[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203595A1 - Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device - Google Patents

Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device Download PDF

Info

Publication number
WO2024203595A1
WO2024203595A1 PCT/JP2024/010702 JP2024010702W WO2024203595A1 WO 2024203595 A1 WO2024203595 A1 WO 2024203595A1 JP 2024010702 W JP2024010702 W JP 2024010702W WO 2024203595 A1 WO2024203595 A1 WO 2024203595A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
acrylate
group
photocurable resin
resin composition
Prior art date
Application number
PCT/JP2024/010702
Other languages
French (fr)
Japanese (ja)
Inventor
裕基 池上
祐輔 浦岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024203595A1 publication Critical patent/WO2024203595A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/12Esters of phenols or saturated alcohols
    • C08F22/22Esters containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/38Amides

Definitions

  • the present disclosure relates to a photocurable resin composition, an optical component, a method for manufacturing an optical component, a light-emitting device, and a method for manufacturing a light-emitting device, and more specifically to a photocurable resin composition containing a photopolymerizable compound and a photopolymerization initiator, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
  • Patent Document 1 discloses a photocurable resin composition for electronic devices that contains a curable resin and a polymerization initiator, the curable resin contains a monofunctional cationic polymerizable compound and a polyfunctional cationic polymerizable compound, the monofunctional cationic polymerizable compound contains at least one of a monofunctional aliphatic cationic polymerizable compound and a monofunctional cationic polymerizable compound having an optionally substituted phenoxy group, and the polyfunctional cationic polymerizable compound contains a silicone compound having two or more cationic polymerizable groups, and the photocurable resin composition for electronic devices has a dielectric constant of 3.5 or less measured under conditions of 25°C and 100 kHz.
  • the objective of the present disclosure is to provide a photocurable resin composition capable of imparting good bending resistance and a low relative dielectric constant to the cured product, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
  • the photocurable resin composition according to one embodiment of the present disclosure contains a photopolymerizable compound (A) and a photopolymerization initiator (B).
  • the photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
  • X is a vinyl group or an alkyl group having 1 to 4 carbon atoms
  • Y is an alkylene group having 2 to 12 carbon atoms
  • Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • An optical component according to one embodiment of the present disclosure includes a cured product of the photocurable resin composition.
  • the method for manufacturing an optical component according to one embodiment of the present disclosure includes discharging the photocurable resin composition by an inkjet method and then irradiating the photocurable resin composition with light to cure it.
  • the light emitting device includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition.
  • a method for manufacturing a light-emitting device is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method for manufacturing the optical component.
  • FIG. 1 is a schematic cross-sectional view showing a light-emitting device according to an embodiment of the present disclosure.
  • composition (X) contains a photopolymerizable compound (A) and a photopolymerization initiator (B).
  • the photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
  • X is a vinyl group or an alkyl group having 1 to 4 carbon atoms
  • Y is an alkylene group having 2 to 12 carbon atoms
  • Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • Composition (X) can impart good bending resistance and a low dielectric constant to the cured product. For this reason, for example, when the cured product is in sheet form, damage to the cured product when it is bent can be suppressed.
  • the optical component according to the embodiment contains a cured product of composition (X). This allows the optical component to have good bending resistance and a low dielectric constant.
  • the optical component in the embodiment is a component having a function of transmitting light.
  • the optical component in the embodiment can be applied to a deformable light-emitting device, such as a foldable display, by increasing the flexibility.
  • the optical component in the embodiment can be applied to a sealing portion of an organic EL light-emitting device in a display or the like.
  • the optical component may be a color resist. That is, for example, a phosphor may be contained in the composition (X), and a color resist in a color filter may be produced from this composition (X).
  • This color filter may be provided in a display device such as an organic EL display or a micro LED display, which is a light-emitting device.
  • the optical component in the embodiment has a low relative dielectric constant, it is unlikely to cause a malfunction in a light-emitting device or the like equipped with the optical component.
  • the light-emitting device is a display equipped with a touch sensor
  • the relative dielectric constant of the optical component is high, the touch sensor may malfunction, and the possibility of malfunction increases when the display and the touch sensor are thinned.
  • the relative dielectric constant of the optical component can be reduced, so that the malfunction of the touch sensor can be suppressed.
  • the method for manufacturing an optical component according to the embodiment includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to cure it.
  • the light-emitting device includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the composition (X).
  • the light-emitting device is, for example, an organic EL light-emitting device.
  • EL stands for electroluminescence
  • an organic EL light-emitting device is a light-emitting device that includes an organic EL element (organic light-emitting diode) as a light source.
  • the light-emitting device may include a display device such as a display.
  • the light-emitting device may include a touch sensor.
  • the light-emitting device may be a deformable light-emitting device, such as a foldable display.
  • the method for manufacturing a light-emitting device includes manufacturing an optical component in the light-emitting device by a method that includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to harden it.
  • composition (X) is not limited to those described above.
  • Composition (X) can be used in a variety of applications.
  • composition (X) can be molded by various methods and then cured to produce a cured product.
  • composition (X) contains the photopolymerizable compound (A) and the photopolymerization initiator (B) as described above.
  • the photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
  • X is a vinyl group or an alkyl group having 1 to 4 carbon atoms
  • Y is an alkylene group having 2 to 12 carbon atoms
  • Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • the amide compound (A1) allows the cured product of the composition (X) to have good bending resistance and a low dielectric constant. It is presumed that the dielectric constant of the cured product is reduced and the flexibility of the cured product is increased, thereby improving the bending resistance of the cured product, by the fact that Y in the amide compound (A1) is an alkylene group having 2 to 12 carbon atoms.
  • the amide compound (A1) has nitrogen in its molecule, and when the cured product is produced by stacking it on an inorganic material, the adhesion between the inorganic material and the cured product can be improved.
  • the amide compound (A1) is less likely to cause a large increase in the viscosity of the composition (X).
  • the number of carbon atoms in the alkylene group Y in formula (1) is preferably 3 or more, and more preferably 5 or more.
  • the number of carbon atoms is more preferably 11 or less.
  • the amide compound (A1) has at least one of a vinyl group and a (meth)acryloyl group.
  • the amide compound (A1) can have photoradical polymerizability.
  • the amide compound (A1) contains at least one of the first amide compound (A11) and the second amide compound (A12).
  • the first amide compound (A11) is a compound having the structure shown in formula (1), in which X is a vinyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • the second amide compound (A12) is a compound having the structure shown in formula (1), in which X is a methyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group.
  • the first amide compound (A11) and the second amide compound (A12) each have only one radically polymerizable functional group in the molecule, and therefore are unlikely to increase cure shrinkage when the composition (X) is cured. Therefore, when the composition (X) is cured on a substrate such as an inorganic film to produce a cured product, the adhesion between the substrate and the cured product is unlikely to decrease. Also, for example, when an inorganic film and a sheet-like optical member made from the composition (X) are stacked, damage to the optical member when the optical member is folded together with the inorganic film can be further suppressed.
  • the photopolymerizable compound (A) may further contain a compound other than the amide compound (A1).
  • the ratio of the amide compound (A1) to the photopolymerizable compound (A) is preferably 5% by mass or more and 40% by mass or less. If the ratio is 5% by mass or more, the relative dielectric constant of the cured product can be further reduced and the bending resistance can be further improved. If the ratio is 40% by mass or less, there is an advantage that the glass transition temperature of the cured product can be further increased and the heat resistance can be further improved. It is more preferable that the ratio is 7% by mass or more, and even more preferable that the ratio is 10% by mass or more. It is more preferable that the ratio is 35% by mass or less, and even more preferable that the ratio is 30% by mass or less.
  • the photopolymerizable compound (A) may contain a radical polymerizable compound other than the amide compound (A1).
  • the photopolymerizable compound (A) may contain a mono(meth)acrylate (A2) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • the mono(meth)acrylate (A2) can reduce the dielectric constant of the cured product and increase its flexibility by having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • the mono(meth)acrylate (A2) has only one radically polymerizable functional group in the molecule, and therefore is less likely to increase the cure shrinkage during curing of the composition (X) and is less likely to cause a decrease in adhesion between the substrate, such as an inorganic film, and the cured product.
  • the mono(meth)acrylate (A2) is less likely to cause a large increase in the viscosity of the composition (X).
  • the number of carbon atoms in the chain saturated hydrocarbon skeleton in the mono(meth)acrylate (A2) is preferably 8 or more, and more preferably 10 or more.
  • the number of carbon atoms is more preferably 18 or less, and even more preferably 16 or less.
  • the mono(meth)acrylate (A2) contains, for example, an ester of a monool having a structure in which a hydroxyl group is bonded to one end of a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms, and (meth)acrylic acid.
  • the mono(meth)acrylate (A2) contains, for example, at least one selected from the group consisting of lauryl (meth)acrylate, isostearyl (meth)acrylate, isooctyl (meth)acrylate, isoamyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, cetyl (meth)acrylate, isooctyl (meth)acrylate, and tridecyl (meth)acrylate.
  • the ratio of mono(meth)acrylate (A2) to photopolymerizable compound (A) is preferably 10% by mass or more and 70% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and bending resistance can be further improved. If the ratio is 70% by mass or less, there are advantages in that the glass transition temperature of the cured product can be further increased, the heat resistance can be further improved, and outgassing during curing can be reduced. It is more preferable that the ratio is 15% by mass or more, and even more preferable that the ratio is 20% by mass or more. It is more preferable that the ratio is 60% by mass or less, even more preferable that the ratio is 55% by mass or less, and particularly preferable that the ratio is 45% by mass or less.
  • the photopolymerizable compound (A) may contain a di(meth)acrylate (A3) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • the di(meth)acrylate (A3) can reduce the dielectric constant of the cured product and increase its flexibility by having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • the di(meth)acrylate (A3) has two radically polymerizable functional groups in the molecule, which can increase the crosslink density of the cured product and increase the glass transition temperature of the cured product, thereby increasing the heat resistance of the cured product.
  • the di(meth)acrylate (A3) is less likely to cause a large increase in the viscosity of the composition (X).
  • the number of carbon atoms in the chain saturated hydrocarbon skeleton in the di(meth)acrylate (A3) is preferably 8 or more, and more preferably 10 or more.
  • the number of carbon atoms is more preferably 18 or less, and even more preferably 16 or less.
  • Di(meth)acrylate (A3) contains, for example, an ester of (meth)acrylic acid and a diol having a structure in which hydroxyl groups are bonded to both ends of a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms.
  • Di(meth)acrylate (A3) is, for example, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,11-undecanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,13-tridecanediol di(meth)acrylate, Contains at least one selected from the group consisting of 1,14-tetradecanediol di(meth)acrylate, 1,15-pentadecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,17-heptadecanedio
  • the ratio of di(meth)acrylate (A3) to photopolymerizable compound (A) is preferably 10% by mass or more and 70% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and the bending resistance can be further improved. If the ratio is 70% by mass or less, the cure shrinkage during curing of composition (X) can be suppressed. If the ratio is 15% by mass or more, it is more preferable, and if it is 20% by mass or more, it is even more preferable. If the ratio is 60% by mass or less, it is more preferable, if it is 55% by mass or less, and it is particularly preferable if it is 45% by mass or less.
  • the photopolymerizable compound (A) may contain a mono(meth)acrylate (A4) containing a naphthyl group.
  • the mono(meth)acrylate (A4) can reduce the dielectric constant of the cured product and increase the glass transition temperature by having .
  • the mono(meth)acrylate (A4) has only one radically polymerizable functional group in the molecule, and therefore is less likely to increase the cure shrinkage during curing of the composition (X) and is less likely to cause a decrease in adhesion between the cured product and a substrate such as an inorganic film.
  • the mono(meth)acrylate (A4) is less likely to cause a large increase in the viscosity of the composition (X).
  • the mono(meth)acrylate (A4) contains, for example, a compound represented by the following formula (2):
  • X1 is hydrogen or a methyl group
  • Y1 is a single bond or an alkylene group having 1 to 6 carbon atoms
  • Z1 is a single bond
  • S or O R1 is H or a methyl group
  • L1 is a single bond, an ester bond or a thioester bond
  • n is 1 or 2, provided that when L1 is a single bond, n is 1 and m is 6 or 7.
  • the ratio of mono(meth)acrylate (A4) to photopolymerizable compound (A) is preferably 10% by mass or more and 60% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and the heat resistance can be further increased. If the ratio is 60% by mass or less, there is an advantage that the bending resistance of the cured product can be further increased. If the ratio is 15% by mass or more, it is more preferable, and if it is 20% by mass or more, it is even more preferable. If the ratio is 50% by mass or less, it is even more preferable, and if it is 40% by mass or less, it is even more preferable.
  • the photopolymerizable compound (A) may contain a compound (hereinafter also referred to as compound (A5)) that is not an amide compound (A1), a mono(meth)acrylate (A2), a di(meth)acrylate (A3), or a mono(meth)acrylate (A4).
  • the ratio of compound (A5) to composition (X) is, for example, 0% by mass or more and 40% by mass or less.
  • Compound (A5) contains at least one of a polyfunctional radically polymerizable compound (A51) (hereinafter also referred to as compound (A51)) having two or more radically polymerizable functional groups in the molecule, and a monofunctional radically polymerizable compound (A52) (hereinafter also referred to as compound (A52)) having only one radically polymerizable functional group in the molecule.
  • A51 polyfunctional radically polymerizable compound having two or more radically polymerizable functional groups in the molecule
  • A52 monofunctional radically polymerizable compound having only one radically polymerizable functional group in the molecule.
  • Compound (A52) can increase the reactivity of composition (X). As a result, outgassing from the cured product can be suppressed.
  • Compound (d1) can also increase the crosslink density of the polymer of radically polymerizable compound (A). As a result, the glass transition temperature of the cured product can be increased, thereby improving the heat resistance of the cured product.
  • Examples of compound (A52) include 1,4-butanediol diacrylate, neopentyl glycol di(meth)acrylate, glycerin triacrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol oligoacrylate, diethylene glycol diacrylate, 1,6-hexanediol oligoacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, dipropylene glycol diacrylate, cyclohexane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A polyethoxy diacrylate, bisphenol F polyethoxy diacrylate, pentaerythritol tetraacrylate, propoxylated (2) neopentyl glycol diacrylate, trimethylol trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate, pentaerythr
  • the ratio of compound (A51) to photopolymerizable compound (A) is, for example, 30% by mass or less.
  • the ratio of the total of compounds having two or more radically polymerizable functional groups in the molecule, including compound (A51), to photopolymerizable compound (A) is, for example, 10% by mass or more and 70% by mass or less.
  • Compound (A52) is, for example, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, 3-methoxybutyl acrylate, ethoxyethyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxydixylethyl acrylate, ethyl diglycol acrylate, cyclic trimethylolpropane formal monoacrylate, imino diethyl acrylate, ethoxylated succinic acid acrylate, trifluoroethyl acrylate, ⁇ -carboxypolycaprolactone monoacrylate, cyclohexyl
  • the ratio of compound (A52) to photopolymerizable compound (A) is, for example, 30% by mass or less.
  • the total ratio of compounds having only one radically polymerizable functional group in the molecule, including compound (A52) in radically polymerizable compound (A), to composition (X) is, for example, 30% by mass or more and 90% by mass or less.
  • the photopolymerizable compound (A) may further contain a photocationically polymerizable compound (A6).
  • the ratio of the photocationically polymerizable compound (A6) to the photopolymerizable compound (A) is, for example, 0% by mass or more and 30% by mass or less.
  • the photopolymerization initiator (B) preferably contains a photoradical polymerization initiator (B1).
  • the photoradical polymerization initiator (B1) contains at least one compound selected from the group consisting of, for example, aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds.
  • the ratio of the photoradical polymerization initiator (B1) to the photoradical polymerizable compound in the photopolymerizable compound (A) is preferably 6% by mass or more.
  • the composition (X) can have good photocurability and can also have good photocurability under an atmospheric environment. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 20% by mass or less, and even more preferably 18% by mass or less.
  • the photoradical polymerization initiator (B1) may contain a photoradical polymerization initiator having photobleaching properties.
  • the cured product of the composition (X) may have good light transmittance.
  • the ratio of the photoradical polymerization initiator having photobleaching properties to the radically polymerizable compound is preferably 3 mass% or more. This ratio is more preferably 7 mass% or more, and even more preferably 8 mass% or more. This ratio is, for example, 30 mass% or less, preferably 25 mass% or less, and even more preferably 20 mass% or less.
  • the photoradical polymerization initiator having photobleaching properties contains at least one of, for example, an acylphosphine oxide-based photoinitiator and a compound having photobleaching properties among oxime ester-based photoinitiators.
  • the photoradical polymerization initiator (B1) may contain a component having a sensitizer skeleton in the molecule.
  • the sensitizer skeleton includes, for example, at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
  • the photoradical polymerization initiator (B1) includes a component having at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
  • the composition (X) may contain a polymerization accelerator in addition to the photoradical polymerization initiator (B1).
  • the polymerization accelerator contains, for example, an amine compound such as ethyl p-dimethylaminobenzoate, 2-ethylhexyl p-dimethylaminobenzoate, methyl p-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, or butoxyethyl p-dimethylaminobenzoate.
  • the components that the polymerization accelerator may contain are not limited to those mentioned above.
  • the photopolymerizable compound (A) contains a photocationic polymerizable compound (A6)
  • the photopolymerization initiator (B) contains a photocationic polymerization initiator (B2).
  • the composition (X) preferably does not contain a solvent or the solvent content is 1% by mass or less. In this case, outgassing derived from the solvent is unlikely to occur from the composition (X) and the cured product of the composition (X).
  • a drying process for removing the solvent from the composition (X) and the cured product during the production of optical components and light-emitting devices can be eliminated.
  • a drying process for removing the solvent from at least one of the composition (X) and the cured product may be performed. In this case, at least one of the heating temperature and the heating time in the drying process can be reduced. Therefore, outgassing can be unlikely to occur from the optical components without reducing the production efficiency of the optical components and light-emitting devices.
  • the thickness of the optical components can be secured as large as possible while ejecting the composition (X) by the inkjet method to mold it.
  • the content of the solvent is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. It is particularly preferable that the composition (X) does not contain a solvent or contains only a solvent that is inevitably mixed in.
  • Composition (X) may further contain any additives other than those mentioned above, such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
  • additives such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
  • inorganic filler (C) is preferably nano-sized.
  • the cured product can have a high refractive index while maintaining good transparency (visible light transmittance) of the cured product.
  • Nano-sized means that the average particle size is 1 nm or more and 1000 nm or less.
  • the average particle size of inorganic filler (C) is preferably 30 nm or less, and more preferably 20 nm or less.
  • this average particle size is preferably 5 nm or more, and more preferably 10 nm or more.
  • this average particle size is the median diameter calculated from the measurement results by dynamic light scattering method, that is, the cumulative 50% diameter (D50).
  • D50 cumulative 50% diameter
  • the composition (X) can be used to manufacture an optical component.
  • An optical component is a component that is disposed on the path of light in an optical system.
  • the composition (X) can be preferably used to manufacture an optical component that transmits light.
  • the use of the composition (X) is not limited to the manufacture of optical components, and the composition (X) can be applied to various uses that utilize its properties.
  • the composition (X) may have a low viscosity. Therefore, the moldability of the composition (X) is good.
  • the composition (X) may be molded by discharging it by an inkjet method.
  • the composition (X) is preferably for inkjet molding. In this case, the cured product and the optical part of the composition (X) can be produced with good positional accuracy.
  • the viscosity of composition (X) at 40°C is 16 mPa ⁇ s or less.
  • the viscosity of composition (X) at 40°C is 16 mPa ⁇ s or less.
  • this viscosity is 1 mPa ⁇ s or more, and more preferably 5 mPa ⁇ s or more.
  • the viscosity of composition (X) at 25°C is 50 mPa ⁇ s or less. It is more preferable that the viscosity of composition (X) at 25°C is 40 mPa ⁇ s or less, even more preferable that it is 30 mPa ⁇ s or less, and particularly preferable that it is 28 mPa ⁇ s or less. It is also preferable that this viscosity is 1 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, and even more preferably 20 mPa ⁇ s or more. In these cases, composition (X) can be easily molded at room temperature, and in particular can be easily molded by the inkjet method.
  • composition (X) Such a low viscosity of composition (X) can be achieved by appropriately adjusting the composition of photopolymerizable compound (A) within the range described above.
  • the method and conditions for measuring the viscosity of composition (X) will be explained in detail in the Examples section below.
  • the rate of outgassing generated when the cured product of composition (X) is heated at 110°C for 30 minutes is preferably 25 ppm or less.
  • the rate of outgassing generated from the cured product is 25 ppm or less. In this case, outgassing is less likely to occur from the cured product. This makes it possible to make it difficult for voids due to outgassing to occur in a light-emitting device that includes an optical component made of the cured product, for example. This makes it difficult for water and oxygen to reach the light-emitting element through voids, making it difficult for the light-emitting element to deteriorate due to water and oxygen. It is particularly preferable for this rate of outgassing to be 15 ppm.
  • the reduction in the proportion of outgassing generated from the cured product of composition (X) can be achieved by appropriately adjusting the composition of photopolymerizable compound (A) within the range described above.
  • the method for measuring the proportion of outgassing will be described in detail in the examples below.
  • the glass transition temperature of the cured product of the composition (X) is preferably 60°C or higher.
  • the composition (X) preferably has the property of curing to become a cured product with a glass transition temperature of 60°C or higher.
  • the cured product can have good heat resistance. Therefore, for example, when the cured product is subjected to a process involving an increase in temperature, the cured product is less likely to deteriorate. Therefore, for example, when an inorganic film (e.g., passivation layer 6) that overlaps an optical component is produced by a deposition method such as a plasma CVD method, the optical component is less likely to deteriorate even if the optical component is heated.
  • an inorganic film e.g., passivation layer 6
  • a deposition method such as a plasma CVD method
  • the optical component can be adapted to applications such as vehicle-mounted applications that have strict requirements for heat resistance.
  • the glass transition temperature of the cured product is more preferably 65°C or higher, even more preferably 70°C or higher, and particularly preferably 75°C or higher. This glass transition temperature of the cured product can be achieved by appropriately adjusting the composition of the photopolymerizable compound (A) within the range described above.
  • the total light transmittance according to JIS K7361-1 of a 10 ⁇ m-thick cured product made from composition (X) is preferably 98.0% or more, and more preferably 99.0% or more. This total light transmittance of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
  • the dielectric constant of the cured product made from the composition at 25°C and a measurement frequency of 100 kHz is preferably 3.0 or less.
  • the dielectric constant of the cured product is more preferably 2.9 or less, and even more preferably 2.8 or less. This dielectric constant of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
  • the light-emitting device 1 includes a light source and an optical component that transmits light emitted by the light source.
  • the light-emitting device 1 includes a light-emitting element 4, and a sealant 5 and a passivation layer 6 that cover the light-emitting element 4.
  • the light-emitting element 4 is the light source
  • the sealant 5 is the optical component
  • the passivation layer 6 is an inorganic film. The sealant 5 and the passivation layer 6 overlap each other.
  • the light-emitting element 4 includes, for example, a light-emitting diode.
  • the light-emitting diode includes, for example, at least one of an organic EL element (organic light-emitting diode) and a micro light-emitting diode.
  • the light-emitting device 1 including the light-emitting element 4 is, for example, an organic EL display.
  • the light-emitting element 4 includes a micro light-emitting diode
  • the light-emitting device 1 including the light-emitting element 4 is, for example, a micro LED display.
  • EL is an abbreviation for electroluminescence.
  • the light-emitting device 1 is a top-emission type.
  • the light-emitting device 1 includes a support substrate 2, a transparent substrate 3 that faces the support substrate 2 with a gap therebetween, a light-emitting element 4 on the surface of the support substrate 2 that faces the transparent substrate 3, and a passivation layer 6 and a sealing material 5 that cover the light-emitting element 4.
  • the support substrate 2 is made of, for example, but not limited to, a resin material.
  • the transparent substrate 3 is made of a light-transmitting material.
  • the transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
  • the light-emitting element 4 includes, for example, a pair of electrodes 41, 43 and an organic light-emitting layer 42 between the electrodes 41, 43.
  • the organic light-emitting layer 42 includes, for example, a hole injection layer 421, a hole transport layer 422, an organic light-emitting layer 423, and an electron transport layer 424, and these layers are stacked in the above order.
  • the light-emitting device 1 includes a plurality of light-emitting elements 4, which form an array 9 (hereinafter referred to as element array 9) on a support substrate 2.
  • the element array 9 also includes a partition 7.
  • the partition 7 is on the support substrate 2 and separates two adjacent light-emitting elements 4.
  • the partition 7 is fabricated, for example, by forming a photosensitive resin material using a photolithography method.
  • the element array 9 also includes connection wiring 8 that electrically connects the electrodes 43 and electron transport layers 424 of adjacent light-emitting elements 4.
  • the connection wiring 8 is provided on the partition 7.
  • the passivation layer 6 corresponds to an inorganic film.
  • the passivation layer 6 is preferably made of silicon nitride or silicon oxide, and is particularly preferably made of silicon nitride.
  • the passivation layer 6 includes a first passivation layer 61 and a second passivation layer 62.
  • the first passivation layer 61 covers the element array 9 while being in direct contact with the element array 9, thereby covering the light-emitting element 4.
  • the second passivation layer 62 is disposed on the opposite side of the element array 9 with respect to the first passivation layer 61, and a gap is provided between the second passivation layer 62 and the first passivation layer 61.
  • the sealant 5 is filled between the first passivation layer 61 and the second passivation layer 62. That is, the first passivation layer 61 is interposed between the light-emitting element 4 and the sealant 5 covering the light-emitting element 4.
  • a second sealing material 52 is filled between the second passivation layer 62 and the transparent substrate 3.
  • the second sealing material 52 is made of, for example, a transparent resin material. There are no particular limitations on the material of the second sealing material 52.
  • the material of the second sealing material 52 may be the same as or different from the sealing material 5.
  • the composition (X) it is preferable to eject the composition (X) by an inkjet method to form a film, and then irradiate the composition (X) with ultraviolet light to harden it, thereby producing the sealing material 5.
  • the composition (X) can be ejected and shaped by an inkjet method.
  • the composition (X) When discharging the composition (X) by the inkjet method, if the composition (X) has a sufficiently low viscosity at room temperature, for example, if the viscosity at 25°C is 30 mPa ⁇ s or less, particularly 16 mPa ⁇ s or less, the composition (X) can be molded by discharging it by the inkjet method without heating it. If the viscosity of the composition (X) is reduced by heating, the composition (X) may be heated and then discharged by the inkjet method to be molded.
  • the viscosity of the composition (X) at 40°C is particularly 16 mPa ⁇ s or less
  • the viscosity of the composition (X) can be reduced by simply heating it slightly, and this reduced-viscosity composition (X) can be discharged by the inkjet method.
  • the heating temperature of the composition (X) is, for example, 20°C or higher and 50°C or lower.
  • the support substrate 2 is prepared. On one surface of the support substrate 2, partition walls 7 are fabricated by photolithography using, for example, a photosensitive resin material. Next, a plurality of light-emitting elements 4 are provided on one surface of the support substrate 2.
  • the light-emitting elements 4 can be fabricated by an appropriate method such as a vapor deposition method or a coating method. In particular, it is preferable to fabricate the light-emitting elements 4 by a coating method such as an inkjet method. In this way, an element array 9 is fabricated on the support substrate 2.
  • the first passivation layer 61 is provided on the element array 9.
  • the first passivation layer 61 can be produced by a deposition method such as a plasma CVD method.
  • the composition (X) is ejected onto the first passivation layer 61, for example, by an inkjet method, and shaped to form a coating film.
  • the inkjet method to both the production of the light-emitting element 4 and the formation of the coating film, the production efficiency of the light-emitting device 1 can be particularly improved.
  • the coating film of the composition (X) is cured by irradiating it with light, to produce the encapsulant 5.
  • composition (X) When irradiating composition (X) with light, composition (X) may be irradiated with light in an atmosphere containing oxygen, such as an air atmosphere, or composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
  • atmosphere containing oxygen such as an air atmosphere
  • composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
  • the second passivation layer 62 is provided on the sealing material 5.
  • the second passivation layer 62 can be produced by a deposition method such as plasma CVD.
  • a photocurable resin material is applied to one surface of the support substrate 2 so as to cover the second passivation layer 62, and then the transparent substrate 3 is placed on top of this resin material.
  • the transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
  • ultraviolet light is applied from the outside toward the transparent substrate 3.
  • the ultraviolet light passes through the transparent substrate 3 and reaches the photocurable resin material. This causes the photocurable resin material to harden, producing the second sealing material 52.
  • the thickness of the sealing material 5 is, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the sealing material 5 is more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the light emitting device 1 can be thinned, and it is also possible to obtain a flexible light emitting device 1, i.e., a bendable light emitting device.
  • the thickness of the sealing material 5 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 8 ⁇ m or more.
  • the thickness of the passivation layer 6 overlapping the sealing material 5 is, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the passivation layer 6 includes the first passivation layer 61 and the second passivation layer 62 as described above, it is preferable that the thickness of each of the first passivation layer 61 and the second passivation layer 62 is 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the light-emitting device 1 may be a deformable light-emitting device 1 such as a foldable display.
  • the sealing material 5 is flexible and has high adhesion to the passivation layer 6, which is an inorganic film, so that even if the light-emitting device 1 is bent or otherwise deformed, damage to the sealing material 5 can be suppressed.
  • the light emitting device may be equipped with a touch sensor.
  • the relative dielectric constant of the sealing material 5 can be reduced, which can prevent the touch sensor from malfunctioning.
  • the photocurable resin composition according to the first aspect contains a photopolymerizable compound (A) and a photopolymerization initiator (B).
  • the photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
  • X is a vinyl group or an alkyl group having 1 to 4 carbon atoms
  • Y is an alkylene group having 2 to 12 carbon atoms
  • Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • the photocurable resin composition can impart good bending resistance and a low dielectric constant to the cured product.
  • the amide compound (A1) in the first embodiment contains at least one of a first amide compound (A11) and a second amide compound (A12).
  • the first amide compound (A11) is a compound having a structure shown in formula (1), in which X is a vinyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a hydroxy group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
  • the second amide compound (A12) is a compound having a structure shown in formula (1), in which X is a methyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group.
  • This embodiment can further improve the bending resistance of the cured product.
  • the photopolymerizable compound (A) in the first or second embodiment further contains a mono(meth)acrylate (A2) having a linear saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • This embodiment can further reduce the dielectric constant of the cured product and further increase its flexibility.
  • the photopolymerizable compound (A) contains a di(meth)acrylate (A3) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
  • This embodiment can further reduce the dielectric constant of the cured product, increase its flexibility, and increase the glass transition temperature of the cured product.
  • the photopolymerizable compound (A) further contains a mono(meth)acrylate (A4) having a naphthyl group in the molecule.
  • This embodiment can further reduce the dielectric constant of the cured product, increase the glass transition temperature, and further improve bending resistance.
  • the viscosity at 25°C is 50 mPa ⁇ s or less.
  • the photocurable resin composition has good moldability, and it may be possible to mold it by ejecting it using the inkjet method.
  • the photocurable resin composition has a cured product with a relative dielectric constant of 3.0 or less at 25°C and a measurement frequency of 100 kHz.
  • the photocurable resin composition is for use in producing optical components.
  • the optical component can have good bending resistance and a low dielectric constant.
  • the optical component according to the ninth aspect includes a cured product of the photocurable resin composition according to any one of the first to eighth aspects.
  • the optical component can have good bending resistance and a low dielectric constant.
  • the method for producing an optical component according to the tenth aspect includes ejecting the photocurable resin composition according to any one of the first to eighth aspects by an inkjet method, and then irradiating the photocurable resin composition with light to cure it.
  • This method allows optical components to be manufactured with high positional accuracy and reduces the yield.
  • the light emitting device includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition according to any one of the first to eighth aspects.
  • the optical component can have good bending resistance and a low dielectric constant.
  • the method for manufacturing a light-emitting device (1) according to the twelfth aspect is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method according to the tenth aspect.
  • the optical components in the light emitting device (1) can be manufactured with high positional precision, and the yield is less likely to deteriorate.
  • compositions of the Examples and Comparative Examples were prepared by mixing the components shown in the following table. Details of the components shown in the table are as follows.
  • Amide compound #11 The compound shown in the following formula (2-(acetylamino)ethyl 2-propenoate). Manufactured by NOF Corporation. Product name: AA-22.
  • - Amide compound #12 The compound shown in the formula below (N-[3-(dimethylamino)propyl]acrylamide). Manufactured by KJ Chemicals Co., Ltd. Product name: DMAPAA.
  • -Di(meth)acrylate #11 1,12-dodecanediol dimethacrylate.
  • -Di(meth)acrylate #12 1,10-decanediol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Mono(meth)acrylate #31 Compound represented by the following formula (1-naphthylmethylacrylate), manufactured by Kyoeisha Chemical Co., Ltd.
  • - Multifunctional (meth)acrylate #1 Pentaerythritol triacrylate, manufactured by Kyoeisha Chemical Co., Ltd. Product name PE-3A.
  • - Multifunctional (meth)acrylate #2 Glycerin triacrylate, manufactured by Toagosei Co., Ltd. Product name: M930.
  • Photopolymerization initiator #1 acylphosphine oxide-based photoradical polymerization initiator, manufactured by IGM Resins BV, product name Omnirad TPO H.
  • Photopolymerization initiator #2 Oxime ester-based photoradical polymerization initiator, manufactured by BASF Japan Ltd. Product name: Irgacure OXE04.
  • Dielectric constant A coating film of the composition having a thickness of 10 ⁇ m was prepared on an aluminum substrate having dimensions of 80 mm ⁇ 40 mm ⁇ 1 mmt. This coating film was irradiated under a nitrogen atmosphere using a Unijet E075IIHD (peak wavelength 395 nm) manufactured by Ushio Inc. under conditions of an irradiation intensity of 0.5 W/ cm2 and an accumulated light quantity of 1.5 J/ cm2 to cure the coating film.
  • Unijet E075IIHD peak wavelength 395 nm
  • the dielectric constant of the cured coating film was measured by the electrode contact method under conditions of an atmospheric temperature of 25°C and a measurement frequency of 100 kHz.
  • a coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film with ultraviolet light under a nitrogen atmosphere at an irradiation intensity of 3 W/cm 2 and an accumulated light quantity of 15 J/cm 2 using a Unijet E075IIHD (peak wavelength 395 nm) manufactured by Ushio Inc., to prepare a film having a thickness of 500 ⁇ m.
  • the storage modulus at 25° C. of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
  • Viscosity at 25° C. and Viscosity at 40° C. The viscosity of the composition at 25° C. and at 40° C. was measured using a rheometer (manufactured by Anton Paar Japan, Model DHR-2) at a shear rate of 1000 s .
  • composition was measured with an infrared spectrometer (Agilent Cary 610 FTIR Microscope System, manufactured by Agilent Technologies, Inc.) to obtain an IR spectrum.
  • infrared spectrometer Alignment Cary 610 FTIR Microscope System, manufactured by Agilent Technologies, Inc.
  • the composition was applied to prepare a coating film having a thickness of 10 ⁇ m, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Inc., model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an integrated light quantity of 1.5 J/cm 2.
  • the composition (cured product) after irradiation with ultraviolet light was then measured with the above-mentioned infrared spectrometer to obtain an IR spectrum.
  • the peak intensity of the absorption of the acryloyl group appearing at 810 cm -1 was measured in each of the two IR spectra.
  • the reduction rate of the reactive functional group in the composition before and after irradiation with ultraviolet light was calculated using the formula ⁇ 1-( I0 - I1 )/ I0 ⁇ x 100(%) from the peak intensity I0 for the coating film and the peak intensity I1 for the cured product. The result was taken as the reaction rate, and the reaction rate was evaluated as "A" for 90% or more, "B” for 80% or more but less than 90%, and "C" for less than 80%.
  • the composition was heated at 110°C for 30 minutes, and then the gas phase portion in the vial was introduced into a gas chromatograph for analysis.
  • the concentration of the outgassing generated from the composition was specified based on the peak area of the obtained gas chromatogram.
  • the concentration of the outgassing is the volume fraction of the outgassing in the gas phase of the vial relative to the volume of the vial (22 mL).
  • the outgassing concentration was determined using toluene as the standard substance. Specifically, two standard samples with toluene concentrations of 1000 ppm and 100 ppm were prepared by volatilizing toluene in a vial. Each standard sample was introduced into a gas chromatograph for analysis. From the peak areas of the two chromatograms obtained in this way, the relationship between peak area and concentration was determined, and the above-mentioned outgassing concentration was determined based on these results.
  • a coating film was formed by applying a composition to a thickness of 10 ⁇ m on this inorganic film, and this coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric Co., Ltd., model number Unijet E075IIHD) under conditions of irradiation intensity of 0.5 W/cm 2 and accumulated light amount of 1.5 J/cm 2.
  • a UV irradiator manufactured by Ushio Electric Co., Ltd., model number Unijet E075IIHD
  • This coating film was pulled in the 90 degree direction with an autograph (manufactured by Shimadzu Corporation, model number AGS-X) to measure the peel strength.
  • a peel strength of 100 mN/cm or more was rated as "A”
  • a peel strength of 50 mN/cm or more was rated as “B”
  • a peel strength of 20 mN/cm or more was rated as “C”
  • a peel strength of less than 20 mN/cm was rated as "D”.
  • This evaluation sample was subjected to a test in which it was repeatedly bent 100,000 times under conditions in which the radius of curvature of the bent portion was 1.5 mm, 2.0 mm, and 3.0 mm.
  • the evaluation sample was rated as "A” if there was no peeling or cracking in the film after testing under any of the conditions, "B” if there was no peeling or cracking in the film after testing under the bending radius conditions of 2.0 mm and 3.0 mm, and peeling and cracking in the film after testing under the bending radius condition of 1.5 mm, and "C” if there was no peeling or cracking in the film after testing under the bending radius condition of 3.0 mm, but peeling and cracking in the film after testing under the bending radius conditions of 1.5 mm and 2.0 mm.
  • a coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film under a nitrogen atmosphere with light having a peak wavelength of 395 nm using a UV irradiator (manufactured by Ushio Inc., model number E075IIHD) under conditions of an irradiation intensity of 3 W/ cm2 and an accumulated light quantity of 15 J/ cm2 , thereby preparing a film having a thickness of 500 ⁇ m.
  • the glass transition temperature of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present disclosure provides a photocurable resin composition capable of imparting good bending resistance and low dielectric constant to a cured product. A photocurable resin composition according to the present disclosure contains a photopolymerizable compound (A) and a photopolymerization initiator (B). The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1). In formula (1), X represents a vinyl group or an alkyl group having 1-4 carbon atoms, Y represents an alkylene group having 2-12 carbon atoms, and Z represents a (meth)acryloyl group, a hydroxy group, an alkylamino group having 1-3 carbon atoms, or a methyl group.

Description

光硬化性樹脂組成物、光学部品、光学部品の製造方法、発光装置及び発光装置の製造方法Photocurable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device
 本開示は、光硬化性樹脂組成物、光学部品、光学部品の製造方法、発光装置及び発光装置の製造方法に関し、詳しくは光重合性化合物と光重合開始剤とを含有する光硬化性樹脂組成物、光硬化性樹脂組成物から作製される光学部品、光硬化性樹脂組成物を用いる光学部品の製造方法、光学部品を備える発光装置、及び発光装置の製造方法に関する。 The present disclosure relates to a photocurable resin composition, an optical component, a method for manufacturing an optical component, a light-emitting device, and a method for manufacturing a light-emitting device, and more specifically to a photocurable resin composition containing a photopolymerizable compound and a photopolymerization initiator, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
 特許文献1には、硬化性樹脂と重合開始剤とを含有する電子デバイス用光硬化性樹脂組成物であって、硬化性樹脂は、単官能カチオン重合性化合物と多官能カチオン重合性化合物とを含み、単官能カチオン重合性化合物は、単官能脂肪族カチオン重合性化合物、及び、置換されていてもよいフェノキシ基を有する単官能カチオン重合性化合物の少なくともいずれかを含み、多官能カチオン重合性化合物は、2以上のカチオン重合性基を有するシリコーン化合物を含み、25℃、100kHzの条件で測定した誘電率が、3.5以下である電子デバイス用光硬化性樹脂組成物が、開示されている。 Patent Document 1 discloses a photocurable resin composition for electronic devices that contains a curable resin and a polymerization initiator, the curable resin contains a monofunctional cationic polymerizable compound and a polyfunctional cationic polymerizable compound, the monofunctional cationic polymerizable compound contains at least one of a monofunctional aliphatic cationic polymerizable compound and a monofunctional cationic polymerizable compound having an optionally substituted phenoxy group, and the polyfunctional cationic polymerizable compound contains a silicone compound having two or more cationic polymerizable groups, and the photocurable resin composition for electronic devices has a dielectric constant of 3.5 or less measured under conditions of 25°C and 100 kHz.
特開2021-050290号公報JP 2021-050290 A
 本開示の課題は、硬化物に良好な耐折り曲げ性と低い比誘電率とを付与しうる光硬化性樹脂組成物、光硬化性樹脂組成物から作製される光学部品、光硬化性樹脂組成物を用いる光学部品の製造方法、光学部品を備える発光装置、及び発光装置の製造方法を提供することである。 The objective of the present disclosure is to provide a photocurable resin composition capable of imparting good bending resistance and a low relative dielectric constant to the cured product, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
 本開示の一態様に係る光硬化性樹脂組成物は、光重合性化合物(A)と、光重合開始剤(B)と、を含有する。前記光重合性化合物(A)が、式(1)で示すアミド化合物(A1)を含有する。 The photocurable resin composition according to one embodiment of the present disclosure contains a photopolymerizable compound (A) and a photopolymerization initiator (B). The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)において、Xがビニル基又は炭素数が1以上4以下のアルキル基であり、Yが炭素数2以上12以下のアルキレン基であり、Zが(メタ)アクリロイル基、ヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である。 In formula (1), X is a vinyl group or an alkyl group having 1 to 4 carbon atoms, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
 本開示の一態様に係る光学部品は、前記光硬化性樹脂組成物の硬化物を含む。 An optical component according to one embodiment of the present disclosure includes a cured product of the photocurable resin composition.
 本開示の一態様に係る光学部品の製造方法は、前記光硬化性樹脂組成物をインクジェット法で吐出してから、前記光硬化性樹脂組成物に光を照射して硬化させることを含む。 The method for manufacturing an optical component according to one embodiment of the present disclosure includes discharging the photocurable resin composition by an inkjet method and then irradiating the photocurable resin composition with light to cure it.
 本開示の一態様に係る発光装置は、光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、前記光硬化性樹脂組成物の硬化物を含む。 The light emitting device according to one aspect of the present disclosure includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition.
 本開示の一態様に係る発光装置の製造方法は、光源と、前記光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、前記光学部品を、前記光学部品の製造方法で製造することを含む。 A method for manufacturing a light-emitting device according to one aspect of the present disclosure is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method for manufacturing the optical component.
図1は、本開示の一実施形態における発光装置を示す概略の断面図である。FIG. 1 is a schematic cross-sectional view showing a light-emitting device according to an embodiment of the present disclosure.
 本開示の実施形態について、図1を参照して説明する。なお、下記の実施形態は、本開示の様々な実施形態の一部に過ぎない。また、下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下において参照する図は、模式的な図であり、図中の構成要素の寸法比が、必ずしも実際の寸法比を反映しているとは限らない。以下で示される作用機序は、推測されたものであり、本開示は以下における作用機序の説明に拘束されない。以下の説明において、「(メタ)アクリ」とは、「アクリ」及び「メタクリ」の上位概念的な総称であり、「アクリ」若しくは「(メタ)アクリ」のこと、又は「アクリ」及び「(メタ)アクリ」のことである。例えば「(メタ)アクリロイル基」とは、アクリロイル基若しくはメタクリロイル基のことであり、又はアクリロイル基及びメタクリロイル基のことである。 The embodiment of the present disclosure will be described with reference to FIG. 1. The following embodiment is merely a part of the various embodiments of the present disclosure. In addition, the following embodiment can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved. The figures referred to below are schematic diagrams, and the dimensional ratios of the components in the figures do not necessarily reflect the actual dimensional ratios. The mechanism of action described below is a speculation, and the present disclosure is not bound by the explanation of the mechanism of action below. In the following explanation, "(meth)acryl" is a generic term that is a higher-level concept of "acryl" and "methacryl", and means "acryl" or "(meth)acryl", or "acryl" and "(meth)acryl". For example, "(meth)acryloyl group" means an acryloyl group or a methacryloyl group, or an acryloyl group and a methacryloyl group.
 1.概要
 実施形態に係る光硬化性樹脂組成物(以下、組成物(X)ともいう)は、光重合性化合物(A)と、光重合開始剤(B)と、を含有する。光重合性化合物(A)が、式(1)で示すアミド化合物(A1)を含有する。
1. Overview The photocurable resin composition according to the embodiment (hereinafter, also referred to as composition (X)) contains a photopolymerizable compound (A) and a photopolymerization initiator (B). The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、Xがビニル基又は炭素数が1以上4以下のアルキル基であり、Yが炭素数2以上12以下のアルキレン基であり、Zが(メタ)アクリロイル基、ヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である。 In formula (1), X is a vinyl group or an alkyl group having 1 to 4 carbon atoms, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
 組成物(X)は、その硬化物に良好な耐折り曲げ性と低い比誘電率とを付与しうる。このため、例えば硬化物がシート状である場合に硬化物を屈曲させた場合の硬化物の破損が抑制されうる。 Composition (X) can impart good bending resistance and a low dielectric constant to the cured product. For this reason, for example, when the cured product is in sheet form, damage to the cured product when it is bent can be suppressed.
 実施形態に係る光学部品は、組成物(X)の硬化物を含む。このため、光学部品が、良好な耐折り曲げ性と低い比誘電率とを有しうる。 The optical component according to the embodiment contains a cured product of composition (X). This allows the optical component to have good bending resistance and a low dielectric constant.
 なお、実施形態における光学部品とは、光を透過させる機能を有する部品である。実施形態の光学部品は、柔軟性が高められることで、例えば折りたたみ可能なディスプレイに代表されるような、変形可能な発光装置に適用されうる。実施形態における光学部品は、例えばディスプレイ等における有機EL発光装置の封止部に適用されうる。また、光学部品は、カラーレジストであってもよい。すなわち、例えば組成物(X)に蛍光体を含有させ、この組成物(X)からカラーフィルタにおけるカラーレジストを作製してもよい。このカラーフィルタを、例えば発光装置である有機ELディスプレイ、マイクロLEDディスプレイといった表示装置に設けてもよい。また、実施形態の光学部品は、低い比誘電率を有するため、光学部品を備える発光装置等に不具合を生じさせにくい。例えば発光装置がタッチセンサを備えるディスプレイである場合、光学部品の比誘電率が高いとタッチセンサが誤作動を起こす可能性があり、ディスプレイ及びタッチセンサが薄型化すると誤作動の可能性が高まる。しかし、本実施形態では光学部品の比誘電率を低めることができるため、タッチセンサの誤作動が抑制されうる。 The optical component in the embodiment is a component having a function of transmitting light. The optical component in the embodiment can be applied to a deformable light-emitting device, such as a foldable display, by increasing the flexibility. The optical component in the embodiment can be applied to a sealing portion of an organic EL light-emitting device in a display or the like. The optical component may be a color resist. That is, for example, a phosphor may be contained in the composition (X), and a color resist in a color filter may be produced from this composition (X). This color filter may be provided in a display device such as an organic EL display or a micro LED display, which is a light-emitting device. In addition, since the optical component in the embodiment has a low relative dielectric constant, it is unlikely to cause a malfunction in a light-emitting device or the like equipped with the optical component. For example, when the light-emitting device is a display equipped with a touch sensor, if the relative dielectric constant of the optical component is high, the touch sensor may malfunction, and the possibility of malfunction increases when the display and the touch sensor are thinned. However, in the present embodiment, the relative dielectric constant of the optical component can be reduced, so that the malfunction of the touch sensor can be suppressed.
 実施形態に係る光学部品の製造方法は、組成物(X)をインクジェット法で吐出してから、組成物(X)に光を照射して硬化させることを含む。 The method for manufacturing an optical component according to the embodiment includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to cure it.
 実施形態に係る発光装置は、光源と、光源が発する光を透過させる光学部品とを備え、光学部品が、組成物(X)の硬化物を含む。発光装置は、例えば有機EL発光装置である。なお、ELとは、エレクトロルミネッセンスのことであり、有機EL発光装置とは光源として有機EL素子(有機発光ダイオード)を備える発光装置である。発光装置には、ディスプレイなどの表示装置が含まれうる。発光装置が、タッチセンサを備えてもよい。発光装置は、例えば折りたたみ可能なディスプレイのような変形可能な発光装置でもよい。 The light-emitting device according to the embodiment includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the composition (X). The light-emitting device is, for example, an organic EL light-emitting device. Note that EL stands for electroluminescence, and an organic EL light-emitting device is a light-emitting device that includes an organic EL element (organic light-emitting diode) as a light source. The light-emitting device may include a display device such as a display. The light-emitting device may include a touch sensor. The light-emitting device may be a deformable light-emitting device, such as a foldable display.
 実施形態に係る発光装置の製造方法は、発光装置における光学部品を、組成物(X)をインクジェット法で吐出してから、組成物(X)に光を照射して硬化させることを含む方法で製造することを含む。 The method for manufacturing a light-emitting device according to the embodiment includes manufacturing an optical component in the light-emitting device by a method that includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to harden it.
 なお、組成物(X)の用途及び成形方法は、上記のみには制限されない。組成物(X)を種々の用途に適用することができる。また、組成物(X)を種々の方法で成形してから硬化させて硬化物を作製することができる。 The uses and molding methods of composition (X) are not limited to those described above. Composition (X) can be used in a variety of applications. In addition, composition (X) can be molded by various methods and then cured to produce a cured product.
 2.光硬化性樹脂組成物
 組成物(X)は、上述のとおり、光重合性化合物(A)と、光重合開始剤(B)と、を含有する。光重合性化合物(A)が、式(1)で示すアミド化合物(A1)を含有する。
2. Photocurable resin composition The composition (X) contains the photopolymerizable compound (A) and the photopolymerization initiator (B) as described above. The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)において、Xがビニル基又は炭素数が1以上4以下のアルキル基であり、Yが炭素数2以上12以下のアルキレン基であり、Zが(メタ)アクリロイル基、ヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である。 In formula (1), X is a vinyl group or an alkyl group having 1 to 4 carbon atoms, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
 アミド化合物(A1)により、組成物(X)の硬化物が、良好な耐折り曲げ性と低い比誘電率とを有しうる。アミド化合物(A1)におけるYが炭素数2以上12以下のアルキレン基であることで、硬化物の比誘電率が低減し、かつ硬化物の柔軟性が高まることで硬化物の耐折り曲げ性が高まると推察される。また、アミド化合物(A1)が分子内に窒素を有することで、無機質材に硬化物を重ねて作製した場合の、無機質材と硬化物との密着性が高まりうる。このため、硬化物を無機質材ごと折り曲げた場合の硬化物の破損が抑制され、これによっても硬化物の耐折り曲げ性が高まる。このため、例えば発光装置等に、パッシベーション層のような無機質材から作製される膜(無機質膜)と、組成物(X)から作製されたシート状の光学部材とを重ねて設けた場合に、光学部材を無機質膜ごと折り曲げても、光学部材の破損が抑制されうる。また、アミド化合物(A1)は、組成物(X)の大きな粘度上昇を引き起こしにくい。 The amide compound (A1) allows the cured product of the composition (X) to have good bending resistance and a low dielectric constant. It is presumed that the dielectric constant of the cured product is reduced and the flexibility of the cured product is increased, thereby improving the bending resistance of the cured product, by the fact that Y in the amide compound (A1) is an alkylene group having 2 to 12 carbon atoms. In addition, the amide compound (A1) has nitrogen in its molecule, and when the cured product is produced by stacking it on an inorganic material, the adhesion between the inorganic material and the cured product can be improved. Therefore, when the cured product is folded together with the inorganic material, damage to the cured product is suppressed, which also improves the bending resistance of the cured product. For this reason, when a film (inorganic film) made from an inorganic material such as a passivation layer and a sheet-like optical member made from the composition (X) are stacked on top of each other in a light-emitting device, damage to the optical member can be suppressed even if the optical member is folded together with the inorganic film. In addition, the amide compound (A1) is less likely to cause a large increase in the viscosity of the composition (X).
 式(1)におけるYであるアルキレン基の炭素数は、3以上であることがより好ましく、5以上であれば更に好ましい。炭素数は11以下であることがより好ましい。 The number of carbon atoms in the alkylene group Y in formula (1) is preferably 3 or more, and more preferably 5 or more. The number of carbon atoms is more preferably 11 or less.
 アミド化合物(A1)は、ビニル基と(メタ)アクリロイル基とのうち、少なくとも一方を有することが好ましい。この場合、アミド化合物(A1)が光ラジカル重合性を有しうる。 It is preferable that the amide compound (A1) has at least one of a vinyl group and a (meth)acryloyl group. In this case, the amide compound (A1) can have photoradical polymerizability.
 アミド化合物(A1)が、第一のアミド化合物(A11)と第二のアミド化合物(A12)とのうち少なくとも一方を含有することが好ましい。第一のアミド化合物(A11)とは、式(1)に示す構造を有し、Xがビニル基、Yが炭素数2以上12以下のアルキレン基、Zがヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である化合物である。第二のアミド化合物(A12)とは、式(1)に示す構造を有し、Xがメチル基、Yが炭素数2以上12以下のアルキレン基、Zが(メタ)アクリロイル基である化合物である。 It is preferable that the amide compound (A1) contains at least one of the first amide compound (A11) and the second amide compound (A12). The first amide compound (A11) is a compound having the structure shown in formula (1), in which X is a vinyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group. The second amide compound (A12) is a compound having the structure shown in formula (1), in which X is a methyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group.
 第一のアミド化合物(A11)と第二のアミド化合物(A12)との各々は、分子内にラジカル重合性の官能基を一つのみ有するため、組成物(X)の硬化時に硬化収縮を増大させにくい。そのため、無機質膜等の基材の上で組成物(X)を硬化させて硬化物を作製する際に、基材と硬化物との密着性低下を引き起こしにくい。また、そのため、例えば無機質膜と、組成物(X)から作製されたシート状の光学部材とを重ねて設けた場合に、光学部材を無機質膜ごと折り曲げた場合の、光学部材の破損が、より抑制されうる。 The first amide compound (A11) and the second amide compound (A12) each have only one radically polymerizable functional group in the molecule, and therefore are unlikely to increase cure shrinkage when the composition (X) is cured. Therefore, when the composition (X) is cured on a substrate such as an inorganic film to produce a cured product, the adhesion between the substrate and the cured product is unlikely to decrease. Also, for example, when an inorganic film and a sheet-like optical member made from the composition (X) are stacked, damage to the optical member when the optical member is folded together with the inorganic film can be further suppressed.
 光重合性化合物(A)は、アミド化合物(A1)以外の化合物を更に含有してもよい。光重合性化合物(A)に対するアミド化合物(A1)の割合は、5質量%以上40質量%以下であることが好ましい。割合が5質量%以上であれば、硬化物の比誘電率がより低下し、かつ耐折り曲げ性がより高まりうる。割合が40質量%以下であれば、硬化物のガラス転移温度をより高めることができ耐熱性がより高まりうるという利点がある。割合が7質量%以上であればより好ましく、10質量%以上であれば更に好ましい。割合が35質量%以下であればより好ましく、30質量%以下であれば更に好ましい。 The photopolymerizable compound (A) may further contain a compound other than the amide compound (A1). The ratio of the amide compound (A1) to the photopolymerizable compound (A) is preferably 5% by mass or more and 40% by mass or less. If the ratio is 5% by mass or more, the relative dielectric constant of the cured product can be further reduced and the bending resistance can be further improved. If the ratio is 40% by mass or less, there is an advantage that the glass transition temperature of the cured product can be further increased and the heat resistance can be further improved. It is more preferable that the ratio is 7% by mass or more, and even more preferable that the ratio is 10% by mass or more. It is more preferable that the ratio is 35% by mass or less, and even more preferable that the ratio is 30% by mass or less.
 光重合性化合物(A)がアミド化合物(A1)以外の化合物を含有する場合、光重合性化合物(A)が、アミド化合物(A1)以外のラジカル重合性化合物を含有しうる。 When the photopolymerizable compound (A) contains a compound other than the amide compound (A1), the photopolymerizable compound (A) may contain a radical polymerizable compound other than the amide compound (A1).
 光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するモノ(メタ)アクリレート(A2)を含有してもよい。モノ(メタ)アクリレート(A2)は、炭素数6以上20以下の鎖状飽和炭化水素骨格を有することで、硬化物の比誘電率を低下させ、かつ柔軟性を高めうる。また、モノ(メタ)アクリレート(A2)は、ラジカル重合性官能基を分子内に一つのみ有することで、組成物(X)の硬化時に硬化収縮を増大させにくく、かつ無機質膜等の基材と硬化物との密着性低下を引き起こしにくい。また、モノ(メタ)アクリレート(A2)は、組成物(X)の大きな粘度上昇を引き起こしにくい。 The photopolymerizable compound (A) may contain a mono(meth)acrylate (A2) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule. The mono(meth)acrylate (A2) can reduce the dielectric constant of the cured product and increase its flexibility by having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule. Furthermore, the mono(meth)acrylate (A2) has only one radically polymerizable functional group in the molecule, and therefore is less likely to increase the cure shrinkage during curing of the composition (X) and is less likely to cause a decrease in adhesion between the substrate, such as an inorganic film, and the cured product. Furthermore, the mono(meth)acrylate (A2) is less likely to cause a large increase in the viscosity of the composition (X).
 モノ(メタ)アクリレート(A2)における鎖状飽和炭化水素骨格の炭素数が、8以上であればより好ましく、10以上であれば更に好ましい。炭素数が、18以下であればより好ましく、16以下であれば更に好ましい。 The number of carbon atoms in the chain saturated hydrocarbon skeleton in the mono(meth)acrylate (A2) is preferably 8 or more, and more preferably 10 or more. The number of carbon atoms is more preferably 18 or less, and even more preferably 16 or less.
 モノ(メタ)アクリレート(A2)は、例えば炭素数6以上20以下の鎖状飽和炭化水素骨格の一端に水酸基が結合した構造を有するモノオールと(メタ)アクリル酸との、エステルを含有する。モノ(メタ)アクリレート(A2)は、例えばラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、セチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、及びトリデシル(メタ)アクリレート等よりなる群から選択される少なくとも一種を含有する。 The mono(meth)acrylate (A2) contains, for example, an ester of a monool having a structure in which a hydroxyl group is bonded to one end of a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms, and (meth)acrylic acid. The mono(meth)acrylate (A2) contains, for example, at least one selected from the group consisting of lauryl (meth)acrylate, isostearyl (meth)acrylate, isooctyl (meth)acrylate, isoamyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, cetyl (meth)acrylate, isooctyl (meth)acrylate, and tridecyl (meth)acrylate.
 光重合性化合物(A)に対するモノ(メタ)アクリレート(A2)の割合は、10質量%以上70質量%以下であることが好ましい。割合が10質量%以上であれば、硬化物の比誘電率がより低下し、かつ耐折り曲げ性がより高まりうる。割合が70質量%以下であれば、硬化物のガラス転移温度をより高めることができ耐熱性がより高まりうる、かつ硬化時のアウトガスを低減できるという利点がある。割合が15質量%以上であればより好ましく、20質量%以上であれば更に好ましい。割合が60質量%以下であればより好ましく、55質量%以下であれば更に好ましく、45質量%以下であれば特に好ましい。 The ratio of mono(meth)acrylate (A2) to photopolymerizable compound (A) is preferably 10% by mass or more and 70% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and bending resistance can be further improved. If the ratio is 70% by mass or less, there are advantages in that the glass transition temperature of the cured product can be further increased, the heat resistance can be further improved, and outgassing during curing can be reduced. It is more preferable that the ratio is 15% by mass or more, and even more preferable that the ratio is 20% by mass or more. It is more preferable that the ratio is 60% by mass or less, even more preferable that the ratio is 55% by mass or less, and particularly preferable that the ratio is 45% by mass or less.
 光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するジ(メタ)アクリレート(A3)を含有してもよい。ジ(メタ)アクリレート(A3)は、炭素数6以上20以下の鎖状飽和炭化水素骨格を有することで、硬化物の比誘電率を低下させ、かつ柔軟性を高めうる。また、ジ(メタ)アクリレート(A3)は、ラジカル重合性官能基を分子内に二つ有することで、硬化物の架橋密度を高めて、硬化物のガラス転移温度を高め、それにより硬化物の耐熱性を高めることができる。また、ジ(メタ)アクリレート(A3)は、組成物(X)の大きな粘度上昇を引き起こしにくい。 The photopolymerizable compound (A) may contain a di(meth)acrylate (A3) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule. The di(meth)acrylate (A3) can reduce the dielectric constant of the cured product and increase its flexibility by having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule. In addition, the di(meth)acrylate (A3) has two radically polymerizable functional groups in the molecule, which can increase the crosslink density of the cured product and increase the glass transition temperature of the cured product, thereby increasing the heat resistance of the cured product. In addition, the di(meth)acrylate (A3) is less likely to cause a large increase in the viscosity of the composition (X).
 ジ(メタ)アクリレート(A3)における鎖状飽和炭化水素骨格の炭素数が、8以上であればより好ましく、10以上であれば更に好ましい。炭素数が、18以下であればより好ましく、16以下であれば更に好ましい。 The number of carbon atoms in the chain saturated hydrocarbon skeleton in the di(meth)acrylate (A3) is preferably 8 or more, and more preferably 10 or more. The number of carbon atoms is more preferably 18 or less, and even more preferably 16 or less.
 ジ(メタ)アクリレート(A3)は、例えば炭素数6以上20以下の鎖状飽和炭化水素骨格の両端のそれぞれ水酸基が結合した構造を有するジオールと(メタ)アクリル酸との、エステルを含有する。ジ(メタ)アクリレート(A3)は、例えば1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,11-ウンデカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,13-トリデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,15-ペンタデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,17-ヘプタデカンジオールジ(メタ)アクリレート、1,18-オクタデカンジオールジ(メタ)アクリレート、及び1,19-ノナデカンジオールジ(メタ)アクリレート、及び1,20-イコサンジオールジ(メタ)アクリレート等よりなる群から選択される少なくとも一種を含有する。 Di(meth)acrylate (A3) contains, for example, an ester of (meth)acrylic acid and a diol having a structure in which hydroxyl groups are bonded to both ends of a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms. Di(meth)acrylate (A3) is, for example, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,11-undecanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,13-tridecanediol di(meth)acrylate, Contains at least one selected from the group consisting of 1,14-tetradecanediol di(meth)acrylate, 1,15-pentadecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,17-heptadecanediol di(meth)acrylate, 1,18-octadecanediol di(meth)acrylate, 1,19-nonadecanediol di(meth)acrylate, and 1,20-icosanediol di(meth)acrylate.
 光重合性化合物(A)に対するジ(メタ)アクリレート(A3)の割合は、10質量%以上70質量%以下であることが好ましい。割合が10質量%以上であれば、硬化物の比誘電率がより低下し、かつ耐折り曲げ性がより高まりうる。割合が70質量%以下であれば、組成物(X)の硬化時の硬化収縮が抑制されうる。割合が15質量%以上であればより好ましく、20質量%以上であれば更に好ましい。割合が60質量%以下であればより好ましく、55質量%以下であれば更に好ましく、45質量%以下であれば特に好ましい。 The ratio of di(meth)acrylate (A3) to photopolymerizable compound (A) is preferably 10% by mass or more and 70% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and the bending resistance can be further improved. If the ratio is 70% by mass or less, the cure shrinkage during curing of composition (X) can be suppressed. If the ratio is 15% by mass or more, it is more preferable, and if it is 20% by mass or more, it is even more preferable. If the ratio is 60% by mass or less, it is more preferable, if it is 55% by mass or less, and it is particularly preferable if it is 45% by mass or less.
 光重合性化合物(A)が、ナフチル基を含有するモノ(メタ)アクリレート(A4)を含有してもよい。モノ(メタ)アクリレート(A4)は、を有することで、硬化物の比誘電率を低下させ、かつガラス転移温度を高めうる。また、モノ(メタ)アクリレート(A4)は、ラジカル重合性官能基を分子内に一つのみ有することで、組成物(X)の硬化時に硬化収縮を増大させにくく、かつ無機質膜等の基材と硬化物との密着性低下を引き起こしにくい。また、モノ(メタ)アクリレート(A4)は、組成物(X)の大きな粘度上昇を引き起こしにくい。 The photopolymerizable compound (A) may contain a mono(meth)acrylate (A4) containing a naphthyl group. The mono(meth)acrylate (A4) can reduce the dielectric constant of the cured product and increase the glass transition temperature by having . In addition, the mono(meth)acrylate (A4) has only one radically polymerizable functional group in the molecule, and therefore is less likely to increase the cure shrinkage during curing of the composition (X) and is less likely to cause a decrease in adhesion between the cured product and a substrate such as an inorganic film. In addition, the mono(meth)acrylate (A4) is less likely to cause a large increase in the viscosity of the composition (X).
 モノ(メタ)アクリレート(A4)は、例えば下記式(2)で示される化合物を含有する。 The mono(meth)acrylate (A4) contains, for example, a compound represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)において、Xは水素又はメチル基、Yは単結合又は炭素数1以上6以下のアルキレン基、Zは単結合、S又はO、RはH又はメチル基、Lは単結合、エステル結合又はチオエステル結合、nは1又は2ただしLが単結合の場合はnは1、mは6又は7である。 In formula (2), X1 is hydrogen or a methyl group, Y1 is a single bond or an alkylene group having 1 to 6 carbon atoms, Z1 is a single bond, S or O, R1 is H or a methyl group, L1 is a single bond, an ester bond or a thioester bond, and n is 1 or 2, provided that when L1 is a single bond, n is 1 and m is 6 or 7.
 光重合性化合物(A)に対するモノ(メタ)アクリレート(A4)の割合は、10質量%以上60質量%以下であることが好ましい。割合が10質量%以上であれば、硬化物の比誘電率がより低下し、かつ耐熱性がより高まりうる。割合が60質量%以下であれば、硬化物の耐折り曲げ性がより高まりうるという利点がある。割合が15質量%以上であればより好ましく、20質量%以上であれば更に好ましい。割合が50質量%以下であればより好ましく、40質量%以下であれば更に好ましい。 The ratio of mono(meth)acrylate (A4) to photopolymerizable compound (A) is preferably 10% by mass or more and 60% by mass or less. If the ratio is 10% by mass or more, the dielectric constant of the cured product can be further reduced and the heat resistance can be further increased. If the ratio is 60% by mass or less, there is an advantage that the bending resistance of the cured product can be further increased. If the ratio is 15% by mass or more, it is more preferable, and if it is 20% by mass or more, it is even more preferable. If the ratio is 50% by mass or less, it is even more preferable, and if it is 40% by mass or less, it is even more preferable.
 光重合性化合物(A)が、アミド化合物(A1)、モノ(メタ)アクリレート(A2)、ジ(メタ)アクリレート(A3)及びモノ(メタ)アクリレート(A4)のいずれでもない化合物(以下、化合物(A5)ともいう)を含有してもよい。組成物(X)に対する化合物(A5)の割合は、例えば0質量%以上40質量%以下である。 The photopolymerizable compound (A) may contain a compound (hereinafter also referred to as compound (A5)) that is not an amide compound (A1), a mono(meth)acrylate (A2), a di(meth)acrylate (A3), or a mono(meth)acrylate (A4). The ratio of compound (A5) to composition (X) is, for example, 0% by mass or more and 40% by mass or less.
 化合物(A5)は、ラジカル重合性官能基を分子内に2以上有する多官能ラジカル重合性化合物(A51)(以下、化合物(A51)ともいう)と、ラジカル重合性官能基を分子内に1つのみ有する単官能ラジカル重合性化合物(A52)(以下、化合物(A52)ともいう)とのうち、少なくとも一方を含有する。 Compound (A5) contains at least one of a polyfunctional radically polymerizable compound (A51) (hereinafter also referred to as compound (A51)) having two or more radically polymerizable functional groups in the molecule, and a monofunctional radically polymerizable compound (A52) (hereinafter also referred to as compound (A52)) having only one radically polymerizable functional group in the molecule.
 化合物(A52)は、組成物(X)の反応性を高めることができる。そのため、硬化物からのアウトガスの発生を抑制できる。化合物(d1)はラジカル重合性化合物(A)の重合体の架橋密度を高めることもできる。このため、硬化物のガラス転移温度を高め、それにより硬化物の耐熱性を高めることができる。 Compound (A52) can increase the reactivity of composition (X). As a result, outgassing from the cured product can be suppressed. Compound (d1) can also increase the crosslink density of the polymer of radically polymerizable compound (A). As a result, the glass transition temperature of the cured product can be increased, thereby improving the heat resistance of the cured product.
 化合物(A52)は、例えば1,4-ブタンジオールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリントリアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールオリゴアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレート、ビスフェノールAポリエトキシジアクリレート、ビスフェノールFポリエトキシジアクリレート、ペンタエリスリトールテトラアクリレート、プロポキシ化(2)ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化(4)ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、アクリル酸2-(2-エトキシエトキシ)エチル、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールトリアクリレート、ビスペンタエリスリトールヘキサアクリレート、エチレングリコールジアクリレート、エトキシ化1,6-ヘキサンジオールジアクリレート、ポリプロピレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、テトラエチレングリコールジアクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ヒドロキシピバリン酸トリメチロールプロパントリアクリレート、エトキシ化リン酸トリアクリレート、エトキシ化トリプロピレングリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジアクリレート、ステアリン酸変性ペンタエリスリトールジアクリレート、テトラメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、プロポキシレートグリセリルトリアクリレート、テトラメチロールメタンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ネオペンチルグリコールオリゴアクリレート、トリメチロールプロパンオリゴアクリレート、ペンタエリスリトールオリゴアクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、及びアクリル酸2-(2-ビニロキシエトキシ)エチル等よりなる群から選択される少なくとも一種を含有する。 Examples of compound (A52) include 1,4-butanediol diacrylate, neopentyl glycol di(meth)acrylate, glycerin triacrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol oligoacrylate, diethylene glycol diacrylate, 1,6-hexanediol oligoacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, dipropylene glycol diacrylate, cyclohexane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A polyethoxy diacrylate, bisphenol F polyethoxy diacrylate, pentaerythritol tetraacrylate, propoxylated (2) neopentyl glycol diacrylate, trimethylol trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate, pentaerythritol triacrylate, ethoxylated (3) trimethylolpropane triacrylate, propoxylated (3) glyceryl triacrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated (4) pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, 2-(2-ethoxyethoxy)ethyl acrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, tripropylene glycol triacrylate, bispentaerythritol hexaacrylate, ethylene glycol diacrylate, ethoxylated 1,6-hexanediol diacrylate, poly Polypropylene glycol diacrylate, 1,4-butanediol diacrylate, tetraethylene glycol diacrylate, 2-n-butyl-2-ethyl-1,3-propanediol diacrylate, hydroxypivalic acid neopentyl glycol diacrylate, hydroxypivalic acid trimethylolpropane triacrylate, ethoxylated phosphoric acid triacrylate, ethoxylated tripropylene glycol diacrylate, neopentyl glycol modified trimethylolpropane diacrylate, stearic acid modified pentaerythritol diacrylate, tetramethylolpropane triacrylate, tetramethylolmethane triacrylate, caprolactone modified trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, tetramethylolmethane tetraacrylate It contains at least one selected from the group consisting of acrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, caprolactone-modified dipentaerythritol hexaacrylate, dipentaerythritol hydroxypentaacrylate, neopentyl glycol oligoacrylate, trimethylolpropane oligoacrylate, pentaerythritol oligoacrylate, ethoxylated neopentyl glycol di(meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, and 2-(2-vinyloxyethoxy)ethyl acrylate.
 光重合性化合物(A)に対する化合物(A51)の割合は、例えば30質量%以下である。また、光重合性化合物(A)に対する化合物(A51)を含めたラジカル重合性官能基を分子内に2以上有する化合物の合計の割合は、例えば10質量%以上70質量%以下である。 The ratio of compound (A51) to photopolymerizable compound (A) is, for example, 30% by mass or less. The ratio of the total of compounds having two or more radically polymerizable functional groups in the molecule, including compound (A51), to photopolymerizable compound (A) is, for example, 10% by mass or more and 70% by mass or less.
 化合物(A52)は、例えばテトラヒドロフルフリルアクリレート、イソボルニルアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、3-メトキシブチルアクリレート、エトキシエチルアクリレート、ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、メトキシジキシルエチルアクリレート、エチルジグリコールアクリレート、環状トリメチロールプロパンフォルマルモノアクリレート、イミドアクリレート、エトキシ化コハク酸アクリレート、トリフルオロエチルアクリレート、ω-カルボキシポリカプロラクトンモノアクリレート、シクロヘキシルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、ジエチレングリコールモノブチルエーテルアクリレート、3,3,5-トリメチルシクロヘキサノールアクリレート、カプロラクトンアクリレート、エトキシ化(4)ノニルフェノールアクリレート、メトキシポリエチレングリコール(350)モノアクリレート、メトキシポリエチレングリコール(550)モノアクリレート、フェノキシエチルアクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジルアクリレート、メチルフェノキシエチルアクリレート、4-t-ブチルシクロヘキシルアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、トリブロモフェニルアクリレート、エトキシ化トリブロモフェニルアクリレート、2-フェノキシエチルアクリレート、2-フェノキシエチルアクリレートのエチレンオキサイド付加物、2-フェノキシエチルアクリレートのプロピレンオキサイド付加物、ジシクロペンタニルアクリレ-ト、フェノキシジエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、3-メタクリロイルオキシメチルシクロヘキセンオキサイド、3-アクリロイルオキシメチルシクロヘキセンオキサイド、ビニルメチルオキサゾリジノン、アクリロイルモルフォリン、アクリル酸モルフォリン4-イル、ジメチルアクリルアミド、ジメチルメタクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルメタクリルアミド、ジエチルアクリルアミド、ジエチルメタクリルアミド、N-ビニル-2-ピロリドン及びペンタメチルピペリジルメタクリレ-ト等よりなる群から選択される少なくとも一種の化合物を含有する。 Compound (A52) is, for example, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, 3-methoxybutyl acrylate, ethoxyethyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxydixylethyl acrylate, ethyl diglycol acrylate, cyclic trimethylolpropane formal monoacrylate, imino diethyl acrylate, ethoxylated succinic acid acrylate, trifluoroethyl acrylate, ω-carboxypolycaprolactone monoacrylate, cyclohexyl acrylate, 2-(2-ethoxyethoxy)ethyl acrylate, diethylene glycol monobutyl ether acrylate, 3,3,5-trimethylcyclohexanol acrylate, caprolactone acrylate, ethoxylated (4) nonylphenol acrylate, methoxypolyethylene glycol (350) monoacrylate, methoxypolyethylene glycol (550) monoacrylate, phenoxyethyl acrylate, cyclohexyl (meth)acrylate, dicyclohexyl tetrahydrofurfuryl (meth)acrylate, benzyl acrylate, methylphenoxyethyl acrylate, 4-t-butylcyclohexyl acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, tribromophenyl acrylate, ethoxylated tribromophenyl acrylate, 2-phenoxyethyl acrylate, ethylene oxide adduct of 2-phenoxyethyl acrylate, propylene oxide adduct of 2-phenoxyethyl acrylate, dicyclopentanyl acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropane It contains at least one compound selected from the group consisting of acryloyl acrylate, 1,4-cyclohexane dimethanol monoacrylate, 3-methacryloyloxymethyl cyclohexene oxide, 3-acryloyloxymethyl cyclohexene oxide, vinylmethyl oxazolidinone, acryloyl morpholine, 4-morpholine acrylate, dimethyl acrylamide, dimethyl methacrylamide, dimethyl aminopropyl acrylamide, dimethyl aminopropyl methacrylamide, diethyl acrylamide, diethyl methacrylamide, N-vinyl-2-pyrrolidone, and pentamethyl piperidyl methacrylate.
 光重合性化合物(A)に対する化合物(A52)の割合は、例えば30質量%以下である。また、組成物(X)に対する、ラジカル重合性化合物(A)中の化合物(A52)を含めたラジカル重合性官能基を分子内に1つのみ有する化合物の合計の割合は、例えば30質量%以上90質量%以下である。 The ratio of compound (A52) to photopolymerizable compound (A) is, for example, 30% by mass or less. In addition, the total ratio of compounds having only one radically polymerizable functional group in the molecule, including compound (A52) in radically polymerizable compound (A), to composition (X) is, for example, 30% by mass or more and 90% by mass or less.
 また、光重合性化合物(A)は、光カチオン重合性化合物(A6)を更に含有してもよい。光重合性化合物(A)に対する光カチオン重合性化合物(A6)の割合は、例えば0質量%以上30質量%以下である。 The photopolymerizable compound (A) may further contain a photocationically polymerizable compound (A6). The ratio of the photocationically polymerizable compound (A6) to the photopolymerizable compound (A) is, for example, 0% by mass or more and 30% by mass or less.
 光重合開始剤(B)について説明する。光重合開始剤(B)は、光ラジカル重合開始剤(B1)を含有することが好ましい。光ラジカル重合開始剤(B1)は、例えば芳香族ケトン類、アシルホスフィンオキサイド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物など)、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミン化合物からなる群から選択される少なくとも一種の化合物を含有する。 The photopolymerization initiator (B) will be described. The photopolymerization initiator (B) preferably contains a photoradical polymerization initiator (B1). The photoradical polymerization initiator (B1) contains at least one compound selected from the group consisting of, for example, aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds.
 光重合性化合物(A)中の光ラジカル重合性化合物に対する光ラジカル重合開始剤(B1)の割合は、6質量%以上であることが好ましい。この場合、組成物(X)は良好な光硬化性を有することができ、良好な大気雰囲気下での光硬化性も有しうる。この割合は7質量%以上であればより好ましく、8質量%以上であれば更に好ましい。またこの割合は例えば30質量%以下であり、20質量%以下であれば好ましく、18質量%以下であれば更に好ましい。 The ratio of the photoradical polymerization initiator (B1) to the photoradical polymerizable compound in the photopolymerizable compound (A) is preferably 6% by mass or more. In this case, the composition (X) can have good photocurability and can also have good photocurability under an atmospheric environment. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 20% by mass or less, and even more preferably 18% by mass or less.
 光ラジカル重合開始剤(B1)は、フォトブリーチング性を有する光ラジカル重合開始剤を含んでもよい。この場合、組成物(X)の硬化物が良好な光透過性を有しうる。ラジカル重合性化合物に対するフォトブリーチング性を有する光ラジカル重合開始剤の割合は、3質量%以上であることが好ましい。この割合は7質量%以上であればより好ましく、8質量%以上であれば更に好ましい。またこの割合は例えば30質量%以下であり、25質量%以下であれば好ましく、20質量%以下であれば更に好ましい。 The photoradical polymerization initiator (B1) may contain a photoradical polymerization initiator having photobleaching properties. In this case, the cured product of the composition (X) may have good light transmittance. The ratio of the photoradical polymerization initiator having photobleaching properties to the radically polymerizable compound is preferably 3 mass% or more. This ratio is more preferably 7 mass% or more, and even more preferably 8 mass% or more. This ratio is, for example, 30 mass% or less, preferably 25 mass% or less, and even more preferably 20 mass% or less.
 フォトブリーチング性を有する光ラジカル重合開始剤は、例えばアシルホスフィンオキサイド系光開始剤と、オキシムエステル系光開始剤のうちのフォトブリーチング性を有する化合物とのうち、少なくとも一方を含有する。 The photoradical polymerization initiator having photobleaching properties contains at least one of, for example, an acylphosphine oxide-based photoinitiator and a compound having photobleaching properties among oxime ester-based photoinitiators.
 光ラジカル重合開始剤(B1)は、分子中に増感剤骨格を有する成分を含んでもよい。増感剤骨格は、例えば9H-チオキサンテン-9-オン骨格とアントラセン骨格とのうち少なくとも一方を含む。すなわち、光ラジカル重合開始剤(B1)は、9H-チオキサンテン-9-オン骨格とアントラセン骨格とのうち少なくとも一方を有する成分を含むことが好ましい。 The photoradical polymerization initiator (B1) may contain a component having a sensitizer skeleton in the molecule. The sensitizer skeleton includes, for example, at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton. In other words, it is preferable that the photoradical polymerization initiator (B1) includes a component having at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
 組成物(X)は、光ラジカル重合開始剤(B1)に加えて、重合促進剤を含有してもよい。重合促進剤は、例えば、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸-2-エチルヘキシル、p-ジメチルアミノ安息香酸メチル、安息香酸-2-ジメチルアミノエチル、p-ジメチルアミノ安息香酸ブトキシエチルといったアミン化合物を含有する。なお、重合促進剤が含有しうる成分は前記には限られない。 The composition (X) may contain a polymerization accelerator in addition to the photoradical polymerization initiator (B1). The polymerization accelerator contains, for example, an amine compound such as ethyl p-dimethylaminobenzoate, 2-ethylhexyl p-dimethylaminobenzoate, methyl p-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, or butoxyethyl p-dimethylaminobenzoate. Note that the components that the polymerization accelerator may contain are not limited to those mentioned above.
 また、光重合性化合物(A)が光カチオン重合性化合物(A6)を含有する場合は、光重合開始剤(B)が光カチオン重合開始剤(B2)を含有することが好ましい。 In addition, when the photopolymerizable compound (A) contains a photocationic polymerizable compound (A6), it is preferable that the photopolymerization initiator (B) contains a photocationic polymerization initiator (B2).
 組成物(X)は、溶剤を含有せず又は溶剤の含有量が1質量%以下であることが好ましい。この場合、組成物(X)及び組成物(X)の硬化物からは、溶剤に由来するアウトガスが発生しにくい。また、光学部品及び発光装置の製造時に組成物(X)及び硬化物から溶剤を除去するための乾燥工程を不要にできる。組成物(X)及び硬化物の少なくとも一方から溶剤を除去するための乾燥工程があってもよいが、この場合は乾燥工程における加熱温度の低減と加熱時間の短縮化との、少なくとも一方を可能とできる。このため、光学部品及び発光装置の製造効率を低下させることなく、光学部品からアウトガスを生じにくくできる。さらに、組成物(X)を特にインクジェット法で吐出することで成形する場合に、成形後の組成物(X)から溶剤が揮発することによる厚みの減少が生じにくく、そのため光学部品の厚みの減少が生じにくい。そのため、組成物(X)をインクジェット法で吐出して成形しながら、光学部品の厚みをできるだけ大きく確保できる。溶剤の含有量は、0.5質量%以下であればより好ましく、0.3質量%以下であれば更に好ましく、0.1質量%以下であれば特に好ましい。組成物(X)は、溶剤を含有せず、又は不可避的に混入する溶剤のみを含有することが、特に好ましい。 The composition (X) preferably does not contain a solvent or the solvent content is 1% by mass or less. In this case, outgassing derived from the solvent is unlikely to occur from the composition (X) and the cured product of the composition (X). In addition, a drying process for removing the solvent from the composition (X) and the cured product during the production of optical components and light-emitting devices can be eliminated. A drying process for removing the solvent from at least one of the composition (X) and the cured product may be performed. In this case, at least one of the heating temperature and the heating time in the drying process can be reduced. Therefore, outgassing can be unlikely to occur from the optical components without reducing the production efficiency of the optical components and light-emitting devices. Furthermore, when the composition (X) is molded by ejecting it, especially by the inkjet method, the thickness is unlikely to decrease due to the evaporation of the solvent from the composition (X) after molding, and therefore the thickness of the optical components is unlikely to decrease. Therefore, the thickness of the optical components can be secured as large as possible while ejecting the composition (X) by the inkjet method to mold it. The content of the solvent is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. It is particularly preferable that the composition (X) does not contain a solvent or contains only a solvent that is inevitably mixed in.
 組成物(X)は、本開示の目的が大きく阻害されない範囲内で、上記以外の、無機充填材、吸湿材、分散剤及びシランカップリング剤等の、任意の添加剤を更に含有してもよい。 Composition (X) may further contain any additives other than those mentioned above, such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
 組成物(X)が無機充填材(C)を含有する場合、無機充填材(C)はナノサイズであることが好ましい。この場合、硬化物の良好な透明性(可視光透過性)を維持しながら、硬化物を高屈折率化しうる。ナノサイズとは、平均粒径が1nm以上1000nm以下であることを意味する。無機充填材(C)の平均粒子径は、30nm以下であることが好ましく、20nm以下であればより好ましい。また、この平均粒径は5nm以上であることが好ましく、10nm以上であればより好ましい。なお、この平均粒径は、動的光散乱法による測定結果から算出されるメディアン径、すなわち累積50%径(D50)である。なお、測定装置としては、マイクロトラック・ベル株式会社のナノトラックNanotracWaveシリーズを用いることができる。 When composition (X) contains inorganic filler (C), inorganic filler (C) is preferably nano-sized. In this case, the cured product can have a high refractive index while maintaining good transparency (visible light transmittance) of the cured product. Nano-sized means that the average particle size is 1 nm or more and 1000 nm or less. The average particle size of inorganic filler (C) is preferably 30 nm or less, and more preferably 20 nm or less. In addition, this average particle size is preferably 5 nm or more, and more preferably 10 nm or more. Note that this average particle size is the median diameter calculated from the measurement results by dynamic light scattering method, that is, the cumulative 50% diameter (D50). Note that the Nanotrac NanotracWave series from Microtrac Bell Co., Ltd. can be used as a measuring device.
 本実施形態では、組成物(X)は、光学部品を製造するために用いられうる。光学部品は、光学系における光の経路上に配置される部品である。本実施形態では、組成物(X)は、光を透過させる光学部品を製造するために好ましく用いられうる。ただし、組成物(X)の用途は、光学部品の製造のみには制限されず、組成物(X)は、その特質を利用した種々の用途に適用されうる。 In this embodiment, the composition (X) can be used to manufacture an optical component. An optical component is a component that is disposed on the path of light in an optical system. In this embodiment, the composition (X) can be preferably used to manufacture an optical component that transmits light. However, the use of the composition (X) is not limited to the manufacture of optical components, and the composition (X) can be applied to various uses that utilize its properties.
 本実施形態では、組成物(X)は低い粘度を有しうる。そのため、組成物(X)の成形性が良好である。例えば組成物(X)は、インクジェット法で吐出することで成形されうる。組成物(X)から硬化物又は光学部品等を製造するに当たり、組成物(X)を、インクジェット法で吐出することで成形することが好ましい。すなわち、組成物(X)は、インクジェット成形用であることが好ましい。この場合、組成物(X)の硬化物及び光学部品を位置精度良く作製できる。また、スクリーン印刷法などの接触を伴う印刷法で成形する場合と比べて、組成物(X)をインクジェット法で吐出することで成形する場合は、組成物(X)及びその硬化物に異物が混入しにくく、そのため、光学部品を作製するに当たっての歩留りが悪化しにくい。 In this embodiment, the composition (X) may have a low viscosity. Therefore, the moldability of the composition (X) is good. For example, the composition (X) may be molded by discharging it by an inkjet method. When producing a cured product or an optical part, etc. from the composition (X), it is preferable to mold the composition (X) by discharging it by an inkjet method. That is, the composition (X) is preferably for inkjet molding. In this case, the cured product and the optical part of the composition (X) can be produced with good positional accuracy. In addition, compared to molding by a printing method involving contact such as a screen printing method, when the composition (X) is molded by discharging it by an inkjet method, foreign matter is less likely to be mixed into the composition (X) and its cured product, and therefore the yield when manufacturing the optical part is less likely to deteriorate.
 組成物(X)の40℃における粘度が16mPa・s以下であることが好ましい。この場合、常温における組成物(X)の粘度がいかなる値であっても、組成物(X)を僅かに加熱すれば低粘度化させることが可能である。このため、加熱すれば、組成物(X)を容易に成形でき、特にインクジェット法で吐出することで容易に成形できる。また、組成物(X)を大きく加熱することなく低粘度化させることができるので、組成物(X)中の成分が揮発することによる組成物(X)の組成の変化を生じにくくできる。この粘度が1mPa・s以上であることも好ましく、5mPa・s以上であることもより好ましい。 It is preferable that the viscosity of composition (X) at 40°C is 16 mPa·s or less. In this case, no matter what the viscosity of composition (X) is at room temperature, it is possible to reduce the viscosity by slightly heating composition (X). Therefore, composition (X) can be easily molded by heating, and in particular, it can be easily molded by discharging it by an inkjet method. In addition, since the viscosity of composition (X) can be reduced without significantly heating it, it is possible to make it difficult for the composition of composition (X) to change due to the volatilization of the components in composition (X). It is also preferable that this viscosity is 1 mPa·s or more, and more preferably 5 mPa·s or more.
 組成物(X)の25℃での粘度が50mPa・s以下であることも好ましい。組成物(X)の25℃での粘度が40mPa・s以下であればより好ましく、30mPa・s以下であれば更に好ましく、28mPa・s以下であれば特に好ましい。この粘度が1mPa・s以上であることも好ましく、5mPa・s以上であることもより好ましく、10mPa・s以上であればより好ましく、20mPa・s以上であれば更に好ましい。これらの場合、組成物(X)を常温で容易に成形でき、特にインクジェット法で容易に成形できる。 It is also preferable that the viscosity of composition (X) at 25°C is 50 mPa·s or less. It is more preferable that the viscosity of composition (X) at 25°C is 40 mPa·s or less, even more preferable that it is 30 mPa·s or less, and particularly preferable that it is 28 mPa·s or less. It is also preferable that this viscosity is 1 mPa·s or more, more preferably 5 mPa·s or more, more preferably 10 mPa·s or more, and even more preferably 20 mPa·s or more. In these cases, composition (X) can be easily molded at room temperature, and in particular can be easily molded by the inkjet method.
 このような組成物(X)の低い粘度は、光重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。なお、組成物(X)の粘度の測定方法及び条件は、後掲の実施例の欄において詳しく説明する。 Such a low viscosity of composition (X) can be achieved by appropriately adjusting the composition of photopolymerizable compound (A) within the range described above. The method and conditions for measuring the viscosity of composition (X) will be explained in detail in the Examples section below.
 組成物(X)の硬化物を110℃で30分間加熱した場合に生じるアウトガスの割合が25ppm以下であることが好ましい。すなわち、本実施形態により組成物(X)の硬化性が高められたことで、硬化物から生じるアウトガスの割合が25ppm以下となることが好ましい。この場合、硬化物からアウトガスが生じにくい。このため、例えば硬化物からなる光学部品を備える発光装置内にアウトガスに起因する空隙を生じにくくできる。このため空隙を通じて発光素子に水及び酸素が到達するようなことを起こりにくくして、発光素子が水及び酸素により劣化しにくくできる。このアウトガスの割合は、15ppmであれば特に好ましい。 The rate of outgassing generated when the cured product of composition (X) is heated at 110°C for 30 minutes is preferably 25 ppm or less. In other words, by increasing the curability of composition (X) according to this embodiment, it is preferable that the rate of outgassing generated from the cured product is 25 ppm or less. In this case, outgassing is less likely to occur from the cured product. This makes it possible to make it difficult for voids due to outgassing to occur in a light-emitting device that includes an optical component made of the cured product, for example. This makes it difficult for water and oxygen to reach the light-emitting element through voids, making it difficult for the light-emitting element to deteriorate due to water and oxygen. It is particularly preferable for this rate of outgassing to be 15 ppm.
 このような組成物(X)の硬化物から生じるアウトガスの割合の低減は、光重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。なお、アウトガスの割合の測定方法は、後掲の実施例において詳しく説明する。 The reduction in the proportion of outgassing generated from the cured product of composition (X) can be achieved by appropriately adjusting the composition of photopolymerizable compound (A) within the range described above. The method for measuring the proportion of outgassing will be described in detail in the examples below.
 組成物(X)の硬化物のガラス転移温度は60℃以上であることが好ましい。すなわち、組成物(X)は、硬化することでガラス転移温度が60℃以上の硬化物になる性質を有することが好ましい。この場合、硬化物は良好な耐熱性を有することができる。そのため、例えば硬化物に温度上昇を伴う処理が施された場合に、硬化物が劣化しにくい。このため、例えば光学部品に重なる無機質膜(例えばパッシベーション層6)をプラズマCVD法といった蒸着法で作製する場合、光学部品が加熱されても、光学部品が劣化しにくい。また、耐熱性を高めることで、光学部品を、耐熱性に対する要求が厳しい車載用途などの用途に適合させることもできる。硬化物のガラス転移温度は65℃以上であればより好ましく、70℃以上であれば更に好ましく、75℃以上であれば特に好ましい。この硬化物のガラス転移温度は、光重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。 The glass transition temperature of the cured product of the composition (X) is preferably 60°C or higher. In other words, the composition (X) preferably has the property of curing to become a cured product with a glass transition temperature of 60°C or higher. In this case, the cured product can have good heat resistance. Therefore, for example, when the cured product is subjected to a process involving an increase in temperature, the cured product is less likely to deteriorate. Therefore, for example, when an inorganic film (e.g., passivation layer 6) that overlaps an optical component is produced by a deposition method such as a plasma CVD method, the optical component is less likely to deteriorate even if the optical component is heated. In addition, by increasing the heat resistance, the optical component can be adapted to applications such as vehicle-mounted applications that have strict requirements for heat resistance. The glass transition temperature of the cured product is more preferably 65°C or higher, even more preferably 70°C or higher, and particularly preferably 75°C or higher. This glass transition temperature of the cured product can be achieved by appropriately adjusting the composition of the photopolymerizable compound (A) within the range described above.
 組成物(X)から作製された厚み10μmの硬化物の、JIS K7361-1による全光線透過率は、98.0%以上であることが好ましく、99.0%以上であることが好ましい。この硬化物の全光線透過率は、組成物(X)の組成を上記説明の範囲内で適宜調整することで、実現されうる。 The total light transmittance according to JIS K7361-1 of a 10 μm-thick cured product made from composition (X) is preferably 98.0% or more, and more preferably 99.0% or more. This total light transmittance of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
 組成物から作製された硬化物の、25℃、測定周波数100kHzである場合の比誘電率が、3.0以下であることが好ましい。この場合、硬化物を発光装置における光学部品に適用した場合に、発光装置の動作信頼性が高められうる。特に硬化物を、タッチパネルを備える発光装置における光学部品に適用した場合に、タッチセンサの誤作動が抑制されうる。硬化物の比誘電率は、2.9以下であればより好ましく、2.8以下であれば更に好ましい。この硬化物の比誘電率は、組成物(X)の組成を上記説明の範囲内で適宜調整することで、実現されうる。 The dielectric constant of the cured product made from the composition at 25°C and a measurement frequency of 100 kHz is preferably 3.0 or less. In this case, when the cured product is applied to an optical component in a light-emitting device, the operational reliability of the light-emitting device can be improved. In particular, when the cured product is applied to an optical component in a light-emitting device equipped with a touch panel, malfunction of the touch sensor can be suppressed. The dielectric constant of the cured product is more preferably 2.9 or less, and even more preferably 2.8 or less. This dielectric constant of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
 3.光学部品及び発光装置
 組成物(X)から作製された光学部品を備える発光装置1の構造の例について説明する。発光装置1は、光源と、光源が発する光を透過させる光学部品とを備える。例えば、発光装置1は、発光素子4と、発光素子4を覆う封止材5及びパッシベーション層6とを備える。この場合、発光素子4が光源であり、封止材5が光学部品であり、パッシベーション層6が無機質膜である。封止材5とパッシベーション層6とは重なっている。
3. Optical component and light-emitting device An example of the structure of a light-emitting device 1 including an optical component made from the composition (X) will be described. The light-emitting device 1 includes a light source and an optical component that transmits light emitted by the light source. For example, the light-emitting device 1 includes a light-emitting element 4, and a sealant 5 and a passivation layer 6 that cover the light-emitting element 4. In this case, the light-emitting element 4 is the light source, the sealant 5 is the optical component, and the passivation layer 6 is an inorganic film. The sealant 5 and the passivation layer 6 overlap each other.
 発光素子4は、例えば発光ダイオードを含む。発光ダイオードは、例えば有機EL素子(有機発光ダイオード)とマイクロ発光ダイオードとのうち少なくとも一方を含む。発光素子4が有機発光ダイオードを含む場合は、発光素子4を備える発光装置1は例えば有機ELディスプレイである。発光素子4がマイクロ発光ダイオードを含む場合は、発光素子4を備える発光装置1は例えばマイクロLEDディスプレイである。なお、ELとはエレクトロルミネッセンスの略である。 The light-emitting element 4 includes, for example, a light-emitting diode. The light-emitting diode includes, for example, at least one of an organic EL element (organic light-emitting diode) and a micro light-emitting diode. When the light-emitting element 4 includes an organic light-emitting diode, the light-emitting device 1 including the light-emitting element 4 is, for example, an organic EL display. When the light-emitting element 4 includes a micro light-emitting diode, the light-emitting device 1 including the light-emitting element 4 is, for example, a micro LED display. Note that EL is an abbreviation for electroluminescence.
 発光装置1の構造の例を、図1を参照して説明する。この発光装置1は、トップエミッションタイプである。発光装置1は、支持基板2、支持基板2と間隔をあけて対向する透明基板3、支持基板2の透明基板3と対向する面の上にある発光素子4、並びに発光素子4を覆うパッシベーション層6及び封止材5を備える。 An example of the structure of the light-emitting device 1 will be described with reference to FIG. 1. This light-emitting device 1 is a top-emission type. The light-emitting device 1 includes a support substrate 2, a transparent substrate 3 that faces the support substrate 2 with a gap therebetween, a light-emitting element 4 on the surface of the support substrate 2 that faces the transparent substrate 3, and a passivation layer 6 and a sealing material 5 that cover the light-emitting element 4.
 支持基板2は、例えば樹脂材料から作製されるが、これに限定されない。透明基板3は透光性を有する材料から作製される。透明基板3は、例えば、ガラス製基板又は透明樹脂製基板である。発光素子4は、例えば一対の電極41、43と、電極41、43間にある有機発光層42とを備える。有機発光層42は、例えば正孔注入層421、正孔輸送層422、有機発光層423及び電子輸送層424を備え、これらの層は前記の順番に積層している。 The support substrate 2 is made of, for example, but not limited to, a resin material. The transparent substrate 3 is made of a light-transmitting material. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate. The light-emitting element 4 includes, for example, a pair of electrodes 41, 43 and an organic light-emitting layer 42 between the electrodes 41, 43. The organic light-emitting layer 42 includes, for example, a hole injection layer 421, a hole transport layer 422, an organic light-emitting layer 423, and an electron transport layer 424, and these layers are stacked in the above order.
 発光装置1は複数の発光素子4を備え、かつ複数の発光素子4が、支持基板2上でアレイ9(以下素子アレイ9という)を構成している。素子アレイ9は、隔壁7も備える。隔壁7は、支持基板2上にあり、隣合う二つの発光素子4の間を仕切っている。隔壁7は、例えば感光性の樹脂材料をフォトリソグラフィ法で成形することで作製される。素子アレイ9は、隣合う発光素子4の電極43及び電子輸送層424同士を電気的に接続する接続配線8も備える。接続配線8は、隔壁7上に設けられている。 The light-emitting device 1 includes a plurality of light-emitting elements 4, which form an array 9 (hereinafter referred to as element array 9) on a support substrate 2. The element array 9 also includes a partition 7. The partition 7 is on the support substrate 2 and separates two adjacent light-emitting elements 4. The partition 7 is fabricated, for example, by forming a photosensitive resin material using a photolithography method. The element array 9 also includes connection wiring 8 that electrically connects the electrodes 43 and electron transport layers 424 of adjacent light-emitting elements 4. The connection wiring 8 is provided on the partition 7.
 パッシベーション層6は無機質膜に該当する。パッシベーション層6は、窒化ケイ素又は酸化ケイ素から作製されることが好ましく、窒化ケイ素から作製されることが特に好ましい。図1に示す例では、パッシベーション層6は、第一パッシベーション層61と第二パッシベーション層62とを含む。第一パッシベーション層61は素子アレイ9に直接接触した状態で、素子アレイ9を覆うことで、発光素子4を覆っている。第二パッシベーション層62は、第一パッシベーション層61に対して、素子アレイ9とは反対側の位置に配置され、かつ第二パッシベーション層62と第一パッシベーション層61との間には間隔があけられている。第一パッシベーション層61と第二パッシベーション層62との間に、封止材5が充填されている。すなわち、発光素子4と、発光素子4を覆う封止材5との間に、第一パッシベーション層61が介在している。 The passivation layer 6 corresponds to an inorganic film. The passivation layer 6 is preferably made of silicon nitride or silicon oxide, and is particularly preferably made of silicon nitride. In the example shown in FIG. 1, the passivation layer 6 includes a first passivation layer 61 and a second passivation layer 62. The first passivation layer 61 covers the element array 9 while being in direct contact with the element array 9, thereby covering the light-emitting element 4. The second passivation layer 62 is disposed on the opposite side of the element array 9 with respect to the first passivation layer 61, and a gap is provided between the second passivation layer 62 and the first passivation layer 61. The sealant 5 is filled between the first passivation layer 61 and the second passivation layer 62. That is, the first passivation layer 61 is interposed between the light-emitting element 4 and the sealant 5 covering the light-emitting element 4.
 さらに、第二パッシベーション層62と透明基板3との間に、第二封止材52が充填されている。第二封止材52は、例えば透明な樹脂材料から作製される。第二封止材52の材質は特に制限されない。第二封止材52の材質は、封止材5と同じであっても、異なっていてもよい。 Furthermore, a second sealing material 52 is filled between the second passivation layer 62 and the transparent substrate 3. The second sealing material 52 is made of, for example, a transparent resin material. There are no particular limitations on the material of the second sealing material 52. The material of the second sealing material 52 may be the same as or different from the sealing material 5.
 組成物(X)を用いる封止材5の作製方法及び発光装置1の製造方法について説明する。 The method for producing the encapsulant 5 using the composition (X) and the method for producing the light emitting device 1 are described below.
 本実施形態では、組成物(X)をインクジェット法で吐出することで膜状に成形してから、組成物(X)に紫外線を照射して硬化することで、封止材5を作製することが好ましい。本実施形態では、インクジェット法で組成物(X)を吐出して成形することが可能である。 In this embodiment, it is preferable to eject the composition (X) by an inkjet method to form a film, and then irradiate the composition (X) with ultraviolet light to harden it, thereby producing the sealing material 5. In this embodiment, the composition (X) can be ejected and shaped by an inkjet method.
 組成物(X)をインクジェット法で吐出するに当たっては、組成物(X)が常温で十分に低い粘度を有する場合、例えば25℃における粘度が30mPa・s以下、特に16mPa・s以下である場合には、組成物(X)を加熱せずにインクジェット法で吐出することで成形できる。組成物(X)が加熱されることで低粘度化する場合、組成物(X)を加熱してから組成物(X)をインクジェット法で吐出して成形してもよい。上述のとおり、組成物(X)の40℃における粘度が特に16mPa・s以下である場合、組成物(X)を僅かに加熱しただけで低粘度化させることができ、この低粘度化した組成物(X)をインクジェット法で吐出することができる。組成物(X)の加熱温度は、例えば20℃以上50℃以下である。 When discharging the composition (X) by the inkjet method, if the composition (X) has a sufficiently low viscosity at room temperature, for example, if the viscosity at 25°C is 30 mPa·s or less, particularly 16 mPa·s or less, the composition (X) can be molded by discharging it by the inkjet method without heating it. If the viscosity of the composition (X) is reduced by heating, the composition (X) may be heated and then discharged by the inkjet method to be molded. As described above, if the viscosity of the composition (X) at 40°C is particularly 16 mPa·s or less, the viscosity of the composition (X) can be reduced by simply heating it slightly, and this reduced-viscosity composition (X) can be discharged by the inkjet method. The heating temperature of the composition (X) is, for example, 20°C or higher and 50°C or lower.
 より具体的には、例えばまず、支持基板2を準備する。この支持基板2の一面上に隔壁7を、例えば感光性の樹脂材料を用いてフォトリソグラフィ法で作製する。続いて、支持基板2の一面上に複数の発光素子4を設ける。発光素子4は、蒸着法、塗布法といった適宜の方法で作製できる。特に発光素子4を、インクジェット法といった塗布法で作製することが好ましい。これにより、支持基板2に素子アレイ9を作製する。 More specifically, for example, first, the support substrate 2 is prepared. On one surface of the support substrate 2, partition walls 7 are fabricated by photolithography using, for example, a photosensitive resin material. Next, a plurality of light-emitting elements 4 are provided on one surface of the support substrate 2. The light-emitting elements 4 can be fabricated by an appropriate method such as a vapor deposition method or a coating method. In particular, it is preferable to fabricate the light-emitting elements 4 by a coating method such as an inkjet method. In this way, an element array 9 is fabricated on the support substrate 2.
 次に、素子アレイ9の上に第一パッシベーション層61を設ける。第一パッシベーション層61を、例えばプラズマCVD法といった蒸着法で作製できる。 Next, a first passivation layer 61 is provided on the element array 9. The first passivation layer 61 can be produced by a deposition method such as a plasma CVD method.
 次に、第一パッシベーション層61の上に組成物(X)を、例えばインクジェット法で吐出して成形し、塗膜を形成する。発光素子4の作製と塗膜の形成のいずれにもインクジェット法を適用すれば、発光装置1の製造効率を特に向上できる。続いて、組成物(X)の塗膜に光を照射することで硬化させて、封止材5を作製する。 Next, the composition (X) is ejected onto the first passivation layer 61, for example, by an inkjet method, and shaped to form a coating film. By applying the inkjet method to both the production of the light-emitting element 4 and the formation of the coating film, the production efficiency of the light-emitting device 1 can be particularly improved. Next, the coating film of the composition (X) is cured by irradiating it with light, to produce the encapsulant 5.
 組成物(X)に光を照射するに当たり、大気雰囲気等の酸素を含む雰囲気下で組成物(X)に光を照射してもよく、窒素雰囲気などの不活性雰囲気下で組成物(X)に光を照射してもよい。 When irradiating composition (X) with light, composition (X) may be irradiated with light in an atmosphere containing oxygen, such as an air atmosphere, or composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
 次に、封止材5の上に第二パッシベーション層62を設ける。第二パッシベーション層62は、例えばプラズマCVD法といった蒸着法で作製できる。 Next, a second passivation layer 62 is provided on the sealing material 5. The second passivation layer 62 can be produced by a deposition method such as plasma CVD.
 次に、支持基板2の一面上に、第二パッシベーション層62を覆うように、光硬化性の樹脂材料を設けてから、この樹脂材料に透明基板3を重ねる。透明基板3は、例えばガラス製基板又は透明樹脂製基板である。 Next, a photocurable resin material is applied to one surface of the support substrate 2 so as to cover the second passivation layer 62, and then the transparent substrate 3 is placed on top of this resin material. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
 次に外部から透明基板3へ向けて紫外線を照射する。紫外線は透明基板3を透過して光硬化性の樹脂材料へ到達する。これにより、光硬化性の樹脂材料が硬化し、第二封止材52が作製される。 Next, ultraviolet light is applied from the outside toward the transparent substrate 3. The ultraviolet light passes through the transparent substrate 3 and reaches the photocurable resin material. This causes the photocurable resin material to harden, producing the second sealing material 52.
 封止材5の厚みは、例えば1μm以上50μm以下である。封止材5の厚みは、20μm以下がより好ましく、15μm以下が更に好ましい。この場合、封止材5を薄型化することで、発光装置1を薄型化することができ、フレキシブル性を有する、すなわち屈曲可能な発光装置1を得ることも可能となる。また、封止材5によって発光素子4への水分を効果的に抑制するためには、封止材5の厚みは3μm以上であることが好ましく、5μm以上であればより好ましく、8μm以上であれば更に好ましい。 The thickness of the sealing material 5 is, for example, 1 μm or more and 50 μm or less. The thickness of the sealing material 5 is more preferably 20 μm or less, and even more preferably 15 μm or less. In this case, by thinning the sealing material 5, the light emitting device 1 can be thinned, and it is also possible to obtain a flexible light emitting device 1, i.e., a bendable light emitting device. In order to effectively suppress moisture from entering the light emitting element 4 by the sealing material 5, the thickness of the sealing material 5 is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 8 μm or more.
 封止材5に重なっているパッシベーション層6の厚みは、例えば0.1μm以上2μm以下である。上記のようにパッシベーション層6が第一パッシベーション層61と第二パッシベーション層62とを含む場合、第一パッシベーション層61と第二パッシベーション層62との各々の厚みが0.1μm以上2μm以下であることが好ましい。 The thickness of the passivation layer 6 overlapping the sealing material 5 is, for example, 0.1 μm or more and 2 μm or less. When the passivation layer 6 includes the first passivation layer 61 and the second passivation layer 62 as described above, it is preferable that the thickness of each of the first passivation layer 61 and the second passivation layer 62 is 0.1 μm or more and 2 μm or less.
 発光装置1は、折りたたみ可能なディスプレイ等の、変形可能な発光装置1であってよい。実施形態では封止材5が柔軟性を有し、かつ無機質膜であるパッシベーション層6との密着性が高いため、発光装置1を屈曲させるなど変形させても、封止材5の破損が抑制されうる。 The light-emitting device 1 may be a deformable light-emitting device 1 such as a foldable display. In the embodiment, the sealing material 5 is flexible and has high adhesion to the passivation layer 6, which is an inorganic film, so that even if the light-emitting device 1 is bent or otherwise deformed, damage to the sealing material 5 can be suppressed.
 発光装置がタッチセンサを備えてもよい。実施形態では封止材5の比誘電率を低めることができるので、タッチセンサの誤作動が抑制されうる。 The light emitting device may be equipped with a touch sensor. In this embodiment, the relative dielectric constant of the sealing material 5 can be reduced, which can prevent the touch sensor from malfunctioning.
 4.態様
 第一の態様に係る光硬化性樹脂組成物は、光重合性化合物(A)と、光重合開始剤(B)と、を含有する。光重合性化合物(A)が、式(1)で示すアミド化合物(A1)を含有する。
4. Aspects The photocurable resin composition according to the first aspect contains a photopolymerizable compound (A) and a photopolymerization initiator (B). The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)において、Xがビニル基又は炭素数が1以上4以下のアルキル基であり、Yが炭素数2以上12以下のアルキレン基であり、Zが(メタ)アクリロイル基、ヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である。 In formula (1), X is a vinyl group or an alkyl group having 1 to 4 carbon atoms, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group, a hydroxyl group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
 この態様によると、光硬化性樹脂組成物が、その硬化物に良好な耐折り曲げ性と低い比誘電率とを付与しうる。 In this embodiment, the photocurable resin composition can impart good bending resistance and a low dielectric constant to the cured product.
 第二の態様では、第一の態様において、アミド化合物(A1)が、第一のアミド化合物(A11)と第二のアミド化合物(A12)とのうち少なくとも一方を含有する。第一のアミド化合物(A11)は、式(1)に示す構造を有し、Xがビニル基、Yが炭素数2以上12以下のアルキレン基、Zがヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である化合物である。第二のアミド化合物(A12)は、式(1)に示す構造を有し、Xがメチル基、Yが炭素数2以上12以下のアルキレン基、Zが(メタ)アクリロイル基である化合物である。 In the second embodiment, the amide compound (A1) in the first embodiment contains at least one of a first amide compound (A11) and a second amide compound (A12). The first amide compound (A11) is a compound having a structure shown in formula (1), in which X is a vinyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a hydroxy group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group. The second amide compound (A12) is a compound having a structure shown in formula (1), in which X is a methyl group, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group.
 この態様によると、硬化物の耐折り曲げ性が更に向上しうる。 This embodiment can further improve the bending resistance of the cured product.
 第三の態様では、第一又は第二の態様において、光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するモノ(メタ)アクリレート(A2)を更に含有する。 In the third embodiment, the photopolymerizable compound (A) in the first or second embodiment further contains a mono(meth)acrylate (A2) having a linear saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
 この態様によると、硬化物の比誘電率を更に低下させ、かつ柔軟性を更に高めうる。 This embodiment can further reduce the dielectric constant of the cured product and further increase its flexibility.
 第四の態様では、第一から第三のいずれか一の態様において、光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するジ(メタ)アクリレート(A3)を含有する。 In a fourth embodiment, in any one of the first to third embodiments, the photopolymerizable compound (A) contains a di(meth)acrylate (A3) having a chain-like saturated hydrocarbon skeleton with 6 to 20 carbon atoms in the molecule.
 この態様によると、硬化物の比誘電率を更に低下させ、かつ柔軟性を高め、更に硬化物のガラス転移温度を高めうる。 This embodiment can further reduce the dielectric constant of the cured product, increase its flexibility, and increase the glass transition temperature of the cured product.
 第五の態様では、第一から第四のいずれか一の態様において、光重合性化合物(A)は、分子内にナフチル基を有するモノ(メタ)アクリレート(A4)を更に含有する。 In a fifth embodiment, in any one of the first to fourth embodiments, the photopolymerizable compound (A) further contains a mono(meth)acrylate (A4) having a naphthyl group in the molecule.
 この態様によると、硬化物の比誘電率をより低下させ、かつガラス転移温度を高め、更に耐折り曲げ性をより高めうる。 This embodiment can further reduce the dielectric constant of the cured product, increase the glass transition temperature, and further improve bending resistance.
 第六の態様では、第一から第五のいずれか一の態様において、25℃における粘度が50mPa・s以下である。 In a sixth aspect, in any one of the first to fifth aspects, the viscosity at 25°C is 50 mPa·s or less.
 この態様によると、光硬化性樹脂組成物が良好な成形性を有することができ、インクジェト法により吐出することで成形することも可能となりうる。 In this embodiment, the photocurable resin composition has good moldability, and it may be possible to mold it by ejecting it using the inkjet method.
 第七の態様では、第一から第六のいずれか一の態様において、光硬化性樹脂組成物の硬化物の、25℃かつ測定周波数100kHzの条件における比誘電率が、3.0以下である。 In a seventh aspect, in any one of the first to sixth aspects, the photocurable resin composition has a cured product with a relative dielectric constant of 3.0 or less at 25°C and a measurement frequency of 100 kHz.
 第八の態様では、第一から第七のいずれか一の態様において、光硬化性樹脂組成物が、光学部品作製用である。 In an eighth aspect, in any one of the first to seventh aspects, the photocurable resin composition is for use in producing optical components.
 この態様によれば、光学部品が、良好な耐折り曲げ性と低い比誘電率とを有しうる。 According to this aspect, the optical component can have good bending resistance and a low dielectric constant.
 第九の態様に係る光学部品は、第一から第八のいずれか一の態様に係る光硬化性樹脂組成物の硬化物を含む。 The optical component according to the ninth aspect includes a cured product of the photocurable resin composition according to any one of the first to eighth aspects.
 この態様によれば、光学部品が、良好な耐折り曲げ性と低い比誘電率とを有しうる。 According to this aspect, the optical component can have good bending resistance and a low dielectric constant.
 第十の態様に係る光学部品の製造方法は、第一から第八のいずれか一の態様に係る光硬化性樹脂組成物をインクジェット法で吐出してから、光硬化性樹脂組成物に光を照射して硬化させることを含む。 The method for producing an optical component according to the tenth aspect includes ejecting the photocurable resin composition according to any one of the first to eighth aspects by an inkjet method, and then irradiating the photocurable resin composition with light to cure it.
 この態様によると、光学部品を位置精度良く作製でき、かつ歩留りが悪化しにくい。 This method allows optical components to be manufactured with high positional accuracy and reduces the yield.
 第十一の態様に係る発光装置は、光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、第一から第八のいずれか一の態様に係る光硬化性樹脂組成物の硬化物を含む。 The light emitting device according to the eleventh aspect includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition according to any one of the first to eighth aspects.
 この態様によれば、光学部品が、良好な耐折り曲げ性と低い比誘電率とを有しうる。 According to this aspect, the optical component can have good bending resistance and a low dielectric constant.
 第十二の態様に係る発光装置(1)の製造方法は、光源と、光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、光学部品を、第十の態様に係る方法で製造することを含む。 The method for manufacturing a light-emitting device (1) according to the twelfth aspect is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method according to the tenth aspect.
 この態様によると、発光装置(1)における光学部品を位置精度良く作製でき、かつ歩留りが悪化しにくい。 According to this embodiment, the optical components in the light emitting device (1) can be manufactured with high positional precision, and the yield is less likely to deteriorate.
 1.組成物の調製
 下記表に示す成分を混合することで、実施例及び比較例の組成物を調製した。表中に示す成分の詳細は下記のとおりである。
-アミド化合物#11:下記式に示す化合物(2-(acetylamino)ethyl 2-propenoate)。日油株式会社製。品名AA-22。
1. Preparation of Compositions Compositions of the Examples and Comparative Examples were prepared by mixing the components shown in the following table. Details of the components shown in the table are as follows.
Amide compound #11: The compound shown in the following formula (2-(acetylamino)ethyl 2-propenoate). Manufactured by NOF Corporation. Product name: AA-22.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
-アミド化合物#12:下記式に示す化合物(N-[3-(ジメチルアミノ)プロピル]アクリルアミド)。KJケミカルズ株式会社製。品名DMAPAA。 - Amide compound #12: The compound shown in the formula below (N-[3-(dimethylamino)propyl]acrylamide). Manufactured by KJ Chemicals Co., Ltd. Product name: DMAPAA.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
-アミド化合物#13:下記式に示す化合物(N-(2-ヒドロキシエチル)アクリルアミド)。KJケミカルズ株式会社製。品名HEAA。 - Amide compound #13: The compound shown in the formula below (N-(2-hydroxyethyl)acrylamide). Manufactured by KJ Chemicals Co., Ltd. Product name: HEAA.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
-アミド化合物#14:下記式に示す化合物(N-n-オクチルアクリルアミド)。KJケミカルズ株式会社製。品名NOAM。 - Amide compound #14: The compound shown in the formula below (N-n-octylacrylamide). Manufactured by KJ Chemicals Co., Ltd. Product name: NOAM.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
-アミド化合物#15:下記式に示す化合物(N-ドデシルアクリルアミド)。東京化成工業株式会社製。 - Amide compound #15: The compound shown in the formula below (N-dodecylacrylamide). Manufactured by Tokyo Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
-アミド化合物#21:N,N-ジメチルアクリルアミド。KJケミカルズ株式会社製。品名DMAA。
-アミド化合物#22:N-イソプロピルアクリルアミド。KJケミカルズ株式会社製。品名NIPAM。
-モノ(メタ)アクリレート#11:ラウリルアクリレート。共栄社化学株式会社製。品名ライトアクリレートLA。
-モノ(メタ)アクリレート#12:イソステアリルアクリレート。大阪有機化学工業株式会社製。品名ISTA。
-モノ(メタ)アクリレート#21:ブチルアクリレート。富士フイルム和光純薬株式会社製。品名BA。
-モノ(メタ)アクリレート#22:メトキシ-ポリエチレングリコールアクリレート。共栄社化学株式会社製。品名ライトアクリレート130A。
-ジ(メタ)アクリレート#11:1,12-ドデカンジオールジメタクリレート。巴工業株式会社製。品名SR262。
-ジ(メタ)アクリレート#12:1,10-デカンジオールジアクリレート。新中村化学工業株式会社製。品名A-DOD-N。
-ジ(メタ)アクリレート#21:1,4-ブタンジオールジアクリレート。巴工業株式会社製。品名SR213。
-モノ(メタ)アクリレート#31:下記式に示す化合物(1-ナフチルメチルアクリレート)。共栄社化学株式会社製。品名ライトアクリレートNMT-A。
- Amide compound #21: N,N-dimethylacrylamide. Manufactured by KJ Chemicals Co., Ltd. Product name: DMAA.
- Amide compound #22: N-isopropylacrylamide, manufactured by KJ Chemicals Co., Ltd. Product name: NIPAM.
- Mono (meth) acrylate # 11: Lauryl acrylate, manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate LA.
- Mono(meth)acrylate #12: Isostearyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: ISTA.
- Mono(meth)acrylate #21: Butyl acrylate, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Product name: BA.
Mono(meth)acrylate #22: Methoxy-polyethylene glycol acrylate, manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate 130A.
-Di(meth)acrylate #11: 1,12-dodecanediol dimethacrylate. Manufactured by Tomoe Engineering Co., Ltd. Product name: SR262.
-Di(meth)acrylate #12: 1,10-decanediol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd. Product name: A-DOD-N.
-Di(meth)acrylate #21: 1,4-butanediol diacrylate. Manufactured by Tomoe Engineering Co., Ltd. Product name: SR213.
Mono(meth)acrylate #31: Compound represented by the following formula (1-naphthylmethylacrylate), manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate NMT-A.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
-多官能(メタ)アクリレート#1:ペンタエリスリトールトリアクリレート。共栄社化学株式会社製。品名PE-3A。
-多官能(メタ)アクリレート#2:グリセリントリアクリレート。東亞合成株式会社製。品名M930。
-光重合開始剤#1:アシルホスフィンオキサイド系光ラジカル重合開始剤。IGM Resins B.V.社製。品名Omnirad TPO H。
-光重合開始剤#2:オキシムエステル系光ラジカル重合開始剤。BASFジャパン株式会社製。品名Irgacure OXE04。
- Multifunctional (meth)acrylate #1: Pentaerythritol triacrylate, manufactured by Kyoeisha Chemical Co., Ltd. Product name PE-3A.
- Multifunctional (meth)acrylate #2: Glycerin triacrylate, manufactured by Toagosei Co., Ltd. Product name: M930.
Photopolymerization initiator #1: acylphosphine oxide-based photoradical polymerization initiator, manufactured by IGM Resins BV, product name Omnirad TPO H.
Photopolymerization initiator #2: Oxime ester-based photoradical polymerization initiator, manufactured by BASF Japan Ltd. Product name: Irgacure OXE04.
 2.評価試験
 (1)比誘電率
 80mm×40mm×1mmtの寸法を有するアルミ基板上に、厚さ10μmの組成物の塗膜を作製した。この塗膜に、窒素雰囲気下、ウシオ電機株式会社製の型番Unijet E075IIHD(ピーク波長395nm)を用いて、照射強度0.5W/cmかつ積算光量1.5J/cmの条件で照射して、塗膜を硬化させた。LCRメータ(Agilent社製、「E4980A」)及び治具(16034 test fixture)を用いて、電極接触法により、雰囲気温度25℃、測定周波数100kHzの条件で、硬化した塗膜の比誘電率を測定した。
2. Evaluation test (1) Dielectric constant A coating film of the composition having a thickness of 10 μm was prepared on an aluminum substrate having dimensions of 80 mm × 40 mm × 1 mmt. This coating film was irradiated under a nitrogen atmosphere using a Unijet E075IIHD (peak wavelength 395 nm) manufactured by Ushio Inc. under conditions of an irradiation intensity of 0.5 W/ cm2 and an accumulated light quantity of 1.5 J/ cm2 to cure the coating film. Using an LCR meter (manufactured by Agilent, "E4980A") and a jig (16034 test fixture), the dielectric constant of the cured coating film was measured by the electrode contact method under conditions of an atmospheric temperature of 25°C and a measurement frequency of 100 kHz.
 (2)貯蔵弾性率
 組成物を塗布して塗膜を作製し、この塗膜を、窒素雰囲気下、ウシオ電機株式会社製の型番Unijet E075IIHD(ピーク波長395nm)を用いて、紫外線を照射強度3W/cm、かつ積算光量15J/cmの条件で照射することで塗膜を光硬化させ、厚み500μmのフィルムを作製した。このフィルムから切り出したサンプルの温度25℃の貯蔵弾性率を、粘弾性測定装置(株式会社日立ハイテクサイエンス製、型番DMA7100)を用いて測定した。
(2) Storage Modulus A coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film with ultraviolet light under a nitrogen atmosphere at an irradiation intensity of 3 W/cm 2 and an accumulated light quantity of 15 J/cm 2 using a Unijet E075IIHD (peak wavelength 395 nm) manufactured by Ushio Inc., to prepare a film having a thickness of 500 μm. The storage modulus at 25° C. of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
 (3)25℃粘度及び40℃粘度
 組成物の25℃での粘度及び40℃での粘度を、レオメータ(株式会社アントンパール・ジャパン製、型番DHR-2)を使用して、せん断速度1000s-1の条件で測定した。
(3) Viscosity at 25° C. and Viscosity at 40° C. The viscosity of the composition at 25° C. and at 40° C. was measured using a rheometer (manufactured by Anton Paar Japan, Model DHR-2) at a shear rate of 1000 s .
 (4)インクジェット性
 組成物をインクジェットプリンター(富士フイルム株式会社製、形式DMP2831)のカートリッジに入れ、温度40℃、周波数1kHz、の条件でインクジェットプリンターのノズルから組成物の液滴を吐出した。この液滴をハイスピードカメラで観察した。その結果、液滴が分離しない場合を「A」、本来の液滴からサテライトが分離した後、サテライトが本来の液滴と一体化して再び一つの液滴になる場合を「B」、本来の液滴からサテライトが分離したまま一体化しない場合を「C」と、評価した。
(4) Inkjet properties The composition was placed in a cartridge of an inkjet printer (manufactured by Fujifilm Corporation, model DMP2831), and droplets of the composition were ejected from the nozzle of the inkjet printer under conditions of a temperature of 40° C. and a frequency of 1 kHz. The droplets were observed with a high-speed camera. As a result, the following evaluation was performed: when the droplets did not separate, it was rated as "A"; when the satellites separated from the original droplets and then merged with the original droplets to form one droplet again, it was rated as "B"; and when the satellites separated from the original droplets and did not merge, it was rated as "C."
 (5)硬化性
 組成物を、赤外線分光分析装置(アジレントテクノロジー株式会社製、型番Agilent Cary 610 FTIR 顕微鏡システム)で測定することで、IRスペクトルを得た。
(5) Curability The composition was measured with an infrared spectrometer (Agilent Cary 610 FTIR Microscope System, manufactured by Agilent Technologies, Inc.) to obtain an IR spectrum.
 組成物を塗布して厚み10μmの塗膜を作製し、塗膜に窒素雰囲気下、UV照射器(ウシオ電機株式会社製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cmかつ積算光量1.5J/cmの条件で照射した。続いて、紫外線を照射した後の組成物(硬化物)を上記の赤外線分光分析装置で測定することで、IRスペクトルを得た。 The composition was applied to prepare a coating film having a thickness of 10 μm, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Inc., model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an integrated light quantity of 1.5 J/cm 2. The composition (cured product) after irradiation with ultraviolet light was then measured with the above-mentioned infrared spectrometer to obtain an IR spectrum.
 二つのIRスペクトルの各々において、810cm-1にあらわれるアクリロイル基の吸収のピーク強度を測定した。塗膜についてのピーク強度I0と、硬化物についてのピーク強度I1とから、{1-(I0-I1)/I0}×100(%)の式を用い、紫外線を照射する前後での組成物中の反応性官能基の減少率を算出した。その結果を反応率とし、反応率が90%以上の場合を「A」、80%以上90%未満の場合を「B」、80%未満の場合を「C」と、評価した。 The peak intensity of the absorption of the acryloyl group appearing at 810 cm -1 was measured in each of the two IR spectra. The reduction rate of the reactive functional group in the composition before and after irradiation with ultraviolet light was calculated using the formula {1-( I0 - I1 )/ I0 } x 100(%) from the peak intensity I0 for the coating film and the peak intensity I1 for the cured product. The result was taken as the reaction rate, and the reaction rate was evaluated as "A" for 90% or more, "B" for 80% or more but less than 90%, and "C" for less than 80%.
 (6)アウトガス評価
 組成物の硬化物を加熱した場合のアウトガスをヘッドスペース法でサンプリングしてガスクロマトグラフにより測定した。詳しくは、まず容積22mLのヘッドスペース用バイアルに組成物を100mg入れた。続いて、組成物に、窒素雰囲気下、UV照射器(ウシオ電機株式会社製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで組成物を硬化させた後、バイアルを封止した。続いて組成物を110℃で30分間加熱してから、バイアル中の気相部分をガスクロマトグラフに導入して分析した。その結果、得られたガスクロマトグラムのピーク面積に基づいて、組成物から発生したアウトガスの濃度を特定した。アウトガスの濃度とは、バイアルの容積(22mL)に対する、バイアルの気相中のアウトガスの体積分率である。
(6) Outgassing Evaluation The outgassing when the cured product of the composition was heated was sampled by the headspace method and measured by gas chromatography. In detail, 100 mg of the composition was first placed in a headspace vial with a volume of 22 mL. Next, the composition was cured by irradiating the composition with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric Co., Ltd., model number Unijet E075IIHD) under conditions of irradiation intensity of 0.5 W/cm 2 and accumulated light amount of 1.5 J/cm 2 , and then the vial was sealed. Next, the composition was heated at 110°C for 30 minutes, and then the gas phase portion in the vial was introduced into a gas chromatograph for analysis. As a result, the concentration of the outgassing generated from the composition was specified based on the peak area of the obtained gas chromatogram. The concentration of the outgassing is the volume fraction of the outgassing in the gas phase of the vial relative to the volume of the vial (22 mL).
 なお、アウトガスの濃度は、トルエンを基準物質として特定した。具体的には、バイアル中でトルエンを揮発させることで、トルエン濃度が1000ppmと100ppmの二つの基準サンプルを用意した。各基準サンプルをガスクロマトグラフに導入して分析した。これにより得られた二つのクロマトグラムのピーク面積から、ピーク面積と濃度との関係を規定し、この結果に基づいて、上記のアウトガスの濃度を特定した。 The outgassing concentration was determined using toluene as the standard substance. Specifically, two standard samples with toluene concentrations of 1000 ppm and 100 ppm were prepared by volatilizing toluene in a vial. Each standard sample was introduced into a gas chromatograph for analysis. From the peak areas of the two chromatograms obtained in this way, the relationship between peak area and concentration was determined, and the above-mentioned outgassing concentration was determined based on these results.
 この結果を下記のように評価した。
A:濃度30ppm以下。
B:濃度30ppm超50ppm以下。
C:濃度50ppm超。
The results were evaluated as follows:
A: Concentration 30 ppm or less.
B: Concentration of more than 30 ppm and less than 50 ppm.
C: Concentration exceeding 50 ppm.
 (7)密着性
 スライドガラスの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜することで作製した。この無機質膜の上に組成物を10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機株式会社製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cmかつ積算光量1.5J/cmの条件で照射した。この塗膜をオートグラフ(株式会社島津製作所製、型番AGS-X)で90度方向に引っ張り、ピール強度を測定した。ピール強度が100mN/cm以上の場合を「A」、ピール強度が50mN/cm以上の場合を「B」、ピール強度が20mN/cm以上の場合を「C」、ピール強度が20mN/cm未満の場合を「D」と、評価した。
(7) Adhesion A silicon oxynitride film (SiON film), which is an inorganic film, was formed on a slide glass by CVD to a thickness of 1 μm. A coating film was formed by applying a composition to a thickness of 10 μm on this inorganic film, and this coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric Co., Ltd., model number Unijet E075IIHD) under conditions of irradiation intensity of 0.5 W/cm 2 and accumulated light amount of 1.5 J/cm 2. This coating film was pulled in the 90 degree direction with an autograph (manufactured by Shimadzu Corporation, model number AGS-X) to measure the peel strength. A peel strength of 100 mN/cm or more was rated as "A", a peel strength of 50 mN/cm or more was rated as "B", a peel strength of 20 mN/cm or more was rated as "C", and a peel strength of less than 20 mN/cm was rated as "D".
 (8)屈曲性
 基材であるポリイミドフィルムの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜した。組成物を無機質膜上に10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機株式会社製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで、厚み10μmのフィルムを作製した。これにより、基材、無機質膜及びフィルムを備える評価用サンプルを作製した。
(8) Flexibility A silicon oxynitride film (SiON film), which is an inorganic film, was formed to a thickness of 1 μm on a polyimide film, which is a substrate, by a CVD method. The composition was applied to the inorganic film to a thickness of 10 μm to form a coating film, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric Co., Ltd., model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light amount of 1.5 J/cm 2 to produce a film having a thickness of 10 μm. As a result, an evaluation sample including a substrate, an inorganic film, and a film was produced.
 この評価用サンプルを、屈曲部分の曲率半径が1.5mm、2.0mm、及び3.0mmの各条件で、10万回繰り返し屈曲させる試験を行った。 This evaluation sample was subjected to a test in which it was repeatedly bent 100,000 times under conditions in which the radius of curvature of the bent portion was 1.5 mm, 2.0 mm, and 3.0 mm.
 その結果、いずれの条件でも試験後の評価用サンプルにおけるフィルムに剥がれ、割れがなかった場合を「A」、屈曲半径が2.0mm及び3.0mmの条件では試験後のフィルムに剥がれ、割れがなく1.5mmの条件では剥がれ、割れがあった場合を「B」、屈曲半径が3.0mmの条件では試験後のフィルムに剥がれ、割れがなかったが1.5mm及び2.0mmの条件では剥がれ、割れがあった場合を「C」と、評価した。 As a result, the evaluation sample was rated as "A" if there was no peeling or cracking in the film after testing under any of the conditions, "B" if there was no peeling or cracking in the film after testing under the bending radius conditions of 2.0 mm and 3.0 mm, and peeling and cracking in the film after testing under the bending radius condition of 1.5 mm, and "C" if there was no peeling or cracking in the film after testing under the bending radius condition of 3.0 mm, but peeling and cracking in the film after testing under the bending radius conditions of 1.5 mm and 2.0 mm.
 (9)ガラス転移温度
 組成物を塗布して塗膜を作製し、この塗膜を、窒素雰囲気下、UV照射器(ウシオ電機株式会社製、型番E075IIHD)を用いて、ピーク波長395nmの光を、照射強度3W/cmかつ積算光量15J/cmの条件で照射することで塗膜を光硬化させ、厚み500μmのフィルムを作製した。このフィルムから切り出したサンプルのガラス転移温度を、粘弾性測定装置(株式会社日立ハイテクサイエンス製、型番DMA7100)を用いて測定した。
(9) Glass Transition Temperature A coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film under a nitrogen atmosphere with light having a peak wavelength of 395 nm using a UV irradiator (manufactured by Ushio Inc., model number E075IIHD) under conditions of an irradiation intensity of 3 W/ cm2 and an accumulated light quantity of 15 J/ cm2 , thereby preparing a film having a thickness of 500 μm. The glass transition temperature of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 1  発光装置
 4  発光素子(光源)
 5  封止材(光学部品)
1 Light emitting device 4 Light emitting element (light source)
5. Sealing material (optical parts)

Claims (12)

  1. 光重合性化合物(A)と、
    光重合開始剤(B)と、を含有し、
    前記光重合性化合物(A)が、式(1)で示すアミド化合物(A1)を含有し、
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、Xがビニル基又は炭素数が1以上4以下のアルキル基であり、Yが炭素数2以上12以下のアルキレン基であり、Zが(メタ)アクリロイル基、ヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である、
    光硬化性樹脂組成物。
    A photopolymerizable compound (A);
    A photopolymerization initiator (B),
    The photopolymerizable compound (A) contains an amide compound (A1) represented by formula (1),
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), X is a vinyl group or an alkyl group having 1 to 4 carbon atoms, Y is an alkylene group having 2 to 12 carbon atoms, and Z is a (meth)acryloyl group, a hydroxy group, an alkylamino group having 1 to 3 carbon atoms, or a methyl group.
    Photocurable resin composition.
  2. 前記アミド化合物(A1)が、第一のアミド化合物(A11)と第二のアミド化合物(A12)とのうち少なくとも一方を含有し、
    前記第一のアミド化合物(A11)が、式(1)に示す構造を有し、Xがビニル基、Yが炭素数2以上12以下のアルキレン基、Zがヒドロキシ基、炭素数1以上3以下のアルキルアミノ基又はメチル基である化合物であり、
    前記第二のアミド化合物(A12)が、式(1)に示す構造を有し、Xがメチル基、Yが炭素数2以上12以下のアルキレン基、Zが(メタ)アクリロイル基である化合物である、
    請求項1に記載の光硬化性樹脂組成物。
    the amide compound (A1) contains at least one of a first amide compound (A11) and a second amide compound (A12),
    The first amide compound (A11) is a compound having a structure represented by formula (1), in which X is a vinyl group, Y is an alkylene group having from 2 to 12 carbon atoms, and Z is a hydroxy group, an alkylamino group having from 1 to 3 carbon atoms, or a methyl group.
    The second amide compound (A12) is a compound having a structure represented by formula (1), in which X is a methyl group, Y is an alkylene group having from 2 to 12 carbon atoms, and Z is a (meth)acryloyl group.
    The photocurable resin composition according to claim 1.
  3. 前記光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するモノ(メタ)アクリレート(A2)を更に含有する、
    請求項1に記載の光硬化性樹脂組成物。
    The photopolymerizable compound (A) further contains a mono(meth)acrylate (A2) having a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms in the molecule.
    The photocurable resin composition according to claim 1 .
  4. 前記光重合性化合物(A)が、分子内に炭素数6以上20以下の鎖状飽和炭化水素骨格を有するジ(メタ)アクリレート(A3)を含有する、
    請求項1に記載の光硬化性樹脂組成物。
    The photopolymerizable compound (A) contains a di(meth)acrylate (A3) having a chain-like saturated hydrocarbon skeleton having 6 to 20 carbon atoms in the molecule.
    The photocurable resin composition according to claim 1.
  5. 前記光重合性化合物(A)は、分子内にナフチル基を有するモノ(メタ)アクリレート(A4)を更に含有する、
    請求項1に記載の光硬化性樹脂組成物。
    The photopolymerizable compound (A) further contains a mono(meth)acrylate (A4) having a naphthyl group in the molecule.
    The photocurable resin composition according to claim 1.
  6. 25℃における粘度が50mPa・s以下である、
    請求項1に記載の光硬化性樹脂組成物。
    The viscosity at 25°C is 50 mPa·s or less.
    The photocurable resin composition according to claim 1.
  7. 硬化物の、25℃かつ測定周波数100kHzの条件における比誘電率が、3.0以下である、
    請求項1に記載の光硬化性樹脂組成物。
    The dielectric constant of the cured product at 25° C. and a measurement frequency of 100 kHz is 3.0 or less.
    The photocurable resin composition according to claim 1 .
  8. 光学部品作製用である、
    請求項1に記載の光硬化性樹脂組成物。
    For manufacturing optical components.
    The photocurable resin composition according to claim 1.
  9. 請求項1から8のいずれか一項に記載の光硬化性樹脂組成物の硬化物を含む、
    光学部品。
    A cured product of the photocurable resin composition according to any one of claims 1 to 8.
    Optical components.
  10. 請求項1から8のいずれか一項に記載の光硬化性樹脂組成物をインクジェット法で吐出してから、前記光硬化性樹脂組成物に光を照射して硬化させることを含む、
    光学部品の製造方法。
    A method for producing a photocurable resin composition according to claim 1 , comprising discharging the photocurable resin composition according to claim 1 by an inkjet method, and then irradiating the photocurable resin composition with light to cure the composition.
    A method for manufacturing optical components.
  11. 光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、請求項1から8のいずれか一項に記載の光硬化性樹脂組成物の硬化物を含む、
    発光装置。
    A light source and an optical component that transmits light emitted by the light source, the optical component including a cured product of the photocurable resin composition according to any one of claims 1 to 8.
    Light emitting device.
  12. 光源と、前記光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、
    前記光学部品を、請求項10に記載の方法で製造することを含む、
    発光装置の製造方法。
    A method for manufacturing a light emitting device comprising a light source and an optical component that transmits light emitted by the light source, the method comprising the steps of:
    The optical component is manufactured by the method of claim 10.
    A method for manufacturing a light emitting device.
PCT/JP2024/010702 2023-03-30 2024-03-19 Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device WO2024203595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-056707 2023-03-30
JP2023056707 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024203595A1 true WO2024203595A1 (en) 2024-10-03

Family

ID=92904917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010702 WO2024203595A1 (en) 2023-03-30 2024-03-19 Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device

Country Status (1)

Country Link
WO (1) WO2024203595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193971A (en) * 2013-03-29 2014-10-09 Nippon Kayaku Co Ltd Energy ray-curable resin composition and cured product of the same
JP2019108548A (en) * 2019-02-06 2019-07-04 日立化成株式会社 Acrylic resin composition and electronic component
JP2021113273A (en) * 2020-01-17 2021-08-05 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, active energy ray-curable inkjet ink composition, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product, and decorative body
JP2022103143A (en) * 2020-12-25 2022-07-07 Jsr株式会社 Encapsulant for oled element, encapsulating film, oled element, and manufacturing method for the same
JP2022164601A (en) * 2021-04-16 2022-10-27 三洋化成工業株式会社 Ultraviolet-curable composition and cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193971A (en) * 2013-03-29 2014-10-09 Nippon Kayaku Co Ltd Energy ray-curable resin composition and cured product of the same
JP2019108548A (en) * 2019-02-06 2019-07-04 日立化成株式会社 Acrylic resin composition and electronic component
JP2021113273A (en) * 2020-01-17 2021-08-05 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, active energy ray-curable inkjet ink composition, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product, and decorative body
JP2022103143A (en) * 2020-12-25 2022-07-07 Jsr株式会社 Encapsulant for oled element, encapsulating film, oled element, and manufacturing method for the same
JP2022164601A (en) * 2021-04-16 2022-10-27 三洋化成工業株式会社 Ultraviolet-curable composition and cured product

Similar Documents

Publication Publication Date Title
JP5846974B2 (en) Curable composition for photoimprint, pattern forming method and pattern
JP7320793B2 (en) UV curable resin composition, organic EL light emitting device, and touch panel
JP7555002B2 (en) Composition for sealing light-emitting element, and light-emitting device
WO2022203081A1 (en) Photocurable resin composition, optical component, method for producing optical component, and light emitting device
JP2020172649A (en) Ultraviolet curable resin composition, method for manufacturing light-emitting device and light-emitting device
JP2023156307A (en) Ultraviolet curable resin composition, manufacturing method of light emitting device, light emitting device, and touch panel
WO2024203595A1 (en) Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device
JP7457957B2 (en) Method for manufacturing encapsulant and method for manufacturing light emitting device
JP7170246B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
WO2024117094A1 (en) Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device
WO2024111659A1 (en) Photocurable resin composition, optical component, production method for optical component, light-emitting device, and production method for light-emitting device
JP7228804B2 (en) Ultraviolet curable resin composition, color filter, light emitting device, method for producing color filter, and method for producing light emitting device
JP7535750B2 (en) Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device
WO2024202791A1 (en) Silicon-containing acrylic compound, photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device
JP7489607B2 (en) UV-curable resin composition, method for manufacturing organic EL light-emitting device, and organic EL light-emitting device
JP7555047B2 (en) Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device
KR20210086896A (en) Curable composition, method for preparing the curable composition, cured material of the curable composition, method for preparing the cured material and device including the cured material
JP7442121B2 (en) Ultraviolet curable resin composition, color resist, color filter, light emitting device, and method for producing color resist
WO2022080359A1 (en) Wavelength conversion member molding composition, color resist, color filter, method for manufacturing color resist, light emitting device, and method for manufacturing light emitting device
JP2024083352A (en) Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP7153870B2 (en) Ultraviolet curable resin composition for encapsulating organic EL element, method for manufacturing organic EL light emitting device, and organic EL light emitting device
CN112578634A (en) Ultraviolet-curable resin composition, color filter, color resist, light-emitting device, and methods for producing these
CN114316650A (en) Ultraviolet-curable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device
CN116419934A (en) Ultraviolet curable resin composition, light-emitting device, and method for manufacturing light-emitting device
JP2021123692A (en) Uv-curable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device