側の表面の算術平均高さSaが、好ましくは60nm以下であり、より好ましくは50nm以下であり、特に好ましくは20nm以下である。
The metal laminate of the present invention has an arithmetic mean height Sa of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO 25178, of preferably 60 nm or less, more preferably 50 nm or less, and particularly preferably 20 nm or less.
本発明の金属積層材は、ISO25178に準拠して測定される、低誘電性フィルムの金属層側の表面の最大高さSzが、好ましくは700nm以下であり、より好ましくは600nm以下であり、さらに好ましくは450nm以下であり、特に好ましくは300nm以下である。
The metal laminate of the present invention has a maximum height Sz of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO 25178, of preferably 700 nm or less, more preferably 600 nm or less, even more preferably 450 nm or less, and particularly preferably 300 nm or less.
本発明の金属積層材は、ISO25178に準拠して測定される、低誘電性フィルムの金属層側の表面の展開面積比Sdrが、好ましくは35%以下であり、より好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは1.5%以下である。
The metal laminate of the present invention has a developed surface area ratio Sdr of the surface on the metal layer side of the low dielectric film, measured in accordance with ISO25178, of preferably 35% or less, more preferably 10% or less, even more preferably 5% or less, and particularly preferably 1.5% or less.
B.金属積層材の製造方法
本発明は、前記の金属積層材の製造方法にも関する。本発明の金属積層材は表面活性化接合法により製造することができる。表面活性化処理により接合界面において強固な結合が形成されるため、界面にNi、Co等の強磁性金属が存在しなくても、界面の密着性を確保できる。また、熱ラミネート法により作製された金属積層材のように粗化粒子による物理的なアンカー効果に頼ることなく、積層界面の密着性を確保できる。さらに、表面活性化接合法により製造することにより、金属箔をその表面の平滑性を維持したまま低誘電性フィルムに積層することができる。これらのことから、金属積層材が優れた高周波特性及び積層界面の密着性を有する。 B. Manufacturing method of metal laminate The present invention also relates to a manufacturing method of the metal laminate. The metal laminate of the present invention can be manufactured by a surface activation bonding method. Since a strong bond is formed at the bonding interface by the surface activation treatment, the adhesion of the interface can be ensured even if a ferromagnetic metal such as Ni or Co is not present at the interface. In addition, the adhesion of the lamination interface can be ensured without relying on the physical anchor effect of roughening particles as in the case of a metal laminate manufactured by a thermal lamination method. Furthermore, by manufacturing by the surface activation bonding method, the metal foil can be laminated on the low dielectric film while maintaining the smoothness of its surface. From these points, the metal laminate has excellent high frequency characteristics and adhesion of the lamination interface.
本発明は、前記の金属積層材の製造方法にも関する。本発明の金属積層材は表面活性化接合法により製造することができる。表面活性化処理により接合界面において強固な結合が形成されるため、界面にNi、Co等の強磁性金属が存在しなくても、界面の密着性を確保できる。また、熱ラミネート法により作製された金属積層材のように粗化粒子による物理的なアンカー効果に頼ることなく、積層界面の密着性を確保できる。さらに、表面活性化接合法により製造することにより、金属箔をその表面の平滑性を維持したまま低誘電性フィルムに積層することができる。これらのことから、金属積層材が優れた高周波特性及び積層界面の密着性を有する。 B. Manufacturing method of metal laminate The present invention also relates to a manufacturing method of the metal laminate. The metal laminate of the present invention can be manufactured by a surface activation bonding method. Since a strong bond is formed at the bonding interface by the surface activation treatment, the adhesion of the interface can be ensured even if a ferromagnetic metal such as Ni or Co is not present at the interface. In addition, the adhesion of the lamination interface can be ensured without relying on the physical anchor effect of roughening particles as in the case of a metal laminate manufactured by a thermal lamination method. Furthermore, by manufacturing by the surface activation bonding method, the metal foil can be laminated on the low dielectric film while maintaining the smoothness of its surface. From these points, the metal laminate has excellent high frequency characteristics and adhesion of the lamination interface.
本発明の金属積層材の製造方法は、低誘電性フィルムと金属箔とを準備する工程(工程1)と、低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する工程(工程2-1)と、金属箔の表面をスパッタエッチングにより活性化する工程(工程2-2)と、低誘電性フィルム及び金属箔の活性化した表面同士を0~30%の圧下率で圧延接合する工程(工程3)とを含む。なお、工程1、工程2(工程2-1及び2-2)、工程3は順次行うが、工程2-1及び2-2は同時に又は順次行うことができる。
The method for manufacturing a metal laminate of the present invention includes the steps of preparing a low dielectric film and a metal foil (step 1), activating at least one surface of the low dielectric film by sputter etching (step 2-1), activating the surface of the metal foil by sputter etching (step 2-2), and rolling-bonding the activated surfaces of the low dielectric film and the metal foil together at a rolling reduction of 0 to 30% (step 3). Note that steps 1, 2 (steps 2-1 and 2-2), and 3 are performed sequentially, but steps 2-1 and 2-2 can be performed simultaneously or sequentially.
続いて、本発明の金属積層材の製造方法の各工程について詳細に説明する。
Next, we will explain in detail each step of the manufacturing method for the metal laminate material of the present invention.
1.準備工程
工程1において、低誘電性フィルムと金属箔とを準備する。低誘電性フィルム及び金属箔としては、金属積層材について前記のものを用いることができる。本発明においては、表面に強磁性金属が存在しない、好ましくは表面に粗化処理層を有していない金属箔を用いることにより、金属箔と低誘電性フィルムを積層したときに、積層界面に強磁性金属が存在しない金属積層材が得られる。 1. Preparation Step In step 1, a low dielectric film and a metal foil are prepared. As the low dielectric film and the metal foil, those described above for the metal laminate can be used. In the present invention, by using a metal foil having no ferromagnetic metal on the surface, preferably having no roughening treatment layer on the surface, when the metal foil and the low dielectric film are laminated, a metal laminate having no ferromagnetic metal at the lamination interface can be obtained.
工程1において、低誘電性フィルムと金属箔とを準備する。低誘電性フィルム及び金属箔としては、金属積層材について前記のものを用いることができる。本発明においては、表面に強磁性金属が存在しない、好ましくは表面に粗化処理層を有していない金属箔を用いることにより、金属箔と低誘電性フィルムを積層したときに、積層界面に強磁性金属が存在しない金属積層材が得られる。 1. Preparation Step In step 1, a low dielectric film and a metal foil are prepared. As the low dielectric film and the metal foil, those described above for the metal laminate can be used. In the present invention, by using a metal foil having no ferromagnetic metal on the surface, preferably having no roughening treatment layer on the surface, when the metal foil and the low dielectric film are laminated, a metal laminate having no ferromagnetic metal at the lamination interface can be obtained.
2.表面活性化工程
2-1.低誘電性フィルムの表面活性化工程
工程2-1において、低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する。スパッタエッチング処理は、例えば、低誘電性フィルムを、幅100mm~600mmの長尺コイルとして用意し、低誘電性フィルムの接合面をアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を他の電極の面積の1/3以下として行うことができる。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、搬送材の温度上昇を防いでいる。 2. Surface activation step 2-1. Surface activation step of low dielectric film In step 2-1, at least one surface of the low dielectric film is activated by sputter etching. The sputter etching process can be performed, for example, by preparing a low dielectric film as a long coil with a width of 100 mm to 600 mm, using the joint surface of the low dielectric film as one electrode grounded to earth, applying an AC current of 1 MHz to 50 MHz between the low dielectric film and the other electrode supported insulated to generate a glow discharge, and setting the area of the electrode exposed to the plasma generated by the glow discharge to 1/3 or less of the area of the other electrode. During the sputter etching process, the earthed electrode takes the form of a cooling roll to prevent the temperature of the transported material from increasing.
2-1.低誘電性フィルムの表面活性化工程
工程2-1において、低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する。スパッタエッチング処理は、例えば、低誘電性フィルムを、幅100mm~600mmの長尺コイルとして用意し、低誘電性フィルムの接合面をアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を他の電極の面積の1/3以下として行うことができる。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、搬送材の温度上昇を防いでいる。 2. Surface activation step 2-1. Surface activation step of low dielectric film In step 2-1, at least one surface of the low dielectric film is activated by sputter etching. The sputter etching process can be performed, for example, by preparing a low dielectric film as a long coil with a width of 100 mm to 600 mm, using the joint surface of the low dielectric film as one electrode grounded to earth, applying an AC current of 1 MHz to 50 MHz between the low dielectric film and the other electrode supported insulated to generate a glow discharge, and setting the area of the electrode exposed to the plasma generated by the glow discharge to 1/3 or less of the area of the other electrode. During the sputter etching process, the earthed electrode takes the form of a cooling roll to prevent the temperature of the transported material from increasing.
表面活性化工程でのスパッタエッチング処理では、真空下で、低誘電性フィルムの接合する表面を活性ガス又は不活性ガスによりスパッタすることにより、表面の吸着物を完全に除去する。活性ガスとしては、酸素や、酸素を含む混合気体を適用することができる。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトン、窒素等や、これらを少なくとも1種類含む混合気体を適用することができる。低誘電性フィルムのスパッタエッチング処理に用いるガスとしては、酸素が好ましい。酸素を用いると、例えばカルボキシル基や水酸基等の官能基を低誘電性フィルムの表面に付与することができ、アルゴンや窒素等の不活性ガスを用いた場合と比較して、低誘電性フィルムと金属層の密着性を高めることができる。
In the sputter etching process in the surface activation step, the surface to be joined of the low dielectric film is sputtered under vacuum with an active gas or an inert gas to completely remove any adsorbed matter on the surface. As the active gas, oxygen or a mixed gas containing oxygen can be used. As the inert gas, argon, neon, xenon, krypton, nitrogen, etc., or a mixed gas containing at least one of these can be used. Oxygen is preferred as the gas used in the sputter etching process of the low dielectric film. By using oxygen, functional groups such as carboxyl groups and hydroxyl groups can be added to the surface of the low dielectric film, and the adhesion between the low dielectric film and the metal layer can be improved compared to when an inert gas such as argon or nitrogen is used.
スパッタエッチングの処理条件は、適宜設定することができ、例えば、真空下で、100W~10kWのプラズマ出力、ライン速度0.5m/分~30m/分で行うことができる。酸素ガスを用いる場合にも、スパッタエッチングの処理条件は、例えば、真空下で、100W~10kWのプラズマ出力、ライン速度0.5m/分~30m/分である。真空度は、表面への再吸着物を防止するため高い方が好ましいが、例えば、1×10-5Pa~10Paであれば良い。
The treatment conditions for sputter etching can be appropriately set, and for example, sputter etching can be performed under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min. Even when oxygen gas is used, the treatment conditions for sputter etching are, for example, under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min. The degree of vacuum is preferably high in order to prevent re-adsorption onto the surface, and may be, for example, 1×10 −5 Pa to 10 Pa.
2-2.金属箔の表面活性化工程
工程2-2において、金属箔の表面をスパッタエッチングにより活性化する。 2-2. Metal Foil Surface Activation Step In step 2-2, the surface of the metal foil is activated by sputter etching.
工程2-2において、金属箔の表面をスパッタエッチングにより活性化する。 2-2. Metal Foil Surface Activation Step In step 2-2, the surface of the metal foil is activated by sputter etching.
表面活性化工程でのスパッタエッチング処理は、例えば、接合する金属箔を、幅100mm~600mmの長尺コイルとして用意し、金属箔の接合面をアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を他の電極の面積の1/3以下として行うことができる。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、搬送材の温度上昇を防いでいる。
The sputter etching process in the surface activation process can be carried out, for example, by preparing the metal foil to be joined as a long coil with a width of 100 mm to 600 mm, using the joining surface of the metal foil as one electrode grounded to earth, and applying an alternating current of 1 MHz to 50 MHz between it and the other electrode that is insulated and supported to generate a glow discharge, with the area of the electrode exposed to the plasma generated by the glow discharge being 1/3 or less of the area of the other electrode. During the sputter etching process, the earthed electrode takes the form of a cooling roll to prevent the temperature of the transported material from rising.
表面活性化工程でのスパッタエッチング処理では、真空下で、金属箔の接合する表面を不活性ガスによりスパッタすることにより、表面の吸着物を完全に除去し、且つ表面の酸化物層の一部又は全部を除去する。酸化物層は完全に除去することが好ましい。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトン等や、これらを少なくとも1種類含む混合気体を適用することができるが、アルゴンが好ましい。金属の種類にもよるが、金属箔の表面の吸着物は、エッチング量約1nm程度で完全に除去することができ、特に銅の酸化物層は通常5nm~12nm(SiO2換算)程度で除去が可能である。
In the sputter etching process in the surface activation step, the surface to be joined of the metal foil is sputtered with an inert gas under vacuum to completely remove the adsorbed matter on the surface and to remove part or all of the oxide layer on the surface. It is preferable to completely remove the oxide layer. As the inert gas, argon, neon, xenon, krypton, etc., or a mixed gas containing at least one of these can be applied, but argon is preferable. Depending on the type of metal, the adsorbed matter on the surface of the metal foil can be completely removed with an etching amount of about 1 nm, and in particular, the oxide layer of copper can usually be removed with an etching amount of about 5 nm to 12 nm ( SiO2 equivalent).
スパッタエッチングの処理条件は、金属箔の種類等に応じて適宜設定することができる。例えば、真空下で、100W~10kWのプラズマ出力、ライン速度0.5m/分~30m/分で行うことができる。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、例えば、1×10-5Pa~10Paであれば良い。
The treatment conditions for sputter etching can be appropriately set depending on the type of metal foil, etc. For example, it can be performed under vacuum with a plasma output of 100 W to 10 kW and a line speed of 0.5 m/min to 30 m/min. The degree of vacuum at this time is preferably high in order to prevent re-adsorption onto the surface, but a value of 1×10 −5 Pa to 10 Pa will suffice.
なお、スパッタエッチングにより活性化する前の金属箔の表面には、必要に応じて、クロメート処理、シランカップリング剤処理や、ベンゾトリアゾール化合物による処理等が施されていても良い。すなわち、クロメート処理層、シランカップリング剤処理層又はベンゾトリアゾール化合物処理層を表面に有する金属箔を用いることができる。金属箔の表面にこのような処理層が設けられている場合は、当該処理層の表面がスパッタエッチングにより活性化される。その際、スパッタエッチングによって、当該処理層が完全に除去されても良いし、除去されずに残存しても良い。好ましくは、スパッタエッチングによって、シランカップリング剤処理層又はベンゾトリアゾール化合物処理層のような有機物層は金属箔の表面から除去される。この場合、エッチング量は、通常1nm~100nmである。一方、スパッタエッチングにより活性化する前の金属箔の表面にクロメート処理層が設けられている場合には、当該処理層が残存するように表面をスパッタエッチングによって活性化することにより、上述した低誘電性フィルムと接合する際の密着性を高めることができるため好ましい。特に、低誘電性フィルムの表面にカルボキシル基や水酸基等の官能基を付与された面と、金属箔の表面にクロメート処理層を有する面を接合する際、低誘電性フィルムと金属箔が強固に結合し、より顕著に密着性を高めることができるため好ましい。
Note that, if necessary, the surface of the metal foil before activation by sputter etching may be subjected to a chromate treatment, a silane coupling agent treatment, a treatment with a benzotriazole compound, or the like. That is, a metal foil having a chromate treatment layer, a silane coupling agent treatment layer, or a benzotriazole compound treatment layer on the surface can be used. When such a treatment layer is provided on the surface of the metal foil, the surface of the treatment layer is activated by sputter etching. At that time, the treatment layer may be completely removed by sputter etching, or may remain without being removed. Preferably, an organic layer such as a silane coupling agent treatment layer or a benzotriazole compound treatment layer is removed from the surface of the metal foil by sputter etching. In this case, the amount of etching is usually 1 nm to 100 nm. On the other hand, when a chromate treatment layer is provided on the surface of the metal foil before activation by sputter etching, it is preferable to activate the surface by sputter etching so that the treatment layer remains, since this can increase the adhesion when bonding with the above-mentioned low dielectric film. In particular, when bonding a surface of a low dielectric film having functional groups such as carboxyl groups or hydroxyl groups to a surface of a metal foil having a chromate treatment layer, the low dielectric film and the metal foil are firmly bonded, which is preferable because it can significantly increase adhesion.
3.圧延接合工程
工程3における、スパッタエッチングにより活性化した表面同士の圧接(圧延接合)は、ロール圧接により行うことができる。ロール圧接の圧延線荷重は、特に限定されずに、例えば、0.1tf/cm~10tf/cmの範囲に設定して行うことができる。ただし、金属箔又は低誘電性フィルムの接合前の厚みが大きい場合等には、接合時の圧力確保のために圧延線荷重を高くすることが必要になる場合があり、この数値範囲に限定されるものではない。一方で、圧延線荷重が高過ぎると、低誘電性フィルム又は金属箔の表層だけでなく、接合界面も変形しやすくなるため、金属積層材におけるそれぞれの層の厚み精度が低下する恐れがある。また、圧延線荷重が高いと接合時に加わる加工ひずみが大きくなる恐れがある。 3. Rolling bonding process In step 3, the pressure bonding (rolling bonding) between the surfaces activated by sputter etching can be performed by roll bonding. The rolling wire load of the roll bonding is not particularly limited, and can be set to, for example, a range of 0.1 tf/cm to 10 tf/cm. However, when the thickness of the metal foil or low dielectric film before bonding is large, it may be necessary to increase the rolling wire load to ensure the pressure during bonding, and the rolling wire load is not limited to this numerical range. On the other hand, if the rolling wire load is too high, not only the surface layer of the low dielectric film or metal foil but also the bonding interface is likely to deform, so that the thickness accuracy of each layer in the metal laminate material may decrease. In addition, if the rolling wire load is high, the processing strain applied during bonding may be large.
工程3における、スパッタエッチングにより活性化した表面同士の圧接(圧延接合)は、ロール圧接により行うことができる。ロール圧接の圧延線荷重は、特に限定されずに、例えば、0.1tf/cm~10tf/cmの範囲に設定して行うことができる。ただし、金属箔又は低誘電性フィルムの接合前の厚みが大きい場合等には、接合時の圧力確保のために圧延線荷重を高くすることが必要になる場合があり、この数値範囲に限定されるものではない。一方で、圧延線荷重が高過ぎると、低誘電性フィルム又は金属箔の表層だけでなく、接合界面も変形しやすくなるため、金属積層材におけるそれぞれの層の厚み精度が低下する恐れがある。また、圧延線荷重が高いと接合時に加わる加工ひずみが大きくなる恐れがある。 3. Rolling bonding process In step 3, the pressure bonding (rolling bonding) between the surfaces activated by sputter etching can be performed by roll bonding. The rolling wire load of the roll bonding is not particularly limited, and can be set to, for example, a range of 0.1 tf/cm to 10 tf/cm. However, when the thickness of the metal foil or low dielectric film before bonding is large, it may be necessary to increase the rolling wire load to ensure the pressure during bonding, and the rolling wire load is not limited to this numerical range. On the other hand, if the rolling wire load is too high, not only the surface layer of the low dielectric film or metal foil but also the bonding interface is likely to deform, so that the thickness accuracy of each layer in the metal laminate material may decrease. In addition, if the rolling wire load is high, the processing strain applied during bonding may be large.
圧延接合する際の圧下率は、0~30%とする。好ましくは0~15%である。上記の表面活性化接合による方法は、圧下率を低くすることができるため、皺や割れ等を生ずることなく、厚み精度に優れた金属層を形成することができる。さらに、金属箔と低誘電性フィルムとの界面のうねりを小さくすることができるため、金属箔へパターンエッチングを施して配線を形成する場合に、厚み精度が優れるため精密な配線を得ることができる。また、圧延接合する際の温度は、例えば15℃以上100℃以下であり、好ましくは15℃以上60℃以下であり、より好ましくは常温である。
The reduction ratio during roll bonding is 0 to 30%, preferably 0 to 15%. The above-mentioned surface activated bonding method allows the reduction ratio to be low, so a metal layer with excellent thickness precision can be formed without wrinkles or cracks. Furthermore, since the waviness at the interface between the metal foil and the low dielectric film can be reduced, when wiring is formed by pattern etching of the metal foil, precise wiring can be obtained due to excellent thickness precision. The temperature during roll bonding is, for example, 15°C to 100°C, preferably 15°C to 60°C, and more preferably room temperature.
ロール圧接による接合は、金属箔への酸素の再吸着によって積層界面の密着性が低下するのを防止するため、非酸化雰囲気中、例えば真空雰囲気中やAr等の不活性ガス雰囲気中で行うことが好ましい。
Joining by roll pressure is preferably performed in a non-oxidizing atmosphere, such as a vacuum atmosphere or an inert gas atmosphere such as Ar, to prevent a decrease in adhesion at the laminate interface due to re-adsorption of oxygen to the metal foil.
圧接により得られた金属積層材は、必要に応じて、さらに熱処理を行うことができ、好ましくは熱処理を行う。熱処理によって、金属層のひずみが除かれ、層間の密着性を向上させることができる。熱処理温度は、低誘電性フィルムの融点-150℃以上低誘電性フィルムの融点+10℃以下の温度範囲とすることができる。例えば液晶ポリマーフィルムの場合は150℃以上350℃以下、好ましくは160℃以上340℃以下、より好ましくは260℃以上340℃以下である。
The metal laminate obtained by pressure welding can be further heat-treated as necessary, and preferably is. Heat treatment removes distortion in the metal layer and improves adhesion between the layers. The heat treatment temperature can be in the range of -150°C to the melting point of the low dielectric film +10°C. For example, in the case of a liquid crystal polymer film, the temperature is 150°C to 350°C, preferably 160°C to 340°C, and more preferably 260°C to 340°C.
熱処理を施す雰囲気は、特に限定されないが、真空雰囲気、又はN2、Ar等の不活性ガス雰囲気等が好ましい。熱処理により金属層が酸化し金属層と低誘電性フィルムの密着性が低下することを回避できるからである。
The atmosphere in which the heat treatment is performed is not particularly limited, but a vacuum atmosphere or an inert gas atmosphere such as N2 or Ar is preferable, because this can prevent the metal layer from being oxidized by the heat treatment and the adhesion between the metal layer and the low dielectric film from decreasing.
熱処理を施す時間は、金属層と低誘電性フィルムの密着性を十分に高めることができれば特に限定されないが、例えば、均熱時間において0秒以上25200秒以下が好ましく、0秒以上18000秒以下がより好ましく、中でも180秒以上15000秒以下が特に好ましい。これらの範囲の下限以上とすることにより、金属層と低誘電性フィルムの十分な密着性を確保することができるからであり、これらの範囲の上限以下とすることにより、金属積層材の高い生産効率と低コストを実現することができるからである。なお、上述した均熱時間が0秒(すなわち、目標温度に到達後、均熱時間無しで直ぐに冷却)であっても、金属層と低誘電性フィルムの密着性を十分に高めることが可能である。
The time for the heat treatment is not particularly limited as long as it can sufficiently increase the adhesion between the metal layer and the low dielectric film. For example, the soaking time is preferably 0 to 25,200 seconds, more preferably 0 to 18,000 seconds, and particularly preferably 180 to 15,000 seconds. By setting the time at or above the lower limit of these ranges, sufficient adhesion between the metal layer and the low dielectric film can be ensured, and by setting the time at or below the upper limit of these ranges, high production efficiency and low cost of the metal laminate material can be achieved. Note that even if the soaking time mentioned above is 0 seconds (i.e., cooling is performed immediately after reaching the target temperature without a soaking time), it is possible to sufficiently increase the adhesion between the metal layer and the low dielectric film.
熱処理を施す方法は、例えば、バッチ式熱処理炉により、所望の雰囲気中(例えば真空雰囲気中やN2、Ar等の不活性ガス雰囲気中)において、金属積層材を所望の熱処理温度に所望の時間だけ維持する方法等が挙げられる。また、熱処理温度や雰囲気によっては連続式熱処理炉を用いてロール・ツー・ロール方式で熱処理を施しても良い。その場合、連続式熱処理炉内の少なくとも加熱部や冷却部を、所望の雰囲気(例えば真空雰囲気やN2、Ar等の不活性ガス雰囲気)とし、所望の温度に維持した上で、金属積層材を所望の速度で加熱部や冷却部を通過させることで金属積層材を所望の熱処理温度に所望の時間だけ維持する方法等が挙げられる。
The method of performing the heat treatment includes, for example, a method of maintaining the metal laminate material at a desired heat treatment temperature for a desired time in a desired atmosphere (for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar) using a batch heat treatment furnace. Depending on the heat treatment temperature and atmosphere, the heat treatment may be performed by a roll-to-roll method using a continuous heat treatment furnace. In that case, at least the heating part and the cooling part in the continuous heat treatment furnace are set to a desired atmosphere (for example, a vacuum atmosphere or an inert gas atmosphere such as N 2 or Ar) and maintained at a desired temperature, and the metal laminate material is passed through the heating part and the cooling part at a desired speed to maintain the metal laminate material at the desired heat treatment temperature for a desired time.
C.金属積層材の使用
本発明の金属積層材は、フレキシブルプリント基板を作製するための金属張積層板として利用することができる。 C. Uses of the Metal Laminate The metal laminate of the present invention can be utilized as a metal-clad laminate for producing a flexible printed circuit board.
本発明の金属積層材は、フレキシブルプリント基板を作製するための金属張積層板として利用することができる。 C. Uses of the Metal Laminate The metal laminate of the present invention can be utilized as a metal-clad laminate for producing a flexible printed circuit board.
本発明の金属積層材を用いて微細配線が形成されたプリント配線板を得ることができる。よって、本発明は、金属積層材に回路が形成されてなるプリント配線板にも関する。配線を形成する工程において、配線部分にのみ追加の金属層を形成することもできる。具体的には、モディファイドセミアディティブ法(MSAP法)やセミアディティブ法(SAP法)やサブトラクティブ法等の従来知られた手法を適宜用いてプリント配線板を得ることができる。例えば、モディファイドセミアディティブ法(MSAP法)を用いた場合、金属積層材における金属層上の非配線部分をマスクし、マスクされていない部分に銅めっき等を施して追加の金属層を形成し、マスクを除去し、マスクにより隠れていた金属層をエッチングにより除去することによってプリント配線板を製造することができる。なお、本発明における「プリント配線板」には、配線を形成した積層体のみならず、配線を形成した後にIC等の電子部品類を搭載したものも含む。
The metal laminate of the present invention can be used to obtain a printed wiring board with fine wiring formed thereon. Thus, the present invention also relates to a printed wiring board in which a circuit is formed on a metal laminate. In the process of forming wiring, an additional metal layer can be formed only on the wiring portion. Specifically, a printed wiring board can be obtained by appropriately using a conventionally known method such as the modified semi-additive method (MSAP method), the semi-additive method (SAP method), or the subtractive method. For example, when the modified semi-additive method (MSAP method) is used, a printed wiring board can be manufactured by masking the non-wiring portion on the metal layer of the metal laminate, forming an additional metal layer by copper plating or the like on the unmasked portion, removing the mask, and removing the metal layer hidden by the mask by etching. Note that the "printed wiring board" in the present invention includes not only a laminate with wiring formed thereon, but also a board on which electronic components such as ICs are mounted after wiring is formed.
図1~4では、金属積層材において、低誘電性フィルムの一方の表面に金属層が積層された場合について説明したが、金属積層材はこれに限定されるものではない。すなわち、必要に応じて、低誘電性フィルムの両方の表面に金属層を設けても良い。低誘電性フィルムの両表面に金属層を設けた金属積層材を利用することにより、低誘電性フィルムの両表面に配線が形成されたフレキシブルプリント基板を得ることができる。
In Figures 1 to 4, a metal laminate material is described in which a metal layer is laminated on one surface of a low dielectric film, but the metal laminate material is not limited to this. In other words, if necessary, metal layers may be provided on both surfaces of the low dielectric film. By using a metal laminate material in which metal layers are provided on both surfaces of a low dielectric film, a flexible printed circuit board in which wiring is formed on both surfaces of the low dielectric film can be obtained.
以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、表面にクロメート処理層を有する、銅からなる厚み12μmの電解銅箔(福田金属箔粉工業(株)製CF-PLFA)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化し、電解銅箔の表面をArガスによるスパッタエッチング(エッチング量2nm)により活性化し、液晶ポリマーフィルム及び電解銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.0%となった。次に、金属積層材に対し、310℃での熱処理を施して、実施例1の金属積層材(層構成:電解銅箔/液晶ポリマーフィルム)を得た。 Example 1
A liquid crystal polymer film having a thickness of 50 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 12 μm thick electrolytic copper foil (CF-PLFA manufactured by Fukuda Metal Foil and Powder Co., Ltd.) having a chromate treatment layer on the surface and made of copper was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and the surface of the electrolytic copper foil was activated by sputter etching with Ar gas (etching amount 2 nm), and the activated surfaces of the liquid crystal polymer film and the electrolytic copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction rate was 2.0%. Next, the metal laminate was subjected to a heat treatment at 310 ° C. to obtain the metal laminate of Example 1 (layer structure: electrolytic copper foil / liquid crystal polymer film).
厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、表面にクロメート処理層を有する、銅からなる厚み12μmの電解銅箔(福田金属箔粉工業(株)製CF-PLFA)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化し、電解銅箔の表面をArガスによるスパッタエッチング(エッチング量2nm)により活性化し、液晶ポリマーフィルム及び電解銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.0%となった。次に、金属積層材に対し、310℃での熱処理を施して、実施例1の金属積層材(層構成:電解銅箔/液晶ポリマーフィルム)を得た。 Example 1
A liquid crystal polymer film having a thickness of 50 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 12 μm thick electrolytic copper foil (CF-PLFA manufactured by Fukuda Metal Foil and Powder Co., Ltd.) having a chromate treatment layer on the surface and made of copper was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and the surface of the electrolytic copper foil was activated by sputter etching with Ar gas (etching amount 2 nm), and the activated surfaces of the liquid crystal polymer film and the electrolytic copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction rate was 2.0%. Next, the metal laminate was subjected to a heat treatment at 310 ° C. to obtain the metal laminate of Example 1 (layer structure: electrolytic copper foil / liquid crystal polymer film).
(実施例2)
厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、表面にベンゾトリアゾール化合物処理層(有機物層)を有する、銅からなる厚み12μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化し、圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量2nm)により処理層を完全に除去して表面を活性化し、液晶ポリマーフィルム及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.0%となった。次に、金属積層材に対し、310℃での熱処理を施して、実施例2の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 2
A liquid crystal polymer film having a thickness of 50 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 12 μm and made of copper having a benzotriazole compound treatment layer (organic layer) on the surface was prepared as the metal foil (HA-V2 manufactured by JX Metals Co., Ltd.). Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and the surface of the rolled copper foil was activated by completely removing the treatment layer by sputter etching with Ar gas (etching amount 2 nm), and the activated surfaces of the liquid crystal polymer film and the rolled copper foil were rolled and bonded with a line load of 1.5 tf / cm to produce a metal laminate material. The rolling reduction rate was 2.0%. Next, the metal laminate material was subjected to a heat treatment at 310 ° C. to obtain a metal laminate material of Example 2 (layer structure: rolled copper foil / liquid crystal polymer film).
厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、表面にベンゾトリアゾール化合物処理層(有機物層)を有する、銅からなる厚み12μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化し、圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量2nm)により処理層を完全に除去して表面を活性化し、液晶ポリマーフィルム及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.0%となった。次に、金属積層材に対し、310℃での熱処理を施して、実施例2の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 2
A liquid crystal polymer film having a thickness of 50 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 12 μm and made of copper having a benzotriazole compound treatment layer (organic layer) on the surface was prepared as the metal foil (HA-V2 manufactured by JX Metals Co., Ltd.). Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and the surface of the rolled copper foil was activated by completely removing the treatment layer by sputter etching with Ar gas (etching amount 2 nm), and the activated surfaces of the liquid crystal polymer film and the rolled copper foil were rolled and bonded with a line load of 1.5 tf / cm to produce a metal laminate material. The rolling reduction rate was 2.0%. Next, the metal laminate material was subjected to a heat treatment at 310 ° C. to obtain a metal laminate material of Example 2 (layer structure: rolled copper foil / liquid crystal polymer film).
(実施例3)
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、銅からなる厚み18μmの圧延銅箔(三井住友金属鉱山伸銅(株)製C1020R-H)を準備し、液晶ポリマーフィルムの一方の表面をArガスによるスパッタエッチング(エッチング量10nm)により活性化した以外は実施例2と同様にして、実施例3の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 3
A 25 μm thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 18 μm thick rolled copper foil (C1020R-H manufactured by Mitsui Sumitomo Metal Mining Co., Ltd.) was prepared. One surface of the liquid crystal polymer film was activated by sputter etching with Ar gas (etchingamount 10 nm). The same procedure as in Example 2 was followed to obtain a metal laminate material (layer structure: rolled copper foil/liquid crystal polymer film) of Example 3.
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、銅からなる厚み18μmの圧延銅箔(三井住友金属鉱山伸銅(株)製C1020R-H)を準備し、液晶ポリマーフィルムの一方の表面をArガスによるスパッタエッチング(エッチング量10nm)により活性化した以外は実施例2と同様にして、実施例3の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 3
A 25 μm thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a 18 μm thick rolled copper foil (C1020R-H manufactured by Mitsui Sumitomo Metal Mining Co., Ltd.) was prepared. One surface of the liquid crystal polymer film was activated by sputter etching with Ar gas (etching
(実施例4)
液晶ポリマーフィルムの一方の表面をN2ガスによるスパッタエッチング(エッチング量140nm)により活性化した以外は実施例3と同様にして、実施例4の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 4
A metal laminate material (layer structure: rolled copper foil / liquid crystal polymer film) of Example 4 was obtained in the same manner as in Example 3, except that one surface of the liquid crystal polymer film was activated by sputter etching (etching amount 140 nm) with N2 gas.
液晶ポリマーフィルムの一方の表面をN2ガスによるスパッタエッチング(エッチング量140nm)により活性化した以外は実施例3と同様にして、実施例4の金属積層材(層構成:圧延銅箔/液晶ポリマーフィルム)を得た。 Example 4
A metal laminate material (layer structure: rolled copper foil / liquid crystal polymer film) of Example 4 was obtained in the same manner as in Example 3, except that one surface of the liquid crystal polymer film was activated by sputter etching (etching amount 140 nm) with N2 gas.
(比較例1)
電解銅箔として、Co等を含む防錆層を表面に有する、厚み12μmの電解銅箔(福田金属箔粉工業(株)製CF-T9DA-SV)を用いた以外は実施例1と同様にして、比較例1の金属積層材(層構成:電解銅箔/液晶ポリマーフィルム)を得た。 (Comparative Example 1)
A metal laminate material (layer structure: electrolytic copper foil/liquid crystal polymer film) of Comparative Example 1 was obtained in the same manner as in Example 1, except that an electrolytic copper foil having a thickness of 12 μm and having a surface with an anticorrosive layer containing Co or the like (CF-T9DA-SV manufactured by Fukuda Metal Foil and Powder Co., Ltd.) was used as the electrolytic copper foil.
電解銅箔として、Co等を含む防錆層を表面に有する、厚み12μmの電解銅箔(福田金属箔粉工業(株)製CF-T9DA-SV)を用いた以外は実施例1と同様にして、比較例1の金属積層材(層構成:電解銅箔/液晶ポリマーフィルム)を得た。 (Comparative Example 1)
A metal laminate material (layer structure: electrolytic copper foil/liquid crystal polymer film) of Comparative Example 1 was obtained in the same manner as in Example 1, except that an electrolytic copper foil having a thickness of 12 μm and having a surface with an anticorrosive layer containing Co or the like (CF-T9DA-SV manufactured by Fukuda Metal Foil and Powder Co., Ltd.) was used as the electrolytic copper foil.
(比較例2)
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、厚み18μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化した後、該活性化した表面上に、下地層として5nmのNiCr合金スパッタ層をスパッタ成膜し、上層として10nmのCuスパッタ層をスパッタ成膜して金属層を形成した。次に、金属層の表面及び圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量:金属層2nm、圧延銅箔2nm)により活性化し、金属層及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.3%となった。次に、金属積層材に対し、300℃での熱処理を施して、比較例2の金属積層材(層構成:圧延銅箔/金属層/液晶ポリマーフィルム)を得た。 (Comparative Example 2)
A liquid crystal polymer film having a thickness of 25 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 μm (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 5 nm NiCr alloy sputter layer was sputter-formed as a base layer on the activated surface, and a 10 nm Cu sputter layer was sputter-formed as an upper layer to form a metal layer. Next, the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction was 2.3%. Next, the metal laminate was subjected to a heat treatment at 300° C. to obtain a metal laminate of Comparative Example 2 (layer structure: rolled copper foil/metal layer/liquid crystal polymer film).
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、厚み18μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化した後、該活性化した表面上に、下地層として5nmのNiCr合金スパッタ層をスパッタ成膜し、上層として10nmのCuスパッタ層をスパッタ成膜して金属層を形成した。次に、金属層の表面及び圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量:金属層2nm、圧延銅箔2nm)により活性化し、金属層及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.3%となった。次に、金属積層材に対し、300℃での熱処理を施して、比較例2の金属積層材(層構成:圧延銅箔/金属層/液晶ポリマーフィルム)を得た。 (Comparative Example 2)
A liquid crystal polymer film having a thickness of 25 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 μm (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 5 nm NiCr alloy sputter layer was sputter-formed as a base layer on the activated surface, and a 10 nm Cu sputter layer was sputter-formed as an upper layer to form a metal layer. Next, the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction was 2.3%. Next, the metal laminate was subjected to a heat treatment at 300° C. to obtain a metal laminate of Comparative Example 2 (layer structure: rolled copper foil/metal layer/liquid crystal polymer film).
(比較例3)
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、厚み18μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化した後、該活性化した表面上に、28nmのNiCr合金スパッタ層をスパッタ成膜して金属層を形成した。次に、金属層の表面及び圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量:金属層2nm、圧延銅箔2nm)により活性化し、金属層及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.3%となった。次に、金属積層材に対し、300℃での熱処理を施して、比較例3の金属積層材(層構成:圧延銅箔/金属層/液晶ポリマーフィルム)を得た。 (Comparative Example 3)
A liquid crystal polymer film having a thickness of 25 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 μm (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 28 nm NiCr alloy sputter layer was sputter-deposited on the activated surface to form a metal layer. Next, the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction rate was 2.3%. Next, the metal laminate was subjected to a heat treatment at 300 ° C. to obtain a metal laminate of Comparative Example 3 (layer structure: rolled copper foil / metal layer / liquid crystal polymer film).
厚み25μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)を準備し、金属箔として、厚み18μmの圧延銅箔(JX金属(株)製HA-V2)を準備した。次に、液晶ポリマーフィルムの一方の表面をO2ガスによるスパッタエッチング(エッチング量300nm)により活性化した後、該活性化した表面上に、28nmのNiCr合金スパッタ層をスパッタ成膜して金属層を形成した。次に、金属層の表面及び圧延銅箔の表面をArガスによるスパッタエッチング(エッチング量:金属層2nm、圧延銅箔2nm)により活性化し、金属層及び圧延銅箔の活性化した表面同士を1.5tf/cmの線荷重で圧延接合して、金属積層材を作製した。圧下率は2.3%となった。次に、金属積層材に対し、300℃での熱処理を施して、比較例3の金属積層材(層構成:圧延銅箔/金属層/液晶ポリマーフィルム)を得た。 (Comparative Example 3)
A liquid crystal polymer film having a thickness of 25 μm (Vexstar CTQ manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 18 μm (HA-V2 manufactured by JX Metals Co., Ltd.) was prepared as the metal foil. Next, one surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas (etching amount 300 nm), and then a 28 nm NiCr alloy sputter layer was sputter-deposited on the activated surface to form a metal layer. Next, the surface of the metal layer and the surface of the rolled copper foil were activated by sputter etching with Ar gas (etching amount: metal layer 2 nm, rolled copper foil 2 nm), and the activated surfaces of the metal layer and the rolled copper foil were roll-bonded with a line load of 1.5 tf/cm to produce a metal laminate. The rolling reduction rate was 2.3%. Next, the metal laminate was subjected to a heat treatment at 300 ° C. to obtain a metal laminate of Comparative Example 3 (layer structure: rolled copper foil / metal layer / liquid crystal polymer film).
(比較例4)
熱ラミネート法により、厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)の両方の表面に対し、片面に粗化粒子層等からなる処理層を有する厚み18μmの電解銅箔を310℃以上の温度で熱圧着することで、比較例4の金属積層材(層構成:電解銅箔(粗化処理あり)/液晶ポリマーフィルム/電解銅箔(粗化処理あり))を作製した。 (Comparative Example 4)
By a thermal lamination method, an 18 μm-thick electrolytic copper foil having a treatment layer made of a roughening particle layer or the like on one side was thermocompressed to both surfaces of a 50 μm-thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) at a temperature of 310° C. or higher to produce a metal laminate material of Comparative Example 4 (layer structure: electrolytic copper foil (roughened)/liquid crystal polymer film/electrolytic copper foil (roughened)).
熱ラミネート法により、厚み50μmの液晶ポリマーフィルム((株)クラレ製ベクスターCTQ)の両方の表面に対し、片面に粗化粒子層等からなる処理層を有する厚み18μmの電解銅箔を310℃以上の温度で熱圧着することで、比較例4の金属積層材(層構成:電解銅箔(粗化処理あり)/液晶ポリマーフィルム/電解銅箔(粗化処理あり))を作製した。 (Comparative Example 4)
By a thermal lamination method, an 18 μm-thick electrolytic copper foil having a treatment layer made of a roughening particle layer or the like on one side was thermocompressed to both surfaces of a 50 μm-thick liquid crystal polymer film (Vexstar CTQ manufactured by Kuraray Co., Ltd.) at a temperature of 310° C. or higher to produce a metal laminate material of Comparative Example 4 (layer structure: electrolytic copper foil (roughened)/liquid crystal polymer film/electrolytic copper foil (roughened)).
実施例1~4及び比較例1~4の金属積層材について、以下の特性を評価した。
The following characteristics were evaluated for the metal laminate materials of Examples 1 to 4 and Comparative Examples 1 to 4.
[界面の金属成分]
金属積層材の液晶ポリマーフィルムと金属層との界面に含まれる金属成分を分析するため、金属層の液晶ポリマーフィルム側の表面から金属層側に向かって(厚み方向に)1.3μm以下の範囲について、グロー放電発光表面分析法(GDS)測定を行った。GDS測定は以下の条件にて実施した。
・GDS測定装置:高周波グロー放電発光分光分析装置(堀場製作所社製、GD-Profiler2
・励起モード:ノーマル
・光源圧力:600Pa
・光源出力:30W
・アノード径:4mm [Metallic components at the interface]
In order to analyze the metal components contained in the interface between the liquid crystal polymer film and the metal layer of the metal laminate, a glow discharge optical emission surface analysis (GDS) measurement was performed on the range of 1.3 μm or less from the surface of the metal layer on the liquid crystal polymer film side toward the metal layer side (thickness direction). The GDS measurement was performed under the following conditions.
GDS measurement device: High-frequency glow discharge optical emission spectrometer (Horiba, GD-Profiler 2)
Excitation mode: Normal Light source pressure: 600 Pa
Light source output: 30W
Anode diameter: 4 mm
金属積層材の液晶ポリマーフィルムと金属層との界面に含まれる金属成分を分析するため、金属層の液晶ポリマーフィルム側の表面から金属層側に向かって(厚み方向に)1.3μm以下の範囲について、グロー放電発光表面分析法(GDS)測定を行った。GDS測定は以下の条件にて実施した。
・GDS測定装置:高周波グロー放電発光分光分析装置(堀場製作所社製、GD-Profiler2
・励起モード:ノーマル
・光源圧力:600Pa
・光源出力:30W
・アノード径:4mm [Metallic components at the interface]
In order to analyze the metal components contained in the interface between the liquid crystal polymer film and the metal layer of the metal laminate, a glow discharge optical emission surface analysis (GDS) measurement was performed on the range of 1.3 μm or less from the surface of the metal layer on the liquid crystal polymer film side toward the metal layer side (thickness direction). The GDS measurement was performed under the following conditions.
GDS measurement device: High-frequency glow discharge optical emission spectrometer (Horiba, GD-Profiler 2)
Excitation mode: Normal Light source pressure: 600 Pa
Light source output: 30W
Anode diameter: 4 mm
[界面表面形態]
金属積層材の積層界面の表面形態を評価するため、界面の表面粗さを測定した。具体的には、金属積層材から銅箔(比較例2では銅箔及び金属層)をエッチング除去した後、銅箔除去後の液晶ポリマーフィルム表面の表面粗さを原子間力顕微鏡(AFM)によりISO25178に準拠して測定した。 [Interface surface morphology]
In order to evaluate the surface morphology of the lamination interface of the metal laminate, the surface roughness of the interface was measured. Specifically, after the copper foil (copper foil and metal layer in Comparative Example 2) was removed from the metal laminate by etching, the surface roughness of the liquid crystal polymer film surface after the copper foil removal was measured by atomic force microscope (AFM) in accordance with ISO25178.
金属積層材の積層界面の表面形態を評価するため、界面の表面粗さを測定した。具体的には、金属積層材から銅箔(比較例2では銅箔及び金属層)をエッチング除去した後、銅箔除去後の液晶ポリマーフィルム表面の表面粗さを原子間力顕微鏡(AFM)によりISO25178に準拠して測定した。 [Interface surface morphology]
In order to evaluate the surface morphology of the lamination interface of the metal laminate, the surface roughness of the interface was measured. Specifically, after the copper foil (copper foil and metal layer in Comparative Example 2) was removed from the metal laminate by etching, the surface roughness of the liquid crystal polymer film surface after the copper foil removal was measured by atomic force microscope (AFM) in accordance with ISO25178.
[伝送損失(S21)]
金属積層材の高周波伝送特性を評価するため、実施例1~2及び比較例1~2、4の金属積層材の伝送損失(S21)を測定した。実施例1~2及び比較例1~2は片面材のため、銅箔を積層した反対の面の露出した液晶ポリマーフィルムの面に無電解銅めっきにて銅層を設け、スルーホール作製後、電解銅めっきを行うことにより、両面に銅層(25μm)を有する測定用サンプルを得た。比較例4の金属積層材は、スルーホール作製後、電解銅めっきを行うことにより、両面に銅層(25μm)を有する測定用サンプルを得た。 [Transmission loss (S21)]
In order to evaluate the high-frequency transmission characteristics of the metal laminate material, the transmission loss (S21) of the metal laminate material of Examples 1-2 and Comparative Examples 1-2 and 4 was measured. Since Examples 1-2 and Comparative Examples 1-2 are single-sided materials, a copper layer was provided by electroless copper plating on the exposed surface of the liquid crystal polymer film opposite to the copper foil laminate, and after through-holes were made, electrolytic copper plating was performed to obtain a measurement sample having a copper layer (25 μm) on both sides. For the metal laminate material of Comparative Example 4, after through-holes were made, electrolytic copper plating was performed to obtain a measurement sample having a copper layer (25 μm) on both sides.
金属積層材の高周波伝送特性を評価するため、実施例1~2及び比較例1~2、4の金属積層材の伝送損失(S21)を測定した。実施例1~2及び比較例1~2は片面材のため、銅箔を積層した反対の面の露出した液晶ポリマーフィルムの面に無電解銅めっきにて銅層を設け、スルーホール作製後、電解銅めっきを行うことにより、両面に銅層(25μm)を有する測定用サンプルを得た。比較例4の金属積層材は、スルーホール作製後、電解銅めっきを行うことにより、両面に銅層(25μm)を有する測定用サンプルを得た。 [Transmission loss (S21)]
In order to evaluate the high-frequency transmission characteristics of the metal laminate material, the transmission loss (S21) of the metal laminate material of Examples 1-2 and Comparative Examples 1-2 and 4 was measured. Since Examples 1-2 and Comparative Examples 1-2 are single-sided materials, a copper layer was provided by electroless copper plating on the exposed surface of the liquid crystal polymer film opposite to the copper foil laminate, and after through-holes were made, electrolytic copper plating was performed to obtain a measurement sample having a copper layer (25 μm) on both sides. For the metal laminate material of Comparative Example 4, after through-holes were made, electrolytic copper plating was performed to obtain a measurement sample having a copper layer (25 μm) on both sides.
伝送路はマイクロストリップ伝送路のシングルエンド配線とし、配線高さ25μm、配線幅110μm、配線長100mmとした。測定は、ネットワークアナライザN5227B(キーサイトテクノロジー(株)製)を用いて、40GHzの周波数で行った。なお、実施例1~2及び比較例1~2は積層した銅箔側にマイクロストリップラインを作成し測定した。
The transmission line was a single-ended microstrip transmission line with a wiring height of 25 μm, width of 110 μm, and length of 100 mm. Measurements were performed at a frequency of 40 GHz using a network analyzer N5227B (Keysight Technologies, Inc.). Note that in Examples 1-2 and Comparative Examples 1-2, a microstrip line was created on the laminated copper foil side and measurements were performed.
[ピール強度]
金属積層材からの試験片を作製し、金属層にナイフ等を用いて幅1cmの切込みを入れた。そして、金属層と液晶ポリマーフィルムを一部剥離後、液晶ポリマーフィルムを支持体へ固定し、金属層を、液晶ポリマーフィルムに対して90°方向へ50mm/min.の速度で引っ張った。その際の引き剥がすのに要する力をピール強度とした(単位:N/cm)。 [Peel strength]
A test piece was prepared from the metal laminate, and a 1 cm wide cut was made in the metal layer using a knife or the like. Then, after the metal layer and the liquid crystal polymer film were partially peeled off, the liquid crystal polymer film was fixed to a support, and the metal layer was pulled in a direction at 90° to the liquid crystal polymer film at a speed of 50 mm/min. The force required to peel off at that time was taken as the peel strength (unit: N/cm).
金属積層材からの試験片を作製し、金属層にナイフ等を用いて幅1cmの切込みを入れた。そして、金属層と液晶ポリマーフィルムを一部剥離後、液晶ポリマーフィルムを支持体へ固定し、金属層を、液晶ポリマーフィルムに対して90°方向へ50mm/min.の速度で引っ張った。その際の引き剥がすのに要する力をピール強度とした(単位:N/cm)。 [Peel strength]
A test piece was prepared from the metal laminate, and a 1 cm wide cut was made in the metal layer using a knife or the like. Then, after the metal layer and the liquid crystal polymer film were partially peeled off, the liquid crystal polymer film was fixed to a support, and the metal layer was pulled in a direction at 90° to the liquid crystal polymer film at a speed of 50 mm/min. The force required to peel off at that time was taken as the peel strength (unit: N/cm).
[界面の空隙有無]
金属積層材の積層界面の空隙有無を評価するため、実施例1~4及び比較例1~4の積層材断面を、走査型電子顕微鏡(SEM)により20000倍で観察した。 [Existence of voids at the interface]
In order to evaluate the presence or absence of voids at the lamination interface of the metal laminate, the cross sections of the laminates of Examples 1 to 4 and Comparative Examples 1 to 4 were observed at 20,000 times magnification using a scanning electron microscope (SEM).
金属積層材の積層界面の空隙有無を評価するため、実施例1~4及び比較例1~4の積層材断面を、走査型電子顕微鏡(SEM)により20000倍で観察した。 [Existence of voids at the interface]
In order to evaluate the presence or absence of voids at the lamination interface of the metal laminate, the cross sections of the laminates of Examples 1 to 4 and Comparative Examples 1 to 4 were observed at 20,000 times magnification using a scanning electron microscope (SEM).
実施例1~4及び比較例1~4の金属積層材の構成及び評価結果を表1に示す。なお、表1において、LCPは液晶ポリマーフィルムを意味する。
Table 1 shows the configurations and evaluation results of the metal laminate materials of Examples 1 to 4 and Comparative Examples 1 to 4. In Table 1, LCP stands for liquid crystal polymer film.
金属積層材の高周波伝送特性について、表1に示すように、金属積層材の積層界面に強磁性金属が存在しない実施例1~2の金属積層材は、金属積層材の積層界面に強磁性金属(Ni、Co)が存在する比較例1~2、4の金属積層材と比較して、高周波での伝送損失(S21)が小さく、高周波伝送特性に優れていた。特に、粗化粒子層を有する比較例4と比較した場合、実施例1~2の金属積層材は界面がより平滑、且つ積層界面に強磁性金属が存在しないため、高周波での伝送損失(S21)がより小さく、高周波伝送特性がより優れることを確認した。なお、実施例3~4の金属積層材において、積層界面に強磁性金属が存在せず、且つ積層界面が平滑であるため、実施例3~4の金属積層材も実施例1~2の金属積層材と同様に高周波伝送特性に優れると推測される。
As shown in Table 1, the metal laminates of Examples 1 and 2, which do not have a ferromagnetic metal at the lamination interface of the metal laminate, had smaller transmission loss (S21) at high frequencies and superior high frequency transmission characteristics compared to the metal laminates of Comparative Examples 1 to 2 and 4, which have a ferromagnetic metal (Ni, Co) at the lamination interface of the metal laminate. In particular, when compared to Comparative Example 4, which has a roughened particle layer, the metal laminates of Examples 1 and 2 have a smoother interface and no ferromagnetic metal at the lamination interface, so it was confirmed that the metal laminates of Examples 1 and 2 have smaller transmission loss (S21) at high frequencies and superior high frequency transmission characteristics. In addition, since no ferromagnetic metal is present at the lamination interface and the lamination interface is smooth in the metal laminates of Examples 3 and 4, it is presumed that the metal laminates of Examples 3 and 4 also have superior high frequency transmission characteristics like the metal laminates of Examples 1 and 2.
金属積層材のピール強度について、表1に示すように、実施例1~4の金属積層材は、積層界面の密着性に寄与する強磁性金属が界面に存在せず、且つ界面が平滑であるが、十分なピール強度を有していた。これは、実施例1~4の金属積層材では、表面活性化処理により液晶ポリマーフィルムと銅箔の界面の強固な結合が形成されるため、粗化粒子による物理的なアンカー効果に頼ることなく積層界面の密着性を確保できるためであると考えられる。特に、液晶ポリマーフィルムの表面をO2ガスによるスパッタエッチングにより活性化した実施例1~2の金属積層材は、液晶ポリマーフィルムの表面をArガス、又はN2ガスによるスパッタエッチングにより活性化した実施例3~4の金属積層材と比較して、液晶ポリマーフィルムと銅箔の界面がより強固に結合し、優れたピール強度を有することを確認した。また、金属積層材の金属箔の表面(液晶ポリマーフィルム面側)にクロメート処理層を有する実施例1は、金属積層材の金属箔の表面にクロメート処理層を有さない実施例2と比較して、液晶ポリマーフィルムと銅箔の界面がさらに強固に結合し、より優れたピール強度を有することを確認した。
Regarding the peel strength of the metal laminate, as shown in Table 1, the metal laminate of Examples 1 to 4 had sufficient peel strength, although the ferromagnetic metal that contributes to the adhesion of the laminate interface was not present at the interface and the interface was smooth. This is thought to be because in the metal laminate of Examples 1 to 4, a strong bond is formed at the interface between the liquid crystal polymer film and the copper foil by the surface activation treatment, so that the adhesion of the laminate interface can be ensured without relying on the physical anchor effect of the roughening particles. In particular, it was confirmed that the metal laminate of Examples 1 and 2 , in which the surface of the liquid crystal polymer film was activated by sputter etching with O 2 gas, had a stronger bond between the interface of the liquid crystal polymer film and the copper foil and had excellent peel strength, compared to the metal laminate of Examples 3 and 4, in which the surface of the liquid crystal polymer film was activated by sputter etching with Ar gas or N 2 gas. In addition, it was confirmed that Example 1, which has a chromate treatment layer on the surface (liquid crystal polymer film side) of the metal foil of the metal laminate, has a stronger bond at the interface between the liquid crystal polymer film and the copper foil and has better peel strength than Example 2, which does not have a chromate treatment layer on the surface of the metal foil of the metal laminate.
金属積層材の接合界面の空隙有無について、表1に実施例1~4、比較例1~4の金属積層材の評価結果を示し、図5に実施例1及び比較例2~3の金属積層材について、接合界面の空隙有無の断面図を示す。表1及び図5に示すように、金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が、単層(1層)構成からなる実施例1~4の金属積層材は、接合界面に空隙を有さないため、プリント配線板として適用した際のはんだリフロー工程などに好適に用いることができることを確認した。一方、金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が、2層以上の層(金属層/銅箔)から構成される比較例2~3の金属積層材は、接合界面に空隙を有するため、プリント配線板として適用した際のはんだリフロー工程にて、この空隙から起因して膨れが生じるおそれがあることを確認した。特に、比較例3においては、スパッタ層(金属層)の厚みが比較例2よりも大きいため、接合界面における生じる空隙が多くなることを確認した。
Regarding the presence or absence of voids at the bonding interface of the metal laminate material, Table 1 shows the evaluation results of the metal laminate materials of Examples 1 to 4 and Comparative Examples 1 to 4, and Figure 5 shows cross-sectional views of the metal laminate materials of Example 1 and Comparative Examples 2 to 3 showing the presence or absence of voids at the bonding interface. As shown in Table 1 and Figure 5, the metal laminate materials of Examples 1 to 4, in which the metal contained within a range of 1.3 μm or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is a single layer (one layer), have no voids at the bonding interface, and it was confirmed that they can be suitably used in the solder reflow process when applied as a printed wiring board. On the other hand, the metal laminate materials of Comparative Examples 2 to 3, in which the metal contained within a range of 1.3 μm or less from the surface of the low dielectric film side of the metal layer toward the metal layer side is composed of two or more layers (metal layer/copper foil), have voids at the bonding interface, and it was confirmed that there is a risk of swelling due to these voids during the solder reflow process when applied as a printed wiring board. In particular, it was confirmed that in Comparative Example 3, the thickness of the sputtered layer (metal layer) was greater than in Comparative Example 2, resulting in more voids at the bonding interface.
1A 金属積層材
1B 金属積層材
1C 金属積層材
1D 金属積層材
10 金属層
11 金属箔
12 キャリア層
13 剥離層
14 極薄金属層
15 クロメート処理層
20 低誘電性フィルムReference Signs List 1A Metal laminate material 1B Metal laminate material 1C Metal laminate material 1D Metal laminate material 10 Metal layer 11 Metal foil 12 Carrier layer 13 Release layer 14 Ultra-thin metal layer 15 Chromate-treated layer 20 Low dielectric film
1B 金属積層材
1C 金属積層材
1D 金属積層材
10 金属層
11 金属箔
12 キャリア層
13 剥離層
14 極薄金属層
15 クロメート処理層
20 低誘電性フィルム
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.
Claims (12)
- 低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材であって、前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上である、金属積層材。 A metal laminate material in which a metal layer consisting of at least one layer including a metal foil is laminated on at least one surface of a low dielectric film, and at the interface between the low dielectric film and the metal layer, the metal contained within a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a non-magnetic metal, and the peel strength of the low dielectric film and the metal layer is 1.0 N/cm or more.
- 前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、請求項1に記載の金属積層材。 The metal laminate material according to claim 1, wherein the arithmetic mean height Sa of the surface of the metal layer side of the low dielectric film is 60 nm or less.
- 前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、請求項1又は2に記載の金属積層材。 The metal laminate material according to claim 1 or 2, wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
- 前記金属層が、前記低誘電性フィルムと前記金属箔との間にクロメート処理層を有する、請求項1又は2に記載の金属積層材。 The metal laminate material according to claim 1 or 2, wherein the metal layer has a chromate-treated layer between the low dielectric film and the metal foil.
- 前記金属層の低誘電性フィルム側の表面に有機物層を有していない、請求項1又は2に記載の金属積層材。 The metal laminate material according to claim 1 or 2, which does not have an organic layer on the surface of the metal layer on the low dielectric film side.
- 低誘電性フィルムの少なくとも一方の面に、金属箔を含む少なくとも1層からなる金属層が積層された金属積層材の製造方法であって、
前記低誘電性フィルムと前記金属層との界面において、前記金属層の低誘電性フィルム側の表面から金属層側に向かって1.3μm以下の範囲に含まれる金属が非磁性金属からなり、且つ前記低誘電性フィルムと前記金属層のピール強度が1.0N/cm以上であり、
該方法が、
低誘電性フィルムと金属箔とを準備する工程と、
前記低誘電性フィルムの少なくとも一方の表面をスパッタエッチングにより活性化する工程と、
前記金属箔の表面をスパッタエッチングにより活性化する工程と、
前記低誘電性フィルム及び前記金属箔の活性化した表面同士を0~30%の圧下率で圧延接合する工程と
を含む、金属積層材の製造方法。 A method for producing a metal laminate material in which a metal layer including at least one layer including a metal foil is laminated on at least one surface of a low dielectric film, comprising:
At the interface between the low dielectric film and the metal layer, a metal included in a range of 1.3 μm or less from the surface of the metal layer on the low dielectric film side toward the metal layer side is made of a nonmagnetic metal, and the peel strength between the low dielectric film and the metal layer is 1.0 N/cm or more,
The method comprises:
Providing a low dielectric film and a metal foil;
activating at least one surface of the low dielectric film by sputter etching;
activating the surface of the metal foil by sputter etching;
and rolling-bonding the activated surfaces of the low dielectric film and the metal foil together at a rolling reduction of 0 to 30%. - 前記金属積層材において、前記低誘電性フィルムの金属層側の表面の算術平均高さSaが60nm以下である、請求項6に記載の金属積層材の製造方法。 The method for manufacturing a metal laminate according to claim 6, wherein the arithmetic mean height Sa of the surface of the metal layer side of the low dielectric film in the metal laminate is 60 nm or less.
- 前記金属箔が、圧延銅箔、キャリア付銅箔又は電解銅箔である、請求項6又は7に記載の金属積層材の製造方法。 The method for producing a metal laminate according to claim 6 or 7, wherein the metal foil is a rolled copper foil, a copper foil with a carrier, or an electrolytic copper foil.
- 前記金属箔が、表面にクロメート処理層を有する金属箔である、請求項6又は7に記載の金属積層材の製造方法。 The method for manufacturing a metal laminate material according to claim 6 or 7, wherein the metal foil has a chromate-treated layer on its surface.
- 前記低誘電性フィルムの少なくとも一方の表面を酸素によるスパッタエッチングにより活性化する、請求項6又は7に記載の金属積層材の製造方法。 The method for manufacturing a metal laminate according to claim 6 or 7, wherein at least one surface of the low dielectric film is activated by sputter etching with oxygen.
- 前記金属箔の表面をスパッタエッチングにより活性化する工程が、前記金属箔の表面から有機物層を除去することを含む、請求項6又は7に記載の金属積層材の製造方法。 The method for producing a metal laminate material according to claim 6 or 7, wherein the step of activating the surface of the metal foil by sputter etching includes removing an organic layer from the surface of the metal foil.
- 請求項1に記載の金属積層材に回路が形成されてなるプリント配線板。 A printed wiring board having a circuit formed on the metal laminate material described in claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023068300 | 2023-04-19 | ||
JP2023-068300 | 2023-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024219326A1 true WO2024219326A1 (en) | 2024-10-24 |
Family
ID=93152366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/014800 WO2024219326A1 (en) | 2023-04-19 | 2024-04-12 | Metal laminate, method for manufacturing same, and printed wiring board |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024219326A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002113811A (en) * | 2000-10-11 | 2002-04-16 | Toyo Kohan Co Ltd | Multilayer metal laminate film and its manufacturing method |
JP2005324467A (en) * | 2004-05-14 | 2005-11-24 | Toyo Kohan Co Ltd | Manufacturing method of low thermal expansion material layer and manufacturing method of part using low thermal expansion material layer |
JP2007273679A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | Copper or copper alloy foil for printed wiring board |
WO2016174998A1 (en) * | 2015-04-28 | 2016-11-03 | 三井金属鉱業株式会社 | Roughened copper foil and printed wiring board |
WO2019244541A1 (en) * | 2018-06-20 | 2019-12-26 | ナミックス株式会社 | Roughened copper foil, copper clad laminate and printed wiring board |
JP2021171963A (en) * | 2020-04-22 | 2021-11-01 | 東洋鋼鈑株式会社 | Metal-laminated film and method for manufacturing the same |
-
2024
- 2024-04-12 WO PCT/JP2024/014800 patent/WO2024219326A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002113811A (en) * | 2000-10-11 | 2002-04-16 | Toyo Kohan Co Ltd | Multilayer metal laminate film and its manufacturing method |
JP2005324467A (en) * | 2004-05-14 | 2005-11-24 | Toyo Kohan Co Ltd | Manufacturing method of low thermal expansion material layer and manufacturing method of part using low thermal expansion material layer |
JP2007273679A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | Copper or copper alloy foil for printed wiring board |
WO2016174998A1 (en) * | 2015-04-28 | 2016-11-03 | 三井金属鉱業株式会社 | Roughened copper foil and printed wiring board |
WO2019244541A1 (en) * | 2018-06-20 | 2019-12-26 | ナミックス株式会社 | Roughened copper foil, copper clad laminate and printed wiring board |
JP2021171963A (en) * | 2020-04-22 | 2021-11-01 | 東洋鋼鈑株式会社 | Metal-laminated film and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI544115B (en) | Roughened copper foil, its manufacturing method, copper clad laminate and printed circuit board | |
JP6190846B2 (en) | Surface treated copper foil | |
JP6149066B2 (en) | Surface treated copper foil | |
TWI422484B (en) | Printed wiring board with copper foil | |
JP2021035755A (en) | Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board | |
WO2013187420A1 (en) | Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board | |
JP7177956B2 (en) | Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board | |
JP2006142514A (en) | Copper clad laminated sheet | |
WO2021215353A1 (en) | Metal-laminated film and method for manufacturing same | |
WO2021039759A1 (en) | Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board | |
WO2024219326A1 (en) | Metal laminate, method for manufacturing same, and printed wiring board | |
WO2015099156A1 (en) | Composite metal foil, composite metal foil with carrier, metal-clad laminate obtained using said composite metal foil or said composite metal foil with carrier, and printed wiring board | |
TWI783190B (en) | laminated body | |
JP2003041334A (en) | Copper alloy foil for laminate | |
JP2010239095A (en) | Copper foil for printed wiring board | |
WO2023074531A1 (en) | Metal laminate, method for manufacturing same, and printed wiring board | |
JP2010109275A (en) | Coiled copper foil for printed circuit board | |
JP2002249835A (en) | Copper alloy foil for lamination | |
KR20220042307A (en) | A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate | |
JP2011014651A (en) | Copper foil for printed wiring board | |
WO2019176937A1 (en) | Roll-bonded body and production method for same | |
JP5373453B2 (en) | Copper foil for printed wiring boards | |
WO2022244826A1 (en) | Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board | |
WO2022244827A1 (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board | |
WO2022244828A1 (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |