[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024219257A1 - ゴム組成物 - Google Patents

ゴム組成物 Download PDF

Info

Publication number
WO2024219257A1
WO2024219257A1 PCT/JP2024/014072 JP2024014072W WO2024219257A1 WO 2024219257 A1 WO2024219257 A1 WO 2024219257A1 JP 2024014072 W JP2024014072 W JP 2024014072W WO 2024219257 A1 WO2024219257 A1 WO 2024219257A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
aliphatic
aromatic
rubber composition
Prior art date
Application number
PCT/JP2024/014072
Other languages
English (en)
French (fr)
Inventor
徹 遠藤
貴史 由里
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023068257A external-priority patent/JP2024154451A/ja
Priority claimed from JP2023068258A external-priority patent/JP2024154452A/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2024219257A1 publication Critical patent/WO2024219257A1/ja

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a new rubber composition that has an excellent balance of wet grip, rolling resistance, and abrasion resistance, as well as ice grip, and is particularly suitable for use in tires.
  • Patent Document 1 For the purpose of improving the mechanical properties of tires and imparting good adhesion to unvulcanized rubber compositions, it has been proposed to compound an aliphatic/aromatic copolymer resin (see, for example, Patent Document 1) or an aliphatic/alicyclic copolymer resin (see, for example, Patent Document 2) with rubber. Furthermore, for the purpose of achieving high braking performance on both dry and wet road surfaces, it has been proposed to compound a thermoplastic resin such as a C5 resin, a C5/C9 resin, or a C9 resin with a rubber component containing 70% by mass or more of natural rubber (see, for example, Patent Document 3).
  • a thermoplastic resin such as a C5 resin, a C5/C9 resin, or a C9 resin with a rubber component containing 70% by mass or more of natural rubber
  • Patent Document 4 a rubber composition containing an aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin
  • Patent Document 5 a new C5-dicyclopentadiene copolymer resin and a rubber composition containing the same
  • Patent Documents 1 and 2 propose the blending of carbon black as the main filler, and do not consider wet grip properties, rolling resistance, abrasion resistance, or the balance thereof, and there is room for improvement, particularly in terms of tire composition performance.
  • the rubber composition proposed in Patent Document 3 does not consider aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin or C5-dicyclopentadiene copolymer resin, and no proposal is made regarding their effects.
  • Patent Documents 4 and 5 provide rubber compositions containing aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin and a new C5-dicyclopentadiene copolymer resin, and although some effect is seen in the balance of wet grip properties, rolling resistance, and abrasion resistance, there is room for improvement, particularly in terms of abrasion resistance.
  • the present invention therefore aims to provide a new rubber composition that contains a specific aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin and has an excellent balance of wet grip, rolling resistance, and abrasion resistance, and is particularly excellent in abrasion resistance and ice grip.
  • the inventors conducted extensive research to solve the above problems and discovered that a rubber composition containing a specific diene rubber and a specific aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin exhibits excellent rubber properties, leading to the completion of the present invention.
  • a rubber composition comprising a diene rubber and an aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin which is a copolymer resin of a C5 fraction, dicyclopentadienes, and a C9 fraction of petroleum, the rubber composition comprising 5 to 40 parts by mass of the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin which is a copolymer resin of a C5 fraction, dicyclopentadienes, and a C9 fraction of petroleum per 100 parts by mass of the diene rubber, the diene rubber comprising more than 50% by mass of a styrene-butadiene copolymer rubber and/or a natural rubber, and the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin satisfying any of the following properties (1) to (5).
  • the weight average molecular weight measured by gel permeation chromatography in accordance with JIS K-0124 (2011) using standard polystyrene as the standard substance is 2,000 or more and 3,000 or less, and the weight average molecular weight/number average molecular weight is 2.0 or more and 3.0 or less.
  • the bromine number measured in accordance with JIS K-2605 (1996) is 45 g-Br2/100 g or more and 60 g-Br2/100 g or less.
  • the softening point measured in accordance with JIS K-2207 (1996) (ring and ball method) is 85° C. or higher and 115° C. or lower.
  • the present invention provides a rubber composition and a tire using the same that has an excellent balance of wet grip, rolling resistance, and abrasion resistance, as well as excellent ice grip, and is extremely useful industrially.
  • the rubber composition of the present invention has, per 100 parts by mass of a diene rubber containing more than 50% by mass of styrene-butadiene copolymer rubber and/or natural rubber, (1) a ratio of aliphatic hydrogen derived from an aliphatic component observed at 0.2 to 4.0 ppm is more than 85% and not more than 89%, (ii) a ratio of dicyclopentadiene double bond hydrogen derived from a double bond of a dicyclopentadiene component observed at 4.4 to 6.3 ppm is 7% or more and 10% or less, and (iii) a ratio of aromatic hydrogen derived from an aromatic component observed at 6.3 to 7.6 ppm is 1% or more and not more than 8% as measured by proton NMR.
  • the rubber composition includes 5 parts by mass or more and 40 parts by mass or less of an aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin, which is a copolymer resin of a C5 fraction, a dicyclopentadienes, and a C9 fraction of petroleum, and which satisfies the following: (2) a weight average molecular weight (hereinafter sometimes referred to as Mw) of 2,000 or more and 3,000 or less, a weight average molecular weight/number average molecular weight (hereinafter sometimes referred to as Mw/Mn) of 2.0 or more and 3.0 or less, (3) a bromine number of 45 g-Br2/100 g or more and 60 g-Br2/100 g or less, (4) a softening point of 85° C. or more and 115° C. or less, and (5) a Gardner hue of 5 or more and 10 or less.
  • Mw weight average molecular weight
  • Mw/Mn weight average mo
  • the diene rubber constituting the rubber composition of the present invention is one containing more than 50% by mass of styrene-butadiene copolymer rubber and/or natural rubber, preferably 52% by mass or more, and preferably 55% by mass or more.
  • styrene-butadiene copolymer rubber include styrene-butadiene random copolymer rubber, styrene-butadiene block copolymer rubber, styrene-butadiene-styrene triblock copolymer rubber, and hydrogenated products thereof.
  • the rubber composition has an excellent balance of wet grip properties, abrasion resistance, and ice grip properties
  • styrene-butadiene copolymer rubber having a styrene content of 25% by mass or less, and more preferably the styrene content is 10% by mass or less.
  • an example of the natural rubber is RSS#3.
  • the total content of the styrene-butadiene copolymer rubber and the natural rubber is 50% by mass or less, the resulting composition will have poor compatibility, processability, and ice grip properties.
  • the diene rubber may contain components other than styrene-butadiene copolymer rubber and natural rubber, for example, isoprene rubber, butadiene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, silicone rubber, olefin elastomer (TPO), urethane elastomer (TPU), polyester elastomer (TPEE), polyamide elastomer (TPA), polybutadiene elastomer (RB), polyvinyl chloride (PVC), ethylene / vinyl acetate copolymer (EVA), etc.
  • isoprene rubber butadiene rubber
  • ethylene propylene diene rubber butyl rubber
  • halogenated butyl rubber acrylonitrile butadiene rubber
  • chloroprene rubber silicone rubber
  • TPO olefin elastomer
  • the diene rubber is preferably a mixed diene rubber of a styrene-butadiene copolymer rubber and at least one rubber selected from the group consisting of isoprene rubber, natural rubber, and butadiene rubber, and more preferably a mixed diene rubber of a styrene-butadiene copolymer rubber and natural rubber.
  • diene rubbers other than natural rubber there are no particular limitations on the manufacturing method of diene rubbers other than natural rubber, and they may be anionic polymerized products or emulsion polymerized products.
  • molecular weight or microstructure of the diene rubber there are no particular limitations on the molecular weight or microstructure of the diene rubber, and they may be terminally modified with amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl groups, etc., or may be epoxidized.
  • the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin constituting the rubber composition of the present invention is a petroleum resin obtained by copolymerizing a C5 fraction, which is an aliphatic fraction obtained by separating and refining petroleum, a C9 fraction, which is an aromatic fraction, and a dicyclopentadiene (hereinafter sometimes referred to as DCPD) fraction, and among these, (1) as measured by proton NMR, (i) the aliphatic hydrogen ratio is more than 85% and not more than 89%, (ii) the dicyclopentadiene
  • the aliphatic-aromatic-dicyclopentadiene copolymerized petroleum resin satisfies the following: (i) ene double bond hydrogen ratio is 7% or more and 10% or less, (ii) aromatic hydrogen ratio is 1% or more and 8% or less, (iii) Mw is 2,000 or more and 3,000 or less, Mw/Mn is 2.0 or more and 3.
  • the aliphatic-aromatic-dicyclopentadiene copolymerized petroleum resin is a petroleum resin composed of copolymerized components of an aliphatic component which is a polymerization residue unit derived from a C5 fraction, an aromatic component which is a polymerization residue unit derived from a C9 fraction, and a DCPD component which is a DCPD residue unit derived from a dicyclopentadiene fraction.
  • the components constituting the aliphatic component include, for example, aliphatic compounds having 4 carbon atoms, such as butene, butadiene, and isobutene; linear aliphatic compounds having 5 carbon atoms, such as 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, isoprene, and piperylene; cyclic aliphatic compounds having 5 carbon atoms, such as cyclopentadiene; 1-hexene, 2-hexene, 3-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-ethyl-1-butene, 2-ethyl-2-but ...
  • Examples of such compounds include linear aliphatic compounds having 6 carbon atoms, such as 1-heptene, 2-heptene, 3-heptene, 2-methyl-3-hexene, 4-methyl-2-hexene, and 3,4-dimethyl-2-pentene; linear aliphatic compounds having 7 carbon atoms, such as 1-heptene, 2-heptene, 3-heptene, 2-methyl-3-hexene, 4-methyl-2-hexene, and 3,4-dimethyl-2-pentene; mixtures of these compounds, and components based on mixtures called C5 fractions.
  • Components based on linear aliphatic compounds having 4 to 6 carbon atoms are particularly easy to obtain and have excellent performance as tackifiers.
  • the components constituting the aromatic component include, for example, aromatic compounds with 8 carbon atoms such as styrene; aromatic compounds with 9 carbon atoms such as ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, and indene; aromatic compounds with 10 carbon atoms such as 1-methylindene, 2-methylindene, and 3-methylindene; aromatic compounds with 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; mixtures of these, and components based on mixtures known as C9 fractions.
  • Components based on aromatic compounds with 8 to 10 carbon atoms are particularly easy to obtain and have excellent performance as tackifiers.
  • Components constituting DCPD-type components include, for example, cyclic aliphatic compounds having 10 carbon atoms, such as dicyclopentadiene; cyclic aliphatic compounds having 11 carbon atoms, such as methyldicyclopentadiene; cyclic aliphatic compounds having 12 carbon atoms, such as dimethyldicyclopentadiene; mixtures of these, and components based on mixtures called dicyclopentadiene fractions.
  • components based on dicyclopentadiene compounds having 10 to 12 carbon atoms are easy to obtain and have excellent performance as tackifiers.
  • the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin is (1) an aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin having (i) an aliphatic hydrogen ratio derived from an aliphatic polymerization residue unit of more than 85% and not more than 89%, (ii) a DCPD double bond hydrogen ratio derived from a DCPD residue unit of 7% or more and not more than 10%, and (iii) an aromatic hydrogen ratio derived from an aromatic polymerization residue unit of 1% or more and not more than 8%, and each hydrogen ratio can be measured under the following conditions (A) to (C) based on the area percentage of a spectrum measured and observed by proton NMR using chloroform-d as a solvent.
  • An aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin that satisfies all of the above requirements (i) to (iii) has excellent compatibility with diene rubbers.
  • the aliphatic-aromatic-dicyclopentadiene copolymerized petroleum resin (2) has an Mw/Mn of 2.0 or more and 3.0 or less, as measured by GPC in accordance with JIS K-0124 (1994) using standard polystyrene as the standard substance. If the Mw/Mn is less than 2.0 or exceeds 3.0, the rubber composition will have poor mixability (compatibility), and the tire will have poor performance. In addition, the rubber composition will have excellent processability, so the Mw is 2,000 or more and 3,000 or less.
  • the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin satisfies all of the following characteristics: (3) a bromine number measured in accordance with JIS K-2605 (1996) of 45 g-Br2/100 g or more and 60 g-Br2/100 g or less, (4) a softening point measured in accordance with JIS K-2207 (1996) (ring and ball method) of 85°C or more and 115°C or less, and (5) a Gardner hue measured in accordance with ASTM D-1544-63T as a 50% by mass toluene solution of 5 or more and 10 or less.
  • the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin satisfies all of the characteristics (1) to (5), and therefore not only has excellent compatibility with diene rubbers, and further with diene rubbers containing more than 50 mass% of styrene-butadiene copolymer rubber and/or natural rubber, but also makes it possible to provide a rubber composition that has an excellent balance of wet grip properties, rolling resistance, abrasion resistance, and ice grip properties.
  • the resin can be produced by using a mixture obtained by thermal decomposition of petroleum, which contains a fraction having a boiling point range of 20°C to 110°C (C5 fraction; aliphatic components), a fraction having a boiling point range of 140°C to 280°C (C9 fraction; aromatic components), and a dicyclopentadiene fraction, as a raw material oil, adding a catalyst to the mixture, and polymerizing by heating.
  • a mixture obtained by thermal decomposition of petroleum which contains a fraction having a boiling point range of 20°C to 110°C (C5 fraction; aliphatic components), a fraction having a boiling point range of 140°C to 280°C (C9 fraction; aromatic components), and a dicyclopentadiene fraction, as a raw material oil, adding a catalyst to the mixture, and polymerizing by heating.
  • the catalyst used in the polymerization examples include aluminum trichloride, aluminum tribromide, boron trifluoride, and complexes thereof.
  • alcohol and phenol complexes of boron trifluoride such as methanol, propanol, butanol, isobutanol, isopentanol, and phenol, are selected because of their excellent catalytic activity.
  • butanol complexes, isobutanol complexes, and isopentanol complexes are more preferable, and boron trifluoride butanol complexes are particularly preferable.
  • the complex may be used as is or may be prepared in-suit from boron trifluoride, alcohols, and phenols immediately before use.
  • the solvent during polymerization include saturated hydrocarbons in the C5 fraction and C9 fraction.
  • the feedstock oil is preferably a mixture of 35% to 45% by mass of an aliphatic component, 5% to 15% by mass of an aromatic component, and 45% to 55% by mass of a DCPD component, since this produces an aliphatic-aromatic-dicyclopentadiene copolymerized petroleum resin with particularly excellent softening point and color.
  • the polymerization temperature during production is not particularly limited, and is preferably 20°C to 80°C, particularly 30°C to 60°C, since it provides high polymerization activity and excellent productivity.
  • the amount of catalyst and polymerization time can be appropriately selected depending on the temperature and the water concentration in the raw oil, and typically, for example, the catalyst is 0.1% by mass to 2.0% by mass relative to the raw oil, and the polymerization time is 0.1 hours to 10 hours.
  • the reaction pressure is also not particularly limited, and is preferably atmospheric pressure or higher and 1 MPa or lower.
  • the atmosphere is also not particularly limited, and a nitrogen atmosphere is particularly preferred.
  • the rubber composition of the present invention contains 5 parts by mass or more and 40 parts by mass or less, preferably 8 parts by mass or more and 30 parts by mass or less, of the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin per 100 parts by mass of the diene rubber. If the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin is less than 5 parts by mass, the resulting composition will be inferior in wet grip properties and abrasion resistance. On the other hand, if the aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin is more than 40 parts by mass, the resulting composition will be inferior in rolling resistance and ice grip properties.
  • the rubber composition of the present invention preferably contains 5 to 200 parts by mass of silica per 100 parts by mass of diene rubber, more preferably 10 to 150 parts by mass, and even more preferably 20 to 120 parts by mass.
  • the silica in this case is not particularly limited, and those used in commercially available rubber compositions can be used, among which wet silica (hydrated silica), dry silica (anhydrous silicic acid), colloidal silica, etc. can be used, and wet silica is particularly preferred.
  • a rubber composition containing an aliphatic-aromatic-dicyclopentadiene copolymerized petroleum resin can reduce viscosity, so that even if the rubber composition contains a high content of silica such as 70 parts by mass or more, it is a rubber composition that can provide a tire that is excellent in processability and has an excellent balance of wet grip properties, rolling resistance, and abrasion resistance.
  • silane coupling agent When using silica, it is preferable to use a silane coupling agent in combination.
  • a silane coupling agent in combination By using a silane coupling agent in combination, the bond between the rubber component and the silica is strengthened via the silane coupling agent, making it possible to highly improve the balance of wet grip properties, rolling resistance, and abrasion resistance.
  • silane coupling agents include sulfide-based, mercapto-based, vinyl-based, amino-based, glycidoxy-based, nitro-based, and chloro-based silane coupling agents. These silane coupling agents can be used alone or in combination of two or more types.
  • a reinforcing filler such as carbon black
  • the carbon black may be of grades such as FEF, SRF, HAF, ISAF, or SAF.
  • the carbon black content is preferably 10 parts by mass or more and 60 parts by mass or less per 100 parts by mass of diene rubber, since this provides excellent rolling resistance.
  • the rubber composition of the present invention may further contain additives that are usually compounded into resin compositions and rubber compositions.
  • additives such as crosslinking agents such as sulfur, vulcanization accelerators, vulcanization accelerator assistants, stearic acid, zinc oxide, plasticizers, oils, and antioxidants may be added.
  • commercially available products can be suitably used as these compounding agents.
  • the rubber composition of the present invention may contain additives that are usually blended into resin compositions and rubber compositions, such as a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, a lactone-based antioxidant, an ultraviolet absorber, a pigment, calcium carbonate, glass beads, etc., as long as the blended additives do not deviate from the object of the present invention.
  • the rubber composition of the present invention also includes its form and shape, and may be a crosslinked product (vulcanizate) that has been crosslinked (vulcanized) by containing a crosslinking agent, a vulcanization accelerator, a vulcanization acceleration assistant, etc.
  • the rubber composition of the present invention can be produced by blending diene rubber, aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin, and various compounding agents selected as necessary, using a mixing method such as a Banbury mixer, a pressure kneader, or an open roll. Furthermore, the resulting unvulcanized rubber composition can be crosslinked using, for example, a calendar, a roll, an extruder, or a press to produce a vulcanized rubber composition.
  • the present invention can provide a rubber composition that has excellent wet grip properties, abrasion resistance, and processability, and can be used in a variety of rubber applications, such as rolls, mats, tubes, grips, and handles. It can also provide excellent tire components, particularly treads, tires having the same, and further studless tires, all-season tires, and tires for electric vehicles.
  • Example 1 In a Banbury mixer (volume 1.7 liters), 55 parts by mass of a solution-polymerized terminal-modified styrene-butadiene copolymer rubber (modified S-SBR) (manufactured by ENEOS Material Co., Ltd., (trade name) HPR-340: styrene content 10% by mass) and 45 parts by mass of polyisoprene rubber (IR) (manufactured by ENEOS Material Co., Ltd., (trade name) IR2200) were blended and masticated for 30 seconds, and then 2 parts by mass of stearic acid (manufactured by New Japan Chemical Co., Ltd.), 70 parts by mass of silica (manufactured by Tosoh Silica, (trade name) Nipsil AQ), 5.6 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Silicone, (trade name) KBE46), and 20 parts by mass of the resin A obtained
  • the ram pressure and rotation speed were adjusted so that the compound temperature at the time of taking out was 140 ° C. to 150 ° C.
  • the obtained compound was cooled to room temperature, and then 1 part by mass of an antioxidant (manufactured by Ouchi Shinko, (product name) 810NA), 3 parts by mass of zinc oxide (manufactured by Inoue Lime Industry), 1.2 parts by mass of a vulcanization accelerator (1) (manufactured by Ouchi Shinko, (product name) Noccela CZ), 1.5 parts by mass of a vulcanization accelerator (2) (manufactured by Ouchi Shinko, (product name) Noccela D), and 1.5 parts by mass of sulfur (manufactured by Tsurumi Chemical Industry) as a vulcanizing agent were added thereto, and the mixture was kneaded for about 1 minute (the temperature at the time of removal was 110°C or less), and then sheeted using an 8-inch roll to obtain an unvulcanized rubber composition.
  • the rubber composition was then vulcanized at a temperature of 150° C. for 30 minutes using a steam heating press to obtain a vulcanized rubber composition.
  • the properties of the vulcanized rubber composition obtained (wet grip, ice grip, rolling resistance, and abrasion resistance) were measured. The results are shown in Table 2.
  • the rubber compositions obtained in Examples 1 to 6 had an excellent balance of wet grip, rolling resistance, and abrasion resistance, and also had excellent ice grip.
  • Comparative Example 1 An unvulcanized rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1, except that Resin A was not used. The evaluation results are shown in Table 3.
  • Comparative Example 4 An unvulcanized rubber composition and a vulcanized rubber composition were prepared and evaluated in the same manner as in Example 1, except that a petroleum resin (product name: T-REZ RD104, manufactured by ENEOS Corporation; sometimes referred to as Resin I) was used instead of Resin A. The results are shown in Table 3.
  • a petroleum resin product name: T-REZ RD104, manufactured by ENEOS Corporation; sometimes referred to as Resin I
  • Comparative Example 5 An unvulcanized rubber composition and a vulcanized rubber composition were prepared and evaluated in the same manner as in Example 1, except that a petroleum resin (product name: T-REZ RA100, manufactured by ENEOS Corporation; sometimes referred to as Resin J) was used instead of Resin A. The results are shown in Table 3.
  • a petroleum resin product name: T-REZ RA100, manufactured by ENEOS Corporation; sometimes referred to as Resin J
  • Example 7 In a Banbury mixer (volume 1.7 liters), 55 parts by mass of natural rubber (RSS#3) and 45 parts by mass of solution-polymerized terminal-modified styrene-butadiene copolymer rubber (modified S-SBR) (manufactured by JSR Corporation, (trade name) HPR-350) were blended and masticated for 30 seconds to obtain a total of 100 parts by mass of rubber components.
  • RSS#3 natural rubber
  • modified S-SBR solution-polymerized terminal-modified styrene-butadiene copolymer rubber
  • the obtained compound was cooled to room temperature, and then 1 part by mass of an antioxidant (manufactured by Ouchi Shinko, (product name) 810NA), 3 parts by mass of zinc oxide (manufactured by Inoue Lime Industry), 1.2 parts by mass of a vulcanization accelerator (1) (manufactured by Ouchi Shinko, (product name) Noccela CZ), 1.5 parts by mass of a vulcanization accelerator (2) (manufactured by Ouchi Shinko, (product name) Noccela D), and 1.5 parts by mass of sulfur (manufactured by Tsurumi Chemical Industry) as a vulcanizing agent were added thereto, and the mixture was kneaded for about 1 minute (the temperature at the time of removal was 110°C or less), and then sheeted using an 8-inch roll to obtain an unvulcanized rubber composition.
  • an antioxidant manufactured by Ouchi Shinko, (product name) 810NA
  • zinc oxide manufactured by Inoue Lime Industry
  • the rubber composition was then vulcanized at a temperature of 150° C. for 30 minutes using a steam heating press to obtain a vulcanized rubber composition.
  • the properties of the vulcanized rubber composition obtained (wet grip, ice grip, rolling resistance, and abrasion resistance) were measured. The results are shown in Table 4.
  • the rubber compositions obtained in Examples 7 to 12 had an excellent balance of wet grip properties, rolling resistance and abrasion resistance, and further had excellent ice grip properties.
  • Comparative Example 9 An unvulcanized rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 7, except that Resin A was not used. The evaluation results are shown in Table 5.
  • Comparative Example 14 An unvulcanized rubber composition and a vulcanized rubber composition were prepared and evaluated in the same manner as in Example 7, except that a petroleum resin (product name: T-REZ RD104, manufactured by ENEOS Corporation; sometimes referred to as Resin I) was used instead of Resin A. The results are shown in Table 5.
  • a petroleum resin product name: T-REZ RD104, manufactured by ENEOS Corporation; sometimes referred to as Resin I
  • Comparative Example 15 An unvulcanized rubber composition and a vulcanized rubber composition were prepared and evaluated in the same manner as in Example 7, except that a petroleum resin (product name: T-REZ RA100, manufactured by ENEOS Corporation; sometimes referred to as Resin J) was used instead of Resin A. The results are shown in Table 5.
  • a petroleum resin product name: T-REZ RA100, manufactured by ENEOS Corporation; sometimes referred to as Resin J
  • the present invention by blending a specific diene rubber with an aliphatic-aromatic-dicyclopentadiene copolymer petroleum resin having a specific amount of double bonds, it is possible to provide a rubber composition that has an excellent balance of wet grip, rolling resistance, and abrasion resistance, as well as excellent ice grip.
  • This rubber composition can be used as tire tread rubber to provide tires and all-season tires, and its industrial value is extremely high.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ウェットグリップ性、転がり抵抗性、耐摩耗性のバランス、特に耐摩耗性、更にアイスグリップ性にも優れるゴム組成物を提供する。 ジエン系ゴムと、脂肪族-芳香族-DCPD類共重合石油樹脂と、を含むゴム組成物であって、前記ジエン系ゴム100質量部に対して、前記脂肪族-芳香族-DCPD類共重合石油樹脂を5質量部以上40質量部以下を含み、該ジエン系ゴムがスチレン-ブタジエン共重合体ゴム及び/又は天然ゴム50質量%を越えて含むものであり、該脂肪族-芳香族-DCPD類共重合石油樹脂が(1)(i)脂肪族性水素比率が85%を越えて89%以下、(ii)DCPD類二重結合性水素比率が7%以上10%以下、(iii)芳香族性水素比率が1%以上8%以下、(2)Mwが2000以上3000以下、Mw/Mnが2.0以上3.0以下、(3)臭素価が45以上60以下、(4)軟化点が85℃以上115℃以下、(5)ガードナー色相が5以上10以下のいずれをも満足するものであるゴム組成物。

Description

ゴム組成物
 本発明は、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランス、更にアイスグリップ性にも優れ、特にタイヤ用として適した新規なゴム組成物に関するものである。
 近年、自動車の高性能化、高機能化に伴い、タイヤ性能への要求が高まっている。例えば、相反関係にあるウェットグリップ性、転がり抵抗性及び耐摩耗性を向上したタイヤが求められている。また、駆動用バッテリーを搭載した電気自動車やプラグインハイブリッド車等は、車両重量の増加に伴い、タイヤに掛かる負荷が増加するため、耐久性を向上したタイヤが求められており、転がり抵抗性を改善するためゴムにシリカを配合する技術や、シリカの分散性を高めるため末端にシリカと親和性の高い、又は化学結合し得る官能基を導入した末端変性ゴムを使用する技術が利用されている。
 タイヤの機械特性の向上や未加硫のゴム組成物に良好な粘着性を付与することを目的に、ゴムに脂肪族/芳香族共重合樹脂(例えば特許文献1参照。)、脂肪族/脂環族共重合樹脂(例えば特許文献2参照。)、を配合することが提案されている。
 また、乾燥路面、湿潤路面の両方で高い制動性能を有することを目的に、天然ゴムを70質量%以上含むゴム成分に対して、C5系樹脂、C5/C9系樹脂、C9樹脂などの熱可塑性樹脂を配合すること(例えば特許文献3参照。)が提案され、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を含むゴム組成物(例えば特許文献4参照。)、新規なC5-ジシクロペンタジエン共重合樹脂、それを含むゴム組成物(例えば特許文献5参照。)が提案されている。
日本国特許第5309529号 日本国特許第5375101号 日本国特許第6346325号 日本国特開2020-203962号公報 日本国特開2022-55449号公報
 しかし、特許文献1~2に提案の方法においては、主な充填剤としてカーボンブラックの配合について提案されたものであり、ウェットグリップ性、転がり抵抗性、耐摩耗性、そのバランスについては検討がされていないものであり、特にタイヤ組成物の性能としては改良の余地を有するものであった。また、特許文献3に提案のゴム組成物は、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂、C5-ジシクロペンタジエン共重合樹脂の検討は何らなされておらず、その効果についても何ら提案はされていないものであった。さらに、特許文献4、5における提案は、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂、新規なC5-ジシクロペンタジエン共重合樹脂を含むゴム組成物を提供するものであり、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランスに一応の効果は見られるものであったが、特に耐摩耗性の改善に余地を有するものであった。
 そこで、本願発明は、特定の脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を含み、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランスに優れ、特に耐摩耗性、更にはアイスグリップ性にも優れる新規なゴム組成物を提供することを目的とするものである。
 本発明者らは、上記の課題を解決するため、鋭意検討を行った結果、特定のジエン系ゴムに特定の脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を含むゴム組成物が優れたゴム特性を発現することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]乃至[6]に存する。
[1] ジエン系ゴムと、石油類のC5留分とジシクロペンタジエン類とC9留分との共重合樹脂である脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂と、を含むゴム組成物であって、上記ジエン系ゴム100質量部に対して、上記石油類のC5留分とジシクロペンタジエン類とC9留分との共重合樹脂である脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を5質量部以上40質量部以下含み、該ジエン系ゴムがスチレン-ブタジエン共重合体ゴム及び/又は天然ゴムを50質量%を越えて含むものであり、該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂が下記特性(1)~(5)のいずれをも満足するものであることを特徴とするゴム組成物。
(1)プロトンNMRにより測定した(i)0.2~4.0ppmに観測される脂肪族成分に由来する脂肪族性水素比率が85%を越えて89%以下、(ii)4.4~6.3ppmに観測されるジシクロペンタジエン類成分の二重結合に由来するジシクロペンタジエン類二重結合性水素比率が7%以上10%以下、(iii)6.3~7.6ppmに観測される芳香族成分に由来する芳香族性水素比率が1%以上8%以下である。
(2)標準ポリスチレンを標準物質とし、JIS K-0124(2011)に準拠し、ゲル・パーミエイション・クロマトグラフにより測定した重量平均分子量が2,000以上3,000以下、重量平均分子量/数平均分子量が2.0以上3.0以下である。
(3)JIS K-2605(1996)に準拠し測定した臭素価が45g-Br2/100g以上60g-Br2/100g以下である。
(4)JIS K-2207(1996)(環球法)に準拠し測定した軟化点が85℃以上115℃以下である。
(5)50質量%トルエン溶液として、ASTM D-1544-63Tに準拠し測定したガードナー色相が5以上10以下である。
[2] 上記スチレン-ブタジエン共重合体ゴムが、スチレン含有量が25質量%以下のスチレン-ブタジエン共重合体ゴムであることを特徴とする[1]に記載のゴム組成物。
[3] 上記ジエン系ゴムが、スチレン-ブタジエン共重合体ゴムと、イソプレンゴム、天然ゴム及びブタジエンゴムからなる群より選択される少なくとも1種以上のゴムと、の混合ジエン系ゴムであることを特徴とする[1]又は[2]に記載のゴム組成物。
[4] 上記ジエン系ゴムが、スチレン-ブタジエン共重合体ゴムと天然ゴムとの混合ジエン系ゴムであることを特徴とする[1]~[3]のいずれかに記載のゴム組成物。
[5] タイヤを構成する加硫ゴム組成物であることを特徴とする[1]~[4]のいずれかに記載のゴム組成物。
[6] [5]に記載のゴム組成物によりトレッドを構成することを特徴とするタイヤ。
 本発明により、ウェットグリップ性、転がり抵抗性と耐摩耗性のバランスに優れ、さらにアイスグリップ性にも優れるゴム組成物及びそれを用いたタイヤを提供することができ、工業的にも非常に有用である。
 以下に本発明を詳細に説明する。
 本発明のゴム組成物は、50質量%を越えてスチレン-ブタジエン共重合体ゴム及び/又は天然ゴムを含むジエン系ゴム100質量部に対して、(1)プロトンNMRにより測定した(i)0.2~4.0ppmに観測される脂肪族成分に由来する脂肪族性水素比率が85%を越えて89%以下、(ii)4.4~6.3ppmに観測されるジシクロペンタジエン類成分の二重結合に由来するジシクロペンタジエン類二重結合性水素比率が7%以上10%以下、(iii)6.3~7.6ppmに観測される芳香族成分に由来する芳香族性水素比率が1%以上8%以下、(2)重量平均分子量(以下、Mwと記す場合がある。)が2,000以上3,000以下、重量平均分子量/数平均分子量(以下、Mw/Mnと記す場合がある。)が2.0以上3.0以下、(3)臭素価が45g-Br2/100g以上60g-Br2/100g以下、(4)軟化点が85℃以上115℃以下、(5)ガードナー色相が5以上10以下を満足する石油類のC5留分とジシクロペンタジエン類とC9留分との共重合樹脂である脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂5質量部以上40質量部以下を含むゴム組成物である。
 本発明のゴム組成物を構成するジエン系ゴムとしては、スチレン-ブタジエン共重合体ゴム及び/又は天然ゴム50質量%を越えて含むものであり、52質量%以上含むことが好ましく、55質量%以上含むことが好ましい。該スチレン-ブタジエン共重合体ゴムとしては、例えばスチレン-ブタジエンランダム共重合体ゴム、スチレン-ブタジエンブロック共重合体ゴム、スチレン-ブタジエン-スチレントリブロック共重合体ゴム及びその水添物等を挙げることができる。中でも特にウェットグリップ性、耐摩耗性、アイスグリップ性とのバランスに優れるゴム組成物となることから、スチレン含有量が25質量%以下のスチレン-ブタジエン共重合体ゴムであることが好ましく、該スチレン含有量が10質量%以下であることがより好ましい。また、天然ゴムとしては、例えばRSS#3を挙げることができる。ここで、スチレン-ブタジエン共重合体ゴムと天然ゴムの合計含有量が50質量%以下である場合、得られる組成物は、相溶性に劣り加工性、アイスグリップ性が劣るものとなる。
 そして、ジエン系ゴムとしては、スチレン-ブタジエン共重合体ゴム、天然ゴム以外の成分を含むものであってもよく、例えばイソプレンゴム、ブタジエンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、シリコーンゴム、オレフィン系エラストマー(TPO)、ウレタン系エラストマー(TPU)、ポリエステル系エラストマー(TPEE)、ポリアミド系エラストマー(TPA)、ポリブタジエン系エラストマー(RB)、ポリ塩化ビニル(PVC)、エチレン/酢酸ビニルコポリマー(EVA)等を含むものであってもよく、中でも、ウェットグリップ性、転がり抵抗性、耐摩耗性、加工性、アイスグリップ性のバランスに優れるゴム組成物となることから、イソプレンゴム、ブタジエンゴム、ブチルゴム、更には、イソプレンゴムを配合するものであることが好ましい。
 また、タイヤ性能のバランスに優れることの観点から、ジエン系ゴムとしては、スチレン-ブタジエン共重合体ゴムと、イソプレンゴム、天然ゴム及びブタジエンゴムからなる群より選択される少なくとも1種以上のゴムと、の混合ジエン系ゴムであることが好ましく、スチレン-ブタジエン共重合体ゴムと天然ゴムとの混合ジエン系ゴムであることがより好ましい。
 天然ゴムを除くジエン系ゴムの製造方法は特に制限されず、アニオン重合品であっても、乳化重合品であっても良い。また、該ジエン系ゴムの分子量やミクロ構造は特に制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。
 本発明のゴム組成物を構成する脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、石油の分離・精製により得られる脂肪族留分であるC5留分、芳香族留分であるC9留分及びジシクロペンタジエン(以下、DCPDと記す場合もある。)類留分を共重合してなる石油樹脂であり、中でも、(1)プロトンNMRにより測定した(i)脂肪族性水素比率が85%を越えて89%以下、(ii)ジシクロペンタジエン類二重結合性水素比率が7%以上10%以下、(iii)芳香族性水素比率が1%以上8%以下、(2)Mwが2,000以上3,000以下、Mw/Mnが2.0以上3.0以下、(3)臭素価が45g-Br2/100g以上60g-Br2/100g以下、(4)軟化点が85℃以上115℃以下、(5)ガードナー色相が5以上10以下を満足する脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂である。そして、該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、C5留分に由来する重合残基単位である脂肪族成分、C9留分に由来する重合残基単位である芳香族成分、ジシクロペンタジエン類留分に由来するDCPD残基単位であるDCPD類成分を共重合成分として構成される石油樹脂である。
 該脂肪族成分を構成する成分としては、例えばブテン、ブタジエン、イソブテン等の炭素数4の脂肪族化合物;2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテン、イソプレン、ピペリレン等の炭素数5の鎖状脂肪族化合物;シクロペンタジエン等の炭素数5の環状脂肪族化合物;1-ヘキセン、2-ヘキセン、3-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-メチル-2-ペンテン、3-メチル-2-ペンテン、4-メチル-2-ペンテン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン等の炭素数6の鎖状脂肪族化合物;メチルシクロペンタジエン等の炭素数6の環状脂肪族化合物;1-へプテン、2-へプテン、3-へプテン、2-メチル-3-ヘキセン、4-メチル-2-ヘキセン、3,4-ジメチル-2-ペンテン等の炭素数7の鎖状脂肪族化合物;これらの混合物、さらにはC5留分と称される混合物に基づく成分を挙げることができ、特に入手が容易であり、粘着付与剤として優れた性能を有することから、炭素数4以上6以下の鎖状脂肪族化合物に基づく成分であることが好ましい。
 該芳香族成分を構成する成分としては、例えばスチレン等の炭素数8の芳香族化合物;α-メチルスチレン、β-メチルスチレン、ビニルトルエン、インデン等の炭素数9の芳香族化合物;1-メチルインデン、2-メチルインデン、3-メチルインデン等の炭素数10の芳香族化合物;2,3-ジメチルインデン、2,5-ジメチルインデン等の炭素数11の芳香族化合物;これらの混合物、さらにはC9留分と称される混合物に基づく成分を挙げることができ、特に入手が容易であり、粘着付与剤として優れた性能を有することから、炭素数8以上10以下の芳香族化合物に基づく成分であることが好ましい。
 DCPD類成分を構成する成分としては、例えばジシクロペンタジエン等の炭素数10の環状脂肪族化合物;メチルジシクロペンタジエン等の炭素数11の環状脂肪族化合物;ジメチルジシクロペンタジエン等の炭素数12の環状脂肪族化合物;これらの混合物、さらにはジシクロペンタジエン類留分と称される混合物に基づく成分を挙げることができ、特に入手が容易であり、粘着付与剤として優れた性能を有することから、炭素数10以上12以下のジシクロペンタジエン化合物に基づく成分が挙げられる。
 該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、(1)(i)脂肪族系重合残基単位に由来する脂肪族性水素比率が85%を越えて89%以下、(ii)DCPD残基単位に由来するDCPD類二重結合性水素比率が7%以上10%以下、(iii)芳香族系重合残基単位に由来する芳香族性水素比率が1%以上8%以下を示す脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂であり、それぞれの水素比率は、クロロホルム-dを溶媒として用いたプロトンNMRにより測定・観測したスペクトルの面積百分率により下記(ア)~(ウ)の条件により測定することができる。
 (ア)0.2~4.0ppmに観測される脂肪族成分に由来する水素の面積比率により求める。
 (イ)4.4~6.3ppmに観測されるDCPD類成分の二重結合に由来する水素の面積比率により求める。
 (ウ)6.3~7.6ppmに観測される芳香族成分に由来する水素の面積比率により求める。
 これら上記(i)~(iii)のいずれをも満足する脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、ジエン系ゴムとの相溶性に優れるものとなる。
 該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、(2)標準ポリスチレンを標準物質とし、JIS K-0124(1994年)に準拠し、GPCにより測定したMw/Mnが2.0以上3.0以下のものである。ここで、Mw/Mnが2.0未満のものである場合、又は3.0を超えるものである場合、ゴム組成物とした際の混合性(相溶性)に劣るものとなり、タイヤとした際にはその性能に劣るものとなる。また、ゴム組成物とした際に加工性に優れるものとなることから、Mwが2,000以上3,000以下のものである。
 更に、該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、(3)JIS K-2605(1996)に準拠し測定した臭素価が45g-Br2/100g以上60g-Br2/100g以下、(4)JIS K-2207(1996)(環球法)に準拠し測定した軟化点が85℃以上115℃以下、(5)50質量%トルエン溶液として、ASTM D-1544-63Tに準拠し測定したガードナー色相が5以上10以下、とのいずれの特性をも満足するものである。
 該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂は、これら(1)~(5)のいずれの特性をも満足することにより、ジエン系ゴム、更にはスチレン-ブタジエン共重合体ゴム及び/又は天然ゴム50質量%を越えて含むジエン系ゴムとの相溶性に優れるばかりか、ウェットグリップ性、転がり抵抗性、耐摩耗性、アイスグリップ性のバランスにも優れるゴム組成物を提供することを可能とするものである。
 該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂の製造方法としては特に制限はなく、いかなる方法で製造しても差し支えなく、例えば、石油類の熱分解により得られる、沸点範囲が20℃以上110℃以下の留分(C5留分;脂肪族成分)、沸点範囲が140℃以上280℃以下の留分(C9留分;芳香族成分)、ジシクロペンタジエン類留分を含む混合物を原料油として用い、この混合物に触媒を加え、加熱し重合することにより製造できる。重合に用いる触媒としては、特に限定はなく、例えば三塩化アルミニウム、三臭化アルミニウム、三フッ化ホウ素あるいはその錯体等が挙げられる。中でも触媒活性に優れることから、三フッ化ホウ素のメタノール,プロパノール,ブタノール,イソブタノール、イソペンタノール、フェノール等のアルコール,フェノール錯体が選択される。中でも、ブタノール錯体、イソブタノール錯体、イソペンタノール錯体がより好ましく、特に三フッ化ホウ素ブタノール錯体であることが好ましい。また、錯体はそのまま又は三フッ化ホウ素とアルコール類,フェノール類より使用直前にin-suitで調製したものであってもよい。重合時の溶媒は、C5留分およびC9留分中の飽和炭化水素を挙げることができる。また、原料油としては、特に軟化点、色相に優れる脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂が得られることから、脂肪族成分35質量%以上45質量%以下、芳香族成分5質量%以上15質量%以下及びDCPD類成分45質量%以上55質量%以下を混合配合してなる原料油であることが好ましい。
 製造を行う際の重合温度としては、特に制限はなく、重合活性が高く生産性に優れるものとなることから、20℃以上80℃以下が好ましく、特に30℃以上60℃以下であることが好ましい。また、触媒量及び重合時間は、温度や原料油中の水分濃度により適宜選択可能であり、通常、例えば、原料油に対して触媒0.1質量%以上2.0質量%以下、重合時間0.1時間以上10時間以下が好ましい。反応圧力も特に制限はなく、大気圧以上1MPa以下が好ましい。雰囲気も特に制限はなく、中でも窒素雰囲気が好ましい。
 本発明のゴム組成物は、該ジエン系ゴム100質量部に対して該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂5質量部以上40質量部以下、好ましくは8質量部以上30質量部以下を含むものである。ここで、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂が5質量部未満のものである場合、得られる組成物は、ウェットグリップ性、耐摩耗性に劣るものとなる。一方、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂が40質量部を越えるものである場合、得られる組成物は、転がり抵抗性、アイスグリップ性に劣るものとなる。
 また、本発明のゴム組成物は、転がり抵抗性の改良のためジエン系ゴム100質量部に対してシリカを5質量部以上200質量部以下含むことが好ましく、10質量部以上150質量部以下含むことがより好ましく、20質量部以上120質量部以下を含むことが更に好ましい。その際のシリカとしては、特に制限はなく、市販のゴム組成物に使用されているものが使用でき、中でも湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ等を使用することができ、特に、湿式シリカであることが好ましい。特に、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を含むゴム組成物は、粘度の低減化が可能となることから、シリカを70質量部以上含むような高含有率であっても加工性に優れると共に、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランスに優れるタイヤを提供することが可能なゴム組成物となる。
 シリカを使用する際にはシランカップリング剤を併用することが好ましい。シランカップリング剤を併用することにより、シランカップリング剤を介してゴム成分とシリカとの結合が強化され、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランスを高度に向上することが出来る。シランカップリング剤としては、例えばスルフィド系、メルカプト系、ビニル系、アミノ系、グリシドキシ系、ニトロ系、クロロ系等のシランカップリング剤、等が挙げられる。これらのシランカップリング剤は単独、または2種以上用いることが出来る。
 本発明のゴム組成物においては、上記シリカ以外にも補強性充填剤として、例えばカーボンブラックなどを併用することができ、該カーボンブラックとしては、例えば、FEF、SRF、HAF、ISAF、SAFなどのグレードを用いることができる。また、該カーボンブラックの含有量としては、転がり抵抗性に優れるものとなることから、ジエン系ゴム100質量部に対し、10質量部以上60質量部以下であることが好ましい。
 本発明のゴム組成物は、さらに通常樹脂組成物やゴム組成物に配合される添加剤を使用してもよい。例えば、硫黄を始めとする架橋剤、加硫促進剤、加硫促進助剤、ステアリン酸、亜鉛華、可塑剤、オイル、老化防止剤などの配合剤を加えても良い。これらの配合剤としては市販品を好適に使用することができる。
 本発明のゴム組成物は、本発明の目的を逸脱しない限りにおいて、通常樹脂組成物、ゴム組成物に配合される添加剤、例えばフェノール系抗酸化剤、リン系抗酸化剤、硫黄系抗酸化剤、ラクトン系抗酸化剤、紫外線吸収剤、顔料、炭酸カルシウム、ガラスビーズなどを配合しても良い。
 さらに本発明のゴム組成物とは、その形態、形状物をも含むものであり、架橋剤、加硫促進剤、加硫促進助剤等を含み架橋(加硫)を行った架橋物(加硫物)であってもよい。
 そして、本発明のゴム組成物は、ジエン系ゴム、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂、必要に応じて適宜選択した各種配合剤を配合して、バンバリー型ミキサー、加圧ニーダー、オープンロールなどの混合方法を用いて混合し得ることができる。さらに、得られた未加硫ゴム組成物は、例えば、カレンダー、ロール、押し出し機、プレス等を利用して、架橋することにより加硫ゴム組成物として製造することができる。
 本発明によれば、ウェットグリップ性、耐摩耗性に優れ、更に加工性に優れるゴム組成物を提供することができ、ロール、敷物、チューブ、グリップ、ハンドル等の各種ゴム用途に適用することができ、中でも優れたタイヤ構成材、特にトレッド、それを有するタイヤ、更にはスタッドレスタイヤ、オールシーズンタイヤ、電気自動車用タイヤを提供とすることができる。
 以下に、本発明を実施例により説明するが、本発明はこれらの実施例により何ら制限を受けるものではない。なお、実施例、比較例において用いた分析、試験法は下記の通りである。
 脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂の分析方法を下記に示す。
 [プロトンNMR(核磁気共鳴スペクトル)測定]
 共重合石油樹脂をクロロホルム-d(和光純薬工業(株)製)に溶解させ、通常のNMR測定法で測定した。得られたスペクトルについて、下記の計算式に基づき面積比率より水素比率を求めた。
 面積比率(%)=(各ピーク面積)/(全ピーク面積の合計)×100
 なお、各ピークの帰属は次の通りである。
 脂肪族性水素ピーク:0.2~4.0ppm。
 DCPD類二重結合性水素ピーク:4.4~6.3ppm。
 芳香族性水素ピーク:6.3~7.6ppm。
 [重量平均分子量(Mw)、数平均分子量(Mw)の測定]
 ポリスチレンを標準物質とし、JIS K-0124(2011)に準拠してゲル・パーミエイション・クロマトグラフにて測定した。
 [臭素価]
 JIS K-2605(1996)に準拠した方法で測定した。
 [軟化点~
 JIS K-2207(1996)(環球法)に準拠した方法で測定した。
 [色相]
 50質量%トルエン溶液として、ASTM D-1544-63Tに従って測定した。
 また、ゴム組成物の物性の評価方法、評価基準を下記に示す。
 [ウェットグリップ性]
 粘弾性測定装置(レオメトリックス社製)を使用し、温度0℃、歪み5%、周波数15Hzでtanδを測定し、0℃の値をウェットグリップ性として評価した。
 0℃のtanδが0.27以上となった場合、ウェットグリップ性が良好であり、0.29以上となった場合、特に優れると判断した。
 [アイスグリップ性]
 粘弾性測定装置(レオメトリックス社製)を使用し、温度-20℃、歪み5%、周波数15Hzで貯蔵弾性率(以下、E’と記す場合がある)を測定し、-20℃の値をアイスグリップ性として評価した。
 -20℃のE’が55MPa以下となった場合、アイスグリップ性が良好であると判断した。
 [転がり抵抗性]
 粘弾性測定装置(レオメトリックス社製)を使用し、温度60℃、歪み5%、周波数15Hzでtanδを測定し、60℃の値を転がり抵抗性として評価した。
 60℃のtanδが0.14以下となった場合、転がり抵抗性が良好であり、0.12以下となった場合、特に優れると判断した。
 [耐摩耗性]
 加硫ゴム試験片を作成し、JIS K-6264に準拠し、ランボーン摩耗試験機を使用して、23℃での摩耗量を測定した。
 23℃における摩耗量が24mm/min以下の場合、耐摩耗性が良好であり、22mm/min以下となった場合、特に優れると判断した。
 製造例1
 内容積2リットルのガラス製オートクレーブに、原料油としてナフサの分解により得た脂肪族成分(炭素数4の飽和・不飽和化合物、ペンタン類、ペンテン類、イソプレン、ピペリレン、シクロペンタジエン類、炭素数6の飽和・不飽和化合物の混合油)40質量%、芳香族成分(スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエン、インデン、炭素数10の不飽和化合物、ジシクロペンタジエン類、炭素数9の飽和芳香族類の混合油)12質量%およびDCPD類成分(炭素数5の飽和・不飽和化合物、ジシクロペンタジエン、ジシクロペンタジエンダイマー、メチルジシクロペンタジエン、メチルジシクロペンタジエンダイマーの混合油)48質量%からなる原料油を調製し仕込んだ。次に、窒素雰囲気下で40℃に調節した後、フリーデルクラフツ型触媒として三フッ化ホウ素ブタノール錯体を原料油100質量部に対して、1.4質量部加えて2時間重合した。その後、苛性ソーダ水溶液で触媒を失活・除去し、油相を回収し、該油相より未反応原料油を蒸留除去することにより脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂A(樹脂Aと称する場合がある。)を得た。評価結果を表1に示す。
 製造例2~7
 原料油としてナフサの分解により得た脂肪族成分40質量%、芳香族成分12質量%およびDCPD類成分48質量%からなる原料油の代わりに、脂肪族成分、芳香族成分およびDCPD類成分の配合割合を表1に示す通りとした以外は、製造例1と同様の方法により、脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂(樹脂B、C、D、E、F、G、Hと称する。)を得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 バンバリーミキサー(容量1.7リットル)にて、溶液重合品の末端変性スチレン-ブタジエン共重合体ゴム(変性S-SBR)((株)ENEOSマテリアル製、(商品名)HPR-340:スチレン含有量10質量%)55質量部、ポリイソプレンゴム(IR)((株)ENEOSマテリアル製、(商品名)IR2200)45質量部を配合し30秒間素練り後の合計ジエン系ゴム成分100質量部に対し、ステアリン酸(新日本理化製)2質量部、シリカ(東ソー・シリカ製、(商品名)Nipsil AQ)70質量部、シランカップリング剤(信越シリコーン製、(商品名)KBE46)5.6質量部及び製造例1で得られた樹脂A20質量部を投入し、全練り時間5分後取り出した。取り出し時のコンパウンド温度を140℃から150℃となるようにラム圧や回転数で調整した。得られたコンパウンドを室温にて冷却した後、更に老化防止剤(大内新興製、(商品名)810NA)1質量部、亜鉛華(井上石灰工業製)3質量部、加硫促進剤(1)(大内新興製、(商品名)ノクセラーCZ)1.2質量部、加硫促進剤(2)(大内新興製、(商品名)ノクセラーD)1.5質量部、加硫剤として硫黄(鶴見化学工業製)1.5質量部のそれぞれを添加して約1分間混練り(取り出し時の温度を110℃以下とする)後、8インチロールを用いてシーティングして未加硫ゴム組成物を得た。
 更に蒸気加熱プレスを用い、加硫温度150℃、加硫時間30分で加硫し加硫ゴム組成物を得た。得られた加硫ゴム組成物の特性(ウェットグリップ性、アイスグリップ性、転がり抵抗性、耐摩耗性)を測定した。その結果を表2に示す。
 実施例2~4
 樹脂Aの代わりに、樹脂B、C、Dを用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表2に示す。
 実施例5~6
 樹脂A20質量部の代わりに、樹脂Cを表2に示す量を用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~6により得られるゴム組成物は、ウェットグリップ性、転がり抵抗性と耐摩耗性のバランスに優れ、さらにアイスグリップ性にも優れるものであった。
 比較例1
 樹脂Aを用いないこと以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を得た。その評価結果を表3に示す。
 比較例2,3
 樹脂Aの代わりに、樹脂E、Hを用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表3に示す。
 比較例4
 樹脂Aの代わりに、石油樹脂((商品名)T-REZ RD104、ENEOS社製;樹脂Iと記す場合もある。)を用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表3に示す。
 比較例5
 樹脂Aの代わりに、石油樹脂((商品名)T-REZ RA100、ENEOS社製;樹脂Jと記す場合もある。)を用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表3に示す。
 比較例6,7
 樹脂A20質量部の代わりに、表3に示す量を用いた以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表3に示す。
 比較例8
 変性S-SBR/IR=45/55(質量比)と変更した以外は、実施例1と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例7
 バンバリーミキサー(容量1.7リットル)にて、天然ゴム(RSS#3)55質量部、溶液重合品の末端変性スチレン-ブタジエン共重合体ゴム(変性S-SBR)((株)JSR製、(商品名)HPR-350)45質量部を配合し30秒間素練り後の合計ゴム成分100質量部に対し、ステアリン酸(新日本理化製)2質量部、シリカ(東ソー・シリカ製、(商品名)Nipsil AQ)70質量部、シランカップリング剤(信越シリコーン製、(商品名)KBE46)5.6質量部及び製造例1で得られた樹脂A20質量部を投入し、全練り時間5分後取り出した。取り出し時のコンパウンド温度を140℃から150℃となるようにラム圧や回転数で調整した。得られたコンパウンドを室温にて冷却した後、更に老化防止剤(大内新興製、(商品名)810NA)1質量部、亜鉛華(井上石灰工業製)3質量部、加硫促進剤(1)(大内新興製、(商品名)ノクセラーCZ)1.2質量部、加硫促進剤(2)(大内新興製、(商品名)ノクセラーD)1.5質量部、加硫剤として硫黄(鶴見化学工業製)1.5質量部のそれぞれを添加して約1分間混練り(取り出し時の温度を110℃以下とする)後、8インチロールを用いてシーティングして未加硫ゴム組成物を得た。
 更に蒸気加熱プレスを用い、加硫温度150℃、加硫時間30分で加硫し加硫ゴム組成物を得た。得られた加硫ゴム組成物の特性(ウェットグリップ性、アイスグリップ性、転がり抵抗性、耐摩耗性)を測定した。その結果を表4に示す。
 実施例8~10
 樹脂Aの代わりに、樹脂B、C、Dを用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表4に示す。
 実施例11,12
 樹脂A20質量部の代わりに、樹脂Cを表4に示す量を用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例7~12により得られるゴム組成物は、ウェットグリップ性、転がり抵抗性と耐摩耗性のバランスに優れ、さらにアイスグリップ性にも優れるものであった。
 比較例9
 樹脂Aを用いないこと以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を得た。その評価結果を表5に示す。
 比較例10~13
 樹脂Aの代わりに、樹脂E、F、G、Hを用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表5に示す。
 比較例14
 樹脂Aの代わりに、石油樹脂((商品名)T-REZ RD104、ENEOS社製;樹脂Iと記す場合もある。)を用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表5に示す。
 比較例15
 樹脂Aの代わりに、石油樹脂((商品名)T-REZ RA100、ENEOS社製;樹脂Jと記す場合もある。)を用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表5に示す。
 比較例16,17
 樹脂A20質量部の代わりに、表5に示す量を用いた以外は、実施例7と同様の方法により未加硫ゴム組成物、加硫ゴム組成物を調製し、評価を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 なお、2023年4月19日に出願された日本国特許出願2023-068257号及び日本国特許出願2023-068258号の特許請求の範囲、明細書及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明によれば、特定のジエン系ゴムに特定の二重結合量を有する脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を配合することにより、ウェットグリップ性、転がり抵抗性、耐摩耗性のバランスに優れ、さらにアイスグリップ性に優れるゴム組成物を提供することができ、該ゴム組成物はタイヤのトレッド用ゴムとして使用したタイヤ、オールシーズンタイヤを提供可能であり、その産業的価値は極めて高いものである。

Claims (6)

  1.  ジエン系ゴムと、石油類のC5留分とジシクロペンタジエン類とC9留分との共重合樹脂である脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂と、を含むゴム組成物であって、前記ジエン系ゴム100質量部に対して、前記脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂を5質量部以上40質量部以下含み、該ジエン系ゴムがスチレン-ブタジエン共重合体ゴム及び/又は天然ゴムを50質量%を越えて含むものであり、該脂肪族-芳香族-ジシクロペンタジエン類共重合石油樹脂が下記特性(1)~(5)のいずれをも満足するものであることを特徴とするゴム組成物。
    (1)プロトンNMRにより測定した(i)0.2~4.0ppmに観測される脂肪族成分に由来する脂肪族性水素比率が85%を越えて89%以下、(ii)4.4~6.3ppmに観測されるジシクロペンタジエン類成分の二重結合に由来するジシクロペンタジエン類二重結合性水素比率が7%以上10%以下、(iii)6.3~7.6ppmに観測される芳香族成分に由来する芳香族性水素比率が1%以上8%以下である。
    (2)標準ポリスチレンを標準物質とし、JIS K-0124(2011)に準拠し、ゲル・パーミエイション・クロマトグラフにより測定した重量平均分子量が2,000以上3,000以下、重量平均分子量/数平均分子量が2.0以上3.0以下である。
    (3)JIS K-2605(1996)に準拠し測定した臭素価が45g-Br2/100g以上60g-Br2/100g以下である。
    (4)JIS K-2207(1996)(環球法)に準拠し測定した軟化点が85℃以上115℃以下である。
    (5)50質量%トルエン溶液として、ASTM D-1544-63Tに準拠し測定したガードナー色相が5以上10以下である。
  2.  前記スチレン-ブタジエン共重合体ゴムが、スチレン含有量が25質量%以下のスチレン-ブタジエン共重合体ゴムであることを特徴とする請求項1に記載のゴム組成物。
  3.  前記ジエン系ゴムが、スチレン-ブタジエン共重合体ゴムと、イソプレンゴム、天然ゴム及びブタジエンゴムからなる群より選択される少なくとも1種以上のゴムと、の混合ジエン系ゴムであることを特徴とする請求項1又は2に記載のゴム組成物。
  4.  前記ジエン系ゴムが、スチレン-ブタジエン共重合体ゴムと天然ゴムとの混合ジエン系ゴムであることを特徴とする請求項1~3のいずれかに記載のゴム組成物。
  5.  タイヤを構成する加硫ゴム組成物であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。
  6.  請求項5に記載のゴム組成物によりトレッドを構成することを特徴とするタイヤ。
PCT/JP2024/014072 2023-04-19 2024-04-05 ゴム組成物 WO2024219257A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-068257 2023-04-19
JP2023068257A JP2024154451A (ja) 2023-04-19 2023-04-19 ゴム組成物
JP2023068258A JP2024154452A (ja) 2023-04-19 2023-04-19 ゴム組成物
JP2023-068258 2023-04-19

Publications (1)

Publication Number Publication Date
WO2024219257A1 true WO2024219257A1 (ja) 2024-10-24

Family

ID=93152355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014072 WO2024219257A1 (ja) 2023-04-19 2024-04-05 ゴム組成物

Country Status (1)

Country Link
WO (1) WO2024219257A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108193A (ja) * 2007-10-30 2009-05-21 Tosoh Corp ゴム組成物
JP2010159316A (ja) * 2009-01-06 2010-07-22 Tosoh Corp ゴム組成物
JP2014009268A (ja) * 2012-06-28 2014-01-20 Tosoh Corp 酸変性石油樹脂組成物及びその製造方法
JP2017088900A (ja) * 2013-11-27 2017-05-25 株式会社ブリヂストン ゴム組成物及びタイヤ
JP2018083857A (ja) * 2016-11-21 2018-05-31 東ソー株式会社 脂肪族−芳香族−ジシクロペンタジエン類共重合石油樹脂及びそれを含んでなる粘着性組成物
JP2020203962A (ja) * 2019-06-14 2020-12-24 東ソー株式会社 ゴム組成物
JP2022055449A (ja) * 2020-09-29 2022-04-08 東ソー株式会社 C5-ジシクロペンタジエン共重合樹脂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108193A (ja) * 2007-10-30 2009-05-21 Tosoh Corp ゴム組成物
JP2010159316A (ja) * 2009-01-06 2010-07-22 Tosoh Corp ゴム組成物
JP2014009268A (ja) * 2012-06-28 2014-01-20 Tosoh Corp 酸変性石油樹脂組成物及びその製造方法
JP2017088900A (ja) * 2013-11-27 2017-05-25 株式会社ブリヂストン ゴム組成物及びタイヤ
JP2018083857A (ja) * 2016-11-21 2018-05-31 東ソー株式会社 脂肪族−芳香族−ジシクロペンタジエン類共重合石油樹脂及びそれを含んでなる粘着性組成物
JP2020203962A (ja) * 2019-06-14 2020-12-24 東ソー株式会社 ゴム組成物
JP2022055449A (ja) * 2020-09-29 2022-04-08 東ソー株式会社 C5-ジシクロペンタジエン共重合樹脂

Similar Documents

Publication Publication Date Title
WO2015076049A1 (ja) 空気入りタイヤ
JP7346158B2 (ja) 含硫黄不飽和炭化水素重合体およびその製造方法、ゴム用添加剤、ゴム組成物、ならびにタイヤ
JP7566782B2 (ja) ゴム組成物及びタイヤ
JP7081495B2 (ja) ゴム組成物および空気入りタイヤ
WO2023032664A1 (ja) ゴム組成物およびその製造方法ならびにタイヤ製品
EP3450491B1 (en) Rubber composition
EP3323630B1 (en) Rubber composition for treads and pneumatic tire
JP7293892B2 (ja) ゴム組成物
JPWO2017209262A1 (ja) ゴム組成物、及びタイヤ
JP7000318B2 (ja) ゴム組成物、及びタイヤ
WO2016111331A1 (ja) ゴム組成物、トレッド用部材及び空気入りタイヤ並びにゴム組成物の製造方法
JPWO2016111233A1 (ja) ゴム組成物、トレッド用部材及び空気入りタイヤ並びにゴム組成物の製造方法
JP7533075B2 (ja) C5-ジシクロペンタジエン共重合樹脂
WO2024219257A1 (ja) ゴム組成物
JP7452431B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2020070329A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2024154452A (ja) ゴム組成物
WO2018101360A1 (ja) ゴム組成物および空気入りタイヤ
JP2024154451A (ja) ゴム組成物
JP2024067610A (ja) ゴム組成物
JP2023055085A (ja) 脂肪族炭化水素-芳香族化合物-ジシクロペンタジエン類共重合石油樹脂及びゴム組成物
WO2018101362A1 (ja) ゴム組成物および空気入りタイヤ
WO2024203764A1 (ja) 重合体組成物およびゴム製品
WO2024203771A1 (ja) 重合体組成物およびゴム製品
WO2022225027A1 (ja) ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ