[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204279A1 - Structural member for automobile body - Google Patents

Structural member for automobile body Download PDF

Info

Publication number
WO2024204279A1
WO2024204279A1 PCT/JP2024/012104 JP2024012104W WO2024204279A1 WO 2024204279 A1 WO2024204279 A1 WO 2024204279A1 JP 2024012104 W JP2024012104 W JP 2024012104W WO 2024204279 A1 WO2024204279 A1 WO 2024204279A1
Authority
WO
WIPO (PCT)
Prior art keywords
top plate
side wall
bead
pair
longitudinal
Prior art date
Application number
PCT/JP2024/012104
Other languages
French (fr)
Japanese (ja)
Inventor
利哉 鈴木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024204279A1 publication Critical patent/WO2024204279A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars

Definitions

  • the present invention relates to a structural member for an automobile body.
  • This application claims priority based on Japanese Patent Application No. 2023-049808 filed on March 27, 2023, the contents of which are incorporated herein by reference.
  • the collision safety performance of automobile body parts includes the bending crush characteristics of side sills and B-pillars in side collisions, and bumpers in frontal collisions. There is a demand for improving the three-point bending characteristics in local buckling mode to achieve higher collision safety performance even when using thin plate materials.
  • Patent Document 1 discloses a vehicle crashworthiness reinforcement material with excellent buckling resistance that is designed to have a recessed bead extending along the longitudinal direction of the main body portion to the center of the width of the main body portion.
  • Patent Document 2 discloses a metal vehicle absorber having concave or convex beads that are approximately parallel to the front-rear direction of the vehicle on one or both of an upper web and a lower web.
  • Patent Documents 1 and 2 were unable to fully demonstrate the three-point bending characteristics of the local buckling mode of the more highly bent crushed parts that were required.
  • the present invention was made in consideration of the above problems, and the object of the present invention is to provide a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation.
  • a first aspect of the present invention is a hat-shaped component having a top plate portion extending along a longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in a width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped component and a top plate opposing portion opposing the top plate portion of the hat-shaped component, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and a plurality of heightwise beads extending along a height direction formed in parallel in the longitudinal direction on the pair of side wall portions, and the two or more Among the longitudinal beads, each of the two longitudinal beads located on the outside comprises a first bead sidewall extending and bending
  • w3 may be 0 mm or more and 18 mm or less.
  • At least one of the top plate portion and the top plate opposing portion which are a central top plate portion and a central top plate opposing portion formed between the two longitudinal beads arranged on the outside, may protrude outward in the height direction more than either one of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
  • the two longitudinal beads arranged on the outside may be formed on the top plate portion of the hat-shaped component.
  • a second aspect of the present invention comprises a hat-shaped component having a top plate portion extending along the longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both widthwise ends of the top plate portion, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped component and a top plate opposing portion opposing the top plate portion of the hat-shaped component, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and the pair of side wall portions has a plurality of heightwise beads extending along the height direction formed in parallel in the longitudinal direction, and among the two or more longitudinal beads, and each of the two longitudinal beads arranged on the outside comprises a first bead sidewall extending and bending inward from at
  • w3 may be 0 mm or more and 18 mm or less.
  • at least one of the top plate portion and the top plate opposing portion which are the central top plate portion and the central top plate opposing portion formed between the two longitudinal beads arranged on the outside, may protrude outward in the height direction more than either one of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
  • a third aspect of the present invention includes a hat-shaped member having a top plate portion extending along the longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in the width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped member and a top plate opposing portion opposing the top plate portion of the hat-shaped member, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and a plurality of heightwise beads extending along the height direction formed in parallel in the
  • a first bead side wall extending and bending inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead side wall, and a bead bottom wall connecting the inner ends of the first bead side wall and the second bead side wall, wherein, in a cross section perpendicular to the longitudinal direction, when the length of the first bead side wall is w1 and the length of the second bead side wall is w2, a relationship of w1 ⁇ w2 is satisfied, and at least one of the central side top plate portion and the central side top plate opposing portion formed between the two longitudinal beads located on the outside, of the top plate portion and the top plate opposing portion, protrudes outward in the height direction further than either of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads located on the outside.
  • w3 may be 0 mm or more and 18 mm or less.
  • the two longitudinal beads arranged on the outside may be formed on the top plate portion of the hat-shaped component.
  • the present invention improves the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation, thereby achieving better collision safety performance.
  • FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode
  • FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode
  • FIG. 1C is a schematic diagram for explaining moment bending characteristics.
  • FIG. 2 is a perspective view showing a structural member according to the present embodiment.
  • FIG. 2B is a schematic cross-sectional view of the structural member according to the present embodiment, showing a cross-section along A1-A1' in FIG. 2A.
  • FIG. 2 is a plan view showing a structural member according to the present embodiment.
  • FIG. 4 is a partially enlarged view of a portion B of FIG. 3 .
  • FIG. 4 is a perspective view showing a state after deformation of the structural member according to the embodiment.
  • FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode
  • FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode
  • FIG. 4 is an enlarged cross-sectional view of a longitudinal bead before deformation.
  • 10A to 10C are enlarged cross-sectional views showing the process of deformation of a longitudinal bead.
  • 10A to 10C are enlarged cross-sectional views showing the process of deformation of a longitudinal bead.
  • FIG. 11 is a perspective view showing a structural member according to a first modified example.
  • FIG. 11 is an enlarged cross-sectional view showing a structural member according to a second modified example.
  • FIG. 11 is an enlarged cross-sectional view showing a structural member according to a third modified example.
  • FIG. 13 is an enlarged cross-sectional view showing a structural member according to a fourth modified example.
  • FIG. 11 is a perspective view showing a structural member according to a first modified example.
  • FIG. 11 is an enlarged cross-sectional view showing a structural member according to a second modified example.
  • FIG. 11 is an enlarged cross-sectional view showing a structural member
  • FIG. 13 is an enlarged cross-sectional view showing a structural member according to a fifth modified example.
  • FIG. 13 is an enlarged cross-sectional view showing a structural member according to a sixth modified example.
  • FIG. 4 is a schematic diagram for explaining three-point bending conditions.
  • the bending crush characteristics of automobile parts can be broadly divided into three-point bending characteristics, in which the impact of the collision is applied directly to the crushed part of the part, causing deformation, and moment bending characteristics, in which the impact of the collision is applied indirectly to the crushed part of the part, causing deformation.
  • the three-point bending characteristics are classified into three-point bending characteristics in a local buckling mode and three-point bending characteristics in a wall buckling mode.
  • the three-point bending characteristics in the local buckling mode and the three-point bending characteristics in the wall buckling mode are often evaluated based on the three-point bending characteristics obtained by conducting a three-point bending test in which an impactor directly collides with a component, as shown in (a) and (b) of Figure 1.
  • the three-point bending characteristic of the local buckling mode as shown in FIG. 1A, when the distance between the supports supporting the load in the three-point bending test is long, bending deformation occurs mainly at the position where the load is applied by the impactor.
  • the three-point bending characteristics of the wall buckling mode as shown in FIG.
  • the main deformation is that the side wall is crushed in the part height direction, centered around the position where the load is applied by the impactor. Furthermore, the moment bending characteristics are often evaluated based on the moment bending characteristics obtained by conducting a moment bending test in which an impactor or the like does not come into contact with the crushed portion of the part, as shown in FIG. 1(c).
  • the present inventors have studied component shapes for improving collision safety performance against deformation in the local buckling mode as shown in FIG. 1(a) and have obtained the following findings.
  • compressive stress along the height direction occurs in the side walls, the side walls can easily buckle and deform due to compressive stress along the height direction, particularly when the material plate thickness is thin.
  • the deformation state may approach that of wall buckling mode in the early stages of deformation.
  • the deformation state approaches the wall buckling mode, if buckling deformation of the side wall easily occurs, not only will good three-point bending characteristics for the wall buckling mode not be obtained, but the crushed side wall will reduce the height of the crushed part, and the bending rigidity in the height direction of the cross section that intersects the longitudinal direction will decrease. Therefore, even if the deformation state reaches the local buckling mode in the subsequent deformation, good three-point bending characteristics for the local buckling mode may not be obtained.
  • the axial direction of a structural member i.e., the direction in which the axis extends
  • the longitudinal direction Z a direction parallel to the top plate portion
  • a width direction X a direction perpendicular to the longitudinal direction Z and the width direction X
  • a height direction Y a direction perpendicular to the longitudinal direction Z and the width direction X.
  • the direction away from the axis of the structural member is referred to as outward and the opposite direction is referred to as inward.
  • structural member 100 for an automobile body according to an embodiment of the present invention (hereinafter referred to as structural member 100).
  • FIG. Fig. 2A is a perspective view of the structural member 100
  • Fig. 2B is a cross-sectional view taken along the line A1-A1' of Fig. 2A
  • Fig. 3 is a plan view of the structural member 100
  • Fig. 4 is an enlarged partial view of part B of Fig. 3.
  • the structural member 100 is a member with a closed cross-sectional structure constituted by a hat-shaped member 110 and a joining member 120.
  • Application examples of the structural member 100 include B-pillars, side sills, bumper reinforcements, etc.
  • the structural member 100 in this embodiment is a part that is intended to be installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle.
  • Tensile stress (C) along the longitudinal direction Z in the joining member 120; will occur in a complex manner.
  • the "compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped member 110" can also be rephrased as “compressive stress (B) along a direction perpendicular to the longitudinal direction Z in the side wall portion 115 of the hat-shaped member 110.”
  • the hat-shaped component 110 has a top plate portion 111 extending along the longitudinal direction Z, a pair of side walls 115, 115, and a pair of flange portions 119, 119.
  • the hat-shaped member 110 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.
  • the top plate portion 111 corresponds to a portion that comes into direct contact with an impactor in the three-point bending test of the local buckling mode shown in FIG.
  • the structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (A) along the longitudinal direction Z is generated in the top plate portion 111.
  • the width W of the top plate portion 111 may be, for example, 40 mm or more and 200 mm or less. As shown in FIG. 2B, the width W of the top plate portion 111 is the distance in the width direction X between the boundary points between the top plate portion 111 and the first ridge portions 113, 113 at both ends of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. As shown in FIG. 2B, the top plate portion 111 (more specifically, the central top plate portion 111a and the side wall portion top plate portion 111b described later) is horizontal, but may be curved. In this case, the angle at the ridge portion or R portion of the top plate portion 111 is the angle between a tangent extending from the boundary position between the ridge portion or R portion and the top plate portion 111 and another imaginary straight line, etc.
  • the pair of side walls 115, 115 extend via first ridges 113, 113 formed at both ends of the top plate 111 in the width direction X.
  • the first ridges 113, 113 have an R portion with a curvature radius of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • via A means "without passing through any member other than A.”
  • only the first ridges 113, 113 exist between the pair of side walls 115, 115 and the top plate 111.
  • the structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (B) along the height direction Y is generated in the pair of side wall portions 115, 115.
  • the height H of the side wall 115 may be, for example, 20 mm or more and 150 mm or less. As shown in FIG. 2B, the height H of the side wall 115 is the distance in the height direction Y between the boundary point between the side wall 115 and the first ridge 113 and the boundary point between the side wall 115 and the second ridge 117 in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • the second ridges 117, 117 have an R portion with a radius of curvature of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • second ridge portions 117, 117 are formed at ends of the pair of side wall portions 115, 115 opposite the first ridge portions 113, 113.
  • the pair of flange portions 119, 119 extend outward via the second ridge portions 117, 117.
  • the flange portion 119 has spot welds 170 formed at a predetermined pitch in the longitudinal direction Z for joining to the joining member 120. Note that spot welding is one example of a joining means, and other joining methods such as laser welding and brazing may also be used.
  • the longitudinal bead 150 is preferably formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 1/4 of the width W of the top plate portion 111 in the width direction X.
  • the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the top plate portion 111 is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 20 mm in a cross section perpendicular to the longitudinal direction.
  • the longitudinal bead 150 may have rounded portions 150a, 150b with a predetermined radius of curvature at the end on the top plate portion 111 side. In this case, the longitudinal bead 150 is connected to the top plate portion 111 via the rounded portion of the longitudinal bead 150.
  • the longitudinal bead 150 may be formed simultaneously using the same mold when the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded, or may be formed using a separate mold or tool before the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded.
  • the longitudinal bead 150 (in the case where three or more longitudinal beads are formed, each of the two longitudinal beads 150 arranged on the outside) is formed by a first bead side wall 151, a second bead side wall 152, and a bead bottom wall 153.
  • the first bead side wall 151 and the second bead side wall 152 bend and extend inward from the top plate portion 111.
  • the second bead side wall 152 is disposed at a position farther from the side wall portion 115 than the first bead side wall 151.
  • the inward angle ⁇ 1 between the first bead side wall 151 and the top plate portion 111 (the inclination angle of the first bead side wall 151) is approximately 90 degrees, but the angle ⁇ 1 may be greater than or equal to 90 degrees.
  • the bead bottom wall 153 connects the inner ends of the first bead side wall 151 and the second bead side wall 152.
  • the first bead side wall 151 and the top plate portion 111 are connected via an R portion 150a, and the first bead side wall 151 and the bead bottom wall 153 are connected via an R portion 150c.
  • the second bead side wall 152 and the top plate portion 111 are connected via an R portion 150b, and the second bead side wall 152 and the bead bottom wall 153 are connected via an R portion 150d.
  • the length of the first bead sidewall 151 in a cross section perpendicular to the longitudinal direction Z is w1
  • the length of the second bead sidewall 152 is w2
  • the length of the bead bottom wall 153 is w3
  • the relationship w1 ⁇ w2 is satisfied.
  • the length w1 of the first bead sidewall 151 is the distance in the direction along the first bead sidewall 151 between the boundary point between the R portion 150a and the first bead sidewall 151 and the boundary point between the R portion 150c and the first bead sidewall 151.
  • the length w2 of the second bead sidewall 152 is the distance in the direction along the second bead sidewall 152 between the boundary point between the R portion 150b and the second bead sidewall 152 and the boundary point between the R portion 150d and the second bead sidewall 152.
  • the length w3 of the bead bottom wall 153 is the distance along the bead bottom wall 153 between the boundary point between the R portion 150c and the bead bottom wall 153 and the boundary point between the R portion 150d and the bead bottom wall 153.
  • the length w3 of the bead bottom wall 153 is 0 mm or more and 18 mm or less. The relationship between w3 and w1 and w2 will be described later.
  • the second bead side wall 152 extends in a substantially vertical direction. Furthermore, as described above, the relationship w1 ⁇ w2 is satisfied. Therefore, the second bead side wall 152 is longer than the first bead side wall 151. Therefore, the center side top plate portion 111a formed between the two longitudinal beads 150 protrudes outward in the height direction Y more than the side wall side top plate portions 111b, 111b formed on the side wall portion 115 side of the two longitudinal beads 150. Note that the center side top plate portion 111a protrudes outward in the height direction Y more than both of the pair of side wall side top plate portions 111b, 111b, but may protrude outward in the height direction Y more than either one of them. It is preferable that w1 is 2 mm or more.
  • the longitudinal bead 150 has a predetermined depth d1 and a predetermined width w4.
  • the depth d1 of the longitudinal bead 150 is the distance in the height direction Y from the outer surface of the side wall portion top plate portion 111b to the outer surface of the bead bottom wall 153 in the longitudinal bead 150. If the longitudinal bead 150 has a shape whose depth changes along the longitudinal direction Z, the maximum value of the distance in the height direction Y from the top plate portion 111 to the bead bottom wall 153 is defined as the depth d1.
  • the depth d1 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.
  • the first bead side wall 151 and the second bead side wall 152 may easily collapse in a direction approaching each other immediately after an impact load from the outside of the vehicle is input to the top plate portion 111. If the first bead side wall 151 and the second bead side wall 152 easily collapse in a direction approaching each other, the pair of side wall portions 115, 115 may also easily collapse in a direction approaching each other.
  • the time when the deformation resistance against the compressive stress along the longitudinal direction Z generated in the top plate portion 111 increases may be delayed.
  • the depth d1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 16 mm or less.
  • the width w4 of the longitudinal bead 150 is the distance in the width direction X between the intersection of a virtual line extending the first bead side wall 151 of the longitudinal bead 150 and a virtual line extending the side wall portion side top plate portion 111b, and the intersection of a virtual line extending the second bead side wall 152 of the longitudinal bead 150 and a virtual line extending the central side top plate portion 111a, in a cross section perpendicular to the longitudinal direction Z.
  • the longitudinal bead 150 has a shape whose width changes along the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w4.
  • the width w4 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 15 mm or less.
  • the width w4 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.
  • the longitudinal bead 150 does not necessarily have to be formed over the entire length of the top plate portion 111 in the longitudinal direction Z, and may be formed over a portion of the entire length of the top plate portion 111.
  • the position at which the longitudinal bead 150 is formed may be selected to be a position where the bending crushing characteristics of the structural member 100 should be most strengthened, for example, a position where the impactor comes into contact and its vicinity.
  • the longitudinal bead 150 may be formed at multiple locations in the longitudinal direction Z. It is also preferable that the longitudinal bead 150 and the height bead 160 are located at the same position in the longitudinal direction Z. In this case, it is possible to more reliably improve the load resistance and the shock absorption energy at the beginning of the stroke.
  • the depth d1 and width w4 of the longitudinal bead 150 affect the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is preferable that the aspect ratio A1 calculated by the depth d1 relative to the width w4 of the longitudinal bead 150 (depth d1/width w4) is 0.25 or more and 4.0 or less, since this can more reliably achieve the effect of increasing the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is even more preferable that the aspect ratio A1 is 0.5 or more and 2.0 or less.
  • a plurality of height direction beads 160 extending along the height direction Y are formed in parallel in the longitudinal direction Z on the side wall portion 115 .
  • the height direction bead 160 is formed over the entire height of the side wall portion 115 in the height direction Y, but the height direction bead 160 may be formed over only a portion of the entire height direction.
  • the height direction bead 160 is formed so as to protrude inward from the side wall portion 115 .
  • the height direction bead 160 may have an R portion with a predetermined radius of curvature at the end portion on the side wall portion 115 side.
  • the height direction bead 160 is connected to the side wall portion 115 via the R portion of the height direction bead 160.
  • the provision of such height direction beads 160 can increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, early buckling deformation in the side wall portion 115 is suppressed, and the maximum load is increased.
  • the height direction bead 160 is formed so as to extend from the first ridge portion 113 to the second ridge portion 117 . Since the height direction bead 160 is formed to extend from the first ridge line portion 113, the height direction bead 160 also contributes to the deformation resistance of the first ridge line portion 113 against the compressive stress (B) along the height direction Y, making the first ridge line portion 113 less likely to be crushed. Since the first ridge line portion 113 is less likely to be crushed, the upper part of the side wall portion 115 connected to the first ridge line portion 113 is also less likely to be crushed.
  • the first ridge line portion 113 and the side wall portion 115 are less likely to be crushed, a decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to a decrease in the height of the structural member 100 is suppressed, and a decrease in the three-point bending characteristics in the local buckling mode can be prevented, which is preferable. Furthermore, in this manner, when the height-direction bead 160 is formed to extend from the first ridge portion 113, a step is formed along the longitudinal direction Z of the first ridge portion 113 between a portion of the bead bottom wall 162 of the height-direction bead 160 and a portion of the side wall portion 115 where the height-direction bead is not formed.
  • the height direction bead 160 also contributes to the deformation resistance of the second ridge portion 117 against the compressive stress (B) along the height direction Y, making the second ridge portion 117 less likely to be crushed. Therefore, since the first ridge portion 113, the side wall portion 115, and the second ridge portion 117 are less likely to be crushed, the decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z that accompanies the reduction in height of the structural member 100 is further suppressed, and the decrease in the three-point bending characteristics in the local buckling mode can be further prevented, which is preferable.
  • the height direction bead 160 is formed by a pair of bead side walls 161 , 161 and a bead bottom wall 162 .
  • the pair of bead side walls 161 , 161 extend inwardly from the side wall portion 115 while bending.
  • the bead bottom wall 162 connects the inner ends of the pair of bead side walls 161, 161 to each other.
  • the vertical bead 160 has a predetermined depth d2 and a predetermined width w5.
  • the depth d2 of the height direction bead 160 is the distance in the width direction X from the outer surface of the side wall portion 115 to the outer surface of the bead bottom wall 162 in the height direction bead 160. If the height direction bead 160 has a shape whose depth changes along the height direction Y, the maximum value of the distance in the width direction X from the side wall portion 115 to the bead bottom wall 162 is defined as the depth d2.
  • the depth d2 of the height direction bead 160 is preferably 2 mm or more, and more preferably 4 mm or more.
  • the depth d2 of the height direction bead 160 is too large, the dimension in the width direction X of the structural member 100 becomes locally small, and the bending rigidity in the cross section intersecting the longitudinal direction Z becomes too small, so that the desired three-point bending characteristics may not be obtained.
  • the longitudinal bead 150 may not be formed at the desired position.
  • the depth d2 of the height direction bead 160 is preferably 10 mm or less, and more preferably 8 mm or less.
  • the multiple height-direction beads 160 are preferably formed with an inter-bead distance of 50 mm or less in the longitudinal direction Z of the side wall portion 115, and more preferably with an inter-bead distance of 30 mm or less. In this case, it is possible to further increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115.
  • the inter-bead distance means the separation distance w6 between one end of the height-direction bead 160 (end in one direction of the longitudinal direction Z) and the other end of the adjacent height-direction bead 160 (end in the other direction of the longitudinal direction Z), as shown in FIG. 4.
  • the plurality of height-direction beads 160 do not need to be formed over the entire length of the side wall portion 115 in the longitudinal direction Z, but may be formed over a portion of the entire length of the side wall portion 115 in the longitudinal direction Z.
  • the positions at which the plurality of height-direction beads 160 are formed may be selected as positions at which the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity.
  • the multiple height-direction beads 160 do not need to be formed side by side on the side wall portion 115 with equal bead-to-bead distances; for example, when three height-direction beads 160 are formed, the two bead-to-bead distances may be different values.
  • the plurality of height direction beads 160 do not necessarily have to be formed at the same position in the longitudinal direction Z on the pair of side wall portions 115, 115.
  • the height direction bead 160 does not have to be formed on the other side wall portion 115.
  • the width w5 of the height-wise bead 160 is the distance between the intersection of a virtual line extending the outer surface of one bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, and the intersection of a virtual line extending the outer surface of the other bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, in a cross section perpendicular to the height direction Y.
  • the separation distance in the cross section where the separation distance is maximum is defined as width w5.
  • the width w5 of the height direction bead 160 is preferably 60 mm or less, and more preferably 40 mm or less.
  • the width w5 of the height direction bead 160 is 10 mm or more, and it is even more preferable that it is 15 mm or more.
  • the depth d2 and width w5 of the height direction bead 160 affect the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115.
  • the aspect ratio A2 calculated by the depth d2 relative to the width w5 of the height direction bead 160 is 0.05 or more and 1.0 or less, this is preferable because it can more reliably achieve the effect of increasing the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. It is even more preferable that the aspect ratio A2 is 0.1 or more and 0.5 or less.
  • the hat-shaped component 110 is preferably formed from a steel plate having a thickness of 1.2 mm or less, and more preferably from a steel plate having a thickness of 1.0 mm or less.
  • the lower limit of the thickness of the hat-shaped component 110 is not particularly limited, and may be 0.3 mm or more.
  • the hat-shaped member 110 is preferably formed from a steel plate having a tensile strength of 980 MPa or more, and more preferably from a steel plate having a tensile strength of 1470 MPa or more.
  • the hat-shaped member 110 can be formed, for example, by subjecting a plate material to cold pressing or warm pressing.
  • the hat-shaped member 110 may also be formed by hot stamping, in which a steel plate is heated to a high temperature in the austenite region, and then press-formed in a die, and simultaneously quenched in the die by a method such as heat extraction into the die or water cooling in the die.
  • the hat-shaped member 110 may be a quenched member.
  • the joining member 120 will be described below.
  • the joining member 120 is a member that is joined to the hat-shaped member 110.
  • the structural member 100 according to this embodiment is installed in an automobile with the joining member 120 facing the inside of the vehicle. Therefore, when an impact load from the outside of the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, a tensile stress (C) along the longitudinal direction Z is generated in the joining member 120. Therefore, by joining the joining member 120 to the hat-shaped member 110, it is possible to increase the deformation resistance against the tensile stress (C) along the longitudinal direction Z. This makes it possible to improve the load resistance at the beginning of the stroke.
  • the joining member 120 can prevent the side wall portion 115 from opening in the width direction X when bending deformation occurs in the structural member 100. Therefore, it is possible to sufficiently increase the deformation resistance of the side wall portion 115 against the compressive stress (B) along the height direction Y, and to improve the load resistance at the beginning of the stroke.
  • a single flat plate material is used as the joining member 120.
  • a hat-shaped member may be used instead of the flat plate material.
  • the joining member 120 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.
  • CFRP Carbon Fiber Reinforced Plastic
  • a tensile stress (C) along the longitudinal direction Z occurs in the joining member 120.
  • the plate thickness and strength of the member greatly affect the buckling deformation due to the compressive stress, but in the case of tensile stress, a material with a thin plate thickness or low strength can be used within a range in which the member does not break due to tensile deformation. Therefore, for example, the tensile strength and thickness of the joining member 120 may be lower than those of the hat-shaped member 110, or may be thinner than those of the hat-shaped member 110.
  • the joining member 120 may also be a hardened member.
  • the joint member 120 has a pair of joint portions 121, 121 provided at both ends in the width direction X, and a top plate facing portion 123 provided in the center in the width direction X.
  • the pair of joint portions 121, 121 are locations where the pair of flange portions 119, 119 of the hat-shaped component 110 are joined by spot welding or the like.
  • the top plate facing portion 123 is a portion of the joining member 120 excluding the joint portion 121 , and is a portion facing the top plate portion 111 of the hat-shaped member 110 .
  • the joint member 120 is formed from a single flat steel plate, so that the joint portion 121 and the top plate facing portion 123 are adjacent regions on the same plane.
  • the width of the top plate facing portion 123 may be 40 mm or more and 200 mm or less. It is preferable that the width of the top plate facing portion 123 is greater than the width W of the top plate portion 111.
  • the pair of side wall portions 115, 115 are inclined in a direction that spreads outward from the first ridge portion 113, 113 to the second ridge portion 117, 117. When an impact load from the outside of the vehicle is input to the top plate portion 111, the pair of side wall portions 115, 115 are likely to collapse in a direction in which the first ridge portions 113, 113 approach each other.
  • the first bead side walls 151, 151 of the two longitudinal beads 150, 150 are also likely to collapse inward, but the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152 (details will be described later).
  • the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
  • the pair of side walls 115, 115 are inclined in a direction that spreads outward from the first ridge line portion 113, 113 to the second ridge line portion 117, 117, when the hat-shaped component 110 is press-molded, a negative angle can be eliminated when the height direction Y is the press direction, which makes molding easier.
  • the side wall portion 115 starts to collapse inward from the pre-deformation state shown in FIG. 6, and the first bead side wall 151 collapses inward.
  • the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion top plate portion 111b) comes into contact with the second bead side wall 152.
  • the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152.
  • the collapse of the side wall portion 115 is also suppressed, and the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, so that the impact absorption energy can be further improved.
  • the structural member 100 of this embodiment when an impact load from outside the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, it is possible to exert a combination of deformation resistance to compressive stress (A) along the longitudinal direction Z, deformation resistance to compressive stress (B) along the height direction Y, and deformation resistance to tensile stress (C) along the longitudinal direction Z.
  • the collapse of the first bead side wall 151 can be suppressed by the second bead side wall 152, and the collapse of the side wall portion 115 is also suppressed, and the deformation of the cross-sectional shape of the hat-shaped member 110 can be suppressed, thereby improving the load-bearing capacity and impact absorption energy at the beginning of the stroke in the local buckling mode deformation.
  • the conventional method has been one of the barriers to weight reduction by using thin, high-strength materials. That is, even if the deformation resistance of the top plate 111 against the compressive stress (A) along the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member 100 cannot exhibit good three-point bending characteristics if the side wall 115 is easily buckled due to bending deformation or the like due to the thinning.
  • the structural member 100 of this embodiment can exert a composite deformation resistance at each portion, making it possible to exert excellent collision safety performance even when using a thin-walled, high-strength material.
  • FIG. 8 is a perspective view of the structural member 100A according to the first modified example.
  • the longitudinal bead 150 is formed on the top plate portion 111 of the hat-shaped member 110.
  • the longitudinal bead 150 is not formed on the top plate portion 111 of the hat-shaped member 110, but is formed on the top plate facing portion 123 of the joining member 120.
  • the top plate facing portion 123 is divided into a central top plate facing portion 123a formed between the two longitudinal beads 150, and side wall side top plate facing portions 123b, 123b formed on the side wall portion 115 side from the two longitudinal beads 150.
  • the central top plate facing portion 123a protrudes outward in the height direction Y further than the side wall top plate facing portions 123b, 123b.
  • this structural member 100A is a part that is assumed to be installed in an automobile with the hat-shaped member 110 facing the inside of the vehicle and the joining member 120 facing the outside of the vehicle. According to this structural member 100, when it is installed in an automobile with the hat-shaped member 110 facing the inside of the automobile and the joining member 120 facing the outside of the automobile, it is possible to obtain the same effects as those of the structural member 100. In this modified example, it is preferable that the following conditions are satisfied.
  • the longitudinal bead 150 is formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the inner end of the joint 121 of the joint member 120 to a point that is spaced apart in the width direction X by 1/4 of the width of the top plate opposing portion 123.
  • the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the joining member 120 is located in the region from the inner end of the joining portion 121 of the joining member 120 to a point that is 20 mm away.
  • the joint member 120 is formed from a steel plate having a thickness of 1.2 mm or less. Moreover, it is preferable that the joining members 120 are formed from a steel plate having a tensile strength of 980 MPa or more. The joining member 120 is preferably a hardened member.
  • FIG. 9 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the second modified example.
  • the relationship w1 ⁇ 1.4 ⁇ w2 is satisfied. It is preferable that the upper limit of w2 is equal to or less than w1 ⁇ 2.5. Furthermore, when the inner angle between the first bead side wall 151 and the top plate portion 111 is ⁇ 1 and the inner angle between the second bead side wall 152 and the top plate portion 111 is ⁇ 2, the relationship ⁇ 1 ⁇ 2 is satisfied.
  • the angle ⁇ 1 is the inner angle between a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the first bead side wall 151.
  • the angle ⁇ 2 is the inner angle between a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the second bead side wall 152.
  • the specific ranges of the angles ⁇ 1 and ⁇ 2 are not particularly limited and may be set appropriately according to the required characteristics, etc.
  • the angle between the first bead side wall 151 and the second bead side wall 152 is an acute angle.
  • the height of the center side top plate portion 111a is approximately the same as the height of the side wall side top plate portion 111b.
  • ⁇ 1 and ⁇ 2 satisfy the relationship ⁇ 1 ⁇ 1.1 ⁇ 2. It is preferable that ⁇ 1 is 90° or more. In this case, in order to satisfy the relationship ⁇ 1 ⁇ 2, it is preferable that ⁇ 2 is more than 90°, and more preferably more than 99°. It is preferable that ⁇ 2 is equal to or smaller than 135°. In this case, in order to satisfy the relationship ⁇ 1 ⁇ 2, it is preferable that ⁇ 1 is less than 135°, and more preferably less than 122°.
  • the deformation of the longitudinal bead 150 will be described.
  • the first bead side wall 151 also starts to collapse inward.
  • the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of deformation freedom of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small.
  • the deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small. Therefore, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
  • Fig. 10 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the third modified example.
  • the central top plate portion 111a in addition to the shape of the second modified example, the central top plate portion 111a further protrudes outward in the height direction Y beyond the side wall top plate portions 111b, 111b.
  • the deformation of the longitudinal bead 150 will be described.
  • the first bead side wall 151 collapses inward.
  • the first bead side wall 151 (more specifically, the R portion 150a which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152.
  • the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152.
  • the collapse of the side wall portion 115 is also suppressed. Furthermore, there is no bead bottom wall 153 between the first bead side wall 151 and the second bead side wall 152, and the angle between them is an acute angle. Furthermore, the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of freedom of deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small. In other words, deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small.
  • the second bead side wall 152 is longer than the first bead side wall 151, and the relationship w1 ⁇ w2 is satisfied. It is preferable that the relationship w1 ⁇ 1.8 ⁇ w2 is satisfied.
  • the upper limit of w2 is preferably equal to or less than w1 ⁇ 4.0.
  • FIG. 11 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the fourth modified example.
  • the angle between the first bead side wall 151 and the second bead side wall 152 is an acute angle. Furthermore, the central top plate portion 111a protrudes outward in the height direction Y more than the side wall top plate portion 111b.
  • the deformation of the longitudinal bead 150 will be described.
  • the first bead side wall 151 collapses inward.
  • the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152.
  • the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152.
  • the collapse of the side wall portion 115 is also suppressed. Furthermore, there is no bead bottom wall 153 between the first bead side wall 151 and the second bead side wall 152, and the angle they form is an acute angle. Furthermore, the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of freedom of deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small. In other words, deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small. Therefore, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
  • Fig. 12 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the fifth modified example.
  • a step S is formed in the second bead side wall 152.
  • the size of the step S (the length in the width direction in Fig. 12) is not particularly limited, and may be, for example, about 5 mm.
  • the other configurations are the same as those of the above-mentioned embodiment.
  • the length w2 of the second bead side wall 152 is the distance in a direction along the second bead side wall 152 between the boundary point between the R portion 150b and the second bead side wall 152 and the boundary point between the R portion 150d and the second bead side wall 152. More precisely, it is the distance between a perpendicular line dropped from the boundary point between the R portion 150b and the second bead side wall 152 and a perpendicular line dropped from the boundary point between the R portion 150d and the second bead side wall 152.
  • the deformation of the longitudinal bead 150 will be described.
  • the side wall portion 115 begins to collapse inward, and the first bead side wall 151 collapses inward.
  • the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion top plate portion 111b) comes into contact with the second bead side wall 152.
  • the collapsed first bead side wall 151 can be held by the second bead side wall 152.
  • the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152.
  • the collapse of the side wall portion 115 is also suppressed, and the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, so that the impact absorption energy can be further improved.
  • FIG. 13 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the sixth modified example.
  • the bead bottom wall 153 is inclined, the R portion 150c is disposed at a lower position than the R portion 150d, and the angle ⁇ 3 is 120 degrees or more.
  • the angle ⁇ 3 is an outer angle formed by the second bead side wall 152 and the bead bottom wall 153, and more specifically, is an angle formed by an imaginary line extending the outer surface of the second bead side wall 152 and an imaginary line extending the outer surface of the bead bottom wall 153.
  • w1 ⁇ w2+w3 is satisfied.
  • the other configurations are the same as those of the above-mentioned embodiment. It is preferable that the angle ⁇ 3 is less than 180 degrees.
  • the deformation of the longitudinal bead 150 will be described.
  • the side wall portion 115 starts to collapse inward, and the first bead side wall 151 collapses inward.
  • the first bead side wall 151 (more specifically, the R portion 150a which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152 or the bead bottom wall 153.
  • the collapsed first bead side wall 151 can be held by the second bead side wall 152 or the bead bottom wall 153.
  • the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152 or the bead bottom walls 153, 153.
  • the side wall portion 115 is prevented from collapsing, and the cross-sectional shape of the hat-shaped member 110 is prevented from collapsing, thereby further improving the impact absorption energy.
  • the upper limit of w2+w3 is preferably equal to or less than w1 ⁇ 3.5.
  • the top plate portion 111, the top plate opposing portion 123, the side wall portion 115, and the bead bottom wall 162 are straight in a cross section perpendicular to the longitudinal direction Z, but they may be curved.
  • the curved shape here is not limited to the cross section perpendicular to the longitudinal direction Z, but also includes curvature in the longitudinal direction of the member, i.e., curvature in the height direction (up and down) and width direction (left and right).
  • the shape of the top plate portion 111, the top plate facing portion 123, the side wall portion 115, and the bead bottom wall 162 in a cross section perpendicular to the longitudinal direction Z is a straight line connecting both ends of the length direction of each part in the cross section (for example, a straight line is drawn connecting both ends of the width direction (length direction of the top plate portion 111) of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z, and this straight line is assumed to be the top plate portion 111), and the above-mentioned parameters (for example, the length w1 of the first bead side wall 151, the length w2 of the second bead side wall 152, the length w3 of the bead bottom wall 153, etc.) may be defined.
  • the first modified example may be applied to the above-mentioned embodiment and the second to sixth modified examples.
  • the longitudinal bead 150 may be formed on both the top plate portion 111 and the top plate facing
  • a simulation model of a structural member was prepared, which was composed of a hat-shaped member made of steel plate with a thickness of 0.8 mm and a tensile strength of 2.5 GPa, and a joining member made of steel plate with a thickness of 0.8 mm and a tensile strength of 270 MPa.
  • a simulation model of the structural member was appropriately given longitudinal and vertical beads, and a simulation was performed assuming three-point bending to evaluate the maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm.
  • a three-point bending simulation was also performed on a structural member that did not have longitudinal and vertical beads as a reference or comparative example.
  • the basic conditions, the conditions of the comparative example, and the conditions of each invention example are as follows.
  • Side wall height H 50 mm
  • Radius of curvature of first ridge (inner bend) 5 mm
  • Radius of curvature of the second ridge (inner bend) 5 mm
  • Total length of structural member L 800 mm
  • No longitudinal bead or height bead Comparative Example 2
  • Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately rectangular (w1 5.6 mm, w3
  • the three-point bending conditions were set as follows: the radius of curvature of the impactor was 50 mm, and the distance between the support stands was 700 mm, as shown in Fig. 14.
  • the maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm are shown in Table 1.
  • the reference ratios in Table 1 are values expressed as percentages relative to the values of Comparative Example 1 (maximum load and impact energy absorption amount).
  • Comparative Example 1 the side wall portion buckled from the early stage of the stroke, and the structural members were significantly deformed, so that the maximum load and the impact absorption energy at the early stage of the stroke were low.
  • Example 2 the maximum load and impact absorption energy at the beginning of the stroke were improved by the longitudinal bead, but the improvement in the reference ratio was greater in Invention Examples 1 to 4.
  • Example 1 to 4 the maximum load at the beginning of the stroke was large, and the shock absorption energy was also large.
  • the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion. At the beginning of the stroke, the side wall portion starts to collapse, and accordingly, the first bead side wall also starts to collapse.
  • the first bead side wall collapses further inward, but because the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall. It is therefore believed that the maximum load at the beginning of the stroke becomes larger, and the impact absorption energy also becomes larger.
  • the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, and the relationship ⁇ 1 ⁇ 2 is satisfied. At the beginning of the stroke, the side wall starts to collapse, and the first bead side wall also starts to collapse.
  • the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, the degree of deformation of the cross section of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large.
  • the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, and the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion. At the beginning of the stroke, the side wall portion starts to collapse, and the first bead side wall also starts to collapse accordingly.
  • the first bead side wall collapses further inward, but since the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall. Furthermore, since the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, the degree of freedom of deformation of the cross-sectional shape of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large. In Example 4, in addition to the shape of Example 2, the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion.
  • the side wall portion starts to collapse, and the first bead side wall also starts to collapse accordingly.
  • the first bead side wall collapses further inward, but since the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall.
  • the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead is triangular, the degree of freedom of deformation of the cross-sectional shape of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large.
  • the present invention provides a structural member that can provide superior collision safety performance by improving the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation.
  • Structural member 110 Hat-shaped member 111 Top plate portion 111a Central top plate portion 111b Side wall portion side top plate portion 113 First ridge portion 115 Side wall portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

This structural member for an automobile body comprises: a hat-shaped member having a top plate part, a pair of side wall parts, and a pair of flange parts; and a joining member having a pair of joining parts and a top plate facing part. Two or more longitudinal-direction beads are formed on at least one of the top plate part and the top plate facing part. A plurality of height-direction beads are formed on the pair of side wall parts. Each of two outermost longitudinal-direction beads of the two or more longitudinal-direction beads includes a first bead side wall, a second bead side wall, and a bead bottom wall, and satisfies the relationships of θ3 ≥ 120 degree and w1 < w2 + w3 in a cross-section perpendicular to the longitudinal direction, where w1 is the length of the first bead side wall, w2 is the length of the second bead side wall, w3 is the length of the bead bottom wall, and θ3 is the exterior angle formed by the second bead side wall and the bead bottom wall.

Description

自動車車体の構造部材Automotive body structural components
 本発明は、自動車車体の構造部材に関する。
 本願は、2023年3月27日に、日本に出願された特願2023-049808号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a structural member for an automobile body.
This application claims priority based on Japanese Patent Application No. 2023-049808 filed on March 27, 2023, the contents of which are incorporated herein by reference.
 近年、自動車の衝突安全性能の向上および車体軽量化を目的として、自動車部品への高張力鋼板の適用が拡大している。高張力鋼板を適用することで、より優れた衝突安全性能を持つ部品を得ることができたり、または衝突安全性能と薄肉化による軽量化とを両立することが可能となる。 In recent years, the use of high-tensile steel plates in automotive parts has expanded with the aim of improving automobile collision safety performance and reducing vehicle weight. By using high-tensile steel plates, it is possible to obtain parts with better collision safety performance, or to achieve both collision safety performance and weight reduction through thinner parts.
 しかしながら素材の板厚が薄くなると、加工前の鋼板の剛性が低下するだけなく、加工後の部品の剛性も低下するため、強度が高く、板厚の薄い鋼板を単純に使用するだけでは、衝突安全性能として十分な高強度化の効果が得られない場合がある。 However, when the thickness of the material is reduced, not only does the rigidity of the steel plate before processing decrease, but the rigidity of the parts after processing also decreases, so there are cases where a sufficient increase in strength in terms of collision safety performance cannot be obtained simply by using a high-strength, thin steel plate.
 自動車車体部品の衝突安全性能として、側面衝突(側突)におけるサイドシルやBピラー、前面衝突(前突)におけるバンパー等の曲げ圧潰特性がある。これらの部品の曲げ圧潰特性として、局部座屈モードの3点曲げ特性を高め、薄い板厚の素材を用いてもより高い衝突安全性能を発揮することが希求されている。 The collision safety performance of automobile body parts includes the bending crush characteristics of side sills and B-pillars in side collisions, and bumpers in frontal collisions. There is a demand for improving the three-point bending characteristics in local buckling mode to achieve higher collision safety performance even when using thin plate materials.
 特許文献1には、本体部の長手方向に沿って本体部の幅方向中央に延在するように凹ビードを設けるように設計された、耐座屈性に優れた車両用耐衝突補強材が開示されている。
 特許文献2には、上部ウェブ、下部ウェブの一方又は両方に、車両の前後方向に略平行な凹状又は凸状のビードを有する車両用金属製アブソーバが開示されている。
Patent Document 1 discloses a vehicle crashworthiness reinforcement material with excellent buckling resistance that is designed to have a recessed bead extending along the longitudinal direction of the main body portion to the center of the width of the main body portion.
Patent Document 2 discloses a metal vehicle absorber having concave or convex beads that are approximately parallel to the front-rear direction of the vehicle on one or both of an upper web and a lower web.
日本国特許第5119477号公報Japanese Patent No. 5119477 日本国特許第4330652号公報Japanese Patent No. 4330652
 しかしながら、特許文献1、2の技術では、要求される更に高い曲げ圧潰部品の局部座屈モードの3点曲げ特性を十分に発揮することができなかった。 However, the techniques of Patent Documents 1 and 2 were unable to fully demonstrate the three-point bending characteristics of the local buckling mode of the more highly bent crushed parts that were required.
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることでより優れた衝突安全性能を発揮することが可能な構造部材を提供することにある。 The present invention was made in consideration of the above problems, and the object of the present invention is to provide a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation.
 本発明の具体的態様は以下のとおりである。 Specific aspects of the present invention are as follows:
(1)本発明の第一の態様は、長手方向に沿って延びる天板部と、前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、を有するハット型部材と、前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、前記ハット型部材の前記天板部に対向する天板対向部と、を有する接合部材と、を備え、前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、を備え、前記長手方向に垂直な断面において、前記第一ビード側壁の長さをw1、前記第二ビード側壁の長さをw2、前記ビード底壁の長さをw3、前記第二ビード側壁と前記ビード底壁とがなす外方側の角度をθ3としたとき、θ3≧120度、且つ、w1<w2+w3の関係を満たす、自動車車体の構造部材である。
(2)上記(1)に記載の自動車車体の構造部材では、前記第一ビード側壁と前記天板部とがなす内方側の角度をθ1、前記第二ビード側壁と前記天板部とがなす内方側の角度をθ2、としたとき、θ1<θ2の関係を満たしてもよい。
(3)上記(1)又は(2)に記載の自動車車体の構造部材では、前記w3が0mm以上18mm以下であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の自動車車体の構造部材では、前記天板部及び前記天板対向部のうち、前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出していてもよい。
(5)上記(1)~(4)のいずれか一項に記載の自動車車体の構造部材では、前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成されてもよい。
(6)本発明の第二の態様は、長手方向に沿って延びる天板部と、前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、を有するハット型部材と、前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、前記ハット型部材の前記天板部に対向する天板対向部と、を有する接合部材と、を備え、前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、を備え、前記長手方向に垂直な断面において、前記第一ビード側壁の長さをw1、前記第二ビード側壁の長さをw2、としたとき、w1<w2の関係を満たし、前記第一ビード側壁と前記天板部とがなす内方側の角度をθ1、前記第二ビード側壁と前記天板部とがなす内方側の角度をθ2、としたとき、θ1<θ2の関係を満たす、自動車車体の構造部材である。
(7)上記(6)に記載の自動車車体の構造部材では、前記w3が0mm以上18mm以下であってもよい。
(8)上記(6)又は(7)に記載の自動車車体の構造部材では、前記天板部及び前記天板対向部のうち、前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出していてもよい。
(9)上記(6)~(8)のいずれか一項に記載の自動車車体の構造部材では、前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成されてもよい。
(10)本発明の第三の態様は、長手方向に沿って延びる天板部と、前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、を有するハット型部材と、前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、前記ハット型部材の前記天板部に対向する天板対向部と、を有する接合部材と、を備え、前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、を備え、前記長手方向に垂直な断面において、前記第一ビード側壁の長さをw1、前記第二ビード側壁の長さをw2、としたとき、w1<w2の関係を満たし、前記天板部及び前記天板対向部のうち、前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出している、自動車車体の構造部材である。
(11)上記(10)に記載の自動車車体の構造部材では、前記w3が0mm以上18mm以下であってもよい。
(12)上記(10)又は(11)に記載の自動車車体の構造部材では、前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成されてもよい。
(1) A first aspect of the present invention is a hat-shaped component having a top plate portion extending along a longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in a width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped component and a top plate opposing portion opposing the top plate portion of the hat-shaped component, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and a plurality of heightwise beads extending along a height direction formed in parallel in the longitudinal direction on the pair of side wall portions, and the two or more Among the longitudinal beads, each of the two longitudinal beads located on the outside comprises a first bead sidewall extending and bending inward from at least one of the top plate portion and the top plate opposing portion, a second bead sidewall extending and bending inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead sidewall, and a bead bottom wall connecting inner ends of the first bead sidewall and the second bead sidewall, wherein, in a cross section perpendicular to the longitudinal direction, when the length of the first bead sidewall is w1, the length of the second bead sidewall is w2, the length of the bead bottom wall is w3, and the outward angle formed by the second bead sidewall and the bead bottom wall is θ3, the relationship θ3 ≧ 120 degrees and w1 < w2 + w3 is satisfied.
(2) In the structural component of the automobile body described in (1) above, when the inner angle between the first bead side wall and the top plate portion is θ1 and the inner angle between the second bead side wall and the top plate portion is θ2, the relationship θ1 < θ2 may be satisfied.
(3) In the structural component for an automobile body described in (1) or (2) above, w3 may be 0 mm or more and 18 mm or less.
(4) In a structural component of an automobile body described in any one of (1) to (3) above, at least one of the top plate portion and the top plate opposing portion, which are a central top plate portion and a central top plate opposing portion formed between the two longitudinal beads arranged on the outside, may protrude outward in the height direction more than either one of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
(5) In the structural component of an automobile body described in any one of (1) to (4) above, the two longitudinal beads arranged on the outside may be formed on the top plate portion of the hat-shaped component.
(6) A second aspect of the present invention comprises a hat-shaped component having a top plate portion extending along the longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both widthwise ends of the top plate portion, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped component and a top plate opposing portion opposing the top plate portion of the hat-shaped component, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and the pair of side wall portions has a plurality of heightwise beads extending along the height direction formed in parallel in the longitudinal direction, and among the two or more longitudinal beads, and each of the two longitudinal beads arranged on the outside comprises a first bead sidewall extending and bending inward from at least one of the top plate portion and the top plate opposing portion, a second bead sidewall extending and bending inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead sidewall, and a bead bottom wall connecting inner ends of the first bead sidewall and the second bead sidewall, wherein, in a cross section perpendicular to the longitudinal direction, when the length of the first bead sidewall is w1 and the length of the second bead sidewall is w2, a relationship of w1 < w2 is satisfied, and when the inward angle formed between the first bead sidewall and the top plate portion is θ1 and the inward angle formed between the second bead sidewall and the top plate portion is θ2, a relationship of θ1 < θ2 is satisfied.
(7) In the structural component for an automobile body described in (6) above, w3 may be 0 mm or more and 18 mm or less.
(8) In the structural component of an automobile body described in (6) or (7) above, at least one of the top plate portion and the top plate opposing portion, which are the central top plate portion and the central top plate opposing portion formed between the two longitudinal beads arranged on the outside, may protrude outward in the height direction more than either one of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
(9) In the structural component of an automobile body described in any one of (6) to (8) above, the two longitudinal beads arranged on the outside may be formed on the top plate portion of the hat-shaped component.
(10) A third aspect of the present invention includes a hat-shaped member having a top plate portion extending along the longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in the width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite the pair of first ridge portions, and a joining member having a pair of joining portions joined to the pair of flange portions of the hat-shaped member and a top plate opposing portion opposing the top plate portion of the hat-shaped member, wherein at least one of the top plate portion and the top plate opposing portion has two or more longitudinal beads extending along the longitudinal direction formed in parallel in the width direction, and a plurality of heightwise beads extending along the height direction formed in parallel in the longitudinal direction on the pair of side wall portions, and among the two or more longitudinal beads, each of the two longitudinal beads arranged on the outer side is a pair of longitudinal beads arranged on the top plate portion and the top plate opposing portion. a first bead side wall extending and bending inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead side wall, and a bead bottom wall connecting the inner ends of the first bead side wall and the second bead side wall, wherein, in a cross section perpendicular to the longitudinal direction, when the length of the first bead side wall is w1 and the length of the second bead side wall is w2, a relationship of w1 < w2 is satisfied, and at least one of the central side top plate portion and the central side top plate opposing portion formed between the two longitudinal beads located on the outside, of the top plate portion and the top plate opposing portion, protrudes outward in the height direction further than either of a pair of side wall portion side top plate portions and a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads located on the outside.
(11) In the structural component for an automobile body described in (10) above, w3 may be 0 mm or more and 18 mm or less.
(12) In the structural component for an automobile body described in (10) or (11) above, the two longitudinal beads arranged on the outside may be formed on the top plate portion of the hat-shaped component.
 本発明によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることで、より優れた衝突安全性能を発揮することができる。 The present invention improves the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation, thereby achieving better collision safety performance.
(a)は局部座屈モードの3点曲げ特性を説明するための模式図であり、(b)は壁面座屈モードの3点曲げ特性を説明するための模式図であり、(c)はモーメント曲げ特性を説明するための模式図である。FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode, FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode, and FIG. 1C is a schematic diagram for explaining moment bending characteristics. 本実施形態に係る構造部材を示す斜視図である。FIG. 2 is a perspective view showing a structural member according to the present embodiment. 本実施形態に係る構造部材の概略断面図であって、図2AのA1-A1’に沿う断面を示す。FIG. 2B is a schematic cross-sectional view of the structural member according to the present embodiment, showing a cross-section along A1-A1' in FIG. 2A. 本実施形態に係る構造部材を示す平面図である。FIG. 2 is a plan view showing a structural member according to the present embodiment. 図3の部分Bの部分拡大図である。FIG. 4 is a partially enlarged view of a portion B of FIG. 3 . 本実施形態に係る構造部材の変形後の状態を示す斜視図である。FIG. 4 is a perspective view showing a state after deformation of the structural member according to the embodiment. 長手方向ビードの変形前の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a longitudinal bead before deformation. 長手方向ビードの変形の過程を示す拡大断面図である。10A to 10C are enlarged cross-sectional views showing the process of deformation of a longitudinal bead. 長手方向ビードの変形の過程を示す拡大断面図である。10A to 10C are enlarged cross-sectional views showing the process of deformation of a longitudinal bead. 第一変形例に係る構造部材を示す斜視図である。FIG. 11 is a perspective view showing a structural member according to a first modified example. 第二変形例に係る構造部材を示す拡大断面図である。FIG. 11 is an enlarged cross-sectional view showing a structural member according to a second modified example. 第三変形例に係る構造部材を示す拡大断面図である。FIG. 11 is an enlarged cross-sectional view showing a structural member according to a third modified example. 第四変形例に係る構造部材を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing a structural member according to a fourth modified example. 第五変形例に係る構造部材を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing a structural member according to a fifth modified example. 第六変形例に係る構造部材を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing a structural member according to a sixth modified example. 三点曲げ条件を説明するための模式図である。FIG. 4 is a schematic diagram for explaining three-point bending conditions.
 自動車部品の曲げ圧潰特性は、衝突の衝撃が部品の圧潰部に直接的に加わって変形する場合の3点曲げ特性と、衝突の衝撃が部品の圧潰部に間接的に加わって変形する場合のモーメント曲げ特性と、に大別される。
 このうち、3点曲げ特性は、局部座屈モードの3点曲げ特性と、壁面座屈モードの3点曲げ特性と、に分類される。
 局部座屈モードの3点曲げ特性及び壁面座屈モードの3点曲げ特性は、図1の(a)及び(b)に示すように、インパクタが部品に直接衝突する3点曲げ試験を行うことで得られる3点曲げ特性により評価することが多い。
 局部座屈モードの3点曲げ特性では、図1の(a)に示すように、3点曲げ試験において荷重を支持する支点間の距離が長い条件で、インパクタによる荷重負荷位置での屈曲変形が主体となる。
 壁面座屈モードの3点曲げ特性では、図1の(b)に示すように、3点曲げ試験において荷重を支持する支点間の距離が短い条件で、インパクタによる荷重負荷位置を中心に側壁が部品高さ方向に潰される変形が主体となる。
 また、モーメント曲げ特性は、図1の(c)に示すように、部品の圧潰部にインパクタ等が接触しないモーメント曲げ試験を行うことで得られるモーメント曲げ特性で評価することが多い。
The bending crush characteristics of automobile parts can be broadly divided into three-point bending characteristics, in which the impact of the collision is applied directly to the crushed part of the part, causing deformation, and moment bending characteristics, in which the impact of the collision is applied indirectly to the crushed part of the part, causing deformation.
Among these, the three-point bending characteristics are classified into three-point bending characteristics in a local buckling mode and three-point bending characteristics in a wall buckling mode.
The three-point bending characteristics in the local buckling mode and the three-point bending characteristics in the wall buckling mode are often evaluated based on the three-point bending characteristics obtained by conducting a three-point bending test in which an impactor directly collides with a component, as shown in (a) and (b) of Figure 1.
In the three-point bending characteristic of the local buckling mode, as shown in FIG. 1A, when the distance between the supports supporting the load in the three-point bending test is long, bending deformation occurs mainly at the position where the load is applied by the impactor.
In the three-point bending characteristics of the wall buckling mode, as shown in FIG. 1B, when the distance between the supports supporting the load in the three-point bending test is short, the main deformation is that the side wall is crushed in the part height direction, centered around the position where the load is applied by the impactor.
Furthermore, the moment bending characteristics are often evaluated based on the moment bending characteristics obtained by conducting a moment bending test in which an impactor or the like does not come into contact with the crushed portion of the part, as shown in FIG. 1(c).
 本発明者は、図1の(a)に示すような局部座屈モードの変形に対する衝突安全性能を高めるための部品形状について検討し、下記の知見を得た。
(あ)圧潰部がインパクタに接触する3点曲げでは、部品の曲げ内側に生じる長手方向に沿う圧縮応力と、部品の側壁に生じる高さ方向に沿う圧縮応力と、部品の曲げ外側に生じる長手方向に沿う引張応力とが複合的に生じること。
(い)高さ方向に沿う圧縮応力は側壁に生じることから、特に素材の板厚が薄い場合には、高さ方向に沿う圧縮応力により側壁が容易に座屈変形してしまい、局部座屈モードを想定した部品であっても変形の初期において壁面座屈モードに近い変形状態になる場合があること。
(う)壁面座屈モードに近い変形状態になった場合、側壁の座屈変形が容易に生じると、壁面座屈モードとしての良好な3点曲げ特性が得られないだけでなく、側壁が潰れることで圧潰部の部品高さが減少して、長手方向に交差する断面の高さ方向の曲げ剛性が低下するため、その後の変形において局部座屈モードの変形状態になったとしても局部座屈モードとしての良好な3点曲げ特性も得られない場合があること。
(え)従って、長手方向に沿う圧縮応力に対する変形抵抗、高さ方向に沿う圧縮応力に対する変形抵抗、及び、長手方向に沿う引張応力に対する変形抵抗を同時に高めることができる部品形状とすることで、局部座屈モードの変形における、特にストローク初期における耐荷重を向上することができ、優れた衝突安全性能を発揮することが可能となること。
The present inventors have studied component shapes for improving collision safety performance against deformation in the local buckling mode as shown in FIG. 1(a) and have obtained the following findings.
(a) In three-point bending where the crushed part comes into contact with the impactor, a combination of compressive stress along the longitudinal direction occurs on the inside of the bent part, compressive stress along the height direction occurs on the side wall of the part, and tensile stress along the longitudinal direction occurs on the outside of the bent part.
(i) Because compressive stress along the height direction occurs in the side walls, the side walls can easily buckle and deform due to compressive stress along the height direction, particularly when the material plate thickness is thin. Even in parts designed to operate in local buckling mode, the deformation state may approach that of wall buckling mode in the early stages of deformation.
(c) When the deformation state approaches the wall buckling mode, if buckling deformation of the side wall easily occurs, not only will good three-point bending characteristics for the wall buckling mode not be obtained, but the crushed side wall will reduce the height of the crushed part, and the bending rigidity in the height direction of the cross section that intersects the longitudinal direction will decrease. Therefore, even if the deformation state reaches the local buckling mode in the subsequent deformation, good three-point bending characteristics for the local buckling mode may not be obtained.
(e) Therefore, by designing a part shape that can simultaneously increase the deformation resistance to compressive stress along the longitudinal direction, the deformation resistance to compressive stress along the height direction, and the deformation resistance to tensile stress along the longitudinal direction, it is possible to improve the load-bearing capacity in deformation in local buckling mode, especially at the beginning of the stroke, and to demonstrate excellent collision safety performance.
 以下、上記知見に基づき完成された本発明について、実施形態に基づき詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The present invention, which was completed based on the above findings, will be described in detail below with reference to the embodiments. Note that in this specification and drawings, components having substantially the same functional configuration are designated by the same reference numerals, and duplicate explanations will be omitted.
 以下の説明において、構造部材の軸方向、すなわち、軸線が延びる方向を長手方向Zと呼称する。
 また、長手方向Zに垂直な面における、天板部に平行な方向を幅方向Xと呼称し、長手方向Zと幅方向Xに垂直な方向を高さ方向Yと呼称する。
 構造部材の軸線から離れる方向を外方と呼称し、その反対方向を内方と呼称する。
In the following description, the axial direction of a structural member, i.e., the direction in which the axis extends, will be referred to as the longitudinal direction Z.
In addition, in a plane perpendicular to the longitudinal direction Z, a direction parallel to the top plate portion is referred to as a width direction X, and a direction perpendicular to the longitudinal direction Z and the width direction X is referred to as a height direction Y.
The direction away from the axis of the structural member is referred to as outward and the opposite direction is referred to as inward.
 以下、本発明の実施形態に係る自動車車体の構造部材100(以下、構造部材100と呼称する)について説明する。 The following describes a structural member 100 for an automobile body according to an embodiment of the present invention (hereinafter referred to as structural member 100).
 まず、図2A~図4を参照して、構造部材100の概略構成について説明する。
 図2Aは、構造部材100の斜視図であり、図2Bは図2AのA1-A1’断面図である。図3は構造部材100の平面図であり、図4は図3の部分Bの部分拡大図である。
 図2A~図4に示すように、構造部材100は、ハット型部材110及び接合部材120により構成される閉断面構造の部材である。構造部材100の適用例としては、Bピラー、サイドシル、バンパリーンフォース等が挙げられる。
First, the schematic configuration of the structural member 100 will be described with reference to FIGS. 2A to 4. FIG.
Fig. 2A is a perspective view of the structural member 100, Fig. 2B is a cross-sectional view taken along the line A1-A1' of Fig. 2A, Fig. 3 is a plan view of the structural member 100, and Fig. 4 is an enlarged partial view of part B of Fig. 3.
2A to 4, the structural member 100 is a member with a closed cross-sectional structure constituted by a hat-shaped member 110 and a joining member 120. Application examples of the structural member 100 include B-pillars, side sills, bumper reinforcements, etc.
 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されることを想定した部品である。 The structural member 100 in this embodiment is a part that is intended to be installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle.
 従って、車外側からの衝撃荷重がハット型部材110に入力されて構造部材100に曲げ変形が生じた際には、図5に示すように、
ハット型部材110の天板部111において長手方向Zに沿う圧縮応力(A)と、
ハット型部材110の側壁部115において高さ方向Yに沿う圧縮応力(B)と、
接合部材120において長手方向Zに沿う引張応力(C)と、
が複合的に発生することになる。
 尚、「ハット型部材110の側壁部115において高さ方向Yに沿う圧縮応力(B)」は、「ハット型部材110の側壁部115において長手方向Zに垂直な方向に沿う圧縮応力(B)」と換言することもできる。
Therefore, when an impact load from the outside of the vehicle is input to the hat-shaped member 110 and bending deformation occurs in the structural member 100, as shown in FIG.
A compressive stress (A) along the longitudinal direction Z in the top plate portion 111 of the hat-shaped member 110;
A compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped component 110;
Tensile stress (C) along the longitudinal direction Z in the joining member 120;
will occur in a complex manner.
Furthermore, the "compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped member 110" can also be rephrased as "compressive stress (B) along a direction perpendicular to the longitudinal direction Z in the side wall portion 115 of the hat-shaped member 110."
 図2A~図4に示すように、ハット型部材110は、長手方向Zに沿って延びる天板部111と、一対の側壁部115,115と、一対のフランジ部119,119とを有する。
 ハット型部材110は、鋼板、アルミ板、アルミ合金板、ステンレス板、チタン板などの金属板、更には、樹脂板、CFRP(Carbon Fiber Reinforced Plastic)板からなる部材であればよい。
As shown in FIGS. 2A to 4, the hat-shaped component 110 has a top plate portion 111 extending along the longitudinal direction Z, a pair of side walls 115, 115, and a pair of flange portions 119, 119.
The hat-shaped member 110 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.
(天板部)
 天板部111は、図1に示す局部座屈モードの3点曲げ試験における、インパクタが直接接触する部位に相当する。
 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されるため、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、天板部111には長手方向Zに沿う圧縮応力(A)が発生する。
(Top plate)
The top plate portion 111 corresponds to a portion that comes into direct contact with an impactor in the three-point bending test of the local buckling mode shown in FIG.
The structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (A) along the longitudinal direction Z is generated in the top plate portion 111.
 天板部111の幅Wは、例えば40mm以上200mm以下であればよい。天板部111の幅Wは、図2Bに示すように、構造部材100の長手方向Zに垂直な断面における、天板部111とその両端の第一稜線部113,113との境界点の間の、幅方向Xの離間距離である。図2Bに示すように、天板部111(より詳細には、後述する中央側天板部111a及び側壁部側天板部111b)は水平となっているが、湾曲していてもよい。この場合、天板部111の稜線部またはR部における角度は、稜線部またはR部と天板部111との境界位置から延びる接線と他の仮想直線等とのなす角度となる。 The width W of the top plate portion 111 may be, for example, 40 mm or more and 200 mm or less. As shown in FIG. 2B, the width W of the top plate portion 111 is the distance in the width direction X between the boundary points between the top plate portion 111 and the first ridge portions 113, 113 at both ends of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. As shown in FIG. 2B, the top plate portion 111 (more specifically, the central top plate portion 111a and the side wall portion top plate portion 111b described later) is horizontal, but may be curved. In this case, the angle at the ridge portion or R portion of the top plate portion 111 is the angle between a tangent extending from the boundary position between the ridge portion or R portion and the top plate portion 111 and another imaginary straight line, etc.
(側壁部)
 一対の側壁部115,115は、天板部111の幅方向Xの両端部に形成された第一稜線部113,113を介して延在する。尚、第一稜線部113,113は、構造部材100の長手方向Zに垂直な断面において、例えば1mm~10mmの曲率半径のR部を有する。なお、「Aを介して」とは、「A以外の他の部材を介さずに」という意味である。例えば、上記の例では、一対の側壁部115、115と天板部111との間には第一稜線部113、113のみが存在する。
 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されるため、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、一対の側壁部115,115には、高さ方向Yに沿う圧縮応力(B)が発生する。
(Side wall portion)
The pair of side walls 115, 115 extend via first ridges 113, 113 formed at both ends of the top plate 111 in the width direction X. The first ridges 113, 113 have an R portion with a curvature radius of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100. Note that "via A" means "without passing through any member other than A." For example, in the above example, only the first ridges 113, 113 exist between the pair of side walls 115, 115 and the top plate 111.
The structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (B) along the height direction Y is generated in the pair of side wall portions 115, 115.
 側壁部115の高さHは、例えば20mm以上150mm以下であればよい。側壁部115の高さHは、図2Bに示すように、構造部材100の長手方向Zに垂直な断面における、側壁部115と第一稜線部113との境界点と、側壁部115と第二稜線部117との境界点との間の、高さ方向Yの離間距離である。尚、第二稜線部117,117は、構造部材100の長手方向Zに垂直な断面において、例えば1mm~10mmの曲率半径のR部を有する。 The height H of the side wall 115 may be, for example, 20 mm or more and 150 mm or less. As shown in FIG. 2B, the height H of the side wall 115 is the distance in the height direction Y between the boundary point between the side wall 115 and the first ridge 113 and the boundary point between the side wall 115 and the second ridge 117 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. The second ridges 117, 117 have an R portion with a radius of curvature of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
(フランジ部)
 図2Aに示すように、一対の側壁部115,115における、第一稜線部113,113とは反対側の端部には、第二稜線部117,117が形成される。一対のフランジ部119,119は、第二稜線部117,117を介して外方に向けて延在する。
 フランジ部119には、接合部材120に接合するためのスポット溶接部170が長手方向Zに所定のピッチで形成されている。なお、スポット溶接は接合するための手段の一例であり、レーザ溶接やろう付け等の他の接合方法であってもよい。
(Flange part)
2A , second ridge portions 117, 117 are formed at ends of the pair of side wall portions 115, 115 opposite the first ridge portions 113, 113. The pair of flange portions 119, 119 extend outward via the second ridge portions 117, 117.
The flange portion 119 has spot welds 170 formed at a predetermined pitch in the longitudinal direction Z for joining to the joining member 120. Note that spot welding is one example of a joining means, and other joining methods such as laser welding and brazing may also be used.
(長手方向ビード)
 図2Bに示すように、天板部111には長手方向Zに沿って延在する二本の長手方向ビード150,150が幅方向Xに並列して形成される。なお、長手方向ビード150は三本以上並列して形成されていてもよい。
 図2Bに示すように、天板部111と第一稜線部113との境界点から、幅方向Xに天板部111の幅Wの1/4の離間距離となる点までの領域に、長手方向ビード150の幅方向Xの中心が位置するように長手方向ビード150が形成されることが好ましい。さらに好ましくは、長手方向に垂直な断面において、天板部111と第一稜線部113との境界点から、20mmの離間距離となる点までの領域に、長手方向ビード150と天板部111との境界点が位置するように長手方向ビード150が形成される。
 長手方向ビード150は、天板部111側の端部に所定の曲率半径のR部150a、150bを有する場合がある。その場合、長手方向ビード150は、長手方向ビード150のR部を介して天板部111に繋がる。
(Longitudinal bead)
2B , two longitudinal beads 150, 150 extending along the longitudinal direction Z are formed in parallel in the width direction X on the top plate portion 111. Note that three or more longitudinal beads 150 may be formed in parallel.
2B, the longitudinal bead 150 is preferably formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 1/4 of the width W of the top plate portion 111 in the width direction X. More preferably, the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the top plate portion 111 is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 20 mm in a cross section perpendicular to the longitudinal direction.
The longitudinal bead 150 may have rounded portions 150a, 150b with a predetermined radius of curvature at the end on the top plate portion 111 side. In this case, the longitudinal bead 150 is connected to the top plate portion 111 via the rounded portion of the longitudinal bead 150.
 このような長手方向ビード150が設けられることにより、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができる。これにより、構造部材100に曲げ変形が付与された際に、天板部111での早期の座屈変形の発生が抑制されて最大荷重が増加する。 By providing such a longitudinal bead 150, it is possible to increase the deformation resistance against the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. As a result, when bending deformation is applied to the structural member 100, the occurrence of early buckling deformation in the top plate portion 111 is suppressed, and the maximum load is increased.
 長手方向ビード150は、天板部111、側壁部115、及びフランジ部119をプレス成形する際に同一金型で同時成形してもよく、天板部111、側壁部115、及びフランジ部119をプレス成形する前に別の金型や工具で成形してもよい。 The longitudinal bead 150 may be formed simultaneously using the same mold when the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded, or may be formed using a separate mold or tool before the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded.
 図2Bに示すように、長手方向ビード150(三本以上の長手方向ビードが形成されている場合においては、外側に配置されている二本の長手方向ビード150のそれぞれ)は、第一ビード側壁151と、第二ビード側壁152と、ビード底壁153により形成されている。
 第一ビード側壁151及び第二ビード側壁152は、天板部111から屈曲して内方に向かって延在する。第二ビード側壁152は、第一ビード側壁151よりも側壁部115から遠い位置に配置される。本実施例に係る構造部材100においては、第一ビード側壁151と天板部111との内方側の角度(第一ビード側壁151の傾斜角)θ1が略90度であるが、角度θ1は90度以上であってもよい。
 ビード底壁153は、第一ビード側壁151と第二ビード側壁152との内方側の端部同士を連結する。なお、第一ビード側壁151と天板部111とはR部150aを介して連結され、第一ビード側壁151とビード底壁153とはR部150cを介して連結される。第二ビード側壁152と天板部111とはR部150bを介して連結され、第二ビード側壁152とビード底壁153とはR部150dを介して連結される。
As shown in FIG. 2B , the longitudinal bead 150 (in the case where three or more longitudinal beads are formed, each of the two longitudinal beads 150 arranged on the outside) is formed by a first bead side wall 151, a second bead side wall 152, and a bead bottom wall 153.
The first bead side wall 151 and the second bead side wall 152 bend and extend inward from the top plate portion 111. The second bead side wall 152 is disposed at a position farther from the side wall portion 115 than the first bead side wall 151. In the structural member 100 according to this embodiment, the inward angle θ1 between the first bead side wall 151 and the top plate portion 111 (the inclination angle of the first bead side wall 151) is approximately 90 degrees, but the angle θ1 may be greater than or equal to 90 degrees.
The bead bottom wall 153 connects the inner ends of the first bead side wall 151 and the second bead side wall 152. The first bead side wall 151 and the top plate portion 111 are connected via an R portion 150a, and the first bead side wall 151 and the bead bottom wall 153 are connected via an R portion 150c. The second bead side wall 152 and the top plate portion 111 are connected via an R portion 150b, and the second bead side wall 152 and the bead bottom wall 153 are connected via an R portion 150d.
 長手方向Zに垂直な断面において第一ビード側壁151の長さをw1、第二ビード側壁152の長さをw2、ビード底壁153の長さをw3としたとき、w1<w2の関係が満たされる。ここで、第一ビード側壁151の長さw1は、R部150aと第一ビード側壁151との境界点と、R部150cと第一ビード側壁151との境界点との間の、第一ビード側壁151に沿った方向の離間距離である。第二ビード側壁152の長さw2は、R部150bと第二ビード側壁152との境界点と、R部150dと第二ビード側壁152との境界点との間の、第二ビード側壁152に沿った方向の離間距離である。ビード底壁153の長さw3は、R部150cとビード底壁153との境界点と、R部150dとビード底壁153との境界点との間の、ビード底壁153に沿った方向の離間距離である。本実施形態では、ビード底壁153の長さw3は0mm以上18mm以下である。なお、w3とw1及びw2との関係については後述する。 When the length of the first bead sidewall 151 in a cross section perpendicular to the longitudinal direction Z is w1, the length of the second bead sidewall 152 is w2, and the length of the bead bottom wall 153 is w3, the relationship w1 < w2 is satisfied. Here, the length w1 of the first bead sidewall 151 is the distance in the direction along the first bead sidewall 151 between the boundary point between the R portion 150a and the first bead sidewall 151 and the boundary point between the R portion 150c and the first bead sidewall 151. The length w2 of the second bead sidewall 152 is the distance in the direction along the second bead sidewall 152 between the boundary point between the R portion 150b and the second bead sidewall 152 and the boundary point between the R portion 150d and the second bead sidewall 152. The length w3 of the bead bottom wall 153 is the distance along the bead bottom wall 153 between the boundary point between the R portion 150c and the bead bottom wall 153 and the boundary point between the R portion 150d and the bead bottom wall 153. In this embodiment, the length w3 of the bead bottom wall 153 is 0 mm or more and 18 mm or less. The relationship between w3 and w1 and w2 will be described later.
 本実施形態では、第二ビード側壁152は、略鉛直方向に伸びている。さらに、上述したように、w1<w2の関係が満たされる。したがって、第二ビード側壁152は第一ビード側壁151よりも長い。このため、二本の長手方向ビード150の間に形成された中央側天板部111aは、二本の長手方向ビード150よりも側壁部115側に形成された側壁部側天板部111b、111bよりも高さ方向Yの外方に突出している。なお、中央側天板部111aは、一対の側壁部側天板部111b、111bの両方よりも高さ方向Yの外方に突出しているが、いずれか一方よりも高さ方向Yの外方に突出していてもよい。w1は2mm以上であることが好ましい。 In this embodiment, the second bead side wall 152 extends in a substantially vertical direction. Furthermore, as described above, the relationship w1<w2 is satisfied. Therefore, the second bead side wall 152 is longer than the first bead side wall 151. Therefore, the center side top plate portion 111a formed between the two longitudinal beads 150 protrudes outward in the height direction Y more than the side wall side top plate portions 111b, 111b formed on the side wall portion 115 side of the two longitudinal beads 150. Note that the center side top plate portion 111a protrudes outward in the height direction Y more than both of the pair of side wall side top plate portions 111b, 111b, but may protrude outward in the height direction Y more than either one of them. It is preferable that w1 is 2 mm or more.
 図2Bに示すように、長手方向ビード150は、所定の深さd1と所定の幅w4を有する。 As shown in FIG. 2B, the longitudinal bead 150 has a predetermined depth d1 and a predetermined width w4.
 長手方向ビード150の深さd1は、長手方向ビード150における、側壁部側天板部111bの外方の表面からビード底壁153の外方の表面までの高さ方向Yの離間距離である。長手方向ビード150が長手方向Zに沿って深さが変化する形状である場合、天板部111からビード底壁153までの高さ方向Yの離間距離の最大値を深さd1とする。 The depth d1 of the longitudinal bead 150 is the distance in the height direction Y from the outer surface of the side wall portion top plate portion 111b to the outer surface of the bead bottom wall 153 in the longitudinal bead 150. If the longitudinal bead 150 has a shape whose depth changes along the longitudinal direction Z, the maximum value of the distance in the height direction Y from the top plate portion 111 to the bead bottom wall 153 is defined as the depth d1.
 長手方向ビード150の深さd1が大きいほど、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができ、天板部111での早期の座屈変形が抑制されて最大荷重が増加する。従って、長手方向ビード150の深さd1は5mm以上であることが好ましく、8mm以上であることが更に好ましい。 The greater the depth d1 of the longitudinal bead 150, the greater the deformation resistance to compressive stress along the longitudinal direction Z that occurs in the top plate portion 111, suppressing early buckling deformation in the top plate portion 111 and increasing the maximum load. Therefore, the depth d1 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.
 一方、長手方向ビード150の深さd1が大き過ぎると、車外側からの衝撃荷重が天板部111に入力された直後に第一ビード側壁151と第二ビード側壁152とが互いに接近する方向に倒れやすくなる場合がある。第一ビード側壁151と第二ビード側壁152とが互いに接近する方向に倒れやすくなると、それに伴い一対の側壁部115,115も互いに接近する方向に倒れやすくなる。この場合、第一ビード側壁151と第二ビード側壁152とが互いに接近する方向に倒れている最中は、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗が高まる時期が遅くなる場合がある。更に、長手方向ビード150の深さd1が大き過ぎると、長手方向ビード150の幅w4が相対的に小さい場合、長手方向ビード150の成形加工が困難になる場合もある。従って、長手方向ビード150の深さd1は20mm以下であることが好ましく、16mm以下であることが更に好ましい。 On the other hand, if the depth d1 of the longitudinal bead 150 is too large, the first bead side wall 151 and the second bead side wall 152 may easily collapse in a direction approaching each other immediately after an impact load from the outside of the vehicle is input to the top plate portion 111. If the first bead side wall 151 and the second bead side wall 152 easily collapse in a direction approaching each other, the pair of side wall portions 115, 115 may also easily collapse in a direction approaching each other. In this case, while the first bead side wall 151 and the second bead side wall 152 are collapsing in a direction approaching each other, the time when the deformation resistance against the compressive stress along the longitudinal direction Z generated in the top plate portion 111 increases may be delayed. Furthermore, if the depth d1 of the longitudinal bead 150 is too large, it may be difficult to form the longitudinal bead 150 if the width w4 of the longitudinal bead 150 is relatively small. Therefore, the depth d1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 16 mm or less.
 長手方向ビード150の幅w4は、長手方向Zに垂直な断面における、長手方向ビード150の第一ビード側壁151を延長した仮想直線と、側壁部側天板部111bを延長した仮想直線との交点と、長手方向ビード150の第二ビード側壁152を延長した仮想直線と、中央側天板部111aを延長した仮想直線との交点との間の幅方向Xの離間距離である。
 長手方向ビード150が長手方向Zに沿って幅が変化する形状である場合、上記離間距離が最大となる断面における離間距離を幅w4とする。
The width w4 of the longitudinal bead 150 is the distance in the width direction X between the intersection of a virtual line extending the first bead side wall 151 of the longitudinal bead 150 and a virtual line extending the side wall portion side top plate portion 111b, and the intersection of a virtual line extending the second bead side wall 152 of the longitudinal bead 150 and a virtual line extending the central side top plate portion 111a, in a cross section perpendicular to the longitudinal direction Z.
When the longitudinal bead 150 has a shape whose width changes along the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w4.
 長手方向ビード150の幅w4が小さいほど、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができ、天板部111での早期の座屈変形が抑制されて最大荷重が増加する。従って、長手方向ビード150の幅w4は20mm以下であることが好ましく、15mm以下であることが更に好ましい。 The smaller the width w4 of the longitudinal bead 150, the higher the deformation resistance against compressive stress along the longitudinal direction Z that occurs in the top plate portion 111, suppressing early buckling deformation in the top plate portion 111 and increasing the maximum load. Therefore, the width w4 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 15 mm or less.
 一方、長手方向ビード150の幅w4が小さ過ぎると、長手方向ビード150の深さd1が相対的に大きい場合、長手方向ビード150の成形加工が困難になる場合がある。このため、長手方向ビード150の幅w4は5mm以上であることが好ましく、8mm以上であることが更に好ましい。 On the other hand, if the width w4 of the longitudinal bead 150 is too small, and the depth d1 of the longitudinal bead 150 is relatively large, it may be difficult to mold the longitudinal bead 150. For this reason, the width w4 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.
 尚、長手方向ビード150は、必ずしも天板部111の長手方向Zの全長に形成される必要はなく、天板部111の全長の一部において形成されていてもよい。長手方向ビード150が形成される位置としては、構造部材100の曲げ圧潰特性として最も強化すべき位置、例えば、インパクタが接触する位置及びその近傍が選択されてもよい。また、長手方向ビード150は、長手方向Zの複数個所に形成されていてもよい。
 また、長手方向ビード150と高さ方向ビード160が、長手方向Zの同じ位置にあることが好ましい。この場合、ストローク初期における耐荷重と、衝撃吸収エネルギとをより確実に向上させることができる。
The longitudinal bead 150 does not necessarily have to be formed over the entire length of the top plate portion 111 in the longitudinal direction Z, and may be formed over a portion of the entire length of the top plate portion 111. The position at which the longitudinal bead 150 is formed may be selected to be a position where the bending crushing characteristics of the structural member 100 should be most strengthened, for example, a position where the impactor comes into contact and its vicinity. Furthermore, the longitudinal bead 150 may be formed at multiple locations in the longitudinal direction Z.
It is also preferable that the longitudinal bead 150 and the height bead 160 are located at the same position in the longitudinal direction Z. In this case, it is possible to more reliably improve the load resistance and the shock absorption energy at the beginning of the stroke.
 上述のように、長手方向ビード150の深さd1と幅w4は、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗に影響する。長手方向ビード150の幅w4に対する深さd1(深さd1/幅w4)で求められるアスペクト比A1が0.25以上4.0以下である場合、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高める効果をより確実に発揮できるため好ましい。アスペクト比A1は0.5以上2.0以下であることが更に好ましい。 As described above, the depth d1 and width w4 of the longitudinal bead 150 affect the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is preferable that the aspect ratio A1 calculated by the depth d1 relative to the width w4 of the longitudinal bead 150 (depth d1/width w4) is 0.25 or more and 4.0 or less, since this can more reliably achieve the effect of increasing the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is even more preferable that the aspect ratio A1 is 0.5 or more and 2.0 or less.
(高さ方向ビード)
 側壁部115には、高さ方向Yに沿って延在する高さ方向ビード160が複数本、長手方向Zに並列して形成されている。
 図3及び図4に示す例では、側壁部115の高さ方向Yの全高に亘り高さ方向ビード160が形成されているが、高さ方向の全長の一部のみに高さ方向ビード160が形成されていてもよい。
 高さ方向ビード160は、側壁部115から内方に向けて突出するように形成されている。
 高さ方向ビード160は、側壁部115側の端部に所定の曲率半径のR部を有する場合がある。その場合、高さ方向ビード160は、高さ方向ビード160のR部を介して側壁部115に繋がる。
 このような高さ方向ビード160が設けられることにより、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高めることができる。これにより、側壁部115での早期の座屈変形が抑制されて最大荷重が増加する。
(Height bead)
A plurality of height direction beads 160 extending along the height direction Y are formed in parallel in the longitudinal direction Z on the side wall portion 115 .
In the example shown in Figures 3 and 4, the height direction bead 160 is formed over the entire height of the side wall portion 115 in the height direction Y, but the height direction bead 160 may be formed over only a portion of the entire height direction.
The height direction bead 160 is formed so as to protrude inward from the side wall portion 115 .
The height direction bead 160 may have an R portion with a predetermined radius of curvature at the end portion on the side wall portion 115 side. In this case, the height direction bead 160 is connected to the side wall portion 115 via the R portion of the height direction bead 160.
The provision of such height direction beads 160 can increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, early buckling deformation in the side wall portion 115 is suppressed, and the maximum load is increased.
 本実施形態に係る構造部材100では、高さ方向ビード160は、第一稜線部113から第二稜線部117まで延在するように形成されている。
 高さ方向ビード160が、第一稜線部113から延在するように形成されていることにより、高さ方向ビード160が第一稜線部113の高さ方向Yに沿う圧縮応力(B)に対する変形抵抗にも寄与し、第一稜線部113が潰れにくくなる。第一稜線部113が潰れにくくなることで、第一稜線部113と繋がる側壁部115の上部も更に潰れにくくなる。第一稜線部113及び側壁部115が潰れにくくなることで、構造部材100の高さ減少に伴う、長手方向Zに交差する断面の高さ方向Yの曲げ剛性の低下を抑制し、局部座屈モードの3点曲げ特性の低下を防ぐことができるため、好ましい。尚、このように、高さ方向ビード160が、第一稜線部113から延在するように形成されている場合には、第一稜線部113は、長手方向Zに沿って、高さ方向ビード160のビード底壁162の部位と、高さ方向ビードが形成されていない側壁部115の部位とによる段差が形成されることになる。
In the structural member 100 according to this embodiment, the height direction bead 160 is formed so as to extend from the first ridge portion 113 to the second ridge portion 117 .
Since the height direction bead 160 is formed to extend from the first ridge line portion 113, the height direction bead 160 also contributes to the deformation resistance of the first ridge line portion 113 against the compressive stress (B) along the height direction Y, making the first ridge line portion 113 less likely to be crushed. Since the first ridge line portion 113 is less likely to be crushed, the upper part of the side wall portion 115 connected to the first ridge line portion 113 is also less likely to be crushed. Since the first ridge line portion 113 and the side wall portion 115 are less likely to be crushed, a decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to a decrease in the height of the structural member 100 is suppressed, and a decrease in the three-point bending characteristics in the local buckling mode can be prevented, which is preferable. Furthermore, in this manner, when the height-direction bead 160 is formed to extend from the first ridge portion 113, a step is formed along the longitudinal direction Z of the first ridge portion 113 between a portion of the bead bottom wall 162 of the height-direction bead 160 and a portion of the side wall portion 115 where the height-direction bead is not formed.
 更に、高さ方向ビード160が、第一稜線部113から第二稜線部117まで延在するように形成されていることにより、高さ方向ビード160は第二稜線部117の高さ方向Yに沿う圧縮応力(B)に対する変形抵抗にも寄与し、第二稜線部117も潰れにくくなる。よって、第一稜線部113、側壁部115、及び第二稜線部117が潰れにくくなるため、構造部材100の高さ減少に伴う、長手方向Zに交差する断面の高さ方向Yの曲げ剛性の低下を更に抑制し、局部座屈モードの3点曲げ特性の低下を更に防ぐことができるため、好ましい。 Furthermore, by forming the height direction bead 160 so as to extend from the first ridge portion 113 to the second ridge portion 117, the height direction bead 160 also contributes to the deformation resistance of the second ridge portion 117 against the compressive stress (B) along the height direction Y, making the second ridge portion 117 less likely to be crushed. Therefore, since the first ridge portion 113, the side wall portion 115, and the second ridge portion 117 are less likely to be crushed, the decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z that accompanies the reduction in height of the structural member 100 is further suppressed, and the decrease in the three-point bending characteristics in the local buckling mode can be further prevented, which is preferable.
 高さ方向ビード160は、一対のビード側壁161,161と、ビード底壁162により形成されている。
 一対のビード側壁161,161は、側壁部115から内方に向けて屈曲して延在する。
 ビード底壁162は、一対のビード側壁161,161の内方側の端部同士を連結する。
The height direction bead 160 is formed by a pair of bead side walls 161 , 161 and a bead bottom wall 162 .
The pair of bead side walls 161 , 161 extend inwardly from the side wall portion 115 while bending.
The bead bottom wall 162 connects the inner ends of the pair of bead side walls 161, 161 to each other.
 図4に示すように、高さ方向ビード160は所定の深さd2と所定の幅w5を有する。 As shown in FIG. 4, the vertical bead 160 has a predetermined depth d2 and a predetermined width w5.
 高さ方向ビード160の深さd2は、高さ方向ビード160における、側壁部115の外方の表面からビード底壁162の外方の表面までの幅方向Xの離間距離である。高さ方向ビード160が高さ方向Yに沿って深さが変化する形状である場合、側壁部115からビード底壁162までの幅方向Xの離間距離の最大値を深さd2とする。 The depth d2 of the height direction bead 160 is the distance in the width direction X from the outer surface of the side wall portion 115 to the outer surface of the bead bottom wall 162 in the height direction bead 160. If the height direction bead 160 has a shape whose depth changes along the height direction Y, the maximum value of the distance in the width direction X from the side wall portion 115 to the bead bottom wall 162 is defined as the depth d2.
 高さ方向ビード160の深さd2が大きいほど、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。従って、高さ方向ビード160の深さd2は2mm以上であることが好ましく、4mm以上であることが更に好ましい。 The greater the depth d2 of the height direction bead 160, the greater the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. Therefore, the depth d2 of the height direction bead 160 is preferably 2 mm or more, and more preferably 4 mm or more.
 一方、高さ方向ビード160の深さd2が大き過ぎると、構造部材100の幅方向Xの寸法が局所的に小さい値になり、長手方向Zに交差する断面における曲げ剛性が小さくなり過ぎて、所望の3点曲げ特性が得られなくなることがある。また、長手方向ビード150を天板部111の幅方向Xの端部近傍部分に形成する構成では、高さ方向ビード160の深さd2が大き過ぎると、所望の位置に長手方向ビード150を形成できなくなる場合がある。更に、高さ方向ビード160の深さd2が大き過ぎると、高さ方向ビード160の幅w5が相対的に小さい場合、高さ方向ビード160の成形加工が困難になることもある。従って、高さ方向ビード160の深さd2は10mm以下であることが好ましく、8mm以下であることが更に好ましい。 On the other hand, if the depth d2 of the height direction bead 160 is too large, the dimension in the width direction X of the structural member 100 becomes locally small, and the bending rigidity in the cross section intersecting the longitudinal direction Z becomes too small, so that the desired three-point bending characteristics may not be obtained. In addition, in a configuration in which the longitudinal bead 150 is formed in the portion near the end of the width direction X of the top plate portion 111, if the depth d2 of the height direction bead 160 is too large, the longitudinal bead 150 may not be formed at the desired position. Furthermore, if the depth d2 of the height direction bead 160 is too large, it may be difficult to mold the height direction bead 160 if the width w5 of the height direction bead 160 is relatively small. Therefore, the depth d2 of the height direction bead 160 is preferably 10 mm or less, and more preferably 8 mm or less.
 複数の高さ方向ビード160は、側壁部115の長手方向Zに50mm以下のビード間距離で形成されていることが好ましく、30mm以下のビード間距離で形成されていることが更に好ましい。この場合、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。尚、ビード間距離とは、図4に示すように、高さ方向ビード160の一方の端部(長手方向Zの一方の方向にある端部)と、隣接する高さ方向ビード160の他方の端部(長手方向Zの他方の方向にある端部)との間の離間距離w6を意味する。 The multiple height-direction beads 160 are preferably formed with an inter-bead distance of 50 mm or less in the longitudinal direction Z of the side wall portion 115, and more preferably with an inter-bead distance of 30 mm or less. In this case, it is possible to further increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. Note that the inter-bead distance means the separation distance w6 between one end of the height-direction bead 160 (end in one direction of the longitudinal direction Z) and the other end of the adjacent height-direction bead 160 (end in the other direction of the longitudinal direction Z), as shown in FIG. 4.
 尚、複数の高さ方向ビード160は、側壁部115の長手方向Zの全長に亘り形成される必要はなく、側壁部115の長手方向Zの全長の一部において形成されていればよい。複数の高さ方向ビード160が形成される位置としては、構造部材100の曲げ圧潰特性として最も強化すべき位置、例えば、インパクタが接触する位置及びその近傍が選択されてもよい。
 また、複数の高さ方向ビード160は、側壁部115に均等のビード間距離で並んで形成される必要はなく、例えば、三本の高さ方向ビード160が形成される場合、二つのビード間距離は異なる値であってよい。
 更に、複数の高さ方向ビード160は、一対の側壁部115,115において、必ずしも長手方向Zの同じ位置に形成される必要はない。例えば一方の側壁部115に形成された高さ方向ビード160と同じ長手方向Zの位置において、他方の側壁部115には高さ方向ビード160が形成されていなくてもよい。
The plurality of height-direction beads 160 do not need to be formed over the entire length of the side wall portion 115 in the longitudinal direction Z, but may be formed over a portion of the entire length of the side wall portion 115 in the longitudinal direction Z. The positions at which the plurality of height-direction beads 160 are formed may be selected as positions at which the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity.
Furthermore, the multiple height-direction beads 160 do not need to be formed side by side on the side wall portion 115 with equal bead-to-bead distances; for example, when three height-direction beads 160 are formed, the two bead-to-bead distances may be different values.
Furthermore, the plurality of height direction beads 160 do not necessarily have to be formed at the same position in the longitudinal direction Z on the pair of side wall portions 115, 115. For example, at the same position in the longitudinal direction Z as the height direction bead 160 formed on one side wall portion 115, the height direction bead 160 does not have to be formed on the other side wall portion 115.
 高さ方向ビード160の幅w5は、高さ方向Yに垂直な断面における、高さ方向ビード160の一方のビード側壁161の外方の表面を延長した仮想直線と、側壁部115の外方の表面を延長した仮想直線との交点と、高さ方向ビード160の他方のビード側壁161の外方の表面を延長した仮想直線と、側壁部115の外方の表面を延長した仮想直線との交点との間の離間距離である。
 高さ方向ビード160が長手方向Zに交差する方向に沿って幅が変化する形状である場合、上記離間距離が最大となる断面における離間距離を幅w5とする。
The width w5 of the height-wise bead 160 is the distance between the intersection of a virtual line extending the outer surface of one bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, and the intersection of a virtual line extending the outer surface of the other bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, in a cross section perpendicular to the height direction Y.
When the height direction bead 160 has a shape whose width changes along a direction intersecting the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w5.
 高さ方向ビード160の幅w5が小さいほど、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。従って、高さ方向ビード160の幅w5は60mm以下であることが好ましく、40mm以下であることが更に好ましい。 The smaller the width w5 of the height direction bead 160, the higher the deformation resistance against the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. Therefore, the width w5 of the height direction bead 160 is preferably 60 mm or less, and more preferably 40 mm or less.
 一方、高さ方向ビード160の幅w5が小さ過ぎると、高さ方向ビード160の深さd2が相対的に大きい場合、高さ方向ビード160の成形加工が困難になる場合がある。従って、高さ方向ビード160の幅w5は10mm以上であることが好ましく、15mm以上であることが更に好ましい。 On the other hand, if the width w5 of the height direction bead 160 is too small, and the depth d2 of the height direction bead 160 is relatively large, it may be difficult to mold the height direction bead 160. Therefore, it is preferable that the width w5 of the height direction bead 160 is 10 mm or more, and it is even more preferable that it is 15 mm or more.
 上述のように、高さ方向ビード160の深さd2と幅w5は、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗に影響する。高さ方向ビード160の幅w5に対する深さd2(深さd2/幅w5)で算出されるアスペクト比A2が0.05以上1.0以下である場合、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高める効果をより確実に発揮できるため好ましい。アスペクト比A2は0.1以上0.5以下であることが更に好ましい。 As described above, the depth d2 and width w5 of the height direction bead 160 affect the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. When the aspect ratio A2 calculated by the depth d2 relative to the width w5 of the height direction bead 160 (depth d2/width w5) is 0.05 or more and 1.0 or less, this is preferable because it can more reliably achieve the effect of increasing the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. It is even more preferable that the aspect ratio A2 is 0.1 or more and 0.5 or less.
 ハット型部材110は、軽量化の観点から、板厚1.2mm以下の鋼板により形成されていることが好ましく、板厚1.0mm以下の鋼板により形成されていることがより好ましい。
 ハット型部材110の板厚の下限は特に限定されるものではなく、0.3mm以上であればよい。
 更に、衝突安全性能の観点からは、ハット型部材110は、引張強さが980MPa以上の鋼板により形成されていることが好ましく、引張強さが1470MPa以上の鋼板で形成されていることがより好ましい。
From the viewpoint of reducing weight, the hat-shaped component 110 is preferably formed from a steel plate having a thickness of 1.2 mm or less, and more preferably from a steel plate having a thickness of 1.0 mm or less.
The lower limit of the thickness of the hat-shaped component 110 is not particularly limited, and may be 0.3 mm or more.
Furthermore, from the viewpoint of collision safety performance, the hat-shaped member 110 is preferably formed from a steel plate having a tensile strength of 980 MPa or more, and more preferably from a steel plate having a tensile strength of 1470 MPa or more.
 ハット型部材110は、例えば、板材に冷間プレス加工又は温間プレス加工を施すことにより成形され得る。
 また、ハット型部材110は、鋼板をオーステナイト域の高温まで加熱した後に金型でプレス成形を実施すると同時に、その金型内において金型への抜熱または金型内での水冷等の方法によって焼入れ処理を実施するホットスタンプ加工により成形されてもよい。従って、ハット型部材110は、焼き入れ部材であってもよい。
The hat-shaped member 110 can be formed, for example, by subjecting a plate material to cold pressing or warm pressing.
The hat-shaped member 110 may also be formed by hot stamping, in which a steel plate is heated to a high temperature in the austenite region, and then press-formed in a die, and simultaneously quenched in the die by a method such as heat extraction into the die or water cooling in the die. Thus, the hat-shaped member 110 may be a quenched member.
(接合部材)
 以下、接合部材120について説明する。
 接合部材120は、ハット型部材110に接合される部材である。本実施形態に係る構造部材100は、接合部材120が車内側に対向する姿勢で自動車に設置されるため、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、接合部材120には長手方向Zに沿う引張応力(C)が発生する。
 従って、接合部材120がハット型部材110に接合されることにより、長手方向Zに沿う引張応力(C)に対する変形抵抗を高めることができる。これにより、ストローク初期における耐荷重を向上させることが可能となる。
 また、接合部材120は、ハット型部材110に接合されることにより、構造部材100に曲げ変形が生じた際に側壁部115が幅方向Xに開くことを防ぐことができる。従って、側壁部115における、高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を十分に高めることができ、ストローク初期における耐荷重を向上させることができる。
(Joining member)
The joining member 120 will be described below.
The joining member 120 is a member that is joined to the hat-shaped member 110. The structural member 100 according to this embodiment is installed in an automobile with the joining member 120 facing the inside of the vehicle. Therefore, when an impact load from the outside of the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, a tensile stress (C) along the longitudinal direction Z is generated in the joining member 120.
Therefore, by joining the joining member 120 to the hat-shaped member 110, it is possible to increase the deformation resistance against the tensile stress (C) along the longitudinal direction Z. This makes it possible to improve the load resistance at the beginning of the stroke.
Furthermore, by being joined to the hat-shaped member 110, the joining member 120 can prevent the side wall portion 115 from opening in the width direction X when bending deformation occurs in the structural member 100. Therefore, it is possible to sufficiently increase the deformation resistance of the side wall portion 115 against the compressive stress (B) along the height direction Y, and to improve the load resistance at the beginning of the stroke.
 図2A、図2Bに示すように、本実施形態に係る構造部材100では、一枚の平板材を接合部材120として用いる。ただし、平板材の代わりに、例えばハット型の部材を用いてもよい。
 接合部材120は、鋼板、アルミ板、アルミ合金板、ステンレス板、チタン板などの金属板、更には、樹脂板、CFRP(Carbon Fiber Reinforced Plastic)板からなる部材であればよい。
 接合部材120の引張強さ及び板厚は、特に限定されるものではない。前述のように車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、接合部材120には長手方向Zに沿う引張応力(C)が発生する。仮に圧縮応力が発生する場合、圧縮応力による座屈変形には部材の板厚や強度が大きく影響するが、引張応力の場合は、引張変形により部材が破断しない範囲で薄い板厚や低い強度の素材を使用することができる。このため、例えば接合部材120の引張強さ及び板厚は、ハット型部材110よりも低い引張強さであったり、薄い板厚であってもよい。
 また、接合部材120は、焼き入れ部材であってもよい。
2A and 2B, in the structural member 100 according to this embodiment, a single flat plate material is used as the joining member 120. However, instead of the flat plate material, for example, a hat-shaped member may be used.
The joining member 120 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.
The tensile strength and thickness of the joining member 120 are not particularly limited. As described above, when an impact load from the outside of the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, a tensile stress (C) along the longitudinal direction Z occurs in the joining member 120. If compressive stress occurs, the plate thickness and strength of the member greatly affect the buckling deformation due to the compressive stress, but in the case of tensile stress, a material with a thin plate thickness or low strength can be used within a range in which the member does not break due to tensile deformation. Therefore, for example, the tensile strength and thickness of the joining member 120 may be lower than those of the hat-shaped member 110, or may be thinner than those of the hat-shaped member 110.
The joining member 120 may also be a hardened member.
 図2Bに示すように、接合部材120は、幅方向Xの両端に設けられる一対の接合部121,121と、幅方向Xの中央に設けられる天板対向部123とを有する。
 一対の接合部121,121は、ハット型部材110の一対のフランジ部119,119がスポット溶接等により接合される部位である。
 天板対向部123は、接合部材120の接合部121を除く部位であって、ハット型部材110の天板部111に対向する部位である。
 本実施形態に係る構造部材100では、接合部材120は一枚の平板状の鋼板で構成されるため、接合部121と天板対向部123は同一面内で互いに隣接する領域である。
As shown in FIG. 2B , the joint member 120 has a pair of joint portions 121, 121 provided at both ends in the width direction X, and a top plate facing portion 123 provided in the center in the width direction X.
The pair of joint portions 121, 121 are locations where the pair of flange portions 119, 119 of the hat-shaped component 110 are joined by spot welding or the like.
The top plate facing portion 123 is a portion of the joining member 120 excluding the joint portion 121 , and is a portion facing the top plate portion 111 of the hat-shaped member 110 .
In the structural member 100 according to this embodiment, the joint member 120 is formed from a single flat steel plate, so that the joint portion 121 and the top plate facing portion 123 are adjacent regions on the same plane.
 天板対向部123の幅は40mm以上200mm以下であればよい。天板対向部123の幅は、天板部111の幅Wよりも大きいことが好ましい。この場合、一対の側壁部115,115は、第一稜線部113,113から第二稜線部117,117にかけて外方へ広がる方向に傾斜する。車外側からの衝撃荷重が天板部111に入力された場合、一対の側壁部115,115は、第一稜線部113,113が互いに接近する方向に倒れやすくなる。これにより、二本の長手方向ビード150、150の第一ビード側壁151、151も内方側に倒れやすくなるが、第二ビード側壁152、152によって第一ビード側壁151、151の倒れこみが抑制される(詳細は後述する)。その結果、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。また、一対の側壁部115,115が第一稜線部113,113から第二稜線部117,117にかけて外方へ広がる方向に傾斜していることで、ハット型部材110をプレス成形する場合、高さ方向Yをプレス方向とした時の負角を無くすことができるため、成形加工が容易になるという効果も得られる。 The width of the top plate facing portion 123 may be 40 mm or more and 200 mm or less. It is preferable that the width of the top plate facing portion 123 is greater than the width W of the top plate portion 111. In this case, the pair of side wall portions 115, 115 are inclined in a direction that spreads outward from the first ridge portion 113, 113 to the second ridge portion 117, 117. When an impact load from the outside of the vehicle is input to the top plate portion 111, the pair of side wall portions 115, 115 are likely to collapse in a direction in which the first ridge portions 113, 113 approach each other. As a result, the first bead side walls 151, 151 of the two longitudinal beads 150, 150 are also likely to collapse inward, but the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152 (details will be described later). As a result, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved. In addition, because the pair of side walls 115, 115 are inclined in a direction that spreads outward from the first ridge line portion 113, 113 to the second ridge line portion 117, 117, when the hat-shaped component 110 is press-molded, a negative angle can be eliminated when the height direction Y is the press direction, which makes molding easier.
 (長手方向ビードの変形)
 次に、図5~図7に基づいて、車外側からの衝撃荷重がハット型部材110に入力された際の長手方向ビード150の変形について説明する。車外側からの衝撃荷重がハット型部材110に入力されて構造部材100に曲げ変形が生じた際には、図5に示すように、ハット型部材110の天板部111において長手方向Zに沿う圧縮応力(A)と、ハット型部材110の側壁部115において高さ方向Yに沿う圧縮応力(B)と、接合部材120において長手方向Zに沿う引張応力(C)と、が複合的に発生することになる。
(Longitudinal bead deformation)
5 to 7, the deformation of the longitudinal bead 150 when an impact load from the outside of the vehicle is input to the hat-shaped member 110. When an impact load from the outside of the vehicle is input to the hat-shaped member 110 and bending deformation occurs in the structural member 100, a compressive stress (A) along the longitudinal direction Z in the top plate portion 111 of the hat-shaped member 110, a compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped member 110, and a tensile stress (C) along the longitudinal direction Z in the joining member 120 are generated in a composite manner, as shown in FIG.
 ストローク初期においては、図6に示す変形前の状態から、図7Aに示すように、まず、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151が内方側に倒れこんでくる。その後、図7Bに示すように、第一ビード側壁151(より詳細には、第一ビード側壁151と側壁部側天板部111bとの境界部分であるR部150a)が第二ビード側壁152に接触する。その後は、倒れこんできた第一ビード側壁151を第二ビード側壁152によって保持することができる。すなわち、第二ビード側壁152、152によって第一ビード側壁151、151の倒れこみが抑制される。その結果、側壁部115の倒れこみも抑制され、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。 In the initial stage of the stroke, as shown in FIG. 7A, the side wall portion 115 starts to collapse inward from the pre-deformation state shown in FIG. 6, and the first bead side wall 151 collapses inward. Then, as shown in FIG. 7B, the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion top plate portion 111b) comes into contact with the second bead side wall 152. After that, the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152. As a result, the collapse of the side wall portion 115 is also suppressed, and the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, so that the impact absorption energy can be further improved.
 本実施形態に係る構造部材100によれば、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じた際に、長手方向Zに沿う圧縮応力(A)に対する変形抵抗と、高さ方向Yに沿う圧縮応力(B)に対する変形抵抗と、長手方向Zに沿う引張応力(C)に対する変形抵抗と、を複合的に発揮することができる。
 特に、w1<w2の関係が満たされ、かつ、中央側天板部111aが側壁部側天板部111bよりも高さ方向Yの外方に突出しているため、第一ビード側壁151の倒れこみを第二ビード側壁152によって抑制することができ、さらに側壁部115の倒れこみも抑制され、ハット型部材110の断面形状の崩れを抑えることができることから、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。
 尚、w1×1.2<w2の関係が満たされる場合には、より安定して上記の効果を得ることができるため好ましい。
According to the structural member 100 of this embodiment, when an impact load from outside the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, it is possible to exert a combination of deformation resistance to compressive stress (A) along the longitudinal direction Z, deformation resistance to compressive stress (B) along the height direction Y, and deformation resistance to tensile stress (C) along the longitudinal direction Z.
In particular, since the relationship w1 < w2 is satisfied and the central top plate portion 111a protrudes outward in the height direction Y more than the side wall side top plate portion 111b, the collapse of the first bead side wall 151 can be suppressed by the second bead side wall 152, and the collapse of the side wall portion 115 is also suppressed, and the deformation of the cross-sectional shape of the hat-shaped member 110 can be suppressed, thereby improving the load-bearing capacity and impact absorption energy at the beginning of the stroke in the local buckling mode deformation.
Incidentally, it is preferable that the relationship w1×1.2<w2 is satisfied, since the above-mentioned effects can be obtained more stably.
 尚、変形抵抗は板材が薄いほど低くなるため、従来は、薄肉化による変形抵抗の減少が、薄肉高強度の材料利用による軽量化の障壁の一つになっていた。即ち、例えば天板部111において長手方向Zに沿う圧縮応力(A)に対する変形抵抗を高強度化や部品形状の工夫等により高めたとしても、薄肉化により側壁部115が撓み変形等で容易に座屈変形してしまうと、構造部材100は良好な3点曲げ特性を発揮できない。また、逆に側壁部115の長手方向Zに交差する方向における圧縮応力(B)に対する変形抵抗を高強度化や部品形状の工夫等により高めたとしても、薄肉化により天板部111が撓み変形等で容易に座屈変形してしまうと、構造部材は良好な3点曲げ特性を発揮できない。
 本実施形態に係る構造部材100によれば、上記のように、それぞれの部位における変形抵抗を複合的に発揮することができるため、薄肉高強度の材料を利用しても優れた衝突安全性能を発揮することが可能となる。
Since the thinner the plate material, the lower the deformation resistance, the conventional method has been one of the barriers to weight reduction by using thin, high-strength materials. That is, even if the deformation resistance of the top plate 111 against the compressive stress (A) along the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member 100 cannot exhibit good three-point bending characteristics if the side wall 115 is easily buckled due to bending deformation or the like due to the thinning. Conversely, even if the deformation resistance of the side wall 115 against the compressive stress (B) in the direction intersecting the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member cannot exhibit good three-point bending characteristics if the top plate 111 is easily buckled due to bending deformation or the like due to the thinning.
As described above, the structural member 100 of this embodiment can exert a composite deformation resistance at each portion, making it possible to exert excellent collision safety performance even when using a thin-walled, high-strength material.
 (第一変形例)
 つぎに、図8に基づいて、構造部材100の第一変形例(構造部材100A)について説明する。なお、第一変形例に後述する第二~第六変形例を適用してもよい。図8は第一変形例に係る構造部材100Aの斜視図である。上述の構造部材100では、長手方向ビード150がハット型部材110の天板部111に形成されているが、この構造部材100Aでは、長手方向ビード150がハット型部材110の天板部111に形成されず、接合部材120の天板対向部123に形成されている。このため、天板対向部123は、二本の長手方向ビード150の間に形成された中央側天板対向部123aと、二本の長手方向ビード150よりも側壁部115側に形成された側壁部側天板対向部123b、123bとに区分される。中央側天板対向部123aは、側壁部側天板対向部123b、123bよりも高さ方向Yの外方に突出している。
(First Modification)
Next, a first modified example (structural member 100A) of the structural member 100 will be described with reference to FIG. 8. The second to sixth modified examples described later may be applied to the first modified example. FIG. 8 is a perspective view of the structural member 100A according to the first modified example. In the above-mentioned structural member 100, the longitudinal bead 150 is formed on the top plate portion 111 of the hat-shaped member 110. However, in this structural member 100A, the longitudinal bead 150 is not formed on the top plate portion 111 of the hat-shaped member 110, but is formed on the top plate facing portion 123 of the joining member 120. Therefore, the top plate facing portion 123 is divided into a central top plate facing portion 123a formed between the two longitudinal beads 150, and side wall side top plate facing portions 123b, 123b formed on the side wall portion 115 side from the two longitudinal beads 150. The central top plate facing portion 123a protrudes outward in the height direction Y further than the side wall top plate facing portions 123b, 123b.
 この構造部材100Aは、構造部材100とは異なり、ハット型部材110が車内側に対向し、接合部材120が車外側に対向する姿勢で自動車に設置されることを想定した部品である。
 この構造部材100によれば、ハット型部材110が車内側に対向し、接合部材120が車外側に対向する姿勢で自動車に設置した場合において、構造部材100と同様の効果を得ることができる。
 本変形例では、以下の態様が満たされることが好ましい。
(1)長手方向Zに垂直な断面において、接合部材120の接合部121の内側の端部から、幅方向Xに天板対向部123の幅の1/4の離間距離となる点までの領域に、長手方向ビード150の幅方向Xの中心が位置するように長手方向ビード150が形成される態様。
(2)長手方向Zに垂直な断面において、接合部材120の接合部121の内側の端部から、20mmの離間距離となる点までの領域に、長手方向ビード150と接合部材120との境界点が位置するように長手方向ビード150が形成される態様。
Unlike the structural member 100, this structural member 100A is a part that is assumed to be installed in an automobile with the hat-shaped member 110 facing the inside of the vehicle and the joining member 120 facing the outside of the vehicle.
According to this structural member 100, when it is installed in an automobile with the hat-shaped member 110 facing the inside of the automobile and the joining member 120 facing the outside of the automobile, it is possible to obtain the same effects as those of the structural member 100.
In this modified example, it is preferable that the following conditions are satisfied.
(1) In a cross section perpendicular to the longitudinal direction Z, the longitudinal bead 150 is formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the inner end of the joint 121 of the joint member 120 to a point that is spaced apart in the width direction X by 1/4 of the width of the top plate opposing portion 123.
(2) In a cross section perpendicular to the longitudinal direction Z, the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the joining member 120 is located in the region from the inner end of the joining portion 121 of the joining member 120 to a point that is 20 mm away.
 また、接合部材120が、板厚1.2mm以下の鋼板により形成されていることが好ましい。
 また、接合部材120が、引張強さ980MPa以上の鋼板により形成されていることが好ましい。
 接合部材120が、焼入れ部材であることが好ましい。
Moreover, it is preferable that the joint member 120 is formed from a steel plate having a thickness of 1.2 mm or less.
Moreover, it is preferable that the joining members 120 are formed from a steel plate having a tensile strength of 980 MPa or more.
The joining member 120 is preferably a hardened member.
 (第二変形例)
 つぎに、図9に基づいて、構造部材100の第二変形例(構造部材100B)について説明する。図9は第二変形例に係る長手方向ビード150を示す拡大断面図である。第二変形例では、長手方向ビード150の形状が、構造部材100Bの長手方向Zに垂直な断面において、略三角形状となっている。より詳細に説明すると、第一ビード側壁151と第二ビード側壁152とがR部150eを介して連結されている。すなわち、第二変形例ではw3=0となっている。第二ビード側壁152は第一ビード側壁151よりも長く、w1<w2の関係が満たされる。w1×1.4≦w2の関係が満たされることが好ましい。w2の上限については、w1×2.5以下であることが好ましい。さらに、第一ビード側壁151と天板部111とがなす内方側の角度をθ1、第二ビード側壁152と天板部111とがなす内方側の角度をθ2としたとき、θ1<θ2の関係が満たされる。ここで、角度θ1は、天板部111の外方の表面を延長した仮想直線と、第一ビード側壁151の外方の表面を延長した仮想直線とがなす内方側の角度である。角度θ2は、天板部111の外方の表面を延長した仮想直線と、第二ビード側壁152の外方の表面を延長した仮想直線とがなす内方側の角度である。角度θ1、θ2の具体的な範囲は特に制限されず、要求された特性等に応じて適宜設定されればよい。さらに、第一ビード側壁151と第二ビード側壁152とのなす角度(第一ビード側壁151の外方の表面を延長した仮想直線と第二ビード側壁152の外方の表面を延長した仮想直線とのなす外方側の角度)は鋭角である。なお、第二変形例では、中央側天板部111aの高さは側壁部側天板部111bの高さとほぼ同じ高さとなっている。
 θ1とθ2は、θ1×1.1<θ2の関係を満たすことがより好ましい。θ1は90°以上であることが好ましい。その場合、θ1<θ2の関係を満たすためにθ2は90°超であることが好ましく、99°超であることがより好ましい。
 θ2は135°以下であることが好ましい。その場合、θ1<θ2の関係を満たすためにθ1は135°未満であることが好ましく、122°未満であることがより好ましい。
(Second Modification)
Next, a second modified example of the structural member 100 (structural member 100B) will be described with reference to FIG. 9. FIG. 9 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the second modified example. In the second modified example, the shape of the longitudinal bead 150 is substantially triangular in a cross section perpendicular to the longitudinal direction Z of the structural member 100B. More specifically, the first bead side wall 151 and the second bead side wall 152 are connected via the R portion 150e. That is, in the second modified example, w3=0. The second bead side wall 152 is longer than the first bead side wall 151, and the relationship w1<w2 is satisfied. It is preferable that the relationship w1×1.4≦w2 is satisfied. It is preferable that the upper limit of w2 is equal to or less than w1×2.5. Furthermore, when the inner angle between the first bead side wall 151 and the top plate portion 111 is θ1 and the inner angle between the second bead side wall 152 and the top plate portion 111 is θ2, the relationship θ1<θ2 is satisfied. Here, the angle θ1 is the inner angle between a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the first bead side wall 151. The angle θ2 is the inner angle between a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the second bead side wall 152. The specific ranges of the angles θ1 and θ2 are not particularly limited and may be set appropriately according to the required characteristics, etc. Furthermore, the angle between the first bead side wall 151 and the second bead side wall 152 (the outward angle between an imaginary line extending the outer surface of the first bead side wall 151 and an imaginary line extending the outer surface of the second bead side wall 152) is an acute angle. In the second modified example, the height of the center side top plate portion 111a is approximately the same as the height of the side wall side top plate portion 111b.
It is more preferable that θ1 and θ2 satisfy the relationship θ1×1.1<θ2. It is preferable that θ1 is 90° or more. In this case, in order to satisfy the relationship θ1<θ2, it is preferable that θ2 is more than 90°, and more preferably more than 99°.
It is preferable that θ2 is equal to or smaller than 135°. In this case, in order to satisfy the relationship θ1<θ2, it is preferable that θ1 is less than 135°, and more preferably less than 122°.
 つぎに、長手方向ビード150の変形について説明する。ストローク初期においては、まず、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151も内方側に倒れこみ始める。しかし、第一ビード側壁151と第二ビード側壁152との間にはビード底壁153が存在せず、かつ、これらのなす角度は鋭角である。さらに、長手方向Zに垂直な断面において長手方向ビード150の全長が短く、かつ、長手方向ビード150を構成する辺の数が少ない。したがって、長手方向ビード150の長手方向Zに垂直な断面形状の変形自由度は小さい。言い換えれば、長手方向ビード150の長手方向Zに垂直な断面形状の変形は小さく抑えられる。このため、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。 Next, the deformation of the longitudinal bead 150 will be described. At the beginning of the stroke, first, as the side wall portion 115 starts to collapse inward, the first bead side wall 151 also starts to collapse inward. However, there is no bead bottom wall 153 between the first bead side wall 151 and the second bead side wall 152, and the angle between them is an acute angle. Furthermore, the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of deformation freedom of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small. In other words, the deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small. Therefore, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
 (第三変形例)
 つぎに、図10に基づいて、構造部材100の第三変形例(構造部材100C)について説明する。図10は第三変形例に係る長手方向ビード150を示す拡大断面図である。第三変形例では、第二変形例の形状に加え、さらに中央側天板部111aは側壁部側天板部111b、111bよりも高さ方向Yの外方に突出している。
(Third Modification)
Next, a third modified example of the structural member 100 (structural member 100C) will be described with reference to Fig. 10. Fig. 10 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the third modified example. In the third modified example, in addition to the shape of the second modified example, the central top plate portion 111a further protrudes outward in the height direction Y beyond the side wall top plate portions 111b, 111b.
 つぎに、長手方向ビード150の変形について説明する。ストローク初期においては、まず、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151が内方側に倒れこんでくる。その後、第一ビード側壁151(より詳細には、第一ビード側壁151と側壁部側天板部111bとの境界部分であるR部150a)が第二ビード側壁152に接触する。その後は、倒れこんできた第一ビード側壁151を第二ビード側壁152によって保持することができる。すなわち、第二ビード側壁152、152によって第一ビード側壁151、151の倒れこみが抑制される。その結果、側壁部115の倒れこみも抑制される。さらに、第一ビード側壁151と第二ビード側壁152との間にはビード底壁153が存在せず、かつ、これらのなす角度は鋭角である。さらに、長手方向Zに垂直な断面において長手方向ビード150の全長が短く、かつ、長手方向ビード150を構成する辺の数が少ない。したがって、長手方向ビード150の長手方向Zに垂直な断面形状の変形自由度は小さい。言い換えれば、長手方向ビード150の長手方向Zに垂直な断面形状の変形は小さく抑えられる。このため、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。
 第二ビード側壁152は第一ビード側壁151よりも長く、w1<w2の関係が満たされる。w1×1.8≦w2の関係が満たされることが好ましい。w2の上限については、w1×4.0以下であることが好ましい。
Next, the deformation of the longitudinal bead 150 will be described. At the beginning of the stroke, first, as the side wall portion 115 starts to collapse inward, the first bead side wall 151 collapses inward. Then, the first bead side wall 151 (more specifically, the R portion 150a which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152. Then, the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152. As a result, the collapse of the side wall portion 115 is also suppressed. Furthermore, there is no bead bottom wall 153 between the first bead side wall 151 and the second bead side wall 152, and the angle between them is an acute angle. Furthermore, the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of freedom of deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small. In other words, deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small. Therefore, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
The second bead side wall 152 is longer than the first bead side wall 151, and the relationship w1<w2 is satisfied. It is preferable that the relationship w1×1.8≦w2 is satisfied. The upper limit of w2 is preferably equal to or less than w1×4.0.
 (第四変形例)
 つぎに、図11に基づいて、構造部材100の第四変形例(構造部材100D)について説明する。図11は第四変形例に係る長手方向ビード150を示す拡大断面図である。第四変形例では、長手方向ビード150の形状が、構造部材100Dの長手方向Zに垂直な断面において、略三角形状となっている。より詳細に説明すると、第一ビード側壁151と第二ビード側壁152とがR部150eを介して連結されている。すなわち、第四変形例ではw3=0となっている。第二ビード側壁152は第一ビード側壁151よりも長く、w1<w2の関係が満たされる。さらに、第一ビード側壁151と第二ビード側壁152とのなす角度(第一ビード側壁151の外方の表面を延長した仮想直線と第二ビード側壁152の外方の表面を延長した仮想直線とのなす外方側の角度)は鋭角である。さらに、中央側天板部111aは側壁部側天板部111bよりも高さ方向Yの外方に突出している。角度θ1、θ2は任意であり、要求される特性等に応じて適宜決定されればよい。一例として、θ2=90度、θ1>θ2が挙げられる。
(Fourth Modification)
Next, a fourth modified example of the structural member 100 (structural member 100D) will be described with reference to FIG. 11. FIG. 11 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the fourth modified example. In the fourth modified example, the longitudinal bead 150 has a substantially triangular shape in a cross section perpendicular to the longitudinal direction Z of the structural member 100D. More specifically, the first bead side wall 151 and the second bead side wall 152 are connected via the R portion 150e. That is, in the fourth modified example, w3=0. The second bead side wall 152 is longer than the first bead side wall 151, and the relationship w1<w2 is satisfied. Furthermore, the angle between the first bead side wall 151 and the second bead side wall 152 (the angle on the outer side between the imaginary line extending the outer surface of the first bead side wall 151 and the imaginary line extending the outer surface of the second bead side wall 152) is an acute angle. Furthermore, the central top plate portion 111a protrudes outward in the height direction Y more than the side wall top plate portion 111b. The angles θ1 and θ2 are arbitrary and may be determined appropriately depending on the required characteristics, etc. As an example, θ2=90 degrees, θ1>θ2 may be given.
 つぎに、長手方向ビード150の変形について説明する。ストローク初期においては、まず、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151が内方側に倒れこんでくる。その後、第一ビード側壁151(より詳細には、第一ビード側壁151と側壁部側天板部111bとの境界部分であるR部150a)が第二ビード側壁152に接触する。その後は、倒れこんできた第一ビード側壁151を第二ビード側壁152によって保持することができる。すなわち、第二ビード側壁152、152によって第一ビード側壁151、151の倒れこみが抑制される。その結果、側壁部115の倒れこみも抑制される。さらに、第一ビード側壁151と第二ビード側壁152との間にはビード底壁153が存在せず、かつ、これらのなす角度は鋭角である。さらに、長手方向Zに垂直な断面において長手方向ビード150の全長が短く、かつ、長手方向ビード150を構成する辺の数が少ない。したがって、長手方向ビード150の長手方向Zに垂直な断面形状の変形自由度は小さい。言い換えれば、長手方向ビード150の長手方向Zに垂直な断面形状の変形は小さく抑えられる。このため、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。 Next, the deformation of the longitudinal bead 150 will be described. At the beginning of the stroke, first, as the side wall portion 115 begins to collapse inward, the first bead side wall 151 collapses inward. Then, the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152. Then, the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152. As a result, the collapse of the side wall portion 115 is also suppressed. Furthermore, there is no bead bottom wall 153 between the first bead side wall 151 and the second bead side wall 152, and the angle they form is an acute angle. Furthermore, the overall length of the longitudinal bead 150 in a cross section perpendicular to the longitudinal direction Z is short, and the number of sides constituting the longitudinal bead 150 is small. Therefore, the degree of freedom of deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is small. In other words, deformation of the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead 150 is kept small. Therefore, the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, and the impact absorption energy can be further improved.
 (第五変形例)
 つぎに、図12に基づいて、構造部材100の第五変形例(構造部材100E)について説明する。図12は第五変形例に係る長手方向ビード150を示す拡大断面図である。第五変形例では、第二ビード側壁152に段差Sが形成されている。段差Sの大きさ(図12において幅方向の長さ)は特に制限されず、例えば5mm前後であってもよい。その他の構成は上述した実施形態と同様である。
 第二ビード側壁152の長さw2は、R部150bと第二ビード側壁152との境界点と、R部150dと第二ビード側壁152との境界点との間の、第二ビード側壁152に沿った方向の離間距離である。より厳密には、R部150bと第二ビード側壁152との境界点から下した垂線と、R部150dと第二ビード側壁152との境界点から下した垂線との離間距離である。
(Fifth Modification)
Next, a fifth modified example of the structural member 100 (structural member 100E) will be described with reference to Fig. 12. Fig. 12 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the fifth modified example. In the fifth modified example, a step S is formed in the second bead side wall 152. The size of the step S (the length in the width direction in Fig. 12) is not particularly limited, and may be, for example, about 5 mm. The other configurations are the same as those of the above-mentioned embodiment.
The length w2 of the second bead side wall 152 is the distance in a direction along the second bead side wall 152 between the boundary point between the R portion 150b and the second bead side wall 152 and the boundary point between the R portion 150d and the second bead side wall 152. More precisely, it is the distance between a perpendicular line dropped from the boundary point between the R portion 150b and the second bead side wall 152 and a perpendicular line dropped from the boundary point between the R portion 150d and the second bead side wall 152.
 つぎに、長手方向ビード150の変形について説明する。ストローク初期においては、まず、車外側からの衝撃荷重によって構造部材100Eの変形が進むと、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151が内方側に倒れこんでくる。その後、第一ビード側壁151(より詳細には、第一ビード側壁151と側壁部側天板部111bとの境界部分であるR部150a)が第二ビード側壁152に接触する。その後は、倒れこんできた第一ビード側壁151を第二ビード側壁152によって保持することができる。すなわち、第二ビード側壁152、152によって第一ビード側壁151、151の倒れこみが抑制される。その結果、側壁部115の倒れこみも抑制され、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。 Next, the deformation of the longitudinal bead 150 will be described. At the beginning of the stroke, first, as the deformation of the structural member 100E progresses due to the impact load from the outside of the vehicle, the side wall portion 115 begins to collapse inward, and the first bead side wall 151 collapses inward. Then, the first bead side wall 151 (more specifically, the R portion 150a, which is the boundary portion between the first bead side wall 151 and the side wall portion top plate portion 111b) comes into contact with the second bead side wall 152. Then, the collapsed first bead side wall 151 can be held by the second bead side wall 152. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152. As a result, the collapse of the side wall portion 115 is also suppressed, and the collapse of the cross-sectional shape of the hat-shaped member 110 can be suppressed, so that the impact absorption energy can be further improved.
 (第六変形例)
 つぎに、図13に基づいて、構造部材100の第六変形例(構造部材100F)について説明する。図13は第六変形例に係る長手方向ビード150を示す拡大断面図である。第六変形例では、ビード底壁153が傾斜しており、R部150cがR部150dよりも低い位置に配置されており、角度θ3が120度以上となっている。角度θ3は、第二ビード側壁152とビード底壁153とがなす外方側の角度であり、より詳細には、第二ビード側壁152の外方の表面を延長した仮想直線と、ビード底壁153の外方の表面を延長した仮想直線とがなす角度である。この変形例では、w1<w2+w3が満たされる。その他の構成は上述した実施形態と同様である。尚、角度θ3は180°未満であることが好ましい。
(Sixth Modification)
Next, a sixth modified example of the structural member 100 (structural member 100F) will be described based on FIG. 13. FIG. 13 is an enlarged cross-sectional view showing a longitudinal bead 150 according to the sixth modified example. In the sixth modified example, the bead bottom wall 153 is inclined, the R portion 150c is disposed at a lower position than the R portion 150d, and the angle θ3 is 120 degrees or more. The angle θ3 is an outer angle formed by the second bead side wall 152 and the bead bottom wall 153, and more specifically, is an angle formed by an imaginary line extending the outer surface of the second bead side wall 152 and an imaginary line extending the outer surface of the bead bottom wall 153. In this modified example, w1<w2+w3 is satisfied. The other configurations are the same as those of the above-mentioned embodiment. It is preferable that the angle θ3 is less than 180 degrees.
 つぎに、長手方向ビード150の変形について説明する。ストローク初期においては、まず、車外側からの衝撃荷重によって構造部材100Fの変形が進むと、側壁部115が内方向に倒れこみ始めるのに伴って、第一ビード側壁151が内方側に倒れこんでくる。その後、第一ビード側壁151(より詳細には、第一ビード側壁151と側壁部側天板部111bとの境界部分であるR部150a)が第二ビード側壁152またはビード底壁153に接触する。その後は、倒れこんできた第一ビード側壁151を第二ビード側壁152またはビード底壁153によって保持することができる。すなわち、第二ビード側壁152、152またはビード底壁153、153によって第一ビード側壁151、151の倒れこみが抑制される。その結果、側壁部115の倒れこみも抑制され、ハット型部材110の断面形状の崩れを抑えることができるため、衝撃吸収エネルギを更に向上させることができる。尚、w1×1.5<w2+w3の関係が満たされる場合には、より安定して上記の効果を得ることができるため好ましい。
w2+w3の上限については、w1×3.5以下であることが好ましい。
Next, the deformation of the longitudinal bead 150 will be described. In the initial stage of the stroke, first, as the deformation of the structural member 100F progresses due to the impact load from the vehicle exterior, the side wall portion 115 starts to collapse inward, and the first bead side wall 151 collapses inward. Then, the first bead side wall 151 (more specifically, the R portion 150a which is the boundary portion between the first bead side wall 151 and the side wall portion side top plate portion 111b) comes into contact with the second bead side wall 152 or the bead bottom wall 153. Then, the collapsed first bead side wall 151 can be held by the second bead side wall 152 or the bead bottom wall 153. That is, the collapse of the first bead side walls 151, 151 is suppressed by the second bead side walls 152, 152 or the bead bottom walls 153, 153. As a result, the side wall portion 115 is prevented from collapsing, and the cross-sectional shape of the hat-shaped member 110 is prevented from collapsing, thereby further improving the impact absorption energy. Note that, when the relationship w1×1.5<w2+w3 is satisfied, the above-mentioned effect can be obtained more stably, which is preferable.
The upper limit of w2+w3 is preferably equal to or less than w1×3.5.
 なお、上述した実施形態及び各変形例では、天板部111、天板対向部123、側壁部115及びビード底壁162が長手方向Zに垂直な断面において直線状となっているが、曲線状となっていてもよい。ここでの曲線状は、長手方向Zに垂直な断面におけるものに限られず、部材の長手方向の湾曲、すなわち高さ方向(上下方向)や幅方向(左右方向)の湾曲も含まれる。この場合、天板部111、天板対向部123、側壁部115及びビード底壁162の長手方向Zに垂直な断面における形状は、当該断面における各部分の長さ方向の両端を結ぶ直線状である(例えば長手方向Zに垂直な断面において天板部111の幅方向(天板部111の長さ方向)の両端を連結する直線を引き、この直線を天板部111と仮定する)ものとして、上述した各パラメータ(例えば第一ビード側壁151の長さw1、第二ビード側壁152の長さw2、ビード底壁153の長さw3等)を定義すればよい。また、第一変形例を上述した実施形態及び第二~第六変形例に適用してもよい。すなわち、天板部111及び天板対向部123の双方に長手方向ビード150を形成してもよい。 In the above-described embodiment and each modified example, the top plate portion 111, the top plate opposing portion 123, the side wall portion 115, and the bead bottom wall 162 are straight in a cross section perpendicular to the longitudinal direction Z, but they may be curved. The curved shape here is not limited to the cross section perpendicular to the longitudinal direction Z, but also includes curvature in the longitudinal direction of the member, i.e., curvature in the height direction (up and down) and width direction (left and right). In this case, the shape of the top plate portion 111, the top plate facing portion 123, the side wall portion 115, and the bead bottom wall 162 in a cross section perpendicular to the longitudinal direction Z is a straight line connecting both ends of the length direction of each part in the cross section (for example, a straight line is drawn connecting both ends of the width direction (length direction of the top plate portion 111) of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z, and this straight line is assumed to be the top plate portion 111), and the above-mentioned parameters (for example, the length w1 of the first bead side wall 151, the length w2 of the second bead side wall 152, the length w3 of the bead bottom wall 153, etc.) may be defined. In addition, the first modified example may be applied to the above-mentioned embodiment and the second to sixth modified examples. In other words, the longitudinal bead 150 may be formed on both the top plate portion 111 and the top plate facing portion 123.
(実施例)
 以下、本発明の効果を実施例により具体的に説明する。なお、以下に説明する実施例は、あくまでも本発明の一例であって、本発明を限定するものではない。
(Example)
The effects of the present invention will be specifically described below with reference to examples. Note that the examples described below are merely examples of the present invention and do not limit the present invention.
 板厚0.8mm、引張強さ2.5GPa級の鋼板を適用したハット型部材と、板厚0.8mm、引張強さ270MPa級の鋼板を適用した接合部材とにより構成された構造部材のシミュレーションモデルを準備した。
 構造部材のシミュレーションモデルについて、長手方向ビードと高さ方向ビードを適宜付与し、3点曲げを想定したシミュレーションによりストローク初期の最大荷重およびストローク100mmまでの衝撃吸収エネルギを評価した。また、基準又は比較例として長手方向ビード及び高さ方向ビードを有しない構造部材の3点曲げのシミュレーションも実施した。基本条件、比較例の条件、及び各発明例の条件は下記の通りである。
(基本条件)
 側壁部と天板部とのなす角度=95度
 天板部の幅W=70mm
 側壁部の高さH=50mm
 第一稜線部の曲率半径(曲げ内側)=5mm
 第二稜線部の曲率半径(曲げ内側)=5mm
 構造部材の全長L=800mm
 高さ方向ビードの深さd2=4mm
 高さ方向ビードの幅w5=24mm
 高さ方向ビードのビード間距離=16mm
(比較例1)
 長手方向ビード及び高さ方向ビードなし
(比較例2)
 長手方向Zに垂直な断面における長手方向ビードの形状:略矩形状
 (w1=w2=5.6mm、w3=4.6mm)
(発明例1:実施形態に対応)
 長手方向Zに垂直な断面における長手方向ビードの形状:略矩形状
 (w1=5.6mm、w2=10.6mm(=w1+5mm)、w3=4.6mm)
(発明例2:第二変形例に対応)
 長手方向Zに垂直な断面における長手方向ビードの形状:略三角形状
 (w1=5.2mm、w2=9.7mm、w3=0mm)
   θ1=90度、θ2=124.8度
(発明例3:第四変形例に対応)
 長手方向Zに垂直な断面における長手方向ビードの形状:略三角形状
 (w1=9.7mm、w2=10.2mm、w3=0mm)
   θ1=124.8度、θ2=90度
(発明例4:第三変形例に対応)
 長手方向Zに垂直な断面における長手方向ビードの形状:略三角形状
 (w1=5.2mm、w2=15.8mm、w3=0mm)
   θ1=90度、θ2=124.8度
A simulation model of a structural member was prepared, which was composed of a hat-shaped member made of steel plate with a thickness of 0.8 mm and a tensile strength of 2.5 GPa, and a joining member made of steel plate with a thickness of 0.8 mm and a tensile strength of 270 MPa.
A simulation model of the structural member was appropriately given longitudinal and vertical beads, and a simulation was performed assuming three-point bending to evaluate the maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm. In addition, a three-point bending simulation was also performed on a structural member that did not have longitudinal and vertical beads as a reference or comparative example. The basic conditions, the conditions of the comparative example, and the conditions of each invention example are as follows.
(Basic conditions)
Angle between side wall and top plate = 95 degrees Width of top plate W = 70 mm
Side wall height H = 50 mm
Radius of curvature of first ridge (inner bend) = 5 mm
Radius of curvature of the second ridge (inner bend) = 5 mm
Total length of structural member L = 800 mm
Bead depth in the vertical direction d2 = 4 mm
Height direction bead width w5 = 24 mm
Distance between beads in the height direction = 16 mm
(Comparative Example 1)
No longitudinal bead or height bead (Comparative Example 2)
Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately rectangular (w1 = w2 = 5.6 mm, w3 = 4.6 mm)
(Corresponding to Example 1: embodiment)
Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately rectangular (w1 = 5.6 mm, w2 = 10.6 mm (= w1 + 5 mm), w3 = 4.6 mm)
(Example 2: Corresponding to the second modified example)
Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately triangular (w1 = 5.2 mm, w2 = 9.7 mm, w3 = 0 mm)
θ1=90 degrees, θ2=124.8 degrees (Example 3: corresponds to the fourth modified example)
Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately triangular (w1 = 9.7 mm, w2 = 10.2 mm, w3 = 0 mm)
θ1 = 124.8 degrees, θ2 = 90 degrees (Example 4: corresponds to the third modified example)
Shape of the longitudinal bead in a cross section perpendicular to the longitudinal direction Z: Approximately triangular (w1 = 5.2 mm, w2 = 15.8 mm, w3 = 0 mm)
θ1=90 degrees, θ2=124.8 degrees
 3点曲げ条件は、図14に示すように、インパクタの曲率半径を50mm、支持台の離間距離を700mmに設定した。ストローク初期の最大荷重およびストローク100mmまでの衝撃吸収エネルギを表1に示す。表1中の基準比は、比較例1の値(最大荷重及び衝撃エネルギ吸収量)に対する比を%表記した値である。
 比較例1では、ストローク初期から側壁部が座屈し、構造部材が大きく変形したため、ストローク初期の最大荷重及び衝撃吸収エネルギが低かった。
 比較例2では、長手方向ビードによってストローク初期の最大荷重及び衝撃吸収エネルギが向上したが、基準比の向上代は発明例1~4の方が大きかった。
 発明例1~4では、ストローク初期の最大荷重が大きくなり、衝撃吸収エネルギも大きくなった。
 発明例1では、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出している。ストローク初期では、側壁部の倒れ込みが始まり、それに伴って第一ビード側壁の倒れ込みも始まる。構造部材の変形がさらに進むと、第一ビード側壁がさらに内方側に倒れこんでくるが、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出しているため、第二ビード側壁によって第一ビード側壁を保持することができる。したがって、ストローク初期の最大荷重が大きくなり、衝撃吸収エネルギも大きくなったと考えられる。
 発明例2では、長手方向ビードの長手方向Zに垂直な断面の形状が三角形状となっており、かつ、θ1<θ2の関係が満たされる。ストローク初期では、側壁部の倒れ込みが始まり、それに伴って第一ビード側壁の倒れ込みも始まる。しかし、長手方向ビードの長手方向Zに垂直な断面の形状が三角形状となっているため、長手方向ビードの断面形状の変形自由度が小さい。したがって、ストローク初期の最大荷重が大きくなり、衝撃吸収エネルギも大きくなったと考えられる。
 発明例3では、長手方向ビードの長手方向Zに垂直な断面の形状が三角形状となっており、かつ、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出している。ストローク初期では、側壁部の倒れ込みが始まり、それに伴って第一ビード側壁の倒れ込みも始まる。構造部材の変形がさらに進むと、第一ビード側壁がさらに内方側に倒れこんでくるが、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出しているため、第二ビード側壁によって第一ビード側壁を保持することができる。さらに、長手方向ビードの長手方向Zに垂直な断面の形状が三角形状となっているため、長手方向ビードの断面形状の変形自由度が小さい。したがって、ストローク初期の最大荷重が大きくなり、衝撃吸収エネルギも大きくなったと考えられる。
 発明例4では、発明例2の形状に加え、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出している。ストローク初期では、側壁部の倒れ込みが始まり、それに伴って第一ビード側壁の倒れ込みも始まる。構造部材の変形がさらに進むと、第一ビード側壁がさらに内方側に倒れこんでくるが、中央側天板部が側壁部側天板部よりも高さ方向Yの外方に突出しているため、第二ビード側壁によって第一ビード側壁を保持することができる。さらに、長手方向ビードの長手方向Zに垂直な断面の形状が三角形状となっているため、長手方向ビードの断面形状の変形自由度が小さい。したがって、ストローク初期の最大荷重が大きくなり、衝撃吸収エネルギも大きくなったと考えられる。
The three-point bending conditions were set as follows: the radius of curvature of the impactor was 50 mm, and the distance between the support stands was 700 mm, as shown in Fig. 14. The maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm are shown in Table 1. The reference ratios in Table 1 are values expressed as percentages relative to the values of Comparative Example 1 (maximum load and impact energy absorption amount).
In Comparative Example 1, the side wall portion buckled from the early stage of the stroke, and the structural members were significantly deformed, so that the maximum load and the impact absorption energy at the early stage of the stroke were low.
In Comparative Example 2, the maximum load and impact absorption energy at the beginning of the stroke were improved by the longitudinal bead, but the improvement in the reference ratio was greater in Invention Examples 1 to 4.
In Examples 1 to 4, the maximum load at the beginning of the stroke was large, and the shock absorption energy was also large.
In Example 1, the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion. At the beginning of the stroke, the side wall portion starts to collapse, and accordingly, the first bead side wall also starts to collapse. As the deformation of the structural member progresses further, the first bead side wall collapses further inward, but because the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall. It is therefore believed that the maximum load at the beginning of the stroke becomes larger, and the impact absorption energy also becomes larger.
In Example 2, the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, and the relationship θ1<θ2 is satisfied. At the beginning of the stroke, the side wall starts to collapse, and the first bead side wall also starts to collapse. However, since the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, the degree of deformation of the cross section of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large.
In the third example of the invention, the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, and the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion. At the beginning of the stroke, the side wall portion starts to collapse, and the first bead side wall also starts to collapse accordingly. As the deformation of the structural member progresses further, the first bead side wall collapses further inward, but since the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall. Furthermore, since the cross section of the longitudinal bead perpendicular to the longitudinal direction Z is triangular, the degree of freedom of deformation of the cross-sectional shape of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large.
In Example 4, in addition to the shape of Example 2, the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion. At the beginning of the stroke, the side wall portion starts to collapse, and the first bead side wall also starts to collapse accordingly. As the deformation of the structural member progresses further, the first bead side wall collapses further inward, but since the central top plate portion protrudes outward in the height direction Y more than the side wall top plate portion, the first bead side wall can be held by the second bead side wall. Furthermore, since the cross-sectional shape perpendicular to the longitudinal direction Z of the longitudinal bead is triangular, the degree of freedom of deformation of the cross-sectional shape of the longitudinal bead is small. Therefore, it is considered that the maximum load at the beginning of the stroke is large, and the impact absorption energy is also large.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることでより優れた衝突安全性能を発揮することが可能な構造部材を提供することができる。 The present invention provides a structural member that can provide superior collision safety performance by improving the load-bearing capacity and impact energy absorption at the beginning of the stroke in local buckling mode deformation.
100,100A,100B,100C,100D,100E,100F 構造部材
110 ハット型部材
111 天板部
111a 中央側天板部
111b 側壁部側天板部
113 第一稜線部
115 側壁部
100, 100A, 100B, 100C, 100D, 100E, 100F Structural member 110 Hat-shaped member 111 Top plate portion 111a Central top plate portion 111b Side wall portion side top plate portion 113 First ridge portion 115 Side wall portion

Claims (12)

  1.  長手方向に沿って延びる天板部と、
     前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、
     前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、
    を有するハット型部材と、
     前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、
     前記ハット型部材の前記天板部に対向する天板対向部と、
    を有する接合部材と、
    を備え、
     前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、
     前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、
     前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、
     前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、
     前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、
     前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、
    を備え、
     前記長手方向に垂直な断面において、
      前記第一ビード側壁の長さをw1、
      前記第二ビード側壁の長さをw2、
      前記ビード底壁の長さをw3、
     前記第二ビード側壁と前記ビード底壁とがなす外方側の角度をθ3
    としたとき、θ3≧120度、且つ、w1<w2+w3の関係を満たす
    ことを特徴とする自動車車体の構造部材。
    A top plate portion extending along a longitudinal direction;
    A pair of side walls extending through a pair of first ridges formed at both ends of the top plate in a width direction;
    a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions;
    A hat-shaped member having
    A pair of joints joined to the pair of flange portions of the hat-shaped member;
    a top plate facing portion facing the top plate portion of the hat-shaped member;
    A joining member having
    Equipped with
    At least two or more longitudinal beads extending along the longitudinal direction are formed in parallel in the width direction on at least one of the top plate portion and the top plate opposing portion,
    A plurality of height-direction beads extending along a height direction are formed in the pair of side wall portions and are arranged in parallel in the longitudinal direction,
    Among the two or more longitudinal beads, each of the two longitudinal beads arranged on the outside is
    a first bead side wall extending inwardly from at least one of the top plate portion and the top plate opposing portion;
    a second bead side wall that is bent and extends inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead side wall;
    a bead bottom wall connecting inner ends of the first bead side wall and the second bead side wall;
    Equipped with
    In a cross section perpendicular to the longitudinal direction,
    The length of the first bead side wall is w1,
    The length of the second bead side wall is w2,
    The length of the bead bottom wall is w3,
    The outer angle between the second bead side wall and the bead bottom wall is θ3
    and w1<w2+w3.
  2.   前記第一ビード側壁と前記天板部とがなす内方側の角度をθ1、
      前記第二ビード側壁と前記天板部とがなす内方側の角度をθ2、
    としたとき、θ1<θ2の関係を満たす
    ことを特徴とする請求項1に記載の自動車車体の構造部材。
    The inner angle between the first bead side wall and the top plate portion is θ1.
    The inner angle between the second bead side wall and the top plate portion is θ2.
    2. The structural member of an automobile body according to claim 1, wherein the relationship θ1<θ2 is satisfied.
  3.  前記w3が0mm以上18mm以下である
    ことを特徴とする請求項1又は2に記載の自動車車体の構造部材。
    3. The structural member of an automobile body according to claim 1, wherein the width w3 is equal to or greater than 0 mm and equal to or less than 18 mm.
  4.  前記天板部及び前記天板対向部のうち、
      前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、
      前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出している
    ことを特徴とする請求項1又は2に記載の自動車車体の構造部材。
    Among the top plate portion and the top plate opposing portion,
    At least one of the central top plate portion and the central top plate opposing portion formed between the two longitudinal beads arranged on the outer side is
    A structural member of an automobile body as described in claim 1 or 2, characterized in that it protrudes outward in the height direction from either a pair of side wall portion side top plate portions or a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
  5.  前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成される
    ことを特徴とする請求項1又は2に記載の自動車車体の構造部材。
    3. The structural member of an automobile body according to claim 1, wherein the two outer longitudinal beads are formed on the top plate portion of the hat-shaped member.
  6.  長手方向に沿って延びる天板部と、
     前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、
     前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、
    を有するハット型部材と、
     前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、
     前記ハット型部材の前記天板部に対向する天板対向部と、
    を有する接合部材と、
    を備え、
     前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、
     前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、
     前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、
     前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、
     前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、
     前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、
    を備え、
     前記長手方向に垂直な断面において、
      前記第一ビード側壁の長さをw1、
      前記第二ビード側壁の長さをw2、
    としたとき、w1<w2の関係を満たし、
      前記第一ビード側壁と前記天板部とがなす内方側の角度をθ1、
      前記第二ビード側壁と前記天板部とがなす内方側の角度をθ2、
    としたとき、θ1<θ2の関係を満たす
    ことを特徴とする自動車車体の構造部材。
    A top plate portion extending along a longitudinal direction;
    A pair of side walls extending through a pair of first ridges formed at both ends of the top plate in a width direction;
    a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions;
    A hat-shaped member having
    A pair of joints joined to the pair of flange portions of the hat-shaped member;
    a top plate facing portion facing the top plate portion of the hat-shaped member;
    A joining member having
    Equipped with
    At least two or more longitudinal beads extending along the longitudinal direction are formed in parallel in the width direction on at least one of the top plate portion and the top plate opposing portion,
    A plurality of height-direction beads extending along a height direction are formed in the pair of side wall portions and are arranged in parallel in the longitudinal direction,
    Among the two or more longitudinal beads, each of the two longitudinal beads arranged on the outside is
    a first bead side wall extending inwardly from at least one of the top plate portion and the top plate opposing portion;
    a second bead side wall that is bent and extends inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead side wall;
    a bead bottom wall connecting inner ends of the first bead side wall and the second bead side wall;
    Equipped with
    In a cross section perpendicular to the longitudinal direction,
    The length of the first bead side wall is w1,
    The length of the second bead side wall is w2,
    Then, the relationship w1 < w2 is satisfied.
    The inner angle between the first bead side wall and the top plate portion is θ1.
    The inner angle between the second bead side wall and the top plate portion is θ2.
    θ1<θ2.
  7.  前記w3が0mm以上18mm以下である
    ことを特徴とする請求項6に記載の自動車車体の構造部材。
    7. The structural member of an automobile body according to claim 6, wherein the width w3 is equal to or greater than 0 mm and equal to or less than 18 mm.
  8.  前記天板部及び前記天板対向部のうち、
      前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、
      前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出している
    ことを特徴とする請求項6又は7に記載の自動車車体の構造部材。
    Among the top plate portion and the top plate opposing portion,
    At least one of the central top plate portion and the central top plate opposing portion formed between the two longitudinal beads arranged on the outer side is
    A structural member of an automobile body as described in claim 6 or 7, characterized in that it protrudes outward in the height direction from either a pair of side wall portion side top plate portions or a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
  9.  前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成される
    ことを特徴とする請求項6又は7に記載の自動車車体の構造部材。
    8. A structural member for an automobile body according to claim 6, wherein the two outer longitudinal beads are formed on the top plate portion of the hat-shaped member.
  10.  長手方向に沿って延びる天板部と、
     前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、
     前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、
    を有するハット型部材と、
     前記ハット型部材の前記一対のフランジ部に接合される一対の接合部と、
     前記ハット型部材の前記天板部に対向する天板対向部と、
    を有する接合部材と、
    を備え、
     前記天板部及び前記天板対向部の少なくとも一方に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、
     前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、
     前記二本以上の前記長手方向ビードのうち、外側に配置されている二本の長手方向ビードのそれぞれは、
     前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第一ビード側壁と、
     前記第一ビード側壁よりも、前記側壁部から遠い位置において、前記天板部及び前記天板対向部の少なくとも一方から内方に向けて屈曲して延在する第二ビード側壁と、
     前記第一ビード側壁と前記第二ビード側壁との内方側の端部同士を連結するビード底壁と、
    を備え、
     前記長手方向に垂直な断面において、
      前記第一ビード側壁の長さをw1、
      前記第二ビード側壁の長さをw2、
    としたとき、w1<w2の関係を満たし、
     前記天板部及び前記天板対向部のうち、
      前記外側に配置されている二本の長手方向ビードの間に形成された中央側天板部及び中央側天板対向部の少なくとも一方は、
      前記外側に配置されている二本の長手方向ビードよりも前記側壁部側に形成された一対の側壁部側天板部及び一対の側壁部側天板対向部のいずれかよりも高さ方向の外方に突出している
    ことを特徴とする自動車車体の構造部材。
    A top plate portion extending along a longitudinal direction;
    A pair of side walls extending through a pair of first ridges formed at both ends of the top plate in a width direction;
    a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions;
    A hat-shaped member having
    A pair of joints joined to the pair of flange portions of the hat-shaped member;
    a top plate facing portion facing the top plate portion of the hat-shaped member;
    A joining member having
    Equipped with
    At least two or more longitudinal beads extending along the longitudinal direction are formed in parallel in the width direction on at least one of the top plate portion and the top plate opposing portion,
    A plurality of height-direction beads extending along a height direction are formed in the pair of side wall portions and are arranged in parallel in the longitudinal direction,
    Among the two or more longitudinal beads, each of the two longitudinal beads arranged on the outside is
    a first bead side wall extending inwardly from at least one of the top plate portion and the top plate opposing portion;
    a second bead side wall that is bent and extends inward from at least one of the top plate portion and the top plate opposing portion at a position farther from the side wall portion than the first bead side wall;
    a bead bottom wall connecting inner ends of the first bead side wall and the second bead side wall;
    Equipped with
    In a cross section perpendicular to the longitudinal direction,
    The length of the first bead side wall is w1,
    The length of the second bead side wall is w2,
    Then, the relationship w1 < w2 is satisfied.
    Among the top plate portion and the top plate facing portion,
    At least one of the central top plate portion and the central top plate opposing portion formed between the two longitudinal beads arranged on the outer side is
    A structural member of an automobile body, characterized in that it protrudes outward in the height direction more than either of a pair of side wall portion side top plate portions or a pair of side wall portion side top plate opposing portions formed on the side wall portion side of the two longitudinal beads arranged on the outside.
  11.  前記w3が0mm以上18mm以下である
    ことを特徴とする請求項10に記載の自動車車体の構造部材。
    11. The structural member of an automobile body according to claim 10, wherein the width w3 is equal to or greater than 0 mm and equal to or less than 18 mm.
  12.  前記外側に配置されている二本の長手方向ビードが前記ハット型部材の前記天板部に形成される
    ことを特徴とする請求項10又は11に記載の自動車車体の構造部材。
    12. The structural member of an automobile body according to claim 10 or 11, wherein the two longitudinal beads arranged on the outside are formed on the top plate portion of the hat-shaped member.
PCT/JP2024/012104 2023-03-27 2024-03-26 Structural member for automobile body WO2024204279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-049808 2023-03-27
JP2023049808 2023-03-27

Publications (1)

Publication Number Publication Date
WO2024204279A1 true WO2024204279A1 (en) 2024-10-03

Family

ID=92905560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012104 WO2024204279A1 (en) 2023-03-27 2024-03-26 Structural member for automobile body

Country Status (1)

Country Link
WO (1) WO2024204279A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249155A (en) * 1996-03-14 1997-09-22 Sumitomo Metal Ind Ltd Junction structural member
WO2022025098A1 (en) * 2020-07-31 2022-02-03 日本製鉄株式会社 Structural member for automobile body
JP2022135071A (en) * 2021-03-04 2022-09-15 日本製鉄株式会社 Structural member of automobile body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249155A (en) * 1996-03-14 1997-09-22 Sumitomo Metal Ind Ltd Junction structural member
WO2022025098A1 (en) * 2020-07-31 2022-02-03 日本製鉄株式会社 Structural member for automobile body
JP2022135071A (en) * 2021-03-04 2022-09-15 日本製鉄株式会社 Structural member of automobile body

Similar Documents

Publication Publication Date Title
JP7376835B2 (en) Structural components of automobile bodies
JP6973517B2 (en) Structural members for vehicles
WO2018207668A1 (en) Structural member, vehicle structure, and bumper reinforcement
CN105923048A (en) Frame Structure For Vehicle
JP7135274B2 (en) Vehicle structural member
JP7518430B2 (en) Structural members
JP6743913B2 (en) Structural member and structural member for vehicle
WO2020085381A1 (en) Automobile frame member and electric vehicle
JP5235007B2 (en) Crash box
WO2024204279A1 (en) Structural member for automobile body
JP7264597B2 (en) Vehicle structural members and vehicles
WO2024204278A1 (en) Structural member for automobile body and automobile body
JP2022135071A (en) Structural member of automobile body
JP6399268B1 (en) Structural members, body structure and bumper reinforcement
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
JP2013103556A (en) Energy absorbing member and cross-sectional deformation control method of energy absorbing member
JP7376836B2 (en) Structural components of automobile bodies
EP3932750B1 (en) Structural member for vehicle
JP7568928B2 (en) Shock absorbing materials
JP7376797B2 (en) Automobile frame parts and electric vehicles
JP7192837B2 (en) Vehicle structural member
JP7518431B2 (en) Structural members
JP2024541373A (en) Vehicle side sill