WO2024204309A1 - Heat dissipation structure - Google Patents
Heat dissipation structure Download PDFInfo
- Publication number
- WO2024204309A1 WO2024204309A1 PCT/JP2024/012182 JP2024012182W WO2024204309A1 WO 2024204309 A1 WO2024204309 A1 WO 2024204309A1 JP 2024012182 W JP2024012182 W JP 2024012182W WO 2024204309 A1 WO2024204309 A1 WO 2024204309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat dissipation
- dissipation structure
- circuit board
- flat plate
- heat
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 214
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010292 electrical insulation Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present invention relates to a heat dissipation structure that dissipates heat from heat-generating elements such as ICs.
- Patent document 1 describes a heat dissipation structure.
- the heat dissipation structure in Patent document 1 includes a substrate, an integrated circuit, a thermal pad, a heat sink, and a base housing.
- the board is placed in the base housing.
- the integrated circuit which is a heat generating element, is placed on the board.
- a thermal pad is placed on the surface of the integrated circuit (the surface opposite to the surface that is mounted on the board), and a heat sink is placed across this thermal pad.
- the object of the present invention is therefore to realize a heat dissipation structure that is small in size, maintains electrical insulation, and improves heat dissipation.
- the heat dissipation structure of the present invention comprises a circuit board having a first surface and a second surface, with an IC that is a heat source mounted on the first surface, a housing having a third surface that faces closely to the second surface, and a heat dissipation member that is mounted on the second surface and has high thermal conductivity.
- the heat dissipation member comprises a flat plate having a predetermined area, and a plurality of rod-shaped foot pins connected to the flat plate and mounted on the second surface.
- the circuit board comprises a ground electrode for connection to a reference potential.
- the plurality of foot pins are connected to the ground electrode.
- the IC comprises a first ground terminal that is connected to the ground electrode and that is located at the center of the circuit board in a plan view, and a second ground terminal that is located at the outer end. At least one of the plurality of foot pins is located between the first ground terminal and the second ground terminal in the direction from the center to the outer end of the IC.
- the heat dissipation member conducts the heat of the IC through the circuit board to the side opposite the IC. This increases the amount of heat conducted from the IC to the outside.
- the heat dissipation member is connected to the circuit board by rod-shaped foot pins, for example, even if mountable electronic components are mounted on the second surface of the circuit board, it can be connected to the circuit board while avoiding this mounting area. This allows the electrical insulation provided by using the heat dissipation member to be maintained.
- the heat dissipation structure of this invention can prevent the device from becoming too large, maintain electrical insulation, and improve heat dissipation.
- FIG. 1 is a side cross-sectional view showing a heat dissipation structure according to a first embodiment of the present invention.
- FIG. 2 is an expanded view of FIG. 1 with additional examples of heat conduction paths.
- 3A to 3C are a first plan view, a second plan view, a side view, and a cross-sectional side view of the heat dissipation member according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing the positional relationship between various terminals of the IC and the leg pins of the heat dissipation member.
- FIG. 5 is an expanded view of FIG. 1 with the addition of examples of current conduction paths.
- FIG. 6A is a schematic diagram showing the concept of canceling a magnetic field, and FIG.
- FIG. 6B is a diagram showing an equivalent circuit diagram of a part of it and an image of a current.
- FIG. 7 is a side cross-sectional view showing a heat dissipation structure according to a second embodiment of the present invention.
- FIG. 8 is an expanded view of FIG. 6 with additional examples of heat conduction paths.
- FIG. 9 is a side cross-sectional view showing a heat dissipation structure according to a third embodiment of the present invention.
- FIG. 10 is a side cross-sectional view showing a heat dissipation structure according to a fourth embodiment of the present invention.
- FIG. 11 is an enlarged side cross-sectional view showing a heat dissipation structure according to a fifth embodiment of the present invention, with an example of a heat conduction path added.
- FIG. 1 is a side cross-sectional view showing a heat dissipation structure according to a first embodiment of the present invention. Note that FIG. 1 does not show a strict cross-section, but is a side cross-sectional view viewed to make the heat dissipation structure easier to understand. Also, in FIG. 1, reference numerals have been omitted as appropriate to make the drawing easier to read.
- Figure 2 is an enlarged view of Figure 1, with examples of heat conduction paths added.
- the dotted arrows indicate the heat conduction paths.
- FIG. 3 shows a first plan view, a second plan view, a side view, and a cross-sectional side view of a heat dissipation member according to a first embodiment of the present invention.
- FIG. 4 shows the positional relationship between various terminals of an IC and the foot pins of the heat dissipation member.
- Figure 5 is an enlarged view of Figure 1, with examples of current conduction paths added.
- the solid arrows indicate the current conduction paths.
- the heat dissipation structure 10 includes an IC 21, a plurality of mounted electronic components 22, a circuit board 30, a heat dissipation member 40, a heat dissipation sheet 51, a heat dissipation sheet 52, a heat dissipation plate 60, a heat pipe 71, a fan 72, heat dissipation fins 73, and a housing 90.
- the housing 90 includes a housing main plate 91 and a support 92.
- the housing 90 is made of metal or the like and is conductive.
- the housing 90 may be made of a material that is not conductive, but in that case, it is preferable that the housing 90 includes at least a conductor portion that provides a ground (reference potential, earth potential) for the housing.
- the housing main board 91 has a main surface 911 and a main surface 912.
- the main surface 911 corresponds to the third surface of the present invention.
- the support 92 stands at a predetermined height from the main surface 911. It is preferable that the height of the support 92 is as low as possible within the range in which the multiple mounted electronic components 22, the heat dissipation member 40, and the heat dissipation sheet 51 are arranged as described below. This allows the structure that fixes the circuit board 30 to the housing 90 to be as low-profile as possible.
- the circuit board 30 has a first surface 301 and a second surface 302.
- a signal electrode 31 and a ground electrode 32G are formed inside the circuit board 30.
- the signal electrode 31 and the ground electrode 32G are electrodes that extend in a direction parallel to the first surface 301 and the second surface 302, or are electrodes that are wired in a parallel direction.
- a plurality of ground via electrodes 33VG and a plurality of ground via electrodes 34VG are formed inside the circuit board 30.
- the plurality of ground via electrodes 33VG are electrodes extending in the thickness direction of the circuit board 30 (a direction perpendicular to the first surface 301 and the second surface 302).
- the plurality of ground via electrodes 33VG are connected to the ground electrode 32G and are connected to an IC ground land electrode (not shown) formed on the first surface 301.
- the plurality of ground via electrodes 34VG are connected to the ground electrode 32G and are exposed on the second surface 302 or are connected to an external ground electrode (not shown) formed on the second surface 302.
- the circuit board 30 is fixed to the housing 90 with the second surface 302 facing the main surface 911 of the housing main board 91 and the tip of the support 92 in contact with the second surface 302.
- the IC 21 is, for example, a CPU, a GPU, or a SoC, and is a heat-generating component that generates heat when driven.
- the IC 21 includes an IC body 210, a wiring board 211, a number of signal terminals 213N, a number of first ground terminals 213Gi, and a number of second ground terminals 213Go.
- the IC body 210 is mounted on one main surface of the wiring board 211.
- the signal terminals 213N, the first ground terminals 213Gi, and the second ground terminals 213Go are, for example, solder bumps, and are formed in a two-dimensional arrangement on the other main surface of the wiring board 211.
- the first ground terminals 213Gi are arranged in the center of the IC 21, and the second ground terminals 213Go are arranged near the outer end of the IC 21 (see FIG. 4).
- the IC 21 is mounted on the first surface 301 of the circuit board 30.
- the multiple signal terminals 213N, the multiple first ground terminals 213Gi, and the multiple second ground terminals 213Go are electrically and physically connected to the respective land electrodes of the circuit board 30.
- the signal terminals 213N are connected to the signal electrodes 31 of the circuit board 30 through the signal land electrodes (not shown) and the signal via electrodes (not shown). Also, as shown in FIG. 2, the first ground terminals 213Gi and the second ground terminals 213Go are connected to the ground electrode 32G of the circuit board 30 through the IC ground land electrodes (not shown) and the ground via electrodes 33VG.
- the multiple mounted electronic components 22 are, for example, decoupling capacitors for the IC 21. Note that the types of the multiple mounted electronic components 22 are not limited to this.
- the multiple mounted electronic components 22 are mounted on the second surface 302 of the circuit board 30.
- the multiple mounted electronic components 22 are connected to the IC 21 through the circuit board 30 in a predetermined pattern (not shown).
- the multiple mounted electronic components 22 are mounted on the second surface 302 in a predetermined arrangement pattern (e.g., a two-dimensional array pattern). Between the multiple mounted electronic components 22, exposed portions of the multiple ground via electrodes 34VG or multiple ground external electrodes respectively connected to the multiple ground via electrodes 34VG are arranged. In a plan view of the second surface 302 of the circuit board 30, the exposed portions of the multiple ground via electrodes 34VG or the multiple ground external electrodes are arranged in positions that do not overlap the multiple mounted electronic components 22.
- the heat dissipation member 40 is a material with high thermal conductivity, such as copper or a copper alloy. Note that the heat dissipation member 40 may be made of other materials as long as it has a higher thermal conductivity than the circuit board 30 or air. However, it is preferable that the heat dissipation member 40 is made of a material that is easy to join with solder or the like.
- the heat dissipation member 40 includes a flat plate 41 having a predetermined area and a plurality of foot pins 42.
- the flat plate 41 has a main surface 411 and a main surface 412.
- the multiple foot pins 42 are rod-shaped and have a predetermined height.
- the multiple foot pins 42 are spaced apart along the outer periphery of the flat plate 41.
- the multiple foot pins 42 stand upright at a predetermined height from the main surface 412 of the flat plate 41.
- the multiple foot pins 42 have the same height, which is higher than the height of the multiple mounted electronic components 22.
- the heat dissipation member 40 is mounted on the second surface 302 of the circuit board 30. At this time, the heat dissipation member 40 is mounted in a position where the flat plate 41 is parallel to the second surface 302 and overlaps the IC 21 in a plan view.
- the tips of the multiple foot pins 42 are mounted on the second surface 302 of the circuit board 30.
- the multiple foot pins 42 are inserted between the multiple mount-type electronic components 22 and mounted on the second surface 302 so as not to come into contact with the multiple mount-type electronic components 22.
- the foot pins 42 are higher than the mount-type electronic components 22. Therefore, even if the flat plate 41 is positioned so as to overlap the multiple mount-type electronic components 22 in a plan view, it does not come into electrical or physical contact with the multiple mount-type electronic components 22.
- some of the multiple foot pins 42 are mounted on the exposed portions of the multiple ground via electrodes 34VG or on the multiple ground via electrodes 34VG, respectively, and are electrically and physically connected.
- the multiple foot pins 42 are arranged outside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple first ground terminals 213Gi and inside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple second ground terminals 213Go.
- at least one of the multiple foot pins 42 is arranged between the first ground terminal 213Gi and the second ground terminal 213Go in the direction from the center to the outer edge of the IC 21 (for example, the horizontal direction in FIG. 4).
- FIG. 4 in a plan view, the multiple foot pins 42 are arranged outside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple first ground terminals 213Gi and inside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple second ground terminals 213Go.
- the first ground terminal 213Gi1 and the second ground terminal 213Go1 are lined up in the direction from the center to the outer edge of the IC 21 (for example, the horizontal direction in FIG. 4), and the multiple foot pins 42 lined up in the vertical direction are arranged between them.
- the heat dissipation sheet 51 is a so-called TIM (Thermal Interface Material), which has high thermal conductivity and is made of a material that can be deformed by pressure, etc.
- TIM Thermal Interface Material
- the heat dissipation sheet 51 is disposed between the flat plate 41 of the heat dissipation member 40 and the main surface 911 of the main housing board 91 of the housing 90.
- the heat dissipation sheet 51 is disposed in a state in which it receives pressure from the flat plate 41 and the main housing board 91, and is in close contact with the flat plate 41 and the main surface 911 of the main housing board 91.
- the heat dissipation member 40 is indirectly in contact with the main surface 911 of the housing main board 91 via the heat dissipation sheet 51.
- the heat dissipation sheet 52 is a TIM like the heat dissipation sheet 51, and is in close contact with the top surface of the IC body 210 of the IC 21 (the surface opposite to the surface that is mounted on the wiring board 211).
- the heat dissipation plate 60 has high thermal conductivity.
- the heat dissipation plate 60 covers the IC 21 and the heat dissipation sheet 51 from the top side.
- the heat dissipation plate 60 is fixed to the circuit board 30 and is in close contact with the heat dissipation sheet 51.
- the heat pipe 71 has a shape that expands in a direction parallel to the first surface 301 of the circuit board 30.
- the heat pipe 71 is fixed to the heat dissipation plate 60 and is thermally connected to it.
- a fan 72 and heat dissipation fins 73 are installed on the heat pipe 71.
- the fan 72 is positioned so as to generate an airflow toward the heat dissipation fins 73.
- Heat dissipation on the top side of IC21 Heat on the top surface side is conducted from IC 21 through heat dissipation sheet 51 and heat dissipation plate 60 to heat pipe 71.
- the heat conducted to heat pipe 71 is conducted through heat pipe 71 and then to heat dissipation fin 73.
- Heat dissipation fin 73 dissipates the heat by airflow from fan 72. In this way, the heat conducted to the top surface side of IC 21 is effectively dissipated.
- heat pipe 71 it is possible to realize a low-profile heat dissipation structure 10 while suppressing a decrease in the heat dissipation effect.
- the first ground terminals 213Gi and the second ground terminals 213Go of the IC 21 are connected to the foot pins 42 of the heat dissipation member 40 through the ground via electrodes 33VG, the ground electrode 32G, and the ground via electrodes 34VG.
- the first ground terminals 213Gi and the second ground terminals 213Go, the ground via electrodes 33VG, the ground electrode 32G, the ground via electrodes 34VG, and the heat dissipation member 40 are made of metal and have high thermal conductivity. Therefore, the heat of the IC 21 is conducted to the foot pins 42 of the heat dissipation member 40 through these paths.
- the heat conducted to the multiple leg pins 42 of the heat dissipation member 40 is diffused in a planar manner by the flat plate 41 and conducted to the heat dissipation sheet 51 over a specified area.
- the heat conducted to the heat dissipation sheet 51 is conducted to the main housing plate 91 of the housing 90 and dissipated to the outside.
- the heat of the IC 21 can be dissipated from the housing 90 side as well.
- the heat dissipation member 40 is disposed in the narrow space between the circuit board 30 and the main housing board 91, so the size of the heat dissipation structure can be suppressed.
- the heat dissipation structure 10 can improve heat dissipation performance without increasing the size of the heat dissipation structure on the top side of the IC 21 as in the conventional case.
- the heat dissipation member 40 is connected to the circuit board 30 by a plurality of foot pins 42, each of which is rod-shaped. This allows connection to the circuit board 30 through the second surface 302 side (main housing board 91 side) of the circuit board 30, even if multiple mount-type electronic components 22 are densely mounted on the second surface 302 side (main housing board 91 side) of the circuit board 30. Therefore, the heat dissipation structure 10 can achieve heat dissipation without changing the mounting pattern of the multiple mount-type electronic components 22. Furthermore, by adopting the heat dissipation structure 10, it is possible to prevent the multiple foot pins 42 from connecting to the multiple mount-type electronic components 22, and to prevent physical and electrical interference with the multiple mount-type electronic components 22. As a result, the heat dissipation structure 10 can achieve heat dissipation while maintaining electrical insulation.
- the heat dissipation structure 10 can improve heat dissipation while preventing the size from increasing and maintaining electrical insulation.
- the heat dissipation structure 10 it is possible to suppress the increase in cost and size that would be caused by multiple heat pipes 71 on the top side of the IC 21. Furthermore, by adopting the heat dissipation structure 10, it is possible to simplify the heat dissipation design on the top side of the IC 21, and it is possible to suppress the increase in cost and size.
- a certain ground via electrode 34VG and a plurality of foot pins 42 are disposed between the first ground terminal 213Gi and the second ground terminal 213Go in a direction from the center toward the outer end of the IC 21 (for example, the horizontal direction in FIG. 4), as described above.
- a current flowing from the first ground terminal 213Gi toward the ground via electrode 34VG and the plurality of foot pins 42 (for example, the current igi in FIG. 4) and a current flowing from the second ground terminal 213Go toward the ground via electrode 34VG and the plurality of foot pins 42 (for example, the current iGo in FIG. 4) flow in opposite directions.
- the heat dissipation member 40 is also electrically connected to the ground electrode 32G of the circuit board 30 at multiple points by multiple foot pins 42. This configuration reduces fluctuations in the ground potential.
- Figure 6(A) is a schematic diagram showing the concept of magnetic field cancellation
- Figure 6(B) shows a partial equivalent circuit diagram and an image of the current.
- the IC 21 has a switching element Qi that connects to the inner ground via electrode 33VGi and a switching element Qo that connects to the outer ground via electrode 33VGo for the multiple foot pins 42 and the multiple ground via electrodes 34VG connected to them.
- a high-frequency current igo corresponding to the switching frequency flows through the ground via electrode 33VGo and the ground electrode 32G to the ground via electrode 34VG.
- the current igo flows from the ground electrode 32G to the foot pin 42 (heat dissipation member 40) for the ground via electrode 34VG.
- the ground via electrode 34VG (and the foot pin 42) is a conductor and appears as an inductor Lv to the high-frequency current igo. Therefore, a magnetic field is generated by the current igo flowing through the ground via electrode 34VG. When such a magnetic field is generated, a current igoL flows through the ground via electrode 34VG so as to cancel out this magnetic field. As shown by the thick dashed arrow in FIG. 6B, the current igoL flows from the foot pin 42 (heat dissipation member 40) toward the ground electrode 32G, and flows in the direction of the inner ground via electrode 33VGi to which the switching element Qi in the ground electrode 32G is connected.
- the current igoL is a current in the opposite direction to the current igi that flows from the switching element Qi to the heat dissipation member 40 through the ground via electrode 34VG.
- the magnetic field generated by the current igoL and the magnetic field generated by the current igi cancel each other out and weaken each other.
- Fig. 7 is a side cross-sectional view showing the heat dissipation structure according to the second embodiment of the present invention. Note that Fig. 7 is not a strict cross-sectional view, as in Fig. 1, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand. Also, in Fig. 7, as in Fig. 1, reference numerals are omitted as appropriate to make the drawing easier to understand.
- Figure 8 is an enlarged view of Figure 7, with examples of heat conduction paths added.
- the dotted arrows indicate the heat conduction paths.
- the heat dissipation structure 10A according to the second embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a vapor chamber 80.
- the other configuration of the heat dissipation structure 10A is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
- the heat dissipation structure 10A includes a vapor chamber 80.
- the vapor chamber 80 is flat.
- the planar area of the vapor chamber 80 is larger than the planar area of the flat plate 41 of the heat dissipation member 40.
- the vapor chamber 80 is disposed between the heat dissipation sheet 51 and the main surface 911 of the main housing board 91.
- the vapor chamber 80 is in close contact with the heat dissipation sheet 51 and is in surface contact with the main surface 911 of the main housing board 91.
- the heat conducted to the heat dissipation member 40 is conducted to the vapor chamber 80 through the heat dissipation sheet 51.
- the vapor chamber 80 diffuses heat in a planar manner.
- the heat diffused in a planar manner is dissipated to the outside through the main housing plate 91.
- the heat dissipation structure 10A can increase the heat dissipation area on the side of the main housing board 91, improving heat dissipation efficiency.
- the vapor chamber 80 can be made thinner than fins, etc. This improves heat dissipation while preventing the gap between the circuit board 30 and the main housing board 91 from becoming significantly wider. Therefore, the heat dissipation structure 10A can achieve even higher heat dissipation performance while preventing it from becoming larger.
- FIG. 9 is a side cross-sectional view showing the heat dissipation structure according to the third embodiment of the present invention.
- Fig. 9 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, not a strict cross-section, as in Fig. 1.
- reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
- the heat dissipation structure 10B according to the third embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation sheet 51B.
- the other configuration of the heat dissipation structure 10B is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
- the heat dissipation structure 10B includes a heat dissipation sheet 51B.
- the heat dissipation sheet 51B is conductive.
- the heat dissipation member 40 can be connected to the ground potential of the housing 90 through the heat dissipation sheet 51B. This makes the ground potential of the IC 21 even more stable.
- FIG. 10 is a side cross-sectional view showing the heat dissipation structure according to the fourth embodiment of the present invention.
- Fig. 10 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, rather than showing a strict cross section, as in Fig. 1.
- reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
- the heat dissipation structure 10C according to the fourth embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation sheet 51C and a vapor chamber 80.
- the other configuration of the heat dissipation structure 10C is similar to that of the heat dissipation structure 10, and a description of similar parts will be omitted.
- the heat dissipation structure 10C has a configuration that combines the heat dissipation structures 10A and 10B.
- the heat dissipation structure 10C includes a heat dissipation sheet 51C and a vapor chamber 80.
- the heat dissipation sheet 51C is electrically conductive.
- the vapor chamber 80 is disposed between the heat dissipation sheet 51C and the main surface 911 of the main housing board 91.
- the vapor chamber 80 is in close contact with the heat dissipation sheet 51C and is in surface contact with the main surface 911 of the main housing board 91.
- the heat dissipation member 40 can be connected to the ground potential of the housing 90 through the heat dissipation sheet 51C and the vapor chamber 80. This further stabilizes the ground potential of the IC 21. Also, the inclusion of the vapor chamber 80 improves heat dissipation.
- FIG. 11 is an enlarged side cross-sectional view showing the heat dissipation structure according to the fifth embodiment of the present invention, with an example of a heat conduction path added.
- dotted arrows indicate the heat conduction path.
- Fig. 11 does not show a strict cross-section, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand.
- reference numerals are omitted as appropriate to make the drawing easier to see.
- the heat dissipation structure 10D according to the fifth embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation member 40D and an insulating member 59.
- the other configuration of the heat dissipation structure 10D is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
- the heat dissipation structure 10D includes a heat dissipation member 40D and an insulating member 59.
- the heat dissipation member 40D differs from the heat dissipation member 40 according to the first embodiment in that it has a through hole 419 formed in the flat plate 41.
- the rest of the configuration of the heat dissipation member 40D is the same as that of the heat dissipation member 40, and a description of similar parts will be omitted.
- the through hole 419 penetrates the flat plate 41 in the thickness direction.
- When there is one through hole 419 it is formed at a position different from the center when the flat plate 41 is viewed in a plan view.
- When there are multiple through holes 419 they are formed at asymmetric positions when the flat plate 41 is viewed in a plan view.
- the through hole 419 indicates the directionality and shape of the flat plate 41, in other words, the directionality and shape of the heat dissipation member 40D.
- the heat dissipation member 40D can be easily mounted on the circuit board 30 at a highly accurate position using surface mounting technology.
- the insulating member 59 is filled between the second surface 302 of the circuit board 30 and the flat plate 41.
- the insulating member 59 is flexible when filled, and is solidified by heating or the like.
- the insulating member 59 is made of a material with higher thermal conductivity than air, for example, insulating resin.
- the insulating member 59 can also be made of insulating resin mixed with multiple small metal balls, each of which is insulated and shielded. By providing multiple small metal balls, each of which is insulated and shielded, the thermal conductivity of the insulating member 59 can be improved.
- the heat of the circuit board 30 is conducted to the flat plate 41 of the heat dissipation member 40D not only through the multiple foot pins 42 but also through the insulating member 59. This allows the heat dissipation structure 10D to achieve even higher heat dissipation performance.
- the flat plate 41 has a through hole 419, the insulating material 59, which has fluidity when filled, can be easily supplied between the flat plate 41 and the circuit board 30 through the through hole 419.
- the heat dissipation structure includes the heat pipe 71, the fan 72, and the heat dissipation fins 73, but it is also possible to omit the fan 72, omit the fan 72 and the heat dissipation fins 73, or omit the heat pipe 71, the fan 72, and the heat dissipation fins 73.
- the fan 72 omits the fan 72 and the heat dissipation fins 73
- high heat dissipation can be realized, so it is preferable to provide these.
- ⁇ 3> A heat dissipation structure as described in ⁇ 1> or ⁇ 2>, in which the flat plate of the heat dissipation member is in direct or indirect surface contact with the third surface of the housing.
- a heat dissipation sheet that can be deformed by pressure is provided, The heat dissipation structure described in ⁇ 3>, wherein the flat plate contacts the third surface via the heat dissipation sheet.
- a flat vapor chamber is provided, The planar area of the vapor chamber is larger than the planar area of the flat plate, The heat dissipation structure described in ⁇ 3>, wherein the vapor chamber is disposed between the flat plate and the third surface.
- ⁇ 6> A heat dissipation structure according to any one of ⁇ 1> to ⁇ 5>, in which the heat dissipation member is made of copper or a copper alloy.
- a heat dissipation structure according to any one of ⁇ 1> to ⁇ 7>, in which the area of the flat plate is equal to or smaller than the planar area of the IC.
- the heat pipe is the IC is in direct or indirect contact with a surface of the IC opposite to the circuit board; A shape extending in a direction parallel to the first surface.
- the heat dissipation structure according to any one of ⁇ 1> to ⁇ 8>.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
A heat dissipation structure (10) is provided with: a circuit board (30) having a first surface (301) and a second surface (302), with an IC (21) that is a heat-generating source mounted on the first surface (301); a housing (90) having a main surface (911) proximate to and opposing the second surface (302); and a heat dissipation member (40) that is mounted on the second surface (302) and has high thermal conductivity. The heat dissipation member (40) is provided with a flat plate (41) having a predetermined area, and a plurality of rod-shaped leg pins (42) connected to the flat plate (41) and mounted on the second surface. The circuit board (30) is provided with a ground electrode (32G) for connecting to a reference potential. The plurality of leg pins (42) are connected to the ground electrode (32G). The IC (21) is provided with a first ground terminal (213Gi) and a second ground terminal (213Go) each connected to the ground electrode (32G), the first ground terminal (213Gi) being disposed in the center and the second ground terminal (213Go) on the outer end side in a plan view of the circuit board (30). At least one of the plurality of leg pins (42) is disposed between the first ground terminal (213Gi) and the second ground terminal (213Go) in a direction from the center of the IC (21) toward the outer end.
Description
本発明は、IC等の発熱素子を放熱する放熱構造に関する。
The present invention relates to a heat dissipation structure that dissipates heat from heat-generating elements such as ICs.
特許文献1には、放熱構造体が記載されている。特許文献1の放熱構造体は、基板、集積回路、サーマルパッド、ヒートシンク、および、ベース筐体を備える。
Patent document 1 describes a heat dissipation structure. The heat dissipation structure in Patent document 1 includes a substrate, an integrated circuit, a thermal pad, a heat sink, and a base housing.
基板は、ベース筐体に設置される。集積回路は、発熱体であり、基板に配置される。サーマルパッドは、集積回路の表面(基板への実装面と反対側の面)に配置され、このサーマルパッドを介してヒートシンクが配置される。
The board is placed in the base housing. The integrated circuit, which is a heat generating element, is placed on the board. A thermal pad is placed on the surface of the integrated circuit (the surface opposite to the surface that is mounted on the board), and a heat sink is placed across this thermal pad.
現在のCPU、GPU等の集積回路の発熱量は大きい。したがって、特許文献1に示すようなヒートシンクによって放熱量を増加させようとすると、ヒートシンクをさらに大きくしなければならない。このため、集積回路が実装される電子機器の大型化を招いてしまう。
Current integrated circuits such as CPUs and GPUs generate a large amount of heat. Therefore, if an attempt is made to increase the amount of heat dissipation using a heat sink as shown in Patent Document 1, the heat sink must be made even larger. This leads to an increase in the size of the electronic device in which the integrated circuit is mounted.
また、ヒートパイプやファンを取り付けることも考えられる。しかしながら、この構成においても、放熱量をさらに増加させるには、ヒートパイプの個数を増加させること、ファンの回転数を上げる、或いはより大径のファンを採用すること等が必要になる。この場合も、集積回路が実装される電子機器の大型化を招いてしまう。また、回転数を上げると静粛性が損なわれてしまう。
It is also possible to install heat pipes and fans. However, even with this configuration, in order to further increase the amount of heat dissipation, it would be necessary to increase the number of heat pipes, increase the fan rotation speed, or adopt a fan with a larger diameter. This would also result in an increase in the size of the electronic device in which the integrated circuit is mounted. Furthermore, increasing the rotation speed would impair quietness.
また、集積回路の熱は基板に伝わるので、基板を通じてベース筐体に放熱することも考えられる。しかしながら、現在のCPU、GPU等の場合、基板におけるCPU、GPUの実装面の裏側(反対側)の面、すなわち、ベース筐体に近接する面には、多くのデカップリングコンデンサ等の電子部品が高密度で実装されている。このため、電気的な絶縁性等を保持しながら、基板からベース筐体への効率的な放熱を行うことは難しかった。
In addition, since heat from integrated circuits is transferred to the board, it is possible to dissipate the heat to the base housing through the board. However, in the case of current CPUs, GPUs, etc., the back (opposite) surface of the board to the surface on which the CPU or GPU is mounted, i.e., the surface closest to the base housing, has many electronic components such as decoupling capacitors densely mounted on it. For this reason, it has been difficult to efficiently dissipate heat from the board to the base housing while maintaining electrical insulation, etc.
したがって、本発明の目的は、大型化を抑制し、電気的な絶縁性を保持して、放熱性を向上した放熱構造を実現することにある。
The object of the present invention is therefore to realize a heat dissipation structure that is small in size, maintains electrical insulation, and improves heat dissipation.
この発明の放熱構造は、第1面と第2面とを有し、発熱源のICが第1面に実装された回路基板と、第2面に近接して対向する第3面を有する筐体と、第2面に実装され、高い熱伝導性を有する放熱部材と、を備える。
The heat dissipation structure of the present invention comprises a circuit board having a first surface and a second surface, with an IC that is a heat source mounted on the first surface, a housing having a third surface that faces closely to the second surface, and a heat dissipation member that is mounted on the second surface and has high thermal conductivity.
放熱部材は、所定面積を有する平板と、平板に接続する棒状からなり、第2面に実装される複数の足ピンと、を備える。回路基板は、基準電位に接続するためのグランド電極を備える。複数の足ピンは、グランド電極に接続される。ICは、それぞれがグランド電極に接続され、回路基板の平面視において中央側に配置される第1グランド端子と外端側に配置される第2グランド端子とを備える。複数の足ピンの少なくとも1つは、ICの中央から外端に向かう方向において、第1グランド端子と第2グランド端子との間に配置される。
The heat dissipation member comprises a flat plate having a predetermined area, and a plurality of rod-shaped foot pins connected to the flat plate and mounted on the second surface. The circuit board comprises a ground electrode for connection to a reference potential. The plurality of foot pins are connected to the ground electrode. The IC comprises a first ground terminal that is connected to the ground electrode and that is located at the center of the circuit board in a plan view, and a second ground terminal that is located at the outer end. At least one of the plurality of foot pins is located between the first ground terminal and the second ground terminal in the direction from the center to the outer end of the IC.
この構成では、放熱部材によって、ICの熱は、回路基板を通じてIC側とは反対側に伝導される。これにより、ICからの熱の外部への伝導量を大きくできる。また、放熱部材は、棒状の足ピンによって回路基板に接続するため、例えば、回路基板の第2面に実装型電子部品が実装されていても、この実装部分を避けて、回路基板に接続できる。これにより、放熱部材を用いることによる電気的な絶縁性を保持できる。
In this configuration, the heat dissipation member conducts the heat of the IC through the circuit board to the side opposite the IC. This increases the amount of heat conducted from the IC to the outside. In addition, because the heat dissipation member is connected to the circuit board by rod-shaped foot pins, for example, even if mountable electronic components are mounted on the second surface of the circuit board, it can be connected to the circuit board while avoiding this mounting area. This allows the electrical insulation provided by using the heat dissipation member to be maintained.
また、足ピンの両側にグランド端子が配置されることで、それぞれのグランド端子から足ピンに流れる電流の向きは逆になる。これにより、それぞれのグランド端子から流れる電流によって発生する磁界が打ち消しあって低減され、グランドインピーダンスが低下し、グランド電位の揺れが低減する。したがって、ICの動作は安定する。
In addition, by placing ground terminals on both sides of the foot pin, the currents flowing from each ground terminal to the foot pin in the opposite directions. This causes the magnetic fields generated by the currents flowing from each ground terminal to cancel each other out, lowering the ground impedance and reducing fluctuations in the ground potential. This stabilizes the operation of the IC.
この発明の放熱構造によれば、大型化を抑制し、電気的な絶縁性を保持して、放熱性を向上できる。
The heat dissipation structure of this invention can prevent the device from becoming too large, maintain electrical insulation, and improve heat dissipation.
[第1の実施形態]
本発明の第1の実施形態に係る放熱構造について、図を参照して説明する。 [First embodiment]
A heat dissipation structure according to a first embodiment of the present invention will be described with reference to the drawings.
本発明の第1の実施形態に係る放熱構造について、図を参照して説明する。 [First embodiment]
A heat dissipation structure according to a first embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の第1の実施形態に係る放熱構造を示す側面断面図である。なお、図1は、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図1では、図を見易くするために符号を適宜省略している。
FIG. 1 is a side cross-sectional view showing a heat dissipation structure according to a first embodiment of the present invention. Note that FIG. 1 does not show a strict cross-section, but is a side cross-sectional view viewed to make the heat dissipation structure easier to understand. Also, in FIG. 1, reference numerals have been omitted as appropriate to make the drawing easier to read.
図2は、図1の拡大図であり、熱の伝導経路の例を追加した図である。図2において、点線の矢印が熱の伝導経路を示す。
Figure 2 is an enlarged view of Figure 1, with examples of heat conduction paths added. In Figure 2, the dotted arrows indicate the heat conduction paths.
図3は、本発明の第1の実施形態に係る放熱部材の第1平面図、第2平面図、側面図、および、側面断面図である。図4は、ICの各種端子と放熱部材の足ピンとの位置関係を示す図である。
FIG. 3 shows a first plan view, a second plan view, a side view, and a cross-sectional side view of a heat dissipation member according to a first embodiment of the present invention. FIG. 4 shows the positional relationship between various terminals of an IC and the foot pins of the heat dissipation member.
図5は、図1の拡大図であり、電流の伝導経路の例を追加した図である。図5において、実線の矢印が電流の伝導経路を示す。
Figure 5 is an enlarged view of Figure 1, with examples of current conduction paths added. In Figure 5, the solid arrows indicate the current conduction paths.
図1、図2に示すように、放熱構造10は、IC21、複数の実装型電子部品22、回路基板30、放熱部材40、放熱シート51、放熱シート52、放熱プレート60、ヒートパイプ71、ファン72、放熱フィン73、および、筐体90を備える。
As shown in Figures 1 and 2, the heat dissipation structure 10 includes an IC 21, a plurality of mounted electronic components 22, a circuit board 30, a heat dissipation member 40, a heat dissipation sheet 51, a heat dissipation sheet 52, a heat dissipation plate 60, a heat pipe 71, a fan 72, heat dissipation fins 73, and a housing 90.
筐体90は、筐体主板91と支持体92とを備える。筐体90は、金属等からなり、導電性を有する。なお、筐体90は、導電性を有さない材料から構成されていてもよいが、その場合、筐体用のグランド(基準電位、接地電位)を実現する導体部を少なくとも備えていることが好ましい。
The housing 90 includes a housing main plate 91 and a support 92. The housing 90 is made of metal or the like and is conductive. The housing 90 may be made of a material that is not conductive, but in that case, it is preferable that the housing 90 includes at least a conductor portion that provides a ground (reference potential, earth potential) for the housing.
筐体主板91は、主面911と主面912とを有する。主面911が本発明の第3面に対応する。支持体92は、主面911から所定高さで立設している。支持体92の高さは、複数の実装型電子部品22、放熱部材40、放熱シート51を後述のように配置する範囲においてできるだけ低いことが好ましい。これにより、回路基板30を筐体90に固定する構造を可能な限り低背化できる。
The housing main board 91 has a main surface 911 and a main surface 912. The main surface 911 corresponds to the third surface of the present invention. The support 92 stands at a predetermined height from the main surface 911. It is preferable that the height of the support 92 is as low as possible within the range in which the multiple mounted electronic components 22, the heat dissipation member 40, and the heat dissipation sheet 51 are arranged as described below. This allows the structure that fixes the circuit board 30 to the housing 90 to be as low-profile as possible.
回路基板30は、第1面301と第2面302とを有する。回路基板30の内部には、信号用電極31、および、グランド電極32Gが形成されている。信号用電極31およびグランド電極32Gは、第1面301および第2面302に平行な方向に広がる、または平行な方向に配線される電極である。
The circuit board 30 has a first surface 301 and a second surface 302. A signal electrode 31 and a ground electrode 32G are formed inside the circuit board 30. The signal electrode 31 and the ground electrode 32G are electrodes that extend in a direction parallel to the first surface 301 and the second surface 302, or are electrodes that are wired in a parallel direction.
また、回路基板30の内部は、複数のグランド用ビア電極33VGおよび複数のグランド用ビア電極34VGが形成されている。複数のグランド用ビア電極33VGは、回路基板30の厚み方向(第1面301および第2面302に直交する方向)に延びる電極である。複数のグランド用ビア電極33VGは、グランド電極32Gに接続するとともに、第1面301に形成されたICグランド用ランド電極(図示を省略)に接続する。複数のグランド用ビア電極34VGは、グランド電極32Gに接続するとともに、第2面302に露出するか、第2面302に形成されたグランド用外部電極(図示を省略)に接続する。
In addition, a plurality of ground via electrodes 33VG and a plurality of ground via electrodes 34VG are formed inside the circuit board 30. The plurality of ground via electrodes 33VG are electrodes extending in the thickness direction of the circuit board 30 (a direction perpendicular to the first surface 301 and the second surface 302). The plurality of ground via electrodes 33VG are connected to the ground electrode 32G and are connected to an IC ground land electrode (not shown) formed on the first surface 301. The plurality of ground via electrodes 34VG are connected to the ground electrode 32G and are exposed on the second surface 302 or are connected to an external ground electrode (not shown) formed on the second surface 302.
回路基板30は、第2面302が筐体主板91の主面911に対向し、支持体92の先端が第2面302に接する状態で、筐体90に固定される。
The circuit board 30 is fixed to the housing 90 with the second surface 302 facing the main surface 911 of the housing main board 91 and the tip of the support 92 in contact with the second surface 302.
IC21は、例えば、CPU、GPU、SoC等であり、駆動によって熱を発生する発熱部材である。IC21は、IC本体210、配線基板211、複数の信号用端子213N、複数の第1グランド端子213Gi、および、複数の第2グランド端子213Goを備える。
The IC 21 is, for example, a CPU, a GPU, or a SoC, and is a heat-generating component that generates heat when driven. The IC 21 includes an IC body 210, a wiring board 211, a number of signal terminals 213N, a number of first ground terminals 213Gi, and a number of second ground terminals 213Go.
IC本体210は、配線基板211の一方主面に実装される。
The IC body 210 is mounted on one main surface of the wiring board 211.
複数の信号用端子213N、複数の第1グランド端子213Gi、および、複数の第2グランド端子213Goは、例えば、はんだバンプであり、配線基板211の他方主面に二次元配置された状態で形成される。この際、IC21を平面視して、複数の第1グランド端子213Giは、IC21の中央部分に配置され、複数の第2グランド端子213Goは、IC21の外端付近に配置される(図4を参照)。
The signal terminals 213N, the first ground terminals 213Gi, and the second ground terminals 213Go are, for example, solder bumps, and are formed in a two-dimensional arrangement on the other main surface of the wiring board 211. In this case, when the IC 21 is viewed in a plan view, the first ground terminals 213Gi are arranged in the center of the IC 21, and the second ground terminals 213Go are arranged near the outer end of the IC 21 (see FIG. 4).
IC21は、回路基板30の第1面301に実装される。この際、複数の信号用端子213N、複数の第1グランド端子213Gi、および、複数の第2グランド端子213Goは、回路基板30の各ランド電極に、電気的、物理的に接続する。
The IC 21 is mounted on the first surface 301 of the circuit board 30. At this time, the multiple signal terminals 213N, the multiple first ground terminals 213Gi, and the multiple second ground terminals 213Go are electrically and physically connected to the respective land electrodes of the circuit board 30.
これにより、図2に示すように、複数の信号用端子213Nは、複数の信号用ランド電極(図示を省略)、複数の信号用ビア電極(図示を省略)をそれぞれに通じて、回路基板30の信号用電極31に接続する。また、図2に示すように、複数の第1グランド端子213Gi、および、複数の第2グランド端子213Goは、複数のICグランド用ランド電極(図示を省略)、複数のグランド用ビア電極33VGをそれぞれに通じて、回路基板30のグランド電極32Gに接続する。
2, the signal terminals 213N are connected to the signal electrodes 31 of the circuit board 30 through the signal land electrodes (not shown) and the signal via electrodes (not shown). Also, as shown in FIG. 2, the first ground terminals 213Gi and the second ground terminals 213Go are connected to the ground electrode 32G of the circuit board 30 through the IC ground land electrodes (not shown) and the ground via electrodes 33VG.
複数の実装型電子部品22は、例えば、IC21に対するデカップリングコンデンサである。なお、複数の実装型電子部品22の種類は、これに限るものではない。
The multiple mounted electronic components 22 are, for example, decoupling capacitors for the IC 21. Note that the types of the multiple mounted electronic components 22 are not limited to this.
複数の実装型電子部品22は、回路基板30の第2面302に実装される。なお、複数の実装型電子部品22は、回路基板30を通じてIC21に対して所定パターンで接続されている(図示省略)。
The multiple mounted electronic components 22 are mounted on the second surface 302 of the circuit board 30. The multiple mounted electronic components 22 are connected to the IC 21 through the circuit board 30 in a predetermined pattern (not shown).
複数の実装型電子部品22は、所定の配置パターン(例えば、二次元配列パターン)で第2面302に実装される。複数の実装型電子部品22の間には、複数のグランド用ビア電極34VGの露出部、または、複数のグランド用ビア電極34VGにそれぞれ接続する複数のグランド用外部電極が配置される。回路基板30の第2面302の平面視において、複数のグランド用ビア電極34VGの露出部または複数のグランド用外部電極は、複数の実装型電子部品22に重ならない位置に配置される。
The multiple mounted electronic components 22 are mounted on the second surface 302 in a predetermined arrangement pattern (e.g., a two-dimensional array pattern). Between the multiple mounted electronic components 22, exposed portions of the multiple ground via electrodes 34VG or multiple ground external electrodes respectively connected to the multiple ground via electrodes 34VG are arranged. In a plan view of the second surface 302 of the circuit board 30, the exposed portions of the multiple ground via electrodes 34VG or the multiple ground external electrodes are arranged in positions that do not overlap the multiple mounted electronic components 22.
放熱部材40は、銅または銅合金等の高い熱伝導性を有する材料である。なお、放熱部材40は、回路基板30や空気よりも高い熱伝導性を有していればよく、他の材料であってもよい。ただし、放熱部材40は、はんだ等での接合が容易な材料であるとよりよい。
The heat dissipation member 40 is a material with high thermal conductivity, such as copper or a copper alloy. Note that the heat dissipation member 40 may be made of other materials as long as it has a higher thermal conductivity than the circuit board 30 or air. However, it is preferable that the heat dissipation member 40 is made of a material that is easy to join with solder or the like.
図3に示すように、放熱部材40は、所定面積を有する平板41、および、複数の足ピン42を備える。平板41は、主面411と主面412とを有する。
As shown in FIG. 3, the heat dissipation member 40 includes a flat plate 41 having a predetermined area and a plurality of foot pins 42. The flat plate 41 has a main surface 411 and a main surface 412.
複数の足ピン42は、所定高さ棒状である。複数の足ピン42は、平板41の外周に沿って間隔で配置されている。複数の足ピン42は、平板41の主面412から所定高さで立設する。複数の足ピン42の高さは同じであり、複数の実装型電子部品22の高さよりも高い。
The multiple foot pins 42 are rod-shaped and have a predetermined height. The multiple foot pins 42 are spaced apart along the outer periphery of the flat plate 41. The multiple foot pins 42 stand upright at a predetermined height from the main surface 412 of the flat plate 41. The multiple foot pins 42 have the same height, which is higher than the height of the multiple mounted electronic components 22.
図1、図2に示すように、放熱部材40は、回路基板30の第2面302に実装される。この際、放熱部材40は、平板41が第2面302に平行になり、平面視において、IC21に重なる位置に実装される。
As shown in Figures 1 and 2, the heat dissipation member 40 is mounted on the second surface 302 of the circuit board 30. At this time, the heat dissipation member 40 is mounted in a position where the flat plate 41 is parallel to the second surface 302 and overlaps the IC 21 in a plan view.
より具体的に、複数の足ピン42の先端は、回路基板30の第2面302に実装される。複数の足ピン42は、複数の実装型電子部品22に接触しないように、複数の実装型電子部品22の間に挿入されて、第2面302に実装される。足ピン42が実装型電子部品22よりも高い。したがって、平板41は、平面視において複数の実装型電子部品22と重なる位置に配置されても、複数の実装型電子部品22と電気的、物理的に接触しない。
More specifically, the tips of the multiple foot pins 42 are mounted on the second surface 302 of the circuit board 30. The multiple foot pins 42 are inserted between the multiple mount-type electronic components 22 and mounted on the second surface 302 so as not to come into contact with the multiple mount-type electronic components 22. The foot pins 42 are higher than the mount-type electronic components 22. Therefore, even if the flat plate 41 is positioned so as to overlap the multiple mount-type electronic components 22 in a plan view, it does not come into electrical or physical contact with the multiple mount-type electronic components 22.
さらに、複数の足ピン42のうちの一部の足ピン42は、複数のグランド用ビア電極34VGの露出部、または、複数のグランド用ビア電極34VGにそれぞれ実装され、電気的、物理的に接続される。
Furthermore, some of the multiple foot pins 42 are mounted on the exposed portions of the multiple ground via electrodes 34VG or on the multiple ground via electrodes 34VG, respectively, and are electrically and physically connected.
さらに、図4に示すように、平面視において、複数の足ピン42は、複数の第1グランド端子213Giを結ぶ環(図4の一点鎖線)で囲まれる領域よりも外側で、複数の第2グランド端子213Goを結ぶ環(図4の二点鎖線)で囲まれる領域よりも内側の範囲に配置される。これにより、複数の足ピン42の少なくとも1つは、IC21の中央から外端に向かう方向(例えば、図4の横方向)において、第1グランド端子213Giと第2グランド端子213Goとの間に配置される。具体的に、図4に示す場合、IC21の中央から外端に向かう方向(例えば、図4の横方向)において、第1グランド端子213Gi1と第2グランド端子213Go1とは並んでいるが、これらの間の位置に、縦方向に並ぶ複数の足ピン42が配置される。
Furthermore, as shown in FIG. 4, in a plan view, the multiple foot pins 42 are arranged outside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple first ground terminals 213Gi and inside the area surrounded by the ring (dashed line in FIG. 4) connecting the multiple second ground terminals 213Go. As a result, at least one of the multiple foot pins 42 is arranged between the first ground terminal 213Gi and the second ground terminal 213Go in the direction from the center to the outer edge of the IC 21 (for example, the horizontal direction in FIG. 4). Specifically, in the case shown in FIG. 4, the first ground terminal 213Gi1 and the second ground terminal 213Go1 are lined up in the direction from the center to the outer edge of the IC 21 (for example, the horizontal direction in FIG. 4), and the multiple foot pins 42 lined up in the vertical direction are arranged between them.
放熱シート51は、所謂TIM(Thermal Interface Material)であり、高い熱伝導性を有し、押圧等によって変形可能な材料からなる。
The heat dissipation sheet 51 is a so-called TIM (Thermal Interface Material), which has high thermal conductivity and is made of a material that can be deformed by pressure, etc.
放熱シート51は、放熱部材40の平板41と筐体90における筐体主板91の主面911との間に配置される。放熱シート51は、平板41と筐体主板91とから圧力を受ける状態で配置されており、平板41と筐体主板91の主面911とに面で密着する。
The heat dissipation sheet 51 is disposed between the flat plate 41 of the heat dissipation member 40 and the main surface 911 of the main housing board 91 of the housing 90. The heat dissipation sheet 51 is disposed in a state in which it receives pressure from the flat plate 41 and the main housing board 91, and is in close contact with the flat plate 41 and the main surface 911 of the main housing board 91.
これにより、放熱部材40は、放熱シート51を介して、筐体主板91の主面911に間接的に接する。
As a result, the heat dissipation member 40 is indirectly in contact with the main surface 911 of the housing main board 91 via the heat dissipation sheet 51.
放熱シート52は、放熱シート51と同様にTIMであり、IC21のIC本体210の天面(配線基板211に実装される面と反対側の面)に密着する。
The heat dissipation sheet 52 is a TIM like the heat dissipation sheet 51, and is in close contact with the top surface of the IC body 210 of the IC 21 (the surface opposite to the surface that is mounted on the wiring board 211).
放熱プレート60は、高い熱伝導性を有する。放熱プレート60は、IC21および放熱シート51を天面側から覆っている。放熱プレート60は、回路基板30に固定されており、放熱シート51に密着する。
The heat dissipation plate 60 has high thermal conductivity. The heat dissipation plate 60 covers the IC 21 and the heat dissipation sheet 51 from the top side. The heat dissipation plate 60 is fixed to the circuit board 30 and is in close contact with the heat dissipation sheet 51.
ヒートパイプ71は、回路基板30の第1面301に平行な方向に広がる形状である。ヒートパイプ71は、放熱プレート60に固定されており、熱的に接続される。ヒートパイプ71には、ファン72および放熱フィン73が設置される。ファン72は、放熱フィン73に向けて気流を発生するように配置される。
The heat pipe 71 has a shape that expands in a direction parallel to the first surface 301 of the circuit board 30. The heat pipe 71 is fixed to the heat dissipation plate 60 and is thermally connected to it. A fan 72 and heat dissipation fins 73 are installed on the heat pipe 71. The fan 72 is positioned so as to generate an airflow toward the heat dissipation fins 73.
(放熱)
このような構成において、IC21が駆動して発熱すると、熱は、IC21の天面側と回路基板30側に伝導する。 (Heat dissipation)
In such a configuration, when theIC 21 is driven and generates heat, the heat is conducted to the top surface side of the IC 21 and to the circuit board 30 side.
このような構成において、IC21が駆動して発熱すると、熱は、IC21の天面側と回路基板30側に伝導する。 (Heat dissipation)
In such a configuration, when the
(IC21の天面側の放熱)
天面側の熱は、IC21から、放熱シート51、放熱プレート60を通じて、ヒートパイプ71に伝導する。ヒートパイプ71に伝導した熱は、ヒートパイプ71を伝導し、放熱フィン73に伝導する。放熱フィン73は、ファン72からの気流によって、放熱する。これにより、IC21の天面側に伝導した熱は、効果的に放熱される。この際、ヒートパイプ71を用いることによって、放熱効果の低下を抑制しながら、放熱構造10の低背化を実現できる。 (Heat dissipation on the top side of IC21)
Heat on the top surface side is conducted fromIC 21 through heat dissipation sheet 51 and heat dissipation plate 60 to heat pipe 71. The heat conducted to heat pipe 71 is conducted through heat pipe 71 and then to heat dissipation fin 73. Heat dissipation fin 73 dissipates the heat by airflow from fan 72. In this way, the heat conducted to the top surface side of IC 21 is effectively dissipated. In this case, by using heat pipe 71, it is possible to realize a low-profile heat dissipation structure 10 while suppressing a decrease in the heat dissipation effect.
天面側の熱は、IC21から、放熱シート51、放熱プレート60を通じて、ヒートパイプ71に伝導する。ヒートパイプ71に伝導した熱は、ヒートパイプ71を伝導し、放熱フィン73に伝導する。放熱フィン73は、ファン72からの気流によって、放熱する。これにより、IC21の天面側に伝導した熱は、効果的に放熱される。この際、ヒートパイプ71を用いることによって、放熱効果の低下を抑制しながら、放熱構造10の低背化を実現できる。 (Heat dissipation on the top side of IC21)
Heat on the top surface side is conducted from
(回路基板30側の放熱)
IC21の熱は、回路基板30に伝導される。この際、図2に示すように、IC21の複数の第1グランド端子213Giおよび複数の第2グランド端子213Goは、複数のグランド用ビア電極33VG、グランド電極32G、および、複数のグランド用ビア電極34VGを通じて、放熱部材40の複数の足ピン42に接続される。複数の第1グランド端子213Giおよび複数の第2グランド端子213Goは、複数のグランド用ビア電極33VG、グランド電極32G、複数のグランド用ビア電極34VG、および、放熱部材40は、金属であり、高い熱伝導性を有する。したがって、IC21の熱は、これらの経路を通じて放熱部材40の足ピン42に伝導する。 (Heat dissipation on thecircuit board 30 side)
2, the first ground terminals 213Gi and the second ground terminals 213Go of theIC 21 are connected to the foot pins 42 of the heat dissipation member 40 through the ground via electrodes 33VG, the ground electrode 32G, and the ground via electrodes 34VG. The first ground terminals 213Gi and the second ground terminals 213Go, the ground via electrodes 33VG, the ground electrode 32G, the ground via electrodes 34VG, and the heat dissipation member 40 are made of metal and have high thermal conductivity. Therefore, the heat of the IC 21 is conducted to the foot pins 42 of the heat dissipation member 40 through these paths.
IC21の熱は、回路基板30に伝導される。この際、図2に示すように、IC21の複数の第1グランド端子213Giおよび複数の第2グランド端子213Goは、複数のグランド用ビア電極33VG、グランド電極32G、および、複数のグランド用ビア電極34VGを通じて、放熱部材40の複数の足ピン42に接続される。複数の第1グランド端子213Giおよび複数の第2グランド端子213Goは、複数のグランド用ビア電極33VG、グランド電極32G、複数のグランド用ビア電極34VG、および、放熱部材40は、金属であり、高い熱伝導性を有する。したがって、IC21の熱は、これらの経路を通じて放熱部材40の足ピン42に伝導する。 (Heat dissipation on the
2, the first ground terminals 213Gi and the second ground terminals 213Go of the
放熱部材40の複数の足ピン42に伝導した熱は、平板41で平面状に拡散し、放熱シート51に所定面積で伝導する。放熱シート51に伝導した熱は、筐体90の筐体主板91に伝導し、外部に放熱される。
The heat conducted to the multiple leg pins 42 of the heat dissipation member 40 is diffused in a planar manner by the flat plate 41 and conducted to the heat dissipation sheet 51 over a specified area. The heat conducted to the heat dissipation sheet 51 is conducted to the main housing plate 91 of the housing 90 and dissipated to the outside.
このように、放熱構造10を備えることで、IC21の熱は、筐体90側からも放熱できる。これにより、放熱構造10は、放熱性をさらに向上できる。この際、放熱部材40は、回路基板30と筐体主板91との間の狭空間に配置されるので、放熱構造の大型化を抑制できる。すなわち、放熱構造10は、従来のようなIC21の天面側の放熱構造を大型化することなく、放熱性を向上できる。
In this way, by providing the heat dissipation structure 10, the heat of the IC 21 can be dissipated from the housing 90 side as well. This allows the heat dissipation structure 10 to further improve its heat dissipation performance. In this case, the heat dissipation member 40 is disposed in the narrow space between the circuit board 30 and the main housing board 91, so the size of the heat dissipation structure can be suppressed. In other words, the heat dissipation structure 10 can improve heat dissipation performance without increasing the size of the heat dissipation structure on the top side of the IC 21 as in the conventional case.
また、放熱部材40は、それぞれが棒状からなる複数の足ピン42によって、回路基板30に接続する。これにより、回路基板30の第2面302側(筐体主板91側)に複数の実装型電子部品22が高密度で実装されていても、その間を通して、回路基板30に接続できる。したがって、放熱構造10は、複数の実装型電子部品22の実装パターンを変更することなく、放熱を実現できる。また、放熱構造10を採用することで複数の足ピン42が複数の実装型電子部品22に接続することを抑制でき、複数の実装型電子部品22に対する物理的電気的な干渉を抑制できる。この結果、放熱構造10は、電気的な絶縁性を保持しながら、放熱を実現できる。
The heat dissipation member 40 is connected to the circuit board 30 by a plurality of foot pins 42, each of which is rod-shaped. This allows connection to the circuit board 30 through the second surface 302 side (main housing board 91 side) of the circuit board 30, even if multiple mount-type electronic components 22 are densely mounted on the second surface 302 side (main housing board 91 side) of the circuit board 30. Therefore, the heat dissipation structure 10 can achieve heat dissipation without changing the mounting pattern of the multiple mount-type electronic components 22. Furthermore, by adopting the heat dissipation structure 10, it is possible to prevent the multiple foot pins 42 from connecting to the multiple mount-type electronic components 22, and to prevent physical and electrical interference with the multiple mount-type electronic components 22. As a result, the heat dissipation structure 10 can achieve heat dissipation while maintaining electrical insulation.
以上のように、放熱構造10は、大型化を抑制し、電気的な絶縁性を保持しながら、放熱性を向上できる。
As described above, the heat dissipation structure 10 can improve heat dissipation while preventing the size from increasing and maintaining electrical insulation.
また、放熱構造10を採用することで、IC21の天面側のヒートパイプ71の複数化によるコストアップや大型化を抑制できる。さらに、放熱構造10を採用することで、IC21の天面側の放熱設計を簡素化でき、コストアップや大型化を抑制できる。
In addition, by adopting the heat dissipation structure 10, it is possible to suppress the increase in cost and size that would be caused by multiple heat pipes 71 on the top side of the IC 21. Furthermore, by adopting the heat dissipation structure 10, it is possible to simplify the heat dissipation design on the top side of the IC 21, and it is possible to suppress the increase in cost and size.
(グランド電位の揺れの低減)
図4、図5に示すように、放熱構造10では、所定のグランド用ビア電極34VG、複数の足ピン42は、上述のように、IC21の中央から外端に向かう方向(例えば、図4の横方向)において、第1グランド端子213Giと第2グランド端子213Goとの間に配置される。これにより、第1グランド端子213Giからグランド用ビア電極34VGおよび複数の足ピン42に向かう電流(例えば、図4の電流igi)と、第2グランド端子213Goからグランド用ビア電極34VGおよび複数の足ピン42に向かう電流(例えば、図4の電流iGo)とは、逆向きの流れである。 (Reduction of ground potential fluctuation)
4 and 5, in theheat dissipation structure 10, a certain ground via electrode 34VG and a plurality of foot pins 42 are disposed between the first ground terminal 213Gi and the second ground terminal 213Go in a direction from the center toward the outer end of the IC 21 (for example, the horizontal direction in FIG. 4), as described above. As a result, a current flowing from the first ground terminal 213Gi toward the ground via electrode 34VG and the plurality of foot pins 42 (for example, the current igi in FIG. 4) and a current flowing from the second ground terminal 213Go toward the ground via electrode 34VG and the plurality of foot pins 42 (for example, the current iGo in FIG. 4) flow in opposite directions.
図4、図5に示すように、放熱構造10では、所定のグランド用ビア電極34VG、複数の足ピン42は、上述のように、IC21の中央から外端に向かう方向(例えば、図4の横方向)において、第1グランド端子213Giと第2グランド端子213Goとの間に配置される。これにより、第1グランド端子213Giからグランド用ビア電極34VGおよび複数の足ピン42に向かう電流(例えば、図4の電流igi)と、第2グランド端子213Goからグランド用ビア電極34VGおよび複数の足ピン42に向かう電流(例えば、図4の電流iGo)とは、逆向きの流れである。 (Reduction of ground potential fluctuation)
4 and 5, in the
また、放熱部材40は、複数の足ピン42によって、回路基板30のグランド電極32Gに対して複数個所で電気的に接続されている。このような構成によって、グランド電位の揺れを低減できる。
The heat dissipation member 40 is also electrically connected to the ground electrode 32G of the circuit board 30 at multiple points by multiple foot pins 42. This configuration reduces fluctuations in the ground potential.
図6(A)は、磁界のキャンセルの概念を示すための模式図であり、図6(B)は、その一部の等価回路図と電流のイメージを示す図である。
Figure 6(A) is a schematic diagram showing the concept of magnetic field cancellation, and Figure 6(B) shows a partial equivalent circuit diagram and an image of the current.
図6(A)示すように、IC21は、複数の足ピン42およびこれらに接続する複数のグランド用ビア電極34VGに対して、内側のグランド用ビア電極33VGiに接続するスイッチング素子Qiと、外側のグランド用ビア電極33VGoに接続するスイッチング素子Qoとを備える。
As shown in FIG. 6(A), the IC 21 has a switching element Qi that connects to the inner ground via electrode 33VGi and a switching element Qo that connects to the outer ground via electrode 33VGo for the multiple foot pins 42 and the multiple ground via electrodes 34VG connected to them.
この構成において、例えば、スイッチング素子Qoがオン制御されると、グランド用ビア電極33VGo、グランド電極32Gを通じて、グランド用ビア電極34VGに、スイッチング周波数に応じた高周波の電流igoが流れる。図6(B)の太線矢印に示すように、電流igoは、グランド用ビア電極34VGに対して、グランド電極32Gから足ピン42(放熱部材40)に向かって流れる電流である。
In this configuration, for example, when the switching element Qo is controlled to be turned on, a high-frequency current igo corresponding to the switching frequency flows through the ground via electrode 33VGo and the ground electrode 32G to the ground via electrode 34VG. As shown by the bold arrow in FIG. 6(B), the current igo flows from the ground electrode 32G to the foot pin 42 (heat dissipation member 40) for the ground via electrode 34VG.
グランド用ビア電極34VG(および足ピン42)は、導体であり、高周波の電流igoに対してはインダクタLvとしてみえる。このため、グランド用ビア電極34VGに流れる電流igoによって磁界が発生する。このような磁界が発生すると、グランド用ビア電極34VGには、この磁界を打ち消すように、電流igoLが流れる。図6(B)の太破線矢印に示すように、電流igoLは、足ピン42(放熱部材40)からグランド電極32Gに向かって流れる電流であり、グランド電極32Gにおけるスイッチング素子Qiが接続する内側のグランド用ビア電極33VGiの方向に流れる。したがって、電流igoLは、スイッチング素子Qiからグランド用ビア電極34VGを通じて放熱部材40に流れる電流igiと逆向きの電流になる。この結果、電流igoLによって発生する磁界と、電流igiによって発生する磁界とは相殺されて弱めあう。
The ground via electrode 34VG (and the foot pin 42) is a conductor and appears as an inductor Lv to the high-frequency current igo. Therefore, a magnetic field is generated by the current igo flowing through the ground via electrode 34VG. When such a magnetic field is generated, a current igoL flows through the ground via electrode 34VG so as to cancel out this magnetic field. As shown by the thick dashed arrow in FIG. 6B, the current igoL flows from the foot pin 42 (heat dissipation member 40) toward the ground electrode 32G, and flows in the direction of the inner ground via electrode 33VGi to which the switching element Qi in the ground electrode 32G is connected. Therefore, the current igoL is a current in the opposite direction to the current igi that flows from the switching element Qi to the heat dissipation member 40 through the ground via electrode 34VG. As a result, the magnetic field generated by the current igoL and the magnetic field generated by the current igi cancel each other out and weaken each other.
内側のスイッチング素子Qiがオンの場合も同様のことが生じる。そして、複数のグランド用ビア電極34VGおよび複数の足ピン42のそれぞれにおいて、上述の作用、効果が生じる。
The same thing happens when the inner switching element Qi is on. The above-mentioned actions and effects occur in each of the multiple ground via electrodes 34VG and the multiple foot pins 42.
このように、放熱構造10を備えることによって、スイッチング素子がオンのときにグランド電極32Gに流れる電流を抑制できる。これにより、IC21がスリープ状態のときと、IC21が起動、駆動しているときとの間でのグランド(グランド電位)の揺れを低減できる。したがって、IC21を高負荷で駆動しても、誤作動が抑制され、安定した動作を実現できる。
In this way, by providing the heat dissipation structure 10, it is possible to suppress the current flowing through the ground electrode 32G when the switching element is on. This reduces the fluctuation of the ground (ground potential) between when the IC 21 is in a sleep state and when the IC 21 is activated and operating. Therefore, even if the IC 21 is operated under a high load, malfunctions are suppressed and stable operation can be achieved.
一方、本実施形態のような放熱部材40を備えていない構成では、スイッチング素子がオンのときにだけ回路基板内のグランド電極に高周波電流が流れる。このため、グランド電位の揺れが生じてしまう。
On the other hand, in a configuration that does not include a heat dissipation member 40 as in this embodiment, high-frequency current flows through the ground electrode in the circuit board only when the switching element is on. This causes fluctuations in the ground potential.
また、放熱構造10では、IC21にグランドの揺れを低下させる制御を行わなくてもよいので、IC21のスイッチング周波数を高めたり、IC21を構成する複数のスイッチング素子の同時スイッチング数を高めたりでき、IC21の性能を向上できる。
In addition, with the heat dissipation structure 10, it is not necessary to perform control on the IC 21 to reduce ground fluctuations, so it is possible to increase the switching frequency of the IC 21 or increase the number of simultaneous switching operations of the multiple switching elements that make up the IC 21, thereby improving the performance of the IC 21.
[第2の実施形態]
本発明の第2の実施形態に係る放熱構造について、図を参照して説明する。図7は、本発明の第2の実施形態に係る放熱構造を示す側面断面図である。なお、図7は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図7では、図1と同様に、図を見易くするために符号を適宜省略している。 Second Embodiment
A heat dissipation structure according to a second embodiment of the present invention will be described with reference to the drawings. Fig. 7 is a side cross-sectional view showing the heat dissipation structure according to the second embodiment of the present invention. Note that Fig. 7 is not a strict cross-sectional view, as in Fig. 1, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand. Also, in Fig. 7, as in Fig. 1, reference numerals are omitted as appropriate to make the drawing easier to understand.
本発明の第2の実施形態に係る放熱構造について、図を参照して説明する。図7は、本発明の第2の実施形態に係る放熱構造を示す側面断面図である。なお、図7は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図7では、図1と同様に、図を見易くするために符号を適宜省略している。 Second Embodiment
A heat dissipation structure according to a second embodiment of the present invention will be described with reference to the drawings. Fig. 7 is a side cross-sectional view showing the heat dissipation structure according to the second embodiment of the present invention. Note that Fig. 7 is not a strict cross-sectional view, as in Fig. 1, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand. Also, in Fig. 7, as in Fig. 1, reference numerals are omitted as appropriate to make the drawing easier to understand.
図8は、図7の拡大図であり、熱の伝導経路の例を追加した図である。図8において、点線の矢印が熱の伝導経路を示す。
Figure 8 is an enlarged view of Figure 7, with examples of heat conduction paths added. In Figure 8, the dotted arrows indicate the heat conduction paths.
図7、図8に示すように、第2の実施形態に係る放熱構造10Aは、第1の実施形態に係る放熱構造10に対して、ベーパチャンバ80を備える点で異なる。放熱構造10Aの他の構成は、放熱構造10と同様であり、同様の箇所の説明は省略する。
As shown in Figures 7 and 8, the heat dissipation structure 10A according to the second embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a vapor chamber 80. The other configuration of the heat dissipation structure 10A is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
放熱構造10Aは、ベーパチャンバ80を備える。ベーパチャンバ80は、平板状である。ベーパチャンバ80の平面面積は、放熱部材40の平板41の平面面積よりも大きい。
The heat dissipation structure 10A includes a vapor chamber 80. The vapor chamber 80 is flat. The planar area of the vapor chamber 80 is larger than the planar area of the flat plate 41 of the heat dissipation member 40.
ベーパチャンバ80は、放熱シート51と筐体主板91の主面911との間に配置される。ベーパチャンバ80は、放熱シート51に密着するとともに、筐体主板91の主面911に面で接する。
The vapor chamber 80 is disposed between the heat dissipation sheet 51 and the main surface 911 of the main housing board 91. The vapor chamber 80 is in close contact with the heat dissipation sheet 51 and is in surface contact with the main surface 911 of the main housing board 91.
このような構成によって、図7に示すように、放熱構造10Aでは、放熱部材40に伝導した熱は、放熱シート51を通じてベーパチャンバ80に伝導する。
With this configuration, as shown in FIG. 7, in the heat dissipation structure 10A, the heat conducted to the heat dissipation member 40 is conducted to the vapor chamber 80 through the heat dissipation sheet 51.
ベーパチャンバ80は、熱を面状に拡散させる。面状に拡散した熱は、筐体主板91を通じて外部に放熱される。
The vapor chamber 80 diffuses heat in a planar manner. The heat diffused in a planar manner is dissipated to the outside through the main housing plate 91.
このような構成によって、放熱構造10Aは、筐体主板91側の放熱面積を広くでき、放熱効率を向上できる。この際、ベーパチャンバ80は、フィン等と比較して薄型にできる。これにより、回路基板30と筐体主板91との間隔が大幅に広くなることを抑制しながら、放熱性を向上できる。したがって、放熱構造10Aは、大型化を抑制しながら、さらに高い放熱性を実現できる。
With this configuration, the heat dissipation structure 10A can increase the heat dissipation area on the side of the main housing board 91, improving heat dissipation efficiency. In this case, the vapor chamber 80 can be made thinner than fins, etc. This improves heat dissipation while preventing the gap between the circuit board 30 and the main housing board 91 from becoming significantly wider. Therefore, the heat dissipation structure 10A can achieve even higher heat dissipation performance while preventing it from becoming larger.
[第3の実施形態]
本発明の第3の実施形態に係る放熱構造について、図を参照して説明する。図9は、本発明の第3の実施形態に係る放熱構造を示す側面断面図である。なお、図9は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図9では、図1と同様に、図を見易くするために符号を適宜省略している。 [Third embodiment]
A heat dissipation structure according to a third embodiment of the present invention will be described with reference to the drawings. Fig. 9 is a side cross-sectional view showing the heat dissipation structure according to the third embodiment of the present invention. Note that Fig. 9 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, not a strict cross-section, as in Fig. 1. Also, in Fig. 9, reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
本発明の第3の実施形態に係る放熱構造について、図を参照して説明する。図9は、本発明の第3の実施形態に係る放熱構造を示す側面断面図である。なお、図9は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図9では、図1と同様に、図を見易くするために符号を適宜省略している。 [Third embodiment]
A heat dissipation structure according to a third embodiment of the present invention will be described with reference to the drawings. Fig. 9 is a side cross-sectional view showing the heat dissipation structure according to the third embodiment of the present invention. Note that Fig. 9 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, not a strict cross-section, as in Fig. 1. Also, in Fig. 9, reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
図9に示すように、第3の実施形態に係る放熱構造10Bは、第1の実施形態に係る放熱構造10に対して、放熱シート51Bを備える点で異なる。放熱構造10Bの他の構成は、放熱構造10と同様であり、同様の箇所の説明は省略する。
As shown in FIG. 9, the heat dissipation structure 10B according to the third embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation sheet 51B. The other configuration of the heat dissipation structure 10B is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
放熱構造10Bは、放熱シート51Bを備える。放熱シート51Bは、導電性を有する。
The heat dissipation structure 10B includes a heat dissipation sheet 51B. The heat dissipation sheet 51B is conductive.
この構成によって、筐体主板91が導電性を有し、筐体90としてのグランド電位を形成するとき、放熱部材40は、放熱シート51Bを通じて、筐体90のグランド電位に接続できる。これにより、IC21のグランド電位はさらに安定する。
With this configuration, when the housing main board 91 is conductive and forms a ground potential for the housing 90, the heat dissipation member 40 can be connected to the ground potential of the housing 90 through the heat dissipation sheet 51B. This makes the ground potential of the IC 21 even more stable.
[第4の実施形態]
本発明の第4の実施形態に係る放熱構造について、図を参照して説明する。図10は、本発明の第4の実施形態に係る放熱構造を示す側面断面図である。なお、図10は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図10では、図1と同様に、図を見易くするために符号を適宜省略している。 [Fourth embodiment]
A heat dissipation structure according to a fourth embodiment of the present invention will be described with reference to the drawings. Fig. 10 is a side cross-sectional view showing the heat dissipation structure according to the fourth embodiment of the present invention. Note that Fig. 10 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, rather than showing a strict cross section, as in Fig. 1. Also, in Fig. 10, reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
本発明の第4の実施形態に係る放熱構造について、図を参照して説明する。図10は、本発明の第4の実施形態に係る放熱構造を示す側面断面図である。なお、図10は、図1と同様に、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図10では、図1と同様に、図を見易くするために符号を適宜省略している。 [Fourth embodiment]
A heat dissipation structure according to a fourth embodiment of the present invention will be described with reference to the drawings. Fig. 10 is a side cross-sectional view showing the heat dissipation structure according to the fourth embodiment of the present invention. Note that Fig. 10 is a side cross-sectional view seen to make the heat dissipation structure easier to understand, rather than showing a strict cross section, as in Fig. 1. Also, in Fig. 10, reference numerals are omitted as appropriate to make the drawing easier to understand, as in Fig. 1.
図10に示すように、第4の実施形態に係る放熱構造10Cは、第1の実施形態に係る放熱構造10に対して、放熱シート51C、および、ベーパチャンバ80を備える点で異なる。放熱構造10Cの他の構成は、放熱構造10と同様であり、同様の箇所の説明は省略する。概略的に言えば、放熱構造10Cは、放熱構造10Aと放熱構造10Bとを組み合わせた構成を備える。
As shown in FIG. 10, the heat dissipation structure 10C according to the fourth embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation sheet 51C and a vapor chamber 80. The other configuration of the heat dissipation structure 10C is similar to that of the heat dissipation structure 10, and a description of similar parts will be omitted. In general terms, the heat dissipation structure 10C has a configuration that combines the heat dissipation structures 10A and 10B.
放熱構造10Cは、放熱シート51Cおよびベーパチャンバ80を備える。放熱シート51Cは、導電性を有する。
The heat dissipation structure 10C includes a heat dissipation sheet 51C and a vapor chamber 80. The heat dissipation sheet 51C is electrically conductive.
ベーパチャンバ80は、放熱シート51Cと筐体主板91の主面911との間に配置される。ベーパチャンバ80は、放熱シート51Cに密着するとともに、筐体主板91の主面911に面で接する。
The vapor chamber 80 is disposed between the heat dissipation sheet 51C and the main surface 911 of the main housing board 91. The vapor chamber 80 is in close contact with the heat dissipation sheet 51C and is in surface contact with the main surface 911 of the main housing board 91.
この構成によって、筐体主板91が導電性を有し、筐体90としてのグランド電位を形成するとき、放熱部材40は、放熱シート51Cおよびベーパチャンバ80を通じて、筐体90のグランド電位に接続できる。これにより、IC21のグランド電位はさらに安定する。また、ベーパチャンバ80を備えることで、放熱性は向上する。
With this configuration, when the housing main plate 91 is conductive and forms a ground potential for the housing 90, the heat dissipation member 40 can be connected to the ground potential of the housing 90 through the heat dissipation sheet 51C and the vapor chamber 80. This further stabilizes the ground potential of the IC 21. Also, the inclusion of the vapor chamber 80 improves heat dissipation.
[第5の実施形態]
本発明の第5の実施形態に係る放熱構造について、図を参照して説明する。図11は、本発明の第5の実施形態に係る放熱構造を示す側面断面の拡大図であり、熱の伝導経路の例を追加した図である。図11において、点線の矢印が熱の伝導経路を示す。なお、図11は、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図11では、図を見易くするために符号を適宜省略している。 [Fifth embodiment]
A heat dissipation structure according to a fifth embodiment of the present invention will be described with reference to the drawings. Fig. 11 is an enlarged side cross-sectional view showing the heat dissipation structure according to the fifth embodiment of the present invention, with an example of a heat conduction path added. In Fig. 11, dotted arrows indicate the heat conduction path. Note that Fig. 11 does not show a strict cross-section, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand. Also, in Fig. 11, reference numerals are omitted as appropriate to make the drawing easier to see.
本発明の第5の実施形態に係る放熱構造について、図を参照して説明する。図11は、本発明の第5の実施形態に係る放熱構造を示す側面断面の拡大図であり、熱の伝導経路の例を追加した図である。図11において、点線の矢印が熱の伝導経路を示す。なお、図11は、厳密な断面を示すものではなく、放熱構造を理解し易いように見た側面断面図である。また、図11では、図を見易くするために符号を適宜省略している。 [Fifth embodiment]
A heat dissipation structure according to a fifth embodiment of the present invention will be described with reference to the drawings. Fig. 11 is an enlarged side cross-sectional view showing the heat dissipation structure according to the fifth embodiment of the present invention, with an example of a heat conduction path added. In Fig. 11, dotted arrows indicate the heat conduction path. Note that Fig. 11 does not show a strict cross-section, but is a side cross-sectional view seen to make the heat dissipation structure easy to understand. Also, in Fig. 11, reference numerals are omitted as appropriate to make the drawing easier to see.
図11に示すように、第5の実施形態に係る放熱構造10Dは、第1の実施形態に係る放熱構造10に対して、放熱部材40Dおよび絶縁性部材59を備える点で異なる。放熱構造10Dの他の構成は、放熱構造10と同様であり、同様の箇所の説明は省略する。
As shown in FIG. 11, the heat dissipation structure 10D according to the fifth embodiment differs from the heat dissipation structure 10 according to the first embodiment in that it includes a heat dissipation member 40D and an insulating member 59. The other configuration of the heat dissipation structure 10D is the same as that of the heat dissipation structure 10, and a description of similar parts will be omitted.
放熱構造10Dは、放熱部材40Dおよび絶縁性部材59を備える。放熱部材40Dは、第1の実施形態に係る放熱部材40に対して、平板41に形成された貫通孔419を有する点で異なる。放熱部材40Dの他の構成は、放熱部材40と同様であり、同様の箇所の説明は省略する。
The heat dissipation structure 10D includes a heat dissipation member 40D and an insulating member 59. The heat dissipation member 40D differs from the heat dissipation member 40 according to the first embodiment in that it has a through hole 419 formed in the flat plate 41. The rest of the configuration of the heat dissipation member 40D is the same as that of the heat dissipation member 40, and a description of similar parts will be omitted.
貫通孔419は、平板41を厚み方向に貫通する。貫通孔419は、平板41に対して1つ形成される場合と、平板41に対して複数形成される場合とがある。貫通孔419が1つの場合、平板41を平面視して、中心と異なる位置に形成される。貫通孔419が複数の場合、平板41を平面視して、非対称な位置に形成される。これらにより、貫通孔419は、平板41の方向性や形状、言い換えれば、放熱部材40Dの方向性や形状を示すものとなる。これにより、放熱部材40Dは、表面実装技術によって、回路基板30に容易に且つ高精度な位置で実装される。
The through hole 419 penetrates the flat plate 41 in the thickness direction. There may be one through hole 419 formed in the flat plate 41, or multiple through holes 419 may be formed in the flat plate 41. When there is one through hole 419, it is formed at a position different from the center when the flat plate 41 is viewed in a plan view. When there are multiple through holes 419, they are formed at asymmetric positions when the flat plate 41 is viewed in a plan view. As a result, the through hole 419 indicates the directionality and shape of the flat plate 41, in other words, the directionality and shape of the heat dissipation member 40D. As a result, the heat dissipation member 40D can be easily mounted on the circuit board 30 at a highly accurate position using surface mounting technology.
絶縁性部材59は、回路基板30の第2面302と平板41との間に充填される。絶縁性部材59は、充填時には可撓性を有し、加熱等によって固化する。絶縁性部材59は、空気よりも熱伝導性が高い材料からなり、例えば、絶縁性樹脂からなる。ただし、絶縁性部材59は、それぞれが絶縁シールドされた複数の金属小球を混ぜ込んだ絶縁性樹脂で構成することも可能である。それぞれが絶縁シールドされた複数の金属小球を備えることで、絶縁性部材59の熱伝導性を向上できる。
The insulating member 59 is filled between the second surface 302 of the circuit board 30 and the flat plate 41. The insulating member 59 is flexible when filled, and is solidified by heating or the like. The insulating member 59 is made of a material with higher thermal conductivity than air, for example, insulating resin. However, the insulating member 59 can also be made of insulating resin mixed with multiple small metal balls, each of which is insulated and shielded. By providing multiple small metal balls, each of which is insulated and shielded, the thermal conductivity of the insulating member 59 can be improved.
絶縁性部材59を備えることで、回路基板30の熱は、複数の足ピン42のみでなく、絶縁性部材59を通じて、放熱部材40Dの平板41に伝導する。これにより、放熱構造10Dは、さらに高い放熱性を実現できる。
By providing the insulating member 59, the heat of the circuit board 30 is conducted to the flat plate 41 of the heat dissipation member 40D not only through the multiple foot pins 42 but also through the insulating member 59. This allows the heat dissipation structure 10D to achieve even higher heat dissipation performance.
また、平板41が貫通孔419を有するので、充填時に流動性を有する絶縁性部材59を、貫通孔419から平板41と回路基板30との間に、容易に供給できる。
In addition, since the flat plate 41 has a through hole 419, the insulating material 59, which has fluidity when filled, can be easily supplied between the flat plate 41 and the circuit board 30 through the through hole 419.
なお、上述の実施形態では、放熱構造は、ヒートパイプ71、ファン72、および、放熱フィン73を備えているが、ファン72を省略する態様、ファン72と放熱フィン73とを省略する態様、ヒートパイプ71、ファン72、および、放熱フィン73を省略する態様も可能である。ただし、これらを備えることで、高い放熱性を実電できるので、これらは備えた方が好ましい。
In the above embodiment, the heat dissipation structure includes the heat pipe 71, the fan 72, and the heat dissipation fins 73, but it is also possible to omit the fan 72, omit the fan 72 and the heat dissipation fins 73, or omit the heat pipe 71, the fan 72, and the heat dissipation fins 73. However, by providing these, high heat dissipation can be realized, so it is preferable to provide these.
<1> 第1面と第2面とを有し、発熱源のICが前記第1面に実装された回路基板と、
前記第2面に近接して対向する第3面を有する筐体と、
前記第2面に実装され、高い熱伝導性を有する放熱部材と、
を備え、
前記放熱部材は、
所定面積を有する平板と、
前記平板に接続する棒状からなり、前記第2面に実装される複数の足ピンと、
を備え、
前記回路基板は、基準電位に接続するためのグランド電極を備え、
前記複数の足ピンは、前記グランド電極に接続され、
前記ICは、それぞれが前記グランド電極に接続され、前記回路基板の平面視において中央側に配置される第1グランド端子と外端側に配置される第2グランド端子とを備え、
前記複数の足ピンの少なくとも1つは、前記ICの中央から外端に向かう方向において、前記第1グランド端子と前記第2グランド端子との間に配置される、放熱構造。 <1> A circuit board having a first surface and a second surface, and an IC that is a heat source is mounted on the first surface;
a housing having a third surface adjacent to and facing the second surface;
a heat dissipation member mounted on the second surface and having high thermal conductivity;
Equipped with
The heat dissipation member is
A flat plate having a predetermined area;
a plurality of foot pins each having a rod shape connected to the flat plate and mounted on the second surface;
Equipped with
the circuit board includes a ground electrode for connection to a reference potential;
the plurality of foot pins are connected to the ground electrode;
the IC is connected to the ground electrode and includes a first ground terminal disposed on a central side in a plan view of the circuit board and a second ground terminal disposed on an outer end side;
A heat dissipation structure, wherein at least one of the plurality of foot pins is disposed between the first ground terminal and the second ground terminal in a direction from a center toward an outer end of the IC.
前記第2面に近接して対向する第3面を有する筐体と、
前記第2面に実装され、高い熱伝導性を有する放熱部材と、
を備え、
前記放熱部材は、
所定面積を有する平板と、
前記平板に接続する棒状からなり、前記第2面に実装される複数の足ピンと、
を備え、
前記回路基板は、基準電位に接続するためのグランド電極を備え、
前記複数の足ピンは、前記グランド電極に接続され、
前記ICは、それぞれが前記グランド電極に接続され、前記回路基板の平面視において中央側に配置される第1グランド端子と外端側に配置される第2グランド端子とを備え、
前記複数の足ピンの少なくとも1つは、前記ICの中央から外端に向かう方向において、前記第1グランド端子と前記第2グランド端子との間に配置される、放熱構造。 <1> A circuit board having a first surface and a second surface, and an IC that is a heat source is mounted on the first surface;
a housing having a third surface adjacent to and facing the second surface;
a heat dissipation member mounted on the second surface and having high thermal conductivity;
Equipped with
The heat dissipation member is
A flat plate having a predetermined area;
a plurality of foot pins each having a rod shape connected to the flat plate and mounted on the second surface;
Equipped with
the circuit board includes a ground electrode for connection to a reference potential;
the plurality of foot pins are connected to the ground electrode;
the IC is connected to the ground electrode and includes a first ground terminal disposed on a central side in a plan view of the circuit board and a second ground terminal disposed on an outer end side;
A heat dissipation structure, wherein at least one of the plurality of foot pins is disposed between the first ground terminal and the second ground terminal in a direction from a center toward an outer end of the IC.
<2> 前記ICに電気的に接続される複数の実装型電子部品を備え、
前記複数の実装型電子部品は、前記平面視において、前記回路基板の前記第2面における前記ICに重なる位置に実装されており、
前記複数の足ピンは、前記複数の実装型電子部品の間に、前記複数の実装型電子部品から離して配置され、
前記平板は、前記第2面に対して前記複数の実装型電子部品よりも離れた位置に配置される、<1>に記載の放熱構造。 <2> A plurality of mounted electronic components electrically connected to the IC,
the plurality of mount-type electronic components are mounted on the second surface of the circuit board at positions overlapping the IC in the plan view,
the plurality of foot pins are disposed between the plurality of mount-type electronic components and spaced apart from the plurality of mount-type electronic components;
The heat dissipation structure according to <1>, wherein the flat plate is disposed at a position farther away from the second surface than the plurality of mounted electronic components.
前記複数の実装型電子部品は、前記平面視において、前記回路基板の前記第2面における前記ICに重なる位置に実装されており、
前記複数の足ピンは、前記複数の実装型電子部品の間に、前記複数の実装型電子部品から離して配置され、
前記平板は、前記第2面に対して前記複数の実装型電子部品よりも離れた位置に配置される、<1>に記載の放熱構造。 <2> A plurality of mounted electronic components electrically connected to the IC,
the plurality of mount-type electronic components are mounted on the second surface of the circuit board at positions overlapping the IC in the plan view,
the plurality of foot pins are disposed between the plurality of mount-type electronic components and spaced apart from the plurality of mount-type electronic components;
The heat dissipation structure according to <1>, wherein the flat plate is disposed at a position farther away from the second surface than the plurality of mounted electronic components.
<3> 前記放熱部材の前記平板は、前記筐体の前記第3面に対して直接的または間接的に面で接している、<1>または<2>に記載の放熱構造。
<3> A heat dissipation structure as described in <1> or <2>, in which the flat plate of the heat dissipation member is in direct or indirect surface contact with the third surface of the housing.
<4> 押圧によって変形可能な放熱シートを備え、
前記平板は、前記放熱シートを介して前記第3面に接する、<3>に記載の放熱構造。 <4> A heat dissipation sheet that can be deformed by pressure is provided,
The heat dissipation structure described in <3>, wherein the flat plate contacts the third surface via the heat dissipation sheet.
前記平板は、前記放熱シートを介して前記第3面に接する、<3>に記載の放熱構造。 <4> A heat dissipation sheet that can be deformed by pressure is provided,
The heat dissipation structure described in <3>, wherein the flat plate contacts the third surface via the heat dissipation sheet.
<5> 平板状のベーパチャンバを備え、
前記ベーパチャンバの平面面積は、前記平板の平面面積よりも大きく、
前記ベーパチャンバは、前記平板と前記第3面との間に配置される、<3>に記載の放熱構造。 <5> A flat vapor chamber is provided,
The planar area of the vapor chamber is larger than the planar area of the flat plate,
The heat dissipation structure described in <3>, wherein the vapor chamber is disposed between the flat plate and the third surface.
前記ベーパチャンバの平面面積は、前記平板の平面面積よりも大きく、
前記ベーパチャンバは、前記平板と前記第3面との間に配置される、<3>に記載の放熱構造。 <5> A flat vapor chamber is provided,
The planar area of the vapor chamber is larger than the planar area of the flat plate,
The heat dissipation structure described in <3>, wherein the vapor chamber is disposed between the flat plate and the third surface.
<6> 前記放熱部材は、銅または銅合金からなる、<1>乃至<5>のいずれかに記載の放熱構造。
<6> A heat dissipation structure according to any one of <1> to <5>, in which the heat dissipation member is made of copper or a copper alloy.
<7> 前記複数の足ピンは、前記実装型電子部品よりも高い、<2>に記載の放熱構造。
<7> The heat dissipation structure described in <2>, in which the multiple foot pins are higher than the mounted electronic component.
<8> 前記平板の面積は、前記ICの平面面積以下である、<1>乃至<7>のいずれかに記載の放熱構造。
<8> A heat dissipation structure according to any one of <1> to <7>, in which the area of the flat plate is equal to or smaller than the planar area of the IC.
<9> ヒートパイプを備え、
前記ヒートパイプは、
前記ICにおける前記回路基板と反対側の面に直接的または間接的に接しており、
前記第1面に平行な方向に広がる形状である、
<1>乃至<8>のいずれかに記載の放熱構造。 <9> Equipped with a heat pipe,
The heat pipe is
the IC is in direct or indirect contact with a surface of the IC opposite to the circuit board;
A shape extending in a direction parallel to the first surface.
<9> The heat dissipation structure according to any one of <1> to <8>.
前記ヒートパイプは、
前記ICにおける前記回路基板と反対側の面に直接的または間接的に接しており、
前記第1面に平行な方向に広がる形状である、
<1>乃至<8>のいずれかに記載の放熱構造。 <9> Equipped with a heat pipe,
The heat pipe is
the IC is in direct or indirect contact with a surface of the IC opposite to the circuit board;
A shape extending in a direction parallel to the first surface.
<9> The heat dissipation structure according to any one of <1> to <8>.
10、10A、10B、10C、10D:放熱構造
21:IC
22:実装型電子部品
30:回路基板
31:信号用電極
32G:グランド電極
33VG、34VG:グランド用ビア電極
40、40D:放熱部材
41:平板
42:足ピン
51、51B、51C:放熱シート
52:放熱シート
59:絶縁性部材
60:放熱プレート
71:ヒートパイプ
72:ファン
73:放熱フィン
80:ベーパチャンバ
90:筐体
91:筐体主板
92:支持体
210:IC本体
211:配線基板
213Gi、213Gi1:第1グランド端子
213Go、213Go1:第2グランド端子
213N:信号用端子
301:第1面
302:第2面
411、412:主面
419:貫通孔
911、912:主面 10, 10A, 10B, 10C, 10D: Heat dissipation structure 21: IC
22: Mounted electronic component 30: Circuit board 31:Signal electrode 32G: Ground electrodes 33VG, 34VG: Ground via electrodes 40, 40D: Heat dissipation member 41: Flat plate 42: Foot pins 51, 51B, 51C: Heat dissipation sheet 52: Heat dissipation sheet 59: insulating member 60: heat dissipation plate 71: heat pipe 72: fan 73: heat dissipation fin 80: vapor chamber 90: housing 91: housing main board 92: support 210: IC body 211: wiring boards 213Gi, 213Gi1 : First ground terminal 213Go, 213Go1: Second ground terminal 213N: Signal terminal 301: First surface 302: Second surface 411, 412: Main surface 419: Through holes 911, 912: Main surface
21:IC
22:実装型電子部品
30:回路基板
31:信号用電極
32G:グランド電極
33VG、34VG:グランド用ビア電極
40、40D:放熱部材
41:平板
42:足ピン
51、51B、51C:放熱シート
52:放熱シート
59:絶縁性部材
60:放熱プレート
71:ヒートパイプ
72:ファン
73:放熱フィン
80:ベーパチャンバ
90:筐体
91:筐体主板
92:支持体
210:IC本体
211:配線基板
213Gi、213Gi1:第1グランド端子
213Go、213Go1:第2グランド端子
213N:信号用端子
301:第1面
302:第2面
411、412:主面
419:貫通孔
911、912:主面 10, 10A, 10B, 10C, 10D: Heat dissipation structure 21: IC
22: Mounted electronic component 30: Circuit board 31:
Claims (9)
- 第1面と第2面とを有し、発熱源のICが前記第1面に実装された回路基板と、
前記第2面に近接して対向する第3面を有する筐体と、
前記第2面に実装され、高い熱伝導性を有する放熱部材と、
を備え、
前記放熱部材は、
所定面積を有する平板と、
前記平板に接続する棒状からなり、前記第2面に実装される複数の足ピンと、
を備え、
前記回路基板は、基準電位に接続するためのグランド電極を備え、
前記複数の足ピンは、前記グランド電極に接続され、
前記ICは、それぞれが前記グランド電極に接続され、前記回路基板の平面視において中央側に配置される第1グランド端子と外端側に配置される第2グランド端子とを備え、
前記複数の足ピンの少なくとも1つは、前記ICの中央から外端に向かう方向において、前記第1グランド端子と前記第2グランド端子との間に配置される、
放熱構造。 a circuit board having a first surface and a second surface, the circuit board having an IC as a heat source mounted on the first surface;
a housing having a third surface adjacent to and facing the second surface;
a heat dissipation member mounted on the second surface and having high thermal conductivity;
Equipped with
The heat dissipation member is
A flat plate having a predetermined area;
a plurality of foot pins each having a rod shape connected to the flat plate and mounted on the second surface;
Equipped with
the circuit board includes a ground electrode for connection to a reference potential;
the plurality of foot pins are connected to the ground electrode;
the IC is connected to the ground electrode and includes a first ground terminal disposed on a central side in a plan view of the circuit board and a second ground terminal disposed on an outer end side;
At least one of the plurality of foot pins is disposed between the first ground terminal and the second ground terminal in a direction from a center of the IC toward an outer end thereof.
Heat dissipation structure. - 前記ICに電気的に接続される複数の実装型電子部品を備え、
前記複数の実装型電子部品は、前記平面視において、前記回路基板の前記第2面における前記ICに重なる位置に実装されており、
前記複数の足ピンは、前記複数の実装型電子部品の間に、前記複数の実装型電子部品から離して配置され、
前記平板は、前記第2面に対して前記複数の実装型電子部品よりも離れた位置に配置される、
請求項1に記載の放熱構造。 a plurality of mounted electronic components electrically connected to the IC;
the plurality of mount-type electronic components are mounted on the second surface of the circuit board at positions overlapping the IC in the plan view,
the plurality of foot pins are disposed between the plurality of mount-type electronic components and spaced apart from the plurality of mount-type electronic components;
the flat plate is disposed at a position farther away from the second surface than the plurality of mount-type electronic components.
The heat dissipation structure according to claim 1 . - 前記放熱部材の前記平板は、前記筐体の前記第3面に対して直接的または間接的に面で接している、
請求項1または請求項2に記載の放熱構造。 The flat plate of the heat dissipation member is in direct or indirect surface contact with the third surface of the housing.
The heat dissipation structure according to claim 1 or 2. - 押圧によって変形可能な放熱シートを備え、
前記平板は、前記放熱シートを介して前記第3面に接する、
請求項3に記載の放熱構造。 A heat dissipation sheet that can be deformed by pressure is provided,
The flat plate contacts the third surface via the heat dissipation sheet.
The heat dissipation structure according to claim 3 . - 平板状のベーパチャンバを備え、
前記ベーパチャンバの平面面積は、前記平板の平面面積よりも大きく、
前記ベーパチャンバは、前記平板と前記第3面との間に配置される、
請求項3に記載の放熱構造。 A flat vapor chamber is provided.
The planar area of the vapor chamber is larger than the planar area of the flat plate,
the vapor chamber is disposed between the flat plate and the third surface;
The heat dissipation structure according to claim 3 . - 前記放熱部材は、銅または銅合金からなる、
請求項1乃至請求項5のいずれかに記載の放熱構造。 The heat dissipation member is made of copper or a copper alloy.
The heat dissipation structure according to any one of claims 1 to 5. - 前記複数の足ピンは、前記実装型電子部品よりも高い、
請求項2に記載の放熱構造。 The plurality of foot pins are higher than the mount-type electronic component.
The heat dissipation structure according to claim 2 . - 前記平板の面積は、前記ICの平面面積以下である、
請求項1乃至請求項7のいずれかに記載の放熱構造。 The area of the flat plate is equal to or smaller than the planar area of the IC.
The heat dissipation structure according to any one of claims 1 to 7. - ヒートパイプを備え、
前記ヒートパイプは、
前記ICにおける前記回路基板と反対側の面に直接的または間接的に接しており、
前記第1面に平行な方向に広がる形状である、
請求項1乃至請求項8のいずれかに記載の放熱構造。 Equipped with heat pipes,
The heat pipe is
the IC is in direct or indirect contact with a surface of the IC opposite to the circuit board;
A shape extending in a direction parallel to the first surface.
The heat dissipation structure according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023058697 | 2023-03-31 | ||
JP2023-058697 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204309A1 true WO2024204309A1 (en) | 2024-10-03 |
Family
ID=92906591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012182 WO2024204309A1 (en) | 2023-03-31 | 2024-03-27 | Heat dissipation structure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204309A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001237353A (en) * | 2000-02-21 | 2001-08-31 | Fujitsu Denso Ltd | Heat radiating structure of electronic part and method of manufacturing electronic part |
JP2004349345A (en) * | 2003-05-20 | 2004-12-09 | Denso Corp | Electronic control device |
US20070081311A1 (en) * | 2005-09-29 | 2007-04-12 | Edward Iwamiya | EMI shielding techniques using multiple EMI shields which share the same circuit board holes |
US20080218971A1 (en) * | 2007-03-05 | 2008-09-11 | International Business Machines Corporation | Method and structure to improve thermal dissipation from semiconductor devices |
JP2012033549A (en) * | 2010-07-28 | 2012-02-16 | Fdk Twicell Co Ltd | Circuit board device |
CN103025125A (en) * | 2011-09-27 | 2013-04-03 | 升业科技股份有限公司 | Heat radiation structure and back board used by heat radiation structure |
WO2021010173A1 (en) * | 2019-07-12 | 2021-01-21 | ソニーセミコンダクタソリューションズ株式会社 | Wiring module and imaging device |
-
2024
- 2024-03-27 WO PCT/JP2024/012182 patent/WO2024204309A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001237353A (en) * | 2000-02-21 | 2001-08-31 | Fujitsu Denso Ltd | Heat radiating structure of electronic part and method of manufacturing electronic part |
JP2004349345A (en) * | 2003-05-20 | 2004-12-09 | Denso Corp | Electronic control device |
US20070081311A1 (en) * | 2005-09-29 | 2007-04-12 | Edward Iwamiya | EMI shielding techniques using multiple EMI shields which share the same circuit board holes |
US20080218971A1 (en) * | 2007-03-05 | 2008-09-11 | International Business Machines Corporation | Method and structure to improve thermal dissipation from semiconductor devices |
JP2012033549A (en) * | 2010-07-28 | 2012-02-16 | Fdk Twicell Co Ltd | Circuit board device |
CN103025125A (en) * | 2011-09-27 | 2013-04-03 | 升业科技股份有限公司 | Heat radiation structure and back board used by heat radiation structure |
WO2021010173A1 (en) * | 2019-07-12 | 2021-01-21 | ソニーセミコンダクタソリューションズ株式会社 | Wiring module and imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006108685A (en) | Heat sink for surface mounting | |
JP2010503189A (en) | Electronic equipment | |
US7868450B2 (en) | Semiconductor package | |
JP4598614B2 (en) | Socket and electronic equipment | |
US7130195B2 (en) | Electronic apparatus | |
JP2011108924A (en) | Heat conducting substrate and method for mounting electronic component on the same | |
JP2014212278A (en) | Electronic apparatus | |
KR20160120486A (en) | Circuit board and method of manufacturing the same | |
JP2014528172A (en) | Method and apparatus for connecting chips embedded in a printed circuit board | |
WO2024204309A1 (en) | Heat dissipation structure | |
TW200524137A (en) | Semiconductor apparatus | |
JP5533787B2 (en) | Heat dissipation device | |
JP2012169330A (en) | Electronic device | |
WO2018168504A1 (en) | Component mounting body and electronic device | |
JP5088939B2 (en) | Laminated board | |
JP2009081180A (en) | Circuit apparatus | |
JP2008103577A (en) | Heat dissipating structure for power module, and motor controller equipped with the same | |
JP2008042052A (en) | Circuit board | |
JP2013089853A (en) | Printed wiring board | |
JP2006221912A (en) | Semiconductor device | |
JP2006019660A (en) | Circuit board for surface mounting of power element | |
JP7396461B2 (en) | circuit board module | |
JP2008258495A (en) | Heat dissipation structure of electronic component mounting circuit board | |
CN107710883B (en) | Printed circuit board heat dissipation system using high-conductivity heat dissipation pad | |
KR20080004734A (en) | Radiating structure in exothermic element |