WO2024202791A1 - Silicon-containing acrylic compound, photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device - Google Patents
Silicon-containing acrylic compound, photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device Download PDFInfo
- Publication number
- WO2024202791A1 WO2024202791A1 PCT/JP2024/006810 JP2024006810W WO2024202791A1 WO 2024202791 A1 WO2024202791 A1 WO 2024202791A1 JP 2024006810 W JP2024006810 W JP 2024006810W WO 2024202791 A1 WO2024202791 A1 WO 2024202791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- light
- composition
- meth
- emitting device
- Prior art date
Links
- -1 acrylic compound Chemical class 0.000 title claims abstract description 84
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 43
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000010703 silicon Substances 0.000 title claims abstract description 42
- 230000003287 optical effect Effects 0.000 title claims description 74
- 239000011342 resin composition Substances 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims abstract description 31
- 125000000962 organic group Chemical group 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims description 161
- 238000000034 method Methods 0.000 claims description 56
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 21
- 239000003505 polymerization initiator Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 139
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 43
- 238000002161 passivation Methods 0.000 description 32
- 239000000758 substrate Substances 0.000 description 28
- 238000000576 coating method Methods 0.000 description 20
- 150000002430 hydrocarbons Chemical group 0.000 description 20
- 238000010943 off-gassing Methods 0.000 description 19
- 239000003566 sealing material Substances 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 14
- 125000003700 epoxy group Chemical group 0.000 description 11
- 230000009477 glass transition Effects 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 229910010272 inorganic material Inorganic materials 0.000 description 10
- 239000011147 inorganic material Substances 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 230000001678 irradiating effect Effects 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 4
- WRNODTYYEUSETK-UHFFFAOYSA-N 3-prop-2-enyl-1,3-oxazolidin-2-one Chemical compound C=CCN1CCOC1=O WRNODTYYEUSETK-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 3
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 3
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 3
- ZMPRRFPMMJQXPP-UHFFFAOYSA-N 2-sulfobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1S(O)(=O)=O ZMPRRFPMMJQXPP-UHFFFAOYSA-N 0.000 description 3
- VNDWQCSOSCCWIP-UHFFFAOYSA-N 2-tert-butyl-9-fluoro-1,6-dihydrobenzo[h]imidazo[4,5-f]isoquinolin-7-one Chemical compound C1=2C=CNC(=O)C=2C2=CC(F)=CC=C2C2=C1NC(C(C)(C)C)=N2 VNDWQCSOSCCWIP-UHFFFAOYSA-N 0.000 description 3
- LLKFNPUXQZHIAE-UHFFFAOYSA-N 5-(3-aminopropyl)-8-bromo-3-methyl-2h-pyrazolo[4,3-c]quinolin-4-one Chemical compound O=C1N(CCCN)C2=CC=C(Br)C=C2C2=C1C(C)=NN2 LLKFNPUXQZHIAE-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 125000004386 diacrylate group Chemical group 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229940044654 phenolsulfonic acid Drugs 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical class P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- BUPRYTFTHBNSBD-UHFFFAOYSA-N (2,3,4-tribromophenyl) prop-2-enoate Chemical compound BrC1=CC=C(OC(=O)C=C)C(Br)=C1Br BUPRYTFTHBNSBD-UHFFFAOYSA-N 0.000 description 2
- PLFFHJWXOGYWPR-HEDMGYOXSA-N (4r)-4-[(3r,3as,5ar,5br,7as,11as,11br,13ar,13bs)-5a,5b,8,8,11a,13b-hexamethyl-1,2,3,3a,4,5,6,7,7a,9,10,11,11b,12,13,13a-hexadecahydrocyclopenta[a]chrysen-3-yl]pentan-1-ol Chemical compound C([C@]1(C)[C@H]2CC[C@H]34)CCC(C)(C)[C@@H]1CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@@H]1[C@@H](CCCO)C PLFFHJWXOGYWPR-HEDMGYOXSA-N 0.000 description 2
- WNZVVHVYAKZZBU-UHFFFAOYSA-N 1,17-Heptadecanediol Chemical compound OCCCCCCCCCCCCCCCCCO WNZVVHVYAKZZBU-UHFFFAOYSA-N 0.000 description 2
- YDIUKXTYXBWRIP-UHFFFAOYSA-N 1,21-Heneicosanediol Chemical compound OCCCCCCCCCCCCCCCCCCCCCO YDIUKXTYXBWRIP-UHFFFAOYSA-N 0.000 description 2
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- HIBKFQRBONXURO-UHFFFAOYSA-N docosane-1,22-diol Chemical compound OCCCCCCCCCCCCCCCCCCCCCCO HIBKFQRBONXURO-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- GJBXIPOYHVMPQJ-UHFFFAOYSA-N hexadecane-1,16-diol Chemical compound OCCCCCCCCCCCCCCCCO GJBXIPOYHVMPQJ-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- LUUFSCNUZAYHAT-UHFFFAOYSA-N octadecane-1,18-diol Chemical compound OCCCCCCCCCCCCCCCCCCO LUUFSCNUZAYHAT-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- HCEPYODGJFPWOI-UHFFFAOYSA-N tridecane-1,13-diol Chemical compound OCCCCCCCCCCCCCO HCEPYODGJFPWOI-UHFFFAOYSA-N 0.000 description 2
- 229940042596 viscoat Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GNWBLLYJQXKPIP-ZOGIJGBBSA-N (1s,3as,3bs,5ar,9ar,9bs,11as)-n,n-diethyl-6,9a,11a-trimethyl-7-oxo-2,3,3a,3b,4,5,5a,8,9,9b,10,11-dodecahydro-1h-indeno[5,4-f]quinoline-1-carboxamide Chemical compound CN([C@@H]1CC2)C(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)N(CC)CC)[C@@]2(C)CC1 GNWBLLYJQXKPIP-ZOGIJGBBSA-N 0.000 description 1
- UPPUJFRSINZXTE-UHFFFAOYSA-N (2,2,3,3,4-pentamethylpiperidin-1-yl) 2-methylprop-2-enoate Chemical compound CC1CCN(OC(=O)C(C)=C)C(C)(C)C1(C)C UPPUJFRSINZXTE-UHFFFAOYSA-N 0.000 description 1
- PRBBFHSSJFGXJS-UHFFFAOYSA-N (2,2-dimethyl-3-prop-2-enoyloxypropyl) prop-2-enoate;3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)C(O)=O.C=CC(=O)OCC(C)(C)COC(=O)C=C PRBBFHSSJFGXJS-UHFFFAOYSA-N 0.000 description 1
- HHQAGBQXOWLTLL-UHFFFAOYSA-N (2-hydroxy-3-phenoxypropyl) prop-2-enoate Chemical compound C=CC(=O)OCC(O)COC1=CC=CC=C1 HHQAGBQXOWLTLL-UHFFFAOYSA-N 0.000 description 1
- PJAKWOZHTFWTNF-UHFFFAOYSA-N (2-nonylphenyl) prop-2-enoate Chemical compound CCCCCCCCCC1=CC=CC=C1OC(=O)C=C PJAKWOZHTFWTNF-UHFFFAOYSA-N 0.000 description 1
- ZMTBGVBNTHTBEC-UHFFFAOYSA-N (3,3,5-trimethylcyclohexyl) prop-2-enoate Chemical compound CC1CC(OC(=O)C=C)CC(C)(C)C1 ZMTBGVBNTHTBEC-UHFFFAOYSA-N 0.000 description 1
- JIRHAGAOHOYLNO-UHFFFAOYSA-N (3-cyclopentyloxy-4-methoxyphenyl)methanol Chemical compound COC1=CC=C(CO)C=C1OC1CCCC1 JIRHAGAOHOYLNO-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- LAIJAUHBAWLPCO-UHFFFAOYSA-N (4-tert-butylcyclohexyl) prop-2-enoate Chemical compound CC(C)(C)C1CCC(OC(=O)C=C)CC1 LAIJAUHBAWLPCO-UHFFFAOYSA-N 0.000 description 1
- PCLLJCFJFOBGDE-UHFFFAOYSA-N (5-bromo-2-chlorophenyl)methanamine Chemical compound NCC1=CC(Br)=CC=C1Cl PCLLJCFJFOBGDE-UHFFFAOYSA-N 0.000 description 1
- PGMMMHFNKZSYEP-UHFFFAOYSA-N 1,20-Eicosanediol Chemical compound OCCCCCCCCCCCCCCCCCCCCO PGMMMHFNKZSYEP-UHFFFAOYSA-N 0.000 description 1
- SPUHPCYLASTIGZ-UHFFFAOYSA-N 1,24-Tetracosanediol Chemical compound OCCCCCCCCCCCCCCCCCCCCCCCCO SPUHPCYLASTIGZ-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- OBNIRVVPHSLTEP-UHFFFAOYSA-N 1-ethoxy-2-(2-hydroxyethoxy)ethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(O)COCCO OBNIRVVPHSLTEP-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- HYQASEVIBPSPMK-UHFFFAOYSA-N 12-(2-methylprop-2-enoyloxy)dodecyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCCCCCCCOC(=O)C(C)=C HYQASEVIBPSPMK-UHFFFAOYSA-N 0.000 description 1
- STFXXRRQKFUYEU-UHFFFAOYSA-N 16-methylheptadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)C=C STFXXRRQKFUYEU-UHFFFAOYSA-N 0.000 description 1
- VBHXIMACZBQHPX-UHFFFAOYSA-N 2,2,2-trifluoroethyl prop-2-enoate Chemical compound FC(F)(F)COC(=O)C=C VBHXIMACZBQHPX-UHFFFAOYSA-N 0.000 description 1
- GZBSIABKXVPBFY-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GZBSIABKXVPBFY-UHFFFAOYSA-N 0.000 description 1
- CWWYEELVMRNKHZ-UHFFFAOYSA-N 2,3-dimethylbut-2-enamide Chemical compound CC(C)=C(C)C(N)=O CWWYEELVMRNKHZ-UHFFFAOYSA-N 0.000 description 1
- KEVOENGLLAAIKA-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl prop-2-enoate Chemical compound CCCCOCCOCCOC(=O)C=C KEVOENGLLAAIKA-UHFFFAOYSA-N 0.000 description 1
- URQQDYIVGXOEDA-UHFFFAOYSA-N 2-(2-ethenoxyethoxy)ethyl prop-2-enoate Chemical compound C=COCCOCCOC(=O)C=C URQQDYIVGXOEDA-UHFFFAOYSA-N 0.000 description 1
- IAMASUILMZETHW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-phenoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOCC(O)OC1=CC=CC=C1 IAMASUILMZETHW-UHFFFAOYSA-N 0.000 description 1
- KJSGODDTWRXQRH-UHFFFAOYSA-N 2-(dimethylamino)ethyl benzoate Chemical compound CN(C)CCOC(=O)C1=CC=CC=C1 KJSGODDTWRXQRH-UHFFFAOYSA-N 0.000 description 1
- DIZBQMTZXOUFTD-UHFFFAOYSA-N 2-(furan-2-yl)-3h-benzimidazole-5-carboxylic acid Chemical compound N1C2=CC(C(=O)O)=CC=C2N=C1C1=CC=CO1 DIZBQMTZXOUFTD-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- COORVRSSRBIIFJ-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]-1-methoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)COCCOCCO COORVRSSRBIIFJ-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- LJRSZGKUUZPHEB-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxypropoxy)propoxy]propyl prop-2-enoate Chemical class C=CC(=O)OC(C)COC(C)COC(C)COC(=O)C=C LJRSZGKUUZPHEB-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- PAAVDLDRAZEFGW-UHFFFAOYSA-N 2-butoxyethyl 4-(dimethylamino)benzoate Chemical compound CCCCOCCOC(=O)C1=CC=C(N(C)C)C=C1 PAAVDLDRAZEFGW-UHFFFAOYSA-N 0.000 description 1
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- IULJSGIJJZZUMF-UHFFFAOYSA-N 2-hydroxybenzenesulfonic acid Chemical compound OC1=CC=CC=C1S(O)(=O)=O IULJSGIJJZZUMF-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- KVPYIEPKUGXISR-UHFFFAOYSA-N 2-phenoxypropyl prop-2-enoate Chemical compound C=CC(=O)OCC(C)OC1=CC=CC=C1 KVPYIEPKUGXISR-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- SDNHWPVAYKOIGU-UHFFFAOYSA-N 3-ethyl-2-methylpent-2-enamide Chemical compound CCC(CC)=C(C)C(N)=O SDNHWPVAYKOIGU-UHFFFAOYSA-N 0.000 description 1
- UVRCNEIYXSRHNT-UHFFFAOYSA-N 3-ethylpent-2-enamide Chemical compound CCC(CC)=CC(N)=O UVRCNEIYXSRHNT-UHFFFAOYSA-N 0.000 description 1
- BZOVBIIWPDQIHF-UHFFFAOYSA-N 3-hydroxy-2-methylbenzenesulfonic acid Chemical compound CC1=C(O)C=CC=C1S(O)(=O)=O BZOVBIIWPDQIHF-UHFFFAOYSA-N 0.000 description 1
- ZCLXQTGLKVQKFD-UHFFFAOYSA-N 3-hydroxybenzenesulfonic acid Chemical compound OC1=CC=CC(S(O)(=O)=O)=C1 ZCLXQTGLKVQKFD-UHFFFAOYSA-N 0.000 description 1
- WQPMYSHJKXVTME-UHFFFAOYSA-N 3-hydroxypropane-1-sulfonic acid Chemical compound OCCCS(O)(=O)=O WQPMYSHJKXVTME-UHFFFAOYSA-N 0.000 description 1
- NPYMXLXNEYZTMQ-UHFFFAOYSA-N 3-methoxybutyl prop-2-enoate Chemical compound COC(C)CCOC(=O)C=C NPYMXLXNEYZTMQ-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- QMWGSOMVXSRXQX-UHFFFAOYSA-N 3-sulfobenzoic acid Chemical compound OC(=O)C1=CC=CC(S(O)(=O)=O)=C1 QMWGSOMVXSRXQX-UHFFFAOYSA-N 0.000 description 1
- OURSFPZPOXNNKX-UHFFFAOYSA-N 3-sulfopropanoic acid Chemical compound OC(=O)CCS(O)(=O)=O OURSFPZPOXNNKX-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- HWAQOZGATRIYQG-UHFFFAOYSA-N 4-sulfobenzoic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1 HWAQOZGATRIYQG-UHFFFAOYSA-N 0.000 description 1
- ORQDJGSWJKNUKH-UHFFFAOYSA-N 4-sulfobutanoic acid Chemical compound OC(=O)CCCS(O)(=O)=O ORQDJGSWJKNUKH-UHFFFAOYSA-N 0.000 description 1
- ZWAPMFBHEQZLGK-UHFFFAOYSA-N 5-(dimethylamino)-2-methylidenepentanamide Chemical compound CN(C)CCCC(=C)C(N)=O ZWAPMFBHEQZLGK-UHFFFAOYSA-N 0.000 description 1
- FLCAEMBIQVZWIF-UHFFFAOYSA-N 6-(dimethylamino)-2-methylhex-2-enamide Chemical compound CN(C)CCCC=C(C)C(N)=O FLCAEMBIQVZWIF-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical class C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- CAKHDJPNOKXIED-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-5-ylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1CCCC2OC12 CAKHDJPNOKXIED-UHFFFAOYSA-N 0.000 description 1
- ISRHJUURKPOCPC-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-5-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CCCC2OC12 ISRHJUURKPOCPC-UHFFFAOYSA-N 0.000 description 1
- PGDIJTMOHORACQ-UHFFFAOYSA-N 9-prop-2-enoyloxynonyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCOC(=O)C=C PGDIJTMOHORACQ-UHFFFAOYSA-N 0.000 description 1
- HDMXTELYCOIHIK-UHFFFAOYSA-N C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)C(CC)(CO)CO.OCC(C(=O)O)(C)C Chemical compound C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)C(CC)(CO)CO.OCC(C(=O)O)(C)C HDMXTELYCOIHIK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 101000720524 Gordonia sp. (strain TY-5) Acetone monooxygenase (methyl acetate-forming) Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- JNFPXISXWCEVPL-UHFFFAOYSA-N OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CC(O)COC(C)COC(C)CO Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CC(O)COC(C)COC(C)CO JNFPXISXWCEVPL-UHFFFAOYSA-N 0.000 description 1
- IZMILXUBYXMQBP-UHFFFAOYSA-N OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(C)C(CO)(CO)CO Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(C)C(CO)(CO)CO IZMILXUBYXMQBP-UHFFFAOYSA-N 0.000 description 1
- WYWZRNAHINYAEF-UHFFFAOYSA-N Padimate O Chemical compound CCCCC(CC)COC(=O)C1=CC=C(N(C)C)C=C1 WYWZRNAHINYAEF-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- VLVZXTNDRFWYLF-UHFFFAOYSA-N [2-ethyl-2-(prop-2-enoyloxymethyl)hexyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CC)(CCCC)COC(=O)C=C VLVZXTNDRFWYLF-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- URLYGBGJPQYXBN-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methyl prop-2-enoate Chemical compound OCC1CCC(COC(=O)C=C)CC1 URLYGBGJPQYXBN-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- IPTNXMGXEGQYSY-UHFFFAOYSA-N acetic acid;1-methoxybutan-1-ol Chemical compound CC(O)=O.CCCC(O)OC IPTNXMGXEGQYSY-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 125000005235 azinium group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- DCLSOJHJHBNTCH-UHFFFAOYSA-N butanedioic acid;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)CCC(O)=O DCLSOJHJHBNTCH-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- PZDUWXKXFAIFOR-UHFFFAOYSA-N hexadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C=C PZDUWXKXFAIFOR-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- DBQGARDMYOMOOS-UHFFFAOYSA-N methyl 4-(dimethylamino)benzoate Chemical compound COC(=O)C1=CC=C(N(C)C)C=C1 DBQGARDMYOMOOS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- VDQIULUXBLYBSU-UHFFFAOYSA-N morpholin-4-yl prop-2-enoate Chemical compound C=CC(=O)ON1CCOCC1 VDQIULUXBLYBSU-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- ZWRDBWDXRLPESY-UHFFFAOYSA-N n-benzyl-n-ethylethanamine Chemical compound CCN(CC)CC1=CC=CC=C1 ZWRDBWDXRLPESY-UHFFFAOYSA-N 0.000 description 1
- XKPKZJWXMSYCHL-UHFFFAOYSA-N nonadecane-1,19-diol Chemical compound OCCCCCCCCCCCCCCCCCCCO XKPKZJWXMSYCHL-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- RZFODFPMOHAYIR-UHFFFAOYSA-N oxepan-2-one;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1CCCCCO1 RZFODFPMOHAYIR-UHFFFAOYSA-N 0.000 description 1
- YNXCGLKMOXLBOD-UHFFFAOYSA-N oxolan-2-ylmethyl prop-2-enoate Chemical class C=CC(=O)OCC1CCCO1 YNXCGLKMOXLBOD-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- ZBPYFGWSQQFVCJ-UHFFFAOYSA-N pentadecane-1,15-diol Chemical compound OCCCCCCCCCCCCCCCO ZBPYFGWSQQFVCJ-UHFFFAOYSA-N 0.000 description 1
- 229940059574 pentaerithrityl Drugs 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- MFTPIWFEXJRWQY-UHFFFAOYSA-N phosphoric acid prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OP(O)(O)=O MFTPIWFEXJRWQY-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005650 polypropylene glycol diacrylate Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 1
- XLKZJJVNBQCVIX-UHFFFAOYSA-N tetradecane-1,14-diol Chemical compound OCCCCCCCCCCCCCCO XLKZJJVNBQCVIX-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- BRKFQVAOMSWFDU-UHFFFAOYSA-M tetraphenylphosphanium;bromide Chemical compound [Br-].C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BRKFQVAOMSWFDU-UHFFFAOYSA-M 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IFXORIIYQORRMJ-UHFFFAOYSA-N tribenzylphosphane Chemical compound C=1C=CC=CC=1CP(CC=1C=CC=CC=1)CC1=CC=CC=C1 IFXORIIYQORRMJ-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- FNXRYHQLYLSSPE-UHFFFAOYSA-N tricosane-1,23-diol Chemical compound OCCCCCCCCCCCCCCCCCCCCCCCO FNXRYHQLYLSSPE-UHFFFAOYSA-N 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- KCTAHLRCZMOTKM-UHFFFAOYSA-N tripropylphosphane Chemical compound CCCP(CCC)CCC KCTAHLRCZMOTKM-UHFFFAOYSA-N 0.000 description 1
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 1
- XSMIOONHPKRREI-UHFFFAOYSA-N undecane-1,11-diol Chemical compound OCCCCCCCCCCCO XSMIOONHPKRREI-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F30/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F30/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F30/08—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/40—Organosilicon compounds, e.g. TIPS pentacene
Definitions
- This disclosure relates to a silicon-containing acrylic compound, a photocurable resin composition, an optical component, a method for manufacturing an optical component, a light-emitting device, and a method for manufacturing a light-emitting device, and more specifically to a novel silicon-containing acrylic compound, a photocurable resin composition containing this silicon-containing acrylic compound, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
- Patent Document 1 describes that the acrylic compound in the UV-curable resin composition for sealing organic EL elements, which contains an acrylic compound and a photopolymerization initiator, contains a compound having silicon in the molecular skeleton, thereby improving adhesion between the cured product of the UV-curable resin composition and a component made of an inorganic material.
- the silicon-containing acrylic compound according to one embodiment of the present disclosure has, in its molecule, a cyclic siloxane skeleton and an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
- the photocurable resin composition according to one embodiment of the present disclosure contains a radically polymerizable compound (A), and the radically polymerizable compound (A) contains the silicon-containing acrylic compound as a first radically polymerizable compound.
- An optical component according to one embodiment of the present disclosure includes a cured product of the photocurable resin composition.
- the method for manufacturing an optical component according to one embodiment of the present disclosure includes discharging the photocurable resin composition by an inkjet method and then irradiating the photocurable resin composition with light to cure it.
- the light emitting device includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition.
- a method for manufacturing a light-emitting device is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method for manufacturing the optical component.
- One aspect of the present disclosure may provide a silicon-containing acrylic compound capable of imparting flexibility to a cured product, a photocurable resin composition containing the silicon-containing acrylic compound and capable of providing flexibility to a cured product, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including the optical component, and a method for manufacturing the light-emitting device.
- FIG. 1 is a schematic cross-sectional view showing a light-emitting device according to an embodiment of the present disclosure.
- the objective of the present disclosure is to provide a silicon-containing acrylic compound capable of imparting flexibility to a cured product, a photocurable resin composition containing the silicon-containing acrylic compound and capable of providing a cured product with flexibility, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including the optical component, and a method for manufacturing the light-emitting device.
- FIG. 1 An embodiment of the present disclosure will be described with reference to FIG. 1. The following embodiment is merely a part of various embodiments of the present disclosure. In addition, the following embodiment can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved.
- the figures referred to below are schematic diagrams, and the dimensional ratios of the components in the figures do not necessarily reflect the actual dimensional ratios.
- composition (X) contains a radically polymerizable compound (A) and a photoradical polymerization initiator (B).
- the radically polymerizable compound (A) contains a compound (a).
- compound (a) can increase the flexibility of the cured product obtained by curing composition (X).
- damage to the cured product during deformation is suppressed, and for example, when the cured product is in the form of a sheet, damage to the cured product when the cured product is bent can be suppressed.
- the optical component in the embodiment is a component that has the function of transmitting light.
- the optical component in the embodiment can be applied to a deformable light-emitting device, such as a foldable display, by increasing its flexibility.
- the optical component in the embodiment can be applied to a sealing portion of an organic EL light-emitting device in a display or the like.
- the optical component may also be a color resist. That is, for example, a phosphor may be contained in composition (X), and a color resist in a color filter may be produced from this composition (X).
- This color filter may be provided in a display device, such as an organic EL display or a micro LED display, which is a light-emitting device.
- the method for manufacturing an optical component according to the embodiment includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to cure it.
- the light-emitting device includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the composition (X).
- the light-emitting device is, for example, an organic EL light-emitting device.
- EL stands for electroluminescence
- an organic EL light-emitting device is a light-emitting device that includes an organic EL element (organic light-emitting diode) as a light source.
- the light-emitting device may include a display device such as a display.
- the light-emitting device may include a touch sensor.
- the light-emitting device may be a deformable light-emitting device, such as a foldable display.
- the method for manufacturing a light-emitting device includes manufacturing an optical component in the light-emitting device by a method that includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to harden it.
- the compound (a) has, in the molecule, a cyclic siloxane skeleton and an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
- Compound (a) is, for example, represented by the following formula (1):
- n is an integer of 2 or more.
- n is 2 or more and 8 or less. It is more preferable that n is 6 or less, and even more preferable that n is 4 or less.
- Each R in the molecule is independently a monovalent aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms or an organic group having a (meth)acryloyl group, and two R bonded to one Si may together form a divalent aliphatic saturated hydrocarbon group having 3 to 6 carbon atoms. At least one of the multiple R in the molecule is an organic group having a (meth)acryloyl group.
- Examples of the monovalent aliphatic saturated hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cyclopropyl group.
- Examples of the divalent aliphatic saturated hydrocarbon group include a butane-1,4-diyl group.
- composition (X) containing compound (a) is cured by radical polymerization to produce a cured product
- compound (a) can suppress cure shrinkage, making the cured product less likely to break.
- Compound (a) can also increase the flexibility of the cured product.
- compound (a) can increase the adhesion between the cured material and the inorganic material. Therefore, when the cured material is deformed together with the inorganic film, particularly when the cured material is superimposed on the inorganic film, the cured material is less likely to peel off from the inorganic film. This further suppresses damage to the cured material when it is deformed.
- the dielectric constant of inorganic materials is relatively low, so the silicon-containing acrylic compound (a) is unlikely to cause an increase in the dielectric constant of the composition (X) and the cured product.
- the organic group having a (meth)acryloyl group (hereinafter also referred to as organic group (g)) preferably has a cycloalkane skeleton.
- the cycloalkane skeleton is, for example, a cyclohexane skeleton.
- organic group (g) for example, a (meth)acryloyl group is bonded to a cycloalkane skeleton via an oxygen atom.
- the cycloalkane skeleton is bonded, for example, to a silicon atom in the cyclic siloxane skeleton either directly or via an organic group such as a divalent saturated hydrocarbon group.
- the organic group (g) has, for example, a structure represented by the following formula (2):
- R1 and R2 are each independently hydrogen or a (meth)acryloyl group, and at least one of R1 and R2 is a (meth)acryloyl group.
- the number of carbon atoms in the divalent saturated hydrocarbon group is, for example, 1 or more and 10 or less.
- both R1 and R2 are (meth)acryloyl groups.
- the crosslink density of the cured product increases, which can increase the glass transition temperature of the cured product.
- the relative dielectric constant of the inorganic material, composition (X), and the cured product can be reduced.
- the organic group (g) has multiple (meth)acryloyl groups in the molecule.
- the crosslink density of the cured product increases, which can increase the glass transition temperature of the cured product.
- the number of (meth)acryloyl groups in the molecule of the organic group (g) is, for example, 2 to 8. If the number of (meth)acryloyl groups in the molecule of the organic group (g) is 4 or less, the viscosity of the silicon-containing acrylic compound (a) can be reduced.
- the inorganic material contains, for example, at least one of the compounds shown in the following formula (3) and the compounds shown in the following formula (4).
- the inorganic material is synthesized, for example, by preparing a compound (hereinafter also referred to as compound (p)) that has a cyclic siloxane skeleton in the molecule and an organic group having an epoxy group bonded to the cyclic siloxane skeleton, and reacting the epoxy group in this compound (p) with (meth)acrylic acid.
- compound (p) a compound that has a cyclic siloxane skeleton in the molecule and an organic group having an epoxy group bonded to the cyclic siloxane skeleton
- the compound (p) a suitable commercially available compound can be used.
- the compound (p) at least one selected from the group consisting of KR470, an alicyclic epoxy group-containing cyclic siloxane tetrafunctional oligomer, X-22-2678, an alicyclic epoxy group-containing cyclic siloxane difunctional oligomer, X-48-3300SX, an alicyclic epoxy group-containing cyclic siloxane polyfunctional (more than 4-functional) oligomer, X-40-2728, a glycidyl group-containing cyclic siloxane difunctional oligomer, and X-40-2701, a glycidyl group-containing cyclic siloxane tetrafunctional oligomer, all manufactured by Shin-Etsu Chemical Co., Ltd., can be used.
- the silicon-containing acrylic compound (a) is synthesized by reacting the compound (p) with (meth)acrylic acid by an appropriate method.
- the silicon-containing acrylic compound (a) is synthesized by reacting the epoxy group of the compound (p) with (meth)acrylic acid in a reaction system containing the compound (p), (meth)acrylic acid, and a catalyst.
- the catalyst may be any suitable compound that improves the reaction rate between (meth)acrylic acid and an epoxy group.
- the catalyst contains at least one selected from the group consisting of, for example, quaternary onium salts, tertiary phosphine derivatives, and tertiary amine derivatives.
- the quaternary onium salt contains at least one selected from the group consisting of, for example, tetrabutylammonium bromide, triethylbenzylammonium chloride, tetrabutylphosphonium bromide, and tetraphenylphosphonium bromide.
- the tertiary phosphine contains at least one selected from the group consisting of, for example, triarylphosphines such as triphenylphosphine, tribenzylphosphine, and tritolylphosphine; tricycloalkylphosphines such as tricyclohexylphosphine; and trialkylphosphines such as triethylphosphine, tripropylphosphine, tributylphosphine, and trioctylphosphine.
- triarylphosphines such as triphenylphosphine, tribenzylphosphine, and tritolylphosphine
- tricycloalkylphosphines such as tricyclohexylphosphine
- trialkylphosphines such as triethylphosphine, tripropylphosphine, tributylphosphine, and trioctylphos
- the tertiary amine contains at least one selected from the group consisting of, for example, trialkylamines such as triethylamine and tributylamine; dialkylarylamines such as dimethylbenzylamine and diethylbenzylamine; and triethanolamine.
- the amount of catalyst per mole of (meth)acrylic acid is, for example, 0.0001 moles or more and 1.0 moles or less, and preferably 0.001 moles or more and 0.1 moles or less.
- reaction system it is also preferable to stabilize the reaction system by adding a polymerization inhibitor such as hydroquinone or phenothiazine to the reaction system.
- a polymerization inhibitor such as hydroquinone or phenothiazine
- a solvent may be present in the reaction system as necessary.
- the solvent may contain at least one selected from the group consisting of, for example, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, methoxybutyl acetate, diethylene glycol dimethyl ether, and methyl isobutyl ketone.
- An organic sulfonic acid compound may be present in the reaction system.
- the organic sulfonic acid compound contains at least one selected from the group consisting of, for example, alkyl sulfonic acid, hydroxyalkyl sulfonic acid, carboxyalkyl sulfonic acid, phenyl sulfonic acid, phenol sulfonic acid, and carboxyphenyl sulfonic acid.
- the alkyl sulfonic acid contains, for example, methane sulfonic acid.
- the hydroxyalkyl sulfonic acid contains at least one selected from the group consisting of, for example, hydroxyethyl sulfonic acid and hydroxypropyl sulfonic acid.
- the carboxyalkyl sulfonic acid contains at least one selected from the group consisting of, for example, carboxyethyl sulfonic acid and carboxypropyl sulfonic acid.
- the phenyl sulfonic acid contains at least one selected from the group consisting of, for example, benzene sulfonic acid, toluene sulfonic acid, and xylene sulfonic acid.
- the phenol sulfonic acid contains at least one selected from the group consisting of, for example, o-, m-, or p-phenol sulfonic acid, and cresol sulfonic acid.
- the carboxyphenylsulfonic acid contains at least one selected from the group consisting of, for example, o-, m-, or p-sulfobenzoic acid, and sulfoisophthalic acid.
- the weight of the organic sulfonic acid compound is preferably 0.5 to 3 times, and more preferably 1 to 2 times, the weight of the catalyst.
- composition (X) contains the radical polymerizable compound (A) and the photoradical polymerization initiator (B), and the radical polymerizable compound (A) contains the compound (a).
- the ratio of compound (a) to composition (X) is preferably 5% by mass or more and 70% by mass or less. If the ratio is 5% by mass or more, the flexibility of the cured product can be particularly reduced. Also, the adhesion between the cured product and the inorganic material can be further increased. If the ratio is 70% by mass or less, an increase in the viscosity of composition (X) can be suppressed. This ratio is more preferably 15% by mass or more, and even more preferably 20% by mass or more. Also, this ratio is more preferably 65% by mass or less, and even more preferably 50% by mass or less.
- the radically polymerizable compound (A) may contain a compound other than the compound (a).
- the radically polymerizable compound (A) preferably contains a monofunctional radically polymerizable compound (b) (hereinafter also referred to as compound (b)) having a nitrogen atom in the molecule as a second radically polymerizable compound.
- Compound (b) has only one radically polymerizable functional group in the molecule and also has a nitrogen atom. Compound (b) can further increase the adhesion of the cured product to the inorganic film. Therefore, if the cured product is deformed together with the inorganic film while overlapping the inorganic film, the cured product is less likely to peel off from the inorganic film. This further suppresses damage to the cured product when it is deformed.
- Compound (b) can increase the wettability of composition (X) with the inorganic film. This makes it easy to apply composition (X) onto an inorganic film and mold it. Compound (b) can also have a low viscosity. This makes it difficult for compound (b) to deteriorate the moldability of composition (X) or can improve the moldability of composition (X). Compound (b) can also have high reactivity. This makes it difficult for unreacted components to remain when composition (X) is cured, and therefore outgassing from the cured product can be suppressed.
- the compound (b) preferably contains at least one selected from the group consisting of a compound having an oxazoline ring, a compound having a morpholine ring, a compound having a dimethylamino group, a compound having a diethylamino group, and a compound having a pyrrolidone ring.
- the adhesion of the cured product to the inorganic film can be further improved.
- the compound having an oxazoline ring contains, for example, vinylmethyloxazolidinone.
- the compound having a morpholine ring contains, for example, at least one selected from the group consisting of acryloylmorpholine and morpholin-4-yl acrylate.
- the compound having a dimethylamino group contains, for example, at least one selected from the group consisting of dimethylacrylamide, dimethylmethacrylamide, dimethylaminopropylacrylamide, and dimethylaminopropylmethacrylamide.
- the compound having a diethylamino group contains, for example, at least one selected from the group consisting of diethylacrylamide and diethylmethacrylamide.
- the compound having a pyrrolidone ring contains, for example, N-vinyl-2-pyrrolidone.
- compound (b) may contain are not limited to those mentioned above, and for example, compound (b) may contain a compound having a piperidine ring, such as pentamethylpiperidyl methacrylate.
- compound (b) contains vinylmethyloxazolidinone. In this case, damage to the cured product can be further suppressed. This is presumably because vinylmethyloxazolidinone introduces an ester skeleton into the polymer of radically polymerizable compound (A), thereby increasing the strength and flexibility of the cured product.
- the proportion of compound (b) in composition (X) is preferably 3% by mass or more and 70% by mass or less, based on composition (X). If this proportion is 5% by mass or more, damage to the cured product during deformation can be further suppressed. If this proportion is 70% by mass or less, outgassing from the cured product is suppressed, and problems such as blisters and peeling are less likely to occur in optical components containing the cured product. It is even more preferable for this proportion to be 5% by mass or more. It is even more preferable for this proportion to be 50% by mass or less, even more preferable for this proportion to be 40% by mass or less, and even more preferable for this proportion to be 35% by mass or less.
- the radically polymerizable compound (A) contains, as a third radically polymerizable compound, an acrylic compound (c) (hereinafter also referred to as compound (c)) having a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms in the molecule and a (meth)acryloyl group.
- Compound (c) includes, for example, a compound having a structure in which a (meth)acryloyloxy group is bonded to a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms. In this case, the relative dielectric constant of composition (X) and the cured product can be reduced. In addition, compound (c) is unlikely to excessively increase the viscosity of composition (X).
- the chain saturated hydrocarbon skeleton in compound (c) may be linear or branched.
- Compound (c) contains, for example, a compound containing at least one of a monol having a structure in which a hydroxyl group is bonded to one end of a chain-like saturated hydrocarbon skeleton having 5 to 25 carbon atoms, and a diol having a structure in which a hydroxyl group is bonded to each end of a chain-like saturated hydrocarbon skeleton, and an ester of (meth)acrylic acid. That is, for example, compound (c) contains at least one selected from the group consisting of an ester of a monol and (meth)acrylic acid, a monoester of a diol and (meth)acrylic acid, and a diester of a diol and (meth)acrylic acid.
- Compound (c) is, for example, 1,5-pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,11-un Decanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,13-tridecanediol di(meth)acrylate, 1,14-tetradecanediol di(meth)acrylate, 1,15-pentadecanediol di(meth)acrylate, 1,16-hexadecanediol di(
- the number of carbon atoms in the chain saturated hydrocarbon skeleton in compound (c) is preferably 6 or more, and more preferably 9 or more.
- the number of carbon atoms in the chain saturated hydrocarbon skeleton in compound (c) is preferably 18 or less, and even more preferably 14 or less.
- the proportion of compound (c) in composition (X) is preferably 30% by mass or more and 85% by mass or less, based on composition (X). If this proportion is 30% by mass or more, the relative dielectric constant of the cured product can be further reduced. If this proportion is 85% by mass or less, there is an advantage that adhesion to the substrate such as an inorganic material is improved, and damage to the cured product during deformation is further suppressed. It is more preferable that this proportion is 40% by mass or more. It is also more preferable that this proportion is 65% by mass or less, and even more preferable that it is 50% by mass or less.
- the radically polymerizable compound (A) may contain a compound other than compound (a), compound (b), or compound (c) (hereinafter also referred to as compound (d)).
- the ratio of compound (d) to composition (X) is, for example, 0% by mass or more and 10% by mass or less.
- Compound (d) contains at least one of a polyfunctional radically polymerizable compound (d1) (hereinafter also referred to as compound (d1)) having two or more radically polymerizable functional groups in the molecule, and a monofunctional radically polymerizable compound (d2) (hereinafter also referred to as compound (d2)) having only one radically polymerizable functional group in the molecule.
- compound (d1) polyfunctional radically polymerizable compound having two or more radically polymerizable functional groups in the molecule
- compound (d2) monofunctional radically polymerizable compound having only one radically polymerizable functional group in the molecule
- Compound (d1) can increase the reactivity of composition (X). As a result, outgassing from the cured product can be suppressed. Compound (d1) can also increase the crosslink density of the polymer of radically polymerizable compound (A). As a result, the glass transition temperature of the cured product can be increased, thereby improving the heat resistance of the cured product.
- Examples of compound (d1) include glycerin triacrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol oligoacrylate, diethylene glycol diacrylate, 1,6-hexanediol oligoacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, dipropylene glycol diacrylate, cyclohexane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A polyethoxy diacrylate, bisphenol F polyethoxy diacrylate, pentaerythritol tetraacrylate, propoxylated (2) neopentyl glycol diacrylate, trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanate, Anurate triacrylate, pentaerythritol triacrylate, ethoxylated (3) trimethylolpropane triacrylate, propoxylated (3) gly
- the ratio of compound (d1) to composition (X) is, for example, 10% by mass or less.
- the total ratio of compounds having two or more radically polymerizable functional groups in the molecule in radically polymerizable compound (A), excluding compound (a) and including compound (d1), to composition (X) is, for example, 20% by mass or less.
- Compound (d2) is, for example, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, 3-methoxybutyl acrylate, ethoxyethyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxydixylethyl acrylate, ethyl di Glycol acrylate, cyclic trimethylolpropane formal monoacrylate, imide acrylate, ethoxylated succinic acid acrylate, trifluoroethyl acrylate, ⁇ -carboxypolycaprolactone monoacrylate, cyclohexyl acrylate, 2-
- Compound (d2) may contain a monofunctional radically polymerizable compound (d21) having two or more aromatic rings (hereinafter also referred to as compound (d21)). This compound (d21) can further reduce the relative dielectric constant of the cured product of composition (X), lower the viscosity of composition (X), suppress the cure shrinkage during curing of composition (X), and increase the refractive index of the cured product.
- compound (d21) can further reduce the relative dielectric constant of the cured product of composition (X), lower the viscosity of composition (X), suppress the cure shrinkage during curing of composition (X), and increase the refractive index of the cured product.
- Compound (d21) contains, for example, at least one of a compound represented by the following formula (5) and a compound represented by the following formula (6).
- X1 is hydrogen or a methyl group
- Y1 is a single bond or an alkylene group having 1 to 6 carbon atoms
- Z1 is a single bond, S or O
- R1 is H or a methyl group
- L1 is a single bond, an ester bond or a thioester bond
- n is 1 or 2 except when L1 is a single bond
- n is 1 and m is 6 or 7.
- X2 is a single bond or O
- Z2 is a single bond or O
- R2 is H or a methyl group
- Y2 is a single bond or an alkylene group having 1 to 6 carbon atoms
- L2 is a single bond or an ester bond.
- the compound (d21) may contain a compound represented by the following formula (7).
- R1 is H or CH3
- X is O or S
- Z is a single bond or a divalent saturated hydrocarbon group.
- Z in formula (7) is a single bond, or Z is a divalent saturated hydrocarbon group and the carbon number of this divalent saturated hydrocarbon group is 1 to 5.
- the compound (d21) is particularly unlikely to increase the viscosity of the composition (X), and therefore the compound (d21) is particularly unlikely to deteriorate the moldability of the composition (X).
- composition (X) contains compound (d21)
- the ratio of compound (d21) to composition (X) is, for example, 30% by mass or more and 85% by mass or less.
- the ratio of compound (d2) to composition (X) is, for example, 10% by mass or less.
- the total ratio of compounds having only one radically polymerizable functional group in the molecule, including compound (d2) in radically polymerizable compound (A), to composition (X) is, for example, 1% by mass or more and 20% by mass or less.
- the photoradical polymerization initiator (B) contains at least one compound selected from the group consisting of aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds.
- aromatic ketones aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds.
- the ratio of the photoradical polymerization initiator (B) to the radically polymerizable compound (A) is preferably 6% by mass or more.
- the composition (X) can have good photocurability and can also have good photocurability under an atmospheric environment. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 20% by mass or less, and even more preferably 18% by mass or less.
- the photoradical polymerization initiator (B) may contain a photoradical polymerization initiator having photobleaching properties.
- the cured product of the composition (X) may have good light transmittance.
- the ratio of the photoradical polymerization initiator having photobleaching properties to the radically polymerizable compound (A) is preferably 3% by mass or more. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 25% by mass or less, and even more preferably 20% by mass or less.
- the photoradical polymerization initiator having photobleaching properties contains at least one of, for example, an acylphosphine oxide-based photoinitiator and a compound having photobleaching properties among oxime ester-based photoinitiators.
- the photoradical polymerization initiator (B) may contain a component having a sensitizer skeleton in the molecule.
- the sensitizer skeleton includes, for example, at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
- the photoradical polymerization initiator (B) includes a component having at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
- the composition (X) may contain a polymerization accelerator in addition to the photoradical polymerization initiator (B).
- the polymerization accelerator contains, for example, an amine compound such as ethyl p-dimethylaminobenzoate, 2-ethylhexyl p-dimethylaminobenzoate, methyl p-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, or butoxyethyl p-dimethylaminobenzoate.
- the components that the polymerization accelerator may contain are not limited to those mentioned above.
- the composition (X) preferably does not contain a solvent or the solvent content is 1% by mass or less. In this case, outgassing derived from the solvent is unlikely to occur from the composition (X) and the cured product of the composition (X).
- a drying process for removing the solvent from the composition (X) and the cured product during the production of optical components and light-emitting devices can be eliminated.
- a drying process for removing the solvent from at least one of the composition (X) and the cured product may be performed. In this case, at least one of the heating temperature and the heating time in the drying process can be reduced. Therefore, outgassing can be unlikely to occur from the optical components without reducing the production efficiency of the optical components and light-emitting devices.
- the thickness of the optical components can be secured as large as possible while ejecting the composition (X) by the inkjet method to mold it.
- the content of the solvent is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. It is particularly preferable that the composition (X) does not contain a solvent or contains only a solvent that is inevitably mixed in.
- Composition (X) may further contain any additives other than those mentioned above, such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
- additives such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
- composition (X) contains an inorganic filler
- the inorganic filler is nano-sized.
- the cured product can have a high refractive index while maintaining good transparency (visible light transmittance) of the cured product.
- Nano-sized means that the average particle size is 1 nm or more and 1000 nm or less.
- the average particle size of the inorganic filler is preferably 30 nm or less, and more preferably 20 nm or less.
- this average particle size is preferably 5 nm or more, and more preferably 10 nm or more.
- this average particle size is the median diameter calculated from the measurement results by dynamic light scattering method, that is, the cumulative 50% diameter (D50).
- D50 cumulative 50% diameter
- the composition (X) can be used to manufacture an optical component.
- An optical component is a component that is disposed on the path of light in an optical system.
- the composition (X) can be preferably used to manufacture an optical component that transmits light.
- the use of the composition (X) is not limited to the manufacture of optical components, and the composition (X) can be applied to various uses that utilize its properties.
- the composition (X) may have a low viscosity. Therefore, the moldability of the composition (X) is good.
- the composition (X) may be molded by discharging it by an inkjet method.
- the composition (X) is preferably for inkjet molding. In this case, the cured product and the optical part of the composition (X) can be produced with good positional accuracy.
- the viscosity of composition (X) at 40°C is 16 mPa ⁇ s or less.
- the viscosity of composition (X) at 40°C is 16 mPa ⁇ s or less.
- this viscosity is 1 mPa ⁇ s or more, and more preferably 5 mPa ⁇ s or more.
- the viscosity of composition (X) at 25°C is 50 mPa ⁇ s or less. It is more preferable that the viscosity of composition (X) at 25°C is 40 mPa ⁇ s or less, even more preferable that it is 30 mPa ⁇ s or less, and particularly preferable that it is 28 mPa ⁇ s or less. It is also preferable that this viscosity is 1 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, and even more preferably 20 mPa ⁇ s or more. In these cases, composition (X) can be easily molded at room temperature, and in particular can be easily molded by the inkjet method.
- composition (X) Such a low viscosity of composition (X) can be achieved by appropriately adjusting the composition of radically polymerizable compound (A) within the range described above.
- the method and conditions for measuring the viscosity of composition (X) will be explained in detail in the Examples section below.
- the rate of outgassing generated when the cured product of composition (X) is heated at 110°C for 30 minutes is preferably 25 ppm or less.
- the rate of outgassing generated from the cured product is 25 ppm or less. In this case, outgassing is less likely to occur from the cured product. This makes it possible to make it difficult for voids due to outgassing to occur in a light-emitting device that includes an optical component made of the cured product, for example. This makes it difficult for water and oxygen to reach the light-emitting element through voids, making it difficult for the light-emitting element to deteriorate due to water and oxygen. It is particularly preferable for this rate of outgassing to be 15 ppm.
- the reduction in the proportion of outgassing generated from the cured product of composition (X) can be achieved by appropriately adjusting the composition of radically polymerizable compound (A) within the range described above.
- the method for measuring the proportion of outgassing will be described in detail in the Examples below.
- the glass transition temperature of the cured product of the composition (X) is preferably 75°C or higher.
- the composition (X) preferably has the property of curing to become a cured product with a glass transition temperature of 75°C or higher.
- the cured product can have good heat resistance. Therefore, for example, when the cured product is subjected to a process involving an increase in temperature, the cured product is less likely to deteriorate. Therefore, for example, when an inorganic film (e.g., passivation layer 6) that overlaps an optical component is produced by a deposition method such as a plasma CVD method, the optical component is less likely to deteriorate even if the optical component is heated.
- an inorganic film e.g., passivation layer 6
- the optical component can be adapted to applications such as vehicle-mounted applications that have strict requirements for heat resistance.
- the glass transition temperature of the cured product is more preferably 90°C or higher, even more preferably 110°C or higher, and particularly preferably 125°C or higher. This glass transition temperature of the cured product can be achieved by appropriately adjusting the composition of the radical polymerizable compound (A) within the range described above.
- the total light transmittance according to JIS K7361-1 of a 10 ⁇ m-thick cured product made from composition (X) is preferably 98.0% or more, and more preferably 99.0% or more. This total light transmittance of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
- the dielectric constant of the cured product made from the composition is 3.8 or less when the measurement frequency is 100 kHz.
- the operational reliability of the light-emitting device can be improved.
- the dielectric constant of the cured product is 3.4 or less, and even more preferable that it is 3.0 or less. This dielectric constant of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
- the light-emitting device 1 includes a light source and an optical component that transmits light emitted by the light source.
- the light-emitting device 1 includes a light-emitting element 4, and a sealant 5 and a passivation layer 6 that cover the light-emitting element 4.
- the light-emitting element 4 is the light source
- the sealant 5 is the optical component
- the passivation layer 6 is an inorganic film. The sealant 5 and the passivation layer 6 overlap each other.
- the light-emitting element 4 includes, for example, a light-emitting diode.
- the light-emitting diode includes, for example, at least one of an organic EL element (organic light-emitting diode) and a micro light-emitting diode.
- the light-emitting device 1 including the light-emitting element 4 is, for example, an organic EL display.
- the light-emitting element 4 includes a micro light-emitting diode
- the light-emitting device 1 including the light-emitting element 4 is, for example, a micro LED display.
- EL is an abbreviation for electroluminescence.
- the light-emitting device 1 is a top-emission type.
- the light-emitting device 1 includes a support substrate 2, a transparent substrate 3 that faces the support substrate 2 with a gap therebetween, a light-emitting element 4 on the surface of the support substrate 2 that faces the transparent substrate 3, and a passivation layer 6 and a sealing material 5 that cover the light-emitting element 4.
- the support substrate 2 is made of, for example, but not limited to, a resin material.
- the transparent substrate 3 is made of a light-transmitting material.
- the transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
- the light-emitting element 4 includes, for example, a pair of electrodes 41, 43 and an organic light-emitting layer 42 between the electrodes 41, 43.
- the organic light-emitting layer 42 includes, for example, a hole injection layer 421, a hole transport layer 422, an organic light-emitting layer 423, and an electron transport layer 424, and these layers are stacked in the above order.
- the light-emitting device 1 includes a plurality of light-emitting elements 4, which form an array 9 (hereinafter referred to as element array 9) on a support substrate 2.
- the element array 9 also includes a partition 7.
- the partition 7 is on the support substrate 2 and separates two adjacent light-emitting elements 4.
- the partition 7 is fabricated, for example, by forming a photosensitive resin material using a photolithography method.
- the element array 9 also includes connection wiring 8 that electrically connects the electrodes 43 and electron transport layers 424 of adjacent light-emitting elements 4.
- the connection wiring 8 is provided on the partition 7.
- the passivation layer 6 corresponds to an inorganic film.
- the passivation layer 6 is preferably made of silicon nitride or silicon oxide, and is particularly preferably made of silicon nitride.
- the passivation layer 6 includes a first passivation layer 61 and a second passivation layer 62.
- the first passivation layer 61 covers the element array 9 while being in direct contact with the element array 9, thereby covering the light-emitting element 4.
- the second passivation layer 62 is disposed on the opposite side of the element array 9 with respect to the first passivation layer 61, and a gap is provided between the second passivation layer 62 and the first passivation layer 61.
- the sealant 5 is filled between the first passivation layer 61 and the second passivation layer 62. That is, the first passivation layer 61 is interposed between the light-emitting element 4 and the sealant 5 covering the light-emitting element 4.
- a second sealing material 52 is filled between the second passivation layer 62 and the transparent substrate 3.
- the second sealing material 52 is made of, for example, a transparent resin material. There are no particular limitations on the material of the second sealing material 52.
- the material of the second sealing material 52 may be the same as or different from the sealing material 5.
- composition (X) A method for producing the encapsulant 5 using composition (X) and a method for producing the light emitting device 1 are described.
- the composition (X) it is preferable to eject the composition (X) by an inkjet method to form a film, and then irradiate the composition (X) with ultraviolet light to harden it, thereby producing the sealing material 5.
- the composition (X) can be ejected and shaped by an inkjet method.
- the composition (X) When discharging the composition (X) by the inkjet method, if the composition (X) has a sufficiently low viscosity at room temperature, for example, if the viscosity at 25°C is 30 mPa ⁇ s or less, particularly 16 mPa ⁇ s or less, the composition (X) can be molded by discharging it by the inkjet method without heating it. If the viscosity of the composition (X) is reduced by heating, the composition (X) may be heated and then discharged by the inkjet method to be molded.
- the viscosity of the composition (X) at 40°C is particularly 16 mPa ⁇ s or less
- the viscosity of the composition (X) can be reduced by simply heating it slightly, and this reduced-viscosity composition (X) can be discharged by the inkjet method.
- the heating temperature of the composition (X) is, for example, 20°C or higher and 50°C or lower.
- the support substrate 2 is prepared. On one surface of the support substrate 2, partition walls 7 are fabricated by photolithography using, for example, a photosensitive resin material. Next, a plurality of light-emitting elements 4 are provided on one surface of the support substrate 2.
- the light-emitting elements 4 can be fabricated by an appropriate method such as a vapor deposition method or a coating method. In particular, it is preferable to fabricate the light-emitting elements 4 by a coating method such as an inkjet method. In this way, an element array 9 is fabricated on the support substrate 2.
- the first passivation layer 61 is provided on the element array 9.
- the first passivation layer 61 can be produced by a deposition method such as a plasma CVD method.
- the composition (X) is ejected onto the first passivation layer 61, for example, by an inkjet method, and shaped to form a coating film.
- the inkjet method to both the production of the light-emitting element 4 and the formation of the coating film, the production efficiency of the light-emitting device 1 can be particularly improved.
- the coating film of the composition (X) is cured by irradiating it with light, to produce the encapsulant 5.
- composition (X) When irradiating composition (X) with light, composition (X) may be irradiated with light in an atmosphere containing oxygen, such as an air atmosphere, or composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
- atmosphere containing oxygen such as an air atmosphere
- composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
- the second passivation layer 62 is provided on the sealing material 5.
- the second passivation layer 62 can be produced by a deposition method such as plasma CVD.
- a photocurable resin material is applied to one surface of the support substrate 2 so as to cover the second passivation layer 62, and then the transparent substrate 3 is placed on top of this resin material.
- the transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
- ultraviolet light is applied from the outside toward the transparent substrate 3.
- the ultraviolet light passes through the transparent substrate 3 and reaches the photocurable resin material. This causes the photocurable resin material to harden, producing the second sealing material 52.
- the thickness of the sealing material 5 is, for example, 1 ⁇ m or more and 50 ⁇ m or less.
- the thickness of the sealing material 5 is more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
- the light emitting device 1 can be thinned, and it is also possible to obtain a flexible light emitting device 1, i.e., a bendable light emitting device.
- the thickness of the sealing material 5 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 8 ⁇ m or more.
- the thickness of the passivation layer 6 overlapping the sealing material 5 is, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
- the passivation layer 6 includes the first passivation layer 61 and the second passivation layer 62 as described above, it is preferable that the thickness of each of the first passivation layer 61 and the second passivation layer 62 is 0.1 ⁇ m or more and 2 ⁇ m or less.
- the light-emitting device 1 may be a deformable light-emitting device 1 such as a foldable display.
- the sealing material 5 is flexible and has high adhesion to the passivation layer 6, which is an inorganic film, so that even if the light-emitting device 1 is bent or otherwise deformed, damage to the sealing material 5 can be suppressed.
- the light emitting device may be equipped with a touch sensor.
- the relative dielectric constant of the sealing material 5 can be reduced, which can prevent the touch sensor from malfunctioning.
- the silicon-containing acrylic compound (a) according to the first aspect has, in the molecule, a cyclic siloxane skeleton and an organic group (g) having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
- the flexibility of the cured product of the composition containing the silicon-containing acrylic compound (a) can be increased.
- the organic group (g) in the first embodiment has a cycloalkane skeleton.
- the flexibility of the cured product of the composition containing the silicon-containing acrylic compound (a) can be further increased.
- a (meth)acryloyl group is bonded to the cycloalkane skeleton in the organic group (g) via an oxygen atom in the second embodiment.
- the silicon-containing acrylic compound (a) has multiple (meth)acryloyl groups in the molecule.
- the glass transition temperature of the cured product of the composition containing the silicon-containing acrylic compound (a) can be increased.
- the number of (meth)acryloyl groups in the molecule is 2 or more and 4 or less in the fourth embodiment.
- the glass transition temperature of the cured product of the silicon-containing acrylic compound (a) and the composition containing the silicon-containing acrylic compound (a) can be increased while suppressing an increase in viscosity.
- the photocurable resin composition according to the sixth aspect contains a radically polymerizable compound (A), and the radically polymerizable compound (A) contains the silicon-containing acrylic compound (a) according to any one of the first to fifth aspects as a first radically polymerizable compound.
- the silicon-containing acrylic compound (a) can increase the flexibility of the cured product of the photocurable resin composition.
- the photocurable resin composition of the sixth embodiment further contains a photoradical polymerization initiator (B).
- the radical polymerizable compound (A) in the sixth or seventh embodiment further contains a monofunctional radical polymerizable compound (b) having a nitrogen atom in the molecule as a second radical polymerizable compound.
- This embodiment can improve the adhesion of the cured product of the photocurable resin composition to inorganic materials.
- the radically polymerizable compound (A) further contains an acrylic compound (c) having a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms in the molecule and a (meth)acryloyl group as a third radically polymerizable compound.
- the dielectric constant of the cured product of the photocurable resin composition can be reduced.
- the viscosity of the photocurable resin composition at 25°C is 50 mPa ⁇ s or less.
- the photocurable resin composition has good moldability, and it may be possible to mold it by ejecting it using the inkjet method.
- the optical component according to the eleventh aspect includes a cured product of the photocurable resin composition according to any one of the sixth to tenth aspects.
- This embodiment increases the flexibility of the optical components, and can prevent damage to the optical components during deformation.
- the method for producing an optical component according to the twelfth aspect includes ejecting the photocurable resin composition according to any one of the sixth to tenth aspects by an inkjet method, and then irradiating the photocurable resin composition with light to cure it.
- This method allows optical components to be manufactured with high positional accuracy and reduces the yield.
- the light-emitting device (1) according to the thirteenth aspect includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition according to any one of the sixth to tenth aspects.
- This embodiment increases the flexibility of the optical components, and can prevent damage to the optical components when they are deformed.
- the manufacturing method for the light-emitting device (1) according to the fourteenth aspect is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method according to the twelfth aspect.
- the optical components in the light emitting device (1) can be manufactured with high positional precision, and the yield is less likely to deteriorate.
- Synthesis of silicon-containing acrylic compound (1) Synthesis Example 1 First, 300 parts (1.5 equivalent parts) of Shin-Etsu Chemical Co., Ltd.'s KR470 (epoxy equivalent 200 g/mol) and 258 parts (3 equivalent parts) of methacrylic acid (molecular weight 86 g/mol) were added to a four-neck flask equipped with a stirring blade/device, a cooling tube, and a thermometer, and the mixture was homogenized by stirring. Next, 2.0 parts of triphenylphosphine, 0.2 parts of hydroquinone monomethyl ether, and 2.0 parts of phenolsulfonic acid were added and mixed to dissolve the solid content. The liquid temperature was raised to 80°C to 90°C, and the mixture was allowed to react for 10 hours at a temperature range of 80°C to 90°C. As a result, a compound having the structure shown in formula (4) was synthesized.
- the compound obtained by the above synthesis was analyzed by an infrared spectrometer (FTIR), and it was confirmed that there was no peak (902 cm ⁇ 1 ) derived from an epoxy group, but a peak (1731 cm ⁇ 1 ) derived from C ⁇ O was generated. This confirmed that the compound obtained by the above synthesis had a structure represented by formula (4).
- compositions of the Examples and Comparative Examples were prepared by mixing the components shown in the following table. Details of the components shown in the table are as follows. Silicon-containing acrylic compound #1: a compound having a structure shown in formula (11), synthesized in Synthesis Example 1. Silicon-containing acrylic compound #2: a compound having a structure shown in formula (12), synthesized in Synthesis Example 2. Silicon-containing acrylic compound #3: A compound synthesized in Synthesis Example 3, which has a cyclic siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
- Silicon-containing acrylic compound #4 A compound synthesized in Synthesis Example 4, which has a linear siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
- Silicon-containing acrylic compound #5 Dimethyl silicone methacrylate, product number X-22-164A from Shin-Etsu Chemical Co., Ltd.
- -N-containing monofunctional compound #1 Vinylmethyloxazolidinone, manufactured by BASF, product name VMOX.
- -N-containing monofunctional compound #2 acryloylmorpholine, manufactured by KJ Chemicals Co., Ltd.
- Acrylic compound #5 Tripropylene glycol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat #310HP.
- Acrylic compound #6 A compound represented by the following chemical formula (8), manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate NMT-A.
- Photo-radical polymerization initiator acylphosphine oxide-based photo-polymerization initiator, manufactured by IGM Resins B.V.
- Product name Omnirad TPO H.
- - Antioxidant BASF product name: Irganox 1010.
- -Leveling agent BYK-Chemie.
- Dielectric Constant A coating film of the composition having a thickness of 10 ⁇ m was prepared on an aluminum substrate having dimensions of 80 mm ⁇ 40 mm ⁇ 1 mmt. The coating film was irradiated with ultraviolet light for 15 seconds under the condition of 100 mW/ cm2 to cure the coating film. The dielectric constant of the cured coating film was measured by the electrode contact method using an LCR meter (manufactured by Agilent, "E4980A”) and a jig (16034 test fixture) under the condition of a measurement frequency of 100 kHz.
- Viscosity at 25° C The viscosity of the composition was measured using a rheometer (Model DHR-2, manufactured by Anton Paar Japan) at a temperature of 25° C. and a shear rate of 1000 s ⁇ 1 .
- composition was measured with an infrared spectrometer (Agilent Cary 610 FTIR Microscope System, manufactured by Agilent Technologies) to obtain an IR spectrum.
- infrared spectrometer Alignment Cary 610 FTIR Microscope System, manufactured by Agilent Technologies
- the composition was applied to prepare a coating film having a thickness of 10 ⁇ m, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Inc., model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an integrated light quantity of 1.5 J/cm 2.
- the composition (cured product) after irradiation with ultraviolet light was then measured with the above-mentioned infrared spectrometer to obtain an IR spectrum.
- the peak intensity of the absorption of the acryloyl group appearing at 810 cm -1 was measured. From the peak intensity I 0 for the coating film and the peak intensity I 1 for the cured product, the reduction rate of the reactive functional group in the composition before and after irradiation with ultraviolet light was calculated using the formula ⁇ 1-(I 0 -I 1 )/I 0 ⁇ 100(%). The result was taken as the reaction rate, and the reaction rate was evaluated as "A" when it was 90% or more, "B” when it was 80% or more but less than 90%, and "C" when it was less than 80%.
- the composition was heated at 110°C for 30 minutes, and then the gas phase portion in the vial was introduced into a gas chromatograph for analysis.
- the concentration of the outgassing generated from the composition was specified based on the peak area of the obtained gas chromatogram.
- the concentration of the outgassing is the volume fraction of the outgassing in the gas phase of the vial relative to the volume of the vial (22 mL).
- the outgassing concentration was determined using toluene as the standard substance. Specifically, two standard samples with toluene concentrations of 1000 ppm and 100 ppm were prepared by volatilizing toluene in a vial. Each standard sample was introduced into a gas chromatograph for analysis. From the peak areas of the two chromatograms obtained in this way, the relationship between peak area and concentration was determined, and the above-mentioned outgassing concentration was determined based on these results.
- a coating film was formed by applying a composition to a thickness of 10 ⁇ m on this inorganic film, and this coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light quantity of 1.5 J/cm 2.
- a UV irradiator manufactured by Ushio Electric, model number Unijet E075IIHD
- This coating film was pulled in the 90 degree direction with an autograph (manufactured by Shimadzu Corporation, model number AGS-X) to measure the peel strength.
- a peel strength of 100 mN/cm or more was rated as "A”
- a peel strength of 50 mN/cm or more was rated as “B”
- a peel strength of 20 mN/cm or more was rated as “C”
- a peel strength of less than 20 mN/cm was rated as "D”.
- This evaluation sample was subjected to a test in which it was repeatedly bent 100,000 times under conditions in which the radius of curvature of the bent portion was 1.5 mm, 2.0 mm, and 3.0 mm.
- the test was rated as follows: if no peeling or cracking was observed on the exterior after 100,000 tests with a radius of curvature of 1.5 mm, it was rated as "A”; if no peeling or cracking was observed with a radius of 2.0 mm but was observed with a radius of 1.5 mm, it was rated as "B”; if no peeling or cracking was observed with a radius of 3.0 mm but was observed with a radius of 2.0 mm, it was rated as "C”; and if peeling or cracking was observed with a radius of 3.0 mm, it was rated as "D".
- a coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film under atmospheric conditions with light having a peak wavelength of 395 nm using a UV irradiator (manufactured by Ushio Inc., model number E075IIHD) under conditions of an irradiation intensity of 3 W/ cm2 and an accumulated light quantity of 15 J/ cm2 , thereby preparing a film having a thickness of 500 ⁇ m.
- the glass transition temperature of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The silicon-containing acrylic compound has, in the molecule, a cyclic siloxane skeleton and an organic group that bonds to the cyclic siloxane skeleton and has a (meth)acryloyl group.
Description
本開示は、ケイ素含有アクリル化合物、光硬化性樹脂組成物、光学部品、光学部品の製造方法、発光装置及び発光装置の製造方法に関し、詳しくは新規なケイ素含有アクリル化合物、このケイ素含有アクリル化合物を含有する光硬化性樹脂組成物、光硬化性樹脂組成物から作製される光学部品、光硬化性樹脂組成物を用いる光学部品の製造方法、光学部品を備える発光装置、及び発光装置の製造方法に関する。
This disclosure relates to a silicon-containing acrylic compound, a photocurable resin composition, an optical component, a method for manufacturing an optical component, a light-emitting device, and a method for manufacturing a light-emitting device, and more specifically to a novel silicon-containing acrylic compound, a photocurable resin composition containing this silicon-containing acrylic compound, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including an optical component, and a method for manufacturing a light-emitting device.
特許文献1には、アクリル化合物及び光重合開始剤を含有する有機EL素子封止用の紫外線硬化性樹脂組成物におけるアクリル化合物が、分子骨格中にケイ素を有する化合物を含有することで、紫外線硬化性樹脂組成物の硬化物等と無機材料製の部材との間の密着性が向上することが、記載されている。
Patent Document 1 describes that the acrylic compound in the UV-curable resin composition for sealing organic EL elements, which contains an acrylic compound and a photopolymerization initiator, contains a compound having silicon in the molecular skeleton, thereby improving adhesion between the cured product of the UV-curable resin composition and a component made of an inorganic material.
本開示の一態様に係るケイ素含有アクリル化合物は、分子内に、環状シロキサン骨格と、前記環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基と、を有する。
The silicon-containing acrylic compound according to one embodiment of the present disclosure has, in its molecule, a cyclic siloxane skeleton and an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
本開示の一態様に係る光硬化性樹脂組成物は、ラジカル重合性化合物(A)を含有し、前記ラジカル重合性化合物(A)が、第一のラジカル重合性化合物として、前記ケイ素含有アクリル化合物を含有する。
The photocurable resin composition according to one embodiment of the present disclosure contains a radically polymerizable compound (A), and the radically polymerizable compound (A) contains the silicon-containing acrylic compound as a first radically polymerizable compound.
本開示の一態様に係る光学部品は、前記光硬化性樹脂組成物の硬化物を含む。
An optical component according to one embodiment of the present disclosure includes a cured product of the photocurable resin composition.
本開示の一態様に係る光学部品の製造方法は、前記光硬化性樹脂組成物をインクジェット法で吐出してから、前記光硬化性樹脂組成物に光を照射して硬化させることを含む。
The method for manufacturing an optical component according to one embodiment of the present disclosure includes discharging the photocurable resin composition by an inkjet method and then irradiating the photocurable resin composition with light to cure it.
本開示の一態様に係る発光装置は、光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、前記光硬化性樹脂組成物の硬化物を含む。
The light emitting device according to one aspect of the present disclosure includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition.
本開示の一態様に係る発光装置の製造方法は、光源と、前記光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、前記光学部品を、前記光学部品の製造方法で製造することを含む。
A method for manufacturing a light-emitting device according to one aspect of the present disclosure is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method for manufacturing the optical component.
本開示の一態様は、硬化物に柔軟性を付与しうるケイ素含有アクリル化合物、前記ケイ素含有アクリル化合物を含有し、硬化物が柔軟性を有しうる光硬化性樹脂組成物、前記光硬化性樹脂組成物から作製される光学部品、前記光硬化性樹脂組成物を用いる光学部品の製造方法、前記光学部品を備える発光装置、及び前記発光装置の製造方法を提供しうる。
One aspect of the present disclosure may provide a silicon-containing acrylic compound capable of imparting flexibility to a cured product, a photocurable resin composition containing the silicon-containing acrylic compound and capable of providing flexibility to a cured product, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including the optical component, and a method for manufacturing the light-emitting device.
本開示の課題は、硬化物に柔軟性を付与しうるケイ素含有アクリル化合物、前記ケイ素含有アクリル化合物を含有し、硬化物が柔軟性を有しうる光硬化性樹脂組成物、前記光硬化性樹脂組成物から作製される光学部品、前記光硬化性樹脂組成物を用いる光学部品の製造方法、前記光学部品を備える発光装置、及び前記発光装置の製造方法を提供することである。
The objective of the present disclosure is to provide a silicon-containing acrylic compound capable of imparting flexibility to a cured product, a photocurable resin composition containing the silicon-containing acrylic compound and capable of providing a cured product with flexibility, an optical component made from the photocurable resin composition, a method for manufacturing an optical component using the photocurable resin composition, a light-emitting device including the optical component, and a method for manufacturing the light-emitting device.
1.概要
本開示の実施形態について、図1を参照して説明する。なお、下記の実施形態は、本開示の様々な実施形態の一部に過ぎない。また、下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下において参照する図は、模式的な図であり、図中の構成要素の寸法比が、必ずしも実際の寸法比を反映しているとは限らない。 1. Overview An embodiment of the present disclosure will be described with reference to FIG. 1. The following embodiment is merely a part of various embodiments of the present disclosure. In addition, the following embodiment can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved. The figures referred to below are schematic diagrams, and the dimensional ratios of the components in the figures do not necessarily reflect the actual dimensional ratios.
本開示の実施形態について、図1を参照して説明する。なお、下記の実施形態は、本開示の様々な実施形態の一部に過ぎない。また、下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下において参照する図は、模式的な図であり、図中の構成要素の寸法比が、必ずしも実際の寸法比を反映しているとは限らない。 1. Overview An embodiment of the present disclosure will be described with reference to FIG. 1. The following embodiment is merely a part of various embodiments of the present disclosure. In addition, the following embodiment can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved. The figures referred to below are schematic diagrams, and the dimensional ratios of the components in the figures do not necessarily reflect the actual dimensional ratios.
実施形態に係るケイ素含有アクリル化合物(a)(以下、化合物(a)ともいう)は、分子内に、環状シロキサン骨格と、環状シロキサン骨格に結合する有機基とを有する。有機基は、(メタ)アクリロイル基を有する。すなわち、有機基は、自身の少なくとも一部分として、(メタ)アクリロイル基を有する。(メタ)アクリロイル基とは、アクリロイル基とメタアクリロイル基の上位概念的な総称であり、アクリロイル基とメタアクリロイル基とのうち少なくとも一方を意味する。
The silicon-containing acrylic compound (a) according to the embodiment (hereinafter also referred to as compound (a)) has a cyclic siloxane skeleton and an organic group bonded to the cyclic siloxane skeleton in the molecule. The organic group has a (meth)acryloyl group. That is, the organic group has a (meth)acryloyl group as at least a part of itself. The (meth)acryloyl group is a generic term that is a higher-level concept for an acryloyl group and a methacryloyl group, and means at least one of an acryloyl group and a methacryloyl group.
化合物(a)は、化合物(a)を含有するラジカル重合性の組成物を硬化させて得られる硬化物の、柔軟性を高めうる。
Compound (a) can increase the flexibility of the cured product obtained by curing a radically polymerizable composition containing compound (a).
実施形態に係る光硬化性樹脂組成物(以下、組成物(X)ともいう)は、ラジカル重合性化合物(A)と、光ラジカル重合開始剤(B)とを含有する。ラジカル重合性化合物(A)が、化合物(a)を含有する。このため、化合物(a)が、組成物(X)を硬化させて得られる硬化物の柔軟性を高めうる。このため、硬化物の変形時の破損が抑制され、例えば硬化物がシート状である場合に硬化物を屈曲させた場合の硬化物の破損が抑制されうる。
The photocurable resin composition according to the embodiment (hereinafter also referred to as composition (X)) contains a radically polymerizable compound (A) and a photoradical polymerization initiator (B). The radically polymerizable compound (A) contains a compound (a). As a result, compound (a) can increase the flexibility of the cured product obtained by curing composition (X). As a result, damage to the cured product during deformation is suppressed, and for example, when the cured product is in the form of a sheet, damage to the cured product when the cured product is bent can be suppressed.
実施形態に係る光学部品は、組成物(X)の硬化物を含む。このため、化合物(a)が、光学部品の柔軟性を高めうる。
The optical component according to the embodiment includes a cured product of composition (X). Therefore, compound (a) can increase the flexibility of the optical component.
なお、実施形態における光学部品とは、光を透過させる機能を有する部品である。実施形態の光学部品は、柔軟性が高められることで、例えば折りたたみ可能なディスプレイに代表されるような、変形可能な発光装置に適用されうる。実施形態における光学部品は、例えばディスプレイ等における有機EL発光装置の封止部に適用されうる。また、光学部品は、カラーレジストであってもよい。すなわち、例えば組成物(X)に蛍光体を含有させ、この組成物(X)からカラーフィルタにおけるカラーレジストを作製してもよい。このカラーフィルタを、例えば発光装置である有機ELディスプレイ、マイクロLEDディスプレイといった表示装置に設けてもよい。
The optical component in the embodiment is a component that has the function of transmitting light. The optical component in the embodiment can be applied to a deformable light-emitting device, such as a foldable display, by increasing its flexibility. The optical component in the embodiment can be applied to a sealing portion of an organic EL light-emitting device in a display or the like. The optical component may also be a color resist. That is, for example, a phosphor may be contained in composition (X), and a color resist in a color filter may be produced from this composition (X). This color filter may be provided in a display device, such as an organic EL display or a micro LED display, which is a light-emitting device.
実施形態に係る光学部品の製造方法は、組成物(X)をインクジェット法で吐出してから、組成物(X)に光を照射して硬化させることを含む。
The method for manufacturing an optical component according to the embodiment includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to cure it.
実施形態に係る発光装置は、光源と、光源が発する光を透過させる光学部品とを備え、光学部品が、組成物(X)の硬化物を含む。発光装置は、例えば有機EL発光装置である。なお、ELとは、エレクトロルミネッセンスのことであり、有機EL発光装置とは光源として有機EL素子(有機発光ダイオード)を備える発光装置である。発光装置には、ディスプレイなどの表示装置が含まれうる。発光装置が、タッチセンサを備えてもよい。発光装置は、例えば折りたたみ可能なディスプレイのような変形可能な発光装置でもよい。
The light-emitting device according to the embodiment includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the composition (X). The light-emitting device is, for example, an organic EL light-emitting device. Note that EL stands for electroluminescence, and an organic EL light-emitting device is a light-emitting device that includes an organic EL element (organic light-emitting diode) as a light source. The light-emitting device may include a display device such as a display. The light-emitting device may include a touch sensor. The light-emitting device may be a deformable light-emitting device, such as a foldable display.
実施形態に係る発光装置の製造方法は、発光装置における光学部品を、組成物(X)をインクジェット法で吐出してから、組成物(X)に光を照射して硬化させることを含む方法で製造することを含む。
The method for manufacturing a light-emitting device according to the embodiment includes manufacturing an optical component in the light-emitting device by a method that includes discharging composition (X) by an inkjet method and then irradiating composition (X) with light to harden it.
2.ケイ素含有アクリル化合物
化合物(a)は、上述のとおり、分子内に、環状シロキサン骨格と、環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基とを有する。 2. Silicon-Containing Acrylic Compound As described above, the compound (a) has, in the molecule, a cyclic siloxane skeleton and an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
化合物(a)は、上述のとおり、分子内に、環状シロキサン骨格と、環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基とを有する。 2. Silicon-Containing Acrylic Compound As described above, the compound (a) has, in the molecule, a cyclic siloxane skeleton and an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
化合物(a)は、例えば下記の式(1)で表される。
Compound (a) is, for example, represented by the following formula (1):
式(1)中、nは、2以上の整数である。nは、例えば2以上8以下である。nが6以下であればより好ましく、4以下であれば更に好ましい。分子内のRは、各々独立に、炭素数1以上5以下の一価の脂肪族飽和炭化水素基若しくは(メタ)アクリロイル基を有する有機基であり、一つのSiに結合した二つのRが一体となって炭素数3以上6以下の二価の脂肪族飽和炭化水素基を構成してもよい。分子内の複数のRのうち少なくとも一つは(メタ)アクリロイル基を有する有機基である。一価の脂肪族飽和炭化水素基は、例えばメチル基、エチル基、プロピル基、イソプロピル基又はシクロプロピル基等である。二価の脂肪族飽和炭化水素基は、例えばブタン-1,4-ジイル基である。
In formula (1), n is an integer of 2 or more. For example, n is 2 or more and 8 or less. It is more preferable that n is 6 or less, and even more preferable that n is 4 or less. Each R in the molecule is independently a monovalent aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms or an organic group having a (meth)acryloyl group, and two R bonded to one Si may together form a divalent aliphatic saturated hydrocarbon group having 3 to 6 carbon atoms. At least one of the multiple R in the molecule is an organic group having a (meth)acryloyl group. Examples of the monovalent aliphatic saturated hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cyclopropyl group. Examples of the divalent aliphatic saturated hydrocarbon group include a butane-1,4-diyl group.
この化合物(a)を含有する組成物(X)がラジカル重合により硬化して硬化物が生成する際、化合物(a)が硬化収縮を抑制でき、このため硬化物が破損しにくい。また、化合物(a)は、硬化物の柔軟性を高めうる。
When composition (X) containing compound (a) is cured by radical polymerization to produce a cured product, compound (a) can suppress cure shrinkage, making the cured product less likely to break. Compound (a) can also increase the flexibility of the cured product.
さらに、化合物(a)は、硬化物と無機質材との密着性を高めることができる。このため、特に無機質膜に硬化物が重なった状態で硬化物が無機質膜ごと変形した場合、硬化物が無機質膜から剥離しにくくなる。これにより、硬化物の変形時の破損がより抑制される。
Furthermore, compound (a) can increase the adhesion between the cured material and the inorganic material. Therefore, when the cured material is deformed together with the inorganic film, particularly when the cured material is superimposed on the inorganic film, the cured material is less likely to peel off from the inorganic film. This further suppresses damage to the cured material when it is deformed.
また、無機質材の比誘電率は比較的低く、そのためケイ素含有アクリル化合物(a)は、組成物(X)及び硬化物の比誘電率の上昇を引き起こしにくい。
In addition, the dielectric constant of inorganic materials is relatively low, so the silicon-containing acrylic compound (a) is unlikely to cause an increase in the dielectric constant of the composition (X) and the cured product.
(メタ)アクリロイル基を有する有機基(以下、有機基(g)ともいう)は、シクロアルカン骨格を有することが好ましい。この場合、硬化物の柔軟性が、より高まりうる。シクロアルカン骨格は、例えばシクロヘキサン骨格である。
The organic group having a (meth)acryloyl group (hereinafter also referred to as organic group (g)) preferably has a cycloalkane skeleton. In this case, the flexibility of the cured product can be further increased. The cycloalkane skeleton is, for example, a cyclohexane skeleton.
有機基(g)においては、例えばシクロアルカン骨格に、(メタ)アクリロイル基が、酸素原子を介して結合している。
In the organic group (g), for example, a (meth)acryloyl group is bonded to a cycloalkane skeleton via an oxygen atom.
シクロアルカン骨格は、例えば環状シロキサン骨格におけるケイ素原子に、直接結合し、又は二価の飽和炭化水素基などの有機基を介して結合している。
The cycloalkane skeleton is bonded, for example, to a silicon atom in the cyclic siloxane skeleton either directly or via an organic group such as a divalent saturated hydrocarbon group.
有機基(g)は、例えば下記式(2)の構造を有する。
The organic group (g) has, for example, a structure represented by the following formula (2):
式(2)中R1及びR2は各々独立に水素又は(メタ)アクリロイル基であり、かつR1及びR2の少なくとも一方は(メタ)アクリロイル基である。式中R3は単結合、2価の飽和炭化水素基、-C(=O)-又は-OC(=O)-である。2価の飽和炭化水素基の炭素数は例えば1以上10以下である。
In formula (2), R1 and R2 are each independently hydrogen or a (meth)acryloyl group, and at least one of R1 and R2 is a (meth)acryloyl group. In the formula, R3 is a single bond, a divalent saturated hydrocarbon group, -C(=O)-, or -OC(=O)-. The number of carbon atoms in the divalent saturated hydrocarbon group is, for example, 1 or more and 10 or less.
有機基(g)において、R1及びR2は、いずれも(メタ)アクリロイル基であることが好ましい。この場合、硬化物の架橋密度が高まることで硬化物のガラス転移温度が高まりうる。また、無機質材における分子内の水酸基を少なくし又は無くすことで、無機質材、組成物(X)及び硬化物の比誘電率が低減しうる。
In the organic group (g), it is preferable that both R1 and R2 are (meth)acryloyl groups. In this case, the crosslink density of the cured product increases, which can increase the glass transition temperature of the cured product. In addition, by reducing or eliminating the hydroxyl groups in the molecule of the inorganic material, the relative dielectric constant of the inorganic material, composition (X), and the cured product can be reduced.
有機基(g)が、分子内に(メタ)アクリロイル基を複数有することが好ましい。この場合、硬化物の架橋密度が高まることで硬化物のガラス転移温度が高まりうる。有機基(g)の分子内の(メタ)アクリロイル基の数は、例えば2以上8以下である。有機基(g)の分子内の(メタ)アクリロイル基の数が4以下であれば、ケイ素含有アクリル化合物(a)の粘度が低減しうる。
It is preferable that the organic group (g) has multiple (meth)acryloyl groups in the molecule. In this case, the crosslink density of the cured product increases, which can increase the glass transition temperature of the cured product. The number of (meth)acryloyl groups in the molecule of the organic group (g) is, for example, 2 to 8. If the number of (meth)acryloyl groups in the molecule of the organic group (g) is 4 or less, the viscosity of the silicon-containing acrylic compound (a) can be reduced.
無機質材は、例えば下記式(3)に示す化合物と下記式(4)に示す化合物とのうち、少なくとも一方を含有する。
The inorganic material contains, for example, at least one of the compounds shown in the following formula (3) and the compounds shown in the following formula (4).
無機質材は、例えば分子内に環状シロキサン骨格と、環状シロキサン骨格に結合する、エポキシ基を有する有機基とを有する化合物(以下、化合物(p)ともいう)を用意し、この化合物(p)におけるエポキシ基に、(メタ)アクリル酸を反応させることで、合成される。
The inorganic material is synthesized, for example, by preparing a compound (hereinafter also referred to as compound (p)) that has a cyclic siloxane skeleton in the molecule and an organic group having an epoxy group bonded to the cyclic siloxane skeleton, and reacting the epoxy group in this compound (p) with (meth)acrylic acid.
化合物(p)としては、市販されている適宜の化合物を使用できる。例えば化合物(p)として、信越化学工業株式会社製の、脂環式エポキシ基含有環状シロキサン4官能オリゴマーであるKR470、脂環式エポキシ基含有環状シロキサン2官能オリゴマーであるX-22-2678、脂環式エポキシ基含有環状シロキサン多官能(4官能超)オリゴマーであるX-48-3300SX、グリシジル基含有環状シロキサン2官能オリゴマーであるX-40-2728及びグリシジル基含有環状シロキサン4官能オリゴマーであるX-40-2701等よりなる群から選択される少なくとも一種を使用できる。
As the compound (p), a suitable commercially available compound can be used. For example, as the compound (p), at least one selected from the group consisting of KR470, an alicyclic epoxy group-containing cyclic siloxane tetrafunctional oligomer, X-22-2678, an alicyclic epoxy group-containing cyclic siloxane difunctional oligomer, X-48-3300SX, an alicyclic epoxy group-containing cyclic siloxane polyfunctional (more than 4-functional) oligomer, X-40-2728, a glycidyl group-containing cyclic siloxane difunctional oligomer, and X-40-2701, a glycidyl group-containing cyclic siloxane tetrafunctional oligomer, all manufactured by Shin-Etsu Chemical Co., Ltd., can be used.
化合物(p)と(メタ)アクリル酸とを、適宜の方法で反応させることで、ケイ素含有アクリル化合物(a)を合成する。例えば、化合物(p)、(メタ)アクリル酸及び触媒を含む反応系中で、化合物(p)のエポキシ基と(メタ)アクリル酸とを反応させることで、ケイ素含有アクリル化合物(a)を合成する。
The silicon-containing acrylic compound (a) is synthesized by reacting the compound (p) with (meth)acrylic acid by an appropriate method. For example, the silicon-containing acrylic compound (a) is synthesized by reacting the epoxy group of the compound (p) with (meth)acrylic acid in a reaction system containing the compound (p), (meth)acrylic acid, and a catalyst.
触媒は、(メタ)アクリル酸とエポキシ基との反応速度を向上させる適宜の化合物であればよい。触媒は、例えば第4級オニウム塩、第3級ホスフィン誘導体、及び第3級アミン誘導体等よりなる群から選択される少なくとも一種を含有する。4級オニウム塩は、例えばテトラブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、テトラブチルホスホニウムブロマイド、及びテトラフェニルホスホニムブロマイド等よりなる群から選択される少なくとも一種を含有する。3級ホスフィンは、例えばトリフェニルホスフィン、トリベンジルホスフィン、トリトリルホスフィンなどのトリアリールホスフィン;トリシクロヘキシルホスフィンなどのトリシクロアルキルホスフィン;及びトリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどトリアルキルホスフィン等よりなる群から選択される少なくとも一種を含有する。3級アミンは、例えばトリエチルアミン、トリブチルアミンなどのトリアルキルアミン;ジメチルベンジルアミン、ジエチルベンジルアミンなどのジアルキルアリールアミン;及びトリエタノールアミン等よりなる群から選択される少なくとも一種を含有する。(メタ)アクリル酸1モルに対する触媒の量は、例えば0.0001モル以上1.0モル以下であり、0.001モル以上0.1モル以下であれば好ましい。
The catalyst may be any suitable compound that improves the reaction rate between (meth)acrylic acid and an epoxy group. The catalyst contains at least one selected from the group consisting of, for example, quaternary onium salts, tertiary phosphine derivatives, and tertiary amine derivatives. The quaternary onium salt contains at least one selected from the group consisting of, for example, tetrabutylammonium bromide, triethylbenzylammonium chloride, tetrabutylphosphonium bromide, and tetraphenylphosphonium bromide. The tertiary phosphine contains at least one selected from the group consisting of, for example, triarylphosphines such as triphenylphosphine, tribenzylphosphine, and tritolylphosphine; tricycloalkylphosphines such as tricyclohexylphosphine; and trialkylphosphines such as triethylphosphine, tripropylphosphine, tributylphosphine, and trioctylphosphine. The tertiary amine contains at least one selected from the group consisting of, for example, trialkylamines such as triethylamine and tributylamine; dialkylarylamines such as dimethylbenzylamine and diethylbenzylamine; and triethanolamine. The amount of catalyst per mole of (meth)acrylic acid is, for example, 0.0001 moles or more and 1.0 moles or less, and preferably 0.001 moles or more and 0.1 moles or less.
反応系に、ハイドロキノン又はフェノチアジン等の重合禁止剤を存在させることで、反応系を安定化させることも好ましい。
It is also preferable to stabilize the reaction system by adding a polymerization inhibitor such as hydroquinone or phenothiazine to the reaction system.
反応系に、必要に応じて溶媒が存在していてもよい。溶媒は、例えば、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、メトキシブチルアセテート、ジエチレングリコールジメチルエーテル、及びメチルイソブチルケトン等よりなる群から選択される少なくとも一種を含有する。
A solvent may be present in the reaction system as necessary. The solvent may contain at least one selected from the group consisting of, for example, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, methoxybutyl acetate, diethylene glycol dimethyl ether, and methyl isobutyl ketone.
反応系に、有機スルホン酸化合物が存在していてもよい。有機スルホン酸化合物は、例えばアルキルスルホン酸、ヒドロキシアルキルスルホン酸、カルボキシアルキルスルホン酸、フェニルスルホン酸、フェノールスルホン酸、及びカルボキシフェニルスルホン酸等よりなる群から選択される少なくとも一種を含有する。アルキルスルホン酸は、例えばメタンスルホン酸等を含有する。ヒドロキシアルキルスルホン酸は、例えばヒドロキシエチルスルホン酸及びヒドロキシプロピルスルホン酸等よりなる群から選択される少なくとも一種を含有する。カルボキシアルキルスルホン酸は、例えばカルボキシエチルスルホン酸、及びカルボキシプロピルスルホン酸等よりなる群から選択される少なくとも一種を含有する。フェニルスルホン酸は、例えばベンゼンスルホン酸、トルエンスルホン酸、及びキシレンスルホン酸等よりなる群から選択される少なくとも一種を含有する。フェノールスルホン酸は、例えばo、m又はp-フェノールスルホン酸、及びクレゾールスルホン酸等よりなる群から選択される少なくとも一種を含有する。カルボキシフェニルスルホン酸は、例えばo、m又はp-スルフォ安息香酸、及びスルフォイソフタル酸等よりなる群から選択される少なくとも一種を含有する。有機スルホン酸化合物の重量は、触媒の重量の0.5~3倍であることが好ましく、1~2倍であることがより好ましい。
An organic sulfonic acid compound may be present in the reaction system. The organic sulfonic acid compound contains at least one selected from the group consisting of, for example, alkyl sulfonic acid, hydroxyalkyl sulfonic acid, carboxyalkyl sulfonic acid, phenyl sulfonic acid, phenol sulfonic acid, and carboxyphenyl sulfonic acid. The alkyl sulfonic acid contains, for example, methane sulfonic acid. The hydroxyalkyl sulfonic acid contains at least one selected from the group consisting of, for example, hydroxyethyl sulfonic acid and hydroxypropyl sulfonic acid. The carboxyalkyl sulfonic acid contains at least one selected from the group consisting of, for example, carboxyethyl sulfonic acid and carboxypropyl sulfonic acid. The phenyl sulfonic acid contains at least one selected from the group consisting of, for example, benzene sulfonic acid, toluene sulfonic acid, and xylene sulfonic acid. The phenol sulfonic acid contains at least one selected from the group consisting of, for example, o-, m-, or p-phenol sulfonic acid, and cresol sulfonic acid. The carboxyphenylsulfonic acid contains at least one selected from the group consisting of, for example, o-, m-, or p-sulfobenzoic acid, and sulfoisophthalic acid. The weight of the organic sulfonic acid compound is preferably 0.5 to 3 times, and more preferably 1 to 2 times, the weight of the catalyst.
反応系を例えば60~120℃で5~20時間加熱することで、エポキシ基と(メタ)アクリル酸とを反応させることが好ましい。
It is preferable to react the epoxy groups with (meth)acrylic acid by heating the reaction system at, for example, 60 to 120°C for 5 to 20 hours.
化合物(p)と(メタ)アクリル酸とを反応させるにあたり、一つのエポキシ基に対して、二つの(メタ)アクリル酸の分子を反応させることが好ましい。言い換えると、一つのエポキシ基に(メタ)アクリル酸の一分子を反応させて付加し、これにより生成した水酸基に更に(メタ)アクリル酸の一分子を反応させて付加することが好ましい。この場合、化合物(a)の分子内の水酸基を無くし又は低減することができる。
When reacting compound (p) with (meth)acrylic acid, it is preferable to react two molecules of (meth)acrylic acid with one epoxy group. In other words, it is preferable to react and add one molecule of (meth)acrylic acid to one epoxy group, and then react and add another molecule of (meth)acrylic acid to the hydroxyl group thus generated. In this case, it is possible to eliminate or reduce the number of hydroxyl groups in the molecule of compound (a).
3.光硬化性樹脂組成物
組成物(X)は、上述のとおり、ラジカル重合性化合物(A)と、光ラジカル重合開始剤(B)とを含有し、ラジカル重合性化合物(A)が、化合物(a)を含有する。 3. Photocurable Resin Composition As described above, the composition (X) contains the radical polymerizable compound (A) and the photoradical polymerization initiator (B), and the radical polymerizable compound (A) contains the compound (a).
組成物(X)は、上述のとおり、ラジカル重合性化合物(A)と、光ラジカル重合開始剤(B)とを含有し、ラジカル重合性化合物(A)が、化合物(a)を含有する。 3. Photocurable Resin Composition As described above, the composition (X) contains the radical polymerizable compound (A) and the photoradical polymerization initiator (B), and the radical polymerizable compound (A) contains the compound (a).
組成物(X)に対する化合物(a)の割合は、5質量%以上70質量%以下であることが好ましい。割合が5質量%以上であれば、硬化物の柔軟性が特に低減しうる。また、硬化物と無機質材との密着性がより高まりうる。割合が70質量%以下であれば、組成物(X)の粘度上昇が抑制されうる。この割合は15質量%以上であればより好ましく、20質量%以上であれば更に好ましい。またこの割合は65質量%以下であればより好ましく、50質量%以下であれば更に好ましい。
The ratio of compound (a) to composition (X) is preferably 5% by mass or more and 70% by mass or less. If the ratio is 5% by mass or more, the flexibility of the cured product can be particularly reduced. Also, the adhesion between the cured product and the inorganic material can be further increased. If the ratio is 70% by mass or less, an increase in the viscosity of composition (X) can be suppressed. This ratio is more preferably 15% by mass or more, and even more preferably 20% by mass or more. Also, this ratio is more preferably 65% by mass or less, and even more preferably 50% by mass or less.
ラジカル重合性化合物(A)は、化合物(a)以外の化合物を含有しうる。
The radically polymerizable compound (A) may contain a compound other than the compound (a).
ラジカル重合性化合物(A)は、第二のラジカル重合性化合物として、分子内に窒素原子を有する単官能ラジカル重合性化合物(b)(以下、化合物(b)ともいう)を含有することが好ましい。
The radically polymerizable compound (A) preferably contains a monofunctional radically polymerizable compound (b) (hereinafter also referred to as compound (b)) having a nitrogen atom in the molecule as a second radically polymerizable compound.
化合物(b)は、分子内にラジカル重合性官能基を一つのみ有し、かつ窒素原子を有する。化合物(b)は、硬化物の無機質膜に対する密着性を更に高めうる。このため、無機質膜に硬化物が重なった状態で硬化物が無機質膜ごと変形した場合、硬化物が無機質膜から剥離しにくくなる。これにより、硬化物の変形時の破損がより抑制される。
Compound (b) has only one radically polymerizable functional group in the molecule and also has a nitrogen atom. Compound (b) can further increase the adhesion of the cured product to the inorganic film. Therefore, if the cured product is deformed together with the inorganic film while overlapping the inorganic film, the cured product is less likely to peel off from the inorganic film. This further suppresses damage to the cured product when it is deformed.
化合物(b)は、組成物(X)の、無機質膜との濡れ性を高めうる。このため、無機質膜上に組成物(X)を塗布して成形することが容易となる。また、化合物(b)は低い粘度を有しうる。そのため、化合物(b)は組成物(X)の成形性を悪化させにくく、又は組成物(X)の成形性を向上できる。また、化合物(b)は、高い反応性を有しうる。そのため組成物(X)を硬化させた場合に未反応の成分が残存しにくく、そのため硬化物からのアウトガス発生が抑制されうる。
Compound (b) can increase the wettability of composition (X) with the inorganic film. This makes it easy to apply composition (X) onto an inorganic film and mold it. Compound (b) can also have a low viscosity. This makes it difficult for compound (b) to deteriorate the moldability of composition (X) or can improve the moldability of composition (X). Compound (b) can also have high reactivity. This makes it difficult for unreacted components to remain when composition (X) is cured, and therefore outgassing from the cured product can be suppressed.
化合物(b)は、オキサゾリン環を有する化合物、モルフォリン環を有する化合物、ジメチルアミノ基を有する化合物、ジエチルアミノ基を有する化合物、及びピロリドン環を有する化合物よりなる群から選択される少なくとも一種を含有することが好ましい。この場合、硬化物の無機質膜との密着性がより高まりうる。
The compound (b) preferably contains at least one selected from the group consisting of a compound having an oxazoline ring, a compound having a morpholine ring, a compound having a dimethylamino group, a compound having a diethylamino group, and a compound having a pyrrolidone ring. In this case, the adhesion of the cured product to the inorganic film can be further improved.
オキサゾリン環を有する化合物は、例えばビニルメチルオキサゾリジノンを含有する。モルフォリン環を有する化合物は、例えばアクリロイルモルフォリン及びアクリル酸モルフォリン4-イル等よりなる群から選択される少なくとも一種を含有する。ジメチルアミノ基を有する化合物は、例えばジメチルアクリルアミド、ジメチルメタクリルアミド、ジメチルアミノプロピルアクリルアミド及びジメチルアミノプロピルメタクリルアミド等よりなる群から選択される少なくとも一種を含有する。ジエチルアミノ基を有する化合物は、例えばジエチルアクリルアミド及びジエチルメタクリルアミド等よりなる群から選択される少なくとも一種を含有する。ピロリドン環を有する化合物は、例えばN-ビニル-2-ピロリドンを含有する。
The compound having an oxazoline ring contains, for example, vinylmethyloxazolidinone. The compound having a morpholine ring contains, for example, at least one selected from the group consisting of acryloylmorpholine and morpholin-4-yl acrylate. The compound having a dimethylamino group contains, for example, at least one selected from the group consisting of dimethylacrylamide, dimethylmethacrylamide, dimethylaminopropylacrylamide, and dimethylaminopropylmethacrylamide. The compound having a diethylamino group contains, for example, at least one selected from the group consisting of diethylacrylamide and diethylmethacrylamide. The compound having a pyrrolidone ring contains, for example, N-vinyl-2-pyrrolidone.
なお、化合物(b)が含みうる化合物は上記のみに制限されず、例えば化合物(b)がペンタメチルピペリジルメタクリレ-トなどのピペリジン環を有する化合物を含有してもよい。
The compounds that compound (b) may contain are not limited to those mentioned above, and for example, compound (b) may contain a compound having a piperidine ring, such as pentamethylpiperidyl methacrylate.
化合物(b)がビニルメチルオキサゾリジノンを含有することが好ましい。この場合、硬化物の破損がより抑制されうる。これは、ビニルメチルオキサゾリジノンによってラジカル重合性化合物(A)の重合体中にエステル骨格が導入されることで、硬化物の強度及び柔軟性が高められるためであると、推察される。
It is preferable that compound (b) contains vinylmethyloxazolidinone. In this case, damage to the cured product can be further suppressed. This is presumably because vinylmethyloxazolidinone introduces an ester skeleton into the polymer of radically polymerizable compound (A), thereby increasing the strength and flexibility of the cured product.
組成物(X)中の化合物(b)の割合は、組成物(X)に対して、3質量%以上70質量%以下であることが好ましい。この割合が5質量%以上であれば、硬化物の変形時の破損がより抑制されうる。この割合が70質量%以下であれば、硬化物からのアウトガス発生が抑制され、硬化物を含む光学部品等にフクレや剥離といった問題が生じにくくなる。この割合は、5質量%以上であれば更に好ましい。またこの割合は50質量%以下であればより好ましく、40質量%以下であれば更に好ましく、35質量%以下であれば更に好ましい。
The proportion of compound (b) in composition (X) is preferably 3% by mass or more and 70% by mass or less, based on composition (X). If this proportion is 5% by mass or more, damage to the cured product during deformation can be further suppressed. If this proportion is 70% by mass or less, outgassing from the cured product is suppressed, and problems such as blisters and peeling are less likely to occur in optical components containing the cured product. It is even more preferable for this proportion to be 5% by mass or more. It is even more preferable for this proportion to be 50% by mass or less, even more preferable for this proportion to be 40% by mass or less, and even more preferable for this proportion to be 35% by mass or less.
ラジカル重合性化合物(A)が、第三のラジカル重合性化合物として、分子内に炭素数5以上25以下の鎖状飽和炭化水素骨格と(メタ)アクリロイル基とを有するアクリル化合物(c)(以下、化合物(c)ともいう)を含有することも好ましい。化合物(c)は、例えば炭素数5以上25以下の鎖状飽和炭化水素骨格の(メタ)アクリロイルオキシ基が結合した構造を有する化合物を含む。この場合、組成物(X)及び硬化物の比誘電率が低減しうる。また、化合物(c)は、組成物(X)の粘度を過度に上昇させにくい。
It is also preferable that the radically polymerizable compound (A) contains, as a third radically polymerizable compound, an acrylic compound (c) (hereinafter also referred to as compound (c)) having a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms in the molecule and a (meth)acryloyl group. Compound (c) includes, for example, a compound having a structure in which a (meth)acryloyloxy group is bonded to a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms. In this case, the relative dielectric constant of composition (X) and the cured product can be reduced. In addition, compound (c) is unlikely to excessively increase the viscosity of composition (X).
化合物(c)における鎖状飽和炭化水素骨格は、直鎖状であっても、分岐鎖状であってもよい。
The chain saturated hydrocarbon skeleton in compound (c) may be linear or branched.
化合物(c)は、例えば炭素数5以上25以下の鎖状飽和炭化水素骨格の一端に水酸基が結合した構造を有するモノオールと、鎖状飽和炭化水素骨格の両端にそれぞれ水酸基が結合した構造を有するジオールとのうち、少なくとも一方を含む化合物と、(メタ)アクリル酸とのエステルを含有する。すなわち、例えば化合物(c)は、モノオールと(メタ)アクリル酸とのエステルと、ジオールと(メタ)アクリル酸とのモノエステル、及びジオールと(メタ)アクリル酸とのジエステルよりなる群から選択される少なくとも一種を含む。
Compound (c) contains, for example, a compound containing at least one of a monol having a structure in which a hydroxyl group is bonded to one end of a chain-like saturated hydrocarbon skeleton having 5 to 25 carbon atoms, and a diol having a structure in which a hydroxyl group is bonded to each end of a chain-like saturated hydrocarbon skeleton, and an ester of (meth)acrylic acid. That is, for example, compound (c) contains at least one selected from the group consisting of an ester of a monol and (meth)acrylic acid, a monoester of a diol and (meth)acrylic acid, and a diester of a diol and (meth)acrylic acid.
化合物(c)は、例えば1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,11-ウンデカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,13-トリデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,15-ペンタデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,17-ヘプタデカンジオールジ(メタ)アクリレート、1,18-オクタデカンジオールジ(メタ)アクリレート、1,19-ノナデカンジオールジ(メタ)アクリレート、1,20-イコサンジオールジ(メタ)アクリレート、1,21-ヘンイコサンジオールジ(メタ)アクリレート、1,22-ドコサンジオールジ(メタ)アクリレート、1,23-トリイコサンジオールジ(メタ)アクリレート、1,24-テトラコサンジオールジ(メタ)アクリレート、1,25-ペンタコサンジオールジ(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、セチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、及びトリデシル(メタ)アクリレートよりなる群から選択される少なくとも一種を含有する。
Compound (c) is, for example, 1,5-pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,11-un Decanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,13-tridecanediol di(meth)acrylate, 1,14-tetradecanediol di(meth)acrylate, 1,15-pentadecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,17-heptadecanediol di(meth)acrylate, 1,18-octadecanediol di(meth)acrylate, Contains at least one selected from the group consisting of candiol di(meth)acrylate, 1,19-nonadecanediol di(meth)acrylate, 1,20-icosanediol di(meth)acrylate, 1,21-henicosanediol di(meth)acrylate, 1,22-docosanediol di(meth)acrylate, 1,23-triicosanediol di(meth)acrylate, 1,24-tetracosanediol di(meth)acrylate, 1,25-pentacosanediol di(meth)acrylate, isooctyl (meth)acrylate, isoamyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, cetyl (meth)acrylate, isooctyl (meth)acrylate, and tridecyl (meth)acrylate.
比誘電率の低減のためには、化合物(c)における鎖状飽和炭化水素骨格の炭素数は、6以上であればより好ましく、9以上であれば更に好ましい。低粘度化のためには、化合物(c)における鎖状飽和炭化水素骨格の炭素数が18以下であればより好ましく、14以下であれば更に好ましい。
To reduce the dielectric constant, the number of carbon atoms in the chain saturated hydrocarbon skeleton in compound (c) is preferably 6 or more, and more preferably 9 or more. To reduce the viscosity, the number of carbon atoms in the chain saturated hydrocarbon skeleton in compound (c) is preferably 18 or less, and even more preferably 14 or less.
組成物(X)中の化合物(c)の割合は、組成物(X)に対して、30質量%以上85質量%以下であることが好ましい。この割合が30質量%以上であれば、硬化物の比誘電率がより低減しうる。この割合が85質量%以下であれば、無機質材等の基材との密着性が良好になり、硬化物の変形時の破損がより抑制されるという利点がある。この割合は、40質量%以上であれば更に好ましい。またこの割合は65質量%以下であればより好ましく、50質量%以下であれば更に好ましい。
The proportion of compound (c) in composition (X) is preferably 30% by mass or more and 85% by mass or less, based on composition (X). If this proportion is 30% by mass or more, the relative dielectric constant of the cured product can be further reduced. If this proportion is 85% by mass or less, there is an advantage that adhesion to the substrate such as an inorganic material is improved, and damage to the cured product during deformation is further suppressed. It is more preferable that this proportion is 40% by mass or more. It is also more preferable that this proportion is 65% by mass or less, and even more preferable that it is 50% by mass or less.
ラジカル重合性化合物(A)は、化合物(a)、化合物(b)及び化合物(c)のいずれでもない化合物(以下、化合物(d)ともいう)を含有してもよい。組成物(X)に対する化合物(d)の割合は、例えば0質量%以上10質量%以下である。
The radically polymerizable compound (A) may contain a compound other than compound (a), compound (b), or compound (c) (hereinafter also referred to as compound (d)). The ratio of compound (d) to composition (X) is, for example, 0% by mass or more and 10% by mass or less.
化合物(d)は、ラジカル重合性官能基を分子内に2以上有する多官能ラジカル重合性化合物(d1)(以下、化合物(d1)ともいう)と、ラジカル重合性官能基を分子内に1つのみ有する単官能ラジカル重合性化合物(d2)(以下、化合物(d2)ともいう)とのうち、少なくとも一方を含有する。
Compound (d) contains at least one of a polyfunctional radically polymerizable compound (d1) (hereinafter also referred to as compound (d1)) having two or more radically polymerizable functional groups in the molecule, and a monofunctional radically polymerizable compound (d2) (hereinafter also referred to as compound (d2)) having only one radically polymerizable functional group in the molecule.
化合物(d1)は、組成物(X)の反応性を高めることができる。そのため、硬化物からのアウトガスの発生を抑制できる。化合物(d1)はラジカル重合性化合物(A)の重合体の架橋密度を高めることもできる。このため、硬化物のガラス転移温度を高め、それにより硬化物の耐熱性を高めることができる。
Compound (d1) can increase the reactivity of composition (X). As a result, outgassing from the cured product can be suppressed. Compound (d1) can also increase the crosslink density of the polymer of radically polymerizable compound (A). As a result, the glass transition temperature of the cured product can be increased, thereby improving the heat resistance of the cured product.
化合物(d1)は、例えばグリセリントリアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールオリゴアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレート、ビスフェノールAポリエトキシジアクリレート、ビスフェノールFポリエトキシジアクリレート、ペンタエリスリトールテトラアクリレート、プロポキシ化(2)ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化(4)ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、アクリル酸2-(2-エトキシエトキシ)エチル、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールトリアクリレート、ビスペンタエリスリトールヘキサアクリレート、エチレングリコールジアクリレート、エトキシ化1,6-ヘキサンジオールジアクリレート、ポリプロピレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、テトラエチレングリコールジアクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ヒドロキシピバリン酸トリメチロールプロパントリアクリレート、エトキシ化リン酸トリアクリレート、エトキシ化トリプロピレングリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジアクリレート、ステアリン酸変性ペンタエリスリトールジアクリレート、テトラメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、プロポキシレートグリセリルトリアクリレート、テトラメチロールメタンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ネオペンチルグリコールオリゴアクリレート、トリメチロールプロパンオリゴアクリレート、ペンタエリスリトールオリゴアクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、及びアクリル酸2-(2-ビニロキシエトキシ)エチル等、よりなる群から選択される少なくとも一種を含有する。
Examples of compound (d1) include glycerin triacrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol oligoacrylate, diethylene glycol diacrylate, 1,6-hexanediol oligoacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, dipropylene glycol diacrylate, cyclohexane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A polyethoxy diacrylate, bisphenol F polyethoxy diacrylate, pentaerythritol tetraacrylate, propoxylated (2) neopentyl glycol diacrylate, trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanate, Anurate triacrylate, pentaerythritol triacrylate, ethoxylated (3) trimethylolpropane triacrylate, propoxylated (3) glyceryl triacrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated (4) pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, 2-(2-ethoxyethoxy)ethyl acrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, tripropylene glycol triacrylate, bispentaerythritol hexaacrylate, ethylene glycol diacrylate, ethoxylated 1,6-hexanediol diacrylate, polypropylene glycol diacrylate, 1,4 -butanediol diacrylate, tetraethylene glycol diacrylate, 2-n-butyl-2-ethyl-1,3-propanediol diacrylate, hydroxypivalic acid neopentyl glycol diacrylate, hydroxypivalic acid trimethylolpropane triacrylate, ethoxylated phosphoric acid triacrylate, ethoxylated tripropylene glycol diacrylate, neopentyl glycol modified trimethylolpropane diacrylate, stearic acid modified pentaerythritol diacrylate, tetramethylolpropane triacrylate, tetramethylolmethane triacrylate, caprolactone modified trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, tetramethylolmethane tetraacrylate, ethoxylated Contains at least one selected from the group consisting of silyl pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, caprolactone-modified dipentaerythritol hexaacrylate, dipentaerythritol hydroxypentaacrylate, neopentyl glycol oligoacrylate, trimethylolpropane oligoacrylate, pentaerythritol oligoacrylate, ethoxylated neopentyl glycol di(meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, and 2-(2-vinyloxyethoxy)ethyl acrylate.
組成物(X)に対に対する化合物(d1)の割合は、例えば10質量%以下である。また、組成物(X)に対する、ラジカル重合性化合物(A)中の、化合物(a)を除きかつ化合物(d1)を含めたラジカル重合性官能基を分子内に2以上有する化合物の合計の割合は、例えば20質量%以下である。
The ratio of compound (d1) to composition (X) is, for example, 10% by mass or less. In addition, the total ratio of compounds having two or more radically polymerizable functional groups in the molecule in radically polymerizable compound (A), excluding compound (a) and including compound (d1), to composition (X) is, for example, 20% by mass or less.
化合物(d2)は、例えばテトラヒドロフルフリルアクリレート、イソボルニルアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、3-メトキシブチルアクリレート、エトキシエチルアクリレート、ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、メトキシジキシルエチルアクリレート、エチルジグリコールアクリレート、環状トリメチロールプロパンフォルマルモノアクリレート、イミドアクリレート、エトキシ化コハク酸アクリレート、トリフルオロエチルアクリレート、ω-カルボキシポリカプロラクトンモノアクリレート、シクロヘキシルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、ジエチレングリコールモノブチルエーテルアクリレート、3,3,5-トリメチルシクロヘキサノールアクリレート、カプロラクトンアクリレート、エトキシ化(4)ノニルフェノールアクリレート、メトキシポリエチレングリコール(350)モノアクリレート、メトキシポリエチレングリコール(550)モノアクリレート、フェノキシエチルアクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジルアクリレート、メチルフェノキシエチルアクリレート、4-t-ブチルシクロヘキシルアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、トリブロモフェニルアクリレート、エトキシ化トリブロモフェニルアクリレート、2-フェノキシエチルアクリレート、2-フェノキシエチルアクリレートのエチレンオキサイド付加物、2-フェノキシエチルアクリレートのプロピレンオキサイド付加物、ジシクロペンタニルアクリレ-ト、フェノキシジエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、3-メタクリロイルオキシメチルシクロヘキセンオキサイド及び3-アクリロイルオキシメチルシクロヘキセンオキサイドからなる群から選択される少なくとも一種の化合物を含有する。
Compound (d2) is, for example, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, 3-methoxybutyl acrylate, ethoxyethyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxydixylethyl acrylate, ethyl di Glycol acrylate, cyclic trimethylolpropane formal monoacrylate, imide acrylate, ethoxylated succinic acid acrylate, trifluoroethyl acrylate, ω-carboxypolycaprolactone monoacrylate, cyclohexyl acrylate, 2-(2-ethoxyethoxy)ethyl acrylate, diethylene glycol monobutyl ether acrylate, 3,3,5-trimethylcyclohexanol acrylate, caprolactone acrylate, ethoxylated (4) nonylphenol acrylate, methoxypolyethylene glycol Licor (350) monoacrylate, methoxypolyethylene glycol (550) monoacrylate, phenoxyethyl acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, benzyl acrylate, methylphenoxyethyl acrylate, 4-t-butylcyclohexyl acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, tribromophenyl acrylate, ethoxylated tribromophenyl acrylate, 2-phenoxyethyl acrylate, It contains at least one compound selected from the group consisting of diethyl acrylate, ethylene oxide adduct of 2-phenoxyethyl acrylate, propylene oxide adduct of 2-phenoxyethyl acrylate, dicyclopentanyl acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 1,4-cyclohexanedimethanol monoacrylate, 3-methacryloyloxymethylcyclohexene oxide, and 3-acryloyloxymethylcyclohexene oxide.
化合物(d2)は、二つ以上の芳香環を有する単官能ラジカル重合性化合物(d21)(以下、化合物(d21)ともいう)を含有してもよい。この化合物(d21)は、組成物(X)の硬化物の比誘電率をより低下させ、組成物(X)を低粘度化させ、組成物(X)の硬化時の硬化収縮を抑制し、かつ硬化物の屈折率を高めうる。
Compound (d2) may contain a monofunctional radically polymerizable compound (d21) having two or more aromatic rings (hereinafter also referred to as compound (d21)). This compound (d21) can further reduce the relative dielectric constant of the cured product of composition (X), lower the viscosity of composition (X), suppress the cure shrinkage during curing of composition (X), and increase the refractive index of the cured product.
化合物(d21)は、例えば下記式(5)で示される化合物と下記式(6)で示される化合物とのうち、少なくとも一方を含有する。
Compound (d21) contains, for example, at least one of a compound represented by the following formula (5) and a compound represented by the following formula (6).
式(5)において、X1は水素又はメチル基、Y1は単結合又は炭素数1~6のアルキレン基、Z1は単結合、S又はO、R1はH又はメチル基、L1は単結合、エステル結合又はチオエステル結合、nは1又は2ただしL1が単結合の場合はnは1、mは6又は7である。式(6)において、X2は単結合又はO、Z2は単結合又はO、R2はH又はメチル基、Y2は単結合又は炭素数1~6のアルキレン基、L2は単結合又はエステル結合である。
In formula (5), X1 is hydrogen or a methyl group, Y1 is a single bond or an alkylene group having 1 to 6 carbon atoms, Z1 is a single bond, S or O, R1 is H or a methyl group, L1 is a single bond, an ester bond or a thioester bond, n is 1 or 2 except when L1 is a single bond, n is 1 and m is 6 or 7. In formula (6), X2 is a single bond or O, Z2 is a single bond or O, R2 is H or a methyl group, Y2 is a single bond or an alkylene group having 1 to 6 carbon atoms, and L2 is a single bond or an ester bond.
化合物(d21)は、下記式(7)に示す化合物を含有してもよい。式(7)において、R1はH又はCH3であり、XはO又はSであり、Zは単結合又は二価の飽和炭化水素基である。Zが二価の飽和炭化水素基である場合、この二価の飽和炭化水素基は、直鎖状であっても分岐を有していてもよい。この化合物は、硬化物の屈折率を高めながら、硬化物の強度及び柔軟性も高めることができる。このため、硬化物の破損が、より抑制されうる。式(7)におけるZが単結合であり、又はZが二価の飽和炭化水素基かつこの二価の飽和炭化水素基の炭素数が1以上5以下であることが、より好ましい。この場合、化合物(d21)は組成物(X)の粘度を特に増大させにくく、そのため化合物(d21)は組成物(X)の成形性を特に悪化させにくい。
The compound (d21) may contain a compound represented by the following formula (7). In formula (7), R1 is H or CH3 , X is O or S, and Z is a single bond or a divalent saturated hydrocarbon group. When Z is a divalent saturated hydrocarbon group, the divalent saturated hydrocarbon group may be linear or branched. This compound can increase the strength and flexibility of the cured product while increasing the refractive index of the cured product. Therefore, damage to the cured product can be further suppressed. It is more preferable that Z in formula (7) is a single bond, or Z is a divalent saturated hydrocarbon group and the carbon number of this divalent saturated hydrocarbon group is 1 to 5. In this case, the compound (d21) is particularly unlikely to increase the viscosity of the composition (X), and therefore the compound (d21) is particularly unlikely to deteriorate the moldability of the composition (X).
組成物(X)が化合物(d21)を含有する場合、組成物(X)に対に対する化合物(d21)の割合は、例えば30質量%以上85質量%以下である。
When composition (X) contains compound (d21), the ratio of compound (d21) to composition (X) is, for example, 30% by mass or more and 85% by mass or less.
組成物(X)に対する化合物(d2)の割合は、例えば10質量%以下である。また、組成物(X)に対する、ラジカル重合性化合物(A)中の化合物(d2)を含めたラジカル重合性官能基を分子内に1つのみ有する化合物の合計の割合は、例えば1質量%以上20質量%以下である。
The ratio of compound (d2) to composition (X) is, for example, 10% by mass or less. The total ratio of compounds having only one radically polymerizable functional group in the molecule, including compound (d2) in radically polymerizable compound (A), to composition (X) is, for example, 1% by mass or more and 20% by mass or less.
光ラジカル重合開始剤(B)について説明する。光ラジカル重合開始剤(B)は、例えば芳香族ケトン類、アシルホスフィンオキサイド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物など)、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミン化合物からなる群から選択される少なくとも一種の化合物を含有する。
The photoradical polymerization initiator (B) will now be described. The photoradical polymerization initiator (B) contains at least one compound selected from the group consisting of aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds.
ラジカル重合性化合物(A)に対する光ラジカル重合開始剤(B)の割合は、6質量%以上であることが好ましい。この場合、組成物(X)は良好な光硬化性を有することができ、良好な大気雰囲気下での光硬化性も有しうる。この割合は7質量%以上であればより好ましく、8質量%以上であれば更に好ましい。またこの割合は例えば30質量%以下であり、20質量%以下であれば好ましく、18質量%以下であれば更に好ましい。
The ratio of the photoradical polymerization initiator (B) to the radically polymerizable compound (A) is preferably 6% by mass or more. In this case, the composition (X) can have good photocurability and can also have good photocurability under an atmospheric environment. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 20% by mass or less, and even more preferably 18% by mass or less.
光ラジカル重合開始剤(B)は、フォトブリーチング性を有する光ラジカル重合開始剤を含んでもよい。この場合、組成物(X)の硬化物が良好な光透過性を有しうる。ラジカル重合性化合物(A)に対するフォトブリーチング性を有する光ラジカル重合開始剤の割合は、3質量%以上であることが好ましい。この割合は7質量%以上であればより好ましく、8質量%以上であれば更に好ましい。またこの割合は例えば30質量%以下であり、25質量%以下であれば好ましく、20質量%以下であれば更に好ましい。
The photoradical polymerization initiator (B) may contain a photoradical polymerization initiator having photobleaching properties. In this case, the cured product of the composition (X) may have good light transmittance. The ratio of the photoradical polymerization initiator having photobleaching properties to the radically polymerizable compound (A) is preferably 3% by mass or more. This ratio is more preferably 7% by mass or more, and even more preferably 8% by mass or more. This ratio is, for example, 30% by mass or less, preferably 25% by mass or less, and even more preferably 20% by mass or less.
フォトブリーチング性を有する光ラジカル重合開始剤は、例えばアシルホスフィンオキサイド系光開始剤と、オキシムエステル系光開始剤のうちのフォトブリーチング性を有する化合物とのうち、少なくとも一方を含有する。
The photoradical polymerization initiator having photobleaching properties contains at least one of, for example, an acylphosphine oxide-based photoinitiator and a compound having photobleaching properties among oxime ester-based photoinitiators.
光ラジカル重合開始剤(B)は、分子中に増感剤骨格を有する成分を含んでもよい。増感剤骨格は、例えば9H-チオキサンテン-9-オン骨格とアントラセン骨格とのうち少なくとも一方を含む。すなわち、光ラジカル重合開始剤(B)は、9H-チオキサンテン-9-オン骨格とアントラセン骨格とのうち少なくとも一方を有する成分を含むことが好ましい。
The photoradical polymerization initiator (B) may contain a component having a sensitizer skeleton in the molecule. The sensitizer skeleton includes, for example, at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton. In other words, it is preferable that the photoradical polymerization initiator (B) includes a component having at least one of a 9H-thioxanthen-9-one skeleton and an anthracene skeleton.
組成物(X)は、光ラジカル重合開始剤(B)に加えて、重合促進剤を含有してもよい。重合促進剤は、例えば、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸-2-エチルヘキシル、p-ジメチルアミノ安息香酸メチル、安息香酸-2-ジメチルアミノエチル、p-ジメチルアミノ安息香酸ブトキシエチルといったアミン化合物を含有する。なお、重合促進剤が含有しうる成分は前記には限られない。
The composition (X) may contain a polymerization accelerator in addition to the photoradical polymerization initiator (B). The polymerization accelerator contains, for example, an amine compound such as ethyl p-dimethylaminobenzoate, 2-ethylhexyl p-dimethylaminobenzoate, methyl p-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, or butoxyethyl p-dimethylaminobenzoate. Note that the components that the polymerization accelerator may contain are not limited to those mentioned above.
組成物(X)は、溶剤を含有せず又は溶剤の含有量が1質量%以下であることが好ましい。この場合、組成物(X)及び組成物(X)の硬化物からは、溶剤に由来するアウトガスが発生しにくい。また、光学部品及び発光装置の製造時に組成物(X)及び硬化物から溶剤を除去するための乾燥工程を不要にできる。組成物(X)及び硬化物の少なくとも一方から溶剤を除去するための乾燥工程があってもよいが、この場合は乾燥工程における加熱温度の低減と加熱時間の短縮化との、少なくとも一方を可能とできる。このため、光学部品及び発光装置の製造効率を低下させることなく、光学部品からアウトガスを生じにくくできる。さらに、組成物(X)を特にインクジェット法で吐出することで成形する場合に、成形後の組成物(X)から溶剤が揮発することによる厚みの減少が生じにくく、そのため光学部品の厚みの減少が生じにくい。そのため、組成物(X)をインクジェット法で吐出して成形しながら、光学部品の厚みをできるだけ大きく確保できる。溶剤の含有量は、0.5質量%以下であればより好ましく、0.3質量%以下であれば更に好ましく、0.1質量%以下であれば特に好ましい。組成物(X)は、溶剤を含有せず、又は不可避的に混入する溶剤のみを含有することが、特に好ましい。
The composition (X) preferably does not contain a solvent or the solvent content is 1% by mass or less. In this case, outgassing derived from the solvent is unlikely to occur from the composition (X) and the cured product of the composition (X). In addition, a drying process for removing the solvent from the composition (X) and the cured product during the production of optical components and light-emitting devices can be eliminated. A drying process for removing the solvent from at least one of the composition (X) and the cured product may be performed. In this case, at least one of the heating temperature and the heating time in the drying process can be reduced. Therefore, outgassing can be unlikely to occur from the optical components without reducing the production efficiency of the optical components and light-emitting devices. Furthermore, when the composition (X) is molded by ejecting it, especially by the inkjet method, the thickness is unlikely to decrease due to the evaporation of the solvent from the composition (X) after molding, and therefore the thickness of the optical components is unlikely to decrease. Therefore, the thickness of the optical components can be secured as large as possible while ejecting the composition (X) by the inkjet method to mold it. The content of the solvent is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. It is particularly preferable that the composition (X) does not contain a solvent or contains only a solvent that is inevitably mixed in.
組成物(X)は、本開示の目的が大きく阻害されない範囲内で、上記以外の、無機充填材、吸湿材、分散剤及びシランカップリング剤等の、任意の添加剤を更に含有してもよい。
Composition (X) may further contain any additives other than those mentioned above, such as inorganic fillers, moisture absorbents, dispersants, and silane coupling agents, to the extent that the object of the present disclosure is not significantly impeded.
組成物(X)が無機充填材を含有する場合、無機充填材はナノサイズであることが好ましい。この場合、硬化物の良好な透明性(可視光透過性)を維持しながら、硬化物を高屈折率化しうる。ナノサイズとは、平均粒径が1nm以上1000nm以下であることを意味する。無機充填材の平均粒子径は、30nm以下であることが好ましく、20nm以下であればより好ましい。また、この平均粒径は5nm以上であることが好ましく、10nm以上であればより好ましい。なお、この平均粒径は、動的光散乱法による測定結果から算出されるメディアン径、すなわち累積50%径(D50)である。なお、測定装置としては、マイクロトラック・ベル株式会社のナノトラックNanotracWaveシリーズを用いることができる。
When composition (X) contains an inorganic filler, it is preferable that the inorganic filler is nano-sized. In this case, the cured product can have a high refractive index while maintaining good transparency (visible light transmittance) of the cured product. Nano-sized means that the average particle size is 1 nm or more and 1000 nm or less. The average particle size of the inorganic filler is preferably 30 nm or less, and more preferably 20 nm or less. In addition, this average particle size is preferably 5 nm or more, and more preferably 10 nm or more. Note that this average particle size is the median diameter calculated from the measurement results by dynamic light scattering method, that is, the cumulative 50% diameter (D50). Note that the Nanotrac NanotracWave series from Microtrac Bell Co., Ltd. can be used as a measuring device.
本実施形態では、組成物(X)は、光学部品を製造するために用いられうる。光学部品は、光学系における光の経路上に配置される部品である。本実施形態では、組成物(X)は、光を透過させる光学部品を製造するために好ましく用いられうる。ただし、組成物(X)の用途は、光学部品の製造のみには制限されず、組成物(X)は、その特質を利用した種々の用途に適用されうる。
In this embodiment, the composition (X) can be used to manufacture an optical component. An optical component is a component that is disposed on the path of light in an optical system. In this embodiment, the composition (X) can be preferably used to manufacture an optical component that transmits light. However, the use of the composition (X) is not limited to the manufacture of optical components, and the composition (X) can be applied to various uses that utilize its properties.
本実施形態では、組成物(X)は低い粘度を有しうる。そのため、組成物(X)の成形性が良好である。例えば組成物(X)は、インクジェット法で吐出することで成形されうる。組成物(X)から硬化物又は光学部品等を製造するに当たり、組成物(X)を、インクジェット法で吐出することで成形することが好ましい。すなわち、組成物(X)は、インクジェット成形用であることが好ましい。この場合、組成物(X)の硬化物及び光学部品を位置精度良く作製できる。また、スクリーン印刷法などの接触を伴う印刷法で成形する場合と比べて、組成物(X)をインクジェット法で吐出することで成形する場合は、組成物(X)及びその硬化物に異物が混入しにくく、そのため、光学部品を作製するに当たっての歩留りが悪化しにくい。
In this embodiment, the composition (X) may have a low viscosity. Therefore, the moldability of the composition (X) is good. For example, the composition (X) may be molded by discharging it by an inkjet method. When producing a cured product or an optical part, etc. from the composition (X), it is preferable to mold the composition (X) by discharging it by an inkjet method. That is, the composition (X) is preferably for inkjet molding. In this case, the cured product and the optical part of the composition (X) can be produced with good positional accuracy. In addition, compared to molding by a printing method involving contact such as a screen printing method, when the composition (X) is molded by discharging it by an inkjet method, foreign matter is less likely to be mixed into the composition (X) and its cured product, and therefore the yield when manufacturing the optical part is less likely to deteriorate.
組成物(X)の40℃における粘度が16mPa・s以下であることが好ましい。この場合、常温における組成物(X)の粘度がいかなる値であっても、組成物(X)を僅かに加熱すれば低粘度化させることが可能である。このため、加熱すれば、組成物(X)を容易に成形でき、特にインクジェット法で吐出することで容易に成形できる。また、組成物(X)を大きく加熱することなく低粘度化させることができるので、組成物(X)中の成分が揮発することによる組成物(X)の組成の変化を生じにくくできる。この粘度が1mPa・s以上であることも好ましく、5mPa・s以上であることもより好ましい。
It is preferable that the viscosity of composition (X) at 40°C is 16 mPa·s or less. In this case, no matter what the viscosity of composition (X) is at room temperature, it is possible to reduce the viscosity by slightly heating composition (X). Therefore, composition (X) can be easily molded by heating, and in particular, it can be easily molded by discharging it by an inkjet method. In addition, since the viscosity of composition (X) can be reduced without significantly heating it, it is possible to make it difficult for the composition of composition (X) to change due to the volatilization of the components in composition (X). It is also preferable that this viscosity is 1 mPa·s or more, and more preferably 5 mPa·s or more.
組成物(X)の25℃での粘度が50mPa・s以下であることも好ましい。組成物(X)の25℃での粘度が40mPa・s以下であればより好ましく、30mPa・s以下であれば更に好ましく、28mPa・s以下であれば特に好ましい。この粘度が1mPa・s以上であることも好ましく、5mPa・s以上であることもより好ましく、10mPa・s以上であればより好ましく、20mPa・s以上であれば更に好ましい。これらの場合、組成物(X)を常温で容易に成形でき、特にインクジェット法で容易に成形できる。
It is also preferable that the viscosity of composition (X) at 25°C is 50 mPa·s or less. It is more preferable that the viscosity of composition (X) at 25°C is 40 mPa·s or less, even more preferable that it is 30 mPa·s or less, and particularly preferable that it is 28 mPa·s or less. It is also preferable that this viscosity is 1 mPa·s or more, more preferably 5 mPa·s or more, more preferably 10 mPa·s or more, and even more preferably 20 mPa·s or more. In these cases, composition (X) can be easily molded at room temperature, and in particular can be easily molded by the inkjet method.
このような組成物(X)の低い粘度は、ラジカル重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。なお、組成物(X)の粘度の測定方法及び条件は、後掲の実施例の欄において詳しく説明する。
Such a low viscosity of composition (X) can be achieved by appropriately adjusting the composition of radically polymerizable compound (A) within the range described above. The method and conditions for measuring the viscosity of composition (X) will be explained in detail in the Examples section below.
組成物(X)の硬化物を110℃で30分間加熱した場合に生じるアウトガスの割合が25ppm以下であることが好ましい。すなわち、本実施形態により組成物(X)の硬化性が高められたことで、硬化物から生じるアウトガスの割合が25ppm以下となることが好ましい。この場合、硬化物からアウトガスが生じにくい。このため、例えば硬化物からなる光学部品を備える発光装置内にアウトガスに起因する空隙を生じにくくできる。このため空隙を通じて発光素子に水及び酸素が到達するようなことを起こりにくくして、発光素子が水及び酸素により劣化しにくくできる。このアウトガスの割合は、15ppmであれば特に好ましい。
The rate of outgassing generated when the cured product of composition (X) is heated at 110°C for 30 minutes is preferably 25 ppm or less. In other words, by increasing the curability of composition (X) according to this embodiment, it is preferable that the rate of outgassing generated from the cured product is 25 ppm or less. In this case, outgassing is less likely to occur from the cured product. This makes it possible to make it difficult for voids due to outgassing to occur in a light-emitting device that includes an optical component made of the cured product, for example. This makes it difficult for water and oxygen to reach the light-emitting element through voids, making it difficult for the light-emitting element to deteriorate due to water and oxygen. It is particularly preferable for this rate of outgassing to be 15 ppm.
このような組成物(X)の硬化物から生じるアウトガスの割合の低減は、ラジカル重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。なお、アウトガスの割合の測定方法は、後掲の実施例において詳しく説明する。
The reduction in the proportion of outgassing generated from the cured product of composition (X) can be achieved by appropriately adjusting the composition of radically polymerizable compound (A) within the range described above. The method for measuring the proportion of outgassing will be described in detail in the Examples below.
組成物(X)の硬化物のガラス転移温度は75℃以上であることが好ましい。すなわち、組成物(X)は、硬化することでガラス転移温度が75℃以上の硬化物になる性質を有することが好ましい。この場合、硬化物は良好な耐熱性を有することができる。そのため、例えば硬化物に温度上昇を伴う処理が施された場合に、硬化物が劣化しにくい。このため、例えば光学部品に重なる無機質膜(例えばパッシベーション層6)をプラズマCVD法といった蒸着法で作製する場合、光学部品が加熱されても、光学部品が劣化しにくい。また、耐熱性を高めることで、光学部品を、耐熱性に対する要求が厳しい車載用途などの用途に適合させることもできる。硬化物のガラス転移温度は90℃以上であればより好ましく、110℃以上であれば更に好ましく、125℃以上であれば特に好ましい。この硬化物のガラス転移温度は、ラジカル重合性化合物(A)の組成を上記説明の範囲内で適宜調整することで、実現されうる。
The glass transition temperature of the cured product of the composition (X) is preferably 75°C or higher. In other words, the composition (X) preferably has the property of curing to become a cured product with a glass transition temperature of 75°C or higher. In this case, the cured product can have good heat resistance. Therefore, for example, when the cured product is subjected to a process involving an increase in temperature, the cured product is less likely to deteriorate. Therefore, for example, when an inorganic film (e.g., passivation layer 6) that overlaps an optical component is produced by a deposition method such as a plasma CVD method, the optical component is less likely to deteriorate even if the optical component is heated. In addition, by increasing the heat resistance, the optical component can be adapted to applications such as vehicle-mounted applications that have strict requirements for heat resistance. The glass transition temperature of the cured product is more preferably 90°C or higher, even more preferably 110°C or higher, and particularly preferably 125°C or higher. This glass transition temperature of the cured product can be achieved by appropriately adjusting the composition of the radical polymerizable compound (A) within the range described above.
組成物(X)から作製された厚み10μmの硬化物の、JIS K7361-1による全光線透過率は、98.0%以上であることが好ましく、99.0%以上であることが好ましい。この硬化物の全光線透過率は、組成物(X)の組成を上記説明の範囲内で適宜調整することで、実現されうる。
The total light transmittance according to JIS K7361-1 of a 10 μm-thick cured product made from composition (X) is preferably 98.0% or more, and more preferably 99.0% or more. This total light transmittance of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
組成物から作製された硬化物の、測定周波数が100kHzである場合の比誘電率が、3.8以下であることが好ましい。この場合、硬化物を発光装置における光学部品に適用した場合に、発光装置の動作信頼性が高められうる。特に硬化物を、タッチセンサを備える発光装置における光学部品に適用した場合に、タッチセンサの誤作動が抑制されうる。硬化物の比誘電率は、3.4以下であればより好ましく、3.0以下であれば更に好ましい。この硬化物の比誘電率は、組成物(X)の組成を上記説明の範囲内で適宜調整することで、実現されうる。
It is preferable that the dielectric constant of the cured product made from the composition is 3.8 or less when the measurement frequency is 100 kHz. In this case, when the cured product is applied to an optical component in a light-emitting device, the operational reliability of the light-emitting device can be improved. In particular, when the cured product is applied to an optical component in a light-emitting device equipped with a touch sensor, malfunction of the touch sensor can be suppressed. It is more preferable that the dielectric constant of the cured product is 3.4 or less, and even more preferable that it is 3.0 or less. This dielectric constant of the cured product can be achieved by appropriately adjusting the composition of composition (X) within the range described above.
4.光学部品及び発光装置
組成物(X)から作製された光学部品を備える発光装置1の構造の例について説明する。発光装置1は、光源と、光源が発する光を透過させる光学部品とを備える。例えば、発光装置1は、発光素子4と、発光素子4を覆う封止材5及びパッシベーション層6とを備える。この場合、発光素子4が光源であり、封止材5が光学部品であり、パッシベーション層6が無機質膜である。封止材5とパッシベーション層6とは重なっている。 4. Optical component and light-emitting device An example of the structure of a light-emitting device 1 including an optical component made from the composition (X) will be described. The light-emitting device 1 includes a light source and an optical component that transmits light emitted by the light source. For example, the light-emitting device 1 includes a light-emitting element 4, and a sealant 5 and a passivation layer 6 that cover the light-emitting element 4. In this case, the light-emitting element 4 is the light source, the sealant 5 is the optical component, and the passivation layer 6 is an inorganic film. The sealant 5 and the passivation layer 6 overlap each other.
組成物(X)から作製された光学部品を備える発光装置1の構造の例について説明する。発光装置1は、光源と、光源が発する光を透過させる光学部品とを備える。例えば、発光装置1は、発光素子4と、発光素子4を覆う封止材5及びパッシベーション層6とを備える。この場合、発光素子4が光源であり、封止材5が光学部品であり、パッシベーション層6が無機質膜である。封止材5とパッシベーション層6とは重なっている。 4. Optical component and light-emitting device An example of the structure of a light-emitting device 1 including an optical component made from the composition (X) will be described. The light-emitting device 1 includes a light source and an optical component that transmits light emitted by the light source. For example, the light-emitting device 1 includes a light-emitting element 4, and a sealant 5 and a passivation layer 6 that cover the light-emitting element 4. In this case, the light-emitting element 4 is the light source, the sealant 5 is the optical component, and the passivation layer 6 is an inorganic film. The sealant 5 and the passivation layer 6 overlap each other.
発光素子4は、例えば発光ダイオードを含む。発光ダイオードは、例えば有機EL素子(有機発光ダイオード)とマイクロ発光ダイオードとのうち少なくとも一方を含む。発光素子4が有機発光ダイオードを含む場合は、発光素子4を備える発光装置1は例えば有機ELディスプレイである。発光素子4がマイクロ発光ダイオードを含む場合は、発光素子4を備える発光装置1は例えばマイクロLEDディスプレイである。なお、ELとはエレクトロルミネッセンスの略である。
The light-emitting element 4 includes, for example, a light-emitting diode. The light-emitting diode includes, for example, at least one of an organic EL element (organic light-emitting diode) and a micro light-emitting diode. When the light-emitting element 4 includes an organic light-emitting diode, the light-emitting device 1 including the light-emitting element 4 is, for example, an organic EL display. When the light-emitting element 4 includes a micro light-emitting diode, the light-emitting device 1 including the light-emitting element 4 is, for example, a micro LED display. Note that EL is an abbreviation for electroluminescence.
発光装置1の構造の例を、図1を参照して説明する。この発光装置1は、トップエミッションタイプである。発光装置1は、支持基板2、支持基板2と間隔をあけて対向する透明基板3、支持基板2の透明基板3と対向する面の上にある発光素子4、並びに発光素子4を覆うパッシベーション層6及び封止材5を備える。
An example of the structure of the light-emitting device 1 will be described with reference to FIG. 1. This light-emitting device 1 is a top-emission type. The light-emitting device 1 includes a support substrate 2, a transparent substrate 3 that faces the support substrate 2 with a gap therebetween, a light-emitting element 4 on the surface of the support substrate 2 that faces the transparent substrate 3, and a passivation layer 6 and a sealing material 5 that cover the light-emitting element 4.
支持基板2は、例えば樹脂材料から作製されるが、これに限定されない。透明基板3は透光性を有する材料から作製される。透明基板3は、例えば、ガラス製基板又は透明樹脂製基板である。発光素子4は、例えば一対の電極41、43と、電極41、43間にある有機発光層42とを備える。有機発光層42は、例えば正孔注入層421、正孔輸送層422、有機発光層423及び電子輸送層424を備え、これらの層は前記の順番に積層している。
The support substrate 2 is made of, for example, but not limited to, a resin material. The transparent substrate 3 is made of a light-transmitting material. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate. The light-emitting element 4 includes, for example, a pair of electrodes 41, 43 and an organic light-emitting layer 42 between the electrodes 41, 43. The organic light-emitting layer 42 includes, for example, a hole injection layer 421, a hole transport layer 422, an organic light-emitting layer 423, and an electron transport layer 424, and these layers are stacked in the above order.
発光装置1は複数の発光素子4を備え、かつ複数の発光素子4が、支持基板2上でアレイ9(以下素子アレイ9という)を構成している。素子アレイ9は、隔壁7も備える。隔壁7は、支持基板2上にあり、隣合う二つの発光素子4の間を仕切っている。隔壁7は、例えば感光性の樹脂材料をフォトリソグラフィ法で成形することで作製される。素子アレイ9は、隣合う発光素子4の電極43及び電子輸送層424同士を電気的に接続する接続配線8も備える。接続配線8は、隔壁7上に設けられている。
The light-emitting device 1 includes a plurality of light-emitting elements 4, which form an array 9 (hereinafter referred to as element array 9) on a support substrate 2. The element array 9 also includes a partition 7. The partition 7 is on the support substrate 2 and separates two adjacent light-emitting elements 4. The partition 7 is fabricated, for example, by forming a photosensitive resin material using a photolithography method. The element array 9 also includes connection wiring 8 that electrically connects the electrodes 43 and electron transport layers 424 of adjacent light-emitting elements 4. The connection wiring 8 is provided on the partition 7.
パッシベーション層6は無機質膜に該当する。パッシベーション層6は、窒化ケイ素又は酸化ケイ素から作製されることが好ましく、窒化ケイ素から作製されることが特に好ましい。図1に示す例では、パッシベーション層6は、第一パッシベーション層61と第二パッシベーション層62とを含む。第一パッシベーション層61は素子アレイ9に直接接触した状態で、素子アレイ9を覆うことで、発光素子4を覆っている。第二パッシベーション層62は、第一パッシベーション層61に対して、素子アレイ9とは反対側の位置に配置され、かつ第二パッシベーション層62と第一パッシベーション層61との間には間隔があけられている。第一パッシベーション層61と第二パッシベーション層62との間に、封止材5が充填されている。すなわち、発光素子4と、発光素子4を覆う封止材5との間に、第一パッシベーション層61が介在している。
The passivation layer 6 corresponds to an inorganic film. The passivation layer 6 is preferably made of silicon nitride or silicon oxide, and is particularly preferably made of silicon nitride. In the example shown in FIG. 1, the passivation layer 6 includes a first passivation layer 61 and a second passivation layer 62. The first passivation layer 61 covers the element array 9 while being in direct contact with the element array 9, thereby covering the light-emitting element 4. The second passivation layer 62 is disposed on the opposite side of the element array 9 with respect to the first passivation layer 61, and a gap is provided between the second passivation layer 62 and the first passivation layer 61. The sealant 5 is filled between the first passivation layer 61 and the second passivation layer 62. That is, the first passivation layer 61 is interposed between the light-emitting element 4 and the sealant 5 covering the light-emitting element 4.
さらに、第二パッシベーション層62と透明基板3との間に、第二封止材52が充填されている。第二封止材52は、例えば透明な樹脂材料から作製される。第二封止材52の材質は特に制限されない。第二封止材52の材質は、封止材5と同じであっても、異なっていてもよい。
Furthermore, a second sealing material 52 is filled between the second passivation layer 62 and the transparent substrate 3. The second sealing material 52 is made of, for example, a transparent resin material. There are no particular limitations on the material of the second sealing material 52. The material of the second sealing material 52 may be the same as or different from the sealing material 5.
組成物(X)を用いる封止材5の作製方法及び発光装置1の製造方法について説明する。
A method for producing the encapsulant 5 using composition (X) and a method for producing the light emitting device 1 are described.
本実施形態では、組成物(X)をインクジェット法で吐出することで膜状に成形してから、組成物(X)に紫外線を照射して硬化することで、封止材5を作製することが好ましい。本実施形態では、インクジェット法で組成物(X)を吐出して成形することが可能である。
In this embodiment, it is preferable to eject the composition (X) by an inkjet method to form a film, and then irradiate the composition (X) with ultraviolet light to harden it, thereby producing the sealing material 5. In this embodiment, the composition (X) can be ejected and shaped by an inkjet method.
組成物(X)をインクジェット法で吐出するに当たっては、組成物(X)が常温で十分に低い粘度を有する場合、例えば25℃における粘度が30mPa・s以下、特に16mPa・s以下である場合には、組成物(X)を加熱せずにインクジェット法で吐出することで成形できる。組成物(X)が加熱されることで低粘度化する場合、組成物(X)を加熱してから組成物(X)をインクジェット法で吐出して成形してもよい。上述のとおり、組成物(X)の40℃における粘度が特に16mPa・s以下である場合、組成物(X)を僅かに加熱しただけで低粘度化させることができ、この低粘度化した組成物(X)をインクジェット法で吐出することができる。組成物(X)の加熱温度は、例えば20℃以上50℃以下である。
When discharging the composition (X) by the inkjet method, if the composition (X) has a sufficiently low viscosity at room temperature, for example, if the viscosity at 25°C is 30 mPa·s or less, particularly 16 mPa·s or less, the composition (X) can be molded by discharging it by the inkjet method without heating it. If the viscosity of the composition (X) is reduced by heating, the composition (X) may be heated and then discharged by the inkjet method to be molded. As described above, if the viscosity of the composition (X) at 40°C is particularly 16 mPa·s or less, the viscosity of the composition (X) can be reduced by simply heating it slightly, and this reduced-viscosity composition (X) can be discharged by the inkjet method. The heating temperature of the composition (X) is, for example, 20°C or higher and 50°C or lower.
より具体的には、例えばまず、支持基板2を準備する。この支持基板2の一面上に隔壁7を、例えば感光性の樹脂材料を用いてフォトリソグラフィ法で作製する。続いて、支持基板2の一面上に複数の発光素子4を設ける。発光素子4は、蒸着法、塗布法といった適宜の方法で作製できる。特に発光素子4を、インクジェット法といった塗布法で作製することが好ましい。これにより、支持基板2に素子アレイ9を作製する。
More specifically, for example, first, the support substrate 2 is prepared. On one surface of the support substrate 2, partition walls 7 are fabricated by photolithography using, for example, a photosensitive resin material. Next, a plurality of light-emitting elements 4 are provided on one surface of the support substrate 2. The light-emitting elements 4 can be fabricated by an appropriate method such as a vapor deposition method or a coating method. In particular, it is preferable to fabricate the light-emitting elements 4 by a coating method such as an inkjet method. In this way, an element array 9 is fabricated on the support substrate 2.
次に、素子アレイ9の上に第一パッシベーション層61を設ける。第一パッシベーション層61を、例えばプラズマCVD法といった蒸着法で作製できる。
Next, a first passivation layer 61 is provided on the element array 9. The first passivation layer 61 can be produced by a deposition method such as a plasma CVD method.
次に、第一パッシベーション層61の上に組成物(X)を、例えばインクジェット法で吐出して成形し、塗膜を形成する。発光素子4の作製と塗膜の形成のいずれにもインクジェット法を適用すれば、発光装置1の製造効率を特に向上できる。続いて、組成物(X)の塗膜に光を照射することで硬化させて、封止材5を作製する。
Next, the composition (X) is ejected onto the first passivation layer 61, for example, by an inkjet method, and shaped to form a coating film. By applying the inkjet method to both the production of the light-emitting element 4 and the formation of the coating film, the production efficiency of the light-emitting device 1 can be particularly improved. Next, the coating film of the composition (X) is cured by irradiating it with light, to produce the encapsulant 5.
組成物(X)に光を照射するに当たり、大気雰囲気等の酸素を含む雰囲気下で組成物(X)に光を照射してもよく、窒素雰囲気などの不活性雰囲気下で組成物(X)に光を照射してもよい。
When irradiating composition (X) with light, composition (X) may be irradiated with light in an atmosphere containing oxygen, such as an air atmosphere, or composition (X) may be irradiated with light in an inert atmosphere, such as a nitrogen atmosphere.
次に、封止材5の上に第二パッシベーション層62を設ける。第二パッシベーション層62は、例えばプラズマCVD法といった蒸着法で作製できる。
Next, a second passivation layer 62 is provided on the sealing material 5. The second passivation layer 62 can be produced by a deposition method such as plasma CVD.
次に、支持基板2の一面上に、第二パッシベーション層62を覆うように、光硬化性の樹脂材料を設けてから、この樹脂材料に透明基板3を重ねる。透明基板3は、例えばガラス製基板又は透明樹脂製基板である。
Next, a photocurable resin material is applied to one surface of the support substrate 2 so as to cover the second passivation layer 62, and then the transparent substrate 3 is placed on top of this resin material. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.
次に外部から透明基板3へ向けて紫外線を照射する。紫外線は透明基板3を透過して光硬化性の樹脂材料へ到達する。これにより、光硬化性の樹脂材料が硬化し、第二封止材52が作製される。
Next, ultraviolet light is applied from the outside toward the transparent substrate 3. The ultraviolet light passes through the transparent substrate 3 and reaches the photocurable resin material. This causes the photocurable resin material to harden, producing the second sealing material 52.
封止材5の厚みは、例えば1μm以上50μm以下である。封止材5の厚みは、20μm以下がより好ましく、15μm以下が更に好ましい。この場合、封止材5を薄型化することで、発光装置1を薄型化することができ、フレキシブル性を有する、すなわち屈曲可能な発光装置1を得ることも可能となる。また、封止材5によって発光素子4への水分を効果的に抑制するためには、封止材5の厚みは3μm以上であることが好ましく、5μm以上であればより好ましく、8μm以上であれば更に好ましい。
The thickness of the sealing material 5 is, for example, 1 μm or more and 50 μm or less. The thickness of the sealing material 5 is more preferably 20 μm or less, and even more preferably 15 μm or less. In this case, by thinning the sealing material 5, the light emitting device 1 can be thinned, and it is also possible to obtain a flexible light emitting device 1, i.e., a bendable light emitting device. In order to effectively suppress moisture from entering the light emitting element 4 by the sealing material 5, the thickness of the sealing material 5 is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 8 μm or more.
封止材5に重なっているパッシベーション層6の厚みは、例えば0.1μm以上2μm以下である。上記のようにパッシベーション層6が第一パッシベーション層61と第二パッシベーション層62とを含む場合、第一パッシベーション層61と第二パッシベーション層62との各々の厚みが0.1μm以上2μm以下であることが好ましい。
The thickness of the passivation layer 6 overlapping the sealing material 5 is, for example, 0.1 μm or more and 2 μm or less. When the passivation layer 6 includes the first passivation layer 61 and the second passivation layer 62 as described above, it is preferable that the thickness of each of the first passivation layer 61 and the second passivation layer 62 is 0.1 μm or more and 2 μm or less.
発光装置1は、折りたたみ可能なディスプレイ等の、変形可能な発光装置1であってよい。実施形態では封止材5が柔軟性を有し、かつ無機質膜であるパッシベーション層6との密着性が高いため、発光装置1を屈曲させるなど変形させても、封止材5の破損が抑制されうる。
The light-emitting device 1 may be a deformable light-emitting device 1 such as a foldable display. In the embodiment, the sealing material 5 is flexible and has high adhesion to the passivation layer 6, which is an inorganic film, so that even if the light-emitting device 1 is bent or otherwise deformed, damage to the sealing material 5 can be suppressed.
発光装置がタッチセンサを備えてもよい。実施形態では封止材5の比誘電率を低めることができるので、タッチセンサの誤作動が抑制されうる。
The light emitting device may be equipped with a touch sensor. In this embodiment, the relative dielectric constant of the sealing material 5 can be reduced, which can prevent the touch sensor from malfunctioning.
5.態様
第一の態様に係るケイ素含有アクリル化合物(a)は、分子内に、環状シロキサン骨格と、環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基(g)とを、有する。 5. Aspects The silicon-containing acrylic compound (a) according to the first aspect has, in the molecule, a cyclic siloxane skeleton and an organic group (g) having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
第一の態様に係るケイ素含有アクリル化合物(a)は、分子内に、環状シロキサン骨格と、環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基(g)とを、有する。 5. Aspects The silicon-containing acrylic compound (a) according to the first aspect has, in the molecule, a cyclic siloxane skeleton and an organic group (g) having a (meth)acryloyl group bonded to the cyclic siloxane skeleton.
この態様によれば、ケイ素含有アクリル化合物(a)を含有する組成物の硬化物の柔軟性が高まりうる。
According to this embodiment, the flexibility of the cured product of the composition containing the silicon-containing acrylic compound (a) can be increased.
第二の態様では、第一の態様において、有機基(g)が、シクロアルカン骨格を有する。
In the second embodiment, the organic group (g) in the first embodiment has a cycloalkane skeleton.
この態様によれば、ケイ素含有アクリル化合物(a)を含有する組成物の硬化物の柔軟性が、より高まりうる。
According to this embodiment, the flexibility of the cured product of the composition containing the silicon-containing acrylic compound (a) can be further increased.
第三の態様では、第二の態様において、有機基(g)内で、シクロアルカン骨格に、(メタ)アクリロイル基が、酸素原子を介して結合している。
In the third embodiment, a (meth)acryloyl group is bonded to the cycloalkane skeleton in the organic group (g) via an oxygen atom in the second embodiment.
第四の態様では、第一から第三のいずれか一の態様において、ケイ素含有アクリル化合物(a)が、分子内に、複数の(メタ)アクリロイル基を有する。
In a fourth embodiment, in any one of the first to third embodiments, the silicon-containing acrylic compound (a) has multiple (meth)acryloyl groups in the molecule.
この態様によれば、ケイ素含有アクリル化合物(a)を含有する組成物の硬化物のガラス転移温度が高まりうる。
According to this embodiment, the glass transition temperature of the cured product of the composition containing the silicon-containing acrylic compound (a) can be increased.
第五の態様では、第四の態様において、分子内の(メタ)アクリロイル基の数が、2以上4以下である。
In the fifth embodiment, the number of (meth)acryloyl groups in the molecule is 2 or more and 4 or less in the fourth embodiment.
この態様によれば、ケイ素含有アクリル化合物(a)、及びケイ素含有アクリル化合物(a)を含有する組成物の、粘度上昇が抑制されながら、組成物の硬化物のガラス転移温度が高まりうる。
In this embodiment, the glass transition temperature of the cured product of the silicon-containing acrylic compound (a) and the composition containing the silicon-containing acrylic compound (a) can be increased while suppressing an increase in viscosity.
第六の態様に係る光硬化性樹脂組成物は、ラジカル重合性化合物(A)を含有し、ラジカル重合性化合物(A)が、第一のラジカル重合性化合物として、第一から第五のいずれか一の態様に係るケイ素含有アクリル化合物(a)を含有する。
The photocurable resin composition according to the sixth aspect contains a radically polymerizable compound (A), and the radically polymerizable compound (A) contains the silicon-containing acrylic compound (a) according to any one of the first to fifth aspects as a first radically polymerizable compound.
この態様によれば、ケイ素含有アクリル化合物(a)によって、光硬化性樹脂組成物の硬化物の柔軟性が高まりうる。
In this embodiment, the silicon-containing acrylic compound (a) can increase the flexibility of the cured product of the photocurable resin composition.
第七の態様では、第六の態様において、光硬化性樹脂組成物が、光ラジカル重合開始剤(B)を更に含有する。
In a seventh embodiment, the photocurable resin composition of the sixth embodiment further contains a photoradical polymerization initiator (B).
第八の態様では、第六又は第七の態様において、ラジカル重合性化合物(A)が、第二のラジカル重合性化合物として、分子内に窒素原子を有する単官能ラジカル重合性化合物(b)を更に含有する。
In the eighth embodiment, the radical polymerizable compound (A) in the sixth or seventh embodiment further contains a monofunctional radical polymerizable compound (b) having a nitrogen atom in the molecule as a second radical polymerizable compound.
この態様によれば、光硬化性樹脂組成物の硬化物の、無機質材との密着性が高まりうる。
This embodiment can improve the adhesion of the cured product of the photocurable resin composition to inorganic materials.
第九の態様では、第六から第八のいずれか一の態様において、ラジカル重合性化合物(A)が、第三のラジカル重合性化合物として、分子内に炭素数5以上25以下の鎖状飽和炭化水素骨格と(メタ)アクリロイル基とを有するアクリル化合物(c)を更に含有する。
In a ninth aspect, in any one of the sixth to eighth aspects, the radically polymerizable compound (A) further contains an acrylic compound (c) having a chain-like saturated hydrocarbon skeleton with 5 to 25 carbon atoms in the molecule and a (meth)acryloyl group as a third radically polymerizable compound.
この態様によれば、光硬化性樹脂組成物の硬化物の、比誘電率が低減しうる。
According to this embodiment, the dielectric constant of the cured product of the photocurable resin composition can be reduced.
第十の態様では、第六から第九のいずれか一の態様において、光硬化性樹脂組成物の、25℃における粘度が50mPa・s以下である。
In a tenth aspect, in any one of the sixth to ninth aspects, the viscosity of the photocurable resin composition at 25°C is 50 mPa·s or less.
この態様によれば、光硬化性樹脂組成物が良好な成形性を有することができ、インクジェト法により吐出することで成形することも可能となりうる。
In this embodiment, the photocurable resin composition has good moldability, and it may be possible to mold it by ejecting it using the inkjet method.
第十一の態様に係る光学部品は、第六から第十のいずれか一の態様に係る光硬化性樹脂組成物の硬化物を含む。
The optical component according to the eleventh aspect includes a cured product of the photocurable resin composition according to any one of the sixth to tenth aspects.
この態様によれば、光学部品の柔軟性が高まり、変型時の光学部品の破損が抑制されうる。
This embodiment increases the flexibility of the optical components, and can prevent damage to the optical components during deformation.
第十二の態様に係る光学部品の製造方法は、第六から第十のいずれか一の態様に係る光硬化性樹脂組成物をインクジェット法で吐出してから、光硬化性樹脂組成物に光を照射して硬化させることを含む。
The method for producing an optical component according to the twelfth aspect includes ejecting the photocurable resin composition according to any one of the sixth to tenth aspects by an inkjet method, and then irradiating the photocurable resin composition with light to cure it.
この態様によると、光学部品を位置精度良く作製でき、かつ歩留りが悪化しにくい。
This method allows optical components to be manufactured with high positional accuracy and reduces the yield.
第十三の態様に係る発光装置(1)は、光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、第六から第十のいずれか一の態様に係る光硬化性樹脂組成物の硬化物を含む。
The light-emitting device (1) according to the thirteenth aspect includes a light source and an optical component that transmits light emitted by the light source, and the optical component includes a cured product of the photocurable resin composition according to any one of the sixth to tenth aspects.
この態様によれば、光学部品の柔軟性が高まり、変型時の光学部品の破損が抑制されうる。
This embodiment increases the flexibility of the optical components, and can prevent damage to the optical components when they are deformed.
第十四の態様に係る発光装置(1)の製造方法は、光源と、光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、光学部品を、第十二に係る方法で製造することを含む。
The manufacturing method for the light-emitting device (1) according to the fourteenth aspect is a method for manufacturing a light-emitting device including a light source and an optical component that transmits light emitted by the light source, and includes manufacturing the optical component by the method according to the twelfth aspect.
この態様によると、発光装置(1)における光学部品を位置精度良く作製でき、かつ歩留りが悪化しにくい。
According to this embodiment, the optical components in the light emitting device (1) can be manufactured with high positional precision, and the yield is less likely to deteriorate.
1.ケイ素含有アクリル化合物の合成
(1)合成例1
攪拌羽根・装置、冷却管、温度計を備えた4つ口フラスコに、まず、信越化学工業株式会社製の品番KR470(エポキシ当量200g/mol)300部(1.5当量部)と、メタクリル酸(分子量86g/mol)258部(3当量部)とを投入し、攪拌することで均一化した。次に、トリフェニルホスフィン2.0部と、ハイドロキノンモノメチルエーテル0.2部と、フェノールスルホン酸2.0部とを投入・混合し、固形分を溶解させた。液温度を80℃~90℃まで昇温し、引き続き80℃~90℃の温度範囲で10時間反応させた。これにより、式(4)に示す構造を有する化合物を合成した。 1. Synthesis of silicon-containing acrylic compound (1) Synthesis Example 1
First, 300 parts (1.5 equivalent parts) of Shin-Etsu Chemical Co., Ltd.'s KR470 (epoxy equivalent 200 g/mol) and 258 parts (3 equivalent parts) of methacrylic acid (molecular weight 86 g/mol) were added to a four-neck flask equipped with a stirring blade/device, a cooling tube, and a thermometer, and the mixture was homogenized by stirring. Next, 2.0 parts of triphenylphosphine, 0.2 parts of hydroquinone monomethyl ether, and 2.0 parts of phenolsulfonic acid were added and mixed to dissolve the solid content. The liquid temperature was raised to 80°C to 90°C, and the mixture was allowed to react for 10 hours at a temperature range of 80°C to 90°C. As a result, a compound having the structure shown in formula (4) was synthesized.
(1)合成例1
攪拌羽根・装置、冷却管、温度計を備えた4つ口フラスコに、まず、信越化学工業株式会社製の品番KR470(エポキシ当量200g/mol)300部(1.5当量部)と、メタクリル酸(分子量86g/mol)258部(3当量部)とを投入し、攪拌することで均一化した。次に、トリフェニルホスフィン2.0部と、ハイドロキノンモノメチルエーテル0.2部と、フェノールスルホン酸2.0部とを投入・混合し、固形分を溶解させた。液温度を80℃~90℃まで昇温し、引き続き80℃~90℃の温度範囲で10時間反応させた。これにより、式(4)に示す構造を有する化合物を合成した。 1. Synthesis of silicon-containing acrylic compound (1) Synthesis Example 1
First, 300 parts (1.5 equivalent parts) of Shin-Etsu Chemical Co., Ltd.'s KR470 (epoxy equivalent 200 g/mol) and 258 parts (3 equivalent parts) of methacrylic acid (molecular weight 86 g/mol) were added to a four-neck flask equipped with a stirring blade/device, a cooling tube, and a thermometer, and the mixture was homogenized by stirring. Next, 2.0 parts of triphenylphosphine, 0.2 parts of hydroquinone monomethyl ether, and 2.0 parts of phenolsulfonic acid were added and mixed to dissolve the solid content. The liquid temperature was raised to 80°C to 90°C, and the mixture was allowed to react for 10 hours at a temperature range of 80°C to 90°C. As a result, a compound having the structure shown in formula (4) was synthesized.
上記の合成により得られた化合物を赤外線分光分析装置(FTIR)にて分析したところ、エポキシ基由来のピーク(902cm-1)が存在せず、C=O由来のピーク(1731cm-1)が発生していることを確認した。これにより、上記の合成により得られた化合物が、式(4)に示す構造を有する化合物となっていることを確認した。
The compound obtained by the above synthesis was analyzed by an infrared spectrometer (FTIR), and it was confirmed that there was no peak (902 cm −1 ) derived from an epoxy group, but a peak (1731 cm −1 ) derived from C═O was generated. This confirmed that the compound obtained by the above synthesis had a structure represented by formula (4).
(2)合成例2
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-22-2678(エポキシ当量290g/mol)435部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、式(3)に示す構造を有する化合物を合成した。 (2) Synthesis Example 2
Instead of KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 435 parts (1.5 equivalent parts) of X-22-2678 (epoxy equivalent weight 290 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a compound having a structure shown in formula (3) was synthesized in the same manner as in Synthesis Example 1.
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-22-2678(エポキシ当量290g/mol)435部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、式(3)に示す構造を有する化合物を合成した。 (2) Synthesis Example 2
Instead of KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 435 parts (1.5 equivalent parts) of X-22-2678 (epoxy equivalent weight 290 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a compound having a structure shown in formula (3) was synthesized in the same manner as in Synthesis Example 1.
(3)合成例3
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-40-2728(エポキシ当量200g/mol)300部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、分子内に環状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さないケイ素含有アクリル化合物を合成した。 (3) Synthesis Example 3
Instead of product number KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 300 parts (1.5 equivalent parts) of product number X-40-2728 (epoxy equivalent weight 200 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a silicon-containing acrylic compound having a cyclic siloxane skeleton and four methacryloyl groups in the molecule and no cycloalkane skeleton was synthesized in the same manner as in Synthesis Example 1.
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-40-2728(エポキシ当量200g/mol)300部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、分子内に環状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さないケイ素含有アクリル化合物を合成した。 (3) Synthesis Example 3
Instead of product number KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 300 parts (1.5 equivalent parts) of product number X-40-2728 (epoxy equivalent weight 200 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a silicon-containing acrylic compound having a cyclic siloxane skeleton and four methacryloyl groups in the molecule and no cycloalkane skeleton was synthesized in the same manner as in Synthesis Example 1.
(4)合成例4
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-40-2669(エポキシ当量280g/mol)420部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、分子内に直鎖状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さないケイ素含有アクリル化合物を合成した。 (4) Synthesis Example 4
Instead of product number KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 420 parts (1.5 equivalent parts) of product number X-40-2669 (epoxy equivalent weight 280 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a silicon-containing acrylic compound having a linear siloxane skeleton and four methacryloyl groups in the molecule and no cycloalkane skeleton was synthesized in the same manner as in Synthesis Example 1.
信越化学工業株式会社製の品番KR470に代えて、信越化学工業株式会社製の品番X-40-2669(エポキシ当量280g/mol)420部(1.5当量部)を用いた。それ以外は合成例1と同じ方法で、分子内に直鎖状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さないケイ素含有アクリル化合物を合成した。 (4) Synthesis Example 4
Instead of product number KR470 manufactured by Shin-Etsu Chemical Co., Ltd., 420 parts (1.5 equivalent parts) of product number X-40-2669 (epoxy equivalent weight 280 g/mol) manufactured by Shin-Etsu Chemical Co., Ltd. was used. Except for this, a silicon-containing acrylic compound having a linear siloxane skeleton and four methacryloyl groups in the molecule and no cycloalkane skeleton was synthesized in the same manner as in Synthesis Example 1.
2.組成物の調製
下記表に示す成分を混合することで、実施例及び比較例の組成物を調製した。表中に示す成分の詳細は下記のとおりである。
-ケイ素含有アクリル化合物#1:合成例1で合成した、式(11)に示す構造を有する化合物。
-ケイ素含有アクリル化合物#2:合成例2で合成した、式(12)に示す構造を有する化合物。
-ケイ素含有アクリル化合物#3:合成例3で合成した、分子内に環状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さない化合物。
-ケイ素含有アクリル化合物#4:合成例4で合成した、分子内に直鎖状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さない化合物。
-ケイ素含有アクリル化合物#5:ジメチルシリコーンメタクリレート。信越化学工業株式会社製の品番X-22-164A。
-N含有単官能化合物#1:ビニルメチルオキサゾリジノン。BASF社製。品名VMOX。
-N含有単官能化合物#2:アクリロイルモルフォリン。KJケミカルズ株式会社製。品名ACMO。
-N含有単官能化合物#3:N,N-ジメチルアクリルアミド。KJケミカルズ株式会社製。品名DMAA。
-アクリル化合物#1:1,12-ドデカンジオールジメタクリレート。サートマー社製製。品名SR262。
-アクリル化合物#2:1,9-ノナンジオールジアクリレート。大阪有機化学工業株式会社製。品名ビスコート#260。
-アクリル化合物#3:イソステアリルアクリレート。大阪有機化学工業株式会社製。品名ISTA。
-アクリル化合物#4:セチルアクリレート。日油株式会社製。品名ブレンマーCA。
-アクリル化合物#5:トリプロピレングリコールジアクリレート。大阪有機化学工業株式会社製。品名ビスコート#310HP。
-アクリル化合物#6:下記化学式(8)に示す化合物。共栄社化学株式会社製。品名ライトアクリレートNMT-A。 2. Preparation of Compositions Compositions of the Examples and Comparative Examples were prepared by mixing the components shown in the following table. Details of the components shown in the table are as follows.
Silicon-containing acrylic compound #1: a compound having a structure shown in formula (11), synthesized in Synthesis Example 1.
Silicon-containing acrylic compound #2: a compound having a structure shown in formula (12), synthesized in Synthesis Example 2.
Silicon-containing acrylic compound #3: A compound synthesized in Synthesis Example 3, which has a cyclic siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
Silicon-containing acrylic compound #4: A compound synthesized in Synthesis Example 4, which has a linear siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
Silicon-containing acrylic compound #5: Dimethyl silicone methacrylate, product number X-22-164A from Shin-Etsu Chemical Co., Ltd.
-N-containing monofunctional compound #1: Vinylmethyloxazolidinone, manufactured by BASF, product name VMOX.
-N-containing monofunctional compound #2: acryloylmorpholine, manufactured by KJ Chemicals Co., Ltd. Product name: ACMO.
-N-containing monofunctional compound #3: N,N-dimethylacrylamide. Manufactured by KJ Chemicals Co., Ltd. Product name: DMAA.
- Acrylic compound #1: 1,12-dodecanediol dimethacrylate. Manufactured by Sartomer. Product name: SR262.
- Acrylic compound #2: 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat #260.
- Acrylic compound #3: Isostearyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: ISTA.
- Acrylic compound #4: Cetyl acrylate, manufactured by NOF Corporation, product name: Blenmar CA.
- Acrylic compound #5: Tripropylene glycol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat #310HP.
Acrylic compound #6: A compound represented by the following chemical formula (8), manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate NMT-A.
下記表に示す成分を混合することで、実施例及び比較例の組成物を調製した。表中に示す成分の詳細は下記のとおりである。
-ケイ素含有アクリル化合物#1:合成例1で合成した、式(11)に示す構造を有する化合物。
-ケイ素含有アクリル化合物#2:合成例2で合成した、式(12)に示す構造を有する化合物。
-ケイ素含有アクリル化合物#3:合成例3で合成した、分子内に環状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さない化合物。
-ケイ素含有アクリル化合物#4:合成例4で合成した、分子内に直鎖状シロキサン骨格と4つのメタクリロイル基とを有し、シクロアルカン骨格を有さない化合物。
-ケイ素含有アクリル化合物#5:ジメチルシリコーンメタクリレート。信越化学工業株式会社製の品番X-22-164A。
-N含有単官能化合物#1:ビニルメチルオキサゾリジノン。BASF社製。品名VMOX。
-N含有単官能化合物#2:アクリロイルモルフォリン。KJケミカルズ株式会社製。品名ACMO。
-N含有単官能化合物#3:N,N-ジメチルアクリルアミド。KJケミカルズ株式会社製。品名DMAA。
-アクリル化合物#1:1,12-ドデカンジオールジメタクリレート。サートマー社製製。品名SR262。
-アクリル化合物#2:1,9-ノナンジオールジアクリレート。大阪有機化学工業株式会社製。品名ビスコート#260。
-アクリル化合物#3:イソステアリルアクリレート。大阪有機化学工業株式会社製。品名ISTA。
-アクリル化合物#4:セチルアクリレート。日油株式会社製。品名ブレンマーCA。
-アクリル化合物#5:トリプロピレングリコールジアクリレート。大阪有機化学工業株式会社製。品名ビスコート#310HP。
-アクリル化合物#6:下記化学式(8)に示す化合物。共栄社化学株式会社製。品名ライトアクリレートNMT-A。 2. Preparation of Compositions Compositions of the Examples and Comparative Examples were prepared by mixing the components shown in the following table. Details of the components shown in the table are as follows.
Silicon-containing acrylic compound #1: a compound having a structure shown in formula (11), synthesized in Synthesis Example 1.
Silicon-containing acrylic compound #2: a compound having a structure shown in formula (12), synthesized in Synthesis Example 2.
Silicon-containing acrylic compound #3: A compound synthesized in Synthesis Example 3, which has a cyclic siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
Silicon-containing acrylic compound #4: A compound synthesized in Synthesis Example 4, which has a linear siloxane skeleton and four methacryloyl groups in the molecule, but does not have a cycloalkane skeleton.
Silicon-containing acrylic compound #5: Dimethyl silicone methacrylate, product number X-22-164A from Shin-Etsu Chemical Co., Ltd.
-N-containing monofunctional compound #1: Vinylmethyloxazolidinone, manufactured by BASF, product name VMOX.
-N-containing monofunctional compound #2: acryloylmorpholine, manufactured by KJ Chemicals Co., Ltd. Product name: ACMO.
-N-containing monofunctional compound #3: N,N-dimethylacrylamide. Manufactured by KJ Chemicals Co., Ltd. Product name: DMAA.
- Acrylic compound #1: 1,12-dodecanediol dimethacrylate. Manufactured by Sartomer. Product name: SR262.
- Acrylic compound #2: 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat #260.
- Acrylic compound #3: Isostearyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: ISTA.
- Acrylic compound #4: Cetyl acrylate, manufactured by NOF Corporation, product name: Blenmar CA.
- Acrylic compound #5: Tripropylene glycol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat #310HP.
Acrylic compound #6: A compound represented by the following chemical formula (8), manufactured by Kyoeisha Chemical Co., Ltd. Product name: Light Acrylate NMT-A.
-光ラジカル重合開始剤:アシルホスフィンオキサイド系光重合開始剤。IGM Resins B.V.社製。品名Omnirad TPO H。
-酸化防止剤: BASF社製。品名Irganox1010。
-レベリング剤:ビックケミー社製。品名BYK330。 Photo-radical polymerization initiator: acylphosphine oxide-based photo-polymerization initiator, manufactured by IGM Resins B.V. Product name: Omnirad TPO H.
- Antioxidant: BASF product name: Irganox 1010.
-Leveling agent: BYK-Chemie. Product name: BYK330.
-酸化防止剤: BASF社製。品名Irganox1010。
-レベリング剤:ビックケミー社製。品名BYK330。 Photo-radical polymerization initiator: acylphosphine oxide-based photo-polymerization initiator, manufactured by IGM Resins B.V. Product name: Omnirad TPO H.
- Antioxidant: BASF product name: Irganox 1010.
-Leveling agent: BYK-Chemie. Product name: BYK330.
3.評価試験
(1)比誘電率
80mm×40mm×1mmtの寸法を有するアルミ基板上に、厚さ10μmの組成物の塗膜を作製した。この塗膜に、100mW/cm2の条件で15秒間紫外線を照射して、塗膜を硬化させた。LCRメータ(Agilent社製、「E4980A」)及び治具(16034 test fixture)を用いて、電極接触法により、測定周波数100kHzの条件で、硬化した塗膜の比誘電率を測定した。 3. Evaluation Test (1) Dielectric Constant A coating film of the composition having a thickness of 10 μm was prepared on an aluminum substrate having dimensions of 80 mm×40 mm×1 mmt. The coating film was irradiated with ultraviolet light for 15 seconds under the condition of 100 mW/ cm2 to cure the coating film. The dielectric constant of the cured coating film was measured by the electrode contact method using an LCR meter (manufactured by Agilent, "E4980A") and a jig (16034 test fixture) under the condition of a measurement frequency of 100 kHz.
(1)比誘電率
80mm×40mm×1mmtの寸法を有するアルミ基板上に、厚さ10μmの組成物の塗膜を作製した。この塗膜に、100mW/cm2の条件で15秒間紫外線を照射して、塗膜を硬化させた。LCRメータ(Agilent社製、「E4980A」)及び治具(16034 test fixture)を用いて、電極接触法により、測定周波数100kHzの条件で、硬化した塗膜の比誘電率を測定した。 3. Evaluation Test (1) Dielectric Constant A coating film of the composition having a thickness of 10 μm was prepared on an aluminum substrate having dimensions of 80 mm×40 mm×1 mmt. The coating film was irradiated with ultraviolet light for 15 seconds under the condition of 100 mW/ cm2 to cure the coating film. The dielectric constant of the cured coating film was measured by the electrode contact method using an LCR meter (manufactured by Agilent, "E4980A") and a jig (16034 test fixture) under the condition of a measurement frequency of 100 kHz.
(2)25℃粘度
組成物の粘度を、レオメータ(アントンパール・ジャパン社製、型番DHR-2)を使用して、温度25℃、せん断速度1000s-1の条件で測定した。 (2) Viscosity at 25° C. The viscosity of the composition was measured using a rheometer (Model DHR-2, manufactured by Anton Paar Japan) at a temperature of 25° C. and a shear rate of 1000 s −1 .
組成物の粘度を、レオメータ(アントンパール・ジャパン社製、型番DHR-2)を使用して、温度25℃、せん断速度1000s-1の条件で測定した。 (2) Viscosity at 25° C. The viscosity of the composition was measured using a rheometer (Model DHR-2, manufactured by Anton Paar Japan) at a temperature of 25° C. and a shear rate of 1000 s −1 .
(3)インクジェット性
組成物をインクジェットプリンター(富士フイルム製、形式DMP2831)のカートリッジに入れ、温度40℃、周波数1kHz、の条件でインクジェットプリンターのノズルから組成物の液滴を吐出した。この液滴をハイスピードカメラで観察した。その結果、液滴が分離しない場合を「A」、本来の液滴からサテライトが分離した後、サテライトが本来の液滴と一体化して再び一つの液滴になる場合を「B」、本来の液滴からサテライトが分離したまま一体化しない場合を「C」と、評価した。 (3) Inkjet properties The composition was placed in a cartridge of an inkjet printer (manufactured by Fujifilm, model DMP2831), and droplets of the composition were ejected from the nozzle of the inkjet printer under conditions of a temperature of 40° C. and a frequency of 1 kHz. The droplets were observed with a high-speed camera. As a result, the following evaluation was performed: when the droplets did not separate, it was rated as "A"; when the satellites separated from the original droplets and then merged with the original droplets to form one droplet again, it was rated as "B"; and when the satellites separated from the original droplets and did not merge, it was rated as "C."
組成物をインクジェットプリンター(富士フイルム製、形式DMP2831)のカートリッジに入れ、温度40℃、周波数1kHz、の条件でインクジェットプリンターのノズルから組成物の液滴を吐出した。この液滴をハイスピードカメラで観察した。その結果、液滴が分離しない場合を「A」、本来の液滴からサテライトが分離した後、サテライトが本来の液滴と一体化して再び一つの液滴になる場合を「B」、本来の液滴からサテライトが分離したまま一体化しない場合を「C」と、評価した。 (3) Inkjet properties The composition was placed in a cartridge of an inkjet printer (manufactured by Fujifilm, model DMP2831), and droplets of the composition were ejected from the nozzle of the inkjet printer under conditions of a temperature of 40° C. and a frequency of 1 kHz. The droplets were observed with a high-speed camera. As a result, the following evaluation was performed: when the droplets did not separate, it was rated as "A"; when the satellites separated from the original droplets and then merged with the original droplets to form one droplet again, it was rated as "B"; and when the satellites separated from the original droplets and did not merge, it was rated as "C."
(4)硬化性
組成物を、赤外線分光分析装置(アジレントテクノロジー社製、型番Agilent Cary 610 FTIR 顕微鏡システム)で測定することで、IRスペクトルを得た。 (4) Curability The composition was measured with an infrared spectrometer (Agilent Cary 610 FTIR Microscope System, manufactured by Agilent Technologies) to obtain an IR spectrum.
組成物を、赤外線分光分析装置(アジレントテクノロジー社製、型番Agilent Cary 610 FTIR 顕微鏡システム)で測定することで、IRスペクトルを得た。 (4) Curability The composition was measured with an infrared spectrometer (Agilent Cary 610 FTIR Microscope System, manufactured by Agilent Technologies) to obtain an IR spectrum.
組成物を塗布して厚み10μmの塗膜を作製し、塗膜に窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射した。続いて、紫外線を照射した後の組成物(硬化物)を上記の赤外線分光分析装置で測定することで、IRスペクトルを得た。
The composition was applied to prepare a coating film having a thickness of 10 μm, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Inc., model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an integrated light quantity of 1.5 J/cm 2. The composition (cured product) after irradiation with ultraviolet light was then measured with the above-mentioned infrared spectrometer to obtain an IR spectrum.
二つのIRスペクトルの各々において、810cm-1にあらわれるアクリロイル基の吸収のピーク強度を測定した。塗膜についてのピーク強度I0と、硬化物についてのピーク強度I1とから、{1-(I0-I1)/I0}×100(%)の式を用い、紫外線を照射する前後での組成物中の反応性官能基の減少率を算出した。その結果を反応率とし、反応率が90%以上の場合を「A」、80%以上90%未満の場合を「B」、80%未満の場合を「C」と、評価した。
In each of the two IR spectra, the peak intensity of the absorption of the acryloyl group appearing at 810 cm -1 was measured. From the peak intensity I 0 for the coating film and the peak intensity I 1 for the cured product, the reduction rate of the reactive functional group in the composition before and after irradiation with ultraviolet light was calculated using the formula {1-(I 0 -I 1 )/I 0 }×100(%). The result was taken as the reaction rate, and the reaction rate was evaluated as "A" when it was 90% or more, "B" when it was 80% or more but less than 90%, and "C" when it was less than 80%.
(5)アウトガス評価
組成物の硬化物を加熱した場合のアウトガスをヘッドスペース法でサンプリングしてガスクロマトグラフにより測定した。詳しくは、まず容積22mLのヘッドスペース用バイアルに組成物を100mg入れた。続いて、組成物に、窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで組成物を硬化させた後、バイアルを封止した。続いて組成物を110℃で30分間加熱してから、バイアル中の気相部分をガスクロマトグラフに導入して分析した。その結果、得られたガスクロマトグラムのピーク面積に基づいて、組成物から発生したアウトガスの濃度を特定した。アウトガスの濃度とは、バイアルの容積(22mL)に対する、バイアルの気相中のアウトガスの体積分率である。 (5) Outgassing Evaluation The outgassing when the cured product of the composition was heated was sampled by the headspace method and measured by gas chromatography. In detail, 100 mg of the composition was first placed in a headspace vial with a volume of 22 mL. Next, the composition was cured by irradiating the composition with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light amount of 1.5 J/cm 2 , and then the vial was sealed. Next, the composition was heated at 110°C for 30 minutes, and then the gas phase portion in the vial was introduced into a gas chromatograph for analysis. As a result, the concentration of the outgassing generated from the composition was specified based on the peak area of the obtained gas chromatogram. The concentration of the outgassing is the volume fraction of the outgassing in the gas phase of the vial relative to the volume of the vial (22 mL).
組成物の硬化物を加熱した場合のアウトガスをヘッドスペース法でサンプリングしてガスクロマトグラフにより測定した。詳しくは、まず容積22mLのヘッドスペース用バイアルに組成物を100mg入れた。続いて、組成物に、窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで組成物を硬化させた後、バイアルを封止した。続いて組成物を110℃で30分間加熱してから、バイアル中の気相部分をガスクロマトグラフに導入して分析した。その結果、得られたガスクロマトグラムのピーク面積に基づいて、組成物から発生したアウトガスの濃度を特定した。アウトガスの濃度とは、バイアルの容積(22mL)に対する、バイアルの気相中のアウトガスの体積分率である。 (5) Outgassing Evaluation The outgassing when the cured product of the composition was heated was sampled by the headspace method and measured by gas chromatography. In detail, 100 mg of the composition was first placed in a headspace vial with a volume of 22 mL. Next, the composition was cured by irradiating the composition with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light amount of 1.5 J/cm 2 , and then the vial was sealed. Next, the composition was heated at 110°C for 30 minutes, and then the gas phase portion in the vial was introduced into a gas chromatograph for analysis. As a result, the concentration of the outgassing generated from the composition was specified based on the peak area of the obtained gas chromatogram. The concentration of the outgassing is the volume fraction of the outgassing in the gas phase of the vial relative to the volume of the vial (22 mL).
なお、アウトガスの濃度は、トルエンを基準物質として特定した。具体的には、バイアル中でトルエンを揮発させることで、トルエン濃度が1000ppmと100ppmの二つの基準サンプルを用意した。各基準サンプルをガスクロマトグラフに導入して分析した。これにより得られた二つのクロマトグラムのピーク面積から、ピーク面積と濃度との関係を規定し、この結果に基づいて、上記のアウトガスの濃度を特定した。
The outgassing concentration was determined using toluene as the standard substance. Specifically, two standard samples with toluene concentrations of 1000 ppm and 100 ppm were prepared by volatilizing toluene in a vial. Each standard sample was introduced into a gas chromatograph for analysis. From the peak areas of the two chromatograms obtained in this way, the relationship between peak area and concentration was determined, and the above-mentioned outgassing concentration was determined based on these results.
(6)密着性
スライドガラスの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜することで作製した。この無機質膜の上に組成物を10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射した。この塗膜をオートグラフ(株式会社島津製作所製、型番AGS-X)で90度方向に引っ張り、ピール強度を測定した。ピール強度が100mN/cm以上の場合を「A」、ピール強度が50mN/cm以上の場合を「B」、ピール強度が20mN/cm以上の場合を「C」、ピール強度が20mN/cm未満の場合を「D」と、評価した。 (6) Adhesion A silicon oxynitride film (SiON film), which is an inorganic film, was formed on a slide glass by CVD to a thickness of 1 μm. A coating film was formed by applying a composition to a thickness of 10 μm on this inorganic film, and this coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light quantity of 1.5 J/cm 2. This coating film was pulled in the 90 degree direction with an autograph (manufactured by Shimadzu Corporation, model number AGS-X) to measure the peel strength. A peel strength of 100 mN/cm or more was rated as "A", a peel strength of 50 mN/cm or more was rated as "B", a peel strength of 20 mN/cm or more was rated as "C", and a peel strength of less than 20 mN/cm was rated as "D".
スライドガラスの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜することで作製した。この無機質膜の上に組成物を10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射した。この塗膜をオートグラフ(株式会社島津製作所製、型番AGS-X)で90度方向に引っ張り、ピール強度を測定した。ピール強度が100mN/cm以上の場合を「A」、ピール強度が50mN/cm以上の場合を「B」、ピール強度が20mN/cm以上の場合を「C」、ピール強度が20mN/cm未満の場合を「D」と、評価した。 (6) Adhesion A silicon oxynitride film (SiON film), which is an inorganic film, was formed on a slide glass by CVD to a thickness of 1 μm. A coating film was formed by applying a composition to a thickness of 10 μm on this inorganic film, and this coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light quantity of 1.5 J/cm 2. This coating film was pulled in the 90 degree direction with an autograph (manufactured by Shimadzu Corporation, model number AGS-X) to measure the peel strength. A peel strength of 100 mN/cm or more was rated as "A", a peel strength of 50 mN/cm or more was rated as "B", a peel strength of 20 mN/cm or more was rated as "C", and a peel strength of less than 20 mN/cm was rated as "D".
(7)屈曲性
基材であるポリイミドフィルムの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜した。組成物を無機質膜上に10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで、厚み10μmのフィルムを作製した。これにより、基材、無機質膜及びフィルムを備える評価用サンプルを作製した。 (7) Flexibility A silicon oxynitride film (SiON film), which is an inorganic film, was formed to a thickness of 1 μm on a polyimide film, which is a substrate, by a CVD method. The composition was applied to the inorganic film to a thickness of 10 μm to form a coating film, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light amount of 1.5 J/cm 2 to produce a film having a thickness of 10 μm. As a result, an evaluation sample including a substrate, an inorganic film, and a film was produced.
基材であるポリイミドフィルムの上に無機質膜であるシリコン酸窒化膜(SiON膜)を、CVD法にて厚み1μmに成膜した。組成物を無機質膜上に10μmの厚みで塗布して塗膜を形成し、この塗膜に窒素雰囲気下、UV照射器(ウシオ電機製、型番Unijet E075IIHD)を用いてピーク波長395nmの光を、照射強度0.5W/cm2かつ積算光量1.5J/cm2の条件で照射することで、厚み10μmのフィルムを作製した。これにより、基材、無機質膜及びフィルムを備える評価用サンプルを作製した。 (7) Flexibility A silicon oxynitride film (SiON film), which is an inorganic film, was formed to a thickness of 1 μm on a polyimide film, which is a substrate, by a CVD method. The composition was applied to the inorganic film to a thickness of 10 μm to form a coating film, and the coating film was irradiated with light having a peak wavelength of 395 nm under a nitrogen atmosphere using a UV irradiator (manufactured by Ushio Electric, model number Unijet E075IIHD) under conditions of an irradiation intensity of 0.5 W/cm 2 and an accumulated light amount of 1.5 J/cm 2 to produce a film having a thickness of 10 μm. As a result, an evaluation sample including a substrate, an inorganic film, and a film was produced.
この評価用サンプルを、屈曲部分の曲率半径が1.5mm、2.0mm、及び3.0mmの各条件で、10万回繰り返し屈曲させる試験を行った。
This evaluation sample was subjected to a test in which it was repeatedly bent 100,000 times under conditions in which the radius of curvature of the bent portion was 1.5 mm, 2.0 mm, and 3.0 mm.
その結果、曲率半径1.5mmで10万回試験後に外観にハガレ・割れの異常が見られない場合を「A」、半径2.0mmでは見られないが1.5mmでは見られる場合を「B」、半径3.0mmでは見られないが2.0mmでは見られる場合を「C」、半径3.0mmで見られる場合を「D」と、評価した。
As a result, the test was rated as follows: if no peeling or cracking was observed on the exterior after 100,000 tests with a radius of curvature of 1.5 mm, it was rated as "A"; if no peeling or cracking was observed with a radius of 2.0 mm but was observed with a radius of 1.5 mm, it was rated as "B"; if no peeling or cracking was observed with a radius of 3.0 mm but was observed with a radius of 2.0 mm, it was rated as "C"; and if peeling or cracking was observed with a radius of 3.0 mm, it was rated as "D".
(9)ガラス転移温度
組成物を塗布して塗膜を作製し、この塗膜を、大気雰囲気下、UV照射器(ウシオ電機株式会製、型番E075IIHD)を用いて、ピーク波長395nmの光を、照射強度3W/cm2かつ積算光量15J/cm2の条件で照射することで塗膜を光硬化させ、厚み500μmのフィルムを作製した。このフィルムから切り出したサンプルのガラス転移温度を、粘弾性測定装置(日立ハイテクサイエンス社製、型番DMA7100)を用いて測定した。 (9) Glass transition temperature A coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film under atmospheric conditions with light having a peak wavelength of 395 nm using a UV irradiator (manufactured by Ushio Inc., model number E075IIHD) under conditions of an irradiation intensity of 3 W/ cm2 and an accumulated light quantity of 15 J/ cm2 , thereby preparing a film having a thickness of 500 μm. The glass transition temperature of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
組成物を塗布して塗膜を作製し、この塗膜を、大気雰囲気下、UV照射器(ウシオ電機株式会製、型番E075IIHD)を用いて、ピーク波長395nmの光を、照射強度3W/cm2かつ積算光量15J/cm2の条件で照射することで塗膜を光硬化させ、厚み500μmのフィルムを作製した。このフィルムから切り出したサンプルのガラス転移温度を、粘弾性測定装置(日立ハイテクサイエンス社製、型番DMA7100)を用いて測定した。 (9) Glass transition temperature A coating film was prepared by applying the composition, and the coating film was photocured by irradiating the coating film under atmospheric conditions with light having a peak wavelength of 395 nm using a UV irradiator (manufactured by Ushio Inc., model number E075IIHD) under conditions of an irradiation intensity of 3 W/ cm2 and an accumulated light quantity of 15 J/ cm2 , thereby preparing a film having a thickness of 500 μm. The glass transition temperature of a sample cut out from the film was measured using a viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Corporation, model number DMA7100).
1 発光装置
4 発光素子(光源)
5 封止材(光学部品) 1 Light emitting device 4 Light emitting element (light source)
5. Sealing material (optical parts)
4 発光素子(光源)
5 封止材(光学部品) 1 Light emitting device 4 Light emitting element (light source)
5. Sealing material (optical parts)
Claims (14)
- 分子内に、
環状シロキサン骨格と、
前記環状シロキサン骨格に結合する、(メタ)アクリロイル基を有する有機基と、
を有する、
ケイ素含有アクリル化合物。 In the molecule,
A cyclic siloxane skeleton;
an organic group having a (meth)acryloyl group bonded to the cyclic siloxane skeleton;
having
Silicon-containing acrylic compounds. - 前記有機基が、シクロアルカン骨格を有する、
請求項1に記載のケイ素含有アクリル化合物。 The organic group has a cycloalkane skeleton.
The silicon-containing acrylic compound according to claim 1 . - 前記有機基内で、前記シクロアルカン骨格に、前記(メタ)アクリロイル基が、酸素原子を介して結合している、
請求項2に記載のケイ素含有アクリル化合物。 In the organic group, the (meth)acryloyl group is bonded to the cycloalkane skeleton via an oxygen atom.
The silicon-containing acrylic compound according to claim 2 . - 分子内に、前記(メタ)アクリロイル基を含む複数の(メタ)アクリロイル基を有する、
請求項1に記載のケイ素含有アクリル化合物。 A compound having a plurality of (meth)acryloyl groups including the (meth)acryloyl group in a molecule.
The silicon-containing acrylic compound according to claim 1 . - 分子内の前記(メタ)アクリロイル基の数が、2以上4以下である、
請求項4に記載のケイ素含有アクリル化合物。 the number of (meth)acryloyl groups in the molecule is 2 or more and 4 or less;
The silicon-containing acrylic compound according to claim 4 . - ラジカル重合性化合物(A)を含有し、
前記ラジカル重合性化合物(A)が、第一のラジカル重合性化合物として、請求項1から5のいずれか一項に記載のケイ素含有アクリル化合物を含有する、
光硬化性樹脂組成物。 Contains a radically polymerizable compound (A),
The radical polymerizable compound (A) contains the silicon-containing acrylic compound according to any one of claims 1 to 5 as a first radical polymerizable compound;
Photocurable resin composition. - 光ラジカル重合開始剤(B)を更に含有する、
請求項6に記載の光硬化性樹脂組成物。 Further containing a photoradical polymerization initiator (B),
The photocurable resin composition according to claim 6. - 前記ラジカル重合性化合物(A)が、第二のラジカル重合性化合物として、分子内に窒素原子を有する単官能ラジカル重合性化合物を更に含有する、
請求項6に記載の光硬化性樹脂組成物。 The radical polymerizable compound (A) further contains a monofunctional radical polymerizable compound having a nitrogen atom in the molecule as a second radical polymerizable compound.
The photocurable resin composition according to claim 6. - 前記ラジカル重合性化合物(A)が、第三のラジカル重合性化合物として、分子内に炭素数5以上25以下の鎖状飽和炭化水素骨格と(メタ)アクリロイル基とを有するアクリル化合物を更に含有する、
請求項6に記載の光硬化性樹脂組成物。 the radical polymerizable compound (A) further contains, as a third radical polymerizable compound, an acrylic compound having a chain-like saturated hydrocarbon skeleton having 5 to 25 carbon atoms in the molecule and a (meth)acryloyl group;
The photocurable resin composition according to claim 6. - 25℃における粘度が50mPa・s以下である、
請求項6に記載の光硬化性樹脂組成物。 The viscosity at 25°C is 50 mPa·s or less.
The photocurable resin composition according to claim 6. - 請求項6に記載の光硬化性樹脂組成物の硬化物を含む、
光学部品。 The cured product of the photocurable resin composition according to claim 6 is included.
Optical components. - 請求項6に記載の光硬化性樹脂組成物をインクジェット法で吐出してから、前記光硬化性樹脂組成物に光を照射して硬化させることを含む、
光学部品の製造方法。 The photocurable resin composition according to claim 6 is ejected by an inkjet method, and then the photocurable resin composition is irradiated with light to be cured.
A method for manufacturing optical components. - 光源と、前記光源が発する光を透過させる光学部品とを備え、前記光学部品が、請求項6に記載の光硬化性樹脂組成物の硬化物を含む、
発光装置。 A light source and an optical component that transmits light emitted by the light source, the optical component including a cured product of the photocurable resin composition according to claim 6.
Light emitting device. - 光源と、前記光源が発する光を透過させる光学部品とを備える発光装置を製造する方法であり、
前記光学部品を、請求項12に記載の方法で製造することを含む、
発光装置の製造方法。 A method for manufacturing a light emitting device including a light source and an optical component that transmits light emitted by the light source, comprising the steps of:
The optical component is manufactured by the method of claim 12.
A method for manufacturing a light emitting device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023059503 | 2023-03-31 | ||
JP2023-059503 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024202791A1 true WO2024202791A1 (en) | 2024-10-03 |
Family
ID=92905186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006810 WO2024202791A1 (en) | 2023-03-31 | 2024-02-26 | Silicon-containing acrylic compound, photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024202791A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030166816A1 (en) * | 2000-05-29 | 2003-09-04 | Peter Bissinger | Prepolymeric (meth) acrylates with polycyclic or aromatic segments |
JP2012211236A (en) * | 2011-03-31 | 2012-11-01 | Asahi Kasei Chemicals Corp | Photocurable resin composition containing organopolysiloxane and application thereof |
JP2015172173A (en) * | 2013-08-29 | 2015-10-01 | 旭化成株式会社 | Resin composition for light reflector, light reflector, reflector for optical semiconductor component, and optical semiconductor component |
JP2016141615A (en) * | 2015-01-29 | 2016-08-08 | 旭化成株式会社 | Organopolysiloxane and thermosetting resin composition comprising the same |
JP2016160284A (en) * | 2015-02-26 | 2016-09-05 | 旭化成株式会社 | Photocurable resin composition and method for producing the same |
JP2021055051A (en) * | 2019-09-27 | 2021-04-08 | パナソニックIpマネジメント株式会社 | Ultraviolet curable resin composition, light-emitting device, and method for manufacturing light-emitting device |
-
2024
- 2024-02-26 WO PCT/JP2024/006810 patent/WO2024202791A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030166816A1 (en) * | 2000-05-29 | 2003-09-04 | Peter Bissinger | Prepolymeric (meth) acrylates with polycyclic or aromatic segments |
JP2012211236A (en) * | 2011-03-31 | 2012-11-01 | Asahi Kasei Chemicals Corp | Photocurable resin composition containing organopolysiloxane and application thereof |
JP2015172173A (en) * | 2013-08-29 | 2015-10-01 | 旭化成株式会社 | Resin composition for light reflector, light reflector, reflector for optical semiconductor component, and optical semiconductor component |
JP2016141615A (en) * | 2015-01-29 | 2016-08-08 | 旭化成株式会社 | Organopolysiloxane and thermosetting resin composition comprising the same |
JP2016160284A (en) * | 2015-02-26 | 2016-09-05 | 旭化成株式会社 | Photocurable resin composition and method for producing the same |
JP2021055051A (en) * | 2019-09-27 | 2021-04-08 | パナソニックIpマネジメント株式会社 | Ultraviolet curable resin composition, light-emitting device, and method for manufacturing light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022203081A1 (en) | Photocurable resin composition, optical component, method for producing optical component, and light emitting device | |
JP7555002B2 (en) | Composition for sealing light-emitting element, and light-emitting device | |
JP2021095573A (en) | Ultraviolet-curable resin composition, organic el light-emitting device, and touch panel | |
WO2019230697A1 (en) | Uv-curable resin composition, method for manufacturing light emission device, and light emission device | |
JP7531103B2 (en) | Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device | |
JP2023156307A (en) | Ultraviolet curable resin composition, manufacturing method of light emitting device, light emitting device, and touch panel | |
JP7170246B2 (en) | UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device | |
WO2024202791A1 (en) | Silicon-containing acrylic compound, photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device | |
JP7457957B2 (en) | Method for manufacturing encapsulant and method for manufacturing light emitting device | |
JP7228804B2 (en) | Ultraviolet curable resin composition, color filter, light emitting device, method for producing color filter, and method for producing light emitting device | |
WO2024117094A1 (en) | Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device | |
WO2024111659A1 (en) | Photocurable resin composition, optical component, production method for optical component, light-emitting device, and production method for light-emitting device | |
JP7535750B2 (en) | Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device | |
WO2024203595A1 (en) | Photocurable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device | |
JP7489607B2 (en) | UV-curable resin composition, method for manufacturing organic EL light-emitting device, and organic EL light-emitting device | |
JP7281663B2 (en) | Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device | |
JP7442121B2 (en) | Ultraviolet curable resin composition, color resist, color filter, light emitting device, and method for producing color resist | |
WO2022080359A1 (en) | Wavelength conversion member molding composition, color resist, color filter, method for manufacturing color resist, light emitting device, and method for manufacturing light emitting device | |
JP7555047B2 (en) | Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device | |
CN113248952B (en) | Ultraviolet curable resin composition, optical member and method for producing same, light-emitting device and method for producing same | |
JP7457941B2 (en) | Method for producing ultraviolet curable resin composition and method for producing light emitting device | |
JP2022056388A (en) | Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device | |
JP2022142676A (en) | Photocurable resin composition, optical component, manufacturing method of optical component, light emitting device, and manufacturing method of light emitting device | |
JP2022068006A (en) | Composition for forming wavelength conversion member, color resist, color filter, manufacturing method for collar resist, light emitting device, and manufacturing method for light emitting device | |
JP2022142674A (en) | Photocurable resin composition, optical component, manufacturing method of optical component, light emitting device, and manufacturing method of light emitting device |