WO2024137704A2 - Procédés de production de produits de fermentation faisant appel à des enzymes de dégradation de fibres avec levure modifiée - Google Patents
Procédés de production de produits de fermentation faisant appel à des enzymes de dégradation de fibres avec levure modifiée Download PDFInfo
- Publication number
- WO2024137704A2 WO2024137704A2 PCT/US2023/084946 US2023084946W WO2024137704A2 WO 2024137704 A2 WO2024137704 A2 WO 2024137704A2 US 2023084946 W US2023084946 W US 2023084946W WO 2024137704 A2 WO2024137704 A2 WO 2024137704A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- amino acid
- acid sequence
- xylanase
- sequence
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 207
- 230000008569 process Effects 0.000 title claims abstract description 136
- 238000000855 fermentation Methods 0.000 title claims abstract description 131
- 230000004151 fermentation Effects 0.000 title claims abstract description 131
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims description 92
- 102000004190 Enzymes Human genes 0.000 title description 65
- 108090000790 Enzymes Proteins 0.000 title description 65
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 170
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims abstract description 133
- 229920002472 Starch Polymers 0.000 claims abstract description 61
- 239000008107 starch Substances 0.000 claims abstract description 61
- 235000019698 starch Nutrition 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 36
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 165
- 210000004027 cell Anatomy 0.000 claims description 125
- 108091033319 polynucleotide Proteins 0.000 claims description 113
- 102000040430 polynucleotide Human genes 0.000 claims description 113
- 239000002157 polynucleotide Substances 0.000 claims description 113
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 79
- 101150052795 cbh-1 gene Proteins 0.000 claims description 79
- 101150114858 cbh2 gene Proteins 0.000 claims description 78
- 108090000637 alpha-Amylases Proteins 0.000 claims description 56
- 230000014509 gene expression Effects 0.000 claims description 49
- 102000004139 alpha-Amylases Human genes 0.000 claims description 45
- 229940024171 alpha-amylase Drugs 0.000 claims description 34
- 102100022624 Glucoamylase Human genes 0.000 claims description 32
- 230000037361 pathway Effects 0.000 claims description 26
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 24
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 20
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 19
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 19
- 235000000346 sugar Nutrition 0.000 claims description 17
- 150000002972 pentoses Chemical class 0.000 claims description 14
- 210000005253 yeast cell Anatomy 0.000 claims description 12
- 238000011065 in-situ storage Methods 0.000 claims description 11
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 9
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 8
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 abstract description 21
- 108090000623 proteins and genes Proteins 0.000 description 101
- 108090000765 processed proteins & peptides Proteins 0.000 description 71
- 230000000694 effects Effects 0.000 description 69
- 229920001184 polypeptide Polymers 0.000 description 69
- 102000004196 processed proteins & peptides Human genes 0.000 description 69
- 239000000047 product Substances 0.000 description 66
- 229940088598 enzyme Drugs 0.000 description 62
- 108091026890 Coding region Proteins 0.000 description 51
- 239000012634 fragment Substances 0.000 description 43
- 108020004414 DNA Proteins 0.000 description 41
- 235000013339 cereals Nutrition 0.000 description 37
- 238000003752 polymerase chain reaction Methods 0.000 description 35
- 239000013598 vector Substances 0.000 description 30
- 235000001014 amino acid Nutrition 0.000 description 29
- 125000003729 nucleotide group Chemical group 0.000 description 29
- 239000002773 nucleotide Substances 0.000 description 28
- 230000007423 decrease Effects 0.000 description 27
- 108091005804 Peptidases Proteins 0.000 description 26
- 102000035195 Peptidases Human genes 0.000 description 26
- 229940024606 amino acid Drugs 0.000 description 26
- 108010076504 Protein Sorting Signals Proteins 0.000 description 25
- 150000001413 amino acids Chemical class 0.000 description 25
- 239000004365 Protease Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 24
- 108010059892 Cellulase Proteins 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- 240000008042 Zea mays Species 0.000 description 18
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 18
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 17
- 235000005822 corn Nutrition 0.000 description 17
- 235000019419 proteases Nutrition 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 108010087472 Trehalase Proteins 0.000 description 16
- 102100029677 Trehalase Human genes 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 150000007523 nucleic acids Chemical group 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 239000003550 marker Substances 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 13
- -1 e.g. Substances 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 239000006188 syrup Substances 0.000 description 13
- 235000020357 syrup Nutrition 0.000 description 13
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 12
- 238000002744 homologous recombination Methods 0.000 description 12
- 230000006801 homologous recombination Effects 0.000 description 12
- 238000002703 mutagenesis Methods 0.000 description 12
- 231100000350 mutagenesis Toxicity 0.000 description 12
- 102000039446 nucleic acids Human genes 0.000 description 12
- 108020004707 nucleic acids Proteins 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000013604 expression vector Substances 0.000 description 11
- 230000010076 replication Effects 0.000 description 11
- 239000002002 slurry Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 108010011619 6-Phytase Proteins 0.000 description 10
- 108010047754 beta-Glucosidase Proteins 0.000 description 10
- 102000006995 beta-Glucosidase Human genes 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 10
- 238000006460 hydrolysis reaction Methods 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 9
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 9
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108050008938 Glucoamylases Proteins 0.000 description 8
- 238000002105 Southern blotting Methods 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000012876 carrier material Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 102000005575 Cellulases Human genes 0.000 description 7
- 108010084185 Cellulases Proteins 0.000 description 7
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 7
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 238000004821 distillation Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 241000972773 Aulopiformes Species 0.000 description 6
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 6
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 6
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 6
- 241000235070 Saccharomyces Species 0.000 description 6
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 6
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 6
- 235000013405 beer Nutrition 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 235000010980 cellulose Nutrition 0.000 description 6
- 108010032776 glycerol-1-phosphatase Proteins 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 235000019515 salmon Nutrition 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 5
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 5
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 102000048120 Galactokinases Human genes 0.000 description 5
- 108700023157 Galactokinases Proteins 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 5
- 108091000080 Phosphotransferase Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 229940106157 cellulase Drugs 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 108010002430 hemicellulase Proteins 0.000 description 5
- 239000002853 nucleic acid probe Substances 0.000 description 5
- 102000020233 phosphotransferase Human genes 0.000 description 5
- 229940085127 phytase Drugs 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 4
- 102000016912 Aldehyde Reductase Human genes 0.000 description 4
- 108010053754 Aldehyde reductase Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 4
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 108090001060 Lipase Proteins 0.000 description 4
- 102000004882 Lipase Human genes 0.000 description 4
- 239000004367 Lipase Substances 0.000 description 4
- 101710154526 Lytic chitin monooxygenase Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241000235648 Pichia Species 0.000 description 4
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 241000223252 Rhodotorula Species 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 240000006394 Sorghum bicolor Species 0.000 description 4
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 4
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 4
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 4
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 235000019421 lipase Nutrition 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 108010072641 thermostable lipase Proteins 0.000 description 4
- 229920001285 xanthan gum Polymers 0.000 description 4
- 229920001221 xylan Polymers 0.000 description 4
- 150000004823 xylans Chemical class 0.000 description 4
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 3
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 108700038091 Beta-glucanases Proteins 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 102000018832 Cytochromes Human genes 0.000 description 3
- 108010052832 Cytochromes Proteins 0.000 description 3
- 108010058076 D-xylulose reductase Proteins 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- 235000007340 Hordeum vulgare Nutrition 0.000 description 3
- 240000005979 Hordeum vulgare Species 0.000 description 3
- 244000017020 Ipomoea batatas Species 0.000 description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 description 3
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- 102000003792 Metallothionein Human genes 0.000 description 3
- 108090000157 Metallothionein Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108700020962 Peroxidase Proteins 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- 108010059820 Polygalacturonase Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010022999 Serine Proteases Proteins 0.000 description 3
- 102000012479 Serine Proteases Human genes 0.000 description 3
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 3
- 102100026974 Sorbitol dehydrogenase Human genes 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 101710135785 Subtilisin-like protease Proteins 0.000 description 3
- 241001516650 Talaromyces verruculosus Species 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 244000098338 Triticum aestivum Species 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 108010093305 exopolygalacturonase Proteins 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000002573 hemicellulolytic effect Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 150000002482 oligosaccharides Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 150000004804 polysaccharides Chemical class 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 3
- 239000001587 sorbitan monostearate Substances 0.000 description 3
- 235000011076 sorbitan monostearate Nutrition 0.000 description 3
- 229940035048 sorbitan monostearate Drugs 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- IFBHRQDFSNCLOZ-RMPHRYRLSA-N 4-nitrophenyl beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C([N+]([O-])=O)C=C1 IFBHRQDFSNCLOZ-RMPHRYRLSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 2
- 241001225321 Aspergillus fumigatus Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000616862 Belliella Species 0.000 description 2
- 229920002498 Beta-glucan Polymers 0.000 description 2
- 241000722885 Brettanomyces Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 101150087048 CYB2 gene Proteins 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 101100439285 Candida albicans (strain SC5314 / ATCC MYA-2876) CLB4 gene Proteins 0.000 description 2
- 101100351264 Candida albicans (strain SC5314 / ATCC MYA-2876) PDC11 gene Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 2
- 101710088791 Elongation factor 2 Proteins 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 2
- 229920001706 Glucuronoxylan Polymers 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 241001149698 Lipomyces Species 0.000 description 2
- 101710117655 Maltogenic alpha-amylase Proteins 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VZUNGTLZRAYYDE-UHFFFAOYSA-N N-methyl-N'-nitro-N-nitrosoguanidine Chemical compound O=NN(C)C(=N)N[N+]([O-])=O VZUNGTLZRAYYDE-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 101150050255 PDC1 gene Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 241000959173 Rasamsonia emersonii Species 0.000 description 2
- 241000235525 Rhizomucor pusillus Species 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 241000235346 Schizosaccharomyces Species 0.000 description 2
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 2
- 241000209056 Secale Species 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 241001136275 Sphingobacterium Species 0.000 description 2
- 235000009430 Thespesia populnea Nutrition 0.000 description 2
- 102100028601 Transaldolase Human genes 0.000 description 2
- 108020004530 Transaldolase Proteins 0.000 description 2
- 102000014701 Transketolase Human genes 0.000 description 2
- 108010043652 Transketolase Proteins 0.000 description 2
- 101710205823 Translation elongation factor 2 Proteins 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000235013 Yarrowia Species 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 229940091771 aspergillus fumigatus Drugs 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229940120503 dihydroxyacetone Drugs 0.000 description 2
- GNGACRATGGDKBX-UHFFFAOYSA-N dihydroxyacetone phosphate Chemical compound OCC(=O)COP(O)(O)=O GNGACRATGGDKBX-UHFFFAOYSA-N 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 238000012224 gene deletion Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 229940059442 hemicellulase Drugs 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 230000006680 metabolic alteration Effects 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 235000020071 rectified spirit Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000004460 silage Substances 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 108010039475 transforming growth factor alpha-Pseudomonas exotoxin A (40) Proteins 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- FYGDTMLNYKFZSV-WFYNLLPOSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,3s,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-WFYNLLPOSA-N 0.000 description 1
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- AXTADRUCVAUCRS-UHFFFAOYSA-N 1-(2-hydroxyethyl)pyrrole-2,5-dione Chemical compound OCCN1C(=O)C=CC1=O AXTADRUCVAUCRS-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 101710114355 4-O-methyl-glucuronoyl methylesterase Proteins 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-M 4-nitrophenolate Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-M 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 108010013043 Acetylesterase Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 1
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 1
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 1
- 101001065065 Aspergillus awamori Feruloyl esterase A Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- 241001032450 Bacteroides cellulosilyticus Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 102100028737 CAP-Gly domain-containing linker protein 1 Human genes 0.000 description 1
- 101100480861 Caldanaerobacter subterraneus subsp. tengcongensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) tdh gene Proteins 0.000 description 1
- 101100083070 Candida albicans (strain SC5314 / ATCC MYA-2876) PGA6 gene Proteins 0.000 description 1
- 101100447466 Candida albicans (strain WO-1) TDH1 gene Proteins 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 241000611330 Chryseobacterium Species 0.000 description 1
- 241001164531 Chryseobacterium oncorhynchi Species 0.000 description 1
- 241000056141 Chryseobacterium sp. Species 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010001817 Endo-1,4-beta Xylanases Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 101150038242 GAL10 gene Proteins 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 102100024637 Galectin-10 Human genes 0.000 description 1
- 102100028652 Gamma-enolase Human genes 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 101100080316 Geobacillus stearothermophilus nprT gene Proteins 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 241000123313 Gloeophyllum sepiarium Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 102000057621 Glycerol kinases Human genes 0.000 description 1
- 108700016170 Glycerol kinases Proteins 0.000 description 1
- 108010015895 Glycerone kinase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101000767052 Homo sapiens CAP-Gly domain-containing linker protein 1 Proteins 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101000882901 Homo sapiens Claudin-2 Proteins 0.000 description 1
- 101001058231 Homo sapiens Gamma-enolase Proteins 0.000 description 1
- 101000952182 Homo sapiens Max-like protein X Proteins 0.000 description 1
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 101710172072 Kexin Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 229920002097 Lichenin Polymers 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 108010054377 Mannosidases Proteins 0.000 description 1
- 102000001696 Mannosidases Human genes 0.000 description 1
- 102100037423 Max-like protein X Human genes 0.000 description 1
- GMPKIPWJBDOURN-UHFFFAOYSA-N Methoxyamine Chemical compound CON GMPKIPWJBDOURN-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102100037214 Orotidine 5'-phosphate decarboxylase Human genes 0.000 description 1
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 244000115721 Pennisetum typhoides Species 0.000 description 1
- 235000007195 Pennisetum typhoides Nutrition 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 241000205156 Pyrococcus furiosus Species 0.000 description 1
- 101710081551 Pyrolysin Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 101150012328 RPL18-B gene Proteins 0.000 description 1
- 241000235403 Rhizomucor miehei Species 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 101100166584 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CCW12 gene Proteins 0.000 description 1
- 101100507956 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HXT7 gene Proteins 0.000 description 1
- 101100196145 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RPL20B gene Proteins 0.000 description 1
- 241000235088 Saccharomyces sp. Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 101100303045 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rpl1802 gene Proteins 0.000 description 1
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 1
- 235000008515 Setaria glauca Nutrition 0.000 description 1
- 240000005498 Setaria italica Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000228341 Talaromyces Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102100037116 Transcription elongation factor 1 homolog Human genes 0.000 description 1
- 101710118574 Trehalose-6-phosphate hydrolase Proteins 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229920002000 Xyloglucan Polymers 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 108010093941 acetylxylan esterase Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 235000015107 ale Nutrition 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- LABSPYBHMPDTEL-LIZSDCNHSA-L alpha,alpha-trehalose 6-phosphate(2-) Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COP([O-])([O-])=O)O1 LABSPYBHMPDTEL-LIZSDCNHSA-L 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 101150009206 aprE gene Proteins 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- 125000000188 beta-D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 230000009141 biological interaction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 108010080434 cephalosporin-C deacetylase Proteins 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 235000021001 fermented dairy product Nutrition 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical group COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- YUDNQQJOVFPCTF-UHFFFAOYSA-N hydroxyacetone phosphate Chemical compound CC(=O)COP(O)(O)=O YUDNQQJOVFPCTF-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000017730 intein-mediated protein splicing Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 235000015095 lager Nutrition 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 235000021440 light beer Nutrition 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000006241 metabolic reaction Methods 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 210000001724 microfibril Anatomy 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 235000002252 panizo Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 102000012498 secondary active transmembrane transporter activity proteins Human genes 0.000 description 1
- 108040003878 secondary active transmembrane transporter activity proteins Proteins 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000015106 stout Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013595 supernatant sample Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 101150088047 tdh3 gene Proteins 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
- C12P7/10—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01091—Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2203/00—Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/85—Saccharomyces
- C12R2001/865—Saccharomyces cerevisiae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01008—Endo-1,4-beta-xylanase (3.2.1.8)
Definitions
- the present invention relates to processes for producing fermentation products from starch-containing material.
- the invention also relates to a GH5 xylanase composition used with a recombinant host cell or fermenting organism suitable for use in a process of the invention.
- Processes for producing fermentation products, such as ethanol, from a starch or lignocellulose containing material are well known in the art.
- the preparation of the starch containing material such as corn for utilization in such fermentation processes typically begins with grinding the corn in a dry-grind or wet-milling process.
- Wet-milling processes involve fractionating the corn into different components where only the starch fraction enters the fermentation process.
- Dry-grind processes involve grinding the corn kernels into meal and mixing the meal with water and enzymes. Generally, two different kinds of dry-grind processes are used.
- the most commonly used process includes grinding the starch-containing grain and then liquefying gelatinized starch at a high temperature using typically a bacterial alpha-amylase, followed by simultaneous saccharification and fermentation (SSF) carried out in the presence of a glucoamylase and a fermentation organism.
- SSF simultaneous saccharification and fermentation
- Another well-known process often referred to as a “raw starch hydrolysis” process (RSH process) includes grinding the starch-containing grain and then simultaneously saccharifying and fermenting granular starch below the initial gelatinization temperature typically in the presence of an acid fungal alpha-amylase and a glucoamylase.
- the liquid fermentation products are recovered from the fermented mash (often referred to as “beer mash”), e.g., by distillation, which separates the desired fermentation product, e.g., ethanol, from other liquids and/or solids.
- the remaining fraction is referred to as “whole stillage”.
- Whole stillage typically contains about 10 to 20% solids.
- the whole stillage is separated into a solid and a liquid fraction, e.g., by centrifugation.
- the separated solid fraction is referred to as “wet cake” (or “wet grains”) and the separated liquid fraction is referred to as “thin stillage”.
- Wet cake and thin stillage contain about 35 and 7% solids, respectively.
- Wet cake, with optional additional dewatering is used as a component in animal feed or is dried to provide “Distillers Dried Grains” (DDG) used as a component in animal feed.
- DDG Disillers Dried Grains
- Thin stillage is typically evaporated to provide evaporator condensate and syrup or may alternatively be recycled to the slurry tank as “backset”. Evaporator condensate may either be forwarded to a methanator before being discharged and/or may be recycled to the slurry tank as “cook water”.
- the syrup may be blended into DDG or added to the wet cake before or during the drying process, which can comprise one or more dryers in sequence, to produce DDGS (Distillers Dried Grain with Solubles).
- Syrup typically contains about 25% to 35% solids. Oil can also be extracted from the thin stillage and/or syrup as a by-product for use in biodiesel production, as a feed or food additive or product, or other biorenewable products.
- Yeast of the genus Saccharomyces exhibit many of the characteristics required for production of ethanol.
- strains of Saccharomyces cerevisiae are widely used for the production of ethanol in the fuel ethanol industry.
- Industrial strains of Saccharomyces cerevisiae have the ability to produce high yields of ethanol under fermentation conditions found in, for example, the fermentation of corn mash.
- An example of such a strain is the is the commercially available product ETHANOL RED®.
- Saccharomyces cerevisae yeast also have been genetically engineered to express alpha-amylase and/or glucoamylase to improve yield and decrease the amount of exogenously added enzymes necessary during SSF (e.g., WO2018/098381, WO2017/087330, WO2017/037614, WO2011/128712, WO2011/153516, US2018/0155744).
- Yeast have also been engineered to express trehalase in an attempt to increase fermentation yield by breaking down residual trehalose (e.g., WO2017/077504).
- Cellulases are well-known for use in the conversion of lignocellulosic feedstocks into ethanol. Once the lignocellulose is converted to fermentable sugars, e.g., glucose, the fermentable sugars are easily fermented by yeast into ethanol.
- fermentable sugars e.g., glucose
- the present invention provides a solution to the above problem by fermenting a saccharified starch-containing material with a fermenting organism that expresses a CBH1 and a CBH2 in the prescence of a GH5_21 xylanase, which provides an unexpected increase in fermentation product.
- a first aspect relates to a process for producing a fermentation product from starch- containing material comprising the steps of:
- a second aspect relates to a process for producing a fermentation product from starch-containing material, the process comprising the steps of:
- a third aspect relates to a recombinant host cell comprising a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2.
- FIG. 1 shows the final ethanol level results for fermentation with a yeast strain expressing CBH1 and CBH2 (YS103-A07) as compared to a control strain (MeJi797).
- FIG. 2 shows the residual solids results for fermentation with a yeast strain expressing CBH1 and CBH2 (YS103-A07) as compared to control strain MeJi797.
- FIG. 3 shows a plasmid map for HP97.
- FIG. 4 shows a plasmid map for TP40.
- FIG. 5 shows a plasmid map for TH58.
- FIG. 6 shows a plasmid map for pMIBa789.
- Active pentose fermentation pathway As used herein, a host cell or fermenting organism having an “active pentose fermentation pathway” produces active enzymes necessary to catalyze each reaction of a metabolic pathway in a sufficient amount to produce a fermentation product (e.g., ethanol) from pentose, and therefore is capable of producing the fermentation product in measurable yields when cultivated under fermentation conditions in the presence of pentose.
- a host cell or fermenting organism having an active pentose fermentation pathway comprises one or more active pentose fermentation pathway genes.
- a “pentose fermentation pathway gene” as used herein refers to a gene that encodes an enzyme involved in an active pentose fermentation pathway.
- the active pentose fermentation pathway is an “active xylose fermentation pathway” (i.e., produces a fermentation product, such as ethanol, from xylose) or an “active arabinose fermentation pathway (i.e., produces a fermentation product, such as ethanol, from arabinose).
- the active enzymes necessary to catalyze each reaction in an active pentose fermentation pathway may result from activities of endogenous gene expression, activities of heterologous gene expression, or from a combination of activities of endogenous and heterologous gene expression.
- Alpha-amylase means an 1,4-alpha-D-glucan glucanohydrolase, EC. 3.2.1.1, which catalyze hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.
- Alpha-amylase activity can be determined using methods known in the art (e.g., using an alpha amylase assay described W02020/023411).
- Beta-glucosidase means a beta-D-glucoside glucohydrolase (E.C. 3.2.1.21) that catalyzes the hydrolysis of terminal non-reducing beta-D- glucose residues with the release of beta-D-glucose. Beta-glucosidase activity can be determined using p-nitrophenyl-beta-D-glucopyranoside as substrate according to the procedure of Venturi et al., 2002, J. Basic Microbiol. 42: 55-66.
- beta-glucosidase is defined as 1.0 pmole of p-nitrophenolate anion produced per minute at 25°C, pH 4.8 from 1 mM p-nitrophenyl-beta-D-glucopyranoside as substrate in 50 mM sodium citrate containing 0.01% TWEEN® 20.
- Catalytic domain means the region of an enzyme containing the catalytic machinery of the enzyme.
- Cellobiohydrolase means a 1,4-beta-D-glucan cellobiohydrolase (E.C. 3.2.1.91 and E.C.
- Coding sequence means a polynucleotide sequence, which specifies the amino acid sequence of a polypeptide.
- the boundaries of the coding sequence are generally determined by an open reading frame, which usually begins with the ATG start codon or alternative start codons such as GTG and TTG and ends with a stop codon such as TAA, TAG, and TGA.
- the coding sequence may be a sequence of genomic DNA, cDNA, a synthetic polynucleotide, and/or a recombinant polynucleotide.
- control sequence means a nucleic acid sequence necessary for polypeptide expression.
- Control sequences may be native or foreign to the polynucleotide encoding the polypeptide, and native or foreign to each other.
- Such control sequences include, but are not limited to, a leader sequence, polyadenylation sequence, propeptide sequence, promoter sequence, signal peptide sequence, and transcription terminator sequence.
- the control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.
- Disruption means that a coding region and/or control sequence of a referenced gene is partially or entirely modified (such as by deletion, insertion, and/or substitution of one or more nucleotides) resulting in the absence (inactivation) or decrease in expression, and/or the absence or decrease of enzyme activity of the encoded polypeptide.
- the effects of disruption can be measured using techniques known in the art such as detecting the absence or decrease of enzyme activity using from cell-free extract measurements referenced herein; or by the absence or decrease of corresponding mRNA (e.g., at least 25% decrease, at least 50% decrease, at least 60% decrease, at least 70% decrease, at least 80% decrease, or at least 90% decrease); the absence or decrease in the amount of corresponding polypeptide having enzyme activity (e.g., at least 25% decrease, at least 50% decrease, at least 60% decrease, at least 70% decrease, at least 80% decrease, or at least 90% decrease); or the absence or decrease of the specific activity of the corresponding polypeptide having enzyme activity (e.g., at least 25% decrease, at least 50% decrease, at least 60% decrease, at least 70% decrease, at least 80% decrease, or at least 90% decrease).
- corresponding mRNA e.g., at least 25% decrease, at least 50% decrease, at least 60% decrease, at least 70% decrease, at least 80% decrease, or at least 90% decrease
- Disruptions of a particular gene of interest can be generated by methods known in the art, e.g., by directed homologous recombination (see Methods in Yeast Genetics (1997 edition), Adams, Gottschling, Kaiser, and Stems, Cold Spring Harbor Press (1998)).
- Endogenous gene means a gene that is native to the referenced host cell or fermenting organism. “Endogenous gene expression” means expression of an endogenous gene.
- Endoglucanase means a 4-(1,3;1,4)-beta-D-glucan 4- glucanohydrolase (E.C. 3.2.1.4) that catalyzes endohydrolysis of 1,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (such as carboxymethyl cellulose and hydroxyethyl cellulose), lichenin, beta-1,4 bonds in mixed beta-1 ,3-1 ,4 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components.
- cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose
- lichenin beta-1,4 bonds in mixed beta-1 ,3-1 ,4 glucans
- cereal beta-D-glucans or xyloglucans and other plant material containing cellulosic components.
- Endoglucanase activity can be determined by measuring reduction in substrate viscosity or increase in reducing ends determined by a reducing sugar assay (Zhang et al., 2006, Biotechnology Advances 24: 452-481). Endoglucanase activity can also be determined using carboxymethyl cellulose (CMC) as substrate according to the procedure of Ghose, 1987, Pure andAppl. Chem. 59: 257-268, at pH 5, 40°C.
- CMC carboxymethyl cellulose
- expression includes any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion. Expression can be measured — for example, to detect increased expression — by techniques known in the art, such as measuring levels of mRNA and/or translated polypeptide.
- Expression vector means a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression.
- Fermentable medium refers to a medium comprising one or more (e.g., two, several) sugars, such as glucose, fructose, sucrose, cellobiose, xylose, xylulose, arabinose, mannose, galactose, and/or soluble oligosaccharides, wherein the medium is capable, in part, of being converted (fermented) by a host cell into a desired product, such as ethanol.
- the fermentation medium is derived from a natural source, such as sugar cane, starch, or cellulose, and may be the result of pretreating the source by enzymatic hydrolysis
- fermentation medium is understood herein to refer to a medium before the fermenting organism is added, such as, a medium resulting from a saccharification process, as well as a medium used in a simultaneous saccharification and fermentation process (SSF).
- SSF simultaneous saccharification and fermentation process
- Fermentation product means a product produced by a process including fermenting using a fermenting organism. Fermentation products include alcohols (e.g., ethanol, methanol, butanol); organic acids (e.g., citric acid, acetic acid, itaconic acid, lactic acid, succinic acid, gluconic acid); ketones (e.g., acetone); amino acids (e.g., glutamic acid); gases (e.g., H 2 and CO 2 ); antibiotics (e.g., penicillin and tetracycline); enzymes; vitamins (e.g., riboflavin, B12, beta-carotene); and hormones.
- alcohols e.g., ethanol, methanol, butanol
- organic acids e.g., citric acid, acetic acid, itaconic acid, lactic acid, succinic acid, gluconic acid
- ketones e.g., acetone
- amino acids e.g
- the fermentation product is ethanol, e.g., fuel ethanol; drinking ethanol, i.e., potable neutral spirits; or industrial ethanol or products used in the consumable alcohol industry (e.g., beer and wine), dairy industry (e.g., fermented dairy products), leather industry and tobacco industry.
- Preferred beer types comprise ales, stouts, porters, lagers, bitters, malt liquors, happoushu, high-alcohol beer, low-alcohol beer, low-calorie beer or light beer.
- the fermentation product is ethanol.
- Fermenting organism refers to any organism, including bacterial and fungal organisms, especially yeast, suitable for use in a fermentation process and capable of producing the desired fermentation product.
- GH5 xylanase is an abbreviation for Glycoside Hydrolase Family 5 xylanase, which consist primarily of endo-1,4- p-xylanases (EC 3.2.1.8) that catalyze the endohydrolysis of (1— >4)-p-D-xylosidic linkages in xylans.
- GH5_21 xylanase is an abbreviation for Glycoside Hydrolase Family 5 subfamily 21 endo-beta-1 , 4-xylanases that possess a three-dimensional structure characterized by a (P / a) 8 barrel and use a glutamine residue as a catalytic nucleophile/base.
- Glucoamylase (1 ,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) is defined as an enzyme that catalyzes the release of D-glucose from the nonreducing ends of starch or related oligo- and polysaccharide molecules.
- glucoamylase activity may be determined according to the procedures known in the art, such as those described in W02020/023411.
- Hemicellulolytic enzyme or hemicellulase means one or more (e.g., several) enzymes that hydrolyze a hemicellulosic material. See, for example, Shallom and Shoham, 2003, Current Opinion In Microbiology 6(3): 219-228). Hemicellulases are key components in the degradation of plant biomass.
- hemicellulases include, but are not limited to, an acetylmannan esterase, an acetylxylan esterase, an arabinanase, an arabinofuranosidase, a coumaric acid esterase, a feruloyl esterase, a galactosidase, a glucuronidase, a glucuronoyl esterase, a mannanase, a mannosidase, a xylanase, and a xylosidase.
- hemicelluloses are a heterogeneous group of branched and linear polysaccharides that are bound via hydrogen bonds to the cellulose microfibrils in the plant cell wall, crosslinking them into a robust network. Hemicelluloses are also covalently attached to lignin, forming together with cellulose a highly complex structure. The variable structure and organization of hemicelluloses require the concerted action of many enzymes for its complete degradation.
- the catalytic modules of hemicellulases are either glycoside hydrolases (GHs) that hydrolyze glycosidic bonds, or carbohydrate esterases (CEs), which hydrolyze ester linkages of acetate or ferulic acid side groups.
- GHs glycoside hydrolases
- CEs carbohydrate esterases
- catalytic modules based on homology of their primary sequence, can be assigned into GH and CE families. Some families, with an overall similar fold, can be further grouped into clans, marked alphabetically (e.g., GH-A). A most informative and updated classification of these and other carbohydrate active enzymes is available in the Carbohydrate-Active Enzymes (CAZy) database. Hemicellulolytic enzyme activities can be measured according to Ghose and Bisaria, 1987, Pure & AppL Chem.
- 59: 1739-1752 at a suitable temperature such as 40°C-80°C, e.g., 50°C, 55°C, 60°C, 65°C, or 70°C, and a suitable pH such as 4-9, e.g., 5.0, 5.5, 6.0, 6.5, or 7.0.
- a suitable temperature such as 40°C-80°C, e.g., 50°C, 55°C, 60°C, 65°C, or 70°C
- a suitable pH such as 4-9, e.g., 5.0, 5.5, 6.0, 6.5, or 7.0.
- Heterologous polynucleotide is defined herein as a polynucleotide that is not native to the host cell; a native polynucleotide in which structural modifications have been made to the coding region; a native polynucleotide whose expression is quantitatively altered as a result of a manipulation of the DNA by recombinant DNA techniques, e.g., a different (foreign) promoter; or a native polynucleotide in a host cell having one or more extra copies of the polynucleotide to quantitatively alter expression.
- a “heterologous gene” is a gene comprising a heterologous polynucleotide.
- High stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 65°C.
- host cell means any cell type that is susceptible to transformation, transfection, transduction, and the like with a nucleic acid construct or expression vector comprising a polynucleotide described herein.
- host cell encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
- recombinant cell is defined herein as a non-naturally occurring host cell comprising one or more (e.g., two, several) heterologous polynucleotides.
- Low stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 50°C.
- Initial gelatinization temperature means the lowest temperature at which gelatinization of the starch commences. Starch heated in water begins to gelatinize between 50 degrees centigrade and 75 degrees C; the exact temperature of gelatinization depends on the specific starch, and can readily be determined by the skilled artisan. Thus, the initial gelatinization temperature may vary according to the plant species, to the particular variety of the plant species as well as with the growth conditions. In the context of this disclosure the initial gelatinization temperature of a given starch-containing grain is the temperature at which birefringence is lost in 5 percent of the starch granules using the method described by Gorinstein. S. and Lii. C, Starch/Starke, Vol. 44 (12) pp. 461-466 (1992).
- Mature polypeptide means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc.
- the mature polypeptide sequence lacks a signal sequence, which may be determined using techniques known in the art (See, e.g., Zhang and Henzel, 2004, Protein Science 13: 2819-2824).
- the term “mature polypeptide coding sequence” means a polynucleotide that encodes a mature polypeptide.
- Medium stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 55°C.
- Medium-high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 60°C.
- Nucleic acid construct means a polynucleotide comprises one or more (e.g., two, several) control sequences. The polynucleotide may be single-stranded or double-stranded, and may be isolated from a naturally occurring gene, modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature, or synthetic.
- operably linked means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.
- Protease is defined herein as an enzyme that hydrolyses peptide bonds. It includes any enzyme belonging to the EC 3.4 enzyme group (including each of the thirteen subclasses thereof).
- the EC number refers to Enzyme Nomenclature 1992 from NC-IUBMB, Academic Press, San Diego, California, including supplements 1-5 published in Eur. J. Biochem. 223: 1-5 (1994); Eur. J. Biochem. 232: 1-6 (1995); Eur. J. Biochem. 237: 1-5 (1996); Eur. J. Biochem. 250: 1-6 (1997); and Eur. J. Biochem. 264: 610- 650 (1999); respectively.
- subtilases refer to a sub-group of serine protease according to Siezen et al., 1991, Protein Engng. 4: 719-737 and Siezen et al., 1997, Protein Science 6: 501-523.
- Serine proteases or serine peptidases is a subgroup of proteases characterised by having a serine in the active site, which forms a covalent adduct with the substrate.
- the subtilases (and the serine proteases) are characterised by having two active site amino acid residues apart from the serine, namely a histidine and an aspartic acid residue.
- the subtilases may be divided into 6 sub-divisions, i.e.
- proteolytic activity means a proteolytic activity (EC 3.4). Protease activity may be determined using methods described in the art (e.g., US 2015/0125925) or using commercially available assay kits (e.g., Sigma-Aldrich).
- Pullulanase means a starch debranching enzyme having pullulan 6-glucano-hydrolase activity (EC 3.2.1.41) that catalyzes the hydrolysis the a-1,6- glycosidic bonds in pullulan, releasing maltotriose with reducing carbohydrate ends.
- pullulanase activity can be determined according to a PHADEBAS assay or the sweet potato starch assay described in WO2016/087237.
- Sequence identity The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter “sequence identity”.
- sequence identity is determined using the Needleman- Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), e.g., version 5.0.0 or later.
- the parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
- Needle labeled “longest identity” (obtained using the -nobrief option) is used as the percent identity and is calculated as follows: (Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment)
- sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), e.g., version 5.0.0 or later.
- the parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NLIC4.4) substitution matrix.
- the output of Needle labeled “longest identity” (obtained using the - nobrief option) is used as the percent identity and is calculated as follows:
- Signal peptide is defined herein as a peptide linked (fused) in frame to the amino terminus of a polypeptide having biological activity and directs the polypeptide into the cell’s secretory pathway. Signal sequences may be determined using techniques known in the art (See, e.g., Zhang and Henzel, 2004, Protein Science 13: 2819-2824).
- the polypeptides described herein may comprise any suitable signal peptide known in the art, or any signal peptide described in WO2021/025872 (incorporated herein by reference).
- thermostable enzyme means the enzyme is not denatured or deactivated when it is used in a liquefaction step of a process of the invention.
- a thermostable enzyme is suitable for liquefaction if it has a denaturation temperature (Td) that is compatible with the liquefaction temperature and retains its activity at that temperature.
- Trehalase means an enzyme which degrades trehalose into its unit monosaccharides (i.e., glucose).
- Trehalases are classified in EC 3.2.1.28 (alpha, alpha-trehalase) and EC. 3.2.1.93 (alpha, alpha-phosphotrehalase).
- the EC classes are based on recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB). Description of EC classes can be found on the internet, e.g., on “http://www.expasy.org/enzvme/”.
- Trehalases are enzymes that catalyze the following reactions:
- EC 3.2.1. 93 Alpha, alpha-trehalose 6-phosphate + H2O ⁇ P D-glucose + D-glucose 6- phosphate.
- Trehalase activity may be determined according to procedures known in the art.
- Very high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 70°C.
- Very low stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 45°C.
- Whole Stillage includes the material that remains at the end of the distillation process after recovery of the fermentation product, e.g., ethanol.
- Xylanase encompasses endo-1,4- p-xylanases (EC 3.2.1.8) that catalyze the endohydrolysis of (1— >4)-p-D-xylosidic linkages in xylans and glucuronoarabinoxylan endo-1 ,4-beta-xylanases (E.C. 3.2.1.136) that catalyze the endohydrolysis of 1,4-beta-D-xylosyl links in some glucuronoarabinoxylans.
- Activity of EC 3.2.1.8 xylanases can be determined using birchwood xylan as substrate.
- One unit of xylanase is defined as 1.0 pmole of reducing sugar (measured in glucose equivalents as described by Lever, 1972, A new reaction for colorimetric determination of carbohydrates, Anal. Biochem 47: 273-279) produced per minute during the initial period of hydrolysis at 50° C., pH 5 from 2 g of birchwood xylan per liter as substrate in 50 mM sodium acetate containing 0.01% TWEEN® 2.
- Activity of EC 3.2.1.136 xylanases can be determined with 0.2% AZCL-glucuronoxylan as substrate in 0.01% TRITON® X-100 and 200 mM sodium phosphate pH 6 at 37°C.
- One unit of xylanase activity is defined as 1.0 pmole of azurine produced per minute at 37°C, pH 6 from 0.2% AZCL-glucuronoxylan as substrate in 200 mM sodium phosphate pH 6.
- the present invention relates to processes of producing fermentation products, such as ethanol from starch-containing material using a fermenting organism.
- the present invention contemplates using the fermenting organism and GH5 xylanase in saccharification, fermentation, or simultaneous saccharification and fermentation, to improve product yield in conventional and raw-starch hydrolysis (RSH) ethanol production processes, as well as cellulosic ethanol processes.
- RSH raw-starch hydrolysis
- An aspect of the invention relates to a process for producing a fermentation product, (e.g., fuel ethanol), from a gelatinized starch-containing grain, wherein at least one GH5_21 xylanase is present or added during saccharification or fermentation; and wherein the fermenting organism comprises a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2.
- This process of the invention contemplates any of the GH5_21 , CBH1 and CBH2 enzymes described herein, especially those demonstrated in the examples below.
- a process for producing a fermentation product from starch- containing material comprising the steps of:
- the GH5_21 xylanase is present or added during saccharifying step (b). In an embodiment, the GH5_21 xylanase is present or added during fermenting step (c). In an embodiment, steps (b) and (c) are performed simultaneously in a simultaneous saccharification and fermentation (SSF). In an embodiment, the GH5_21 xylanase is present or added during SSF. In an embodiment, the GH5_21 xylanase used in saccharifying step (b) and/or fermenting step (c) is present or added via in situ expression from the fermenting organism (e.g., yeast).
- the fermenting organism e.g., yeast
- thermostable endoglucanase is added during liquefying step (a).
- a thermostable lipase is added during liquefying step (a).
- a thermostable phytase is added during liquefying step (a).
- a thermostable protease is added during liquefying step (a).
- a thermostable pullulanase is added during liquefying step (a).
- a thermostable xylanase is added during liquefying step (a).
- a thermostable alpha-amylase, a thermostable protease and a thermostable xylanase are added during liquefying step (a).
- an alpha-amylase is added during step (b) and/or step (c).
- a beta-glucosidase is added during step (a) and/or step (b).
- a glucoamylase is added during step (b) and/or step (c).
- a cellobiohydrolase is added during step (b) and/or step (c).
- an endoglucanase is added during step (b) and/or step (c).
- a trehalase is added during step (b) and/or step (c).
- the fermenting organism is yeast.
- the yeast expresses an alpha-amylase in situ during step (b) and/or step (c).
- the yeast expresses a glucoamylase in situ during step (b) and/or step (c).
- the yeast expresses an alpha-amylas and a glucoamylase in situ during step (b) and/or step (c).
- starch-containing starting grain may be used.
- the grain is selected based on the desired fermentation product.
- starch-containing grains include without limitation, barley, beans, cassava, cereals, corn, milo, peas, potatoes, rice, rye, sago, sorghum, sweet potatoes, tapioca, wheat, and whole grains, or any mixture thereof.
- the starch-containing grain may also be a waxy or non-waxy type of corn and barley. Commonly used commercial starch-containing grains include corn, milo and/or wheat.
- the particle size of the starch-containing grain may be reduced, for example by dry milling.
- a slurry comprising the starch-containing grain (e.g., preferably milled) and water may be formed.
- Alpha-amylase and optionally protease may be added to the slurry.
- the slurry may be heated to between to above the initial gelatinization temperature of the starch-containing grain to begin gelatinization of the starch.
- the slurry may optionally be jet-cooked to further gelatinize the starch in the slurry before adding alpha-amylase during liquefying step (a). Jet cooking can be performed at temperatures ranging from 100 °C to 120 °C for up to at least 15 minutes.
- the temperature used during liquefying step (a) may range from 70 °C to 110 °C, such as from 75 °C to 105 °C, from 80 °C to 100°C, from 85 °C to 95 °C, or from 88 °C to 92 °C.
- the temperature is at least 70 °C, at least 80 °C, at least 85 °C, at least 88°C, or at least 90 °C.
- the pH used during liquefying step (a) may range from 4 to 6, from 4.5 to 5.5, or from 4.8 to 5.2.
- the pH is at least 4.5, at least 4.6, at least 4.7, at least 4.8, at least 4.9, at least 5.0, or at least 5.1.
- the time for performing liquefying step (a) may range from 30 minutes to 5 hours, from 1 hour to 3 hours, or 90 minutes to 150 minutes. Preferably, the time is at least 30 minutes, at least about 45 minutes, at least about 60 minutes, at least about 90 minutes, or at least about 2 hours.
- thermostable enzymes during liquefying step (a). It is well known in the art to use various thermostable enzymes during liquefying step (a), including, for example, thermostable alpha-amylases, thermostable glucoamylases, thermostable endoglucanases, thermostable lipases, thermostable phytase, thermostable proteases, thermostable pullulanases, and/or thermostable xylanases.
- thermostable alpha-amylases thermostable glucoamylases
- thermostable endoglucanases thermostable lipases
- thermostable phytase thermostable proteases
- thermostable pullulanases thermostable pullulanases
- thermostable xylanases thermostable xylanases.
- the present invention contemplates the use of any thermostable enzyme in liquefying step (a).
- thermostable alpha-amylases examples include, without limitation, the alpha-amylases described in WO 1996/023873, WO 1996/023874, WO 1997/041213, WO 1999/019467, WO 2000/060059, WO 2002/010355, WO 2002/092797, WO 2009/149130, WO 2009/061379, WO 2010/115021 , WO 2010/036515, WO 2011/082425, WO 2019/113413, WO 2019/113415, WO 2019/197318 (each of which is incorporated herein by reference).
- thermostable glucoamylases include, without limitation, the glucoamylases described in WO 2011/127802, WO 2013/036526, WO 2013/053801 , WO 2018/164737, WO 2020/010101 , and WO 2022/090564 (each of which is incorporated herein by reference).
- thermostable endoglucanases examples include, without limitation, the endoglucanases described in WO 2015/035914 (which is incorporated herein by reference)
- thermostable lipases examples include, without limitation, the lipases described in WO 2017/112542 and WO 2020/014407 (which are both incorporated herein by reference).
- thermostable phytases include, without limitation, the phytases described in WO 1996/28567, WO 1997/33976, WO 1997/38096, WO 1997/48812, WO 1998/05785, WO 1998/06856, WO 1998/13480, WO 1998/20139, WO 1998/028408, WO 1999/48330, WO 1999/49022, WO 2003/066847, WO 2004/085638, WO 2006/037327, WO 2006/037328, WO 2006/038062, WO 2006/063588, WO 2007/112739, WO 2008/092901 , WO 2008/116878, WO 2009/129489, and WO 2010/034835 (each of which is incorporated by reference).
- thermostable proteases include, without limitation, the proteases described in WO 1992/02614, WO 98/56926, WO 2001/151620, WO 2003/048353, WO 2006/086792, WO 2010/008841 , WO 2011/076123, WO 2011/087836, WO 2012/088303, WO 2013/082486, WO 2014/209789, WO 2014/209800, WO 2018/098124, WO2018/118815 A1 , and WO2018/169780A1 (each of which is incorporated herein by reference).
- Suitable commercially available protease containing products include AVANTEC AMP®, FORTIVA REVO®, FORTIVA HEMI®.
- thermostable pullulanases include, without limitation, the pullulanases described in WO 2015/007639, WO 2015/110473, WO 2016/087327, WO 2017/014974, and WO 2020/187883 (each of which is incorporated herein by reference in its entirety).
- Suitable commercially available pullulanase products include PROMOZYME 400L, PROMOZYMETM D2 (Novozymes A/S, Denmark), OPTIMAX L-300 (Genencor Int. , USA), and AMANO 8 (Amano, Japan).
- thermostable xylanases examples include, without limitation, the xylanases described in WO 2017/112540 and WO 2021/126966 (each of which is incorporated herein by reference).
- Suitable commercially available thermostable xylanase containing products include FORTIVA HEM I®.
- the enzyme(s) described above are to be used in effective amounts in the processes of the present invention.
- Guidance for determining effective amounts of enzymes to be used in liquefying step (a) can be found in the published patent applications cited for each of the different thermostable liquefaction enzymes, along with guidance for performing activity assays for determining the activity of those enzymes.
- Saccharification may be performed at temperatures ranging from 20 °C to 75 °C, from 30 °C to 70 °C, or from 40 °C to 65 °C.
- the saccharification temperature is at least about 50 °C, at least about 55 °C, or at least about 60 °C.
- Saccharification may occur at a ph ranging from 4 to 5.
- the pH is about 4.5.
- Saccharification may last from about 24 hours to about 72 hours.
- Fermentation may last from 6 to 120 hours, from 24 hours to 96 hours, or from 35 hours to 60 hours.
- SSF may be performed at a temperature from 25 °C to 40 °C, from 28 °C to 35 °C, or from 30 °C to °C, at a pH from 3.5 to 5 or from 3.8 to 4.3., for 24 to 96 hours, 36 to 72 hours, or from 48 to 60 hours.
- SSF is performed at about 32 °C, at a pH from 3.8 to 4.5 for from 48 to 60 hours.
- the present invention contemplates the use of enzymes during saccharifying step (b) and/or fermenting step (c). It is well known in the art to use various enzymes during saccharifying step (b) and/or fermenting step (c), including, for example, alpha-amylases, alpha-glucosidases, beta-amylases, beta-glucanases, beta-glucosidases, cellobiohydrolases, endoglucanases, glucoamylases, lipases, lytic polysaccharide monooxygenases (LPMOs), maltogenic alpha-amylases, pectinases, peroxidases, phytases, proteases, and trehalases.
- alpha-amylases alpha-glucosidases
- beta-amylases beta-glucanases
- beta-glucosidases beta-glucosidases
- cellobiohydrolases endoglu
- the enzymes used in saccharifying step (b) and/or fermenting step (c) may be added exogenously as mono-components or formulated as compositions comprising the enzymes.
- the enzymes used in saccharifying step (b) and/or fermenting step (c) may also be added via in situ expression from the fermenting organism (e.g., yeast). Examples of suitable yeast expressing enzymes include, without limitation, the yeast described herein.
- alpha-amylases include, without limitation, the alpha-amylases described in WO 2004/055178, WO 2006/069290, WO 2013/006756, WO 2013/034106, WO 2013/044867, WO 2021/163011, and WO 2021/163030 (each of which is incorporated herein by reference).
- glucoamylases include, without limitation, the glucoamylases described in WO 1984/02921, WO 1992/00381, WO 1999/28448, WO 2000/04136, WO 2001/04273, WO 2006/069289, WO 2011/066560, WO 2011/066576, WO 2011/068803, WO 2011/127802, WO 2012/064351, WO 2013/036526, WO 2013/053801, WO 2014/039773, WO 2014/177541, WO 2014/177546, WO 2016/062875, WO 2017/066255, and WO 2018/191215 (each of which is incorporated herein by reference.
- compositions comprising alpha-amylases and glucoamylases include, without limitation, the compositons described in WO 2006/069290, WO 2009/052101, WO 2011/068803, and WO 2013/006756 (each of which is incorporated by reference herein).
- compositions comprising glucoamylase include AMG 200L; AMG 300 L; SANTM SUPER, SANTM EXTRA L, SPIRIZYMETM PLUS, SPIRIZYMETM FUEL, SPIRIZYMETM B4U, SPIRIZYMETM ULTRA, SPIRIZYMETM EXCEL, SPIRIZYME ACHIEVE and AMGTM E (from Novozymes A/S); OPTIDEXTM 300, GC480, GC417 (from DuPont-Genencor); AMIGASETM and AMIGASETM PLUS (from DSM); G- ZYMETM G900, G-ZYMETM and G990 ZR (from DuPont-Genencor).
- beta-glucanases examples include, without limitation, the beta-glucanases described in WO 2021/055395 (which is incorporated herein by reference).
- beta-glucosidases include, without limitation, the betaglucosidases described in WO 2005/047499, WO 2013/148993, WO 2014/085439 and WO 2012/044915 (each of which is incorporated herein by reference).
- suitable cellobiohydrolases include, without limitation, the cellobiohydrolases described in WO 2013/148993, WO 2014/085439, WO 2014/138672, and WO 2016/040265 (each of which is incorporated herein by reference).
- endoglucanases include, without limitation, the endoglucanases described in WO 2013/148993 and WO 2014/085439 (both of which are incorporated herein by reference).
- lipases examples include, without limitation, the lipases described in WO 2017/112533, WO 2017/112539, and WO 2020/076697 (each of which is incorporated herein by reference).
- Suitable LPMOs include, without limitation, the LPMOs described in WO 2013/148993, WO 2014/085439, and WO 2019/083831 (each of which is incorporated herein by reference).
- Suitable phytases include, without limitation, the phytases described in WO 2001/62947 (which is incorporated herein by reference).
- pectinases examples include, without limitation, the pectinases described in WO 2022/173694 (which is incorporated herein by reference).
- Suitable peroxidases include, without limitation, the peroxidases described in WO 2019/231944 (which is incorporated herein by reference).
- proteases examples include, without limitation, the proteases described in WO 2017/050291, WO 2017/148389, WO 2018/015303, and WO 2018/015304 (each of which is incorporated herein by reference).
- trehalases examples include, without limitation, the trehalases described in WO 2016/205127, WO 2019/005755, WO 2019/030165, and WO 2020/023411 (each of which is incorporated herein by reference).
- An aspect of the invention relates to a process for producing a fermentation product from an ungelatinized starch-containing grain (i.e. , granularized starch--often referred to as a “raw starch hydrolysis” process), wherein at least one GH5_21 xylanase is present or added during saccharification or fermentation; and wherein the fermenting organism comprises a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2.
- This process of the invention contemplates any of the GH5_21, CBH1 and CBH2 enzymes described herein, especially the compositions demonstrated in the examples below.
- a process for producing a fermentation product from an ungelatinized starch-containging grain comprises the following steps:
- the GH5_21 xylanase is present or added during saccharifying step (a). In an embodiment, the GH5_21 xylanase is present or added during fermenting step (b). In an embodiment, steps (a) and (b) are performed simultaneously in a simultaneous saccharification and fermentation (SSF). In an embodiment, the GH5_21 xylanase is present or added during SSF. In an embodiment, the GH5_21 xylanase used in saccharifying step (a) and/or fermenting step (b) is present or added via in situ expression from the fermenting organism (e.g., yeast).
- the fermenting organism e.g., yeast
- Raw starch hydrolysis (RSH) processes are well-known in the art.
- the skilled artisan will appreciate that, except for the process parameters relating to liquefying step (a) which is not done in a RSH process, the process parameters described in Section I above are applicable to the process described in this section, including selection of the starch- containing grain, reducing the grain particle size, saccharification temperature, time and pH, conditions for simultaneous saccharification and fermentation, and saccharification enzymes.
- the process parameters for an exemplary raw-starch hydrolysis process are described in further detail in WO 2004/106533 (which is incorporated herein by reference).
- alpha-amylases that are preferably used in step (a) and/or step (b) include, without limitation, the alpha-amylases described in WO 2004/055178, WO 2005/003311 , WO 2006/069290, WO 2013/006756, WO 2013/034106, WO 2021/163015, and WO 2021/163036 (each of which is incorporated by reference herein).
- glucoamylases that are preferably used in step (a) and/or step (b) include, without limitation, WO 1999/28448, WO 2005/045018, W02005/069840, WO 2006/069289 (each of which is incorporated by reference herein).
- compositions comprising alpha-amylases and glucoamylase that are preferably used in step (a) and/or step (b) include, without limitation, the compositions described in WO 2015/031477 (which is incorporated by reference herein).
- aspects of the invention relate to a fermenting organism that comprises a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2, used in combination with a GH5 family xylanase.
- the present invention contemplates using any fermenting organism that, when used in combination with a GH5 family xylanase, increases production of a fermentation product and/or decreases the residual solids compared to processes using fermenting organism that lack a heterologous polynucleotide encoding a CBH1 and/or a heterologous polynucleotide encoding a CBH2.
- Especially suitable fermenting organisms are able to ferment, i.e. , convert, sugars, such as arabinose, glucose, maltose, and/or xylose, directly or indirectly into the desired fermentation product, such as ethanol.
- fermenting organisms include fungal organisms, such as yeast.
- Preferred yeast includes strains of Saccharomyces spp., in particular, Saccharomyces cerevisiae.
- Suitable concentrations of the viable fermenting organism during fermentation are well known in the art or can easily be determined by the skilled person in the art.
- the fermenting organism such as ethanol fermenting yeast, (e.g., Saccharomyces cerevisiae) is added to the fermentation medium so that the viable fermenting organism, such as yeast, count per mL of fermentation medium is in the range from 10 5 to 10 12 , preferably from 10 7 to 10 10 , especially about 5x10 7 .
- yeast examples include, e.g., RED STARTM and ETHANOL REDTM yeast (available from Fermentis/Lesaffre, USA), FALI (available from Fleischmann’s Yeast, USA), SUPERSTART and THERMOSACCTM fresh yeast (available from Ethanol Technology, Wl, USA), BIOFERM AFT and XR (available from NABC - North American Bioproducts Corporation, GA, USA), GERT STRAND (available from Gert Strand AB, Sweden), and FERMIOL (available from DSM Specialties).
- RED STARTM and ETHANOL REDTM yeast available from Fermentis/Lesaffre, USA
- FALI available from Fleischmann’s Yeast, USA
- SUPERSTART and THERMOSACCTM fresh yeast available from Ethanol Technology, Wl, USA
- BIOFERM AFT and XR available from NABC - North American Bioproducts Corporation, GA, USA
- GERT STRAND available from Gert Strand AB, Sweden
- FERMIOL available from DSM Special
- yeast strains are available from biological depositories such as the American Type Culture Collection (ATCC) or the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), such as, e.g., BY4741 (e.g., ATCC 201388); Y108-1 (ATCC PTA.10567) and NRRL YB- 1952 (ARS Culture Collection). Still other S.
- ATCC American Type Culture Collection
- DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
- BY4741 e.g., ATCC 201388
- Y108-1 ATCC PTA.10567
- NRRL YB- 1952 NRRL YB- 1952
- cerevisiae strains suitable as host cells DBY746, [Alpha][Eta]22, S150-2B, GPY55-15Ba, CEN.PK, USM21, TMB3500, TMB3400, VTT-A-63015, VTT-A-85068, VTT-c-79093 and their derivatives as well as Saccharomyces sp. 1400, derivatives thereof.
- a “derivative” of strain is derived from a referenced strain, such as through mutagenesis, recombinant DNA technology, mating, cell fusion, or cytoduction between yeast strains.
- the genetic alterations including metabolic modifications exemplified herein, may be described with reference to a suitable host organism and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway.
- desired genetic material such as genes for a desired metabolic pathway.
- those skilled in the art can apply the teachings and guidance provided herein to other organisms.
- the metabolic alterations exemplified herein can readily be applied to other species by incorporating the same or analogous encoding nucleic acid from species other than the referenced species.
- the host cell or fermenting organism may be Saccharomyces strain, e.g., Saccharomyces cerevisiae strain produced using the method described and concerned in US patent no. 8,257,959-BB.
- the recombinant cell is a derivative of a strain Saccharomyces cerevisiae CIBTS1260 (deposited under Accession No. NRRL Y- 50973 at the Agricultural Research Service Culture Collection (NRRL), Illinois 61604 U.S.A.).
- the strain may also be a derivative of Saccharomyces cerevisiae strain NMI V14/004037 (See, WO2015/143324 and WO2015/143317 each incorporated herein by reference), strain nos. V15/004035, V15/004036, and V15/004037 (See, WO 2016/153924 incorporated herein by reference), strain nos. V15/001459, V15/001460, V15/001461 (See, WO2016/138437 incorporated herein by reference), strain no. NRRL Y67342 (See, WO2018/098381 incorporated herein by reference), strain nos. NRRL Y67549 and NRRL Y67700 (See, WO 2019/161227 incorporated herein by reference), or any strain described in WO2017/087330 (incorporated herein by reference).
- the fermenting organisms comprise a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2.
- Any CBH1 and CBH2 having cellobiohydrolase I and cellobiohydrolase II activity, respectively, may be used with the processes described herein and/or expressed by the host cells or fermenting organisms described herein.
- the CBH1 or CBH2 may be obtained from microorganisms of any genus.
- the term “obtained from” as used herein in connection with a given source shall mean that the polypeptide encoded by a polynucleotide is produced by the source or by a strain in which the polynucleotide from the source has been inserted.
- the polypeptide obtained from a given source is secreted extracellularly.
- the CBH1 is a Penicillium CBH1, such as a Penicillium emersonii CBH1 (e.g., the Penicillium emersonii CBH1 of SEQ ID NO: 16).
- the CBH2 is a Talaromyces CBH2, such as a Talaromyces verruculosus cellobiohydrolase II (e.g., the Talaromyces verruculosus cellobiohydrolase II of SEQ ID NO: 17). It will be understood that for the aforementioned species, the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, e.g., anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.
- ATCC American Type Culture Collection
- DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
- CBS Centraalbureau Voor Schimmelcultures
- NRRL Northern Regional Research Center
- the CBH1 or CBH2, coding sequences described or referenced herein, or a subsequence thereof, or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding a CBH1 or CBH2 from strains of different genera or species according to methods well known in the art.
- probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein.
- Such probes can be considerably shorter than the entire sequence, but should be at least 15, e.g., at least 25, at least 35, or at least 70 nucleotides in length.
- the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length.
- Both DNA and RNA probes can be used.
- the probes are typically labeled for detecting the corresponding gene (for example, with 32 P, 3 H, 35 S, biotin, or avidin).
- a genomic DNA or cDNA library prepared from such other strains may be screened for DNA that hybridizes with the probes described above and encodes a CBH1 or CBH2.
- Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques.
- DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material.
- the carrier material is used in a Southern blot.
- the nucleic acid probe is a polynucleotide, or subsequence thereof, that encodes the mature CBH1 of SEQ ID NO: 16 or the mature CBH2 of SEQ ID NO: 17, or a fragment thereof.
- hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe, or the full-length complementary strand thereof, or a subsequence of the foregoing; under very low to very high stringency conditions. Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film. Stringency and washing conditions are defined as described supra.
- the CBH1 is encoded by a polynucleotide that hybridizes under at least low stringency conditions, e.g., medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with the full-length complementary strand of the coding sequence of SEQ ID NO: 16.
- low stringency conditions e.g., medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions.
- the CBH2 is encoded by a polynucleotide that hybridizes under at least low stringency conditions, e.g., medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with the full-length complementary strand of the coding sequence of SEQ ID NO: 17.
- low stringency conditions e.g., medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with the full-length complementary strand of the coding sequence of SEQ ID NO: 17.
- the polypeptide having CBH1 and CBH2 may also be identified and obtained from other sources including microorganisms isolated from nature (e.g., soil, composts, water, silage, etc.) or DNA samples obtained directly from natural materials (e.g., soil, composts, water, silage, etc.) using the above-mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. The polynucleotide encoding a CBH1 or CBH2 may then be derived by similarly screening a genomic or cDNA library of another microorganism or mixed DNA sample.
- the sequence may be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (See, e.g., Sambrook et al., 1989, supra). Techniques used to isolate or clone polynucleotides encoding polypeptides include isolation from genomic DNA, preparation from cDNA, or a combination thereof.
- the cloning of the polynucleotides from such genomic DNA can be affected, e.g., by using the well-known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shares structural features (See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York).
- PCR polymerase chain reaction
- Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligated activated transcription (LAT) and nucleotide sequence-based amplification (NASBA) may be used.
- the CBH1 comprises or consists of the amino acid sequence of SEQ ID NO: 16, or the mature polypeptide thereof.
- the CBH1 is a fragment of the CBH1 of SEQ ID NO: 16, or the mature polypeptide thereof, wherein, e.g., the fragment has CBH1 activity.
- the number of amino acid residues in the fragment is at least 75%, e.g., at least 80%, 85%, 90%, or 95% of the number of amino acid residues in referenced full length CBH1.
- the CBH1 may comprise the catalytic domain SEQ ID NO: 16.
- the CBH2 comprises or consists of the amino acid sequence of SEQ ID NO: 17, or the mature polypeptide thereof.
- the CBH2 is a fragment of the CBH2 of SEQ ID NO: 17, or the mature polypeptide thereof, wherein, e.g., the fragment has CBH2 activity.
- the number of amino acid residues in the fragment is at least 75%, e.g., at least 80%, 85%, 90%, or 95% of the number of amino acid residues in referenced full length CBH2.
- the CBH2 may comprise the catalytic domain SEQ ID NO: 17.
- the CBH1 and CBH2 may be a variant of a CBH1 and CBH2 described supra (e.g., SEQ ID NO: 16, SEQ ID NO: 17, or the mature polypeptide thereof).
- the CBH1 has at least 60%, e.g., at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 16 or the mature polypeptide thereof.
- the CBH2 has at least 60%, e.g., at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 17, or the mature polypeptide thereof.
- the CBH1 differs by no more than ten amino acids, e.g., by no more than five amino acids, by no more than four amino acids, by no more than three amino acids, by no more than two amino acids, or by one amino acid from the amino acid sequence of SEQ ID NO: 16, or the mature polypeptide thereof.
- the CBH2 differs by no more than ten amino acids, e.g., by no more than five amino acids, by no more than four amino acids, by no more than three amino acids, by no more than two amino acids, or by one amino acid from the amino acid sequence of SEQ ID NO: 17, or the mature polypeptide thereof.
- amino acid changes are generally of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of one to about 30 amino acids; small amino-terminal or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to about 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.
- conservative substitutions are within the group of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine).
- Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York.
- the most commonly occurring exchanges are Ala/Ser, Val/lle, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/lle, Leu/Val, Ala/Glu, and Asp/Gly.
- amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered.
- amino acid changes may improve the thermal stability of the enzymes, alter the substrate specificity, change the pH optimum, and the like.
- Essential amino acids can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271: 4699-4708.
- the active site or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids (See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et al., 1992, FEBS Lett. 309: 59-64).
- the identities of essential amino acids can also be inferred from analysis of identities with other cellulases that are related to the referenced enzyme.
- MSA multiple sequence alignment
- Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241: 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152- 2156; WO95/17413; or WO95/22625.
- Other methods that can be used include error-prone PCR, phage display (e.g., Lowman et al., 1991, Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; W092/06204), and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et a/., 1988, DNA 7: 127).
- Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896).
- Mutagenized DNA molecules that encode active CBH1 or CBH2 can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
- the heterologous polynucleotide encoding the CBH1 comprises or consists of a coding sequence of the CBH1 of SEQ ID NO: 16, or the mature polypeptide thereof.
- the heterologous polynucleotide encoding the CBH1 comprises a subsequence of a coding sequence of the CBH1 of SEQ ID NO: 16 wherein the subsequence encodes a polypeptide having CBH1 activity.
- the number of nucleotides residues in the coding subsequence is at least 75%, e.g., at least 80%, 85%, 90%, or 95% of the number of the referenced coding sequence.
- the heterologous polynucleotide encoding the CBH1 comprises a coding sequence having at least 60%, e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to a coding sequence of the CBH1 of SEQ ID NO: 16, or the mature polypeptide thereof.
- the heterologous polynucleotide encoding the CBH2 comprises or consists of a coding sequence of the CBH2 of SEQ ID NO: 17, or the mature polypeptide thereof.
- the heterologous polynucleotide encoding the CBH2 comprises a subsequence of a coding sequence of the CBH2 of SEQ ID NO: 17 wherein the subsequence encodes a polypeptide having CBH2 activity.
- the number of nucleotides residues in the coding subsequence is at least 75%, e.g., at least 80%, 85%, 90%, or 95% of the number of the referenced coding sequence.
- the heterologous polynucleotide encoding the CBH2 comprises a coding sequence having at least 60%, e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to a coding sequence of the CBH2 of SEQ ID NO: 17, or the mature polypeptide thereof.
- the referenced coding sequence of any related aspect or embodiment described herein can be the native coding sequence or a degenerate sequence, such as a codon- optimized coding sequence designed for use in a particular host cell (e.g., optimized for expression in Saccharomyces cerevisiae or any other host used for production). Codonoptimization for expression in yeast cells is known in the art (e.g., US 8,326,547).
- the CBH1 and CBH2 may be a fused polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the enzyme.
- a fused polypeptide may be produced by fusing a polynucleotide encoding another polypeptide to a CBH1 or CBH2.
- Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused polypeptide is under control of the same promoter(s) and terminator. Fusion proteins may also be constructed using intein technology in which fusions are created post-translationally (Cooper et al. , 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).
- the CBH1 or CBH2 is a fusion protein comprising a signal peptide linked to the N-terminus of a mature polypeptide, such as any signal sequences described in WO2021/025872 “Fusion Proteins For Improved Enzyme Expression” (the content of which is hereby incorporated by reference).
- the host cells and/or fermenting organisms comprise one or more heterologous polynucleotides encoding an alpha-amylase, glucoamylase, protease and/or cellulase.
- alpha-amylase, glucoamylase, protease and cellulases suitable for expression in the host cells and/or fermenting organisms are described in more detail herein.
- the host cells and/or fermenting organisms comprise one or more heterologous polynucleotides encoding a GH5 xylanase (e.g., a GH5_21 xylanase). Examples of GH5 xylanases are described in more detail herein.
- the host cells and/or fermenting organisms comprise an active pentose fermentation pathway. In some embodiments, the host cells and/or fermenting organisms comprise an active xylose fermentation pathway. In some embodiments, the host cells and/or fermenting organisms comprise an active arabinose fermentation pathway.
- the host cells and fermenting organisms described herein may utilize expression vectors comprising the coding sequence of one or more (e.g., two, several) heterologous genes linked to one or more control sequences that direct expression in a suitable cell under conditions compatible with the control sequence(s). Such expression vectors may be used in any of the cells and methods described herein.
- the polynucleotides described herein may be manipulated in a variety of ways to provide for expression of a desired polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
- a construct or vector comprising the one or more (e.g., two, several) heterologous genes may be introduced into a cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier.
- the various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more (e.g., two, several) convenient restriction sites to allow for insertion or substitution of the polynucleotide at such sites.
- the polynucleotide(s) may be expressed by inserting the polynucleotide(s) or a nucleic acid construct comprising the sequence into an appropriate vector for expression.
- the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
- the recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide.
- the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
- the vector may be a linear or closed circular plasmid.
- the vector may be an autonomously replicating vector, i.e. , a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
- the vector may contain any means for assuring self-replication.
- the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
- a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the cell, or a transposon may be used.
- the expression vector may contain any suitable promoter sequence that is recognized by a cell for expression of a gene described herein.
- the promoter sequence contains transcriptional control sequences that mediate the expression of the polypeptide.
- the promoter may be any polynucleotide that shows transcriptional activity in the cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the cell.
- Each heterologous polynucleotide described herein may be operably linked to a promoter that is foreign to the polynucleotide.
- the nucleic acid construct encoding the fusion protein is operably linked to a promoter foreign to the polynucleotide.
- the promoters may be identical to or share a high degree of sequence identity (e.g., at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%) with a selected native promoter.
- suitable promoters for directing the transcription of the nucleic acid constructs in a yeast cells include, but are not limited to, the promoters obtained from the genes for enolase, (e.g., S. cerevisiae enolase or /. orientalis enolase (ENO1)), galactokinase (e.g., S. cerevisiae galactokinase or /. orientalis galactokinase (GAL1)), alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (e.g., S.
- ENO1 enolase
- galactokinase e.g., S. cerevisiae galactokinase or /. orientalis galactokinase
- GAL1 galactokinase
- alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase e.g., S.
- PGK orientalis 3-phosphoglycerate kinase
- PDC1 xylose reductase
- XR xylitol dehydrogenase
- CYB2 L-(+)-lactate-cytochrome c oxidoreductase
- TEF1 translation elongation factor-1
- TEF2 translation elongation factor-2
- GPDH glyceraldehyde-3-phosphate dehydrogenase
- LIRA3 orotidine 5'-phosphate decarboxylase
- Other suitable promoters may be obtained from S. cerevisiae TDH3, HXT7, PGK1, RPL18B and CCW12 genes. Additional useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.
- the control sequence may also be a suitable transcription terminator sequence, which is recognized by a host cell to terminate transcription.
- the terminator sequence is operably linked to the 3’-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the yeast cell of choice may be used.
- the terminator may be identical to or share a high degree of sequence identity (e.g., at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%) with the selected native terminator.
- Suitable terminators for yeast host cells may be obtained from the genes for enolase (e.g., S. cerevisiae or /.
- orientalis enolase cytochrome C e.g., S. cerevisiae or /. orientalis cytochrome (CYC1)
- CYC1 glyceraldehyde-3-phosphate dehydrogenase
- gpd glyceraldehyde-3-phosphate dehydrogenase
- PDC1 XR, XDH
- transaldolase TAL
- transketolase TKL
- ribose 5-phosphate ketol-isomerase RKI
- CYB2 the galactose family of genes
- Other suitable terminators may be obtained from S. cerevisiae ENO2 or TEFI genes. Additional useful terminators for yeast host cells are described by Romanos et al., 1992, supra.
- control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
- mRNA stabilizer regions are obtained from a Bacillus thuringiensis crylllA gene (WO 94/25612) and a Bacillus subtilis SP82 gene (Hue et al., 1995, Journal of Bacteriology 177: 3465-3471).
- the control sequence may also be a suitable leader sequence, when transcribed is a non-translated region of an mRNA that is important for translation by the host cell.
- the leader sequence is operably linked to the 5’-terminus of the polynucleotide encoding the polypeptide. Any leader sequence that is functional in the yeast cell of choice may be used.
- Suitable leaders for yeast host cells are obtained from the genes for enolase (e.g., S. cerevisiae or /. orientalis enolase (ENO-1)), 3-phosphoglycerate kinase (e.g., S. cerevisiae or /. orientalis 3-phosphoglycerate kinase), alpha-factor (e.g., S. cerevisiae or /. orientalis alpha-factor), and alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (e.g., S. cerevisiae or /. orientalis alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP)).
- enolase e.g., S. cerevisiae or /. orientalis enolase (ENO-1)
- 3-phosphoglycerate kinase e.g., S. cerevisi
- the control sequence may also be a polyadenylation sequence; a sequence operably linked to the 3’-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA.
- Any polyadenylation sequence that is functional in the host cell of choice may be used.
- Useful polyadenylation sequences for yeast cells are described by Guo and Sherman, 1995, Mol. Cellular Biol. 15: 5983-5990.
- the control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell’s secretory pathway.
- the 5’-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide.
- the 5’-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence.
- a foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence.
- a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide.
- any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
- Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
- the control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide.
- the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).
- a propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide.
- the propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease (aprE), Bacillus subtilis neutral protease (nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
- the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.
- regulatory sequences that allow the regulation of the expression of the polypeptide relative to the growth of the host cell.
- regulatory systems are those that cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound.
- Regulatory systems in prokaryotic systems include the lac, tac, and trp operator systems.
- yeast the ADH2 system or GAL1 system may be used.
- the vectors may contain one or more (e.g., two, several) selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells.
- a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
- Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1 , and URA3.
- the vectors may contain one or more (e.g., two, several) elements that permit integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
- the vector may rely on the polynucleotide’s sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination.
- the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s).
- the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination.
- the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination. Potential integration loci include those described in the art (e.g., See US2012/0135481).
- the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the yeast cell.
- the origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell.
- the term “origin of replication” or “plasmid replicator” means a polynucleotide that enables a plasmid or vector to replicate in vivo. Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
- More than one copy of a polynucleotide described herein may be inserted into a host cell to increase production of a polypeptide.
- An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the yeast cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
- the host cell or fermenting organism may be in the form of a composition comprising a host cell or fermenting organism (e.g., a yeast strain described herein) and a naturally occurring and/or a non-naturally occurring component.
- the host cell or fermenting organism described herein may be in any viable form, including crumbled, dry, including active dry and instant, compressed, cream (liquid) form etc.
- the host cell or fermenting organism e.g., a Saccharomyces cerevisiae yeast strain
- the host cell or fermenting organism is dry yeast, such as active dry yeast or instant yeast.
- the host cell or fermenting organism e.g., a Saccharomyces cerevisiae yeast strain
- the host cell or fermenting organism e.g., a Saccharomyces cerevisiae yeast strain
- the host cell or fermenting organism is compressed yeast.
- the host cell or fermenting organism e.g., a Saccharomyces cerevisiae yeast strain
- composition comprising a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain), and one or more of the components selected from the group consisting of: surfactants, emulsifiers, gums, swelling agent, and antioxidants and other processing aids.
- a host cell or fermenting organism described herein e.g., a Saccharomyces cerevisiae yeast strain
- compositions described herein may comprise a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain) and any suitable surfactants.
- the surfactant(s) is/are an anionic surfactant, cationic surfactant, and/or nonionic surfactant.
- compositions described herein may comprise a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain) and any suitable emulsifier.
- the emulsifier is a fatty-acid ester of sorbitan.
- the emulsifier is selected from the group of sorbitan monostearate (SMS), citric acid esters of monodiglycerides, polyglycerolester, fatty acid esters of propylene glycol.
- the composition comprises a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain), and Olindronal SMS, Olindronal SK, or Olindronal SPL including composition concerned in European Patent No. 1,724,336 (hereby incorporated by reference). These products are commercially available from Bussetti, Austria, for active dry yeast.
- a host cell or fermenting organism described herein e.g., a Saccharomyces cerevisiae yeast strain
- Olindronal SMS, Olindronal SK, or Olindronal SPL including composition concerned in European Patent No. 1,724,336 (hereby incorporated by reference).
- compositions described herein may comprise a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain) and any suitable gum.
- the gum is selected from the group of carob, guar, tragacanth, arabic, xanthan and acacia gum, in particular for cream, compressed and dry yeast.
- compositions described herein may comprise a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain) and any suitable swelling agent.
- the swelling agent is methyl cellulose or carboxymethyl cellulose.
- compositions described herein may comprise a host cell or fermenting organism described herein (e.g., a Saccharomyces cerevisiae yeast strain) and any suitable anti-oxidant.
- the antioxidant is butylated hydroxyanisol (BHA) and/or butylated hydroxytoluene (BHT), or ascorbic acid (vitamin C), particular for active dry yeast.
- the host cells and fermenting organisms described herein may also comprise one or more (e.g., two, several) gene disruptions, e.g., to divert sugar metabolism from undesired products to ethanol.
- the recombinant host cells produce a greater amount of ethanol compared to the cell without the one or more disruptions when cultivated under identical conditions.
- one or more of the disrupted endogenous genes is inactivated.
- the host cell or fermenting organism provided herein comprises a disruption of one or more endogenous genes encoding enzymes involved in producing alternate fermentative products such as glycerol or other byproducts such as acetate or diols.
- the cells provided herein may comprise a disruption of one or more of glycerol 3-phosphate dehydrogenase (GPD, catalyzes reaction of di hydroxyacetone phosphate to glycerol 3-phosphate), glycerol 3-phosphatase (GPP, catalyzes conversion of glycerol-3 phosphate to glycerol), glycerol kinase (catalyzes conversion of glycerol 3- phosphate to glycerol), dihydroxyacetone kinase (catalyzes conversion of dihydroxyacetone phosphate to dihydroxyacetone), glycerol dehydrogenase (catalyzes conversion of dihydroxyacetone to glycerol), and
- GPD
- Modeling analysis can be used to design gene disruptions that additionally optimize utilization of the pathway.
- One exemplary computational method for identifying and designing metabolic alterations favoring biosynthesis of a desired product is the OptKnock computational framework, Burgard et al., 2003, Biotechnol. Bioeng. 84: 647-657.
- the host cells and fermenting organisms comprising a gene disruption may be constructed using methods well known in the art, including those methods described herein.
- a portion of the gene can be disrupted such as the coding region or a control sequence required for expression of the coding region.
- Such a control sequence of the gene may be a promoter sequence or a functional part thereof, i.e., a part that is sufficient for affecting expression of the gene.
- a promoter sequence may be inactivated resulting in no expression or a weaker promoter may be substituted for the native promoter sequence to reduce expression of the coding sequence.
- Other control sequences for possible modification include, but are not limited to, a leader, propeptide sequence, signal sequence, transcription terminator, and transcriptional activator.
- the host cells and fermenting organisms comprising a gene disruption may be constructed by gene deletion techniques to eliminate or reduce expression of the gene.
- Gene deletion techniques enable the partial or complete removal of the gene thereby eliminating their expression.
- deletion of the gene is accomplished by homologous recombination using a plasmid that has been constructed to contiguously contain the 5' and 3' regions flanking the gene.
- the host cells and fermenting organisms comprising a gene disruption may also be constructed by introducing, substituting, and/or removing one or more (e.g., two, several) nucleotides in the gene or a control sequence thereof required for the transcription or translation thereof.
- nucleotides may be inserted or removed for the introduction of a stop codon, the removal of the start codon, or a frame-shift of the open reading frame.
- Such a modification may be accomplished by site-directed mutagenesis or PCR generated mutagenesis in accordance with methods known in the art. See, for example, Botstein and Shortle, 1985, Science 229: 4719; Lo et al., 1985, Proc. Natl. Acad. Sci. U.S.A.
- the host cells and fermenting organisms comprising a gene disruption may also be constructed by inserting into the gene a disruptive nucleic acid construct comprising a nucleic acid fragment homologous to the gene that will create a duplication of the region of homology and incorporate construct DNA between the duplicated regions.
- a gene disruption can eliminate gene expression if the inserted construct separates the promoter of the gene from the coding region or interrupts the coding sequence such that a non-functional gene product results.
- a disrupting construct may be simply a selectable marker gene accompanied by 5’ and 3’ regions homologous to the gene. The selectable marker enables identification of transformants containing the disrupted gene.
- the host cells and fermenting organisms comprising a gene disruption may also be constructed by the process of gene conversion (see, for example, Iglesias and Trautner, 1983, Molecular General Genetics 189: 73-76).
- a nucleotide sequence corresponding to the gene is mutagenized in vitro to produce a defective nucleotide sequence, which is then transformed into the recombinant strain to produce a defective gene.
- the defective nucleotide sequence replaces the endogenous gene. It may be desirable that the defective nucleotide sequence also comprises a marker for selection of transformants containing the defective gene.
- the host cells and fermenting organisms comprising a gene disruption may be further constructed by random or specific mutagenesis using methods well known in the art, including, but not limited to, chemical mutagenesis (see, for example, Hopwood, The Isolation of Mutants in Methods in Microbiology (J.R. Norris and D.W. Ribbons, eds.) pp. 363-433, Academic Press, New York, 1970). Modification of the gene may be performed by subjecting the parent strain to mutagenesis and screening for mutant strains in which expression of the gene has been reduced or inactivated.
- the mutagenesis which may be specific or random, may be performed, for example, by use of a suitable physical or chemical mutagenizing agent, use of a suitable oligonucleotide, or subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the mutagenesis may be performed by use of any combination of these mutagenizing methods.
- Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N- nitrosoguanidine (MNNG), N-methyl-N’-nitrosogaunidine (NTG) O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.
- UV ultraviolet
- MNNG N-methyl-N'-nitro-N- nitrosoguanidine
- NVG N-methyl-N’-nitrosogaunidine
- EMS ethyl methane sulphonate
- sodium bisulphite formic acid
- nucleotide analogues examples include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N- nitrosoguanidine (MNNG), N-methyl-N’-nitrosogaunidine
- a nucleotide sequence homologous or complementary to a gene described herein may be used from other microbial sources to disrupt the corresponding gene in a recombinant strain of choice.
- the modification of a gene in the host cells and fermenting organisms is unmarked with a selectable marker.
- Removal of the selectable marker gene may be accomplished by culturing the mutants on a counter-selection medium. Where the selectable marker gene contains repeats flanking its 5' and 3' ends, the repeats will facilitate the looping out of the selectable marker gene by homologous recombination when the mutant strain is submitted to counter-selection.
- the selectable marker gene may also be removed by homologous recombination by introducing into the mutant strain a nucleic acid fragment comprising 5' and 3' regions of the defective gene, but lacking the selectable marker gene, followed by selecting on the counter-selection medium. By homologous recombination, the defective gene containing the selectable marker gene is replaced with the nucleic acid fragment lacking the selectable marker gene. Other methods known in the art may also be used.
- aspects of the invention relate to GH5 family xylanases in combination with a fermenting organism that comprises a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2 to increase hemicellulosic fiber solubilization and production of monomeric arabinose and/or xylose.
- the present invention contemplates using any GH5 xylanase that, when used in combination with the fermenting organisms, increases production of a fermentation product and/or decreases the residual solids compared to processes that lack the GH5 xylanase.
- the xylanase is a GH5 family xylanase.
- the xylanase is a GH5_21 xylanase.
- Exemplary GH5_21 xylanases include, without limitation, ones from the genus Bacteroides, Belliella, Chryseobacterium, or Sphingobacterium.
- Exemplary GH5_21 xylanases include, without limitation, ones from the species Bacteroides cellulosilyticus CL02Y12C19, Belliella sp-64282, Chryseobacterium sp., Chryseobacterium oncorhynchi, or Sphingobacterium sp-64162.
- Exemplary GH5_21 xylanases include, without limitation, ones from bioreactor metagenome, Elephant dung metagenome, Xanthan alkaline community O, Xanthan alkaline community S, or Xanthan alkaline community T.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 1.
- the GH_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 1 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 2.
- the GH_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 2 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 3.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 3 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 4.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 4 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 5.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 5 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 6.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 6 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 7.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of of SEQ ID NO: 7 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 8.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 8 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 9.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of of SEQ ID NO: 9 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 10.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO:
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 11.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO:
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 12.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO:
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 13.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO:
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 14.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to to the amino acid sequence of SEQ ID NO: 14 and has xylanase activity.
- An exemplary GH5_21 xylanase has the amino acid sequence of SEQ ID NO: 15.
- the GH5_21 xylanase has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 15 and has xylanase activity.
- the GH5 xylanase (e.g., GH5_21 xylanase) may be dosed in pre-saccharification, saccharification, and/or simultaneous saccharification and fermentation in a concentration of between 0.0001-1 mg EP (Enzyme Protein)/g DS, e.g., 0.0005-0.5 mg EP/g DS, such as 0.001-0.1 mg EP/g DS or 0.001-0.01 mg EP/g DS.
- EP Enzyme Protein
- the GH5 xylanase e.g., GH5_21 xylanase
- the fermenting organism e.g., yeast
- the fermentation product may be separated from the fermentation medium.
- the fermentation product e.g., ethanol
- alcohol is separated from the fermented starch-containing grain and purified by conventional methods of distillation.
- the method of the invention further comprises distillation to obtain the fermentation product, e.g., ethanol.
- the fermentation and the distillation may be carried out simultaneously and/or separately/sequentially; optionally followed by one or more process steps for further refinement of the fermentation product.
- the material remaining is considered the whole stillage.
- the desired fermentation product may be extracted from the fermentation medium by micro or membrane filtration techniques.
- Ethanol with a purity of up to about 96 vol. % can be obtained, which can be used as, for example, fuel ethanol, drinking ethanol, i.e. , potable neutral spirits, or industrial ethanol.
- the fermentation product after being recovered is substantially pure.
- substantially pure intends a recovered preparation that contains no more than 15% impurity, wherein impurity intends compounds other than the fermentation product (e.g., ethanol).
- a substantially pure preparation is provided wherein the preparation contains no more than 25% impurity, or no more than 20% impurity, or no more than 10% impurity, or no more than 5% impurity, or no more than 3% impurity, or no more than 1% impurity, or no more than 0.5% impurity.
- Suitable assays to test for the production of ethanol and contaminants, and sugar consumption can be performed using methods known in the art.
- ethanol product, as well as other organic compounds can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography Mass Spectroscopy) and LC-MS (Liquid Chromatography-Mass Spectroscopy) or other suitable analytical methods using routine procedures well known in the art.
- HPLC High Performance Liquid Chromatography
- GC-MS Gas Chromatography Mass Spectroscopy
- LC-MS Liquid Chromatography-Mass Spectroscopy
- Byproducts and residual sugar in the fermentation medium can be quantified by HPLC using, for example, a refractive index detector for glucose and alcohols, and a UV detector for organic acids (Lin et al., Biotechnol. Bioeng. 90:775 -779 (2005)), or using other suitable assay and detection methods well known in the art.
- the whole stillage is separated or partitioned into a solid and liquid phase by one or more methods for separating the thin stillage from the wet cake.
- Separating whole stillage into thin stillage and wet cake to remove a significant portion of the liquid/water may be done using any suitable separation technique, including centrifugation, pressing and filtration.
- the separation/dewatering is carried out by centrifugation.
- Preferred centrifuges in industry are decanter type centrifuges, preferably high-speed decanter type centrifuges.
- An example of a suitable centrifuge is the NX 400 steep cone series from Alfa Laval which is a high-performance decanter.
- the separation is carried out using other conventional separation equipment such as a plate/frame filter presses, belt filter presses, screw presses, gravity thickeners and deckers, or similar equipment.
- Thin stillage is the term used for the supernatant of the centrifugation of the whole stillage.
- the thin stillage contains 4-6 percent dry solids (DS) (mainly proteins, soluble fiber, fine fibers, and cell wall components) and has a temperature of about 60-90 degrees centigrade.
- the thin stillage stream may be condensed by evaporation to provide two process streams including: (i) an evaporator condensate stream comprising condensed water removed from the thin stillage during evaporation, and (ii) a syrup stream, comprising a more concentrated stream of the non-volatile dissolved and non-dissolved solids, such as non-fermentable sugars and oil, remaining present from the thin stillage as the result of removing the evaporated water.
- oil can be removed from the thin stillage or can be removed as an intermediate step to the evaporation process, which is typically carried out using a series of several evaporation stages.
- Syrup and/or de-oiled syrup may be introduced into a dryer together with the wet grains (from the whole stillage separation step) to provide a product referred to as distillers dried grain with solubles, which also can be used as animal feed.
- syrup and/or de-oiled syrup is sprayed into one or more dryers to combine the syrup and/or deoiled syrup with the whole stillage to produce distillers dried grain with solubles.
- the process further comprises recycling at least a portion of the thin stillage stream to the slurry, optionally after oil has been extracted from the thin stillage stream.
- the wet cake containing about 25-40 wt-%, preferably 30-38 wt-% dry solids, has been separated from the thin stillage (e.g., dewatered) it may be dried in a drum dryer, spray dryer, ring drier, fluid bed drier or the like in order to produce “Distillers Dried Grains” (DDG).
- DDG is a valuable feed ingredient for animals, such as livestock, poultry and fish. It is preferred to provide DDG with a content of less than about 10-12 wt.-% moisture to avoid mold and microbial breakdown and increase the shelf life. Further, high moisture content also makes it more expensive to transport DDG.
- the wet cake is preferably dried under conditions that do not denature proteins in the wet cake.
- the wet cake may be blended with syrup separated from the thin stillage and dried into DDG with Solubles (DDGS).
- DDG DDG with Solubles
- Partially dried intermediate products such as are sometimes referred to as modified wet distillers grains, may be produced by partially drying wet cake, optionally with the addition of syrup before, during or after the drying process.
- Yeast strain MEJI797 is MBG5012 of WO2019/161227 further expressing a Pycnopous sanguineus glucoamylase (SEQ ID NO: 4 of WO2011/066576) and a hybrid Rhizomucor pusillus alpha amylase expression cassette (as described in WO2013/006756).
- Liquefaction Enzyme Blend exemplary thermostable alpha-amylase from Bacillus stearothermophilus disclosed in SEQ ID NO: 19; exemplary thermostable protease from Pyrococcus furiosus disclosed in SEQ ID NO: 20.
- Saccharification Enzyme Blend exemplary glucoamylase from Gloeophyllum sepiarium disclosed in SEQ ID NO: 22; exemplary alpha-amylase from Rhizomucor pusillus disclosed in SEQ ID NO: 23.
- Cellulase Blend exemplary beta-glucosidase from Aspergillus fumigatus disclosed in SEQ ID NO: 24; exemplary celliobiohydrolase from Aspergillus fumigatus disclosed in SEQ ID NO: 25; exemplary endoglucanase from Trichoderma reesei disclosed in SEQ ID NO: 26.
- This example describes the construction of yeast cells expressing a CBH1 (SEQ ID NO: 16) and CBH2 (SEQ ID NO: 17) under the control of S. cerevisiae promoters: pSeTDH3 and pPGK1 respectively, which are strong constitutive promoters.
- Three pieces of DNA containing promoters, genes and terminators were designed to allow for homologous recombination between the 3 DNA fragments and into the X-4 locus of the yeast MeJi797.
- the resulting strain would contain: one 5’ homology containing fragment with a promoter, gene and terminator (left fragment 1); 1 promoter and gene containing fragment (middle fragment 1); one 3’ homology fragment with a terminator (right fragment 1) integrated into the S. cerevisiae genome at the X-4 locus.
- the first linear DNA containing 500 bp homology to the X-4 site and the S. cerevisiae pSeTDH3 promoter was PCR amplified from HP97 plasmid DNA ( Figure 3). Fifty pmoles each of forward and reverse primer was used in a PCR reaction containing 5 ng of plasmid DNA as template, 1X Platinum SuperFi HF Buffer (Thermo Fisher Scienctific), and 2 units SuperFi DNA polymerase in a final volume of 50 pL. The PCR was performed in a T100TM Thermal Cycler (Bio-Rad Laboratories, Inc. Following thermocycling, the PCR reaction products gel isolated and cleaned up using the QIAguick Gel Extraction kit (Qiagen).
- a second fragment (TL4) containing the pSeTDH3 promoter, AGA2 signal peptide, P244YG gene, and tPDC6 terminator was PCR amplified from a Saccharomyces cerevisiae yeast strain S1130-D03. Fifty pmoles each of forward and reverse primer was used in a PCR reaction containing 5 ng of gDNA as template, 1X Platinum SuperFi HF Buffer (Thermo Fisher Scienctific), and 2 units SuperFi DNA polymerase in a final volume of 50 pL. The PCR was performed in a T100TM Thermal Cycler (Bio-Rad Laboratories, Inc.). Following thermocycling, the PCR reaction products gel isolated and cleaned up using the QIAguick Gel Extraction kit (Qiagen).
- a first linear DNA containing terminator tPDC6 and promoter pPGK1 was PCR amplified from TP40 plasmid DNA (Figure 4). Fifty pmoles each of forward and reverse primer was used in a PCR reaction containing 5 ng of plasmid DNA as template, 1X Platinum SuperFi HF Buffer (Thermo Fisher Scienctific), and 2 units SuperFi DNA polymerase in a final volume of 50 pL. The PCR was performed in a T100TM Thermal Cycler (Bio-Rad Laboratories, Inc. Following thermocycling, the PCR reaction products gel isolated and cleaned up using the QIAquick Gel Extraction kit (Qiagen).
- a second fragment called TL7 containing 50 bp homology to the pPGK1 promoter, AGA2 signal peptide, Talaromyces verruculosus CBH2 gene, and 50 bp homology to the tADH3 terminator was PCR amplified from yeast strain S1130-B11 (See, PCT/CN2022/102201, filed June 29, 2022, the contents of which are incorporated by reference). Fifty pmoles each of forward and reverse primer was used in a PCR reaction containing 5 ng of gDNA as template, 1X Platinum SuperFi HF Buffer (Thermo Fisher Scienctific), and 2 units SuperFi DNA polymerase in a final volume of 50 pL. The PCR was performed in a T100TM Thermal Cycler (Bio-Rad Laboratories, Inc.). Following thermocycling, the PCR reaction products gel isolated and cleaned using the QIAquick Gel Extraction kit (Qiagen).
- the linear DNA containing 500 bp homology to the X-4 site and the S. cerevisiae tADH3 terminator was PCR amplified from TH58 plasmid DNA ( Figure 5). Fifty pmoles each of forward and reverse primer was used in a PCR reaction containing 5 ng of plasmid DNA as template, 1X Platinum SuperFi HF Buffer (Thermo Fisher Scienctific), and 2 units SuperFi DNA polymerase in a final volume of 50 pL. The PCR was performed in a T100TM Thermal Cycler (Bio-Rad Laboratories, Inc.). Following thermocycling, the PCR reaction products gel isolated and cleaned up using the QIAquick Gel Extraction kit (Qiagen).
- the yeast MeJi797 was transformed with the left (RRSOE1), middle (SOE4) and right (TH58) integration fragments using 150ng of each fragment.
- a 300ng of a plasmid containing MAD7 and guide RNA specific to X-4 (pMIBa789; Figure 6) was also used in the transformation.
- the three linear DNA fragments were combined and transformed into MeJi797 following a yeast electroporation protocol. Transformants were selected on YPD+cloNAT to select for transformants that contain the Mad7 plasmid pMIBa789.
- Example 2 Evaluation of corn mash fermentation using a yeast strain expressing a CBH1 and CBH2 in combination with a GH5_21 xylanase
- Yeast strains yeast MeJi797 and YS103-A07 were incubated overnight in 20 mL YPD media (6% w/v D-glucose, 2% peptone, 1% yeast extract) in 125 ml baffled shake flasks at 32°C and 150 rpm. Cells were harvested after 24 hours incubation and collected by centrifugation and washed in DI water prior to resuspending in 5 mL DI water for dosing. Industrially obtained liquefied corn mash, where liquefaction was carried out using the Liquefaction Enzyme Blend supplemented with 3 ppm penicillin and 1000 ppm of urea.
- Simultaneous saccharification and fermentation was performed via mini-scale fermentations. Approximately 4 g of corn mash was added to 12 mL conical tubes. Each tube was dosed with 1 x 10 7 cells/g of mash with yeast followed by the addition of 0.42 AGU/g of dry solids of an exogenous Saccharification Enzyme Blend. In certain instances, tubes were dosed with a GH5_21 xylanase (2.5 ugEP/g DS; SEQ ID NO: 21) and a Cellulase Blend (67.5 ugEP/g DS). Six replicate tube fermentations were conducted for each treatment. The enzyme blend and yeast dosages were administered based on the exact weight of corn slurry in each vial.
- Tubes were incubated at 32°C and mixed two times per day via brief vortex. After 68 hours fermentation time, contents of the tubes were diluted 10x and then centrifuged @3500 rpm for 5 min. Supernatant samples were filtered with 0.2 mm syringe filters into vials for analysis of final ethanol level via HPLC. The remaining supernatant was discarded, and the pellet was dried for 3 days at 50°C. The final pellet was weighed to determine residual solids. The final ethanol level results are shown in Figure 1. Yeast strain YS103-A07 expressing CBH1 and CBH2 had significantly higher ethanol yield as compared to control strain MeJi797.
- Paragraph [6] The process of any of the preceding paragraphs, wherein the GH5_21 xylanase used in saccharifying step (b) and/or fermenting step (c) is present or added via in situ expression from the fermenting organism.
- Paragraph [7] The process of any of the preceding paragraphs, wherein the alpha-amylase has the amino acid sequence of SEQ ID NO: 18 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 18, which has alpha-amylase activity.
- Paragraph [8] The process of any of the preceding paragraphs, wherein the alpha-amylase has the amino acid sequence of SEQ ID NO: 19 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 19, which has alpha-amylase activity.
- thermostable protease is added during liquefying step (a).
- thermostable protease has the amino acid sequence of SEQ ID NO: 20 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 20, which has protease activity.
- thermostable xylanase has an amino acid sequence of SEQ ID NO: 21 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 21, which has xylanase activity.
- thermostable alpha-amylase a thermostable protease and a thermostable xylanase are added during liquefying step (a).
- glucoamylase has an amino acid sequence of SEQ ID NO: 22 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 22, which has glucoamylase activity.
- Paragraph [20] The process of any of the preceding paragraphs, wherein an alpha-amylase is added during step (b) and/or step (c).
- Paragraph [22] The process of any of the preceding paragraphs, wherein a betaglucosidase is added during step (a) and/or step (b).
- Paragraph [23] The process of paragraph [22], wherein the beta-glucosidase has an amino acid sequence of SEQ ID NO: 24 or an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 24, which has beta-glucosidase activity.
- Paragraph [24] The process of any of the preceding paragraphs, wherein a cellobiohydrolase is added during step (b) and/or step (c).
- Paragraph [28] The process of any of the preceding paragraphs, wherein a trehalase is added during step (b) and/or step (c).
- a process for producing a fermentation product from an ungelatinized starch-containging grain comprises the following steps:
- Paragraph [35] The process of paragraph [30], wherein the GH5_21 xylanase used in saccharifying step (a) and/or fermenting step (b) is present or added via in situ expression from the fermenting organism.
- amino acid sequence of SEQ ID NO: 1 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 1 ;
- amino acid sequence of SEQ ID NO: 2 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 2;
- amino acid sequence of SEQ ID NO: 3 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 3;
- amino acid sequence of SEQ ID NO: 4 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 4;
- amino acid sequence of SEQ ID NO: 5 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 5;
- amino acid sequence of SEQ ID NO: 6 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 6;
- amino acid sequence of SEQ ID NO: 7 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 7;
- amino acid sequence of SEQ ID NO: 8 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 8;
- amino acid sequence of SEQ ID NO: 9 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 9;
- (11) the amino acid sequence of SEQ ID NO: 11 , or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ I D NO: 11 ;
- amino acid sequence of SEQ ID NO: 12 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 12;
- amino acid sequence of SEQ ID NO: 13 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 13;
- amino acid sequence of SEQ ID NO: 14 or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 14;
- amino acid sequence of SEQ ID NO: 15 the amino acid sequence of SEQ ID NO: 15, or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 15.
- the at least one the at least one GH5_21 comprises or consists of the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 , SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, or SEQ ID NO: 15.
- the at least one GH5_21 is a fragment of the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 , SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, or SEQ ID NO: 15, wherein the fragment has GH5_21 activity.
- Paragraph [40] The process of any of the preceding paragraphs, wherein the at least one GH5_21 dosed in the range of 0.0001-1 mg EP (Enzyme Protein)/g DS, e.g., 0.0005-0.5 mg EP/g DS, such as 0.001-0.1 mg EP/g DS or 0.001-0.01 mg EP/g DS.
- Paragraph [41] The process of any of the preceding paragraphs, wherein the heterologous polynucleotide encoding the CBH1 is operably linked to a promoter that is foreign to the polynucleotide.
- Paragraph [46] The process of any of the preceding paragraphs, wherein the heterologous polynucleotide encoding the CBH2 is operably linked to a promoter that is foreign to the polynucleotide.
- Paragraph [47] The process of any of the preceding paragraphs, wherein the CBH2 has the amino acid sequence of SEQ ID NO: 17, or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 17.
- Paragraph [48] The process of any of the preceding paragraphs, wherein the CBH2 comprises or consists of the amino acid sequence of SEQ ID NO: 17.
- Paragraph [49] The process of any of the preceding paragraphs, wherein the CBH2 is a variant of the the amino acid sequence of SEQ ID NO: 17 comprising a substitution, deletion, and/or insertion at one or more (e.g., several) positions.
- Paragraph [51] The process of any of the preceding paragraphs, wherein the fermenting organism comprises an active pentose fermentation pathway (e.g., an active xylose fermentation pathway and/or an active arabinose fermentation pathway).
- an active pentose fermentation pathway e.g., an active xylose fermentation pathway and/or an active arabinose fermentation pathway.
- Paragraph [52] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a heterologous polynucleotide encoding a glucoamylase.
- Paragraph [53] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a heterologous polynucleotide encoding an alpha-amylase.
- Paragraph [54] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a heterologous polynucleotide encoding a protease.
- Paragraph [55] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a heterologous polynucleotide encoding the GH5_21 xylanase.
- Paragraph [56] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a disruption to an endogenous gene encoding a glycerol 3-phosphate dehydrogenase (GPD).
- GPD glycerol 3-phosphate dehydrogenase
- Paragraph [57] The process of any of the preceding paragraphs, wherein the fermenting organism comprises a disruption to an endogenous gene encoding a glycerol 3-phosphatase (GPP).
- GPP glycerol 3-phosphatase
- Paragraph [58] The process of any of the preceding paragraphs, wherein the fermenting organism is a yeast cell.
- Paragraph [59] The process of any of the preceding paragraphs, wherein the fermenting organism is a Saccharomyces, Rhodotorula, Schizosaccharomyces, Kluyveromyces, Pichia, Hansenula, Rhodosporidium, Candida, Yarrowia, Lipomyces, Cryptococcus, or Dekkera sp. cell.
- Paragraph [60] The process of any of the preceding paragraphs, wherein the fermenting organism is a Saccharomyces cerevisiae cell.
- Paragraph [61] The process of any of the preceding paragraphs, wherein the starch- containing material comprises beets, maize, corn, wheat, rye, barley, oats, triticale, rice, sorghum, sweet potatoes, millet, pearl millet, and/or foxtail millet.
- Paragraph [63] The process of any of the preceding paragraphs, wherein the fermentation product is ethanol, preferably fuel ethanol.
- a recombinant host cell comprising a heterologous polynucleotide encoding a CBH1 and a heterologous polynucleotide encoding a CBH2.
- Paragraph [65] The recombinant host cell of paragraph [64], wherein the heterologous polynucleotide encoding the CBH1 is operably linked to a promoter that is foreign to the polynucleotide.
- Paragraph [67] The recombinant host cell of any of paragraphs [64]-[66], wherein the CBH1 comprises or consists of the amino acid sequence of SEQ ID NO: 16.
- Paragraph [68] The recombinant host cell of any of paragraphs [64]-[67], wherein the CBH1 is a variant of the the amino acid sequence of SEQ ID NO: 16 comprising a substitution, deletion, and/or insertion at one or more (e.g., several) positions.
- Paragraph [69] The recombinant host cell of any of paragraphs [64]-[68], wherein the CBH1 is a fragment of the amino acid sequence of SEQ ID NO: 16, wherein the fragment has CBH1 activity.
- Paragraph [70] The recombinant host cell of any of paragraphs [64]-[69], wherein the heterologous polynucleotide encoding the CBH2 is operably linked to a promoter that is foreign to the polynucleotide.
- Paragraph [71] The recombinant host cell of any of paragraphs [64]-[70], wherein the CBH2 has the amino acid sequence of SEQ ID NO: 17, or one having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 17.
- Paragraph [73] The recombinant host cell of any of paragraphs [64]-[72], wherein the CBH2 is a variant of the the amino acid sequence of SEQ ID NO: 17 comprising a substitution, deletion, and/or insertion at one or more (e.g., several) positions.
- Paragraph [74] The recombinant host cell of any of paragraphs [64]-[73], wherein the CBH2 is a fragment of the amino acid sequence of SEQ ID NO: 17, wherein the fragment has CBH2 activity.
- Paragraph [75] The recombinant host cell of any of paragraphs [64]-[74], wherein the fermenting organism comprises an active pentose fermentation pathway (e.g., an active xylose fermentation pathway and/or an active arabinose fermentation pathway).
- an active pentose fermentation pathway e.g., an active xylose fermentation pathway and/or an active arabinose fermentation pathway.
- Paragraph [76] The recombinant host cell of any of paragraphs [64]-[75], wherein the fermenting organism comprises a heterologous polynucleotide encoding a glucoamylase.
- Paragraph [77] The recombinant host cell of any of paragraphs [64]-[76], wherein the fermenting organism comprises a heterologous polynucleotide encoding an alpha-amylase.
- Paragraph [78] The recombinant host cell of any of paragraphs [64]-[77], wherein the fermenting organism comprises a heterologous polynucleotide encoding a protease.
- Paragraph [79] The recombinant host cell of any of paragraphs [64]-[78], wherein the fermenting organism comprises a heterologous polynucleotide encoding the GH5_21 xylanase.
- Paragraph [80] The recombinant host cell of any of paragraphs [64]-[79], wherein the fermenting organism comprises a disruption to an endogenous gene encoding a glycerol 3- phosphate dehydrogenase (GPD).
- GPD glycerol 3- phosphate dehydrogenase
- Paragraph [81] The recombinant host cell of any of paragraphs [64]-[80], wherein the fermenting organism comprises a disruption to an endogenous gene encoding a glycerol 3- phosphatase (GPP).
- GPP glycerol 3- phosphatase
- Paragraph [82] The recombinant host cell of any of paragraphs [64]-[81 ], wherein the fermenting organism is a yeast cell.
- Paragraph [83] The recombinant host cell of any of paragraphs [64]-[82], wherein the fermenting organism is a Saccharomyces, Rhodotorula, Schizosaccharomyces, Kluyveromyces, Pichia, Hansenula, Rhodosporidium, Candida, Yarrowia, Lipomyces, Cryptococcus, or Dekkera sp. cell.
- Paragraph [84] The recombinant host cell of any of paragraphs [64]-[83], wherein the fermenting organism is a Saccharomyces cerevisiae cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263476093P | 2022-12-19 | 2022-12-19 | |
US63/476,093 | 2022-12-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2024137704A2 true WO2024137704A2 (fr) | 2024-06-27 |
WO2024137704A3 WO2024137704A3 (fr) | 2024-07-25 |
Family
ID=89768581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2023/084946 WO2024137704A2 (fr) | 2022-12-19 | 2023-12-19 | Procédés de production de produits de fermentation faisant appel à des enzymes de dégradation de fibres avec levure modifiée |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024137704A2 (fr) |
Citations (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002921A2 (fr) | 1983-01-28 | 1984-08-02 | Cetus Corp | cADN GLUCOAMYLASE |
US4598048A (en) | 1983-03-25 | 1986-07-01 | Novo Industri A/S | Preparation of a maltogenic amylase enzyme |
WO1992000381A1 (fr) | 1990-06-29 | 1992-01-09 | Novo Nordisk A/S | Hydrolyse enzymatique de l'amidon en glucose a l'aide d'une enzyme produite par genie genetique |
WO1992002614A1 (fr) | 1990-08-01 | 1992-02-20 | Novo Nordisk A/S | Nouvelles pullulanases thermostables |
WO1992006204A1 (fr) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Banques de recepteurs heteromeres a expression en surface |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1994025612A2 (fr) | 1993-05-05 | 1994-11-10 | Institut Pasteur | Sequences de nucleotides pour le controle de l'expression de sequences d'adn dans un hote cellulaire |
WO1995017413A1 (fr) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Procede permettant une conception et une synthese evolutives de polymeres fonctionnels sur la base d'elements et de codes de remodelage |
WO1995022625A1 (fr) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Mutagenese d'adn par fragmentation aleatoire et reassemblage |
WO1995033836A1 (fr) | 1994-06-03 | 1995-12-14 | Novo Nordisk Biotech, Inc. | Phosphonyldipeptides efficaces dans le traitement de maladies cardiovasculaires |
WO1996023873A1 (fr) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Alleles d'amylase-alpha |
WO1996023874A1 (fr) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Technique de mise au point de mutants d'amylase-alpha dotes de proprietes predefinies |
WO1996028567A1 (fr) | 1995-03-09 | 1996-09-19 | Genencor International, Inc. | Procede de liquefaction de l'amidon |
WO1997033976A1 (fr) | 1996-03-14 | 1997-09-18 | Korea Institute Of Science And Technology | Ds11(kctc 0231bp), nouvelle souche de bacillus sp. et nouvelle phytase produite a partir de ladite souche |
WO1997038096A1 (fr) | 1996-04-05 | 1997-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Nouvelle phytase et gene codant pour ladite phytase |
WO1997041213A1 (fr) | 1996-04-30 | 1997-11-06 | Novo Nordisk A/S | MUTANTS DUNE AMYLASE-$g(a) |
WO1997048812A2 (fr) | 1996-06-14 | 1997-12-24 | Her Majesty The Queen In Right Of Canada, Represented By The Department Of Agriculture And Agri-Food Canada | Sequences d'adn codant des phytases de micro-organismes de ruminants |
WO1998005785A1 (fr) | 1996-08-01 | 1998-02-12 | Biocem | Phytases de plantes et applications biotechnologiques |
WO1998006856A1 (fr) | 1996-08-13 | 1998-02-19 | Finnfeeds International Ltd. | Phytase, gene codant cette phytase, procede de production et utilisation de cette derniere |
WO1998013480A1 (fr) | 1996-09-25 | 1998-04-02 | Kyowa Hakko Kogyo Co., Ltd. | Nouvelle phytase et son procede de preparation |
WO1998020139A2 (fr) | 1996-11-05 | 1998-05-14 | Finnfeeds International Ltd. | Phytase obtenue a partir de germes de soja |
WO1998028408A1 (fr) | 1996-12-20 | 1998-07-02 | Novo Nordisk A/S | Phytase induite par peniophora |
WO1998056926A1 (fr) | 1997-06-10 | 1998-12-17 | Takara Shuzo Co., Ltd. | Systeme pour exprimer une proteine hyperthermostable |
WO1999019467A1 (fr) | 1997-10-13 | 1999-04-22 | Novo Nordisk A/S | MUTANTS D'α-AMYLASE |
WO1999028448A1 (fr) | 1997-11-26 | 1999-06-10 | Novo Nordisk A/S | Glucoamylase thermostable |
WO1999048330A1 (fr) | 1998-03-19 | 1999-09-23 | Koninklijke Philips Electronics N.V. | Prothese auditive a detecteur pour reception de signaux sans fil et dispositif associe |
WO1999049022A1 (fr) | 1998-03-23 | 1999-09-30 | Novo Nordisk A/S | Variant de phytase |
WO2000004136A1 (fr) | 1998-07-15 | 2000-01-27 | Novozymes A/S | Variants de glucoamylase |
WO2000060059A2 (fr) | 1999-03-30 | 2000-10-12 | NovozymesA/S | Variantes d'alpha amylase |
US6162628A (en) | 1998-02-27 | 2000-12-19 | Novo Nordisk A/S | Maltogenic alpha-amylase variants |
WO2001004273A2 (fr) | 1999-07-09 | 2001-01-18 | Novozymes A/S | Variante de glucoamylase |
WO2001062947A1 (fr) | 2000-02-23 | 2001-08-30 | Novozymes A/S | Fermentation a l'aide de la phytase |
WO2002010355A2 (fr) | 2000-08-01 | 2002-02-07 | Novozymes A/S | Mutants d'alpha-amylase a proprietes modifiees |
WO2002092797A2 (fr) | 2001-05-15 | 2002-11-21 | Novozymes A/S | Variant d'alpha-amylases ayant des proprietes modifiees |
WO2003048353A1 (fr) | 2001-12-07 | 2003-06-12 | Novozymes A/S | Polypeptides a activite proteasique et acides nucleiques codant ces polypeptides |
WO2003066847A2 (fr) | 2002-02-08 | 2003-08-14 | Novozymes A/S | Variants de phytase |
WO2004055178A1 (fr) | 2002-12-17 | 2004-07-01 | Novozymes A/S | Alpha-amylases thermostables |
WO2004085638A1 (fr) | 2003-03-25 | 2004-10-07 | Republic Of National Fisheries Research And Development Institute | Phytase obtenue a partir de citrobacter braakii |
WO2004106533A1 (fr) | 2003-05-30 | 2004-12-09 | Novozymes A/S | Procedes de fabrication de produits d'alcool |
WO2005003311A2 (fr) | 2003-06-25 | 2005-01-13 | Novozymes A/S | Enzymes de traitement d'amidon |
WO2005045018A1 (fr) | 2003-10-28 | 2005-05-19 | Novozymes North America, Inc. | Enzymes hybrides |
WO2005047499A1 (fr) | 2003-10-28 | 2005-05-26 | Novozymes Inc. | Polypeptides presentant une activite beta-glucosidase et polynucleotides codant pour ceux-ci |
WO2005069840A2 (fr) | 2004-01-16 | 2005-08-04 | Novozymes North America, Inc | Procedes destines a produire un produit de fermentation |
WO2006038062A1 (fr) | 2004-10-04 | 2006-04-13 | Danisco A/S | Phytase microbienne comme complement dans l'alimentation ou le fourrage |
WO2006037327A2 (fr) | 2004-10-04 | 2006-04-13 | Novozymes A/S | Polypeptides ayant une activite de phytase et polynucleotides codant ces polypeptides |
WO2006037328A1 (fr) | 2004-10-04 | 2006-04-13 | Novozymes A/S | Polypeptides presentant une activite phytase et polynucleotides codant pour ceux-ci |
WO2006063588A1 (fr) | 2004-12-13 | 2006-06-22 | Novozymes A/S | Polypeptides présentant une activité phosphatase acide et polynucléotides codant pour lesdits polypeptides |
WO2006069289A2 (fr) | 2004-12-22 | 2006-06-29 | Novozymes North America, Inc | Polypeptides presentant l'activite d'une glucoamylase, et polynucleotides encodant ces polypeptides |
WO2006086792A2 (fr) | 2005-02-07 | 2006-08-17 | Novozymes North America, Inc. | Procedes de production de produit de fermentation |
EP1724336A1 (fr) | 2005-05-19 | 2006-11-22 | Paul Dr. Fricko | Procédé pour améliorer la qualité de séchage et de produit de microorganismes |
WO2007112739A1 (fr) | 2006-04-04 | 2007-10-11 | Novozymes A/S | Variants de phytase |
WO2008092901A2 (fr) | 2007-01-30 | 2008-08-07 | Novozymes A/S | Polypeptides ayant une activité phytase et polynucléotides codant pour ceux-ci |
WO2008116878A1 (fr) | 2007-03-26 | 2008-10-02 | Novozymes A/S | Phytase de hafnia |
WO2009052101A1 (fr) | 2007-10-18 | 2009-04-23 | Danisco Us, Inc. | Mélanges d'enzymes pour fermentation |
WO2009061379A2 (fr) | 2007-11-05 | 2009-05-14 | Danisco Us Inc., Genencor Division | Variants d'alpha-amilase avec des propriétés modifiées |
WO2009129489A2 (fr) | 2008-04-18 | 2009-10-22 | Danisco Us Inc., Genencor Division | Variants dephytase de buttiauxella sp. |
WO2009149130A2 (fr) | 2008-06-06 | 2009-12-10 | Danisco Us Inc. | Variants d'alpha-amylase (amys) de geobacillus stearothermophilus présentant des propriétés améliorées |
WO2010008841A2 (fr) | 2008-06-23 | 2010-01-21 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2010034835A2 (fr) | 2008-09-26 | 2010-04-01 | Novozymes A/S | Variant de phytase de hafnia |
WO2010036515A1 (fr) | 2008-09-25 | 2010-04-01 | Danisco Us Inc. | Mélanges d'alpha-amylases, et leurs méthodes d'utilisation |
WO2010115021A2 (fr) | 2009-04-01 | 2010-10-07 | Danisco Us Inc. | Compositions et procédés comprenant des variantes alpha-amylases qui possèdent des propriétés modifiées |
WO2011066560A1 (fr) | 2009-11-30 | 2011-06-03 | Novozymes A/S | Polypeptides a activite glucoamylase et polynucleotides codant pour lesdits polypeptides |
WO2011066576A1 (fr) | 2009-11-30 | 2011-06-03 | Novozymes A/S | Polypeptides a activite glucoamylase et polynucleotides codant pour lesdits polypeptides |
WO2011068803A1 (fr) | 2009-12-01 | 2011-06-09 | Novozymes A/S | Polypeptides possédant une activité de glucoamylase et polynucléotides codant pour ceux-ci |
WO2011076123A1 (fr) | 2009-12-22 | 2011-06-30 | Novozymes A/S | Compositions comprenant un polypeptide renforçateur et un enzyme dégradant l'amidon, et utilisations correspondantes |
WO2011082425A2 (fr) | 2010-01-04 | 2011-07-07 | Novozymes A/S | Variants d'alpha-amylase et polynucleotides les codant |
WO2011127802A1 (fr) | 2010-04-14 | 2011-10-20 | Novozymes A/S | Polypeptides présentant une activité glucoamylase et polynucléotides codant lesdits polypeptides |
WO2011128712A1 (fr) | 2010-04-12 | 2011-10-20 | Stellenbosch University | Production de biocarburant |
WO2011153516A2 (fr) | 2010-06-03 | 2011-12-08 | Mascoma Corporation | Levure à expression d'enzymes saccharolytiques pour la transformation biologique consolidée au moyen d'amidon et de cellulose |
WO2012044915A2 (fr) | 2010-10-01 | 2012-04-05 | Novozymes, Inc. | Variants de bêta-glucosidase et polynucléotides les codant |
WO2012064351A1 (fr) | 2010-11-08 | 2012-05-18 | Novozymes A/S | Polypeptides présentant une activité glucoamylase et polynucléotides codant lesdits polypeptides |
US20120135481A1 (en) | 2010-11-22 | 2012-05-31 | Novozymes, Inc. | Compositions and methods for 3-hydroxypropionic acid production |
WO2012088303A2 (fr) | 2010-12-22 | 2012-06-28 | Novozymes North America, Inc. | Procédés d'obtention de produits de fermentation |
US8257959B2 (en) | 2004-06-08 | 2012-09-04 | Microbiogen Pty Ltd | Non-recombinant Saccharomyces strains that grow on xylose |
US8326547B2 (en) | 2009-10-07 | 2012-12-04 | Nanjingjinsirui Science & Technology Biology Corp. | Method of sequence optimization for improved recombinant protein expression using a particle swarm optimization algorithm |
WO2013006756A2 (fr) | 2011-07-06 | 2013-01-10 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant ces variants |
WO2013034106A1 (fr) | 2011-09-09 | 2013-03-14 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2013036526A1 (fr) | 2011-09-06 | 2013-03-14 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2013044867A1 (fr) | 2011-09-30 | 2013-04-04 | Novozymes A/S | Polypeptides à activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2013055676A1 (fr) | 2011-10-11 | 2013-04-18 | Novozymes North America, Inc. | Procédés de production de produits de fermentation |
WO2013053801A1 (fr) | 2011-10-11 | 2013-04-18 | Novozymes A/S | Variants de glucoamylase et polynucléotides les encodant |
WO2013082486A1 (fr) | 2011-12-02 | 2013-06-06 | Novozymes A/S | Procédés pour produire des produits de fermentation |
WO2013148993A1 (fr) | 2012-03-30 | 2013-10-03 | Novozymes North America, Inc. | Procédés de fabrication de produits de fermentation |
WO2014039773A1 (fr) | 2012-09-07 | 2014-03-13 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci et utilisations de ceux-ci |
WO2014085439A1 (fr) | 2012-11-30 | 2014-06-05 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2014138672A1 (fr) | 2013-03-08 | 2014-09-12 | Novozymes A/S | Variantes de cellobiohydrolase et polynucléotides codant pour celles-ci |
WO2014177541A2 (fr) | 2013-04-30 | 2014-11-06 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ces derniers |
WO2014177546A2 (fr) | 2013-04-30 | 2014-11-06 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ces derniers |
WO2014209789A1 (fr) | 2013-06-24 | 2014-12-31 | Novozymes A/S | Procédé d'extraction d'huile à partir de résidus dilués de distillation |
WO2015007639A1 (fr) | 2013-07-17 | 2015-01-22 | Novozymes A/S | Chimères de pullulanase et polynucléotides les codant |
WO2015031477A1 (fr) | 2013-08-30 | 2015-03-05 | Novozymes A/S | Composition d'enzyme et utilisations de celle-ci |
WO2015035914A1 (fr) | 2013-09-11 | 2015-03-19 | Novozymes A/S | Procédés de production de produits de fermentation |
US20150125925A1 (en) | 2013-11-05 | 2015-05-07 | The Procter & Gamble Company | Compositions and methods comprising serine protease variants |
WO2015110473A2 (fr) | 2014-01-22 | 2015-07-30 | Novozymes A/S | Variants de pullulanase et polynucléotides les codant |
WO2015143324A1 (fr) | 2014-03-21 | 2015-09-24 | Novozymes A/S | Procédés de production d'éthanol et de levure |
WO2016040265A1 (fr) | 2014-09-08 | 2016-03-17 | Novozymes A/S | Variants de cellobiohydrolase et polynucléotides codant pour ces derniers |
WO2016045569A1 (fr) | 2014-09-23 | 2016-03-31 | Novozymes A/S | Procédés de production d'éthanol et organismes de fermentation |
WO2016062875A2 (fr) | 2014-10-23 | 2016-04-28 | Novozymes A/S | Variants de glucoamylase et polynucléotides les encodant |
WO2016087237A1 (fr) | 2014-12-02 | 2016-06-09 | Mahle International Gmbh | Procédé de fabrication d'un noyau de coulée perdu, noyau de coulée perdu et piston à conduit de refroidissement fabriqué à l'aide d'un tel noyau de coulée |
WO2016087327A1 (fr) | 2014-12-01 | 2016-06-09 | Novozymes A/S | Polypeptides ayant une activité pullulanase comprenant les domaines x25, x45 et cbm41 |
WO2016138437A1 (fr) | 2015-02-27 | 2016-09-01 | Novozymes A/S | Procédés de production d'éthanol à l'aide d'un organisme de fermentation |
WO2016153924A1 (fr) | 2015-03-20 | 2016-09-29 | Novozymes A/S | Procédés de production d'éthanol et levures produisant de l'éthanol |
WO2016205127A1 (fr) | 2015-06-18 | 2016-12-22 | Novozymes A/S | Polypeptides ayant une activité tréhalase et leur utilisation dans un procédé de production de produits de fermentation |
WO2017014974A1 (fr) | 2015-07-21 | 2017-01-26 | Novozymes A/S | Polypeptides présentant une activité de pullulanase appropriée pour une utilisation dans la liquéfaction |
WO2017037614A1 (fr) | 2015-09-04 | 2017-03-09 | Lallemand Hungary Liquidity Management Llc | Souches de levure destinées à l'expression et la sécrétion de protéines hétérologues à hautes températures |
WO2017050291A1 (fr) | 2015-09-25 | 2017-03-30 | Novozymes A/S | Utilisation de sérine protéases pour améliorer le rendement de l'éthanol |
WO2017066255A1 (fr) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2017077504A1 (fr) | 2015-11-06 | 2017-05-11 | Lallemand Hungary Liquidity Management Llc | Limitation du tréhalose produit par des levures en fermentation |
WO2017087330A1 (fr) | 2015-11-17 | 2017-05-26 | Novozymes A/S | Souches de levure appropriées pour la saccharification et la fermentation exprimant une glucoamylase et/ou une alpha-amylase |
WO2017112542A1 (fr) | 2015-12-22 | 2017-06-29 | Novozymes A/S | Procédés pour améliorer le rendement en produits de fermentation mettant en oeuvre une phospholipase c |
WO2017148389A1 (fr) | 2016-03-01 | 2017-09-08 | Novozymes A/S | Utilisation combinée d'au moins une endoprotéase et d'au moins une exoprotéase dans un procédé de fermentation en milieu solide pour améliorer le rendement d'éthanol |
WO2018015304A1 (fr) | 2016-07-21 | 2018-01-25 | Novozymes A/S | Variants de sérine protéase et polynucléotides codant pour ceux-ci |
WO2018015303A1 (fr) | 2016-07-21 | 2018-01-25 | Novozymes A/S | Variants de sérine protéase et polynucléotides les codant |
WO2018098124A1 (fr) | 2016-11-23 | 2018-05-31 | Novozymes A/S | Polypeptides ayant une activité protéase et polynucléotides codant pour ceux-ci |
WO2018098381A1 (fr) | 2016-11-23 | 2018-05-31 | Novozymes A/S | Levure améliorée pour la production d'éthanol |
US20180155744A1 (en) | 2016-12-05 | 2018-06-07 | Stellenbosch University | Recombinant yeast and use thereof |
WO2018118815A1 (fr) | 2016-12-21 | 2018-06-28 | Dupont Nutrition Biosciences Aps | Procédés d'utilisation de sérine-protéases thermostables |
WO2018164737A1 (fr) | 2017-03-07 | 2018-09-13 | Danisco Us Inc. | Anglucoamylase thermostable et procédés d'utilisation associés |
WO2018169780A1 (fr) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Procédés d'utilisation d'une sérine protéase d'archaea |
WO2018191215A1 (fr) | 2017-04-11 | 2018-10-18 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2019005755A1 (fr) | 2017-06-28 | 2019-01-03 | Novozymes A/S | Polypeptides présentant une activité tréhalase et polynucléotides codant pour ceux-ci |
WO2019030165A1 (fr) | 2017-08-08 | 2019-02-14 | Novozymes A/S | Polypeptides ayant une activité tréhalase et leur utilisation dans un procédé de production de produits de fermentation |
WO2019083831A1 (fr) | 2017-10-23 | 2019-05-02 | Novozymes A/S | Procédés pour la réduction d'acide lactique dans un système de fermentation de biocarburant |
WO2019113415A1 (fr) | 2017-12-08 | 2019-06-13 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ces derniers |
WO2019113413A1 (fr) | 2017-12-08 | 2019-06-13 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ces derniers |
WO2019161227A1 (fr) | 2018-02-15 | 2019-08-22 | Novozymes A/S | Levure améliorée pour la production d'éthanol |
WO2019197318A1 (fr) | 2018-04-09 | 2019-10-17 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2019231944A2 (fr) | 2018-05-31 | 2019-12-05 | Novozymes A/S | Procédés d'amélioration de la croissance et de la productivité de levures |
WO2020010101A2 (fr) | 2018-07-04 | 2020-01-09 | Danisco Us Inc | Glucoamylases et leurs procédés d'utilisation |
WO2020014407A1 (fr) | 2018-07-11 | 2020-01-16 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2020023411A1 (fr) | 2018-07-25 | 2020-01-30 | Novozymes A/S | Levure exprimant une enzyme pour la production d'éthanol |
WO2020076697A1 (fr) | 2018-10-08 | 2020-04-16 | Novozymes A/S | Levure exprimant une enzyme pour la production d'éthanol |
WO2020187883A1 (fr) | 2019-03-18 | 2020-09-24 | Novozymes A/S | Polypeptides présentant une activité de pullulanase appropriée pour une utilisation dans la liquéfaction |
WO2021025872A1 (fr) | 2019-08-06 | 2021-02-11 | Novozymes A/S | Protéines de fusion pour une expression enzymatique améliorée |
WO2021055395A1 (fr) | 2019-09-16 | 2021-03-25 | Novozymes A/S | Polypeptides dotés d'une activité bêta-glucanase et polynucléotides codant pour ces polypeptides |
WO2021126966A1 (fr) | 2019-12-16 | 2021-06-24 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2021163015A1 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Procédé de production d'éthanol à partir d'amidon brut à l'aide de variants d'alpha-amylase |
WO2021163036A1 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Processus d'hydrolyse d'amidon brut de production d'un produit de fermentation |
WO2021163011A2 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ceux-ci |
WO2021163030A2 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ces derniers |
WO2022090564A1 (fr) | 2020-11-02 | 2022-05-05 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2022173694A1 (fr) | 2021-02-10 | 2022-08-18 | Novozymes A/S | Polypeptides ayant une activité de pectinase, polynucléotides codant pour ceux-ci et leurs utilisations |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0911966B1 (pt) * | 2008-05-11 | 2018-11-13 | Univ Stellenbosch | polinucleotídeo codificando uma celobioidrolase |
EP2361311B1 (fr) * | 2008-11-21 | 2017-01-18 | Lallemand Hungary Liquidity Management LLC | Levure exprimant des cellulases pour saccharification et fermentation simultanées utilisant la cellulose |
MX2022000831A (es) * | 2019-08-05 | 2022-02-10 | Novozymes As | Mezclas de enzimas y procesos para producir un ingrediente alimenticio de alto contenido proteico a partir de un subproducto de la vinaza entera. |
-
2023
- 2023-12-19 WO PCT/US2023/084946 patent/WO2024137704A2/fr unknown
Patent Citations (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002921A2 (fr) | 1983-01-28 | 1984-08-02 | Cetus Corp | cADN GLUCOAMYLASE |
US4598048A (en) | 1983-03-25 | 1986-07-01 | Novo Industri A/S | Preparation of a maltogenic amylase enzyme |
US4604355A (en) | 1983-03-25 | 1986-08-05 | Novo Industri A/S | Maltogenic amylase enzyme, preparation and use thereof |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1992000381A1 (fr) | 1990-06-29 | 1992-01-09 | Novo Nordisk A/S | Hydrolyse enzymatique de l'amidon en glucose a l'aide d'une enzyme produite par genie genetique |
WO1992002614A1 (fr) | 1990-08-01 | 1992-02-20 | Novo Nordisk A/S | Nouvelles pullulanases thermostables |
WO1992006204A1 (fr) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Banques de recepteurs heteromeres a expression en surface |
WO1994025612A2 (fr) | 1993-05-05 | 1994-11-10 | Institut Pasteur | Sequences de nucleotides pour le controle de l'expression de sequences d'adn dans un hote cellulaire |
WO1995017413A1 (fr) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Procede permettant une conception et une synthese evolutives de polymeres fonctionnels sur la base d'elements et de codes de remodelage |
WO1995022625A1 (fr) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Mutagenese d'adn par fragmentation aleatoire et reassemblage |
WO1995033836A1 (fr) | 1994-06-03 | 1995-12-14 | Novo Nordisk Biotech, Inc. | Phosphonyldipeptides efficaces dans le traitement de maladies cardiovasculaires |
WO1996023873A1 (fr) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Alleles d'amylase-alpha |
WO1996023874A1 (fr) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Technique de mise au point de mutants d'amylase-alpha dotes de proprietes predefinies |
WO1996028567A1 (fr) | 1995-03-09 | 1996-09-19 | Genencor International, Inc. | Procede de liquefaction de l'amidon |
WO1997033976A1 (fr) | 1996-03-14 | 1997-09-18 | Korea Institute Of Science And Technology | Ds11(kctc 0231bp), nouvelle souche de bacillus sp. et nouvelle phytase produite a partir de ladite souche |
WO1997038096A1 (fr) | 1996-04-05 | 1997-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Nouvelle phytase et gene codant pour ladite phytase |
WO1997041213A1 (fr) | 1996-04-30 | 1997-11-06 | Novo Nordisk A/S | MUTANTS DUNE AMYLASE-$g(a) |
WO1997048812A2 (fr) | 1996-06-14 | 1997-12-24 | Her Majesty The Queen In Right Of Canada, Represented By The Department Of Agriculture And Agri-Food Canada | Sequences d'adn codant des phytases de micro-organismes de ruminants |
WO1998005785A1 (fr) | 1996-08-01 | 1998-02-12 | Biocem | Phytases de plantes et applications biotechnologiques |
WO1998006856A1 (fr) | 1996-08-13 | 1998-02-19 | Finnfeeds International Ltd. | Phytase, gene codant cette phytase, procede de production et utilisation de cette derniere |
WO1998013480A1 (fr) | 1996-09-25 | 1998-04-02 | Kyowa Hakko Kogyo Co., Ltd. | Nouvelle phytase et son procede de preparation |
WO1998020139A2 (fr) | 1996-11-05 | 1998-05-14 | Finnfeeds International Ltd. | Phytase obtenue a partir de germes de soja |
WO1998028408A1 (fr) | 1996-12-20 | 1998-07-02 | Novo Nordisk A/S | Phytase induite par peniophora |
WO1998056926A1 (fr) | 1997-06-10 | 1998-12-17 | Takara Shuzo Co., Ltd. | Systeme pour exprimer une proteine hyperthermostable |
WO1999019467A1 (fr) | 1997-10-13 | 1999-04-22 | Novo Nordisk A/S | MUTANTS D'α-AMYLASE |
WO1999028448A1 (fr) | 1997-11-26 | 1999-06-10 | Novo Nordisk A/S | Glucoamylase thermostable |
US6162628A (en) | 1998-02-27 | 2000-12-19 | Novo Nordisk A/S | Maltogenic alpha-amylase variants |
WO1999048330A1 (fr) | 1998-03-19 | 1999-09-23 | Koninklijke Philips Electronics N.V. | Prothese auditive a detecteur pour reception de signaux sans fil et dispositif associe |
WO1999049022A1 (fr) | 1998-03-23 | 1999-09-30 | Novo Nordisk A/S | Variant de phytase |
WO2000004136A1 (fr) | 1998-07-15 | 2000-01-27 | Novozymes A/S | Variants de glucoamylase |
WO2000060059A2 (fr) | 1999-03-30 | 2000-10-12 | NovozymesA/S | Variantes d'alpha amylase |
WO2001004273A2 (fr) | 1999-07-09 | 2001-01-18 | Novozymes A/S | Variante de glucoamylase |
WO2001062947A1 (fr) | 2000-02-23 | 2001-08-30 | Novozymes A/S | Fermentation a l'aide de la phytase |
WO2002010355A2 (fr) | 2000-08-01 | 2002-02-07 | Novozymes A/S | Mutants d'alpha-amylase a proprietes modifiees |
WO2002092797A2 (fr) | 2001-05-15 | 2002-11-21 | Novozymes A/S | Variant d'alpha-amylases ayant des proprietes modifiees |
WO2003048353A1 (fr) | 2001-12-07 | 2003-06-12 | Novozymes A/S | Polypeptides a activite proteasique et acides nucleiques codant ces polypeptides |
WO2003066847A2 (fr) | 2002-02-08 | 2003-08-14 | Novozymes A/S | Variants de phytase |
WO2004055178A1 (fr) | 2002-12-17 | 2004-07-01 | Novozymes A/S | Alpha-amylases thermostables |
WO2004085638A1 (fr) | 2003-03-25 | 2004-10-07 | Republic Of National Fisheries Research And Development Institute | Phytase obtenue a partir de citrobacter braakii |
WO2004106533A1 (fr) | 2003-05-30 | 2004-12-09 | Novozymes A/S | Procedes de fabrication de produits d'alcool |
WO2005003311A2 (fr) | 2003-06-25 | 2005-01-13 | Novozymes A/S | Enzymes de traitement d'amidon |
WO2005045018A1 (fr) | 2003-10-28 | 2005-05-19 | Novozymes North America, Inc. | Enzymes hybrides |
WO2005047499A1 (fr) | 2003-10-28 | 2005-05-26 | Novozymes Inc. | Polypeptides presentant une activite beta-glucosidase et polynucleotides codant pour ceux-ci |
WO2005069840A2 (fr) | 2004-01-16 | 2005-08-04 | Novozymes North America, Inc | Procedes destines a produire un produit de fermentation |
US8257959B2 (en) | 2004-06-08 | 2012-09-04 | Microbiogen Pty Ltd | Non-recombinant Saccharomyces strains that grow on xylose |
WO2006038062A1 (fr) | 2004-10-04 | 2006-04-13 | Danisco A/S | Phytase microbienne comme complement dans l'alimentation ou le fourrage |
WO2006037327A2 (fr) | 2004-10-04 | 2006-04-13 | Novozymes A/S | Polypeptides ayant une activite de phytase et polynucleotides codant ces polypeptides |
WO2006037328A1 (fr) | 2004-10-04 | 2006-04-13 | Novozymes A/S | Polypeptides presentant une activite phytase et polynucleotides codant pour ceux-ci |
WO2006063588A1 (fr) | 2004-12-13 | 2006-06-22 | Novozymes A/S | Polypeptides présentant une activité phosphatase acide et polynucléotides codant pour lesdits polypeptides |
WO2006069290A2 (fr) | 2004-12-22 | 2006-06-29 | Novozymes A/S | Enzymes pour le traitement d'amidon |
WO2006069289A2 (fr) | 2004-12-22 | 2006-06-29 | Novozymes North America, Inc | Polypeptides presentant l'activite d'une glucoamylase, et polynucleotides encodant ces polypeptides |
WO2006086792A2 (fr) | 2005-02-07 | 2006-08-17 | Novozymes North America, Inc. | Procedes de production de produit de fermentation |
EP1724336A1 (fr) | 2005-05-19 | 2006-11-22 | Paul Dr. Fricko | Procédé pour améliorer la qualité de séchage et de produit de microorganismes |
WO2007112739A1 (fr) | 2006-04-04 | 2007-10-11 | Novozymes A/S | Variants de phytase |
WO2008092901A2 (fr) | 2007-01-30 | 2008-08-07 | Novozymes A/S | Polypeptides ayant une activité phytase et polynucléotides codant pour ceux-ci |
WO2008116878A1 (fr) | 2007-03-26 | 2008-10-02 | Novozymes A/S | Phytase de hafnia |
WO2009052101A1 (fr) | 2007-10-18 | 2009-04-23 | Danisco Us, Inc. | Mélanges d'enzymes pour fermentation |
WO2009061379A2 (fr) | 2007-11-05 | 2009-05-14 | Danisco Us Inc., Genencor Division | Variants d'alpha-amilase avec des propriétés modifiées |
WO2009129489A2 (fr) | 2008-04-18 | 2009-10-22 | Danisco Us Inc., Genencor Division | Variants dephytase de buttiauxella sp. |
WO2009149130A2 (fr) | 2008-06-06 | 2009-12-10 | Danisco Us Inc. | Variants d'alpha-amylase (amys) de geobacillus stearothermophilus présentant des propriétés améliorées |
WO2010008841A2 (fr) | 2008-06-23 | 2010-01-21 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2010036515A1 (fr) | 2008-09-25 | 2010-04-01 | Danisco Us Inc. | Mélanges d'alpha-amylases, et leurs méthodes d'utilisation |
WO2010034835A2 (fr) | 2008-09-26 | 2010-04-01 | Novozymes A/S | Variant de phytase de hafnia |
WO2010115021A2 (fr) | 2009-04-01 | 2010-10-07 | Danisco Us Inc. | Compositions et procédés comprenant des variantes alpha-amylases qui possèdent des propriétés modifiées |
US8326547B2 (en) | 2009-10-07 | 2012-12-04 | Nanjingjinsirui Science & Technology Biology Corp. | Method of sequence optimization for improved recombinant protein expression using a particle swarm optimization algorithm |
WO2011066560A1 (fr) | 2009-11-30 | 2011-06-03 | Novozymes A/S | Polypeptides a activite glucoamylase et polynucleotides codant pour lesdits polypeptides |
WO2011066576A1 (fr) | 2009-11-30 | 2011-06-03 | Novozymes A/S | Polypeptides a activite glucoamylase et polynucleotides codant pour lesdits polypeptides |
WO2011068803A1 (fr) | 2009-12-01 | 2011-06-09 | Novozymes A/S | Polypeptides possédant une activité de glucoamylase et polynucléotides codant pour ceux-ci |
WO2011087836A2 (fr) | 2009-12-22 | 2011-07-21 | Novozymes A/S | Variants de pullulanase et utilisations de ceux-ci |
WO2011076123A1 (fr) | 2009-12-22 | 2011-06-30 | Novozymes A/S | Compositions comprenant un polypeptide renforçateur et un enzyme dégradant l'amidon, et utilisations correspondantes |
WO2011082425A2 (fr) | 2010-01-04 | 2011-07-07 | Novozymes A/S | Variants d'alpha-amylase et polynucleotides les codant |
WO2011128712A1 (fr) | 2010-04-12 | 2011-10-20 | Stellenbosch University | Production de biocarburant |
WO2011127802A1 (fr) | 2010-04-14 | 2011-10-20 | Novozymes A/S | Polypeptides présentant une activité glucoamylase et polynucléotides codant lesdits polypeptides |
WO2011153516A2 (fr) | 2010-06-03 | 2011-12-08 | Mascoma Corporation | Levure à expression d'enzymes saccharolytiques pour la transformation biologique consolidée au moyen d'amidon et de cellulose |
WO2012044915A2 (fr) | 2010-10-01 | 2012-04-05 | Novozymes, Inc. | Variants de bêta-glucosidase et polynucléotides les codant |
WO2012064351A1 (fr) | 2010-11-08 | 2012-05-18 | Novozymes A/S | Polypeptides présentant une activité glucoamylase et polynucléotides codant lesdits polypeptides |
US20120135481A1 (en) | 2010-11-22 | 2012-05-31 | Novozymes, Inc. | Compositions and methods for 3-hydroxypropionic acid production |
WO2012088303A2 (fr) | 2010-12-22 | 2012-06-28 | Novozymes North America, Inc. | Procédés d'obtention de produits de fermentation |
WO2013006756A2 (fr) | 2011-07-06 | 2013-01-10 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant ces variants |
WO2013036526A1 (fr) | 2011-09-06 | 2013-03-14 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2013034106A1 (fr) | 2011-09-09 | 2013-03-14 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2013044867A1 (fr) | 2011-09-30 | 2013-04-04 | Novozymes A/S | Polypeptides à activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2013055676A1 (fr) | 2011-10-11 | 2013-04-18 | Novozymes North America, Inc. | Procédés de production de produits de fermentation |
WO2013053801A1 (fr) | 2011-10-11 | 2013-04-18 | Novozymes A/S | Variants de glucoamylase et polynucléotides les encodant |
WO2013082486A1 (fr) | 2011-12-02 | 2013-06-06 | Novozymes A/S | Procédés pour produire des produits de fermentation |
WO2013148993A1 (fr) | 2012-03-30 | 2013-10-03 | Novozymes North America, Inc. | Procédés de fabrication de produits de fermentation |
WO2014039773A1 (fr) | 2012-09-07 | 2014-03-13 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci et utilisations de ceux-ci |
WO2014085439A1 (fr) | 2012-11-30 | 2014-06-05 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2014138672A1 (fr) | 2013-03-08 | 2014-09-12 | Novozymes A/S | Variantes de cellobiohydrolase et polynucléotides codant pour celles-ci |
WO2014177541A2 (fr) | 2013-04-30 | 2014-11-06 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ces derniers |
WO2014177546A2 (fr) | 2013-04-30 | 2014-11-06 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ces derniers |
WO2014209789A1 (fr) | 2013-06-24 | 2014-12-31 | Novozymes A/S | Procédé d'extraction d'huile à partir de résidus dilués de distillation |
WO2014209800A1 (fr) | 2013-06-24 | 2014-12-31 | Novozymes A/S | Procédés de récupération d'huile à partir de procédés de production de produits de fermentation et procédés de production de produits de fermentation |
WO2015007639A1 (fr) | 2013-07-17 | 2015-01-22 | Novozymes A/S | Chimères de pullulanase et polynucléotides les codant |
WO2015031477A1 (fr) | 2013-08-30 | 2015-03-05 | Novozymes A/S | Composition d'enzyme et utilisations de celle-ci |
WO2015035914A1 (fr) | 2013-09-11 | 2015-03-19 | Novozymes A/S | Procédés de production de produits de fermentation |
US20150125925A1 (en) | 2013-11-05 | 2015-05-07 | The Procter & Gamble Company | Compositions and methods comprising serine protease variants |
WO2015110473A2 (fr) | 2014-01-22 | 2015-07-30 | Novozymes A/S | Variants de pullulanase et polynucléotides les codant |
WO2015143324A1 (fr) | 2014-03-21 | 2015-09-24 | Novozymes A/S | Procédés de production d'éthanol et de levure |
WO2015143317A1 (fr) | 2014-03-21 | 2015-09-24 | Novozymes A/S | Procédés de production d'éthanol à l'aide d'un organisme de fermentation |
WO2016040265A1 (fr) | 2014-09-08 | 2016-03-17 | Novozymes A/S | Variants de cellobiohydrolase et polynucléotides codant pour ces derniers |
WO2016045569A1 (fr) | 2014-09-23 | 2016-03-31 | Novozymes A/S | Procédés de production d'éthanol et organismes de fermentation |
WO2016062875A2 (fr) | 2014-10-23 | 2016-04-28 | Novozymes A/S | Variants de glucoamylase et polynucléotides les encodant |
WO2016087327A1 (fr) | 2014-12-01 | 2016-06-09 | Novozymes A/S | Polypeptides ayant une activité pullulanase comprenant les domaines x25, x45 et cbm41 |
WO2016087237A1 (fr) | 2014-12-02 | 2016-06-09 | Mahle International Gmbh | Procédé de fabrication d'un noyau de coulée perdu, noyau de coulée perdu et piston à conduit de refroidissement fabriqué à l'aide d'un tel noyau de coulée |
WO2016138437A1 (fr) | 2015-02-27 | 2016-09-01 | Novozymes A/S | Procédés de production d'éthanol à l'aide d'un organisme de fermentation |
WO2016153924A1 (fr) | 2015-03-20 | 2016-09-29 | Novozymes A/S | Procédés de production d'éthanol et levures produisant de l'éthanol |
WO2016205127A1 (fr) | 2015-06-18 | 2016-12-22 | Novozymes A/S | Polypeptides ayant une activité tréhalase et leur utilisation dans un procédé de production de produits de fermentation |
WO2017014974A1 (fr) | 2015-07-21 | 2017-01-26 | Novozymes A/S | Polypeptides présentant une activité de pullulanase appropriée pour une utilisation dans la liquéfaction |
WO2017037614A1 (fr) | 2015-09-04 | 2017-03-09 | Lallemand Hungary Liquidity Management Llc | Souches de levure destinées à l'expression et la sécrétion de protéines hétérologues à hautes températures |
WO2017050291A1 (fr) | 2015-09-25 | 2017-03-30 | Novozymes A/S | Utilisation de sérine protéases pour améliorer le rendement de l'éthanol |
WO2017066255A1 (fr) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2017077504A1 (fr) | 2015-11-06 | 2017-05-11 | Lallemand Hungary Liquidity Management Llc | Limitation du tréhalose produit par des levures en fermentation |
WO2017087330A1 (fr) | 2015-11-17 | 2017-05-26 | Novozymes A/S | Souches de levure appropriées pour la saccharification et la fermentation exprimant une glucoamylase et/ou une alpha-amylase |
WO2017112542A1 (fr) | 2015-12-22 | 2017-06-29 | Novozymes A/S | Procédés pour améliorer le rendement en produits de fermentation mettant en oeuvre une phospholipase c |
WO2017112533A1 (fr) | 2015-12-22 | 2017-06-29 | Novozymes A/S | Procédé d'extraction d'huile à partir de résidus de distillation fin |
WO2017112540A1 (fr) | 2015-12-22 | 2017-06-29 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2017112539A1 (fr) | 2015-12-22 | 2017-06-29 | Novozymes A/S | Procédé d'extraction d'huile de résidu de distillation soluble |
WO2017148389A1 (fr) | 2016-03-01 | 2017-09-08 | Novozymes A/S | Utilisation combinée d'au moins une endoprotéase et d'au moins une exoprotéase dans un procédé de fermentation en milieu solide pour améliorer le rendement d'éthanol |
WO2018015304A1 (fr) | 2016-07-21 | 2018-01-25 | Novozymes A/S | Variants de sérine protéase et polynucléotides codant pour ceux-ci |
WO2018015303A1 (fr) | 2016-07-21 | 2018-01-25 | Novozymes A/S | Variants de sérine protéase et polynucléotides les codant |
WO2018098124A1 (fr) | 2016-11-23 | 2018-05-31 | Novozymes A/S | Polypeptides ayant une activité protéase et polynucléotides codant pour ceux-ci |
WO2018098381A1 (fr) | 2016-11-23 | 2018-05-31 | Novozymes A/S | Levure améliorée pour la production d'éthanol |
US20180155744A1 (en) | 2016-12-05 | 2018-06-07 | Stellenbosch University | Recombinant yeast and use thereof |
WO2018118815A1 (fr) | 2016-12-21 | 2018-06-28 | Dupont Nutrition Biosciences Aps | Procédés d'utilisation de sérine-protéases thermostables |
WO2018164737A1 (fr) | 2017-03-07 | 2018-09-13 | Danisco Us Inc. | Anglucoamylase thermostable et procédés d'utilisation associés |
WO2018169780A1 (fr) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Procédés d'utilisation d'une sérine protéase d'archaea |
WO2018191215A1 (fr) | 2017-04-11 | 2018-10-18 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2019005755A1 (fr) | 2017-06-28 | 2019-01-03 | Novozymes A/S | Polypeptides présentant une activité tréhalase et polynucléotides codant pour ceux-ci |
WO2019030165A1 (fr) | 2017-08-08 | 2019-02-14 | Novozymes A/S | Polypeptides ayant une activité tréhalase et leur utilisation dans un procédé de production de produits de fermentation |
WO2019083831A1 (fr) | 2017-10-23 | 2019-05-02 | Novozymes A/S | Procédés pour la réduction d'acide lactique dans un système de fermentation de biocarburant |
WO2019113415A1 (fr) | 2017-12-08 | 2019-06-13 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ces derniers |
WO2019113413A1 (fr) | 2017-12-08 | 2019-06-13 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ces derniers |
WO2019161227A1 (fr) | 2018-02-15 | 2019-08-22 | Novozymes A/S | Levure améliorée pour la production d'éthanol |
WO2019197318A1 (fr) | 2018-04-09 | 2019-10-17 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ceux-ci |
WO2019231944A2 (fr) | 2018-05-31 | 2019-12-05 | Novozymes A/S | Procédés d'amélioration de la croissance et de la productivité de levures |
WO2020010101A2 (fr) | 2018-07-04 | 2020-01-09 | Danisco Us Inc | Glucoamylases et leurs procédés d'utilisation |
WO2020014407A1 (fr) | 2018-07-11 | 2020-01-16 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2020023411A1 (fr) | 2018-07-25 | 2020-01-30 | Novozymes A/S | Levure exprimant une enzyme pour la production d'éthanol |
WO2020076697A1 (fr) | 2018-10-08 | 2020-04-16 | Novozymes A/S | Levure exprimant une enzyme pour la production d'éthanol |
WO2020187883A1 (fr) | 2019-03-18 | 2020-09-24 | Novozymes A/S | Polypeptides présentant une activité de pullulanase appropriée pour une utilisation dans la liquéfaction |
WO2021025872A1 (fr) | 2019-08-06 | 2021-02-11 | Novozymes A/S | Protéines de fusion pour une expression enzymatique améliorée |
WO2021055395A1 (fr) | 2019-09-16 | 2021-03-25 | Novozymes A/S | Polypeptides dotés d'une activité bêta-glucanase et polynucléotides codant pour ces polypeptides |
WO2021126966A1 (fr) | 2019-12-16 | 2021-06-24 | Novozymes A/S | Procédés de production de produits de fermentation |
WO2021163015A1 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Procédé de production d'éthanol à partir d'amidon brut à l'aide de variants d'alpha-amylase |
WO2021163036A1 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Processus d'hydrolyse d'amidon brut de production d'un produit de fermentation |
WO2021163011A2 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides codant pour ceux-ci |
WO2021163030A2 (fr) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Polypeptides ayant une activité alpha-amylase et polynucléotides codant pour ces derniers |
WO2022090564A1 (fr) | 2020-11-02 | 2022-05-05 | Novozymes A/S | Variants de glucoamylase et polynucléotides codant pour ceux-ci |
WO2022173694A1 (fr) | 2021-02-10 | 2022-08-18 | Novozymes A/S | Polypeptides ayant une activité de pectinase, polynucléotides codant pour ceux-ci et leurs utilisations |
Non-Patent Citations (53)
Title |
---|
ADAMSGOTTSCHLINGKAISERSTEMS: "Methods in Yeast Genetics", 1998, COLD SPRING HARBOR PRESS |
BOTSTEINSHORTLE, SCIENCE, vol. 229, 1985, pages 4719 |
BOWIE ET AL., SCIENCE, vol. 247, 1990, pages 1306 - 1310 |
BOWIESAUER, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 2152 - 2156 |
BURGARD ET AL., BIOTECHNOL. BIOENG., vol. 84, 2003, pages 647 - 657 |
COOPER ET AL., EMBO J., vol. 12, 1993, pages 2575 - 2583 |
CUNNINGHAMWELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DAWSON ET AL., SCIENCE, vol. 266, 1994, pages 776 - 779 |
DE VOS ET AL., SCIENCE, vol. 255, 1992, pages 306 - 312 |
DERBYSHIRE ET AL., GENE, vol. 46, 1986, pages 145 |
EUR. J. BIOCHEM., vol. 223, 1994, pages 1 - 5 |
EUR. J. BIOCHEM., vol. 232, 1995, pages 1 - 6 |
EUR. J. BIOCHEM., vol. 237, 1996, pages 1 - 5 |
EUR. J. BIOCHEM., vol. 250, 1997, pages 1 - 6 |
EUR. J. BIOCHEM., vol. 264, 1999, pages 610 - 650 |
GHOSE, PURE AND APPL. CHEM., vol. 59, 1987, pages 257 - 268 |
GHOSEBISARIA, PURE & APPL. CHEM., vol. 59, 1987, pages 1739 - 1752 |
GORINSTEIN. S.LII. C, STARCH/STARKE, vol. 44, no. 12, 1992, pages 461 - 466 |
GUOSHERMAN, MOL. CELLULAR BIOL., vol. 15, 1995, pages 5983 - 5990 |
H. NEURATHR.L. HILL: "The Proteins", 1979, ACADEMIC PRESS |
HIGUCHI ET AL., NUCLEIC ACIDS RES, vol. 16, 1988, pages 7351 |
HILTON ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 4699 - 4708 |
HOPWOOD: "The Isolation of Mutants in Methods in Microbiology", 1970, ACADEMIC PRESS, pages: 363 - 433 |
HORTON ET AL., GENE, vol. 77, 1989, pages 61 |
HUE ET AL., JOURNAL OF BACTERIOLOGY, vol. 177, 1995, pages 3465 - 3471 |
IGLESIASTRAUTNER, MOLECULAR GENERAL GENETICS, vol. 189, 1983, pages 73 - 76 |
LEVER ET AL., ANAL. BIOCHEM., vol. 47, 1972, pages 273 - 279 |
LEVER: "A new reaction for colorimetric determination of carbohydrates", ANAL. BIOCHEM, vol. 47, 1972, pages 273 - 279, XP024820395, DOI: 10.1016/0003-2697(72)90301-6 |
LIN ET AL., BIOTECHNOL. BIOENG., vol. 90, 2005, pages 775 - 779 |
LO ET AL., PROC. NATL. ACAD. SCI. U.S.A, vol. 81, 1985, pages 2285 |
LOWMAN ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 10832 - 10837 |
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
NER ET AL., DNA, vol. 7, 1988, pages 127 |
NESS ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 893 - 896 |
REIDHAAR-OLSONSAUER, SCIENCE, vol. 241, 1988, pages 53 - 57 |
RICE ET AL., EMBOSS: THE EUROPEAN MOLECULAR BIOLOGY OPEN SOFTWARE SUITE, 2000 |
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2 |
ROMANOS ET AL., YEAST, vol. 8, 1992, pages 423 - 488 |
SARKARSOMMER, BIOTECHNIQUES, vol. 8, 1990, pages 404 |
SHALLOMSHOHAM, CURRENT OPINION IN MICROBIOLOGY, vol. 6, no. 3, 2003, pages 219 - 228 |
SHIMADA, METH. MOL. BIOL., vol. 57, 1996, pages 157 |
SIEZEN ET AL., PROTEIN ENGNG., vol. 4, 1991, pages 719 - 737 |
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523 |
SMITH ET AL., J. MOL. BIOL., vol. 224, 1992, pages 899 - 904 |
TEERI ET AL., BIOCHEM. SOC. TRANS., vol. 26, 1998, pages 173 - 178 |
TEERI, TRENDS IN BIOTECHNOLOGY, vol. 15, 1997, pages 160 - 167 |
TOMME ET AL., EUR. J. BIOCHEM., vol. 170, 1988, pages 575 - 581 |
VAN TILBEURGH ET AL., FEBS LETTERS, vol. 149, 1982, pages 152 - 156 |
VAN TILBEURGHCLAEYSSENS, FEBS LETTERS, vol. 187, 1985, pages 283 - 288 |
VENTURI ET AL., J. BASIC MICROBIOL., vol. 42, 2002, pages 55 - 66 |
WLODAVER ET AL., FEBS LETT., vol. 309, 1992, pages 59 - 64 |
ZHANG ET AL., BIOTECHNOLOGY ADVANCES, vol. 24, 2006, pages 452 - 481 |
ZHANGHENZEL, PROTEIN SCIENCE, vol. 13, 2004, pages 2819 - 2824 |
Also Published As
Publication number | Publication date |
---|---|
WO2024137704A3 (fr) | 2024-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240124902A1 (en) | Enzyme-expressing yeast for ethanol production | |
US11685910B2 (en) | Polypeptides having trehalase activity and the use thereof in process of producing fermentation products | |
US20200157581A1 (en) | Improved Yeast For Ethanol Production | |
CA3098718A1 (fr) | Procedes d'amelioration de la croissance et de la productivite de levures | |
WO2017050291A1 (fr) | Utilisation de sérine protéases pour améliorer le rendement de l'éthanol | |
US20220348967A1 (en) | Microorganisms With Improved Nitrogen Utilization For Ethanol Production | |
CN111094562A (zh) | 具有海藻糖酶活性的多肽及其在产生发酵产物的方法中的用途 | |
CA3210777A1 (fr) | Polypeptides ayant une activite de pectinase, polynucleotides codant pour ceux-ci et leurs utilisations | |
CN114127124A (zh) | 用于提高酶表达的融合蛋白 | |
WO2023274282A1 (fr) | Procédés de production de produits de fermentation utilisant des enzymes dégradant les fibres dans la fermentation | |
US20230002794A1 (en) | Microorganism for improved pentose fermentation | |
US11091753B2 (en) | Xylose fermenting yeast strains and processes thereof for ethanol production | |
US20190345522A1 (en) | Improved Processes For Production Of Ethanol From Xylose-Containing Cellulosic Substrates Using Engineered Yeast Strains | |
US20220251609A1 (en) | Microorganisms with improved nitrogen transport for ethanol production | |
WO2024137704A2 (fr) | Procédés de production de produits de fermentation faisant appel à des enzymes de dégradation de fibres avec levure modifiée | |
CN120283060A (en) | Process for producing fermentation products using fiber degrading enzymes and engineered yeasts | |
CN106536730A (zh) | 无糖基化酶及其用途 | |
WO2024258820A2 (fr) | Procédés de fabrication de produits de fermentation à l'aide d'une levure modifiée exprimant une bêta-xylosidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23848059 Country of ref document: EP Kind code of ref document: A2 |