[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204278A1 - Structural member for automobile body and automobile body - Google Patents

Structural member for automobile body and automobile body Download PDF

Info

Publication number
WO2024204278A1
WO2024204278A1 PCT/JP2024/012099 JP2024012099W WO2024204278A1 WO 2024204278 A1 WO2024204278 A1 WO 2024204278A1 JP 2024012099 W JP2024012099 W JP 2024012099W WO 2024204278 A1 WO2024204278 A1 WO 2024204278A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
top plate
automobile body
structural member
height direction
Prior art date
Application number
PCT/JP2024/012099
Other languages
French (fr)
Japanese (ja)
Inventor
利哉 鈴木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2025510981A priority Critical patent/JPWO2024204278A1/ja
Publication of WO2024204278A1 publication Critical patent/WO2024204278A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars

Definitions

  • the present invention relates to a structural member for an automobile body and an automobile body.
  • the collision safety performance of automobile body parts includes the bending crush characteristics of side sills and B-pillars in side collisions, and bumpers in frontal collisions. There is a demand for improving the three-point bending characteristics in local buckling mode to achieve higher collision safety performance even when using thin plate materials.
  • Patent Document 1 discloses a vehicle crashworthiness reinforcement material with excellent buckling resistance that is designed to have a recessed bead extending along the longitudinal direction of the main body portion to the center of the width of the main body portion.
  • Patent Document 2 discloses a metal vehicle absorber having concave or convex beads that are approximately parallel to the front-rear direction of the vehicle on one or both of an upper web and a lower web.
  • Patent Documents 1 and 2 were unable to fully demonstrate the three-point bending characteristics of the local buckling mode of the more highly bent crushed parts that were required.
  • the present invention was made in consideration of the above problems, and the object of the present invention is to provide a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and preferably the impact absorption energy at the beginning of the stroke of deformation in local buckling mode.
  • a first aspect of the present invention is a structural component for an automobile body, which is a hat-shaped component having a top plate portion extending along a longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in a width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions, wherein two or more longitudinal beads extending along the longitudinal direction are formed in the top plate portion in parallel with each other in the width direction,
  • This structural member for an automobile body is characterized in that a plurality of height-direction beads extending along the height direction are formed in parallel in the longitudinal direction on a pair of side wall portions, each of the height-direction beads having a pair of bead side walls extending and bending inward from the side wall portion, and a bead bottom wall connecting the inner ends of the pair of bead side walls, and in that, in a cross section perpen
  • the distance between the pair of second ridge portions may be deformed to become smaller.
  • the inner angle a2 between the side wall portion adjacent to the height bead in the longitudinal direction and the top plate portion may be greater than the angle a1.
  • the side wall portion adjacent to the height direction bead has a bending point in a cross section perpendicular to the longitudinal direction where it bends halfway in the height direction, and the angle a21 on the inner side between the top plate portion and a side wall portion proximal to the top plate portion, which is a portion of the side wall portion adjacent to the height direction bead that is closer to the top plate portion than the bending point, may be greater than the angle a1.
  • a ratio of a bead depth d21 at the first ridge line portion to a maximum value d2max of a bead depth of the height direction bead of the side wall portion may satisfy at least one of d21/d2max ⁇ 0.5 and d21 ⁇ 2 mm.
  • two longitudinal beads arranged on the outside in a cross section perpendicular to the longitudinal direction, may be formed in a region from the boundary point between the top plate portion and the first ridge portion to a point spaced apart in the width direction by a distance of 1/4 of the width of the top plate portion, such that the widthwise centers of the two longitudinal beads arranged on the outside are located in the region.
  • the two longitudinal beads arranged on the outside in a cross section perpendicular to the longitudinal direction, may be formed in a region from the boundary point between the top plate portion and the first ridge portion to a point spaced 20 mm apart, so that the boundary point between the two longitudinal beads arranged on the outside and the top plate portion is located in the region.
  • the hat-shaped component may be formed from a steel plate having a thickness of 1.2 mm or less.
  • the hat-shaped component may be formed from a steel plate having a tensile strength of 980 MPa or more.
  • the hat-shaped component may be a hardened component.
  • the width of the two longitudinal beads arranged on the outside may be 5 mm to 20 mm, and the depth of the two longitudinal beads arranged on the outside may be 5 mm to 20 mm.
  • the aspect ratio calculated from the depth/width of the two longitudinal beads arranged on the outside may be 0.25 to 4.0.
  • the height direction bead may extend from the first ridge portion.
  • the height direction bead may extend from the second ridge portion.
  • the height direction bead may extend from the first ridge portion to the second ridge portion.
  • the width of the height direction bead may be 10 mm to 60 mm, and the depth of the height direction bead may be 2 mm to 10 mm.
  • the aspect ratio calculated by the depth/width of the height direction bead may be 0.05 to 1.0.
  • a second aspect of the present invention is an automobile body having a structural member described in any one of (1) to (18) above, characterized in that the pair of flange portions of the hat-shaped member in the structural member do not have any members attached to join the pair of flange portions to each other, at least in their longitudinal central portion.
  • the present invention improves the load-bearing capacity and preferably the impact energy absorption capacity at the beginning of the stroke of the local buckling mode deformation, thereby achieving better collision safety performance.
  • FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode
  • FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode
  • FIG. 1C is a schematic diagram for explaining moment bending characteristics.
  • FIG. 2 is a perspective view showing a structural member according to the present embodiment.
  • FIG. 2B is a schematic cross-sectional view of the structural member according to the present embodiment, showing a cross-section along A1-A1' in FIG. 2A.
  • FIG. 2 is a plan view showing a structural member according to the present embodiment.
  • FIG. 4 is a partially enlarged view of a portion B of FIG. 3 .
  • FIG. 4 is a perspective view showing a state after deformation of the structural member according to the embodiment.
  • FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode
  • FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode
  • FIG. 11 is a schematic cross-sectional view showing a structural member according to a first modified example.
  • FIG. 11 is a schematic cross-sectional view showing a structural member according to a second modified example.
  • FIG. 11 is a schematic cross-sectional view showing a structural member according to a third modified example.
  • FIG. 2 is a schematic diagram for explaining three-point bending conditions.
  • the bending crush characteristics of automobile parts can be broadly divided into three-point bending characteristics, in which the impact of the collision is applied directly to the crushed part of the part, causing deformation, and moment bending characteristics, in which the impact of the collision is applied indirectly to the crushed part of the part, causing deformation.
  • the three-point bending characteristics are classified into three-point bending characteristics in a local buckling mode and three-point bending characteristics in a wall buckling mode.
  • the three-point bending characteristics in the local buckling mode and the three-point bending characteristics in the wall buckling mode are often evaluated based on the three-point bending characteristics obtained by conducting a three-point bending test in which an impactor directly collides with a component, as shown in (a) and (b) of Figure 1.
  • the three-point bending characteristic of the local buckling mode as shown in FIG. 1A, when the distance between the supports supporting the load in the three-point bending test is long, bending deformation occurs mainly at the position where the load is applied by the impactor.
  • the three-point bending characteristics of the wall buckling mode as shown in FIG.
  • the main deformation is that the side wall is crushed in the part height direction, centered around the position where the load is applied by the impactor. Furthermore, the moment bending characteristics are often evaluated based on the moment bending characteristics obtained by conducting a moment bending test in which an impactor or the like does not come into contact with the crushed portion of the part, as shown in FIG. 1(c).
  • the present inventors have studied component shapes for improving collision safety performance against deformation in the local buckling mode as shown in FIG. 1(a) and have obtained the following findings.
  • compressive stress along the height direction occurs in the side walls, the side walls can easily buckle and deform due to compressive stress along the height direction, particularly when the material plate thickness is thin.
  • the deformation state may approach that of wall buckling mode in the early stages of deformation.
  • the deformation state approaches the wall buckling mode, if buckling deformation of the side wall easily occurs, not only will good three-point bending characteristics for the wall buckling mode not be obtained, but the crushed side wall will reduce the height of the crushed part, and the bending rigidity in the height direction of the cross section that intersects the longitudinal direction will decrease. Therefore, even if the deformation state reaches the local buckling mode in the subsequent deformation, good three-point bending characteristics for the local buckling mode may not be obtained.
  • the axial direction of a structural member i.e., the direction in which the axis extends
  • the longitudinal direction Z a direction parallel to the top plate portion
  • a width direction X a direction perpendicular to the longitudinal direction Z and the width direction X
  • a height direction Y a direction perpendicular to the longitudinal direction Z and the width direction X.
  • the direction away from the axis of the structural member is referred to as outward and the opposite direction is referred to as inward.
  • structural member 100 for an automobile body according to an embodiment of the present invention (hereinafter referred to as structural member 100).
  • FIG. Fig. 2A is a perspective view of the structural member 100
  • Fig. 2B is a cross-sectional view taken along the line A1-A1' of Fig. 2A
  • Fig. 3 is a plan view of the structural member 100
  • Fig. 4 is an enlarged partial view of part B of Fig. 3.
  • the structural member 100 is a member having an open cross-section structure constituted by a hat-shaped member 110. Examples of applications of the structural member 100 include bumper reinforcement bars, door impact bars, and the like.
  • the structural member 100 in this embodiment is a part that is intended to be installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle.
  • a tensile stress (C) along the longitudinal direction Z in the flange portion 119 of the hat-shaped component 110; will occur in a complex manner.
  • the "compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped member 110" can also be rephrased as “compressive stress (B) along a direction perpendicular to the longitudinal direction Z in the side wall portion 115 of the hat-shaped member 110.”
  • the hat-shaped component 110 has a top plate portion 111 extending along the longitudinal direction Z, a pair of side walls 115, 115, and a pair of flange portions 119, 119.
  • the hat-shaped member 110 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.
  • the top plate portion 111 corresponds to a portion that comes into direct contact with an impactor in the three-point bending test of the local buckling mode shown in FIG.
  • the structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (A) along the longitudinal direction Z is generated in the top plate portion 111.
  • the width W of the top plate portion 111 may be, for example, 40 mm or more and 200 mm or less. As shown in FIG. 2B, the width W of the top plate portion 111 is the distance in the width direction X between the boundary points of the top plate portion 111 and the first ridge portions 113, 113 at both ends of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. As shown in FIG. 2B, the top plate portion 111 is horizontal, but it may be curved.
  • the pair of side walls 115, 115 extend via first ridges 113, 113 formed at both ends in the width direction X of the top plate 111.
  • the first ridges 113, 113 have an R portion with a curvature radius of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • "through A” means "without through any member other than A.”
  • only the first ridge portions 113, 113 exist between the pair of side wall portions 115, 115 and the top plate portion 111.
  • the structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (B) along the height direction Y is generated in the pair of side wall portions 115, 115.
  • the height H of the side wall 115 may be, for example, 20 mm or more and 150 mm or less. As shown in FIG. 2B, the height H of the side wall 115 is the distance in the height direction Y between the boundary point between the side wall 115 and the first ridge 113 and the boundary point between the side wall 115 and the second ridge 117 in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • the second ridges 117, 117 have an R portion with a radius of curvature of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
  • second ridge portions 117, 117 are formed at ends of the pair of side wall portions 115, 115 opposite the first ridge portions 113, 113.
  • the pair of flange portions 119, 119 extend outward via the second ridge portions 117, 117.
  • Two longitudinal beads 150, 150 extending along the longitudinal direction Z are formed in parallel in the width direction X on the top plate portion 111. It should be noted that three or more longitudinal beads 150 may be formed in parallel. 2B, the longitudinal bead 150 is preferably formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 1/4 of the width W of the top plate portion 111 in the width direction X.
  • the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the top plate portion 111 is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 20 mm in a cross section perpendicular to the longitudinal direction.
  • the longitudinal bead 150 may have an R portion with a predetermined radius of curvature at the end on the top plate portion 111 side. In this case, the longitudinal bead 150 is connected to the top plate portion 111 via the R portion of the longitudinal bead 150.
  • the longitudinal bead 150 may be formed simultaneously using the same mold when the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded, or may be formed using a separate mold or tool before the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded.
  • the longitudinal bead 150 is formed by a pair of bead side walls 151 , 151 and a bead bottom wall 152 .
  • the pair of bead side walls 151, 151 bend and extend inward from the top plate portion 111.
  • the inward angle ⁇ between the bead side wall 151 and the top plate portion 111 is approximately 90 degrees, but the angle ⁇ may be greater than or equal to 90 degrees.
  • the bead bottom wall 152 extends to connect the ends of the pair of bead side walls 151 , 151 on the opposite side from the top plate portion 111 .
  • the longitudinal bead 150 has a predetermined depth d1 and a predetermined width w1.
  • the depth d1 of the longitudinal bead 150 is the distance in the height direction Y from the outer surface of the top plate portion 111 to the outer surface of the bead bottom wall 152 in the longitudinal bead 150. If the longitudinal bead 150 has a shape whose depth changes along the longitudinal direction Z, the maximum value of the distance in the height direction Y from the top plate portion 111 to the bead bottom wall 152 is defined as the depth d1.
  • the depth d1 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.
  • the pair of bead side walls 151, 151 may easily collapse in a direction approaching each other immediately after an impact load from the outside of the vehicle is input to the top plate portion 111. If the pair of bead side walls 151, 151 easily collapse in a direction approaching each other, the pair of side wall portions 115, 115 may also easily collapse in a direction approaching each other. In this case, while the pair of bead side walls 151, 151 are collapsing in a direction approaching each other, the time when the deformation resistance against the compressive stress along the longitudinal direction Z generated in the top plate portion 111 increases may be delayed.
  • the depth d1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 16 mm or less.
  • the width w1 of the longitudinal bead 150 is the distance between the intersection of a virtual line extending one bead side wall 151 of the longitudinal bead 150 and a virtual line extending the top plate portion 111, and the intersection of a virtual line extending the other bead side wall 151 of the longitudinal bead 150 and a virtual line extending the top plate portion 111, in a cross section perpendicular to the longitudinal direction Z.
  • the longitudinal bead 150 has a shape whose width changes along the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w1.
  • the width w1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 15 mm or less.
  • the width w1 of the longitudinal bead 150 is 5 mm or more, and more preferably 8 mm or more.
  • the longitudinal bead 150 does not necessarily have to be formed over the entire length of the top plate portion 111 in the longitudinal direction Z, but may be formed over a portion of the entire length of the top plate portion 111.
  • the position at which the longitudinal bead 150 is formed may be selected to be the position where the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity.
  • the longitudinal bead 150 may also be formed at multiple locations in the longitudinal direction Z.
  • the depth d1 and width w1 of the longitudinal bead 150 affect the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111.
  • the aspect ratio A1 calculated by the depth d1 relative to the width w1 of the longitudinal bead 150 is 0.25 or more and 4.0 or less, since this can more reliably achieve the effect of increasing the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is even more preferable that the aspect ratio A1 is 0.5 or more and 2.0 or less.
  • a plurality of height direction beads 160 extending along the height direction Y are formed in parallel in the longitudinal direction Z on the side wall portion 115 .
  • the height direction bead 160 is formed over the entire height of the side wall portion 115 in the height direction Y, but the height direction bead 160 may be formed over only a portion of the entire height direction.
  • the height direction bead 160 is formed so as to protrude inward from the side wall portion 115 .
  • the height direction bead 160 may have an R portion with a predetermined radius of curvature at the end portion on the side wall portion 115 side.
  • the height direction bead 160 is connected to the side wall portion 115 via the R portion of the height direction bead 160.
  • the provision of such height direction beads 160 can increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, early buckling deformation in the side wall portion 115 is suppressed, and the maximum load is increased.
  • the height direction bead 160 is formed so as to extend from the first ridge portion 113 to the second ridge portion 117 . Since the height direction bead 160 is formed to extend from the first ridge line portion 113, the height direction bead 160 also contributes to the deformation resistance of the first ridge line portion 113 against the compressive stress (B) along the height direction Y, making the first ridge line portion 113 less likely to be crushed. Since the first ridge line portion 113 is less likely to be crushed, the upper part of the side wall portion 115 connected to the first ridge line portion 113 is also less likely to be crushed.
  • the first ridge line portion 113 and the side wall portion 115 are less likely to be crushed, a decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to a decrease in the height of the structural member 100 is suppressed, and a decrease in the three-point bending characteristics in the local buckling mode can be prevented, which is preferable. Furthermore, in this manner, when the height-direction bead 160 is formed to extend from the first ridge portion 113, a step is formed along the longitudinal direction Z of the first ridge portion 113 between a portion of the bead bottom wall 162 of the height-direction bead 160 and a portion of the side wall portion 115 where the height-direction bead is not formed.
  • the height direction bead 160 also contributes to the deformation resistance of the second ridge portion 117 against the compressive stress (B) along the height direction Y, making the second ridge portion 117 less likely to be crushed. Therefore, since the first ridge portion 113, the side wall portion 115, and the second ridge portion 117 are less likely to be crushed, the decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to the reduction in the height of the structural member 100 is further suppressed, and the decrease in the three-point bending characteristics in the local buckling mode can be further prevented, which is preferable.
  • the height direction bead 160 is formed by a pair of bead side walls 161 , 161 and a bead bottom wall 162 .
  • the pair of bead side walls 161 , 161 extend inwardly from the side wall portion 115 while bending.
  • the bead bottom wall 162 connects the inner ends of the pair of bead side walls 161, 161 to each other.
  • the vertical bead 160 has a predetermined depth d2 and a predetermined width w2.
  • the depth d2 of the height direction bead 160 is the distance in the width direction X from the outer surface of the side wall portion 115 to the outer surface of the bead bottom wall 162 in the height direction bead 160. If the height direction bead 160 has a shape whose depth changes along the height direction Y, the maximum value of the distance in the width direction X from the side wall portion 115 to the bead bottom wall 162 is defined as the depth d2.
  • the depth d2 of the height direction bead 160 is preferably 2 mm or more, and more preferably 4 mm or more.
  • the depth d2 of the height direction bead 160 is too large, the dimension in the width direction X of the structural member 100 becomes locally small, and the bending rigidity in the cross section intersecting the longitudinal direction Z becomes too small, so that the desired three-point bending characteristics may not be obtained.
  • the longitudinal bead 150 may not be formed at the desired position.
  • the depth d2 of the height direction bead 160 is preferably 10 mm or less, and more preferably 8 mm or less.
  • the multiple height-direction beads 160 are preferably formed with an inter-bead distance of 50 mm or less in the longitudinal direction Z of the side wall portion 115, and more preferably with an inter-bead distance of 30 mm or less. In this case, it is possible to further increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115.
  • the inter-bead distance means the distance between one end of the height-direction bead 160 (end in one direction of the longitudinal direction Z) and the other end of the adjacent height-direction bead 160 (end in the other direction of the longitudinal direction Z), as shown in FIG. 4.
  • the plurality of height-direction beads 160 do not need to be formed over the entire length of the side wall portion 115 in the longitudinal direction Z, but may be formed over a portion of the entire length of the side wall portion 115 in the longitudinal direction Z.
  • the positions at which the plurality of height-direction beads 160 are formed may be selected as positions at which the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity.
  • the multiple height-direction beads 160 do not need to be formed side by side on the side wall portion 115 with equal bead-to-bead distances; for example, when three height-direction beads 160 are formed, the two bead-to-bead distances may be different values.
  • the plurality of height direction beads 160 do not necessarily have to be formed at the same position in the longitudinal direction Z on the pair of side wall portions 115, 115.
  • the height direction bead 160 does not have to be formed on the other side wall portion 115.
  • the longitudinal bead 150 and the height bead 160 are located at the same position in the longitudinal direction Z. In this case, the load resistance and preferably the impact absorption energy at the beginning of the stroke can be improved more reliably.
  • the width w2 of the height-wise bead 160 is the distance between the intersection of a virtual line extending the outer surface of one bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, and the intersection of a virtual line extending the outer surface of the other bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, in a cross section perpendicular to the height direction Y.
  • the separation distance in the cross section where the separation distance is maximum is defined as width w2.
  • the width w2 of the height direction bead 160 is preferably 60 mm or less, and more preferably 40 mm or less.
  • the width w2 of the height direction bead 160 is 10 mm or more, and it is even more preferable that it is 15 mm or more.
  • the depth d2 and width w2 of the height direction bead 160 affect the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115.
  • the aspect ratio A2 calculated by the depth d2 relative to the width w2 of the height direction bead 160 is 0.05 or more and 1.0 or less, this is preferable because it can more reliably exert the effect of increasing the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. It is even more preferable that the aspect ratio A2 is 0.1 or more and 0.5 or less.
  • the angle of the height direction bead 160 will be described based on FIG. 2B.
  • the angle a1 between the bead bottom wall 162 of the height direction bead 160 and the top plate portion 111 is 90 degrees or more and 95 degrees or less.
  • the angle a1 is, more specifically, an inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the bead bottom wall 162.
  • the angle a1 is 90 degrees.
  • the angle a1 may be constant regardless of the position in the height direction Y of the bead bottom wall 162, or may be varied depending on the position in the height direction Y of the bead bottom wall 162. An example in which the angle a1 varies will be described later.
  • the angle a2 between the side wall portion 115 adjacent to the height bead 160 in the longitudinal direction Z and the top plate portion 111 is equal to the angle a1. More specifically, the angle a2 is the inner angle between an imaginary line extending the outer surface of the top plate portion 111 and an imaginary line extending the outer surface of the side wall portion 115.
  • the angle a2 may be constant regardless of the position of the side wall portion 115 in the height direction Y, or may vary depending on the position of the side wall portion 115 in the height direction Y. An example of the variation of the angle a2 will be described later.
  • the hat-shaped component 110 is preferably formed from a steel plate having a thickness of 1.2 mm or less, and more preferably from a steel plate having a thickness of 1.0 mm or less.
  • the lower limit of the thickness of the hat-shaped component 110 is not particularly limited, and may be 0.3 mm or more.
  • the hat-shaped member 110 is preferably formed from a steel plate having a tensile strength of 980 MPa or more, and more preferably from a steel plate having a tensile strength of 1470 MPa or more.
  • the hat-shaped member 110 can be formed, for example, by subjecting a plate material to cold pressing or warm pressing.
  • the hat-shaped member 110 may also be formed by hot stamping, in which a steel plate is heated to a high temperature in the austenite region, and then press-formed in a die, and simultaneously quenched in the die by a method such as heat extraction into the die or water cooling in the die.
  • the hat-shaped member 110 may be a quenched member.
  • the structural member 100 of this embodiment when an impact load from outside the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, it is possible to exert a combination of deformation resistance to compressive stress (A) along the longitudinal direction Z, deformation resistance to compressive stress (B) along the height direction Y, and deformation resistance to tensile stress (C) along the longitudinal direction Z.
  • the angle a1 is set to be equal to or greater than 90 degrees and equal to or less than 95 degrees, it is possible to increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, it is possible to improve the load resistance and the shock absorption energy in the initial stage of the stroke in the local buckling mode of deformation.
  • the conventional method has been one of the barriers to weight reduction by using thin, high-strength materials. That is, even if the deformation resistance of the top plate 111 against the compressive stress (A) along the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member 100 cannot exhibit good three-point bending characteristics if the side wall 115 is easily buckled due to bending deformation or the like due to the thinning.
  • the structural member 100 of this embodiment can exert a composite deformation resistance at each portion, making it possible to exert excellent collision safety performance even when using a thin-walled, high-strength material.
  • FIG. 6 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100A.
  • the angle a2 is larger than the angle a1.
  • the ratio d21/d2 max of the depth d21 of the height direction bead 160 at the first ridge line portion 113 to the maximum value d2 max of the depth d2 of the height direction bead 160 is 0.5 or less.
  • d21 may be 2 mm or less.
  • the lower limit of d21 is not particularly limited and may be 0 mm.
  • the depth d2 of the height direction bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)).
  • the load capacity and impact absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved.
  • angle a2 is larger than angle a1 by 2° or more, and angle a2 is preferably equal to or smaller than 100°.
  • angle a1 and angle a2 satisfy a1+2° ⁇ a2 ⁇ 100°.
  • Fig. 7 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100B.
  • the bead bottom wall 162 has a bending point b1 at which the bead bottom wall 162 bends midway in the height direction Y.
  • the bead bottom wall 162 is divided into a top plate proximal bead bottom wall 162a, which is a portion closer to the top plate 111 than the bending point b1, and a top plate distal bead bottom wall 162b, which is opposite to the top plate proximal bead bottom wall 162a.
  • the angle a11 between the top plate proximal bead bottom wall 162a and the top plate 111 is 90 degrees or more and 95 degrees or less.
  • the angle a11 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the top plate portion proximal bead bottom wall 162a.
  • the angle a12 between the top plate portion distal bead bottom wall 162b and the top plate portion 111 is larger than the angle a11.
  • the angle a12 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the top plate portion distal bead bottom wall 162b.
  • the angle a12 is drawn as the angle formed by a two-dot chain line (corresponding to a virtual line extending the outer surface of the top plate portion 111) that passes through the bending point b1 and is parallel to the top plate portion 111 and a virtual line extending the outer surface of the top plate portion distal bead bottom wall 162b.
  • the angle a2 is equal to the angle a12, but the two may be different. Furthermore, the ratio d21/d2 max of the depth d21 of the height direction bead 160 at the first ridge portion 113 to the maximum value d2 max of the depth d2 of the height direction bead 160 is 0.5 or less. Note that d21 may be 2 mm or less. The lower limit of d21 is not particularly limited and may be 0 mm. Therefore, in the second modified example, the depth d2 of the height direction bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)) above the bending point b1. According to the second modified example, the load capacity and the shock absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved.
  • FIG. 8 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100C.
  • the side wall portion 115 adjacent to the height direction bead 160 has a bending point b2 that bends in the middle of the height direction Y in a cross-section perpendicular to the longitudinal direction Z.
  • the side wall portion 115 adjacent to the height direction bead 160 is divided into a proximal side wall portion 115a of the top plate portion, which is a portion closer to the top plate portion 111 than the bending point b2, and a distal side wall portion 115b of the top plate portion opposite the proximal side wall portion 115a of the top plate portion.
  • the angle a21 between the proximal side wall portion 115a of the top plate portion and the top plate portion 111 is larger than the angle a1.
  • the angle a21 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate 111 and a virtual line extending the outer surface of the top plate proximal sidewall 115a.
  • the angle a22 between the top plate distal sidewall 115b and the top plate 111 is equal to the angle a1, but the two may be different.
  • the angle a22 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate 111 and a virtual line extending the outer surface of the top plate distal sidewall 115b.
  • the angle a22 is depicted as the inner angle formed by a two-dot chain line (corresponding to a virtual line extending the outer surface of the top plate 111) that passes through the bending point b2 and is parallel to the top plate 111, and a virtual line extending the outer surface of the top plate distal sidewall 115b.
  • the ratio d21/d2 max of the depth d2 of the height bead 160 at the first ridge portion 113 to the maximum value d2 max of the depth d2 of the height bead 160 is 0.5 or less.
  • d21 may be 2 mm or less.
  • the lower limit of d21 is not particularly limited and may be 0 mm. Therefore, in the third modified example, the depth d2 of the height bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)) above the bending point b2. According to the third modified example, the load capacity and impact absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved.
  • the angle a21 is 4° or more larger than the angle a1, and the angle a21 is preferably 105° or less. That is, it is preferable that the angle a1 and the angle a21 satisfy a1+4° ⁇ a21 ⁇ 105°.
  • the structural member 100 deforms so that the distance between the pair of second ridge portions 117 becomes smaller when the top plate portion 111 receives an input load in the height direction Y.
  • the "input load” referred to here means an input load caused by pressing an impactor against the center of the top plate portion 111 in the longitudinal direction Z at 60 mm/min with the flange portion 119 of the structural member 100 in the vicinity of both longitudinal ends placed on a pair of supports as shown in Fig. 9 .
  • each of the "pair of support bases” is a long member with a semicircular cross section with a radius of curvature of 30 mm
  • the impactor is a long member with a semicircular cross section with a radius of curvature of 50 mm.
  • the structural member 100 is assembled as an automobile part, in order to simulate the end of the structural member 100 being restrained by being connected to another part, in the portion placed on the pair of support bases near both ends of the structural member 100, a plate-shaped mild steel with a thickness of 15 mm is fitted inside the cross section, thereby maintaining the cross-sectional shape of both ends of the structural member 100 during the three-point bending test.
  • the distance between the pair of support bases is 700 mm. However, if the total length of the structural member 100 is less than 800 mm, the distance between the pair of support bases is the total length of the structural member 100 minus 100 mm.
  • the deformation occurs so that the distance between the pair of second ridge portions 117 becomes smaller at least until the initial stroke of 10 mm is reached.
  • the sidewalls 115 open in the width direction X, reducing the height of the structural member 100 and reducing the bending rigidity in the height direction Y of the cross section perpendicular to the longitudinal direction Z. This is because the three-point bending characteristics of the local buckling mode may decrease.
  • the depth d2 of the height direction bead 160 in the vicinity of the top plate 111 is reduced.
  • the sidewalls 115 in the vicinity of the top plate 111 are crushed while bulging outward.
  • the height direction bead 160 is deformed so that the distance between the second ridges 117 decreases while withstanding the input load. Or, even if the distance between the second ridges 117 increases, the timing of this can be delayed.
  • the load resistance and impact absorption energy in the initial stroke of the deformation in the local buckling mode can be further improved.
  • the top plate portion 111, the side wall portion 115, and the bead bottom wall 162 are linear in a cross section perpendicular to the longitudinal direction Z, but they may be curved.
  • the shape (broken line) at the bending point may also be curved.
  • the curved shape here is not limited to a curve in a cross section perpendicular to the longitudinal direction Z, but also includes a curve in the longitudinal direction of the member, i.e., a curve in the height direction (up and down direction) and width direction (left and right direction).
  • the shape of the top plate portion 111, the side wall portion 115, and the bead bottom wall 162 in a cross section perpendicular to the longitudinal direction Z is a straight line connecting both ends of the length direction of each part in the cross section (for example, a straight line is drawn connecting both ends of the width direction (length direction of the top plate portion 111) of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z, and this straight line is assumed to be the top plate portion 111), and the above-mentioned parameters (for example, angle a1) may be defined.
  • the automobile body includes any one of the above-mentioned structural members 100, 100A to 100C.
  • the pair of flange portions 119 of the hat-shaped member 110 do not have a member attached to join the pair of flange portions 119 to each other at least in the longitudinal center portion.
  • a simulation model of a structural member composed of hat-shaped members using steel plates with a thickness of 0.8 mm and a tensile strength of 2.5 GPa was prepared.
  • a simulation model of the structural member was appropriately given longitudinal and height beads, and a simulation was performed assuming three-point bending to evaluate the maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm.
  • a three-point bending simulation was also performed on a structural member that did not have longitudinal and height beads as a standard or comparative example.
  • the basic conditions, the conditions of the comparative example, and the conditions of each example of the invention are as follows.
  • the inclination angle of the bead side wall of the longitudinal bead placed on the top plate was set to 95 degrees with respect to the top plate.
  • Width of top plate W 70 mm
  • Side wall height H 50 mm
  • Radius of curvature of first ridge (inner bend) 5 mm
  • Radius of curvature of the second ridge (inner bend) 5 mm
  • Total length of structural member L 800 mm
  • Longitudinal bead depth d1 10 mm
  • Comparative Example Angle between the side wall and the top plate on the inner side 95 degrees Formation of height direction bead and longitudinal direction bead: None (corresponding to invention example 1: embodiment)
  • the three-point bending conditions were set as follows: the impactor radius of curvature was 50 mm, and the support stand separation distance was 700 mm, as shown in Fig. 9.
  • the maximum load at the beginning of the stroke and the impact energy absorption up to a stroke of 100 mm are shown in Table 1.
  • the reference ratios in Table 1 are values expressed as percentages relative to the values (maximum load and impact energy absorption amount) of the comparative example.
  • the side wall portion buckled early from the beginning of the stroke, and the structural members were significantly deformed, so that the maximum load and the impact absorption energy at the beginning of the stroke were low.
  • the maximum load at the beginning of the stroke was significantly improved compared to the Comparative Example.
  • Example 2 the maximum load at the beginning of the stroke was also significantly improved compared to the comparative example.
  • the height direction bead increased the rigidity of the side wall, suppressing buckling of the side wall at the beginning of the stroke
  • the longitudinal direction bead increased the deformation resistance against the compressive stress along the longitudinal direction generated in the top plate.
  • the depth d2 of the height direction bead at the upper part of the side wall is small, the upper part of the side wall is slightly more likely to buckle at the beginning of the stroke than the invention examples 1 and 2. Therefore, the maximum load at the beginning of the stroke was slightly lower than the invention examples 1 and 2.
  • the buckling of the upper part of the side wall suppressed the side wall from opening outward, so the height direction bead and the longitudinal direction bead fully functioned, and the load capacity was higher than the invention examples 1 and 2.
  • the impact absorption energy was higher than the invention examples 1 and 2.
  • the present invention provides a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and preferably the impact energy absorption capacity at the beginning of the stroke of deformation in local buckling mode.
  • Structural member 110 Hat-shaped member 111 Top plate portion 113 First ridge portion 115 Side wall portion 117 Second ridge portion 119 Flange portion 150 Longitudinal bead 151 Bead side wall 152 Bead bottom wall 160 Height direction bead 161 Bead side wall 162 Bead bottom wall X Width direction Y Height direction Z Longitudinal direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

This structural member for an automobile body is a hat-shaped member including: a top plate part; a pair of side wall parts; and a pair of flange parts. Two or more longitudinal-direction beads are formed on the top plate part, and a plurality of height-direction beads are formed on the pair of side wall parts. The height-direction beads each include a pair of bead side walls and a bead bottom wall. In a cross-section perpendicular to the longitudinal direction, an angle a1 on the inner side between the bead bottom wall of the height-direction bead and the top plate part is 90-95 degrees.

Description

自動車車体の構造部材及び自動車車体Automobile body structural members and automobile bodies

 本発明は、自動車車体の構造部材及び自動車車体に関する。
 本願は、2023年3月27日に、日本に出願された特願2023-049809号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a structural member for an automobile body and an automobile body.
This application claims priority based on Japanese Patent Application No. 2023-049809, filed on March 27, 2023, the contents of which are incorporated herein by reference.

 近年、自動車の衝突安全性能の向上および車体軽量化を目的として、自動車部品への高張力鋼板の適用が拡大している。高張力鋼板を適用することで、より優れた衝突安全性能を持つ部品を得ることができたり、または衝突安全性能と薄肉化による軽量化とを両立することが可能となる。 In recent years, the use of high-tensile steel plates in automotive parts has expanded with the aim of improving automobile collision safety performance and reducing vehicle weight. By using high-tensile steel plates, it is possible to obtain parts with better collision safety performance, or to achieve both collision safety performance and weight reduction through thinner parts.

 しかしながら素材の板厚が薄くなると、加工前の鋼板の剛性が低下するだけなく、加工後の部品の剛性も低下するため、強度が高く、板厚の薄い鋼板を単純に使用するだけでは、衝突安全性能として十分な高強度化の効果が得られない場合がある。 However, when the thickness of the material is reduced, not only does the rigidity of the steel plate before processing decrease, but the rigidity of the parts after processing also decreases, so there are cases where a sufficient increase in strength in terms of collision safety performance cannot be obtained simply by using a high-strength, thin steel plate.

 自動車車体部品の衝突安全性能として、側面衝突(側突)におけるサイドシルやBピラー、前面衝突(前突)におけるバンパー等の曲げ圧潰特性がある。これらの部品の曲げ圧潰特性として、局部座屈モードの3点曲げ特性を高め、薄い板厚の素材を用いてもより高い衝突安全性能を発揮することが希求されている。 The collision safety performance of automobile body parts includes the bending crush characteristics of side sills and B-pillars in side collisions, and bumpers in frontal collisions. There is a demand for improving the three-point bending characteristics in local buckling mode to achieve higher collision safety performance even when using thin plate materials.

 特許文献1には、本体部の長手方向に沿って本体部の幅方向中央に延在するように凹ビードを設けるように設計された、耐座屈性に優れた車両用耐衝突補強材が開示されている。
 特許文献2には、上部ウェブ、下部ウェブの一方又は両方に、車両の前後方向に略平行な凹状又は凸状のビードを有する車両用金属製アブソーバが開示されている。
Patent Document 1 discloses a vehicle crashworthiness reinforcement material with excellent buckling resistance that is designed to have a recessed bead extending along the longitudinal direction of the main body portion to the center of the width of the main body portion.
Patent Document 2 discloses a metal vehicle absorber having concave or convex beads that are approximately parallel to the front-rear direction of the vehicle on one or both of an upper web and a lower web.

日本国特許第5119477号公報Japanese Patent No. 5119477 日本国特許第4330652号公報Japanese Patent No. 4330652

 しかしながら、特許文献1、2の技術では、要求される更に高い曲げ圧潰部品の局部座屈モードの3点曲げ特性を十分に発揮することができなかった。 However, the techniques of Patent Documents 1 and 2 were unable to fully demonstrate the three-point bending characteristics of the local buckling mode of the more highly bent crushed parts that were required.

 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、局部座屈モードの変形の、ストローク初期における耐荷重と、好ましくは衝撃吸収エネルギとを向上させることでより優れた衝突安全性能を発揮することが可能な構造部材を提供することにある。 The present invention was made in consideration of the above problems, and the object of the present invention is to provide a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and preferably the impact absorption energy at the beginning of the stroke of deformation in local buckling mode.

 本発明の具体的態様は以下のとおりである。 Specific aspects of the present invention are as follows:

(1)本発明の第一の態様は、長手方向に沿って延びる天板部と、前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、を有するハット型部材である自動車車体の構造部材であって、前記天板部に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、前記高さ方向ビードのそれぞれは、前記側壁部から内方に向けて屈曲して延在する一対のビード側壁と、前記一対のビード側壁の内方側の端部同士を連結するビード底壁と、を備え、前記長手方向に垂直な断面において、前記高さ方向ビードの前記ビード底壁と、前記天板部との内方側の角度a1が90度以上95度以下であることを特徴とする自動車車体の構造部材である。
(2)上記(1)に記載の自動車車体の構造部材では、前記天板部が前記高さ方向への入力荷重を受けた際、前記一対の第二稜線部同士の離間距離が小さくなるように変形してもよい。
(3)上記(1)又は(2)に記載の自動車車体の構造部材では、前記側壁部のうち、前記高さ方向ビードに前記長手方向に隣接する側壁部と前記天板部との内方側の角度a2が前記角度a1よりも大きくてもよい。
(4)上記(1)~(3)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードに隣接する側壁部は、前記長手方向に垂直な断面において、前記高さ方向の途中で屈曲する屈曲点を有し、前記高さ方向ビードに隣接する側壁部のうち、前記屈曲点よりも前記天板部に近い部位である天板部近位側側壁部と前記天板部との内方側の角度a21が前記角度a1よりも大きくてもよい。
(5)上記(1)~(4)のいずれか一項に記載の自動車車体の構造部材では、前記側壁部の前記高さ方向ビードのビード深さの最大値d2maxに対する、前記第一稜線部でのビード深さd21の比が、d21/d2max≦0.5、及び、d21≦2mm、の少なくとも一方を満たしてもよい。
(6)上記(1)~(5)のいずれか一項に記載の自動車車体の構造部材では、前記長手方向に垂直な断面において、前記天板部と前記第一稜線部との境界点から、前記幅方向に前記天板部の幅の1/4の離間距離となる点までの領域に、外側に配置されている二本の前記長手方向ビードの前記幅方向の中心が位置するように外側に配置されている二本の前記長手方向ビードが形成されてもよい。
(7)上記(1)~(6)のいずれか一項に記載の自動車車体の構造部材では、前記長手方向に垂直な断面において、前記天板部と前記第一稜線部との境界点から、20mmの離間距離となる点までの領域に、外側に配置されている二本の前記長手方向ビードと天板部との境界点が位置するように外側に配置されている二本の前記長手方向ビードが形成されてもよい。
(8)上記(1)~(7)のいずれか一項に記載の自動車車体の構造部材では、前記ハット型部材が板厚1.2mm以下の鋼板により形成されていてもよい。
(9)上記(1)~(8)のいずれか一項に記載の自動車車体の構造部材では、前記ハット型部材が引張強さ980MPa以上の鋼板により形成されていてもよい。
(10)上記(1)~(9)のいずれか一項に記載の自動車車体の構造部材では、前記ハット型部材が焼き入れ部材であってもよい。
(11)上記(1)~(10)のいずれか一項に記載の自動車車体の構造部材では、外側に配置されている二本の前記長手方向ビードの幅が5mm~20mmであり、外側に配置されている二本の前記長手方向ビードの深さが5mm~20mmであってもよい。
(12)上記(1)~(11)のいずれか一項に記載の自動車車体の構造部材では、外側に配置されている二本の前記長手方向ビードの深さ/幅で算出されるアスペクト比が0.25~4.0であってもよい。
(13)上記(1)~(12)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードは、前記第一稜線部から延在してもよい。
(14)上記(1)~(13)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードは、前記第二稜線部から延在してもよい。
(15)上記(1)~(14)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードは、前記第一稜線部から前記第二稜線部まで延在してもよい。
(16)上記(1)~(15)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードの幅が10mm~60mmであり、前記高さ方向ビードの深さが2mm~10mmであってもよい。
(17)上記(1)~(16)のいずれか一項に記載の自動車車体の構造部材では、前記高さ方向ビードの深さ/幅で算出されるアスペクト比が0.05~1.0であってもよい。
(18)上記(1)~(17)のいずれか一項に記載の自動車車体の構造部材では、前記天板部が前記高さ方向への入力荷重を受けた際、ストローク初期において、前記一対の第二稜線部同士の離間距離が小さくなるように変形してもよい。
(19)上記(1)~(18)のいずれか一項に記載の自動車車体の構造部材では、前記ハット型部材の前記一対のフランジ部は、少なくともその長手方向中央部分において、前記一対のフランジ部同士を接合する部材が取り付けられていなくてもよい。
(20)本発明の第二の態様は、上記(1)~(18)のいずれか一項に記載の構造部材を有する自動車車体であって、前記構造部材における、前記ハット型部材の前記一対のフランジ部は、少なくともその長手方向中央部分において、前記一対のフランジ部同士を接合する部材が取り付けられていないことを特徴とする自動車車体である。
(1) A first aspect of the present invention is a structural component for an automobile body, which is a hat-shaped component having a top plate portion extending along a longitudinal direction, a pair of side wall portions extending via a pair of first ridge portions formed at both ends of the top plate portion in a width direction, and a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions, wherein two or more longitudinal beads extending along the longitudinal direction are formed in the top plate portion in parallel with each other in the width direction, This structural member for an automobile body is characterized in that a plurality of height-direction beads extending along the height direction are formed in parallel in the longitudinal direction on a pair of side wall portions, each of the height-direction beads having a pair of bead side walls extending and bending inward from the side wall portion, and a bead bottom wall connecting the inner ends of the pair of bead side walls, and in that, in a cross section perpendicular to the longitudinal direction, an inner angle a1 between the bead bottom wall of the height-direction bead and the top plate portion is greater than or equal to 90 degrees and less than 95 degrees.
(2) In the structural component of an automobile body described in (1) above, when the top plate portion is subjected to an input load in the height direction, the distance between the pair of second ridge portions may be deformed to become smaller.
(3) In the structural component of an automobile body described in (1) or (2) above, the inner angle a2 between the side wall portion adjacent to the height bead in the longitudinal direction and the top plate portion may be greater than the angle a1.
(4) In the structural component of an automobile body described in any one of (1) to (3) above, the side wall portion adjacent to the height direction bead has a bending point in a cross section perpendicular to the longitudinal direction where it bends halfway in the height direction, and the angle a21 on the inner side between the top plate portion and a side wall portion proximal to the top plate portion, which is a portion of the side wall portion adjacent to the height direction bead that is closer to the top plate portion than the bending point, may be greater than the angle a1.
(5) In the structural component for an automobile body described in any one of (1) to (4) above, a ratio of a bead depth d21 at the first ridge line portion to a maximum value d2max of a bead depth of the height direction bead of the side wall portion may satisfy at least one of d21/d2max≦0.5 and d21≦2 mm.
(6) In a structural component for an automobile body described in any one of (1) to (5) above, in a cross section perpendicular to the longitudinal direction, two longitudinal beads arranged on the outside may be formed in a region from the boundary point between the top plate portion and the first ridge portion to a point spaced apart in the width direction by a distance of 1/4 of the width of the top plate portion, such that the widthwise centers of the two longitudinal beads arranged on the outside are located in the region.
(7) In a structural component for an automobile body described in any one of (1) to (6) above, in a cross section perpendicular to the longitudinal direction, the two longitudinal beads arranged on the outside may be formed in a region from the boundary point between the top plate portion and the first ridge portion to a point spaced 20 mm apart, so that the boundary point between the two longitudinal beads arranged on the outside and the top plate portion is located in the region.
(8) In the structural component for an automobile body described in any one of (1) to (7) above, the hat-shaped component may be formed from a steel plate having a thickness of 1.2 mm or less.
(9) In the structural component for an automobile body described in any one of (1) to (8) above, the hat-shaped component may be formed from a steel plate having a tensile strength of 980 MPa or more.
(10) In the structural component for an automobile body according to any one of (1) to (9) above, the hat-shaped component may be a hardened component.
(11) In the structural component of an automobile body described in any one of (1) to (10) above, the width of the two longitudinal beads arranged on the outside may be 5 mm to 20 mm, and the depth of the two longitudinal beads arranged on the outside may be 5 mm to 20 mm.
(12) In the structural component of an automobile body described in any one of (1) to (11) above, the aspect ratio calculated from the depth/width of the two longitudinal beads arranged on the outside may be 0.25 to 4.0.
(13) In the structural component for an automobile body described in any one of (1) to (12) above, the height direction bead may extend from the first ridge portion.
(14) In the structural component for an automobile body described in any one of (1) to (13) above, the height direction bead may extend from the second ridge portion.
(15) In the structural component for an automobile body described in any one of (1) to (14) above, the height direction bead may extend from the first ridge portion to the second ridge portion.
(16) In the structural component for an automobile body described in any one of (1) to (15) above, the width of the height direction bead may be 10 mm to 60 mm, and the depth of the height direction bead may be 2 mm to 10 mm.
(17) In the structural component for an automobile body according to any one of (1) to (16) above, the aspect ratio calculated by the depth/width of the height direction bead may be 0.05 to 1.0.
(18) In the structural component of an automobile body described in any one of (1) to (17) above, when the top plate portion receives an input load in the height direction, the top plate portion may deform so that the distance between the pair of second ridge portions becomes smaller at the beginning of the stroke.
(19) In the structural component of an automobile body described in any one of (1) to (18) above, the pair of flange portions of the hat-shaped component may not have a component attached to join the pair of flange portions to each other, at least in the longitudinal center portion thereof.
(20) A second aspect of the present invention is an automobile body having a structural member described in any one of (1) to (18) above, characterized in that the pair of flange portions of the hat-shaped member in the structural member do not have any members attached to join the pair of flange portions to each other, at least in their longitudinal central portion.

 本発明によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、好ましくは衝撃吸収エネルギとを向上させることで、より優れた衝突安全性能を発揮することができる。 The present invention improves the load-bearing capacity and preferably the impact energy absorption capacity at the beginning of the stroke of the local buckling mode deformation, thereby achieving better collision safety performance.

(a)は局部座屈モードの3点曲げ特性を説明するための模式図であり、(b)は壁面座屈モードの3点曲げ特性を説明するための模式図であり、(c)はモーメント曲げ特性を説明するための模式図である。FIG. 1A is a schematic diagram for explaining three-point bending characteristics in local buckling mode, FIG. 1B is a schematic diagram for explaining three-point bending characteristics in wall buckling mode, and FIG. 1C is a schematic diagram for explaining moment bending characteristics. 本実施形態に係る構造部材を示す斜視図である。FIG. 2 is a perspective view showing a structural member according to the present embodiment. 本実施形態に係る構造部材の概略断面図であって、図2AのA1-A1’に沿う断面を示す。FIG. 2B is a schematic cross-sectional view of the structural member according to the present embodiment, showing a cross-section along A1-A1' in FIG. 2A. 本実施形態に係る構造部材を示す平面図である。FIG. 2 is a plan view showing a structural member according to the present embodiment. 図3の部分Bの部分拡大図である。FIG. 4 is a partially enlarged view of a portion B of FIG. 3 . 本実施形態に係る構造部材の変形後の状態を示す斜視図である。FIG. 4 is a perspective view showing a state after deformation of the structural member according to the embodiment. 第一変形例に係る構造部材を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a structural member according to a first modified example. 第二変形例に係る構造部材を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a structural member according to a second modified example. 第三変形例に係る構造部材を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a structural member according to a third modified example. 三点曲げ条件を説明するための模式図である。FIG. 2 is a schematic diagram for explaining three-point bending conditions.

 自動車部品の曲げ圧潰特性は、衝突の衝撃が部品の圧潰部に直接的に加わって変形する場合の3点曲げ特性と、衝突の衝撃が部品の圧潰部に間接的に加わって変形する場合のモーメント曲げ特性と、に大別される。
 このうち、3点曲げ特性は、局部座屈モードの3点曲げ特性と、壁面座屈モードの3点曲げ特性と、に分類される。
 局部座屈モードの3点曲げ特性及び壁面座屈モードの3点曲げ特性は、図1の(a)及び(b)に示すように、インパクタが部品に直接衝突する3点曲げ試験を行うことで得られる3点曲げ特性により評価することが多い。
 局部座屈モードの3点曲げ特性では、図1の(a)に示すように、3点曲げ試験において荷重を支持する支点間の距離が長い条件で、インパクタによる荷重負荷位置での屈曲変形が主体となる。
 壁面座屈モードの3点曲げ特性では、図1の(b)に示すように、3点曲げ試験において荷重を支持する支点間の距離が短い条件で、インパクタによる荷重負荷位置を中心に側壁が部品高さ方向に潰される変形が主体となる。
 また、モーメント曲げ特性は、図1の(c)に示すように、部品の圧潰部にインパクタ等が接触しないモーメント曲げ試験を行うことで得られるモーメント曲げ特性で評価することが多い。
The bending crush characteristics of automobile parts can be broadly divided into three-point bending characteristics, in which the impact of the collision is applied directly to the crushed part of the part, causing deformation, and moment bending characteristics, in which the impact of the collision is applied indirectly to the crushed part of the part, causing deformation.
Among these, the three-point bending characteristics are classified into three-point bending characteristics in a local buckling mode and three-point bending characteristics in a wall buckling mode.
The three-point bending characteristics in the local buckling mode and the three-point bending characteristics in the wall buckling mode are often evaluated based on the three-point bending characteristics obtained by conducting a three-point bending test in which an impactor directly collides with a component, as shown in (a) and (b) of Figure 1.
In the three-point bending characteristic of the local buckling mode, as shown in FIG. 1A, when the distance between the supports supporting the load in the three-point bending test is long, bending deformation occurs mainly at the position where the load is applied by the impactor.
In the three-point bending characteristics of the wall buckling mode, as shown in FIG. 1B, when the distance between the supports supporting the load in the three-point bending test is short, the main deformation is that the side wall is crushed in the part height direction, centered around the position where the load is applied by the impactor.
Furthermore, the moment bending characteristics are often evaluated based on the moment bending characteristics obtained by conducting a moment bending test in which an impactor or the like does not come into contact with the crushed portion of the part, as shown in FIG. 1(c).

 本発明者は、図1の(a)に示すような局部座屈モードの変形に対する衝突安全性能を高めるための部品形状について検討し、下記の知見を得た。
(あ)圧潰部がインパクタに接触する3点曲げでは、部品の曲げ内側に生じる長手方向に沿う圧縮応力と、部品の側壁に生じる高さ方向に沿う圧縮応力と、部品の曲げ外側に生じる長手方向に沿う引張応力とが複合的に生じること。
(い)高さ方向に沿う圧縮応力は側壁に生じることから、特に素材の板厚が薄い場合には、高さ方向に沿う圧縮応力により側壁が容易に座屈変形してしまい、局部座屈モードを想定した部品であっても変形の初期において壁面座屈モードに近い変形状態になる場合があること。
(う)壁面座屈モードに近い変形状態になった場合、側壁の座屈変形が容易に生じると、壁面座屈モードとしての良好な3点曲げ特性が得られないだけでなく、側壁が潰れることで圧潰部の部品高さが減少して、長手方向に交差する断面の高さ方向の曲げ剛性が低下するため、その後の変形において局部座屈モードの変形状態になったとしても局部座屈モードとしての良好な3点曲げ特性も得られない場合があること。
(え)従って、長手方向に沿う圧縮応力に対する変形抵抗、高さ方向に沿う圧縮応力に対する変形抵抗、及び、長手方向に沿う引張応力に対する変形抵抗を同時に高めることができる部品形状とすることで、局部座屈モードの変形における、特にストローク初期における耐荷重を向上することができ、優れた衝突安全性能を発揮することが可能となること。
The present inventors have studied component shapes for improving collision safety performance against deformation in the local buckling mode as shown in FIG. 1(a) and have obtained the following findings.
(a) In three-point bending where the crushed part comes into contact with the impactor, a combination of compressive stress along the longitudinal direction occurs on the inside of the bent part, compressive stress along the height direction occurs on the side wall of the part, and tensile stress along the longitudinal direction occurs on the outside of the bent part.
(i) Because compressive stress along the height direction occurs in the side walls, the side walls can easily buckle and deform due to compressive stress along the height direction, particularly when the material plate thickness is thin. Even in parts designed to operate in local buckling mode, the deformation state may approach that of wall buckling mode in the early stages of deformation.
(c) When the deformation state approaches the wall buckling mode, if buckling deformation of the side wall easily occurs, not only will good three-point bending characteristics for the wall buckling mode not be obtained, but the crushed side wall will reduce the height of the crushed part, and the bending rigidity in the height direction of the cross section that intersects the longitudinal direction will decrease. Therefore, even if the deformation state reaches the local buckling mode in the subsequent deformation, good three-point bending characteristics for the local buckling mode may not be obtained.
(e) Therefore, by designing a part shape that can simultaneously increase the deformation resistance to compressive stress along the longitudinal direction, the deformation resistance to compressive stress along the height direction, and the deformation resistance to tensile stress along the longitudinal direction, it is possible to improve the load-bearing capacity in deformation in local buckling mode, especially at the beginning of the stroke, and to demonstrate excellent collision safety performance.

 以下、上記知見に基づき完成された本発明について、実施形態に基づき詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The present invention, which was completed based on the above findings, will be described in detail below with reference to the embodiments. Note that in this specification and drawings, components having substantially the same functional configuration are designated by the same reference numerals, and duplicate explanations will be omitted.

 以下の説明において、構造部材の軸方向、すなわち、軸線が延びる方向を長手方向Zと呼称する。
 また、長手方向Zに垂直な面における、天板部に平行な方向を幅方向Xと呼称し、長手方向Zと幅方向Xに垂直な方向を高さ方向Yと呼称する。
 構造部材の軸線から離れる方向を外方と呼称し、その反対方向を内方と呼称する。
In the following description, the axial direction of a structural member, i.e., the direction in which the axis extends, will be referred to as the longitudinal direction Z.
In addition, in a plane perpendicular to the longitudinal direction Z, a direction parallel to the top plate portion is referred to as a width direction X, and a direction perpendicular to the longitudinal direction Z and the width direction X is referred to as a height direction Y.
The direction away from the axis of the structural member is referred to as outward and the opposite direction is referred to as inward.

 以下、本発明の実施形態に係る自動車車体の構造部材100(以下、構造部材100と呼称する)について説明する。 The following describes a structural member 100 for an automobile body according to an embodiment of the present invention (hereinafter referred to as structural member 100).

 まず、図2A~図4を参照して、構造部材100の概略構成について説明する。
 図2Aは、構造部材100の斜視図であり、図2Bは図2AのA1-A1’断面図である。図3は構造部材100の平面図であり、図4は図3の部分Bの部分拡大図である。
 図2A~図4に示すように、構造部材100は、ハット型部材110により構成される開断面構造の部材である。構造部材100の適用例としては、バンパリーンフォース、ドアインパクトバー等が挙げられる。
First, the schematic configuration of the structural member 100 will be described with reference to FIGS. 2A to 4. FIG.
Fig. 2A is a perspective view of the structural member 100, Fig. 2B is a cross-sectional view taken along the line A1-A1' of Fig. 2A, Fig. 3 is a plan view of the structural member 100, and Fig. 4 is an enlarged partial view of part B of Fig. 3.
2A to 4, the structural member 100 is a member having an open cross-section structure constituted by a hat-shaped member 110. Examples of applications of the structural member 100 include bumper reinforcement bars, door impact bars, and the like.

 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されることを想定した部品である。 The structural member 100 in this embodiment is a part that is intended to be installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle.

 従って、車外側からの衝撃荷重がハット型部材110に入力されて構造部材100に曲げ変形が生じた際には、図5に示すように、
ハット型部材110の天板部111において長手方向Zに沿う圧縮応力(A)と、
ハット型部材110の側壁部115において高さ方向Yに沿う圧縮応力(B)と、
ハット型部材110のフランジ部119において長手方向Zに沿う引張応力(C)と、
が複合的に発生することになる。
 尚、「ハット型部材110の側壁部115において高さ方向Yに沿う圧縮応力(B)」は、「ハット型部材110の側壁部115において長手方向Zに垂直な方向に沿う圧縮応力(B)」と換言することもできる。
Therefore, when an impact load from the outside of the vehicle is input to the hat-shaped member 110 and bending deformation occurs in the structural member 100, as shown in FIG.
A compressive stress (A) along the longitudinal direction Z in the top plate portion 111 of the hat-shaped member 110;
A compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped component 110;
A tensile stress (C) along the longitudinal direction Z in the flange portion 119 of the hat-shaped component 110;
will occur in a complex manner.
Furthermore, the "compressive stress (B) along the height direction Y in the side wall portion 115 of the hat-shaped member 110" can also be rephrased as "compressive stress (B) along a direction perpendicular to the longitudinal direction Z in the side wall portion 115 of the hat-shaped member 110."

 図2A~図4に示すように、ハット型部材110は、長手方向Zに沿って延びる天板部111と、一対の側壁部115,115と、一対のフランジ部119,119とを有する。
 ハット型部材110は、鋼板、アルミ板、アルミ合金板、ステンレス板、チタン板などの金属板、更には、樹脂板、CFRP(Carbon Fiber Reinforced Plastic)板からなる部材であればよい。
As shown in FIGS. 2A to 4, the hat-shaped component 110 has a top plate portion 111 extending along the longitudinal direction Z, a pair of side walls 115, 115, and a pair of flange portions 119, 119.
The hat-shaped member 110 may be a member made of a metal plate such as a steel plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, or a titanium plate, or further, a resin plate or a CFRP (Carbon Fiber Reinforced Plastic) plate.

(天板部)
 天板部111は、図1に示す局部座屈モードの3点曲げ試験における、インパクタが直接接触する部位に相当する。
 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されるため、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、天板部111には長手方向Zに沿う圧縮応力(A)が発生する。
(Top plate)
The top plate portion 111 corresponds to a portion that comes into direct contact with an impactor in the three-point bending test of the local buckling mode shown in FIG.
The structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (A) along the longitudinal direction Z is generated in the top plate portion 111.

 天板部111の幅Wは、例えば40mm以上200mm以下であればよい。天板部111の幅Wは、図2Bに示すように、構造部材100の長手方向Zに垂直な断面における、天板部111とその両端の第一稜線部113,113との境界点の間の、幅方向Xの離間距離である。図2Bに示すように、天板部111は水平となっているが、湾曲していてもよい。 The width W of the top plate portion 111 may be, for example, 40 mm or more and 200 mm or less. As shown in FIG. 2B, the width W of the top plate portion 111 is the distance in the width direction X between the boundary points of the top plate portion 111 and the first ridge portions 113, 113 at both ends of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. As shown in FIG. 2B, the top plate portion 111 is horizontal, but it may be curved.

(側壁部)
 一対の側壁部115,115は、天板部111の幅方向Xの両端部に形成された第一稜線部113,113を介して延在する。尚、第一稜線部113,113は、構造部材100の長手方向Zに垂直な断面において、例えば1mm~10mmの曲率半径のR部を有する。
 なお、「Aを介して」とは、「A以外の他の部材を介さずに」という意味である。例えば、上記の例では、一対の側壁部115、115と天板部111との間には第一稜線部113、113のみが存在する。
 本実施形態に係る構造部材100は、ハット型部材110の天板部111が車外側に対向する姿勢で自動車に設置されるため、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じると、一対の側壁部115,115には、高さ方向Yに沿う圧縮応力(B)が発生する。
(Side wall portion)
The pair of side walls 115, 115 extend via first ridges 113, 113 formed at both ends in the width direction X of the top plate 111. The first ridges 113, 113 have an R portion with a curvature radius of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.
In addition, "through A" means "without through any member other than A." For example, in the above example, only the first ridge portions 113, 113 exist between the pair of side wall portions 115, 115 and the top plate portion 111.
The structural member 100 in this embodiment is installed in an automobile with the top plate portion 111 of the hat-shaped member 110 facing the outside of the vehicle, so that when an impact load from the outside of the vehicle is input to the top plate portion 111, causing bending deformation in the structural member 100, a compressive stress (B) along the height direction Y is generated in the pair of side wall portions 115, 115.

 側壁部115の高さHは、例えば20mm以上150mm以下であればよい。側壁部115の高さHは、図2Bに示すように、構造部材100の長手方向Zに垂直な断面における、側壁部115と第一稜線部113との境界点と、側壁部115と第二稜線部117との境界点との間の、高さ方向Yの離間距離である。尚、第二稜線部117,117は、構造部材100の長手方向Zに垂直な断面において、例えば1mm~10mmの曲率半径のR部を有する。 The height H of the side wall 115 may be, for example, 20 mm or more and 150 mm or less. As shown in FIG. 2B, the height H of the side wall 115 is the distance in the height direction Y between the boundary point between the side wall 115 and the first ridge 113 and the boundary point between the side wall 115 and the second ridge 117 in a cross section perpendicular to the longitudinal direction Z of the structural member 100. The second ridges 117, 117 have an R portion with a radius of curvature of, for example, 1 mm to 10 mm in a cross section perpendicular to the longitudinal direction Z of the structural member 100.

(フランジ部)
 図2Aに示すように、一対の側壁部115,115における、第一稜線部113,113とは反対側の端部には、第二稜線部117,117が形成される。一対のフランジ部119,119は、第二稜線部117,117を介して外方に向けて延在する。
(Flange part)
2A , second ridge portions 117, 117 are formed at ends of the pair of side wall portions 115, 115 opposite the first ridge portions 113, 113. The pair of flange portions 119, 119 extend outward via the second ridge portions 117, 117.

(長手方向ビード)
 天板部111には長手方向Zに沿って延在する二本の長手方向ビード150,150が幅方向Xに並列して形成される。なお、長手方向ビード150は三本以上並列して形成されていてもよい。
 図2Bに示すように、天板部111と第一稜線部113との境界点から、幅方向Xに天板部111の幅Wの1/4の離間距離となる点までの領域に、長手方向ビード150の幅方向Xの中心が位置するように長手方向ビード150が形成されることが好ましい。さらに好ましくは、長手方向に垂直な断面において、天板部111と第一稜線部113との境界点から、20mmの離間距離となる点までの領域に、長手方向ビード150と天板部111との境界点が位置するように長手方向ビード150が形成される。
 長手方向ビード150は、天板部111側の端部に所定の曲率半径のR部を有する場合がある。その場合、長手方向ビード150は、長手方向ビード150のR部を介して天板部111に繋がる。
(Longitudinal bead)
Two longitudinal beads 150, 150 extending along the longitudinal direction Z are formed in parallel in the width direction X on the top plate portion 111. It should be noted that three or more longitudinal beads 150 may be formed in parallel.
2B, the longitudinal bead 150 is preferably formed so that the center of the longitudinal bead 150 in the width direction X is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 1/4 of the width W of the top plate portion 111 in the width direction X. More preferably, the longitudinal bead 150 is formed so that the boundary point between the longitudinal bead 150 and the top plate portion 111 is located in the region from the boundary point between the top plate portion 111 and the first ridge line portion 113 to a point that is a distance of 20 mm in a cross section perpendicular to the longitudinal direction.
The longitudinal bead 150 may have an R portion with a predetermined radius of curvature at the end on the top plate portion 111 side. In this case, the longitudinal bead 150 is connected to the top plate portion 111 via the R portion of the longitudinal bead 150.

 このような長手方向ビード150が設けられることにより、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができる。これにより、構造部材100に曲げ変形が付与された際に、天板部111での早期の座屈変形の発生が抑制されて最大荷重が増加する。 By providing such a longitudinal bead 150, it is possible to increase the deformation resistance against the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. As a result, when bending deformation is applied to the structural member 100, the occurrence of early buckling deformation in the top plate portion 111 is suppressed, and the maximum load is increased.

 長手方向ビード150は、天板部111、側壁部115、及びフランジ部119をプレス成形する際に同一金型で同時成形してもよく、天板部111、側壁部115、及びフランジ部119をプレス成形する前に別の金型や工具で成形してもよい。 The longitudinal bead 150 may be formed simultaneously using the same mold when the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded, or may be formed using a separate mold or tool before the top plate portion 111, the side wall portion 115, and the flange portion 119 are press-molded.

 図2Bに示すように、長手方向ビード150は、一対のビード側壁151,151と、ビード底壁152により形成されている。
 一対のビード側壁151,151は、天板部111から屈曲して内方に向かって延在する。本実施例に係る構造部材100においては、ビード側壁151と天板部111との内方側の角度(ビード側壁151の傾斜角)θが略90度であるが、角度θは90度以上であってもよい。
 ビード底壁152は、一対のビード側壁151,151における天板部111とは反対側の端部間を繋ぐように延在する。
As shown in FIG. 2B , the longitudinal bead 150 is formed by a pair of bead side walls 151 , 151 and a bead bottom wall 152 .
The pair of bead side walls 151, 151 bend and extend inward from the top plate portion 111. In the structural member 100 according to this embodiment, the inward angle θ between the bead side wall 151 and the top plate portion 111 (the inclination angle of the bead side wall 151) is approximately 90 degrees, but the angle θ may be greater than or equal to 90 degrees.
The bead bottom wall 152 extends to connect the ends of the pair of bead side walls 151 , 151 on the opposite side from the top plate portion 111 .

 図2Bに示すように、長手方向ビード150は、所定の深さd1と所定の幅w1を有する。 As shown in FIG. 2B, the longitudinal bead 150 has a predetermined depth d1 and a predetermined width w1.

 長手方向ビード150の深さd1は、長手方向ビード150における、天板部111の外方の表面からビード底壁152の外方の表面までの高さ方向Yの離間距離である。長手方向ビード150が長手方向Zに沿って深さが変化する形状である場合、天板部111からビード底壁152までの高さ方向Yの離間距離の最大値を深さd1とする。 The depth d1 of the longitudinal bead 150 is the distance in the height direction Y from the outer surface of the top plate portion 111 to the outer surface of the bead bottom wall 152 in the longitudinal bead 150. If the longitudinal bead 150 has a shape whose depth changes along the longitudinal direction Z, the maximum value of the distance in the height direction Y from the top plate portion 111 to the bead bottom wall 152 is defined as the depth d1.

 長手方向ビード150の深さd1が大きいほど、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができ、天板部111での早期の座屈変形が抑制されて最大荷重が増加する。従って、長手方向ビード150の深さd1は5mm以上であることが好ましく、8mm以上であることが更に好ましい。 The greater the depth d1 of the longitudinal bead 150, the greater the deformation resistance to compressive stress along the longitudinal direction Z that occurs in the top plate portion 111, suppressing early buckling deformation in the top plate portion 111 and increasing the maximum load. Therefore, the depth d1 of the longitudinal bead 150 is preferably 5 mm or more, and more preferably 8 mm or more.

 一方、長手方向ビード150の深さd1が大き過ぎると、車外側からの衝撃荷重が天板部111に入力された直後に一対のビード側壁151,151同士が互いに接近する方向に倒れやすくなる場合がある。一対のビード側壁151,151が互いに接近する方向に倒れやすくなると、それに伴い一対の側壁部115,115も互いに接近する方向に倒れやすくなる。この場合、一対のビード側壁151,151が互いに接近する方向に倒れている最中は、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗が高まる時期が遅くなる場合がある。更に、長手方向ビード150の深さd1が大き過ぎると、長手方向ビード150の幅w1が相対的に小さい場合、長手方向ビード150の成形加工が困難になる場合もある。従って、長手方向ビード150の深さd1は20mm以下であることが好ましく、16mm以下であることが更に好ましい。 On the other hand, if the depth d1 of the longitudinal bead 150 is too large, the pair of bead side walls 151, 151 may easily collapse in a direction approaching each other immediately after an impact load from the outside of the vehicle is input to the top plate portion 111. If the pair of bead side walls 151, 151 easily collapse in a direction approaching each other, the pair of side wall portions 115, 115 may also easily collapse in a direction approaching each other. In this case, while the pair of bead side walls 151, 151 are collapsing in a direction approaching each other, the time when the deformation resistance against the compressive stress along the longitudinal direction Z generated in the top plate portion 111 increases may be delayed. Furthermore, if the depth d1 of the longitudinal bead 150 is too large, it may be difficult to mold the longitudinal bead 150 if the width w1 of the longitudinal bead 150 is relatively small. Therefore, the depth d1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 16 mm or less.

 長手方向ビード150の幅w1は、長手方向Zに垂直な断面における、長手方向ビード150の一方のビード側壁151を延長した仮想直線と、天板部111を延長した仮想直線との交点と、長手方向ビード150の他方のビード側壁151を延長した仮想直線と、天板部111を延長した仮想直線との交点との間の離間距離である。
 長手方向ビード150が長手方向Zに沿って幅が変化する形状である場合、上記離間距離が最大となる断面における離間距離を幅w1とする。
The width w1 of the longitudinal bead 150 is the distance between the intersection of a virtual line extending one bead side wall 151 of the longitudinal bead 150 and a virtual line extending the top plate portion 111, and the intersection of a virtual line extending the other bead side wall 151 of the longitudinal bead 150 and a virtual line extending the top plate portion 111, in a cross section perpendicular to the longitudinal direction Z.
When the longitudinal bead 150 has a shape whose width changes along the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w1.

 長手方向ビード150の幅w1が小さいほど、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高めることができ、天板部111での早期の座屈変形が抑制されて最大荷重が増加する。従って、長手方向ビード150の幅w1は20mm以下であることが好ましく、15mm以下であることが更に好ましい。 The smaller the width w1 of the longitudinal bead 150, the higher the deformation resistance against the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111, suppressing early buckling deformation in the top plate portion 111 and increasing the maximum load. Therefore, the width w1 of the longitudinal bead 150 is preferably 20 mm or less, and more preferably 15 mm or less.

 一方、長手方向ビード150の幅w1が小さ過ぎると、長手方向ビード150の深さd1が相対的に大きい場合、長手方向ビード150の成形加工が困難になる場合がある。このため、長手方向ビード150の幅w1は5mm以上であることが好ましく、8mm以上であることが更に好ましい。 On the other hand, if the width w1 of the longitudinal bead 150 is too small, and the depth d1 of the longitudinal bead 150 is relatively large, it may be difficult to mold the longitudinal bead 150. For this reason, it is preferable that the width w1 of the longitudinal bead 150 is 5 mm or more, and more preferably 8 mm or more.

 尚、長手方向ビード150は、必ずしも天板部111の長手方向Zの全長に形成される必要はなく、天板部111の全長の一部において形成されていてもよい。長手方向ビード150が形成される位置としては、構造部材100の曲げ圧潰特性として最も強化すべき位置、例えば、インパクタが接触する位置及びその近傍が選択されてもよい。また、長手方向ビード150は、長手方向Zの複数個所に形成されていてもよい。 The longitudinal bead 150 does not necessarily have to be formed over the entire length of the top plate portion 111 in the longitudinal direction Z, but may be formed over a portion of the entire length of the top plate portion 111. The position at which the longitudinal bead 150 is formed may be selected to be the position where the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity. The longitudinal bead 150 may also be formed at multiple locations in the longitudinal direction Z.

 上述のように、長手方向ビード150の深さd1と幅w1は、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗に影響する。長手方向ビード150の幅w1に対する深さd1(深さd1/幅w1)で求められるアスペクト比A1が0.25以上4.0以下である場合、天板部111に発生する長手方向Zに沿う圧縮応力に対する変形抵抗を高める効果をより確実に発揮できるため好ましい。アスペクト比A1は0.5以上2.0以下であることが更に好ましい。 As described above, the depth d1 and width w1 of the longitudinal bead 150 affect the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is preferable that the aspect ratio A1 calculated by the depth d1 relative to the width w1 of the longitudinal bead 150 (depth d1/width w1) is 0.25 or more and 4.0 or less, since this can more reliably achieve the effect of increasing the deformation resistance to the compressive stress along the longitudinal direction Z that occurs in the top plate portion 111. It is even more preferable that the aspect ratio A1 is 0.5 or more and 2.0 or less.

(高さ方向ビード)
 側壁部115には、高さ方向Yに沿って延在する高さ方向ビード160が複数本、長手方向Zに並列して形成されている。
 図3及び図4に示す例では、側壁部115の高さ方向Yの全高に亘り高さ方向ビード160が形成されているが、高さ方向の全長の一部のみに高さ方向ビード160が形成されていてもよい。
 高さ方向ビード160は、側壁部115から内方に向けて突出するように形成されている。
 高さ方向ビード160は、側壁部115側の端部に所定の曲率半径のR部を有する場合がある。その場合、高さ方向ビード160は、高さ方向ビード160のR部を介して側壁部115に繋がる。
 このような高さ方向ビード160が設けられることにより、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高めることができる。これにより、側壁部115での早期の座屈変形が抑制されて最大荷重が増加する。
(Height bead)
A plurality of height direction beads 160 extending along the height direction Y are formed in parallel in the longitudinal direction Z on the side wall portion 115 .
In the example shown in Figures 3 and 4, the height direction bead 160 is formed over the entire height of the side wall portion 115 in the height direction Y, but the height direction bead 160 may be formed over only a portion of the entire height direction.
The height direction bead 160 is formed so as to protrude inward from the side wall portion 115 .
The height direction bead 160 may have an R portion with a predetermined radius of curvature at the end portion on the side wall portion 115 side. In this case, the height direction bead 160 is connected to the side wall portion 115 via the R portion of the height direction bead 160.
The provision of such height direction beads 160 can increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, early buckling deformation in the side wall portion 115 is suppressed, and the maximum load is increased.

 本実施形態に係る構造部材100では、高さ方向ビード160は、第一稜線部113から第二稜線部117まで延在するように形成されている。
 高さ方向ビード160が、第一稜線部113から延在するように形成されていることにより、高さ方向ビード160が第一稜線部113の高さ方向Yに沿う圧縮応力(B)に対する変形抵抗にも寄与し、第一稜線部113が潰れにくくなる。第一稜線部113が潰れにくくなることで、第一稜線部113と繋がる側壁部115の上部も更に潰れにくくなる。第一稜線部113及び側壁部115が潰れにくくなることで、構造部材100の高さ減少に伴う、長手方向Zに交差する断面の高さ方向Yの曲げ剛性の低下を抑制し、局部座屈モードの3点曲げ特性の低下を防ぐことができるため、好ましい。尚、このように、高さ方向ビード160が、第一稜線部113から延在するように形成されている場合には、第一稜線部113は、長手方向Zに沿って、高さ方向ビード160のビード底壁162の部位と、高さ方向ビードが形成されていない側壁部115の部位とによる段差が形成されることになる。
In the structural member 100 according to this embodiment, the height direction bead 160 is formed so as to extend from the first ridge portion 113 to the second ridge portion 117 .
Since the height direction bead 160 is formed to extend from the first ridge line portion 113, the height direction bead 160 also contributes to the deformation resistance of the first ridge line portion 113 against the compressive stress (B) along the height direction Y, making the first ridge line portion 113 less likely to be crushed. Since the first ridge line portion 113 is less likely to be crushed, the upper part of the side wall portion 115 connected to the first ridge line portion 113 is also less likely to be crushed. Since the first ridge line portion 113 and the side wall portion 115 are less likely to be crushed, a decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to a decrease in the height of the structural member 100 is suppressed, and a decrease in the three-point bending characteristics in the local buckling mode can be prevented, which is preferable. Furthermore, in this manner, when the height-direction bead 160 is formed to extend from the first ridge portion 113, a step is formed along the longitudinal direction Z of the first ridge portion 113 between a portion of the bead bottom wall 162 of the height-direction bead 160 and a portion of the side wall portion 115 where the height-direction bead is not formed.

 更に、高さ方向ビード160が、第一稜線部113から第二稜線部117まで延在するように形成されていることにより、高さ方向ビード160は第二稜線部117の高さ方向Yに沿う圧縮応力(B)に対する変形抵抗にも寄与し、第二稜線部117も潰れにくくなる。よって、第一稜線部113、側壁部115、及び第二稜線部117が潰れにくくなるため、構造部材100の高さ減少に伴う、長手方向Zに交差する断面の高さ方向Yの曲げ剛性の低下を更に抑制し、局部座屈モードの3点曲げ特性の低下を更に防ぐことができるため、好ましい。 Furthermore, by forming the height direction bead 160 so as to extend from the first ridge portion 113 to the second ridge portion 117, the height direction bead 160 also contributes to the deformation resistance of the second ridge portion 117 against the compressive stress (B) along the height direction Y, making the second ridge portion 117 less likely to be crushed. Therefore, since the first ridge portion 113, the side wall portion 115, and the second ridge portion 117 are less likely to be crushed, the decrease in bending rigidity in the height direction Y of the cross section intersecting the longitudinal direction Z due to the reduction in the height of the structural member 100 is further suppressed, and the decrease in the three-point bending characteristics in the local buckling mode can be further prevented, which is preferable.

 高さ方向ビード160は、一対のビード側壁161,161と、ビード底壁162により形成されている。
 一対のビード側壁161,161は、側壁部115から内方に向けて屈曲して延在する。
 ビード底壁162は、一対のビード側壁161,161の内方側の端部同士を連結する。
The height direction bead 160 is formed by a pair of bead side walls 161 , 161 and a bead bottom wall 162 .
The pair of bead side walls 161 , 161 extend inwardly from the side wall portion 115 while bending.
The bead bottom wall 162 connects the inner ends of the pair of bead side walls 161, 161 to each other.

 図4に示すように、高さ方向ビード160は所定の深さd2と所定の幅w2を有する。 As shown in FIG. 4, the vertical bead 160 has a predetermined depth d2 and a predetermined width w2.

 高さ方向ビード160の深さd2は、高さ方向ビード160における、側壁部115の外方の表面からビード底壁162の外方の表面までの幅方向Xの離間距離である。高さ方向ビード160が高さ方向Yに沿って深さが変化する形状である場合、側壁部115からビード底壁162までの幅方向Xの離間距離の最大値を深さd2とする。 The depth d2 of the height direction bead 160 is the distance in the width direction X from the outer surface of the side wall portion 115 to the outer surface of the bead bottom wall 162 in the height direction bead 160. If the height direction bead 160 has a shape whose depth changes along the height direction Y, the maximum value of the distance in the width direction X from the side wall portion 115 to the bead bottom wall 162 is defined as the depth d2.

 高さ方向ビード160の深さd2が大きいほど、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。従って、高さ方向ビード160の深さd2は2mm以上であることが好ましく、4mm以上であることが更に好ましい。 The greater the depth d2 of the height direction bead 160, the greater the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. Therefore, the depth d2 of the height direction bead 160 is preferably 2 mm or more, and more preferably 4 mm or more.

 一方、高さ方向ビード160の深さd2が大き過ぎると、構造部材100の幅方向Xの寸法が局所的に小さい値になり、長手方向Zに交差する断面における曲げ剛性が小さくなり過ぎて、所望の3点曲げ特性が得られなくなることがある。また、長手方向ビード150を天板部111の幅方向Xの端部近傍部分に形成する構成では、高さ方向ビード160の深さd2が大き過ぎると、所望の位置に長手方向ビード150を形成できなくなる場合がある。更に、高さ方向ビード160の深さd2が大き過ぎると、高さ方向ビード160の幅w2が相対的に小さい場合、高さ方向ビード160の成形加工が困難になることもある。従って、高さ方向ビード160の深さd2は10mm以下であることが好ましく、8mm以下であることが更に好ましい。 On the other hand, if the depth d2 of the height direction bead 160 is too large, the dimension in the width direction X of the structural member 100 becomes locally small, and the bending rigidity in the cross section intersecting the longitudinal direction Z becomes too small, so that the desired three-point bending characteristics may not be obtained. In addition, in a configuration in which the longitudinal bead 150 is formed in the portion near the end of the width direction X of the top plate portion 111, if the depth d2 of the height direction bead 160 is too large, the longitudinal bead 150 may not be formed at the desired position. Furthermore, if the depth d2 of the height direction bead 160 is too large, it may be difficult to mold the height direction bead 160 if the width w2 of the height direction bead 160 is relatively small. Therefore, the depth d2 of the height direction bead 160 is preferably 10 mm or less, and more preferably 8 mm or less.

 複数の高さ方向ビード160は、側壁部115の長手方向Zに50mm以下のビード間距離で形成されていることが好ましく、30mm以下のビード間距離で形成されていることが更に好ましい。この場合、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。尚、ビード間距離とは、図4に示すように、高さ方向ビード160の一方の端部(長手方向Zの一方の方向にある端部)と、隣接する高さ方向ビード160の他方の端部(長手方向Zの他方の方向にある端部)との間の離間距離を意味する。 The multiple height-direction beads 160 are preferably formed with an inter-bead distance of 50 mm or less in the longitudinal direction Z of the side wall portion 115, and more preferably with an inter-bead distance of 30 mm or less. In this case, it is possible to further increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. Note that the inter-bead distance means the distance between one end of the height-direction bead 160 (end in one direction of the longitudinal direction Z) and the other end of the adjacent height-direction bead 160 (end in the other direction of the longitudinal direction Z), as shown in FIG. 4.

 尚、複数の高さ方向ビード160は、側壁部115の長手方向Zの全長に亘り形成される必要はなく、側壁部115の長手方向Zの全長の一部において形成されていればよい。複数の高さ方向ビード160が形成される位置としては、構造部材100の曲げ圧潰特性として最も強化すべき位置、例えば、インパクタが接触する位置及びその近傍が選択されてもよい。
 また、複数の高さ方向ビード160は、側壁部115に均等のビード間距離で並んで形成される必要はなく、例えば、三本の高さ方向ビード160が形成される場合、二つのビード間距離は異なる値であってよい。
 更に、複数の高さ方向ビード160は、一対の側壁部115,115において、必ずしも長手方向Zの同じ位置に形成される必要はない。例えば一方の側壁部115に形成された高さ方向ビード160と同じ長手方向Zの位置において、他方の側壁部115には高さ方向ビード160が形成されていなくてもよい。
 また、長手方向ビード150と高さ方向ビード160が、長手方向Zの同じ位置にあることが好ましい。この場合、ストローク初期における耐荷重と、好ましくは衝撃吸収エネルギとをより確実に向上させることができる。
The plurality of height-direction beads 160 do not need to be formed over the entire length of the side wall portion 115 in the longitudinal direction Z, but may be formed over a portion of the entire length of the side wall portion 115 in the longitudinal direction Z. The positions at which the plurality of height-direction beads 160 are formed may be selected as positions at which the bending crushing characteristics of the structural member 100 should be most strengthened, for example, the position where the impactor comes into contact and its vicinity.
Furthermore, the multiple height-direction beads 160 do not need to be formed side by side on the side wall portion 115 with equal bead-to-bead distances; for example, when three height-direction beads 160 are formed, the two bead-to-bead distances may be different values.
Furthermore, the plurality of height direction beads 160 do not necessarily have to be formed at the same position in the longitudinal direction Z on the pair of side wall portions 115, 115. For example, at the same position in the longitudinal direction Z as the height direction bead 160 formed on one side wall portion 115, the height direction bead 160 does not have to be formed on the other side wall portion 115.
It is also preferable that the longitudinal bead 150 and the height bead 160 are located at the same position in the longitudinal direction Z. In this case, the load resistance and preferably the impact absorption energy at the beginning of the stroke can be improved more reliably.

 高さ方向ビード160の幅w2は、高さ方向Yに垂直な断面における、高さ方向ビード160の一方のビード側壁161の外方の表面を延長した仮想直線と、側壁部115の外方の表面を延長した仮想直線との交点と、高さ方向ビード160の他方のビード側壁161の外方の表面を延長した仮想直線と、側壁部115の外方の表面を延長した仮想直線との交点との間の離間距離である。
 高さ方向ビード160が長手方向Zに交差する方向に沿って幅が変化する形状である場合、上記離間距離が最大となる断面における離間距離を幅w2とする。
The width w2 of the height-wise bead 160 is the distance between the intersection of a virtual line extending the outer surface of one bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, and the intersection of a virtual line extending the outer surface of the other bead side wall 161 of the height-wise bead 160 with a virtual line extending the outer surface of the side wall portion 115, in a cross section perpendicular to the height direction Y.
When the height direction bead 160 has a shape whose width changes along a direction intersecting the longitudinal direction Z, the separation distance in the cross section where the separation distance is maximum is defined as width w2.

 高さ方向ビード160の幅w2が小さいほど、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗をより高めることができる。従って、高さ方向ビード160の幅w2は60mm以下であることが好ましく、40mm以下であることが更に好ましい。 The smaller the width w2 of the height direction bead 160, the higher the deformation resistance against the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. Therefore, the width w2 of the height direction bead 160 is preferably 60 mm or less, and more preferably 40 mm or less.

 一方、高さ方向ビード160の幅w2が小さ過ぎると、高さ方向ビード160の深さd2が相対的に大きい場合、高さ方向ビード160の成形加工が困難になる場合がある。従って、高さ方向ビード160の幅w2は10mm以上であることが好ましく、15mm以上であることが更に好ましい。 On the other hand, if the width w2 of the height direction bead 160 is too small, and the depth d2 of the height direction bead 160 is relatively large, it may be difficult to mold the height direction bead 160. Therefore, it is preferable that the width w2 of the height direction bead 160 is 10 mm or more, and it is even more preferable that it is 15 mm or more.

 上述のように、高さ方向ビード160の深さd2と幅w2は、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗に影響する。高さ方向ビード160の幅w2に対する深さd2(深さd2/幅w2)で算出されるアスペクト比A2が0.05以上1.0以下である場合、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高める効果をより確実に発揮できるため好ましい。アスペクト比A2は0.1以上0.5以下であることが更に好ましい。 As described above, the depth d2 and width w2 of the height direction bead 160 affect the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. When the aspect ratio A2 calculated by the depth d2 relative to the width w2 of the height direction bead 160 (depth d2/width w2) is 0.05 or more and 1.0 or less, this is preferable because it can more reliably exert the effect of increasing the deformation resistance to the compressive stress (B) along the height direction Y that occurs in the side wall portion 115. It is even more preferable that the aspect ratio A2 is 0.1 or more and 0.5 or less.

 (高さ方向ビードの角度)
 次に、図2Bに基づいて、高さ方向ビード160の角度について説明する。図2Bに示すように、長手方向Zに垂直な断面において、高さ方向ビード160のビード底壁162と、天板部111との角度a1が90度以上95度以下である。ここで、角度a1は、より詳細には、天板部111の外方の表面を延長した仮想直線とビード底壁162の外方の表面を延長した仮想直線とがなす内方側の角度である。図2Bの例では角度a1が90度となっている。後述する実施例で示される通り、角度a1を90度以上95度以下に設定することで、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高めることができる。この結果、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。
 角度a1は、ビード底壁162の高さ方向Yの位置に関わらず一定であってもよいし、ビード底壁162の高さ方向Yの位置に応じて変動させてもよい。角度a1が変動する例については後述する。
(Height bead angle)
Next, the angle of the height direction bead 160 will be described based on FIG. 2B. As shown in FIG. 2B, in a cross section perpendicular to the longitudinal direction Z, the angle a1 between the bead bottom wall 162 of the height direction bead 160 and the top plate portion 111 is 90 degrees or more and 95 degrees or less. Here, the angle a1 is, more specifically, an inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the bead bottom wall 162. In the example of FIG. 2B, the angle a1 is 90 degrees. As shown in the examples described later, by setting the angle a1 to 90 degrees or more and 95 degrees or less, it is possible to increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, it is possible to improve the load capacity and the impact absorption energy at the beginning of the stroke of the deformation in the local buckling mode.
The angle a1 may be constant regardless of the position in the height direction Y of the bead bottom wall 162, or may be varied depending on the position in the height direction Y of the bead bottom wall 162. An example in which the angle a1 varies will be described later.

 長手方向Zに垂直な断面において、高さ方向ビード160に長手方向Zに隣接する側壁部115と天板部111との角度a2は、角度a1に等しくなっている。ここで、角度a2は、より詳細には、天板部111の外方の表面を延長した仮想直線と、側壁部115の外方の表面を延長した仮想直線とがなす内方側の角度である。角度a2は、側壁部115の高さ方向Yの位置に関わらず一定であってもよいし、側壁部115の高さ方向Yの位置に応じて変動させてもよい。角度a2が変動する例については後述する。 In a cross section perpendicular to the longitudinal direction Z, the angle a2 between the side wall portion 115 adjacent to the height bead 160 in the longitudinal direction Z and the top plate portion 111 is equal to the angle a1. More specifically, the angle a2 is the inner angle between an imaginary line extending the outer surface of the top plate portion 111 and an imaginary line extending the outer surface of the side wall portion 115. The angle a2 may be constant regardless of the position of the side wall portion 115 in the height direction Y, or may vary depending on the position of the side wall portion 115 in the height direction Y. An example of the variation of the angle a2 will be described later.

 ハット型部材110は、軽量化の観点から、板厚1.2mm以下の鋼板により形成されていることが好ましく、板厚1.0mm以下の鋼板により形成されていることがより好ましい。
 ハット型部材110の板厚の下限は特に限定されるものではなく、0.3mm以上であればよい。
 更に、衝突安全性能の観点からは、ハット型部材110は、引張強さが980MPa以上の鋼板により形成されていることが好ましく、引張強さが1470MPa以上の鋼板で形成されていることがより好ましい。
From the viewpoint of reducing weight, the hat-shaped component 110 is preferably formed from a steel plate having a thickness of 1.2 mm or less, and more preferably from a steel plate having a thickness of 1.0 mm or less.
The lower limit of the thickness of the hat-shaped component 110 is not particularly limited, and may be 0.3 mm or more.
Furthermore, from the viewpoint of collision safety performance, the hat-shaped member 110 is preferably formed from a steel plate having a tensile strength of 980 MPa or more, and more preferably from a steel plate having a tensile strength of 1470 MPa or more.

 ハット型部材110は、例えば、板材に冷間プレス加工又は温間プレス加工を施すことにより成形され得る。
 また、ハット型部材110は、鋼板をオーステナイト域の高温まで加熱した後に金型でプレス成形を実施すると同時に、その金型内において金型への抜熱または金型内での水冷等の方法によって焼入れ処理を実施するホットスタンプ加工により成形されてもよい。従って、ハット型部材110は、焼き入れ部材であってもよい。
The hat-shaped member 110 can be formed, for example, by subjecting a plate material to cold pressing or warm pressing.
The hat-shaped member 110 may also be formed by hot stamping, in which a steel plate is heated to a high temperature in the austenite region, and then press-formed in a die, and simultaneously quenched in the die by a method such as heat extraction into the die or water cooling in the die. Thus, the hat-shaped member 110 may be a quenched member.

 本実施形態に係る構造部材100によれば、車外側からの衝撃荷重が天板部111に入力されて構造部材100に曲げ変形が生じた際に、長手方向Zに沿う圧縮応力(A)に対する変形抵抗と、高さ方向Yに沿う圧縮応力(B)に対する変形抵抗と、長手方向Zに沿う引張応力(C)に対する変形抵抗と、を複合的に発揮することができる。
 特に、角度a1が90度以上95度以下とされているので、側壁部115に発生する高さ方向Yに沿う圧縮応力(B)に対する変形抵抗を高めることができる。この結果、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。
According to the structural member 100 of this embodiment, when an impact load from outside the vehicle is input to the top plate portion 111 and bending deformation occurs in the structural member 100, it is possible to exert a combination of deformation resistance to compressive stress (A) along the longitudinal direction Z, deformation resistance to compressive stress (B) along the height direction Y, and deformation resistance to tensile stress (C) along the longitudinal direction Z.
In particular, since the angle a1 is set to be equal to or greater than 90 degrees and equal to or less than 95 degrees, it is possible to increase the deformation resistance against the compressive stress (B) along the height direction Y generated in the side wall portion 115. As a result, it is possible to improve the load resistance and the shock absorption energy in the initial stage of the stroke in the local buckling mode of deformation.

 尚、変形抵抗は板材が薄いほど低くなるため、従来は、薄肉化による変形抵抗の減少が、薄肉高強度の材料利用による軽量化の障壁の一つになっていた。即ち、例えば天板部111において長手方向Zに沿う圧縮応力(A)に対する変形抵抗を高強度化や部品形状の工夫等により高めたとしても、薄肉化により側壁部115が撓み変形等で容易に座屈変形してしまうと、構造部材100は良好な3点曲げ特性を発揮できない。また、逆に側壁部115の長手方向Zに交差する方向における圧縮応力(B)に対する変形抵抗を高強度化や部品形状の工夫等により高めたとしても、薄肉化により天板部111が撓み変形等で容易に座屈変形してしまうと、構造部材は良好な3点曲げ特性を発揮できない。
 本実施形態に係る構造部材100によれば、上記のように、それぞれの部位における変形抵抗を複合的に発揮することができるため、薄肉高強度の材料を利用しても優れた衝突安全性能を発揮することが可能となる。
Since the thinner the plate material, the lower the deformation resistance, the conventional method has been one of the barriers to weight reduction by using thin, high-strength materials. That is, even if the deformation resistance of the top plate 111 against the compressive stress (A) along the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member 100 cannot exhibit good three-point bending characteristics if the side wall 115 is easily buckled due to bending deformation or the like due to the thinning. Conversely, even if the deformation resistance of the side wall 115 against the compressive stress (B) in the direction intersecting the longitudinal direction Z is increased by increasing the strength or designing the part shape, the structural member cannot exhibit good three-point bending characteristics if the top plate 111 is easily buckled due to bending deformation or the like due to the thinning.
As described above, the structural member 100 of this embodiment can exert a composite deformation resistance at each portion, making it possible to exert excellent collision safety performance even when using a thin-walled, high-strength material.

 (第一変形例)
 つぎに、図6に基づいて、構造部材100の第一変形例(構造部材100A)について説明する。図6は構造部材100Aの長手方向Zに垂直な断面図である。この構造部材100Aでは、角度a2が角度a1よりも大きくなっている。さらに、高さ方向ビード160の深さd2の最大値d2maxに対する、第一稜線部113での高さ方向ビード160の深さd21の比d21/d2maxが0.5以下となっている。なお、d21が2mm以下であってもよい。d21の下限値は特に制限されず、0mmでもよい。したがって、第一変形例では、高さ方向ビード160の深さd2が徐変(高さ方向(より詳細には天板側からフランジ側に向かう方向)に徐々に増加)している。第一変形例によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。この効果をより安定して得るためには、角度a2は角度a1よりも2°以上大きいことが好ましく、また角度a2は100°以下であることが好ましい。すなわち、角度a1と角度a2はa1+2°≦a2≦100°を満たすことが好ましい。
(First Modification)
Next, a first modified example of the structural member 100 (structural member 100A) will be described based on FIG. 6. FIG. 6 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100A. In this structural member 100A, the angle a2 is larger than the angle a1. Furthermore, the ratio d21/d2 max of the depth d21 of the height direction bead 160 at the first ridge line portion 113 to the maximum value d2 max of the depth d2 of the height direction bead 160 is 0.5 or less. Note that d21 may be 2 mm or less. The lower limit of d21 is not particularly limited and may be 0 mm. Therefore, in the first modified example, the depth d2 of the height direction bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)). According to the first modified example, the load capacity and impact absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved. In order to obtain this effect more stably, it is preferable that angle a2 is larger than angle a1 by 2° or more, and angle a2 is preferably equal to or smaller than 100°. In other words, it is preferable that angle a1 and angle a2 satisfy a1+2°≦a2≦100°.

 (第二変形例)
 つぎに、図7に基づいて、構造部材100の第二変形例(構造部材100B)について説明する。図7は構造部材100Bの長手方向Zに垂直な断面図である。この構造部材100Bでは、ビード底壁162が高さ方向Yの途中で屈曲する屈曲点b1を有する。ビード底壁162は、屈曲点b1よりも天板部111に近い部位である天板部近位側ビード底壁162aと、天板部近位側ビード底壁162aと反対側の天板部遠位側ビード底壁162bとに区分される。そして、天板部近位側ビード底壁162aと天板部111との角度a11が90度以上95度以下となる。ここで、角度a11は、より詳細には、天板部111の外方の表面を延長した仮想直線と、天板部近位側ビード底壁162a外方の表面を延長した仮想直線とがなす内方側の角度である。天板部遠位側ビード底壁162bと天板部111との角度a12は角度a11よりも大きくなる。ここで、角度a12は、より詳細には、天板部111の外方の表面を延長した仮想直線と、天板部遠位側ビード底壁162b外方の表面を延長した仮想直線とがなす内方側の角度である。なお、図7では、角度a12は、屈曲点b1を通り天板部111に平行な二点鎖線(天板部111の外方の表面を延長した仮想直線に対応)と、天板部遠位側ビード底壁162b外方の表面を延長した仮想直線とがなす角度として描かれている。角度a2は角度a12と等しくなるが、両者は異なっていてもよい。さらに、高さ方向ビード160の深さd2の最大値d2maxに対する、第一稜線部113での高さ方向ビード160の深さd21の比d21/d2maxが0.5以下となっている。なお、d21が2mm以下であってもよい。d21の下限値は特に制限されず、0mmでもよい。したがって、第二変形例では、屈曲点b1より上方で高さ方向ビード160の深さd2が徐変(高さ方向(より詳細には天板側からフランジ側に向かう方向)に徐々に増加)している。第二変形例によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。
(Second Modification)
Next, a second modified example of the structural member 100 (structural member 100B) will be described with reference to Fig. 7. Fig. 7 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100B. In this structural member 100B, the bead bottom wall 162 has a bending point b1 at which the bead bottom wall 162 bends midway in the height direction Y. The bead bottom wall 162 is divided into a top plate proximal bead bottom wall 162a, which is a portion closer to the top plate 111 than the bending point b1, and a top plate distal bead bottom wall 162b, which is opposite to the top plate proximal bead bottom wall 162a. The angle a11 between the top plate proximal bead bottom wall 162a and the top plate 111 is 90 degrees or more and 95 degrees or less. Here, the angle a11 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the top plate portion proximal bead bottom wall 162a. The angle a12 between the top plate portion distal bead bottom wall 162b and the top plate portion 111 is larger than the angle a11. Here, the angle a12 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate portion 111 and a virtual line extending the outer surface of the top plate portion distal bead bottom wall 162b. In addition, in FIG. 7, the angle a12 is drawn as the angle formed by a two-dot chain line (corresponding to a virtual line extending the outer surface of the top plate portion 111) that passes through the bending point b1 and is parallel to the top plate portion 111 and a virtual line extending the outer surface of the top plate portion distal bead bottom wall 162b. The angle a2 is equal to the angle a12, but the two may be different. Furthermore, the ratio d21/d2 max of the depth d21 of the height direction bead 160 at the first ridge portion 113 to the maximum value d2 max of the depth d2 of the height direction bead 160 is 0.5 or less. Note that d21 may be 2 mm or less. The lower limit of d21 is not particularly limited and may be 0 mm. Therefore, in the second modified example, the depth d2 of the height direction bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)) above the bending point b1. According to the second modified example, the load capacity and the shock absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved.

 (第三変形例)
 つぎに、図8に基づいて、構造部材100の第三変形例(構造部材100C)について説明する。図8は構造部材100Cの長手方向Zに垂直な断面図である。この構造部材100Cでは、高さ方向ビード160に隣接する側壁部115は、長手方向Zに垂直な断面において、高さ方向Yの途中で屈曲する屈曲点b2を有する。そして、高さ方向ビード160に隣接する側壁部115は、屈曲点b2よりも天板部111に近い部位である天板部近位側側壁部115aと、天板部近位側側壁部115aと反対側の天板部遠位側側壁部115bとに区分される。そして、天板部近位側側壁部115aと天板部111との角度a21が角度a1よりも大きくなる。ここで、角度a21は、より詳細には、天板部111の外方の表面を延長した仮想直線と、天板部近位側側壁部115a外方の表面を延長した仮想直線とがなす内方側の角度である。天板部遠位側側壁部115bと天板部111との角度a22は角度a1と等しくなるが、両者は異なっていてもよい。ここで、角度a22は、より詳細には、天板部111の外方の表面を延長した仮想直線と、天板部遠位側側壁部115b外方の表面を延長した仮想直線とがなす内方側の角度である。なお、図8では、角度a22は、屈曲点b2を通り天板部111に平行な二点鎖線(天板部111の外方の表面を延長した仮想直線に対応)と、天板部遠位側側壁部115b外方の表面を延長した仮想直線とがなす内方側の角度として描かれている。さらに、高さ方向ビード160の深さd2の最大値d2maxに対する、第一稜線部113での高さ方向ビード160の深さd21の比d21/d2maxが0.5以下となっている。なお、d21が2mm以下であってもよい。d21の下限値は特に制限されず、0mmでもよい。したがって、第三変形例では、屈曲点b2より上方で高さ方向ビード160の深さd2が徐変(高さ方向(より詳細には天板側からフランジ側に向かう方向)に徐々に増加)している。第三変形例によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとを向上させることができる。この効果をより安定して得るためには、角度a21は角度a1よりも4°以上大きいことが好ましく、また角度a21は105°以下であることが好ましい。すなわち、角度a1と角度a21はa1+4°≦a21≦105°を満たすことが好ましい。
(Third Modification)
Next, a third modified example of the structural member 100 (structural member 100C) will be described with reference to FIG. 8. FIG. 8 is a cross-sectional view perpendicular to the longitudinal direction Z of the structural member 100C. In this structural member 100C, the side wall portion 115 adjacent to the height direction bead 160 has a bending point b2 that bends in the middle of the height direction Y in a cross-section perpendicular to the longitudinal direction Z. The side wall portion 115 adjacent to the height direction bead 160 is divided into a proximal side wall portion 115a of the top plate portion, which is a portion closer to the top plate portion 111 than the bending point b2, and a distal side wall portion 115b of the top plate portion opposite the proximal side wall portion 115a of the top plate portion. The angle a21 between the proximal side wall portion 115a of the top plate portion and the top plate portion 111 is larger than the angle a1. Here, the angle a21 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate 111 and a virtual line extending the outer surface of the top plate proximal sidewall 115a. The angle a22 between the top plate distal sidewall 115b and the top plate 111 is equal to the angle a1, but the two may be different. Here, the angle a22 is, more specifically, the inner angle formed by a virtual line extending the outer surface of the top plate 111 and a virtual line extending the outer surface of the top plate distal sidewall 115b. In FIG. 8, the angle a22 is depicted as the inner angle formed by a two-dot chain line (corresponding to a virtual line extending the outer surface of the top plate 111) that passes through the bending point b2 and is parallel to the top plate 111, and a virtual line extending the outer surface of the top plate distal sidewall 115b. Furthermore, the ratio d21/d2 max of the depth d2 of the height bead 160 at the first ridge portion 113 to the maximum value d2 max of the depth d2 of the height bead 160 is 0.5 or less. Note that d21 may be 2 mm or less. The lower limit of d21 is not particularly limited and may be 0 mm. Therefore, in the third modified example, the depth d2 of the height bead 160 gradually changes (gradually increases in the height direction (more specifically, in the direction from the top plate side to the flange side)) above the bending point b2. According to the third modified example, the load capacity and impact absorption energy at the beginning of the stroke of the deformation in the local buckling mode can be improved. In order to obtain this effect more stably, it is preferable that the angle a21 is 4° or more larger than the angle a1, and the angle a21 is preferably 105° or less. That is, it is preferable that the angle a1 and the angle a21 satisfy a1+4°≦a21≦105°.

 ここで、構造部材100は、天板部111が高さ方向Yへの入力荷重を受けた際、一対の第二稜線部117同士の離間距離が小さくなるように変形することが好ましい。ここで言う「入力荷重」は、より詳細には、図9に示すように、構造部材100のフランジ部119における長手方向の両端近傍を一対の支持台に載置した状態で、天板部111の長手方向Zの中央に対し、インパクタを60mm/minで押圧することによる入力荷重を意味する。
 更に詳細には、「構造部材100のフランジ部119における長手方向の両端近傍」とは、長手方向Zの端部から50mm離間した位置であり、「一対の支持台」のそれぞれは、曲率半径30mmの半円断面状の長尺部材であり、インパクタは、曲率半径50mmの半円断面状の長尺部材である。また、自動車部品として組み付けることを想定し、他の部品との結合により構造部材100の端部が拘束されることを模擬するために、構造部材100の両端近傍の、一対の支持台に載置される部位においては、断面内部に板厚15mmのプレート状の軟鋼を嵌め込むことで、三点曲げ試験中に構造部材100の両端側の断面形状を維持する。一対の支持台同士の距離は700mmとする。ただし、構造部材100の全長が800mmより小さい場合には、構造部材100の全長から100mmを差し引いた距離を一対の支持台同士の距離とする。
 このような条件により、高さ方向Yへの入力荷重を与えた際、少なくとも初期のストローク10mmに到達するまで、一対の第二稜線部117同士の離間距離が小さくなるように変形することが好ましい。
 一対の第二稜線部117同士の離間距離が大きくなるような変形が進むと、側壁部115が幅方向Xに開いていくため、構造部材100の高さが減少し、長手方向Zに垂直な断面の高さ方向Yの曲げ剛性が低下する。このため、局部座屈モードの3点曲げ特性が低下する場合があるからである。この点、上述した第一~第三変形例では、天板部111近傍における高さ方向ビード160の深さd2が小さくなっている。このため、ストローク初期では天板部111近傍の側壁部115が外方に膨らみながら潰れる。しかし、その後は、高さ方向ビード160が入力荷重に耐えつつ、第二稜線部117同士の離間距離が小さくなるように変形する。または、第二稜線部117同士の離間距離が大きくなる場合であってもそのタイミングを遅らせることができる。これにより、第一~第三変形例では、局部座屈モードの変形の、ストローク初期における耐荷重と、衝撃吸収エネルギとをより向上させることができる。
Here, it is preferable that the structural member 100 deforms so that the distance between the pair of second ridge portions 117 becomes smaller when the top plate portion 111 receives an input load in the height direction Y. More specifically, the "input load" referred to here means an input load caused by pressing an impactor against the center of the top plate portion 111 in the longitudinal direction Z at 60 mm/min with the flange portion 119 of the structural member 100 in the vicinity of both longitudinal ends placed on a pair of supports as shown in Fig. 9 .
More specifically, "near both ends of the flange portion 119 of the structural member 100 in the longitudinal direction" refers to a position 50 mm away from the end in the longitudinal direction Z, and each of the "pair of support bases" is a long member with a semicircular cross section with a radius of curvature of 30 mm, and the impactor is a long member with a semicircular cross section with a radius of curvature of 50 mm. In addition, assuming that the structural member 100 is assembled as an automobile part, in order to simulate the end of the structural member 100 being restrained by being connected to another part, in the portion placed on the pair of support bases near both ends of the structural member 100, a plate-shaped mild steel with a thickness of 15 mm is fitted inside the cross section, thereby maintaining the cross-sectional shape of both ends of the structural member 100 during the three-point bending test. The distance between the pair of support bases is 700 mm. However, if the total length of the structural member 100 is less than 800 mm, the distance between the pair of support bases is the total length of the structural member 100 minus 100 mm.
Under these conditions, when an input load is applied in the height direction Y, it is preferable that the deformation occurs so that the distance between the pair of second ridge portions 117 becomes smaller at least until the initial stroke of 10 mm is reached.
When deformation progresses such that the distance between the pair of second ridges 117 increases, the sidewalls 115 open in the width direction X, reducing the height of the structural member 100 and reducing the bending rigidity in the height direction Y of the cross section perpendicular to the longitudinal direction Z. This is because the three-point bending characteristics of the local buckling mode may decrease. In this regard, in the first to third modified examples described above, the depth d2 of the height direction bead 160 in the vicinity of the top plate 111 is reduced. Therefore, in the initial stroke, the sidewalls 115 in the vicinity of the top plate 111 are crushed while bulging outward. However, thereafter, the height direction bead 160 is deformed so that the distance between the second ridges 117 decreases while withstanding the input load. Or, even if the distance between the second ridges 117 increases, the timing of this can be delayed. As a result, in the first to third modified examples, the load resistance and impact absorption energy in the initial stroke of the deformation in the local buckling mode can be further improved.

 なお、上述した実施形態及び各変形例では、天板部111、側壁部115及びビード底壁162が長手方向Zに垂直な断面において直線状となっているが、曲線状となっていてもよい。また、屈曲点における形状(折れ線)も曲線状となっていてもよい。
 ここでの曲線状は、長手方向Zに垂直な断面におけるものに限られず、部材の長手方向の湾曲、すなわち高さ方向(上下方向)や幅方向(左右方向)の湾曲も含まれる。この場合、天板部111、側壁部115及びビード底壁162の長手方向Zに垂直な断面における形状は、当該断面における各部分の長さ方向の両端を結ぶ直線状である(例えば長手方向Zに垂直な断面において天板部111の幅方向(天板部111の長さ方向)の両端を連結する直線を引き、この直線を天板部111と仮定する)ものとして、上述した各パラメータ(例えば角度a1)を定義すればよい。
In the above-described embodiment and each modified example, the top plate portion 111, the side wall portion 115, and the bead bottom wall 162 are linear in a cross section perpendicular to the longitudinal direction Z, but they may be curved. In addition, the shape (broken line) at the bending point may also be curved.
The curved shape here is not limited to a curve in a cross section perpendicular to the longitudinal direction Z, but also includes a curve in the longitudinal direction of the member, i.e., a curve in the height direction (up and down direction) and width direction (left and right direction). In this case, the shape of the top plate portion 111, the side wall portion 115, and the bead bottom wall 162 in a cross section perpendicular to the longitudinal direction Z is a straight line connecting both ends of the length direction of each part in the cross section (for example, a straight line is drawn connecting both ends of the width direction (length direction of the top plate portion 111) of the top plate portion 111 in a cross section perpendicular to the longitudinal direction Z, and this straight line is assumed to be the top plate portion 111), and the above-mentioned parameters (for example, angle a1) may be defined.

 (自動車車体)
 本実施形態に係る自動車車体は、上述した構造部材100、100A~100Cの何れかを備えている。構造部材100、100A~100Cにおける、ハット型部材110の一対のフランジ部119は、少なくともその長手方向中央部分において、一対のフランジ部119同士を接合する部材が取り付けられていない。
(Automobile body)
The automobile body according to this embodiment includes any one of the above-mentioned structural members 100, 100A to 100C. In the structural members 100, 100A to 100C, the pair of flange portions 119 of the hat-shaped member 110 do not have a member attached to join the pair of flange portions 119 to each other at least in the longitudinal center portion.

(実施例)
 以下、本発明の効果を実施例により具体的に説明する。なお、以下に説明する実施例は、あくまでも本発明の一例であって、本発明を限定するものではない。
(Example)
The effects of the present invention will be specifically described below with reference to examples. Note that the examples described below are merely examples of the present invention and do not limit the present invention.

 板厚0.8mm、引張強さ2.5GPa級の鋼板を適用したハット型部材により構成された構造部材のシミュレーションモデルを準備した。
 構造部材のシミュレーションモデルについて、長手方向ビードと高さ方向ビードを適宜付与し、3点曲げを想定したシミュレーションによりストローク初期の最大荷重およびストローク100mmまでの衝撃吸収エネルギを評価した。また、基準又は比較例として長手方向ビード及び高さ方向ビードを有しない構造部材の3点曲げのシミュレーションも実施した。基本条件、比較例の条件、及び各発明例の条件は下記の通りである。尚、本実施例では、天板部に配置した長手方向ビードのビード側壁の傾斜角は、天板部に対して95度とした。
(基本条件)
 天板部の幅W=70mm
 側壁部の高さH=50mm
 第一稜線部の曲率半径(曲げ内側)=5mm
 第二稜線部の曲率半径(曲げ内側)=5mm
 構造部材の全長L=800mm
 長手方向ビードの深さd1=10mm
 長手方向ビードの幅w1=10mm
 高さ方向ビードの幅w2=24mm
 高さ方向ビードのビード間距離=16mm
(比較例)
 側壁部と天板部との内方側のなす角度=95度
 高さ方向ビードと長手方向ビードの形成:なし
(発明例1:実施形態に対応)
 角度a1=角度a2=95度
 高さ方向ビードの深さd2=4mm(一定)
(発明例2:実施形態に対応)
 角度a1=角度a2=90度
 高さ方向ビードの深さd2=4mm(一定)
(発明例3:第三変形例に対応)
 角度a1=90.9度
 角度a21=99.8度>角度a1
 角度a22=角度a1
 屈曲点b2:側壁部の高さHの中間に配置
 高さ方向ビードの深さd2の最大値d2max=4mm
(発明例4:第一変形例に対応)
 角度a1=90.9度
 角度a2=95度>角度a1
 高さ方向ビードの深さd2の最大値d2max=3.6mm
A simulation model of a structural member composed of hat-shaped members using steel plates with a thickness of 0.8 mm and a tensile strength of 2.5 GPa was prepared.
A simulation model of the structural member was appropriately given longitudinal and height beads, and a simulation was performed assuming three-point bending to evaluate the maximum load at the beginning of the stroke and the impact absorption energy up to a stroke of 100 mm. In addition, a three-point bending simulation was also performed on a structural member that did not have longitudinal and height beads as a standard or comparative example. The basic conditions, the conditions of the comparative example, and the conditions of each example of the invention are as follows. In this example, the inclination angle of the bead side wall of the longitudinal bead placed on the top plate was set to 95 degrees with respect to the top plate.
(Basic conditions)
Width of top plate W = 70 mm
Side wall height H = 50 mm
Radius of curvature of first ridge (inner bend) = 5 mm
Radius of curvature of the second ridge (inner bend) = 5 mm
Total length of structural member L = 800 mm
Longitudinal bead depth d1 = 10 mm
Width of longitudinal bead w1 = 10 mm
Height direction bead width w2 = 24 mm
Distance between beads in the height direction = 16 mm
Comparative Example
Angle between the side wall and the top plate on the inner side = 95 degrees Formation of height direction bead and longitudinal direction bead: None (corresponding to invention example 1: embodiment)
Angle a1 = Angle a2 = 95 degrees Height direction bead depth d2 = 4 mm (constant)
(Example 2: Corresponding to the embodiment)
Angle a1 = Angle a2 = 90 degrees Height direction bead depth d2 = 4 mm (constant)
(Example 3: Corresponding to the third modified example)
Angle a1 = 90.9 degrees Angle a21 = 99.8 degrees > Angle a1
Angle a22 = Angle a1
Bend point b2: Located in the middle of the height H of the side wall portion Maximum value of height direction bead depth d2 d2 max = 4 mm
(Example 4: Corresponding to the first modified example)
Angle a1 = 90.9 degrees Angle a2 = 95 degrees > Angle a1
Maximum value of height direction bead depth d2 d2 max = 3.6 mm

 3点曲げ条件は、図9に示すように、インパクタの曲率半径を50mm、支持台の離間距離を700mmに設定した。ストローク初期の最大荷重およびストローク100mmまでの衝撃吸収エネルギを表1に示す。表1中の基準比は、比較例の値(最大荷重及び衝撃エネルギ吸収量)に対する比を%表記した値である。
 比較例では、ストローク初期から側壁部が早期に座屈し、構造部材が大きく変形したため、ストローク初期の最大荷重及び衝撃吸収エネルギが低かった。
 発明例1、2では、ストローク初期の最大荷重が比較例に比べて大きく改善した。これは、高さ方向ビードにより側壁の剛性が大きくなり、ストローク初期における側壁部の座屈が抑えられたとともに、長手方向ビードにより天板部に発生する長手方向に沿う圧縮応力に対する変形抵抗を高められたことが原因であると考えられる。ただし、ストローク初期以降では側壁部が外方に広がる方向に変形したため、耐荷重が減少し、発明例1では衝撃吸収エネルギが若干低下した。発明例2では、衝撃吸収エネルギは比較例から若干改善した程度であった。
 発明例3、4でも、ストローク初期の最大荷重が比較例に比べて大きく改善した。これは、高さ方向ビードにより側壁の剛性が大きくなり、ストローク初期における側壁部の座屈が抑えられたとともに、長手方向ビードにより天板部に発生する長手方向に沿う圧縮応力に対する変形抵抗を高められたことが原因であると考えられる。ただし、側壁部上部での高さ方向ビードの深さd2が小さいため、ストローク初期で側壁部上部が発明例1、2よりも若干座屈しやすくなっている。このため、ストローク初期の最大荷重が発明例1、2よりも若干低下した。ストローク初期以降では、側壁部上部の座屈によって側壁部の外方への開きが抑えられたため、高さ方向ビード及び長手方向ビードが十分機能を発揮し、耐荷重が発明例1、2よりも高くなった。この結果、衝撃吸収エネルギが発明例1、2よりも高くなった。
The three-point bending conditions were set as follows: the impactor radius of curvature was 50 mm, and the support stand separation distance was 700 mm, as shown in Fig. 9. The maximum load at the beginning of the stroke and the impact energy absorption up to a stroke of 100 mm are shown in Table 1. The reference ratios in Table 1 are values expressed as percentages relative to the values (maximum load and impact energy absorption amount) of the comparative example.
In the comparative example, the side wall portion buckled early from the beginning of the stroke, and the structural members were significantly deformed, so that the maximum load and the impact absorption energy at the beginning of the stroke were low.
In Examples 1 and 2, the maximum load at the beginning of the stroke was significantly improved compared to the Comparative Example. This is believed to be because the height-direction bead increased the rigidity of the side wall, suppressing buckling of the side wall at the beginning of the stroke, and the longitudinal bead increased the deformation resistance against compressive stress along the longitudinal direction that occurs in the top plate. However, after the beginning of the stroke, the side wall deformed in the outward direction, reducing the load capacity, and the impact absorption energy of Example 1 was slightly reduced. In Example 2, the impact absorption energy was only slightly improved from the Comparative Example.
In the invention examples 3 and 4, the maximum load at the beginning of the stroke was also significantly improved compared to the comparative example. This is believed to be because the height direction bead increased the rigidity of the side wall, suppressing buckling of the side wall at the beginning of the stroke, and the longitudinal direction bead increased the deformation resistance against the compressive stress along the longitudinal direction generated in the top plate. However, since the depth d2 of the height direction bead at the upper part of the side wall is small, the upper part of the side wall is slightly more likely to buckle at the beginning of the stroke than the invention examples 1 and 2. Therefore, the maximum load at the beginning of the stroke was slightly lower than the invention examples 1 and 2. After the beginning of the stroke, the buckling of the upper part of the side wall suppressed the side wall from opening outward, so the height direction bead and the longitudinal direction bead fully functioned, and the load capacity was higher than the invention examples 1 and 2. As a result, the impact absorption energy was higher than the invention examples 1 and 2.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 本発明によれば、局部座屈モードの変形の、ストローク初期における耐荷重と、好ましくは衝撃吸収エネルギとを向上させることでより優れた衝突安全性能を発揮することが可能な構造部材を提供することができる。 The present invention provides a structural member that can exhibit superior collision safety performance by improving the load-bearing capacity and preferably the impact energy absorption capacity at the beginning of the stroke of deformation in local buckling mode.

100,100A,100B,100C 構造部材
110 ハット型部材
111 天板部
113 第一稜線部
115 側壁部
117 第二稜線部
119 フランジ部
150 長手方向ビード
151 ビード側壁
152 ビード底壁
160 高さ方向ビード
161 ビード側壁
162 ビード底壁
X 幅方向
Y 高さ方向
Z 長手方向
100, 100A, 100B, 100C Structural member 110 Hat-shaped member 111 Top plate portion 113 First ridge portion 115 Side wall portion 117 Second ridge portion 119 Flange portion 150 Longitudinal bead 151 Bead side wall 152 Bead bottom wall 160 Height direction bead 161 Bead side wall 162 Bead bottom wall X Width direction Y Height direction Z Longitudinal direction

Claims (20)

 長手方向に沿って延びる天板部と、
 前記天板部の幅方向の両端部に形成された一対の第一稜線部を介して延在する一対の側壁部と、
 前記一対の側壁部における前記一対の第一稜線部とは反対側の端部に形成された一対の第二稜線部を介して延在する一対のフランジ部と、
を有するハット型部材である自動車車体の構造部材であって、
 前記天板部に、前記長手方向に沿って延在する長手方向ビードが二本以上、前記幅方向に並列して形成され、
 前記一対の側壁部に、高さ方向に沿って延在する高さ方向ビードが複数本、前記長手方向に並列して形成され、
 前記高さ方向ビードのそれぞれは、
 前記側壁部から内方に向けて屈曲して延在する一対のビード側壁と、
 前記一対のビード側壁の内方側の端部同士を連結するビード底壁と、
を備え、
 前記長手方向に垂直な断面において、前記高さ方向ビードの前記ビード底壁と、前記天板部との内方側の角度a1が90度以上95度以下であることを特徴とする自動車車体の構造部材。
A top plate portion extending along a longitudinal direction;
A pair of side walls extending through a pair of first ridges formed at both ends of the top plate in a width direction;
a pair of flange portions extending via a pair of second ridge portions formed at ends of the pair of side wall portions opposite to the pair of first ridge portions;
A structural member of an automobile body which is a hat-shaped member having
Two or more longitudinal beads extending along the longitudinal direction are formed in parallel in the width direction on the top plate portion,
A plurality of height-direction beads extending along a height direction are formed in the pair of side wall portions and are arranged in parallel in the longitudinal direction,
Each of the height beads is
A pair of bead side walls extending inwardly from the side wall portion;
a bead bottom wall connecting inner ends of the pair of bead side walls;
Equipped with
A structural member for an automobile body, characterized in that in a cross section perpendicular to the longitudinal direction, an inner angle a1 between the bead bottom wall of the height direction bead and the top plate portion is 90 degrees or more and 95 degrees or less.
 前記天板部が前記高さ方向への入力荷重を受けた際、前記一対の第二稜線部同士の離間距離が小さくなるように変形することを特徴とする請求項1に記載の自動車車体の構造部材。 The structural member of an automobile body according to claim 1, characterized in that when the top plate portion receives an input load in the height direction, it deforms so that the distance between the pair of second ridge portions becomes smaller.  前記側壁部のうち、前記高さ方向ビードに前記長手方向に隣接する側壁部と前記天板部との内方側の角度a2が前記角度a1よりも大きい
ことを特徴とする請求項1に記載の自動車車体の構造部材。
2. A structural member for an automobile body according to claim 1, wherein an inner angle a2 between the side wall portion adjacent to the height direction bead in the longitudinal direction and the top plate portion is larger than the angle a1.
 前記高さ方向ビードに前記長手方向に隣接する側壁部は、前記長手方向に垂直な断面において、前記高さ方向の途中で屈曲する屈曲点を有し、前記高さ方向ビードに隣接する側壁部のうち、前記屈曲点よりも前記天板部に近い部位である天板部近位側側壁部と前記天板部との内方側の角度a21が前記角度a1よりも大きい
ことを特徴とする請求項1に記載の自動車車体の構造部材。
A structural member of an automobile body as described in claim 1, characterized in that the side wall portion adjacent to the height direction bead in the longitudinal direction has a bending point where it bends halfway in the height direction in a cross section perpendicular to the longitudinal direction, and the inner angle a21 between the top plate portion and a side wall portion proximal to the top plate portion, which is a portion of the side wall portion adjacent to the height direction bead that is closer to the top plate portion than the bending point, is greater than the angle a1.
 前記側壁部の前記高さ方向ビードのビード深さの最大値d2maxに対する、前記第一稜線部でのビード深さd21の比が、d21/d2max≦0.5、及び、d21≦2mm、の少なくとも一方を満たす
ことを特徴とする請求項1に記載の自動車車体の構造部材。
2. The structural member of an automobile body according to claim 1, wherein a ratio of a bead depth d21 at the first ridge line portion to a maximum value d2max of a bead depth of the height direction bead of the side wall portion satisfies at least one of d21/ d2max ≦0.5 and d21≦2 mm.
 前記長手方向に垂直な断面において、前記天板部と前記第一稜線部との境界点から、前記幅方向に前記天板部の幅の1/4の離間距離となる点までの領域に、外側に配置されている二本の前記長手方向ビードの前記幅方向の中心が位置するように外側に配置されている二本の前記長手方向ビードが形成される
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
A structural member of an automobile body as described in any one of claims 1 to 5, characterized in that in a cross section perpendicular to the longitudinal direction, two longitudinal beads arranged on the outside are formed in an area from the boundary point between the top plate portion and the first ridge portion to a point that is spaced apart in the width direction by a distance of 1/4 of the width of the top plate portion, such that the widthwise centers of the two longitudinal beads arranged on the outside are located in the area.
 前記長手方向に垂直な断面において、前記天板部と前記第一稜線部との境界点から、20mmの離間距離となる点までの領域に、外側に配置されている二本の前記長手方向ビードと天板部との境界点が位置するように外側に配置されている二本の前記長手方向ビードが形成される
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
A structural member of an automobile body as described in any one of claims 1 to 5, characterized in that in a cross section perpendicular to the longitudinal direction, two longitudinal beads arranged on the outside are formed in an area from the boundary point between the top plate portion and the first ridge portion to a point spaced 20 mm apart, such that the boundary point between the two longitudinal beads arranged on the outside and the top plate portion is located.
 前記ハット型部材が板厚1.2mm以下の鋼板により形成されている
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. A structural member for an automobile body according to claim 1, wherein the hat-shaped member is formed from a steel plate having a thickness of 1.2 mm or less.
 前記ハット型部材が引張強さ980MPa以上の鋼板により形成されている
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. A structural member for an automobile body according to claim 1, wherein the hat-shaped member is formed from a steel plate having a tensile strength of 980 MPa or more.
 前記ハット型部材が焼き入れ部材である
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. The structural member for an automobile body according to claim 1, wherein the hat-shaped member is a hardened member.
 外側に配置されている二本の前記長手方向ビードの幅が5mm~20mmであり、
 外側に配置されている二本の前記長手方向ビードの深さが5mm~20mmである
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
The width of the two longitudinal beads arranged on the outside is 5 mm to 20 mm,
6. A structural member for an automobile body according to claim 1, characterized in that the depth of the two longitudinal beads arranged on the outside is 5 mm to 20 mm.
 外側に配置されている二本の前記長手方向ビードの深さ/幅で算出されるアスペクト比が0.25~4.0である
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
A structural member for an automobile body according to any one of claims 1 to 5, characterized in that the aspect ratio calculated by the depth/width of the two longitudinal beads arranged on the outside is 0.25 to 4.0.
 前記高さ方向ビードは、前記第一稜線部から延在する
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. The structural component for an automobile body according to claim 1, wherein the height direction bead extends from the first ridge line portion.
 前記高さ方向ビードは、前記第二稜線部から延在する
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. The structural component for an automobile body according to claim 1, wherein the height direction bead extends from the second ridge line portion.
 前記高さ方向ビードは、前記第一稜線部から前記第二稜線部まで延在する
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. The structural component for an automobile body according to claim 1, wherein the height direction bead extends from the first ridge line portion to the second ridge line portion.
 前記高さ方向ビードの幅が10mm~60mmであり、
 前記高さ方向ビードの深さが2mm~10mmである
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
The width of the height direction bead is 10 mm to 60 mm,
6. The structural member for an automobile body according to claim 1, wherein the depth of the bead in the height direction is 2 mm to 10 mm.
 前記高さ方向ビードの深さ/幅で算出されるアスペクト比が0.05~1.0である
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
6. The structural member for an automobile body according to claim 1, wherein an aspect ratio calculated by dividing the height direction bead by its depth/width is 0.05 to 1.0.
 前記天板部が前記高さ方向への入力荷重を受けた際、ストローク初期において、前記一対の第二稜線部同士の離間距離が小さくなるように変形する
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
A structural member for an automobile body as described in any one of claims 1 to 5, characterized in that when the top plate portion is subjected to an input load in the height direction, at the beginning of the stroke, the distance between the pair of second ridge portions is deformed to become smaller.
 前記ハット型部材の前記一対のフランジ部は、少なくともその長手方向中央部分において、前記一対のフランジ部同士を接合する部材が取り付けられていない
ことを特徴とする請求項1~5のいずれか一項に記載の自動車車体の構造部材。
A structural member of an automobile body as described in any one of claims 1 to 5, characterized in that the pair of flange portions of the hat-shaped member do not have any members attached to join the pair of flange portions to each other, at least in their longitudinal central portion.
 請求項1~5のいずれか一項に記載の構造部材を有する自動車車体であって、
 前記構造部材における、前記ハット型部材の前記一対のフランジ部は、少なくともその長手方向中央部分において、前記一対のフランジ部同士を接合する部材が取り付けられていない
ことを特徴とする自動車車体。
An automobile body having a structural member according to any one of claims 1 to 5,
An automobile body, characterized in that in the structural component, the pair of flange portions of the hat-shaped component do not have any members attached to join the pair of flange portions to each other, at least in their longitudinal central portion.
PCT/JP2024/012099 2023-03-27 2024-03-26 Structural member for automobile body and automobile body WO2024204278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025510981A JPWO2024204278A1 (en) 2023-03-27 2024-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023049809 2023-03-27
JP2023-049809 2023-03-27

Publications (1)

Publication Number Publication Date
WO2024204278A1 true WO2024204278A1 (en) 2024-10-03

Family

ID=92905482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012099 WO2024204278A1 (en) 2023-03-27 2024-03-26 Structural member for automobile body and automobile body

Country Status (2)

Country Link
JP (1) JPWO2024204278A1 (en)
WO (1) WO2024204278A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205732A (en) * 1994-01-13 1995-08-08 Yamakawa Ind Co Ltd Bumper reinforcement and its manufacturing method
JP4330652B2 (en) * 2007-03-28 2009-09-16 ユニプレス株式会社 Vehicle metal absorber, vehicle bumper system, automobile bumper absorber and automobile bumper system
JP2021187433A (en) * 2020-05-28 2021-12-13 Jfeスチール株式会社 Automobile structural component, and method for manufacture thereof
WO2022025098A1 (en) * 2020-07-31 2022-02-03 日本製鉄株式会社 Structural member for automobile body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205732A (en) * 1994-01-13 1995-08-08 Yamakawa Ind Co Ltd Bumper reinforcement and its manufacturing method
JP4330652B2 (en) * 2007-03-28 2009-09-16 ユニプレス株式会社 Vehicle metal absorber, vehicle bumper system, automobile bumper absorber and automobile bumper system
JP2021187433A (en) * 2020-05-28 2021-12-13 Jfeスチール株式会社 Automobile structural component, and method for manufacture thereof
WO2022025098A1 (en) * 2020-07-31 2022-02-03 日本製鉄株式会社 Structural member for automobile body

Also Published As

Publication number Publication date
JPWO2024204278A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
CA2920881C (en) Method for manufacturing press-formed product and press-forming apparatus
JP7376835B2 (en) Structural components of automobile bodies
US10773669B2 (en) Structural member, vehicle-body structure and bumper reinforcement
CN110446630A (en) Bumper beam
JP6973517B2 (en) Structural members for vehicles
CN112867637B (en) Automobile frame components and electric vehicles
WO2016104078A1 (en) Structural member
WO2018131516A1 (en) Structural member and vehicle structural member
US20220048455A1 (en) Bumper arrangement
JP2025014025A (en) Automotive body structural components
JP5723258B2 (en) Energy absorbing member and cross-sectional deformation control method of energy absorbing member
WO2024204278A1 (en) Structural member for automobile body and automobile body
JP7264597B2 (en) Vehicle structural members and vehicles
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
WO2024204279A1 (en) Structural member for automobile body
JP7376836B2 (en) Structural components of automobile bodies
EP3932750B1 (en) Structural member for vehicle
JP7192837B2 (en) Vehicle structural member
JP7376797B2 (en) Automobile frame parts and electric vehicles
JP7363829B2 (en) Vehicle side structure
JP4388461B2 (en) Strength member for automobile having excellent collision characteristics and structural member for automobile using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24780386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025510981

Country of ref document: JP