[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203634A1 - 基板アセンブリおよび光通信装置 - Google Patents

基板アセンブリおよび光通信装置 Download PDF

Info

Publication number
WO2024203634A1
WO2024203634A1 PCT/JP2024/010793 JP2024010793W WO2024203634A1 WO 2024203634 A1 WO2024203634 A1 WO 2024203634A1 JP 2024010793 W JP2024010793 W JP 2024010793W WO 2024203634 A1 WO2024203634 A1 WO 2024203634A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical fiber
optical
substrate assembly
optical transceiver
Prior art date
Application number
PCT/JP2024/010793
Other languages
English (en)
French (fr)
Inventor
航 吉田
悠太 石毛
和哉 長島
秀行 那須
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2024203634A1 publication Critical patent/WO2024203634A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to a substrate assembly and an optical communication device.
  • Patent Document 1 a small optical transceiver described in Patent Document 1 is known as an optical transceiver used in a network switch device (for example, Patent Document 1).
  • a switch ASIC application specific integrated circuit
  • multiple optical transceivers are mounted on a board.
  • multiple optical fibers are routed between multiple optical transceivers and a connector array.
  • optical fibers increases with the increase in optical transceivers, problems may arise, such as the optical fibers interfering with other optical fibers or components and becoming more susceptible to damage, or the optical fibers becoming more difficult to route during device manufacturing and maintenance.
  • one of the objectives of the present invention is to provide an improved new board assembly and optical communication device that can suppress the occurrence of undesirable events, for example, in the routing of optical fibers extending from an optical transceiver.
  • the substrate assembly of the present invention for example, comprises an optical transceiver subassembly having a substrate, a housing that houses at least one of a light receiving unit and a light emitting unit and is fixed to the substrate, and an optical fiber extending from the housing, and a cover member that covers the housing from the side opposite the substrate, the cover member having a guide portion that guides the optical fiber to be in a curved state and is fixed to the substrate.
  • the cover member may be provided with an opening that forms the guide portion.
  • the opening may be a notch through which the optical fiber passes and which is open in a direction intersecting the direction in which the optical fiber extends within the opening.
  • the guide portion may have a first surface with which the optical fiber contacts.
  • the guide portion may have a second surface that faces the first surface and is spaced apart from the first surface.
  • the first surface and the second surface may each be configured such that, when the optical fiber comes into contact with the first surface and the second surface while the housing and the cover member are fixed to the substrate, the optical fiber is bent with a radius of curvature larger than a minimum bending radius.
  • the guide portion may have a stopper that prevents the optical fiber from moving in a direction intersecting the direction in which the optical fiber extends along the first surface.
  • the cover member may be part of a fixing mechanism that fixes the housing to the substrate.
  • the cover member and the optical transceiver subassembly may be configured to be detachable from the substrate.
  • the substrate assembly may include a plurality of optical transceiver subassemblies as the optical transceiver subassembly.
  • the optical transceiver subassemblies may be arranged along an edge of the substrate.
  • the substrate assembly may include a plurality of cover members each having a guide portion that guides the optical fiber in a different direction.
  • the multiple cover members having the same shape may be arranged along an edge of the substrate.
  • the multiple cover members having the same shape may be arranged along each of the multiple sides of the substrate, and the shape of the cover members may differ for each of the multiple sides.
  • the cover member may cover the housings of the multiple optical transceiver subassemblies.
  • the optical communication device of the present invention comprises, for example, a plurality of board assemblies as the board assembly, a motherboard on which the plurality of board assemblies are mounted, a control circuit mounted on the motherboard for controlling the operation of the signal processing circuits of the plurality of board assemblies, and an optical connector array having a plurality of optical connectors, each of which has an optical connector optically connected to the optical fiber drawn out from the optical transceiver subassembly.
  • the guide direction of the optical fiber by the guide portion may be different for each board assembly.
  • the guide direction of the optical fiber by the guide portion may be the same for the multiple board assemblies.
  • the present invention provides an improved and novel substrate assembly and optical communication device that can, for example, prevent undesirable events from occurring in the routing of optical fibers extending from an optical transceiver.
  • FIG. 1 is an exemplary schematic plan view of a communication device according to a first embodiment.
  • FIG. 2 is an exemplary schematic perspective view of the switch device according to the first embodiment.
  • FIG. 3 is an exemplary schematic plan view of the switch device according to the first embodiment.
  • FIG. 4 is an exemplary schematic side view (partial cross-sectional view) of a portion of the switch device of the first embodiment.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG.
  • FIG. 6 is an exemplary schematic perspective view of a cover member of the switch device according to the first embodiment.
  • FIG. 7 is an exemplary schematic exploded perspective view of a portion of the switch device according to the first embodiment.
  • FIG. 8 is an exemplary schematic cross-sectional view of a switch device according to a second embodiment, taken at a position equivalent to that of FIG.
  • FIG. 9 is an exemplary schematic perspective view of a cover member of a switch device according to the third embodiment.
  • FIG. 10 is an exemplary schematic cross-sectional view of a switch device according to a fourth embodiment, taken at the same position as in FIG. 5 .
  • FIG. 11 is an exemplary schematic perspective view of a cover member of a switch device according to the fourth embodiment.
  • FIG. 12 is an exemplary schematic cross-sectional view of a switch device according to a fifth embodiment, taken at a position equivalent to that of FIG. 5.
  • FIG. 13 is an exemplary schematic perspective view of a cover member of a switch device according to the fifth embodiment.
  • FIG. 14 is an exemplary schematic cross-sectional view of a switch device according to a sixth embodiment, taken at a position equivalent to that of FIG. 5.
  • FIG. 15 is an exemplary schematic perspective view of a cover member of a switch device according to the sixth embodiment.
  • FIG. 16 is an exemplary schematic plan view of the switch device according to the seventh embodiment.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII of FIG.
  • FIG. 18 is an exemplary schematic plan view of a cover member of the switch device according to the seventh embodiment.
  • FIG. 19 is an exemplary schematic perspective view of a cover member of a switch device according to the seventh embodiment.
  • FIG. 20 is an exemplary schematic perspective view of a switch device according to the eighth embodiment.
  • FIG. 21 is an exemplary schematic perspective view of a switch device according to the ninth embodiment.
  • ordinal numbers may be given for convenience to distinguish directions, parts, members, mechanisms, etc. Furthermore, ordinal numbers do not indicate priority or order, nor do they specify a number.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X direction, Y direction, and Z direction intersect with each other and are perpendicular to each other.
  • Fig. 1 is a plan view of an optical communication device 1000 according to a first embodiment.
  • the optical communication device 1000 includes a motherboard 200, an IC 300, and a plurality of switch devices 100.
  • the optical communication device 1000 may also include a power supply module, a cooling fan, and the like (none of which are shown).
  • Motherboard 200 has a plate-like shape that crosses the Z direction and spreads perpendicularly.
  • Motherboard 200 has face 200a and face 200b.
  • Face 200a faces the Z direction, crosses the Z direction, and is perpendicular to it.
  • Face 200b faces the opposite direction to the Z direction on the opposite side to face 200a, crosses the Z direction, and is perpendicular to it.
  • the multiple switch devices 100 are mounted on surface 200a, and the IC 300 is mounted on surface 200b. Note that the IC 300 may also be mounted on surface 200a.
  • the IC300 controls the operation of the multiple switch devices 100 and transmits communication signals between the multiple switch devices 100.
  • the IC300 is an example of a control circuit.
  • the conductors (not shown) of the motherboard 200 and the conductors (not shown) of the switch device 100 are electrically connected via conductors (not shown) within the connector.
  • the motherboard 200 is housed in a housing 1001.
  • An optical connector array 1002 is provided on a part of the wall that constitutes the housing 1001.
  • the optical fiber 32 (not shown in FIG. 1, see FIG. 2, etc.) is routed between the optical transceiver subassembly 30 mounted in each switch device 100 and an optical connector (not shown) provided in the optical connector array 1002.
  • the direction in which the optical fiber 32 is pulled out from the switch device 100 may be different for each switch device 100, or may be the same for multiple switch devices 100.
  • FIG. 2 is a perspective view of the switch device 100A (100) of the first embodiment.
  • FIG. 3 is a plan view of the switch device 100A (100).
  • FIG. 4 is a side view (partial cross-sectional view) of a portion of the switch device 100A (100) when viewed in the Y direction at the arrow IV in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line V-V in FIG. 3.
  • the switch device 100 is mounted on a motherboard 200. Note that in this embodiment, only one switch device 100 is mounted on the motherboard 200, but multiple switch devices 100 may be mounted on the motherboard 200.
  • the motherboard 200 may also be referred to as an integrated board.
  • the switch device 100 includes a substrate 10, a plurality of optical transceiver subassemblies 30, and a fixing mechanism 40 that fixes the optical transceiver subassemblies 30 to the substrate 10.
  • the substrate 10 and the fixing mechanism 40 of the switch device 100 are referred to as a substrate assembly.
  • the substrate assembly can be mounted on a motherboard 200.
  • the substrate 10 also includes a switch ASIC 20 (see Figure 1), a heat dissipation mechanism for the optical transceiver subassemblies 30, a heat dissipation mechanism for the switch ASIC 20, and the like.
  • the switch ASIC 20 is an example of a signal processing circuit.
  • the substrate 10 can also be referred to as a daughter board.
  • the substrate 10 has a square (rectangular) shape. Also, as shown in FIG. 5, the substrate 10 crosses the Z direction and spreads perpendicularly, has a plate shape, and has a surface 10a facing the Z direction and a surface 10b facing the opposite direction of the Z direction on the opposite side of the surface 10a. The surfaces 10a and 10b cross the Z direction and spread perpendicularly.
  • the substrate 10 is, for example, a printed wiring board.
  • the Z direction is an example of a first direction of the substrate 10, and can also be called the thickness direction of the substrate 10.
  • the surface 10a is an example of a first surface
  • the surface 10b is an example of a second surface. From the viewpoint of increasing the number of substrates 10 that can be mounted on the motherboard 200, the shorter the length of one side of the substrate 10, the better. For example, it is preferable that the length is 15 cm or less, and more preferably 10 cm or less.
  • the optical transceiver subassemblies 30 shown in Figures 2 to 4 each receive an optical signal transmitted through an optical fiber 32 and output an electrical signal corresponding to the optical signal.
  • the electrical signal output from the optical transceiver subassembly 30 is input to the switch ASIC via the socket 43 (see Figure 5) and conductors provided on the board 10.
  • the optical transceiver subassembly 30 has a photodiode array (not shown) as a plurality of light receiving units that receive optical signals.
  • each optical transceiver subassembly 30 receives an electrical signal from the switch ASIC via conductors provided on the board 10 and the socket 43, and outputs an optical signal corresponding to the electrical signal.
  • the optical signal output from the optical transceiver subassembly 30 is coupled to the optical fiber 32 and transmitted through the optical fiber 32.
  • the optical transceiver subassembly 30 has, for example, a VCSEL array (not shown, VCSEL: vertical cavity surface emitting laser) as a plurality of light emitting units that output optical signals.
  • VCSEL array not shown, VCSEL: vertical cavity surface emitting laser
  • the transmission capacity of each optical transceiver subassembly 30 should be large, for example, 400 Gb/s or more.
  • the width of the optical transceiver subassembly 30 should be small, for example, preferably 10 mm or less, and more preferably 8 mm or less.
  • the type of optical fiber 32 is not limited, and may be, for example, a single mode fiber, a multimode fiber, a ribbon fiber, a multicore fiber, etc.
  • the optical transceiver subassemblies 30 are arranged along each side 10c of the substrate 10.
  • the optical transceiver subassemblies 30 are mounted so as to cover the corresponding side 10c.
  • each optical transceiver subassembly 30 is provided so as to straddle the side 10c, and has a portion located inside the side 10c and a portion located outside the side 10c. This has the advantage that it is easier to avoid interference between the optical fiber 32 extending from the optical transceiver subassembly 30 and other components such as a switch ASIC mounted on the substrate 10, and the substrate 10 can be made smaller.
  • the optical transceiver subassemblies 30 are fixed to the substrate 10 by a fixing mechanism 40 provided on each side 10c of the substrate 10.
  • a fixing mechanism 40 is provided on each of the four sides 10c, i.e., a total of four fixing mechanisms 40, and are shared by the optical transceiver subassemblies 30 (eight in this embodiment, as an example) arranged along each side 10c.
  • the fixing mechanism 40 is shared by the optical transceiver subassemblies 30, which has the advantage that the mounting structure of the fixing mechanism 40 to the substrate 10 can be simplified and the number of parts can be reduced compared to when the optical transceiver subassemblies 30 are fixed to the substrate 10 by their own fixing mechanisms, thereby reducing the effort and cost required to manufacture the switch device 100.
  • a total of 32 optical transceiver subassemblies 30 can be mounted on the four sides. For example, if the transmission capacity of each optical transceiver subassembly 30 is 400 Gb/s or more, the transmission capacity of the switch device 100 will be 12.8 Tb/s or more.
  • the switch ASIC is mounted, for example, by flip chip mounting, on the substrate 10 at a position away from each of the sides 10c of the substrate 10 (approximately the center of the substrate 10 in this embodiment).
  • the switch ASIC controls the operation of each optical transceiver subassembly 30.
  • the switch ASIC is an example of a semiconductor integrated circuit.
  • the fixing mechanism 40 has an upper member 41, an intermediate member 42, and a socket 43. These components of the fixing mechanism 40 are integrated by a fastener 46 such as a screw. Among the components of the fixing mechanism 40, the intermediate member 42 and the socket 43 are shared by all the optical transceiver subassemblies 30 included in the group of multiple optical transceiver subassemblies 30 along the side 10c of the substrate 10. As shown in Figure 5, the fixing mechanism 40 fixes the optical transceiver subassembly 30 located near the side 10c of the substrate 10 to the substrate 10 in a state in which it is sandwiched in the thickness direction of the substrate 10.
  • the fixing mechanism 40 includes components fixed to the board 10 and components detachable from the board 10.
  • the intermediate member 42 and the socket 43 are fixed to the board 10, and the upper member 41 is configured to be detachable from the intermediate member 42, i.e., the board 10.
  • the upper member 41 is attached to the intermediate member 42 by a fastener 46 configured as a removable screw.
  • the optical transceiver subassembly 30 can be removed by moving it in the Z direction, and can be attached by moving it in the opposite direction to the Z direction.
  • the optical transceiver subassembly 30 is detachably fixed to the board 10 via the fixing mechanism 40 configured in this way.
  • the upper member 41 is not shared by all of the multiple optical transceiver subassemblies 30 along side 10c, but is shared only by two adjacent optical transceiver subassemblies 30 along side 10c.
  • This has the advantage that, for example, it is possible to simultaneously facilitate removal of individual optical transceiver subassemblies 30 while sharing parts, and that the positioning accuracy can be improved by reducing the effects of bending of the fixing mechanism 40 and manufacturing variations in the components of the fixing mechanism 40 and the optical transceiver subassemblies 30.
  • this configuration is just one example, and the upper member 41 may be shared by all of the multiple optical transceiver subassemblies 30 along side 10c.
  • the optical transceiver subassembly 30 has an optical transceiver housing 31 and multiple optical fibers 32 (see FIG. 2).
  • the optical transceiver subassembly 30 will be described as being fixed to the board 10.
  • the housing 31 contains the board, the light receiving unit, the light emitting unit, and other components described above.
  • the housing 31 has a surface 31a facing in the opposite direction to the Z direction.
  • Surface 31a is provided with an electrical interface 31a1 having an array of electrodes (not shown) and a heat dissipation surface 31a2.
  • the electrical interface 31a1 and the heat dissipation surface 31a2 both face in the opposite direction to the Z direction and are aligned substantially along surface 10a of the board 10 and in a direction intersecting side 10c of the board 10 (the X direction in the optical transceiver subassembly 30 shown in FIG. 5).
  • a heat generating element inside the optical transceiver subassembly 30 is aligned in the Z direction with the heat dissipation surface 31a2.
  • the heat dissipation surface 31a2 may also be referred to as a heat dissipation section, and the electrical interface 31a1 may also be referred to as a first electrical interface.
  • the optical fibers 32 extend from a portion of the housing 31 away from the surface 31a, specifically, from a portion on the opposite side of the heat dissipation surface 31a2 that is aligned with the heat dissipation surface 31a2 in the Z direction.
  • the socket 43, intermediate member 42, and upper member 41 are placed on the substrate 10 in this order.
  • the wall 41c of the upper member 41 that intersects with the Z direction is positioned offset in the Z direction with respect to the housing 31 of the optical transceiver subassembly 30, covers the housing 31 from the side opposite the board 10, and presses the housing 31 in the opposite direction of the Z direction toward the board 10 and the socket 43.
  • the upper member 41 is an example of a cover member.
  • the upper member 41 has an opening Op that penetrates the upper member 41 in the Z direction.
  • the optical fiber 32 passes through the opening Op and extends outside the upper member 41.
  • the intermediate member 42 has an opening 42a as a through hole extending in the Z direction.
  • the side of the opening 42a has the function of roughly guiding the housing 31 of the optical transceiver subassembly 30 in the X and Y directions when it is attached.
  • the upper member 41 can also be referred to as a guide member.
  • the socket 43 is placed on the surface 10a of the substrate 10 and supports the housing 31 of the optical transceiver subassembly 30.
  • the socket 43 is provided with an electrical interface 43a and an opening 43b.
  • the electrical interface 43a may also be referred to as a second electrical interface.
  • the electrical interface 43a faces and contacts the electrical interface 31a1 provided on the housing 31 of the optical transceiver subassembly 30, and has a conductor 43a1 electrically connected to each of the multiple electrodes provided on the electrical interface 31a1.
  • the conductor 43a1 can be configured, for example, as a contact terminal having an elastically expandable pin extending in the Z direction.
  • the conductor 43a1 is electrically connected to a conductor (not shown) of the board 10. Also, as described above, a load is applied to the optical transceiver subassembly 30 in the opposite direction to the Z direction by the upper member 41, thereby realizing a stable electrical connection between the electrical interface 31a1 and the conductor 43a1.
  • Each electrode of the electrical interface 31a1 of the optical transceiver subassembly 30 is electrically connected to the conductor of the switch ASIC via the conductor 43a1 of the electrical interface 43a of the socket 43 and the conductor of the board 10.
  • Providing a socket 43 with an electrical interface 43a has the advantage that it is easier to construct a configuration that ensures the required positioning accuracy of multiple electrodes compared to, for example, providing the electrical interface 43a directly on the substrate 10.
  • the thermal conductivity of the insulator 43a2 that is positioned around the conductor 43a1 and supports the conductor 43a1 is lower than the thermal conductivity of the heat dissipation surface 31a2.
  • the opening 43b exposes the heat dissipation surface 31a2 provided on the housing 31 of the optical transceiver subassembly 30 in the opposite direction to the Z direction.
  • the opening 43b is provided, for example, as a through hole or a notch that penetrates the socket 43 in the Z direction.
  • the portion 51a of the member 51 passes through the opening 43b, is adjacent to the heat dissipation surface 31a2 via the flexible heat-conducting sheet 47, and is thermally connected to the heat dissipation surface 31a2.
  • the member 51 is made of a material with a relatively high thermal conductivity, and functions as a heat dissipation member that dissipates heat generated within the housing 31 of the optical transceiver subassembly 30 via the heat dissipation surface 31a2 and the portion 51a.
  • optical fiber guide mechanism 4 the optical fiber 32 passes through an opening Op provided in the upper member 41A (41).
  • the upper member 41 has a surface 41a and a surface 41b as side surfaces that form the opening Op.
  • the surface 41a is configured so that the optical fiber 32 comes into contact with the surface 41a when the optical transceiver subassembly 30 and the upper member 41 are fixed to the substrate 10, in other words, when the switch device 100 is assembled, and the optical fiber 32 that comes into contact with the surface 41a is guided along the surface 41a.
  • the surface 41a is configured as an inclined surface that is inclined in the opposite direction to the Y direction as it approaches the Z direction. Therefore, as shown in FIG. 4, the optical fiber 32 is guided by the surface 41a, bends approximately along the surface 41a, and extends in a direction inclined with respect to the Z direction. In other words, the surface 41a guides the optical fiber 32 to be in a curved state.
  • the surface 41a has specifications such as its position, shape, and inclination angle set so that the optical fiber 32 bends with a radius of curvature larger than the minimum bending radius. This configuration prevents the optical fiber 32 bent along the surface 41a from experiencing excessive bending loss or from breaking.
  • the opening Op forms a guide portion, and the surface 41a is an example of the guide portion and the first surface.
  • the upper member 41 may be made of a material with high heat dissipation properties, such as aluminum or a copper-tungsten alloy.
  • surface 41b faces surface 41a and is spaced apart from surface 41b.
  • Surface 41a is an example of a second surface.
  • the specifications of the surface 41b such as its position, shape, and inclination angle, are set so that when the bent optical fiber 32 comes into contact with the surface 41b, the optical fiber 32 is bent at a radius of curvature larger than the minimum bending radius, in other words, so that the optical fiber 32 does not bend at a radius smaller than the minimum bending radius by coming into contact with the surface 41b. With this configuration, the optical fiber 32 is prevented from breaking.
  • FIG. 6 is a perspective view of the upper member 41A (41).
  • the opening Op penetrates the wall 41c of the upper member 41 in the Z direction.
  • the opening Op is provided as a notch that opens in the side surface 41c1 of the wall 41c.
  • the optical fiber 32 can be inserted by moving it in the direction Di through the open portion of the notch. If the opening Op were configured as a through hole, there is a risk that the work sequence will be restricted or the work will be more time-consuming, such as the end of the optical fiber 32 having to be passed through the opening Op when the optical fiber 32 is not connected to the housing 31 or the connector array.
  • the opening Op is provided as a notch, and the optical fiber 32 can be inserted into the opening Op in a direction intersecting the extension direction.
  • This has the effect of, for example, improving the workability of the optical fiber 32 arrangement, and making it easier to reduce the effort and time required for manufacturing and maintenance.
  • a stopper 41d is provided to prevent the optical fiber 32, which penetrates the opening Op and contacts the surface 41a, from moving along the surface 41a in a direction intersecting the extension direction of the optical fiber 32, in this case, the X direction or the direction opposite to the X direction. This has the effect of preventing, for example, the optical fiber 32 from bending more significantly or coming out of the opening Op configured as a notch.
  • FIG. 7 is an exploded perspective view showing a state before assembling the upper member 41 as a cover member in the switch device 100 or a state after removal.
  • the upper member 41 is integrated with the intermediate member 42 by connecting the fastener 46 passing through the through hole 41e of the upper member 41 to the female screw hole 42b of the intermediate member 42.
  • the upper member 41 can be removed from the intermediate member 42 by removing the fastener 46 from the assembled state.
  • the optical fiber 32 can be inserted into the opening Op from the open portion of the notch.
  • the upper member 41 is moved in the opposite direction of the Z direction toward a predetermined mounting position with the optical fiber 32 inserted in the opening Op, so that the optical fiber 32 comes into contact with the surface 41a and is bent as shown in FIG. 4.
  • the upper member 41 (cover member) can be used to appropriately set the routing direction of the optical fiber 32 at the portion where the optical fiber 32 exits from the upper member 41.
  • FIG. 8 is a cross-sectional view of a portion of the switch device 100B (100) according to the second embodiment where the optical transceiver subassembly 30 is provided, taken at the same position as in FIG.
  • the inclination of the surface 41a on the upper member 41B (41) in the Z direction is different from the inclination of the surface 41a in the Z direction in the first embodiment (see FIG. 4). Accordingly, the arrangement direction of the optical fiber 32 at the position where it exits the upper member 41 is different between this embodiment and the first embodiment. In this way, by changing the specifications of the surface 41a, the arrangement direction of the optical fiber 32 at the position where the optical fiber 32 exits the upper member 41 can be appropriately set.
  • the mechanism for fixing the upper member 41B (41) to the intermediate member 42 differs from that in the first embodiment.
  • the magnet 70c provided on the intermediate member 42 and the magnet 70d provided on the upper member 41 face each other, forming an attraction mechanism using magnetic force.
  • the magnetic force is set to a magnitude that allows the upper member 41 to be detached from the intermediate member 42 by a force applied by an operator or a robot.
  • a magnet may be used in the mechanism for fixing the optical transceiver subassembly 30 to the substrate 10.
  • a magnet provided in the socket 43 (see FIG. 5) and a magnet provided in the optical transceiver subassembly 30 may face each other to form an adhesion mechanism using magnetic force.
  • the magnetic force is set to a level that allows the optical transceiver subassembly 30 to be removed from the socket 43 by the force applied by an operator or robot.
  • the magnet may be provided in a location other than the socket 43.
  • FIG. 9 is a perspective view of the upper member 41C (41) of the third embodiment.
  • a surface 41a is formed on a protruding portion 41f protruding from a side surface 41c1, and the opening Op has a substantially U-shape when viewed in the opposite direction to the Z direction. This provides an effect that, for example, the shape of the opening Op becomes more complicated, making it difficult for the optical fiber 32 to come off the opening Op.
  • Fig. 10 is a cross-sectional view of a portion of the switch device 100D (100) according to the fourth embodiment where the optical transceiver subassembly 30 is provided, taken at the same position as in Fig. 5.
  • Fig. 11 is a perspective view of the upper member 41D (41).
  • optical fiber 32 extends in the opposite direction to the Y direction at the position where it exits from upper member 41D.
  • optical fiber 32 can be bent with a radius of curvature larger than the minimum bending radius.
  • surface 41b faces surface 41a and is spaced apart from surface 41a.
  • Surface 41b faces the Z direction and intersects with and is perpendicular to the Z direction. In this case, too, by appropriately setting the specifications of surface 41b, such as by appropriately setting the distance of surface 41b from surface 41a, it is possible to prevent optical fiber 32 from bending at a radius of curvature smaller than the minimum bending radius.
  • Fig. 12 is a cross-sectional view of a portion of the switch device 100E (100) according to the fifth embodiment where the optical transceiver subassembly 30 is provided, taken at the same position as in Fig. 5,
  • Fig. 13 is a perspective view of an upper member 41E (41) according to the fifth embodiment
  • Fig. 14 is a cross-sectional view of a portion of the switch device 100F (100) according to the sixth embodiment where the optical transceiver subassembly 30 is provided, taken at the same position as in Fig. 5, and
  • Fig. 15 is a perspective view of an upper member 41F (41) according to the sixth embodiment.
  • a connector 33 for an optical fiber 32 is attached to the housing 31 of the optical transceiver subassembly 30.
  • the connector 33 of the fifth embodiment pulls out the optical fiber 32 in the Z direction
  • the connector 33 of the sixth embodiment pulls out the optical fiber 32 in the opposite direction to the Y direction.
  • the direction of the optical fiber 32 at the portion exiting the upper member 41 can be appropriately set by appropriately setting the shape and structure of the upper members 41E, 41F (41) and appropriately setting the specifications of the surface 41a.
  • FIG. 16 is a plan view of a switch device 100G (100) according to the sixth embodiment.
  • the optical fibers 32 in the optical transceiver subassemblies 30 provided along the same side 10c of the substrate 10 are drawn out in the same direction.
  • the drawing out direction may also be referred to as the guide direction of the guide portion.
  • the pull-out direction of the optical fiber 32 is different for each side 10c. That is, the pull-out direction of the optical fiber 32 in the multiple optical transceiver subassemblies 30 arranged along sides 10c1 and 10c3 is a direction between the Z direction and the opposite direction of the X direction, the pull-out direction of the optical fiber 32 in the multiple optical transceiver subassemblies 30 arranged along side 10c2 is a direction between the Z direction, the opposite direction of the X direction, and the opposite direction of the Y direction, and the pull-out direction of the optical fiber 32 in the multiple optical transceiver subassemblies 30 arranged along side 10c4 is a direction between the Z direction, the opposite direction of the X direction, and the Y direction.
  • This pull-out direction can be set by the upper member 41.
  • multiple upper members 41 having the same shape are lined up along each side 10c. This makes it possible to make the pull-out direction of the optical fibers 32 the same in multiple optical transceiver subassemblies 30 arranged along the same side 10c of the substrate 10.
  • the shape of the upper members 41 is different for each side 10c. That is, the shapes of the upper members 41 aligned along side 10c1, the upper members 41 aligned along side 10c2, the upper members 41 aligned along side 10c3, and the upper members aligned along side 10c4 are different from one another.
  • the setting of the pull-out direction of the optical fiber 32 i.e., the wiring direction, is not limited to the example in FIG. 16, and the optical fiber 32 may be pulled out in a direction different from that in FIG. 16, or upper members 41 of different shapes may be provided along the same side 10c, and optical transceiver subassemblies 30 with different pull-out directions of the optical fiber 32 may be provided along the same side 10c.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII in FIG. 16.
  • FIG. 18 is a plan view of the upper member 41G included in the cross-sectional view of FIG. 17, and
  • FIG. 19 is a perspective view of the upper member 41G.
  • the upper members 41G are aligned along the edge 10c2 of the substrate 10.
  • the upper member 41G shown in Figures 17 to 19 has a groove 41g in the opening Op that guides the optical fiber 32.
  • the groove 41g extends in the opposite direction to the Y direction as it approaches the Z direction, and as shown in Figure 18, it extends in the opposite direction to the X direction as it approaches the opposite direction to the Y direction. Therefore, the routing direction Dr of the optical fiber 32 accommodated in the groove 41g is a direction between the Z direction, the opposite direction of the X direction, and the opposite direction of the Y direction.
  • the groove 41g contacts and guides the optical fiber 32, and prevents the optical fiber 32 from moving in a direction intersecting the direction in which the optical fiber 32 extends from the groove 41g.
  • the groove 41g functions as the surface 41a and the stopper 41d.
  • the wiring direction of the optical fiber 32 can be set arbitrarily.
  • the pull-out direction (wiring direction) of the optical fiber 32 of the multiple optical transceiver subassemblies 30 can be set in various ways.
  • Fig. 20 is a perspective view of a part of the switch device 100H (100) of the eighth embodiment.
  • the upper member 41H (41) has a protruding portion 41h protruding from the wall 41c.
  • the protruding portion 41h holds the optical fiber 32 at a plurality of points at a predetermined interval, thereby guiding the optical fiber 32 in a predetermined direction in a bent state.
  • the upper member 41I (41) has a protruding portion 41i protruding from the wall 41c.
  • the protruding portion 41i holds the optical fiber 32 within a predetermined range, thereby guiding the optical fiber 32 in a predetermined direction in a bent state.
  • these upper members 41H, 41I (41) have an effect of improving the protection of the optical fiber 32.
  • FIG. 21 is a perspective view of the switch device 100J (100) of the ninth embodiment.
  • the upper member 41J (41) covers the housings 31 of the optical transceiver subassemblies 30. That is, in this embodiment, it can be said that the upper members 41 in each of the above embodiments are integrated. According to this configuration, the number of parts of the switch device 100J can be reduced, and therefore, the effect of reducing the effort and time required for manufacturing the switch device 100J can be obtained.
  • the upper member 41J covers the housings 31 of all the optical transceiver subassemblies 30 arranged along the same side 10c of the substrate 10, but is not limited thereto.
  • the upper member 41 may cover the housings 31 of multiple optical transceiver subassemblies 30 that are a portion of all optical transceiver subassemblies 30 along the same side 10c of the substrate 10, or may cover the housings 31 of multiple optical transceiver subassemblies 30 along adjacent sides 10c via a corner of the substrate 10, or may cover the housings 31 of all optical transceiver subassemblies 30 provided in the switch device 100.
  • the present invention can be used in substrate assemblies and optical communication devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

基板アセンブリは、例えば、基板(10)と、受光部および発光部のうち少なくとも一方を収容し基板(10)と固定される筐体(31)と、当該筐体(31)から延びた光ファイバ(32)と、を有した光トランシーバサブアセンブリ(30)の、筐体(31)を、基板(10)とは反対側から覆うカバー部材(41)であって、光ファイバを湾曲した状態となるようガイドするガイド部を有し、基板(10)と固定されたカバー部材(41)と、を備える。カバー部材(41)には、ガイド部を形成する開口(Op)が設けられてもよい。また、開口(Op)は、光ファイバ(32)が貫通するとともに、当該開口(Op)内で光ファイバ(32)が延びる方向と交差する方向に開放された切欠であってもよい。

Description

基板アセンブリおよび光通信装置
 本発明は、基板アセンブリおよび光通信装置に関する。
 従来、ネットワークスイッチ装置に用いられる光トランシーバとして、特許文献1に記載された小型光トランシーバが、知られている(例えば、特許文献1)。
特開2020-27147号公報
 CPO(co-packaged optics)を実現するネットワークスイッチ装置では、スイッチASIC(application specific integrated circuit)と、複数の光トランシーバとが、基板上に実装される。
 また、CPOを導入したネットワークスイッチ装置では、光トランシーバとスイッチASIC間の高速信号伝送を実現するために、小型の光トランシーバをスイッチASICの近傍に高密度で実装することで、電気伝送路を短くするのが好ましい。そのため、ネットワークスイッチ装置に搭載する光トランシーバとして、搭載数の増加と、より高密度な配置との観点から、より小型の光トランシーバが要求されている。
 当該装置の筐体内では、複数の光トランシーバと、コネクタアレイとの間で、複数の光ファイバが配索される。
 光トランシーバの増加に伴って光ファイバの数が増加すると、例えば、光ファイバが他の光ファイバや部品と干渉して損傷し易くなったり、装置の製造時やメンテナンス時に光ファイバを配索し難くなったり、といった問題が生じる虞がある。
 そこで、本発明の課題の一つは、例えば、光トランシーバから延びる光ファイバの配索について不都合な事象が生じるのを抑制することが可能となるような、改善された新規な基板アセンブリおよび光通信装置を得ること、である。
 本発明の基板アセンブリは、例えば、基板と、受光部および発光部のうち少なくとも一方を収容し前記基板と固定される筐体と、当該筐体から延びた光ファイバと、を有した光トランシーバサブアセンブリの、前記筐体を、前記基板とは反対側から覆うカバー部材であって、前記光ファイバを湾曲した状態となるようガイドするガイド部を有し、前記基板と固定されたカバー部材と、を備える。
 前記基板アセンブリでは、前記カバー部材に、前記ガイド部を形成する開口が設けられてもよい。
 前記基板アセンブリでは、前記開口は、前記光ファイバが貫通するとともに、当該開口内で前記光ファイバが延びる方向と交差する方向に開放された切欠であってもよい。
 前記基板アセンブリでは、前記ガイド部は、前記光ファイバが接する第一面を有してもよい。
 前記基板アセンブリでは、前記ガイド部は、前記第一面と対向するとともに前記第一面から離れた第二面を有してもよい。
 前記基板アセンブリでは、前記第一面および前記第二面は、それぞれ、前記筐体および前記カバー部材が前記基板と固定された状態において前記光ファイバが接した場合に、前記光ファイバが最小曲げ半径より大きい曲率半径で曲がるよう構成されてもよい。
 前記基板アセンブリでは、前記ガイド部は、前記光ファイバが前記第一面に沿って当該光ファイバが延びる方向と交差する方向に移動するのを抑制するストッパを有してもよい。
 前記基板アセンブリでは、前記カバー部材は、前記筐体を前記基板に固定する固定機構の一部であってもよい。
 前記基板アセンブリでは、前記カバー部材および前記光トランシーバサブアセンブリは、前記基板に対して着脱可能に構成されてもよい。
 前記基板アセンブリは、前記光トランシーバサブアセンブリとして、複数の光トランシーバサブアセンブリを備えてもよい。
 前記基板アセンブリでは、前記複数の光トランシーバサブアセンブリは、前記基板の辺に沿って配置されてもよい。
 前記基板アセンブリは、前記カバー部材として、前記光ファイバをそれぞれ異なる方向へガイドする前記ガイド部を有した複数のカバー部材を備えてもよい。
 前記基板アセンブリでは、前記基板の辺に沿って同じ形状を有した前記複数のカバー部材が並んでもよい。
 前記基板アセンブリでは、前記基板の複数の辺について、前記辺のそれぞれに沿って同じ形状を有した前記複数のカバー部材が並ぶとともに、前記カバー部材の形状が、前記辺毎に異なってもよい。
 前記基板アセンブリでは、前記カバー部材は、前記複数の光トランシーバサブアセンブリの前記筐体を覆ってもよい。
 本発明の光通信装置は、例えば、前記基板アセンブリとしての複数の基板アセンブリと、前記複数の基板アセンブリが装着されたマザーボードと、前記マザーボードに実装され前記複数の基板アセンブリの前記信号処理回路の作動を制御する制御回路と、複数の光コネクタであって、それぞれ前記光トランシーバサブアセンブリから引き出された前記光ファイバと光学的に接続された光コネクタを有した、光コネクタアレイと、を備える。
 前記光通信装置では、前記基板アセンブリ毎に、前記ガイド部による前記光ファイバのガイド方向が異なってもよい。
 前記光通信装置では、前記複数の基板アセンブリについて、前記ガイド部による前記光ファイバのガイド方向が同じであってもよい。
 本発明によれば、例えば、光トランシーバから延びる光ファイバの配索について不都合な事象が生じるのを抑制することが可能となるような、改善された新規な基板アセンブリおよび光通信装置を得ることができる。
図1は、第1実施形態の通信装置の例示的かつ模式的な平面図である。 図2は、第1実施形態のスイッチ装置の例示的かつ模式的な斜視図である。 図3は、第1実施形態のスイッチ装置の例示的かつ模式的な平面図である。 図4は、第1実施形態のスイッチ装置の一部の例示的かつ模式的な側面図(一部断面図)である。 図5は、図3のV-V断面図である。 図6は、第1実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図7は、第1実施形態のスイッチ装置の一部の例示的かつ模式的な分解斜視図である。 図8は、第2実施形態のスイッチ装置の図5と同等位置における例示的かつ模式的な断面図である。 図9は、第3実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図10は、第4実施形態のスイッチ装置の図5と同等位置における例示的かつ模式的な断面図である。 図11は、第4実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図12は、第5実施形態のスイッチ装置の図5と同等位置における例示的かつ模式的な断面図である。 図13は、第5実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図14は、第6実施形態のスイッチ装置の図5と同等位置における例示的かつ模式的な断面図である。 図15は、第6実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図16は、第7実施形態のスイッチ装置の例示的かつ模式的な平面図である。 図17は、図16のXVII-XVII断面図である。 図18は、第7実施形態のスイッチ装置のカバー部材の例示的かつ模式的な平面図である。 図19は、第7実施形態のスイッチ装置のカバー部材の例示的かつ模式的な斜視図である。 図20は、第8実施形態のスイッチ装置の例示的かつ模式的な斜視図である。 図21は、第9実施形態のスイッチ装置の例示的かつ模式的な斜視図である。
 以下、本発明の例示的な実施形態および変形例が開示される。以下に示される実施形態および変形例の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態および変形例に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 以下の実施形態および変形例は、同様の構成要素を有している。以下では、それら同様の構成要素については、共通の符号を付与するとともに、重複する説明を省略する場合がある。
 また、本明細書において、序数は、方向や、部位、部材、機構等を区別するために便宜上付与されうるものである。また、序数は、優先順位や順番を示すものではないし、数を特定するものでもない。
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表す。X方向、Y方向、およびZ方向は、互いに交差するとともに互いに直交している。
[第1実施形態]
 図1は、第1実施形態の光通信装置1000の平面図である。図1に示されるように、光通信装置1000は、マザーボード200と、IC300と、複数のスイッチ装置100と、を備えている。なお、光通信装置1000は、これらの他に、電源モジュールや、冷却用のファン等(いずれも不図示)を備えてもよい。
 マザーボード200は、Z方向と交差するとともに直交して広がり、板状の形状を有している。マザーボード200は、面200aと、面200bと、を有している。面200aは、Z方向を向くとともに、Z方向と交差するとともに直交している。また、面200bは、面200aとは反対側でZ方向の反対方向を向くとともに、Z方向と交差するとともに直交している。
 複数のスイッチ装置100は、面200a上に実装され、IC300は、面200b上に実装されている。なお、IC300は、面200a上に実装されてもよい。
 IC300は、複数のスイッチ装置100の作動を制御するとともに、当該複数のスイッチ装置100との間で通信信号を伝送する。IC300は、制御回路の一例である。
 マザーボード200の導体(不図示)とスイッチ装置100の導体(不図示)とは、コネクタ内の導体(不図示)を介して電気的に接続されている。
 マザーボード200は、筐体1001内に収容されている。筐体1001を構成する壁の一部には、光コネクタアレイ1002が設けられている。
 光ファイバ32(図1には不図示、図2等参照)は、各スイッチ装置100に実装された光トランシーバサブアセンブリ30と、光コネクタアレイ1002に設けられた光コネクタ(不図示)との間で、配索される。
 この場合、光ファイバ32のスイッチ装置100(光トランシーバサブアセンブリ30)から引き出される引出方向は、スイッチ装置100毎に異なってもよいし、複数のスイッチ装置100について同じであってもよい。
 図2は、第1実施形態のスイッチ装置100A(100)の斜視図である。図3は、スイッチ装置100A(100)の平面図である。図4は、図2の矢印IVにおいてY方向に見た場合の、スイッチ装置100A(100)の一部の側面図(一部断面図)である。また、図5は、図3のV-V断面図である。
 図2に示されるように、スイッチ装置100は、マザーボード200上に実装されている。なお、本実施形態では、マザーボード200上には、一つのスイッチ装置100のみが実装されているが、マザーボード200上には、複数のスイッチ装置100が実装されてもよい。マザーボード200は、統合基板とも称されうる。
 図2,3に示されるように、スイッチ装置100は、基板10と、複数の光トランシーバサブアセンブリ30と、光トランシーバサブアセンブリ30を基板10に固定する固定機構40と、を備えている。スイッチ装置100のうち、基板10および固定機構40を、基板アセンブリと称する。基板アセンブリは、マザーボード200に実装可能である。なお、基板10には、スイッチASIC20(図1参照)や、光トランシーバサブアセンブリ30用の放熱機構、スイッチASIC20用の放熱機構等も実装される。スイッチASIC20は、信号処理回路の一例である。基板10は、ドータボードとも称されうる。
 図3に示されるように、基板10は、正方形状(四角形状)の形状を有している。また、図5に示されるように、基板10は、Z方向と交差するとともに直交して広がるとともに、板状の形状を有し、Z方向を向く面10aと、当該面10aとは反対側でZ方向の反対方向を向く面10bと、を有している。面10a,10bは、Z方向と交差するとともに直交して広がっている。基板10は、例えば、プリント配線基板である。Z方向は、基板10の第一方向の一例であり、基板10の厚さ方向とも称されうる。また、面10aは、第一面の一例であり、面10bは、第二面の一例である。マザーボード200に搭載できる基板10の数を増やすという観点からは、基板10の1辺の長さは短い方が良く、例えば、15[cm]以下であるのが好ましく、10[cm]以下であるのがより好ましい。
 図2~4に示される光トランシーバサブアセンブリ30は、それぞれ、光ファイバ32において伝送された光信号を受光し、当該光信号に応じた電気信号を出力する。光トランシーバサブアセンブリ30から出力された電気信号は、ソケット43(図5参照)および基板10に設けられた導体を介して、スイッチASICへ入力される。光トランシーバサブアセンブリ30は、光信号を受光する複数の受光部として、フォトダイオードアレイ(不図示)を有している。また、光トランシーバサブアセンブリ30は、それぞれ、スイッチASICから基板10およびソケット43に設けられた導体を介して電気信号を受信し、当該電気信号に応じた光信号を出力する。光トランシーバサブアセンブリ30から出力された光信号は、光ファイバ32に結合され、当該光ファイバ32において伝送される。光トランシーバサブアセンブリ30は、光信号を出力する複数の発光部として、例えば、VCSELアレイ(不図示、VCSEL:vertical cavity surface emitting laser)を有している。スイッチ装置100の伝送容量を増大するためには、光トランシーバサブアセンブリ30の一つあたりの伝送容量は、大きい方がよく、例えば、400[Gb/s]以上であるのが好ましい。また、スイッチ装置100の一辺に搭載可能な光トランシーバサブアセンブリ30の数を増やすという観点からは、当該光トランシーバサブアセンブリ30の横幅は小さい方がよく、例えば、10[mm]以下であるのが好ましく、8[mm]以下であるのがより好ましい。また、光ファイバ32の種類は限定されず、例えば、シングルモードファイバ、マルチモードファイバ、リボンファイバ、マルチコアファイバ等である。
 図3に示されるように、複数の光トランシーバサブアセンブリ30は、基板10の各辺10cに沿って配置されている。また、本実施形態では、図5に示されるように、光トランシーバサブアセンブリ30は、それぞれ、当該辺10cを覆うように実装されている。言い換えると、光トランシーバサブアセンブリ30は、それぞれ、Z方向の反対側に見た場合に、辺10cを跨ぐように設けられており、辺10cの内側に位置する部位と、辺10cの外側に位置する部位と、を有している。これにより、光トランシーバサブアセンブリ30から延びた光ファイバ32と、基板10上に実装されたスイッチASICのような他の部品等との干渉を、回避しやすくなったり、基板10をより小さく構成できたり、という利点が得られる。
 また、図2,3に示されるように、複数の光トランシーバサブアセンブリ30は、基板10の辺10c毎に設けられた固定機構40によって、基板10と固定されている。固定機構40は、四つの辺10c毎に、すなわち合計4個、設けられており、各辺10cに沿って配置される複数(本実施形態では一例として8個)の光トランシーバサブアセンブリ30について、共用されている。このように、複数の光トランシーバサブアセンブリ30について固定機構40が共用されることにより、例えば、光トランシーバサブアセンブリ30がそれぞれの固定機構によって基板10に固定された場合に比べて、固定機構40の基板10への取付構造をより簡素化したり、部品点数をより少なくしたりすることができ、ひいてはスイッチ装置100の製造の手間やコストを抑制できるという利点が得られる。また、本実施形態によれば、4辺で合計32個の光トランシーバサブアセンブリ30を搭載することが可能であり、例えば、光トランシーバサブアセンブリ30の一つあたりの伝送容量が400[Gb/s]以上であった場合、スイッチ装置100の伝送容量は12.8[Tb/s]以上となる。
 スイッチASICは、基板10の辺10cのそれぞれから離れた位置(本実施形態では一例として基板10の略中央部)で、基板10に例えばフリップチップ実装される。スイッチASICは、各光トランシーバサブアセンブリ30の作動を制御する。スイッチASICは、半導体集積回路の一例である。
 図4,5に示されるように、本実施形態では、一例として、固定機構40は、上側部材41、中間部材42、およびソケット43を有している。これら固定機構40の構成要素は、ねじのような固定具46によって一体化されている。また、固定機構40の構成要素のうち、中間部材42、およびソケット43は、基板10の辺10cに沿った複数の光トランシーバサブアセンブリ30の群に含まれる全ての光トランシーバサブアセンブリ30について共用されている。図5に示されるように、固定機構40は、基板10の辺10cの近傍に位置した光トランシーバサブアセンブリ30を、基板10の厚さ方向に挟むような状態で、当該基板10に固定している。
 また、光トランシーバサブアセンブリ30の装着後の交換を可能とするため、固定機構40は、基板10と固定される構成要素と、基板10に対して着脱可能な構成要素とを含んでいる。本実施形態では、中間部材42およびソケット43は、基板10に対して固定され、上側部材41は、中間部材42すなわち基板10に対して着脱可能に構成されている。具体的には、図5に示されるように、上側部材41は、中間部材42に、取り外し可能なねじとして構成された固定具46によって、取り付けられている。光トランシーバサブアセンブリ30は、Z方向に動かして取り外すことができるとともに、Z方向の反対方向に動かして取り付けることができる。光トランシーバサブアセンブリ30は、このような構成の固定機構40を介して、基板10に対して着脱可能に固定されている。
 また、本実施形態では、上側部材41は、辺10cに沿った複数の光トランシーバサブアセンブリ30のうち全てに共用されるのではなく、辺10cに沿って隣り合った二つの光トランシーバサブアセンブリ30についてのみ共用されている。これにより、例えば、光トランシーバサブアセンブリ30の個々の取り外しの容易化と部品の共用化とを両立することができたり、固定機構40の撓みや、固定機構40の構成要素、光トランシーバサブアセンブリ30等の製造ばらつきの影響を減らして位置決め精度をより向上できたり、といった利点が得られる。ただし、このような構成は一例であって、上側部材41は、辺10cに沿った複数の光トランシーバサブアセンブリ30のうち全てに共用されてもよい。
 図5に示されるように、光トランシーバサブアセンブリ30は、光トランシーバの筐体31と、複数の光ファイバ32(図2参照)と、を有している。なお、以下の説明では、特に言及しない限り、光トランシーバサブアセンブリ30が基板10と固定された状態について述べるものとする。筐体31内には、基板や、上述した受光部、発光部、その他の部品等が収容されている。
 筐体31は、Z方向の反対方向を向く面31aを有している。面31aには、複数の電極のアレイ(不図示)が設けられた電気インタフェース31a1と、放熱面31a2と、が設けられている。固定状態で、電気インタフェース31a1および放熱面31a2は、いずれもZ方向の反対方向に面するとともに、基板10の面10aと略沿いかつ基板10の辺10cと交差する方向(図5に示される光トランシーバサブアセンブリ30ではX方向)に並んでいる。光トランシーバサブアセンブリ30の内部の発熱体は、放熱面31a2とZ方向に並んでいる。放熱面31a2は、放熱部とも称され、電気インタフェース31a1は、第一電気インタフェースとも称されうる。
 図4に示されるように、複数の光ファイバ32は、筐体31の面31aとは離れた部位、具体的には、放熱面31a2とは反対側で、当該放熱面31a2とZ方向に並ぶ部位から、延びている。
 図5に示されるように、基板10上には、ソケット43、中間部材42、および上側部材41がこの順に載せられている。
 図4に示されるように、上側部材41のZ方向と交差した壁41cは、光トランシーバサブアセンブリ30の筐体31に対してZ方向にずれて位置し、筐体31を基板10とは反対側から覆い、当該筐体31を、基板10や、ソケット43に向けて、Z方向の反対方向に押圧している。上側部材41は、カバー部材の一例である。
 上側部材41には、当該上側部材41をZ方向に貫通する開口Opが設けられている。光ファイバ32は、当該開口Opを通り、上側部材41の外へ延びている。
 図5に示されるように、中間部材42には、Z方向に延びた貫通孔としての開口42aが設けられている。開口42aの側面は、光トランシーバサブアセンブリ30の筐体31を装着する際にX方向およびY方向に大まかにガイドする機能を有している。上側部材41は、ガイド部材とも称されうる。
 ソケット43は、基板10の面10a上に載せられるとともに、光トランシーバサブアセンブリ30の筐体31を支持している。ソケット43には、電気インタフェース43aと、開口43bと、が設けられている。電気インタフェース43aは、第二電気インタフェースとも称されうる。
 電気インタフェース43aは、光トランシーバサブアセンブリ30の筐体31に設けられた電気インタフェース31a1と面するとともに接し、電気インタフェース31a1に設けられた複数の電極のそれぞれと電気的に接続される導体43a1を有している。導体43a1は、例えば、Z方向に延びた弾性的に伸縮可能なピンを有した接触端子として構成することができる。導体43a1は、基板10の導体(不図示)と電気的に接続されている。また、上述したように、光トランシーバサブアセンブリ30が、上側部材41によってZ方向の反対方向への荷重を加えられることにより、電気インタフェース31a1と導体43a1の安定した電気的接続を実現することができる。光トランシーバサブアセンブリ30の電気インタフェース31a1の各電極は、ソケット43の電気インタフェース43aの導体43a1、および基板10の導体を介して、スイッチASICの導体と電気的に接続されている。電気インタフェース43aを有したソケット43を備えることにより、例えば、基板10に直接電気インタフェース43aを設けた場合に比べて、複数の電極の所要の位置決め精度を確保できる構成を、より容易に構築できるという利点が得られる。なお、電気インタフェース43aのうち、導体43a1の周囲に位置し当該導体43a1を支持する絶縁体43a2の熱伝導率は、放熱面31a2の熱伝導率より低い。
 開口43bは、光トランシーバサブアセンブリ30の筐体31に設けられた放熱面31a2を、Z方向の反対方向に露出する。開口43bは、例えば、ソケット43をZ方向に貫通した貫通孔あるいは切欠として設けられる。
 部材51の部位51aが、開口43bを貫通し、可撓性を有した熱伝導シート47を介して放熱面31a2と隣り合い、放熱面31a2と熱的に接続されている。部材51は、比較的熱伝導率の高い材料で作られており、光トランシーバサブアセンブリ30の筐体31内で生じた熱を放熱面31a2および部位51aを経由して逃がす放熱部材として機能している。
[光ファイバのガイド機構]
 図4に示されるように、光ファイバ32は、上側部材41A(41)に設けられた開口Opを貫通している。上側部材41は、開口Opを形成する側面として、面41aと、面41bと、を有している。
 面41aは、光トランシーバサブアセンブリ30および上側部材41が基板10に対して固定された状態、言い換えると、スイッチ装置100が組み立てられた状態で、光ファイバ32が接するとともに、当該接した光ファイバ32が、当該面41aに沿ってガイドされるよう、構成されている。面41aは、Z方向に向かうにつれてY方向の反対方向に向かうように傾斜した傾斜面として構成されている。よって、図4に示されるように、光ファイバ32は、面41aにガイドされ、当該面41aに略沿って曲がり、Z方向に対して傾斜した方向に延びる。すなわち、面41aは、光ファイバ32を湾曲した状態となるようガイドしている。また、当該面41aについては、光ファイバ32が、最小曲げ半径より大きい曲率半径で曲がるよう、その位置や、形状、傾斜角度のようなスペックが設定されている。このような構成により、面41aに沿って曲がった光ファイバ32に過大な曲げ損失が生じたり、当該光ファイバ32が折れたりすることが、抑制されている。開口Opは、ガイド部を形成しており、面41aは、ガイド部および第一面の一例である。なお、上側部材41は、例えば、アルミ、銅タングステン合金のような、放熱性が高い材料で作られてもよい。
 また、面41bは、面41aと対向するとともに、当該面41bから離れている。面41aは、第二面の一例である。
 ここで、図4に示されるように、組み立てやメンテナンスの作業時等において、面41aに沿って曲がっている光ファイバ32に、さらに曲がられる方向の力Fが作用した場合、光ファイバ32の曲率半径がさらに小さくなる。この際、光ファイバ32が最小曲げ半径より小さい曲率半径で曲がると、当該光ファイバ32は折れる虞がある。そこで、本実施形態では、当該面41bについては、曲がった光ファイバ32が当該面41bと接した場合に、当該光ファイバ32が最小曲げ半径より大きい曲率半径で曲がった状態となるよう、言い換えると、面41bと当たることによって光ファイバ32が最小曲げ半径より小さい半径で曲がらないよう、その位置や、形状、傾斜角度のようなスペックが設定されている。このような構成により、光ファイバ32が折れることが抑制されている。
 図6は、上側部材41A(41)の斜視図である。図4に示されるように、開口Opは、上側部材41の壁41cをZ方向に貫通している。また、図6に示されるように、開口Opは、壁41cの側面41c1に開口した切欠として設けられている。この場合、光ファイバ32を、当該切欠の開放部位を介して方向Diに動かして挿入することができる。仮に、開口Opが貫通孔として構成されていた場合にあっては、光ファイバ32が筐体31またはコネクタアレイと接続されていない状態で、当該光ファイバ32の端部を開口Opに通す必要があるなど、作業順序に制約が生じたり、作業により手間を要したりする虞がある。この点、本実施形態では、開口Opは切欠として設けられており、当該開口Opに光ファイバ32をその延び方向と交差した方向に挿入することができる。これにより、例えば、光ファイバ32の配索に関する作業性が向上し、製造やメンテナンスに要する手間や時間をより低減しやすくなるという効果が得られる。
 また、図6に示されるように、本実施形態では、開口Opを貫通し面41aと接した光ファイバ32が、当該面41aに沿って光ファイバ32の延び方向と交差する方向、この場合、X方向またはX方向の反対方向に移動するのを抑制するストッパ41dが設けられている。これにより、例えば、光ファイバ32がより大きく曲がるのを抑制することができたり、切欠として構成された開口Opから外れたりするのを抑制することができるという効果が得られる。
[カバー部材の着脱]
 図7は、スイッチ装置100において、カバー部材としての上側部材41を組み立てる前の状態、あるいは取り外した状態を示す分解斜視図である。図7に示されるように、上側部材41は、当該上側部材41の貫通孔41eを貫通した固定具46を中間部材42の雌ねじ孔42bに結合することにより、中間部材42と一体化される。逆に、組み付けられた状態から、固定具46を取り外すことにより、上側部材41を中間部材42から取り外すことができる。光ファイバ32は、切欠の開放部位から開口Op内に挿入することができる。組み立て時には、光ファイバ32が開口Op内に挿入された状態で、上側部材41を所定の取付位置に向けてZ方向の反対方向へ移動することにより、当該光ファイバ32は、図4に示されるように面41aと接触して曲がった状態となる。
 以上、説明したように、本実施形態のスイッチ装置100A(100)によれば、上側部材41(カバー部材)を利用して、光ファイバ32が当該上側部材41から外へ出る部位における当該光ファイバ32の配索方向を、適宜に設定することができる。すなわち、本実施形態によれば、筐体31から延びる光ファイバ32の配索について不都合な事象が生じるのを抑制することが可能となるような、改善された新規な基板アセンブリを得ることができる。
[第2実施形態]
 図8は、第2実施形態のスイッチ装置100B(100)の、光トランシーバサブアセンブリ30が設けられた部位の、図5と同等位置での断面図である。
 図8を図4と比較すれば明らかとなるように、本実施形態では、上側部材41B(41)に設けられた面41aのZ方向に対する傾き(図8参照)が、第1実施形態における面41aのZ方向に対する傾き(図4参照)と相違している。これに伴い、本実施形態と上記第1実施形態とで、上側部材41から外へ出る位置における光ファイバ32の配索方向が、相違している。このように、面41aのスペックを変更することにより、光ファイバ32が当該上側部材41から外へ出る部位における当該光ファイバ32の配索方向を、適宜に設定することができる。
 また、本実施形態では、上側部材41B(41)を中間部材42に対して固定する機構が、上記第1実施形態とは相違している。具体的に、本実施形態では、中間部材42に設けられたマグネット70cと、上側部材41に設けられたマグネット70dとが、互いに面し、磁力による吸着機構を構成している。磁力は、作業者あるいはロボットにより印加した力により、上側部材41を中間部材42から取り外すことができる程度の大きさに設定される。
 さらに、図示しないが、光トランシーバサブアセンブリ30を基板10に対して固定する機構に、マグネットを用いてもよい。具体的には、例えば、ソケット43(図5参照)に設けられたマグネットと、光トランシーバサブアセンブリ30に設けられたマグネットとが、互いに面し、磁力による吸着機構を構成すればよい。この場合も、磁力は、作業者あるいはロボットにより印加した力により、光トランシーバサブアセンブリ30をソケット43から取り外すことができる程度の大きさに設定される。なお、マグネットは、ソケット43とは異なる部位に設けられてもよい。
[第3実施形態]
 図9は、第3実施形態の上側部材41C(41)の斜視図である。本実施形態では、側面41c1から突出する突出部41fに面41aが形成されており、開口Opは、Z方向の反対方向に見た場合に略U字状の形状を有している。これにより、例えば、開口Opの形状がより複雑化する分、光ファイバ32が開口Opから外れ難くなるという効果が得られる。
[第4実施形態]
 図10は、第4実施形態のスイッチ装置100D(100)の、光トランシーバサブアセンブリ30が設けられた部位の、図5と同等位置での断面図である。また、図11は、上側部材41D(41)の斜視図である。
 図10に示されるように、本実施形態では、面41aは、Z方向の反対方向を向き、当該Z方向と交差するとともに直交している。これにより、光ファイバ32は、上側部材41Dから外へ出る位置において、Y方向の反対方向に延びている。この場合も、例えば、面41aの筐体31からの距離を適宜に設定するなど、面41aのスペックを適宜に設定することにより、光ファイバ32を、最小曲げ半径より大きい曲率半径で曲げることができる。
 また、面41bは、面41aと対向するとともに、当該面41aから離れている。面41bは、Z方向を向き、当該Z方向と交差するともに直交している。この場合も、面41bの面41aからの距離を適宜に設定するなど、面41bのスペックを適宜に設定することにより、光ファイバ32を、最小曲げ半径より小さい曲率半径で曲がらないようにすることができる。
[第5,第6実施形態]
 図12は、第5実施形態のスイッチ装置100E(100)の、光トランシーバサブアセンブリ30が設けられた部位の、図5と同等位置での断面図であり、図13は、第5実施形態の上側部材41E(41)の斜視図である。また、図14は、第6実施形態のスイッチ装置100F(100)の、光トランシーバサブアセンブリ30が設けられた部位の、図5と同等位置での断面図であり、図15は、第6実施形態の上側部材41F(41)の斜視図である。
 図12,14に示されるように、第5,第6実施形態では、光トランシーバサブアセンブリ30の筐体31に、光ファイバ32のコネクタ33が取り付けられている。第5実施形態のコネクタ33(図12参照)は、光ファイバ32をZ方向に引き出し、第6実施形態のコネクタ33(図14参照)は、光ファイバ32をY方向の反対方向に引き出している。これらの場合も、上側部材41E,41F(41)の形状や構造を適宜に設定し、面41aのスペックを適宜に設定することにより、上側部材41から外へ出る部位における光ファイバ32の配索方向を、適宜に設定することができる。
[第7実施形態]
 図16は、第6実施形態のスイッチ装置100G(100)の平面図である。図16に示されるように、スイッチ装置100Gにおいては、基板10の同じ辺10cに沿って設けられる複数の光トランシーバサブアセンブリ30における光ファイバ32の引出方向は、同じである。引出方向は、ガイド部によるガイド方向とも称されうる。
 また、光ファイバ32の引出方向は、辺10c毎に異なっている。すなわち、辺10c1および辺10c3に沿って設けられる複数の光トランシーバサブアセンブリ30における光ファイバ32の引出方向は、Z方向とX方向の反対方向との間の方向であり、辺10c2に沿って設けられる複数の光トランシーバサブアセンブリ30における光ファイバ32の引出方向は、Z方向とX方向の反対方向とY方向の反対方向との間の方向であり、辺10c4に沿って設けられる複数の光トランシーバサブアセンブリ30における光ファイバ32の引出方向は、Z方向とX方向の反対方向とY方向との間の方向である。
 このような、引出方向は、上側部材41によって設定することができる。まず、本実施形態では、各辺10cに沿って、同じ形状を有した複数の上側部材41が並んでいる。これにより、基板10の同じ辺10cに沿って設けられる複数の光トランシーバサブアセンブリ30における光ファイバ32の引出方向を同じにすることができる。
 また、本実施形態では、上側部材41の形状が、辺10c毎に異なっている。すなわち、辺10c1に沿って並ぶ上側部材41の形状と、辺10c2に沿って並ぶ上側部材41の形状と、辺10c3に沿って並ぶ上側部材41の形状と、辺10c4に沿って並ぶ上側部材の形状とが、互いに相違している。ただし、光ファイバ32の引出方向、すなわち配索方向の設定は、図16の例には限定されず、光ファイバ32は、図16とは異なる方向に引き出されてもよいし、同じ辺10cに沿って異なる形状の上側部材41が設けられ、同じ辺10cに沿って光ファイバ32の引出方向が異なる光トランシーバサブアセンブリ30が設けられてもよい。
 図17は、図16のXVII-XVII断面図である。また、図18は、図17の断面図に含まれる上側部材41Gの平面図であり、図19は、当該上側部材41Gの斜視図である。上側部材41Gは、基板10の辺10c2に沿って並んでいる。
 図17~19に示される上側部材41Gには、開口Opに、光ファイバ32をガイドする溝41gが設けられている。溝41gは、図17に示されるように、Z方向に向かうにつれてY方向の反対方向に向かうように延びるとともに、図18に示されるように、Y方向の反対方向に向かうにつれてX方向の反対方向に向かうように延びている。したがって、当該溝41gに収容された光ファイバ32の配索方向Drは、Z方向とX方向の反対方向とY方向の反対方向との間の方向となる。
 そして、図19に示されるように、溝41gは、光ファイバ32が接してガイドされるとともに、当該溝41gから光ファイバ32の延びる方向と交差する方向に移動するのを抑制している。すなわち、溝41gは、面41aおよびストッパ41dとして機能することになる。
 このように、上側部材41の形状を種々に設定することにより、光ファイバ32の配索方向を任意に設定することができる。また、スイッチ装置100において、形状が異なる上側部材41を設けることにより、複数の光トランシーバサブアセンブリ30の光ファイバ32の引出方向(配索方向)を、種々に設定することができる。
[第8実施形態]
 図20は、第8実施形態のスイッチ装置100H(100)の一部の斜視図である。図20に示されるように、上側部材41H(41)は、壁41cから突出した突出部41hを有している。当該突出部41hは、光ファイバ32の複数箇所を所定間隔で保持することにより、当該光ファイバ32を曲がった状態で所定方向にガイドしている。また、上側部材41I(41)は、壁41cから突出した突出部41iを有している。当該突出部41iは、光ファイバ32を所定範囲で保持することにより、当該光ファイバ32を曲がった状態で所定方向にガイドしている。また、これら上側部材41H,41I(41)によれば、光ファイバ32の保護性を高めることができるという効果が得られる。
[第9実施形態]
 図21は、第9実施形態のスイッチ装置100J(100)の斜視図である。図21に示されるように、上側部材41J(41)は、複数の光トランシーバサブアセンブリ30の筐体31を覆っている。すなわち、本実施形態では、上記各実施形態における複数の上側部材41が、統合されたものであると言うことができる。当該構成によれば、スイッチ装置100Jの部品点数を減らすことができるため、当該スイッチ装置100Jの製造に要する手間や時間を低減することができるという効果が得られる。なお、本実施形態では、一例として、上側部材41Jは、基板10の同じ辺10cに沿って並ぶ全ての光トランシーバサブアセンブリ30の筐体31を覆ったが、これには限定されない。例えば、上側部材41は、基板10の同じ辺10cに沿う全ての光トランシーバサブアセンブリ30のうちの一部である複数の光トランシーバサブアセンブリ30の筐体31を覆ってもよいし、基板10の角部を介して互いに隣接した辺10cに沿う複数の光トランシーバサブアセンブリ30の筐体31を覆ってもよいし、スイッチ装置100に設けられる全ての光トランシーバサブアセンブリ30の筐体31を覆ってもよい。
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 本発明は、基板アセンブリおよび光通信装置に利用することができる。
10…基板(基板アセンブリ)
10a…面(第一面)
10b…面(第二面)
10c,10c1~10c4…辺
20…スイッチASIC(信号処理回路)
30…光トランシーバサブアセンブリ
31…筐体
31a…面
31a1…電気インタフェース
31a2…放熱面
32…光ファイバ
40…固定機構
41,41A~41J…上側部材(カバー部材)
41a…面(第一面)
41b…面(第二面)
41c…壁
41c1…側面
41d…ストッパ
41e…貫通孔
41f…突出部
41g…溝
41h,41i…突出部
42…中間部材
42a…開口
42b…雌ねじ孔
43…ソケット
43a…電気インタフェース
43a1…導体
43a2…絶縁体
43b…開口
46…固定具
47…熱伝導シート
51…部材
51a…部位
70c,70d…マグネット
100,100A,100B,100D~100H,100J…スイッチ装置
200…マザーボード
200a,200b…面
300…IC(制御回路)
1000…光通信装置
1001…筐体
1002…光コネクタアレイ
Di…方向
Dr…配索方向
F…力
Op…開口
X…方向
Y…方向
Z…方向

Claims (18)

  1.  基板と、
     受光部および発光部のうち少なくとも一方を収容し前記基板と固定される筐体と、当該筐体から延びた光ファイバと、を有した光トランシーバサブアセンブリの、前記筐体を、前記基板とは反対側から覆うカバー部材であって、前記光ファイバを湾曲した状態となるようガイドするガイド部を有し、前記基板と固定されたカバー部材と、
     を備えた、基板アセンブリ。
  2.  前記カバー部材に、前記ガイド部を形成する開口が設けられた、請求項1に記載の基板アセンブリ。
  3.  前記開口は、前記光ファイバが貫通するとともに、当該開口内で前記光ファイバが延びる方向と交差する方向に開放された切欠である、請求項2に記載の基板アセンブリ。
  4.  前記ガイド部は、前記光ファイバが接する第一面を有した、請求項1に記載の基板アセンブリ。
  5.  前記ガイド部は、前記第一面と対向するとともに前記第一面から離れた第二面を有した、請求項4に記載の基板アセンブリ。
  6.  前記第一面および前記第二面は、それぞれ、前記筐体および前記カバー部材が前記基板と固定された状態において前記光ファイバが接した場合に、前記光ファイバが最小曲げ半径より大きい曲率半径で曲がるよう構成された、請求項5に記載の基板アセンブリ。
  7.  前記ガイド部は、前記光ファイバが前記第一面に沿って当該光ファイバが延びる方向と交差する方向に移動するのを抑制するストッパを有した、請求項4~6のうちいずれか一つに記載の基板アセンブリ。
  8.  前記カバー部材は、前記筐体を前記基板に固定する固定機構の一部である、請求項1に記載の基板アセンブリ。
  9.  前記カバー部材および前記光トランシーバサブアセンブリは、前記基板に対して着脱可能に構成された、請求項8に記載の基板アセンブリ。
  10.  前記光トランシーバサブアセンブリとして、複数の光トランシーバサブアセンブリを備えた、請求項1に記載の基板アセンブリ。
  11.  前記複数の光トランシーバサブアセンブリは、前記基板の辺に沿って配置された、請求項10に記載の基板アセンブリ。
  12.  前記カバー部材として、前記光ファイバをそれぞれ異なる方向へガイドする前記ガイド部を有した複数のカバー部材を備えた、請求項10または11に記載の基板アセンブリ。
  13.  前記基板の辺に沿って同じ形状を有した前記複数のカバー部材が並んだ、請求項12に記載の基板アセンブリ。
  14.  前記基板の複数の辺について、
     前記辺のそれぞれに沿って同じ形状を有した前記複数のカバー部材が並ぶとともに、
     前記カバー部材の形状が、前記辺毎に異なる、請求項13に記載の基板アセンブリ。
  15.  前記カバー部材は、前記複数の光トランシーバサブアセンブリの前記筐体を覆った、請求項10または11に記載の基板アセンブリ。
  16.  請求項1~5のうちいずれか一つに記載の基板アセンブリとしての複数の基板アセンブリと、
     前記複数の基板アセンブリが装着されたマザーボードと、
     前記マザーボードに実装され前記複数の基板アセンブリに設けられた信号処理回路の作動を制御する制御回路と、
     複数の光コネクタであって、それぞれ前記光トランシーバサブアセンブリから引き出された前記光ファイバと光学的に接続された光コネクタを有した、光コネクタアレイと、
     を備えた、光通信装置。
  17.  前記基板アセンブリ毎に、前記ガイド部による前記光ファイバのガイド方向が異なる、請求項16に記載の光通信装置。
  18.  前記複数の基板アセンブリについて、前記ガイド部による前記光ファイバのガイド方向が同じである、請求項16に記載の光通信装置。
PCT/JP2024/010793 2023-03-31 2024-03-19 基板アセンブリおよび光通信装置 WO2024203634A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-058764 2023-03-31
JP2023058764 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203634A1 true WO2024203634A1 (ja) 2024-10-03

Family

ID=92904841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010793 WO2024203634A1 (ja) 2023-03-31 2024-03-19 基板アセンブリおよび光通信装置

Country Status (1)

Country Link
WO (1) WO2024203634A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128413A1 (ja) * 2008-04-14 2009-10-22 古河電気工業株式会社 光モジュール取付ユニット及び光モジュール
JP2011253180A (ja) * 2010-05-03 2011-12-15 Avago Technologies Fiber Ip (Singapore) Pte Ltd 並列光トランシーバ・モジュールと共に使用する、浮遊物体からこのモジュールの部品を保護するための保護ソケット
JP2013104884A (ja) * 2011-11-10 2013-05-30 Yazaki Corp 光路変換部材及び光モジュール
US20140203175A1 (en) * 2011-12-30 2014-07-24 Mauro J. Kobrinsky Optical i/o system using planar light-wave integrated circuit
JP2015031801A (ja) * 2013-08-01 2015-02-16 富士通株式会社 光モジュールおよび光ファイバの実装方法
WO2017138152A1 (ja) * 2016-02-12 2017-08-17 住友電気工業株式会社 光トランシーバの放熱装置及び光通信装置
JP2020008626A (ja) * 2018-07-04 2020-01-16 古河電気工業株式会社 光路曲げコネクタ、光路曲げコネクタアッセンブリ
US20200278508A1 (en) * 2019-02-28 2020-09-03 Teramount Ltd. Fiberless co-packaged optics
JP2023150085A (ja) * 2022-03-31 2023-10-16 古河電気工業株式会社 基板アセンブリ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128413A1 (ja) * 2008-04-14 2009-10-22 古河電気工業株式会社 光モジュール取付ユニット及び光モジュール
JP2011253180A (ja) * 2010-05-03 2011-12-15 Avago Technologies Fiber Ip (Singapore) Pte Ltd 並列光トランシーバ・モジュールと共に使用する、浮遊物体からこのモジュールの部品を保護するための保護ソケット
JP2013104884A (ja) * 2011-11-10 2013-05-30 Yazaki Corp 光路変換部材及び光モジュール
US20140203175A1 (en) * 2011-12-30 2014-07-24 Mauro J. Kobrinsky Optical i/o system using planar light-wave integrated circuit
JP2015031801A (ja) * 2013-08-01 2015-02-16 富士通株式会社 光モジュールおよび光ファイバの実装方法
WO2017138152A1 (ja) * 2016-02-12 2017-08-17 住友電気工業株式会社 光トランシーバの放熱装置及び光通信装置
JP2020008626A (ja) * 2018-07-04 2020-01-16 古河電気工業株式会社 光路曲げコネクタ、光路曲げコネクタアッセンブリ
US20200278508A1 (en) * 2019-02-28 2020-09-03 Teramount Ltd. Fiberless co-packaged optics
JP2023150085A (ja) * 2022-03-31 2023-10-16 古河電気工業株式会社 基板アセンブリ

Similar Documents

Publication Publication Date Title
TWI452371B (zh) 中平面安置之光學通信系統及提供平行光學通信模組之高密度中平面安置之方法
JP5224416B2 (ja) 光モジュール取付ユニット及び光モジュール
US8358504B2 (en) Direct cooling system and method for transceivers
JP4238187B2 (ja) 光電気複合型コネクタ及びそれを用いた基板
US7766558B2 (en) Optical transceiver
JP2012009851A (ja) アクティブ光ケーブルで使用するための民生用入力/出力(cio)光トランシーバ・モジュール及び方法
US20120207427A1 (en) Optical module connection device
JP2004512547A (ja) 電気光学コネクタモジュール
US8920048B2 (en) Communications module with a shell assembly having thermal mechanical features
JP2016004265A (ja) 光モジュール及び光トランシーバ
US8770864B2 (en) Receptacle assembly and transceiver module assembly
US9590366B1 (en) Cable assembly and communication system configured to receive the cable assembly
US8172467B2 (en) Optical backplane connector, photoelectric conversion module and optical backplane
WO2017195714A1 (ja) トランシーバモジュール、トランシーバモジュール用リセプタクルアセンブリ、および、トランシーバモジュールアセンブリ
US20230026337A1 (en) Optical receptacle connector for an optical communication system
CN111566532A (zh) 用于单模电光模块的表面安装封装
CN115701854A (zh) 用于光学通信系统的光学插座连接器
WO2024203634A1 (ja) 基板アセンブリおよび光通信装置
JP2018146638A (ja) 光トランシーバ
US11199671B2 (en) Glass-as-a-platform (GaaP)-based photonic assemblies comprising shaped glass plates
US20060126306A1 (en) Multi-power optoelectric packages
US20080019700A1 (en) Optical transceiver
CN108496254B (zh) 光学连接器、电子装置以及光学互连系统
WO2023286643A1 (ja) 光コネクタシステム
CN214895918U (zh) 光学收发模块及光纤缆线模块