[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024134774A1 - オイルコントロールリング - Google Patents

オイルコントロールリング Download PDF

Info

Publication number
WO2024134774A1
WO2024134774A1 PCT/JP2022/046912 JP2022046912W WO2024134774A1 WO 2024134774 A1 WO2024134774 A1 WO 2024134774A1 JP 2022046912 W JP2022046912 W JP 2022046912W WO 2024134774 A1 WO2024134774 A1 WO 2024134774A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail portion
control ring
oil control
rail
pair
Prior art date
Application number
PCT/JP2022/046912
Other languages
English (en)
French (fr)
Inventor
幸彦 難波
佳之 平出
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to PCT/JP2022/046912 priority Critical patent/WO2024134774A1/ja
Priority to JP2022580528A priority patent/JP7339456B1/ja
Publication of WO2024134774A1 publication Critical patent/WO2024134774A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings

Definitions

  • This disclosure relates to an oil control ring for use in an internal combustion engine.
  • Patent Document 1 describes an oil control ring used in internal combustion engines of automobiles, etc., in which the outer peripheral surfaces of the upper and lower rail sections have sliding surfaces that slide against the inner peripheral surface of the cylinder, and a tapered surface that is located on the combustion chamber side of the sliding surfaces (the upper surface side of the oil ring) and gradually reduces in diameter toward the combustion chamber side.
  • a tapered surface is provided to relatively reduce the area of the sliding surface that slides against the cylinder inner surface.
  • the contact surface pressure between the sliding surface and the cylinder inner surface is increased, promoting the oil scraping action when the piston descends.
  • the sliding surface rides up onto the oil film formed between the tapered surface and the cylinder inner surface, suppressing the scraping up of oil.
  • the cross-sectional shape of the sliding contact area which includes the part that slides against the cylinder inner surface and its vicinity, is asymmetrical from top to bottom, and it is necessary to manage the front and back, which affects manufacturing costs.
  • the inventors conducted extensive research. As a result, they discovered a configuration for the outer peripheral surface of the oil control ring that can reduce oil consumption while providing vertical symmetry at least in the sliding contact area.
  • An oil control ring is an oil control ring comprising an annular main body having an inner peripheral surface and an outer peripheral surface, one side surface and the other side surface substantially perpendicular to the inner peripheral surface, and a coil expander attached along the inner peripheral surface, the main body having a pair of annular first and second rail portions and a column portion connecting the first and second rail portions, the outer peripheral surfaces of the first and second rail portions each having a protruding surface with a cross-sectional shape that protrudes convexly toward the radially outward direction, the protruding surface being an arc surface with a radius of curvature of 0.30 mm or less in a sliding contact region including a vertex that is the radially outermost point of the first or second rail portion.
  • the outer peripheral surfaces of the first rail portion and the second rail portion have protruding surfaces with a cross-sectional shape that protrudes convexly toward the radially outward direction.
  • the protruding surfaces are arc surfaces with a radius of curvature of 0.30 mm or less in a sliding contact area that includes a vertex that is the radially outermost point of the first rail portion or the second rail portion.
  • the cross-sectional shape is simplified by making the cross-sectional shape vertically symmetrical at least in the sliding contact area.
  • the oil can be sufficiently scraped down by the sliding contact area. This makes it possible to reduce the amount of oil consumption. This makes it possible to reduce the amount of oil consumption while simplifying the cross-sectional shapes of the outer peripheral surfaces of the first rail portion and the second rail portion.
  • An oil control ring is an oil control ring comprising an annular main body having an inner peripheral surface, an outer peripheral surface, and one side and the other side substantially perpendicular to the inner peripheral surface, and a coil expander attached along the inner peripheral surface, the main body having a pair of annular first and second rail portions and a column portion connecting the first and second rail portions, the outer peripheral surfaces of the first and second rail portions having protruding surfaces with cross-sectional shapes that protrude radially outward, at least a portion of the protruding surfaces being located on an imaginary convex surface that passes through an apex that is the radially outermost point of the first or second rail portion and a pair of points that are 0.05 mm away from the apex on either side of the axial direction and located at a predetermined drop radially inward, the drop being 0.0045 mm or more.
  • the outer peripheral surfaces of the first rail portion and the second rail portion each have a protruding surface with a cross-sectional shape that protrudes convexly toward the radially outward direction. At least a portion of the protruding surface is located on an imaginary convex surface that passes through the apex and a pair of points that are 0.05 mm away from the apex on both sides in the axial direction and located at a predetermined drop on the radially inward direction. The drop is 0.0045 mm or more.
  • the cross-sectional shape is simplified by making the cross-sectional shape at least in the sliding contact area symmetrical from above to below.
  • the sliding contact area can sufficiently scrape down the oil. Therefore, the amount of oil consumption can be reduced. Therefore, the amount of oil consumption can be reduced while simplifying the cross-sectional shape of the outer peripheral surfaces of the first rail portion and the second rail portion.
  • the apex may be located at the center in the axial direction of each of the outer circumferential surfaces of the first rail portion and the second rail portion.
  • the outer peripheral surfaces of the first rail portion and the second rail portion include a first arc surface including an apex, a pair of bevel surfaces that are tapered surfaces inclined at a predetermined angle relative to the radial direction, and a second arc surface that connects the protruding surface and the bevel surface, and the radius of curvature of the first arc surface may be greater than the radius of curvature of the second arc surface.
  • the ratio R2/R1 of the radius of curvature R1 of the first arc surface to the radius of curvature R2 of the second arc surface may be 0.1 or more and 0.6 or less.
  • An oil control ring is an oil control ring comprising an annular main body having an inner peripheral surface, an outer peripheral surface, and one side and the other side substantially perpendicular to the inner peripheral surface, and a coil expander attached along the inner peripheral surface, the main body having a pair of annular first and second rail portions and a column portion connecting the first and second rail portions, the outer peripheral surfaces of the first and second rail portions having protruding surfaces with cross-sectional shapes that protrude convexly toward the outside in the radial direction, the protruding surfaces including a sliding region having a pair of partial arc surfaces provided on the one side and the other side, respectively, and a flat portion extending parallel to the axial direction so as to connect the pair of partial arc surfaces, the pair of partial arc surfaces being portions of arc surfaces with a radius of curvature of 0.30 mm or less passing through both axial ends of the sliding region, and the sliding region having a cross-sectional shape that is vertically symmetrical with respect
  • the outer peripheral surfaces of the first rail portion and the second rail portion each have a protruding surface with a cross-sectional shape that protrudes convexly toward the radially outward direction.
  • the protruding surface includes a sliding region having a pair of partial arc surfaces provided on one side surface side and the other side surface side, respectively, and a flat portion extending parallel to the axial direction so as to connect the pair of partial arc surfaces.
  • the pair of partial arc surfaces is a part of an arc surface having a radius of curvature of 0.30 mm or less passing through both ends of the sliding region in the axial direction.
  • the sliding region has a cross-sectional shape that is vertically symmetrical with respect to a virtual vertex that is the virtual radially outermost point of the arc surface.
  • the flat portion of the protruding surface and the pair of partial arc surfaces on both sides of the flat portion form a sliding region that is axially symmetrical with respect to the virtual vertex.
  • the cross-sectional shape is simplified by making at least the sliding region vertically symmetrical.
  • the sliding region can sufficiently scrape down the oil.
  • the oil consumption can be reduced. This allows the cross-sectional shape of the outer circumferential surfaces of the first and second rail sections to be simplified while reducing oil consumption.
  • the axial dimension of the flat portion may be greater than 0 mm and less than 0.100 mm.
  • the oil control ring can reduce oil consumption while simplifying the cross-sectional shape of the outer peripheral surfaces of the first rail portion and the second rail portion.
  • FIG. 2 is a perspective view of an example of an oil control ring according to an embodiment.
  • FIG. 2 is an exploded perspective view of the oil control ring of FIG. 1 .
  • FIG. 3 is a plan view of the oil ring body of FIG. 2 .
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 5 is an enlarged view of a main portion of the cross section of FIG. 4 (an enlarged view of an outer periphery of a first rail portion);
  • FIG. 6A is an enlarged cross-sectional view of a sliding contact portion in the cross section of Fig. 5.
  • Fig. 6B is an enlarged cross-sectional view corresponding to Fig. 6A of an oil ring main body according to a modified example.
  • FIG. 7 is a diagram showing the simulation results of the oil control ring having the cross section of FIG. 6(b).
  • FIG. 1 is a perspective view of an example of an oil control ring according to an embodiment.
  • FIG. 2 is an exploded perspective view of the oil control ring of FIG. 1.
  • FIG. 3 is a plan view of the oil ring main body of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • the cross-sectional shape refers to the cross-sectional shape taken along a cross section including the central axis of the oil control ring.
  • the oil control ring 1 comprises an annular main body 2 and an annular coil expander 3 attached along the inner peripheral surface 2a of the main body 2.
  • the oil control ring 1 is a so-called two-piece oil ring.
  • a joint 4 is formed in the main body 2.
  • the oil control ring 1 is used, for example, by being assembled into a ring groove provided on the outer peripheral surface of a piston in an internal combustion engine of an automobile.
  • the main body 2 abuts against the inner peripheral surface of the cylinder at a substantially constant surface pressure due to the tangential tension of the coil expander 3.
  • the coil expander 3 is a spring-like part formed into an annular shape.
  • the coil expander 3 is formed, for example, from a wire material such as oil-hardened spring steel.
  • the main body 2 is formed, for example, from cast iron or steel containing multiple metal elements so that it has the strength, heat resistance, and elasticity required depending on the application.
  • the outer peripheral surface 2b of the main body 2 (the outer peripheral surfaces of the first rail portion 7 and the second rail portion 8) is surface-modified with, for example, a hard chrome plating layer, a chrome nitride layer, a PVD layer, or an iron nitride layer, thereby improving the wear resistance of the main body 2.
  • the main body 2 has a pair of first and second rail portions 7 and 8, and a pillar portion 13 that connects the first and second rail portions 7 and 8.
  • the inner circumferential surface 2a of the main body 2 has a curved shape recessed toward the column portion 13 so that the coil expander 3 can be accommodated.
  • the main body 2 has a pair of side surfaces 2c (one side surface) and 2d (the other side surface) that are substantially perpendicular to a pair of end faces (inner circumferential surface) 2e on the radially inner side of the inner circumferential surface 2a.
  • the direction connecting the inner circumferential surface 2a and the outer circumferential surface 2b is defined as the thickness direction of the oil control ring 1.
  • the direction connecting the side surfaces 2c and 2d is defined as the width direction of the oil control ring 1.
  • the radial direction of the oil control ring 1 coincides with the thickness direction.
  • the width h1 of the main body 2 is, for example, 1.0 mm or more and 5.0 mm or less.
  • the thickness a1 of the main body 2 is, for example, 1.0 mm or more and 5.0 mm or less.
  • the outer diameter R0 of the main body 2 (nominal diameter d1, see Figure 3) is, for example, 60 mm or more and 400 mm or less.
  • Shape measuring devices include surface roughness measuring devices.
  • the pair of first rail portion 7 and second rail portion 8 face each other in the axial direction of the oil control ring 1, sandwiching the pillar portion 13.
  • the pillar portion 13 connects the center portions of the first rail portion 7 and the second rail portion 8 in the thickness direction.
  • the first rail portion 7 is arranged on the side surface 2c of the pillar portion 13, and protrudes radially from the pillar portion 13 on both the inner and outer sides.
  • the second rail portion 8 is arranged on the side surface 2d of the pillar portion 13, and protrudes radially from the pillar portion 13 on both the inner and outer sides.
  • the pillar portion 13 is formed thinner in the thickness direction than the first rail portion 7 and the second rail portion 8. In this way, the main body portion 2 has a cross-sectional shape that is approximately H-shaped.
  • the first rail portion 7 and the second rail portion 8 are formed integrally with the pillar portion 13.
  • a plurality of oil holes 14 are arranged in a row along the circumferential direction of the oil control ring 1 in the center of the width direction of the pillar portion 13.
  • the cross-sectional shape of each of the plurality of oil holes 14 along the circumferential direction is, for example, a substantially elliptical shape.
  • the oil holes 14 are arranged in the axial center of the pillar portion 13. The oil holes 14 penetrate the pillar portion 13 in the radial direction.
  • the multiple oil holes 14 are formed, for example, by cutting or drilling with a laser. Oil for lubricating the inner peripheral surface of the cylinder is supplied to the inner peripheral surface of the cylinder by passing through the multiple oil holes 14 from the inner peripheral side of the pillar portion 13 to the outer peripheral side of the pillar portion 13. The oil on the inner peripheral surface of the cylinder is returned, for example, to an oil pan by passing through the multiple oil holes 14 from the outer peripheral side of the pillar portion 13 to the inner peripheral side.
  • the joint 4 is a portion of the main body 2 that is separated, and is formed by a pair of opposing joint ends 5, 6. Each of the pair of joint ends 5, 6 is a free end of the main body 2.
  • the gap of the joint 4 (joint gap s1) is set so that they do not butt together when, for example, the oil control ring 1 is heated and thermally expands.
  • the joint 4 functions as an escape for the thermal expansion of the main body 2 caused by the temperature difference between the oil control ring 1 and the cylinder when the oil control ring 1 is in use.
  • the first rail portion 7 and the second rail portion 8 apply oil to the inner circumferential surface of the cylinder, forming an oil film.
  • the oil control ring 1 scrapes off excess oil on the inner circumferential surface of the cylinder with the first rail portion 7 and the second rail portion 8. This allows an oil film of appropriate thickness to be formed on the inner circumferential surface of the cylinder.
  • the outer peripheral surface 2b of the main body portion 2 includes the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8.
  • the second rail portion 8 is symmetrical with the first rail portion 7 in the axial direction with respect to the center of the width of the main body portion 2, so the configuration of the first rail portion 7 will be described as a representative and redundant explanations of the second rail portion 8 will be omitted.
  • the outer peripheral surface 7a of the first rail portion 7 has a protruding surface 10, a beveled surface 7c, and a beveled surface 7d.
  • the protruding surface 10 is a portion of a cross-sectional shape that protrudes convexly radially outward.
  • the beveled surfaces 7c and 7d are tapered surfaces that are inclined at predetermined angles ⁇ 1 and ⁇ 2 with respect to the radial direction, respectively.
  • the beveled surface 7c connects the protruding surface 10 to the side surface 2c via the connecting portion 7b.
  • the beveled surface 7d connects the protruding surface 10 to the column portion 13.
  • the predetermined angles ⁇ 1 and ⁇ 2 may be, for example, 10° or more and 35° or less.
  • the cross-sectional shape and degree of protrusion of the protruding surface 10 are specified so as to facilitate the formation of an oil film on the inner peripheral surface of the cylinder.
  • the predetermined angles ⁇ 1 and ⁇ 2 may be equal to each other or different from each other.
  • the protruding surface 10 (the outer peripheral surface 7a of the first rail portion 7) includes a first arc surface 11, a pair of bevel surfaces 7c, 7d, and a pair of second arc surfaces 12 connecting the first arc surface 11 and the bevel surfaces 7c, 7d.
  • the protruding surface 10 is composed of the first arc surface 11 and a pair of second arc surfaces 12, which are three curved regions. In other words, it has a symmetrical barrel shape that is symmetrical in the width direction A with respect to the first arc surface 11 including the outermost point (vertex 10a) of the outer peripheral surface 7a of the first rail portion 7.
  • the sliding area 15 (first arc surface 11) is an area including a sliding portion that slides against the cylinder inner surface and a sliding peripheral portion within a certain range on both sides of the sliding portion in the axial direction.
  • the certain range corresponds to the range of the actual contact width Lh1 between the first rail portion 7 and the cylinder inner surface.
  • the certain range corresponds to, for example, the range from the end 11a on the top dead center side of the first arc surface 11 to the end 11b on the bottom dead center side.
  • the certain range may be a part of the range from the end 11a on the top dead center side of the first arc surface 11 to the end 11b on the bottom dead center side.
  • the actual contact width Lh1 may be 0.010 mm or more and 0.15 mm or less.
  • the actual contact width Lh1 may be, for example, 0.10 mm.
  • the first arc surface 11 includes a vertex 10a, which is the radially outermost point of the first rail portion 7.
  • the vertex 10a corresponds to a sliding contact portion that slides against the inner peripheral surface of the cylinder.
  • the first arc surface 11 between the vertex 10a and the end 11a, and between the vertex 10a and the end 11b, correspond to a sliding peripheral portion that is within a certain range on both sides of the sliding contact portion in the axial direction.
  • the protruding surface 10 includes a sliding area 15.
  • the sliding area 15 is a portion of the outer peripheral surface 7a of the first rail portion 7 that contributes to the formation of an oil film on the inner peripheral surface of the cylinder.
  • the sliding area 15 is a portion that contributes to the formation of an oil film.
  • the cross-sectional shape of the portion that contributes to the formation of an oil film tends to become complicated, for example, when more and more efforts are made. By simplifying the cross-sectional shape of the sliding area 15, it becomes easier to suppress manufacturing costs. Therefore, the sliding area 15 has a cross-sectional shape that is axially symmetrical (vertically symmetrical) with respect to the apex 10a.
  • the sliding area 15 coincides with the range of the first arc surface 11. Note that the sliding area 15 may be a part of the first arc surface 11 and a range that is axially symmetrical with respect to the apex 10a.
  • the apex 10a is located at the axial center of the outer circumferential surface 7a of the first rail portion 7.
  • the first rail portion 7 has a cross-sectional shape that is axially symmetrical with respect to the apex 10a.
  • the first arc surface 11 is an arc surface with a radius of curvature R1 of 0.30 mm or less.
  • the radius of curvature R1 may be 0.050 mm or more.
  • the radius of curvature R1 may be 0.076 mm or more and 0.276 mm or less.
  • the first arc surface 11 forms a sliding contact area 15 that is axially symmetrical with respect to the apex 10a.
  • the radius of curvature R1 of the first arc surface 11 is greater than the radii of curvature R2, R3 of the second arc surface 12.
  • the ratios R2/R1 and R3/R1 of the radius of curvature R1 of the first arc surface 11 to the radii of curvature R2, R3 of the second arc surface 12 are greater than or equal to 0.1 and less than or equal to 0.6.
  • the radii of curvature R2, R3 of the second arc surface 12 are, for example, equal to each other.
  • the radii of curvature R2, R3 of the second arc surface 12 may be different from each other, for example.
  • the axial dimension of protruding surface 10 (outer peripheral surface width Lh0) is, for example, 0.10 mm or more and 0.30 mm or less.
  • the axial dimension of protruding surface 10 corresponds to the axial dimension from the boundary between bevel surface 7c and protruding surface 10 to the boundary between bevel surface 7d and protruding surface 10.
  • the radial dimension D2 from apex 10a to the boundary between bevel surface 7c (or bevel surface 7d) and protruding surface 10 may be 0.0045 mm or more and 0.0150 mm or less.
  • the protruding surface 10 (here, the first arc surface 11) is located on an imaginary convex surface 16 that passes through the apex 10a and a pair of ends 11a, 11b.
  • the pair of ends 11a, 11b are points that are 0.05 mm away from the apex 10a on either side in the axial direction and are located at a predetermined drop D1 radially inward.
  • the drop D1 is 0.0045 mm or more.
  • the drop D1 may be 0.0150 mm or less.
  • the drop D1 may be 0.0075 mm or more and 0.0100 mm or less.
  • Example 1 As shown in Table 1, the oil control ring 1 of Example 1 was produced in the following procedure. First, the main body 2 was produced with the first arc surface 11 provided on the outer circumferential surface 7a of the first rail portion 7 and the outer circumferential surface 8a of the second rail portion 8. The main body 2 was produced by using a hard steel wire (corresponding to SWRH77B) according to the JIS standard, and subjecting the wire to rolling and drawing. The width of the main body 2 was set to 3.0 mm. The thickness of the main body 2 was set to 2.5 mm. The actual contact width Lh1 was set to 0.04 mm. The tension was set to 12.48 N.
  • a hard steel wire corresponding to SWRH77B
  • the width of the main body 2 was set to 3.0 mm.
  • the thickness of the main body 2 was set to 2.5 mm.
  • the actual contact width Lh1 was set to 0.04 mm.
  • the tension was set to 12.48 N.
  • the first arc surface 11 was a circular surface with a vertex 10a located at the center and a curvature radius R1 of 0.30 mm.
  • the widths of the first rail portion 7 and the second rail portion 8 were set to 0.25 mm.
  • a hard carbon film (DLC film) was formed as a hard film on the outer peripheral surface 2b of the main body 2 by the PVD method.
  • Example 2 An oil control ring 1 of Example 2 was produced in the same manner as the oil control ring 1 of Example 1, except that the actual contact width Lh1 was set to 0.05 mm and the tension was set to 15.60 N.
  • Comparative Example 1 An oil control ring of Comparative Example 1 was produced, having a sliding surface along the axial direction and a tapered surface as the outer circumferential surface of the main body of the oil control ring.
  • the angle of the tapered surface with respect to the axial direction was 9°. Except for the shape of the outer circumferential surface of the main body, it was produced in the same manner as in Example 1.
  • the contact width between the sliding surface and the inner circumferential surface of the cylinder was 0.18 mm.
  • the oil consumption (LOC) was evaluated in an actual test in which the oil control rings of Examples 1 and 2 and Comparative Example 1 were installed in each cylinder of an in-line 6-cylinder diesel engine.
  • the operating conditions were 2000 rpm and two load modes (100% load and 50% load).
  • the evaluation results of the oil consumption are shown in Table 2.
  • the LOC improvement rate is the value expressed as a percentage of the LOC amount of Examples 1 and 2 when the LOC amount of Comparative Example 1 is taken as 100%.
  • the LOC amount was improved by approximately 20% at 100% load (full load) and approximately 40% at 50% load (medium load) compared to Comparative Example 1.
  • the first arc surface 11 formed a sliding area 15 that contributes to the formation of an oil film on the inner circumferential surface of the cylinder.
  • the first arc surface 11 forms an arc surface with a curvature radius R1 whose chord length is the axial dimension (actual contact width Lh1). It was found that, despite the simplified cross-sectional shape of the first arc surface 11, it is possible to easily scrape off the oil on the inner circumferential surface of the cylinder when the piston descends.
  • the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8 have the protruding surface 10 with a cross-sectional shape that protrudes convexly toward the radially outward direction.
  • the protruding surface 10 is an arc surface with a curvature radius of 0.30 mm or less in the sliding contact area 15 including the apex 10a, which is the radially outermost point of the first rail portion 7 or the second rail portion 8.
  • At least a part (first arc surface 11) of the protruding surface 10 that forms an arc surface forms the sliding contact area 15 that is axially symmetrical with respect to the apex 10a.
  • the cross-sectional shape is simplified by making the cross-sectional shape vertically symmetrical at least in the sliding contact area 15.
  • the sliding contact area 15 can sufficiently scrape down the oil. Therefore, the amount of oil consumption can be reduced. Therefore, the cross-sectional shape of the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8 can be simplified while reducing the amount of oil consumption.
  • the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8 each have a protruding surface 10 with a cross-sectional shape that protrudes convexly toward the radially outward direction.
  • At least a part of the protruding surface 10 (first arc surface 11) is located on an imaginary convex surface 16 that passes through the apex 10a and the ends 11a, 11b, which are a pair of points that are 0.05 mm away from the apex 10a on both sides in the axial direction and located at a predetermined drop on the radially inward direction, and the drop is 0.0045 mm or more.
  • At least a part of the protruding surface 10 along the imaginary convex surface 16 forms a sliding area 15 that is axially symmetrical with respect to the apex 10a.
  • the cross-sectional shape is simplified by making at least the sliding area 15 have a cross-sectional shape that is vertically symmetrical.
  • the sliding area 15 can sufficiently scrape down the oil. Therefore, the oil consumption can be reduced.
  • This allows the cross-sectional shapes of the outer circumferential surface 7a of the first rail portion 7 and the outer circumferential surface 8a of the second rail portion 8 to be simplified while reducing oil consumption.
  • the apex 10a is located at the center in the axial direction of each of the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8.
  • the outer peripheral surface 7a of the first rail portion 7 and the outer peripheral surface 8a of the second rail portion 8 include a first arc surface 11 including an apex 10a, a pair of bevel surfaces 7c, 7d that are tapered surfaces inclined at a predetermined angle relative to the radial direction, and a second arc surface 12 that connects the protruding surface 10 and the bevel surfaces 7c, 7d.
  • the radius of curvature R1 of the first arc surface 11 is greater than the radii of curvature R2, R3 of the second arc surface 12.
  • the sliding contact area 15 coincides with the range of the first arc surface 11, and the entire sliding contact area 15 is an arc surface with a radius of curvature R1 of 0.30 mm or less, but this is not limited to this example.
  • the sliding contact area may include a flat portion extending parallel to the axial direction.
  • Figure 6(b) is an enlarged cross-sectional view of an oil control ring 1M according to a modified example, corresponding to Figure 6(a).
  • the protruding surface 10M includes a sliding region 15M having a pair of partial arcuate surfaces 11c, 11f and a flat portion 17 connecting the pair of partial arcuate surfaces 11c, 11f.
  • the cross-sectional shape of the first rail portion 7M is, for example, a shape in which the outer peripheral surface 7a of the above-mentioned first rail portion 7 is cut out in a predetermined range (flat portion 17) that is vertically symmetrical about the apex 10a.
  • the pair of partial arc surfaces 11c, 11f are provided on the side surface 2c (one side surface) and the side surface 2d (other side surface), respectively.
  • the end of the partial arc surface 11c on the side surface 2c coincides with the end of the first arc surface 11 on the side surface 2c, and is the end 11a.
  • the end of the partial arc surface 11f on the side surface 2d coincides with the end of the first arc surface 11 on the side surface 2d, and is the end 11b.
  • the pair of partial arc surfaces 11c, 11f correspond to a portion of both upper and lower end sides of the above-mentioned first arc surface 11.
  • the pair of partial arc surfaces 11c, 11f are portions of the first arc surface 11 with a radius of curvature of 0.30 mm or less passing through the ends 11a, 11b, which are both ends in the width direction A (axial direction) of the sliding contact area 15M.
  • the pair of partial arc surfaces 11c, 11f are vertically symmetrical with respect to the virtual vertex 10x.
  • the virtual vertex 10x is the virtual outermost point in the radial direction of the first arc surface 11 that passes through the ends 11a, 11b.
  • the virtual vertex 10x is a virtual vertex equivalent to the above-mentioned vertex 10a.
  • the pair of partial arc surfaces 11c, 11f do not actually include the vertex 10a, and therefore the virtual vertex 10x can be defined here as a virtual vertex equivalent to the vertex 10a.
  • the flat portion 17 is a portion whose cross section is linear in FIG. 6(b).
  • the flat portion 17 extends parallel to the width direction A so as to connect the pair of partial arc surfaces 11c, 11f.
  • the end of the flat portion 17 on the side surface 2c coincides with the end of the partial arc surface 11c on the side surface 2d, and is the apex end 11d.
  • the end of the flat portion 17 on the side surface 2d coincides with the end of the partial arc surface 11f on the side surface 2c, and is the apex end 11e.
  • the flat portion 17 extends from the apex end 11d to the apex end 11e within a predetermined range that is vertically symmetrical with respect to the virtual vertex 10x.
  • the pair of partial arc surfaces 11c, 11f and the flat portion 17 are vertically symmetrical with respect to the virtual vertex 10x.
  • the sliding contact area 15M has a cross section that is vertically symmetrical with respect to the virtual vertex 10x, which is the virtual radially outermost point of the first arc surface 11.
  • the sliding contact area 15M is an area including a sliding contact portion that slides against the cylinder inner surface and a sliding peripheral portion within a certain range on both sides in the axial direction of the sliding contact portion.
  • the flat portion 17 corresponds to the sliding contact portion that slides against the cylinder inner surface.
  • the area between the top end 11d and the end 11a, and the area between the top end 11e and the end 11b correspond to an area including a sliding peripheral portion within a certain range on both sides in the axial direction of the sliding contact portion.
  • the protruding surface 10M includes the sliding contact area 15M, which is the portion of the outer surface 7Ma of the first rail portion 7M that contributes to the formation of an oil film on the cylinder inner surface.
  • the flat portion width Lh2 of the flat portion 17, which is the axial dimension from the apex end 11d to the apex end 11e, may be greater than 0 mm and less than 0.100 mm.
  • the flat portion width Lh2 of the flat portion 17 may be greater than 0 mm and less than 0.085 mm.
  • the flat portion width Lh2 of the flat portion 17 may be greater than 0 mm and less than 0.070 mm.
  • FIG. 7 shows the simulation results of the oil control ring 1M having the cross section of FIG. 6(b).
  • the horizontal axis of FIG. 7 is the flat portion width Lh2.
  • the vertical axis is the average minimum oil film thickness during the downward stroke of the piston of the internal combustion engine.
  • the units of the horizontal and vertical axes are ⁇ m.
  • FIG. 7 shows the simulation results for confirming the oil consumption reduction effect of the oil control ring 1M.
  • a theoretical calculation was performed using Patir & Cheng's average Reynolds equation for the oil film thickness between the oil control ring 1M and the inner circumferential surface of the cylinder.
  • a flat portion 17 was provided on the oil control ring 1 having the specifications used in the above-mentioned Example 1, and the flat portion width Lh2 of the flat portion 17 was changed by multiple values to perform the calculation.
  • the calculation results are plotted for flat portion width Lh2 of 0 ⁇ m (dashed circle), 70 ⁇ m (0.070 mm), 85 ⁇ m (0.085 mm), 100 ⁇ m (0.100 mm) (dashed circle), 120 ⁇ m (0.120 mm) (dashed circle), and 150 ⁇ m (0.150 mm) (dashed circle).
  • the solid circle corresponds to Example 3.
  • the calculation results of a plot (straight) of an oil control ring having a straight outer circumferential surface parallel to the axial direction and a plot (tapered) of an oil control ring having a tapered outer circumferential surface inclined in the axial direction are plotted in FIG. 7.
  • the average minimum oil film thickness during the downward stroke of the piston of the internal combustion engine is calculated as the oil film thickness.
  • the oil film thickness is smaller than the calculated results for the straight and tapered comparative examples.
  • the flat portion width Lh2 is in the range of 85 ⁇ m (0.085 mm) or less, an even smaller oil film thickness is obtained than when the flat portion width Lh2 is 100 ⁇ m (0.100 mm).
  • the flat portion width Lh2 is in the range of 70 ⁇ m (0.070 mm) or less, an even smaller oil film thickness is obtained than when the flat portion width Lh2 is 85 ⁇ m (0.085 mm).
  • the outer peripheral surface 7Ma of the first rail portion 7M (similarly to the outer peripheral surface of the second rail portion) has a protruding surface 10M with a cross-sectional shape that protrudes convexly toward the radially outward direction.
  • the protruding surface 10M includes a sliding region 15M having a pair of partial arc surfaces 11c, 11f provided on the side surface 2c (one side surface) side and the side surface 2d (other side surface), respectively, and a flat portion 17 extending parallel to the width direction A to connect the pair of partial arc surfaces 11c, 11f.
  • the pair of partial arc surfaces 11c, 11f are parts of the first arc surface 11 with a radius of curvature of 0.30 mm or less passing through the ends 11a, 11b, which are both ends of the width direction A (axial direction) of the sliding region 15M.
  • the sliding region 15M has a cross-sectional shape that is vertically symmetrical with respect to a virtual vertex 10x, which is the virtual radially outermost point of the first arc surface 11.
  • the flat portion 17 of the protruding surface 10M and a pair of partial arc surfaces 11c, 11f on both the upper and lower sides of the flat portion 17 form a sliding region 15M that is symmetrical in the width direction A with respect to the virtual vertex 10x.
  • the cross-sectional shape is simplified by making at least the sliding region 15M a vertically symmetrical cross-sectional shape.
  • the sliding region 15M can sufficiently scrape down the oil. This makes it possible to reduce oil consumption. Therefore, it is possible to reduce oil consumption while simplifying the cross-sectional shape of the outer circumferential surface 7Ma of the first rail portion 7M and the second rail portion.
  • the imaginary convex surface 16 coincides with a circular arc surface with a radius of curvature R1, but this is not limited to this example.
  • at least a portion of the protruding surface 10 may be located on the imaginary convex surface 16 having a polygonal cross section passing through the apex 10a and a pair of points.
  • the actual contact width Lh1 of the first arc surface 11, which is a part of the protruding surface 10, was 0.10 mm, but it may be less than 0.10 mm as in the example.
  • a pair of positions 0.05 mm away from the apex 10a on both sides of the axial direction to define the drop of the imaginary convex surface 16 may be in a positional relationship that sandwiches a part of the protruding surface 10 located on the imaginary convex surface 16. In such a case, the drop may be converted using the concept of similarity.
  • the protruding surface 10 is located on the imaginary convex surface 16 that passes through the apex 10a and a pair of points that are 0.01 mm away from the apex 10a on both sides of the axial direction and located at a predetermined drop radially inward, and the drop may be 0.0009 mm or more.
  • the apex 10a is located at the axial center of the outer peripheral surface 7a of the first rail portion 7, but this is not limited to this example.
  • at least the sliding contact area 15 has a cross-sectional shape that is axially symmetrical with respect to the apex 10a, and each of the first rail portion 7 and the second rail portion 8 does not have to be axially symmetrical with respect to the apex 10a as a whole.
  • the protruding surface 10 has a second arc surface 12 that connects the protruding surface 10 to the bevel surfaces 7c and 7d, but this is not limited to this example.
  • the second arc surface 12 instead of the second arc surface 12, it may have a polygonal cross-sectional shape or a linear tapered surface.
  • An oil control ring comprising: an annular main body having an inner circumferential surface, an outer circumferential surface, and one side and another side substantially perpendicular to the inner circumferential surface; and a coil expander attached along the inner circumferential surface, the main body portion has a pair of annular first and second rail portions, and a column portion connecting the first and second rail portions, The outer circumferential surfaces of the first rail portion and the second rail portion each have a protruding surface having a cross-sectional shape that protrudes radially outward,
  • the protruding surface is an arcuate surface having a radius of curvature of 0.30 mm or less in a sliding contact region including a vertex that is the radially outermost point of the first rail portion or the second rail portion.
  • An oil control ring comprising: an annular main body having an inner circumferential surface, an outer circumferential surface, and one side and another side substantially perpendicular to the inner circumferential surface; and a coil expander attached along the inner circumferential surface, the main body portion has a pair of annular first and second rail portions, and a column portion connecting the first and second rail portions,
  • the outer circumferential surfaces of the first rail portion and the second rail portion each include a protruding surface having a cross-sectional shape that protrudes convexly toward a radially outward direction, at least a portion of the protruding surface is located on an imaginary convex surface that passes through a vertex that is the radially outermost point of the first rail portion or the second rail portion, and a pair of points that are 0.05 mm away from the vertex on both sides in the axial direction and are located at a predetermined drop on the radially inward side,
  • An oil control ring wherein the drop is 0.0045
  • the outer circumferential surfaces of the first rail portion and the second rail portion include a first arcuate surface including the apex, a pair of bevel surfaces which are tapered surfaces inclined at a predetermined angle with respect to a radial direction, and a second arcuate surface connecting the protruding surface and the bevel surfaces, 4.
  • An oil control ring comprising: an annular main body having an inner circumferential surface, an outer circumferential surface, and one side and another side substantially perpendicular to the inner circumferential surface; and a coil expander attached along the inner circumferential surface, the main body portion has a pair of annular first and second rail portions, and a column portion connecting the first and second rail portions,
  • the outer circumferential surfaces of the first rail portion and the second rail portion each have a protruding surface having a cross-sectional shape that protrudes radially outward, the protruding surface includes a sliding contact region having a pair of partial arc surfaces provided on the one side surface side and the other side surface side, respectively, and a flat portion extending parallel to the axial direction so as to

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

オイルコントロールリングは、内周面及び外周面と、内周面に略直交する一側面及び他側面とを有する環状の本体部と、内周面に沿って装着されるコイルエキスパンダと、を備えている。オイルコントロールリングでは、本体部は、一対の環状の第1レール部及び第2レール部と、第1レール部及び第2レール部を接続する柱部と、を有している。第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有している。突出面は、第1レール部又は第2レール部の径方向最外点である頂点を含む摺接領域において曲率半径が0.30mm以下の円弧面である。

Description

オイルコントロールリング
 本開示は、内燃機関に使用されるオイルコントロールリングに関する。
 自動車等の内燃機関に用いられるオイルコントロールリングとして、例えば特許文献1には、上下のレール部の外周面を、シリンダ内周面に摺動する摺動面と、摺動面の燃焼室側(オイルリングの上面側)に配置され該燃焼室側に向けて徐々に縮径するテーパ面と、を有するように構成した2ピースオイルリングが記載されている。
特開平9-144881号公報
 上記従来のオイルリングでは、オイル消費量の低減のため、テーパ面を設けることでシリンダ内周面に摺動する摺動面の面積が相対的に小さくされている。当該摺動面とシリンダ内周面との接触面圧が高くなり、ピストン下降時のオイル掻き下げ作用の促進が図られている。ピストン上昇時には、テーパ面とシリンダ内周面との間で形成される油膜に摺動面が乗り上げることで、オイルの掻き上げ抑制が図られている。しかしながら、上記従来のオイルリングは、シリンダ内周面と摺接する部分とその付近とを含む摺接領域の断面形状が上下非対称であり、表裏を管理する必要が生じるため、製造コストに影響がある。
 本開示は、第1レール部及び第2レール部の外周面の断面形状をシンプル化しつつオイル消費量の低減を図ることができるオイルコントロールリングを提供することを目的とする。
 上記課題を解決するため、本発明者らは鋭意検討を重ねた。その結果、本発明者らは、オイルコントロールリングの外周面において、オイル消費量の低減を図りつつ、少なくとも摺接領域において上下対称とすることができる外周面の構成を見出した。
 本開示の一態様に係るオイルコントロールリングは、内周面及び外周面と、内周面に略直交する一側面及び他側面とを有する環状の本体部と、内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、本体部は、一対の環状の第1レール部及び第2レール部と、第1レール部及び第2レール部を接続する柱部と、を有し、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、突出面は、第1レール部又は第2レール部の径方向最外点である頂点を含む摺接領域において曲率半径が0.30mm以下の円弧面である。
 本開示の一態様に係るオイルコントロールリングでは、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有している。突出面は、第1レール部又は第2レール部の径方向最外点である頂点を含む摺接領域において曲率半径が0.30mm以下の円弧面である。このような構成によれば、円弧面をなす突出面の少なくとも一部は、頂点に関して軸方向に対称となる摺接領域を形成する。このように少なくとも摺接領域において上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域によってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部及び第2レール部の外周面の断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 本開示の他の態様に係るオイルコントロールリングは、内周面及び外周面と、内周面に略直交する一側面及び他側面とを有する環状の本体部と、内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、本体部は、一対の環状の第1レール部及び第2レール部と、第1レール部及び第2レール部を接続する柱部と、を有し、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、突出面の少なくとも一部は、第1レール部又は第2レール部の径方向最外点である頂点と、頂点から軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差にて位置する一対の点と、を通る仮想凸面上に位置しており、落差は、0.0045mm以上である。
 本開示の他の態様に係るオイルコントロールリングでは、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有している。突出面の少なくとも一部は、頂点と、頂点から軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差にて位置する一対の点と、を通る仮想凸面上に位置している。落差は、0.0045mm以上である。このような構成によれば、突出面のうち仮想凸面に沿う少なくとも一部は、頂点に関して軸方向に対称となる摺接領域を形成する。このように少なくとも摺接領域において上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域によってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部及び第2レール部の外周面の断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 一実施形態において、頂点は、第1レール部及び第2レール部の外周面のそれぞれの軸方向の中央部に位置していてもよい。このような構成によれば、摺接領域だけでなく、第1,第2レール部の外周面のそれぞれが全体として上下対称となる。そのため、オイルコントロールリングの表裏の逆組みを未然に抑制することができる。
 一実施形態において、第1レール部及び第2レール部の外周面は、頂点を含む第1円弧面と、径方向に対して所定角度で傾斜するテーパ面である一対のベベル面と、突出面とベベル面とを接続する第2円弧面と、を含み、第1円弧面の曲率半径は、第2円弧面の曲率半径よりも大きくてもよい。このような構成によれば、第1,第2レール部のうちオイルコントロールリングの一側面又は他側面に近い部分が鋭利ではない形状となる。そのため、鋭利な形状であった場合に生じ得る欠損を未然に抑制することができる。
 一実施形態において、第1円弧面の曲率半径R1と、第2円弧面の曲率半径R2との比R2/R1は、0.1以上0.6以下であってもよい。
 本開示の更に他の態様に係るオイルコントロールリングは、内周面及び外周面と、内周面に略直交する一側面及び他側面とを有する環状の本体部と、内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、本体部は、一対の環状の第1レール部及び第2レール部と、第1レール部及び第2レール部を接続する柱部と、を有し、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、突出面は、一側面側及び他側面側にそれぞれ設けられた一対の部分円弧面と、一対の部分円弧面を接続するように軸方向に平行に延在する平坦部と、を有する摺接領域を含み、一対の部分円弧面は、摺接領域の軸方向の両端を通る曲率半径が0.30mm以下の円弧面の一部分であり、摺接領域は、円弧面の仮想的な径方向最外点である仮想頂点に関して上下対称な断面形状である。
 本開示の他の態様に係るオイルコントロールリングでは、第1レール部及び第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有している。突出面は、一側面側及び他側面側にそれぞれ設けられた一対の部分円弧面と、一対の部分円弧面を接続するように軸方向に平行に延在する平坦部と、を有する摺接領域を含んでいる。一対の部分円弧面は、摺接領域の軸方向の両端を通る曲率半径が0.30mm以下の円弧面の一部分である。摺接領域は、円弧面の仮想的な径方向最外点である仮想頂点に関して上下対称な断面形状である。このような構成によれば、突出面のうち平坦部及び平坦部の上下両側の一対の部分円弧面は、仮想頂点に関して軸方向に対称となる摺接領域を形成する。このように少なくとも摺接領域において上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域によってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部及び第2レール部の外周面の断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 一実施形態において、平坦部の軸方向寸法は、0mmよりも大きく0.100mmよりも小さくてもよい。
 本開示の種々の態様に係るオイルコントロールリングによれば、第1レール部及び第2レール部の外周面の断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
実施形態に係るオイルコントロールリングの一例の斜視図である。 図1のオイルコントロールリングの分解斜視図である。 図2のオイルリング本体部の平面図である。 図3のIV-IV線に沿っての断面図である。 図4の断面の要部拡大図(第1レール部の外周部の拡大図)である。 (a)は、図5の断面における摺接部の拡大断面図である。(b)は、変形例に係るオイルリング本体部についての図6(a)に相当する拡大断面図である。 図6(b)の断面を有するオイルコントロールリングのシミュレーション結果を示す図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
 図1は、実施形態に係るオイルコントロールリングの一例の斜視図である。図2は、図1のオイルコントロールリングの分解斜視図である。図3は、図2のオイルリング本体部の平面図である。図4は、図3のIV-IV線に沿っての断面図である。なお、以下の説明において、断面形状とは、オイルコントロールリングの中心軸を含む断面に沿う断面形状を意味する。
 図1,図2及び図3に示されるように、オイルコントロールリング1は、環状の本体部2と、本体部2の内周面2aに沿って装着される環状のコイルエキスパンダ3と、を備えている。オイルコントロールリング1は、いわゆる2ピースオイルリングである。本体部2には、合口部4が形成されている。
 オイルコントロールリング1は、例えば自動車の内燃機関のピストンの外周面に設けられたリング溝に組み付けられて使用される。本体部2は、コイルエキスパンダ3の接線張力によりシリンダ内周面と略一定の面圧にて当接する。コイルエキスパンダ3は、図2に示されるように、環状に形成されたバネ状の部品である。コイルエキスパンダ3は、例えば油焼き入れされたバネ鋼等の線材によって形成される。
 本体部2は、用途に応じて要される強度、耐熱性、及び弾性を有するように、例えば複数の金属元素を含有する鋳鉄又は鋼材(スチール)によって形成されている。本体部2の外周面2b(第1レール部7及び第2レール部8の外周面)等には、例えば硬質クロムめっき層、クロム窒化物層、PVD層、又は鉄の窒化物層などによる表面改質が施され、本体部2の耐摩耗性の向上が図られている。
 図1,図2及び図4に示されるように、本体部2は、一対の第1レール部7及び第2レール部8と、第1レール部7及び第2レール部8を接続する柱部13と、を有している。
 図4に示されるように、本体部2の内周面2aは、コイルエキスパンダ3が収容されるように柱部13側に向かって窪んだ曲面形状となっている。本体部2は、内周面2aの径方向内側の一対の端面(内周面)2eに略直交する一対の側面2c(一側面)及び側面2d(他側面)を有している。以下の説明では、内周面2aと外周面2bとを結ぶ方向をオイルコントロールリング1の厚さ方向とする。側面2cと側面2dとを結ぶ方向をオイルコントロールリング1の幅方向とする。オイルコントロールリング1の径方向は、厚さ方向と一致する方向である。
 本体部2の幅h1は、例えば1.0mm以上5.0mm以下である。本体部2の厚さa1は、例えば1.0mm以上5.0mm以下である。本体部2の外径R0(呼称径d1、図3参照)は、例えば60mm以上400mm以下である。本体部2の各寸法は、接触式又は非接触式の形状測定装置を用いて測定することができる。形状測定装置は、表面粗さ測定装置を含む。
 一対の第1レール部7及び第2レール部8は、オイルコントロールリング1の軸方向において柱部13を挟んで互いに対向している。柱部13は、第1レール部7及び第2レール部8の厚さ方向中央部同士を結んでいる。第1レール部7は、柱部13の側面2c側に配置され、柱部13に対して径方向の内外両側に張り出している。第2レール部8は、柱部13の側面2d側に配置され、柱部13に対して径方向の内外両側に張り出している。柱部13は、厚さ方向において第1レール部7及び第2レール部8と比べて薄肉に形成されている。このように、本体部2は、略H字形状の断面形状をなしている。第1レール部7及び第2レール部8は、柱部13と一体形成されている。
 図1,図2に示されるように、柱部13の幅方向における中央部には、複数の通油孔14がオイルコントロールリング1の周方向に沿って並んで設けられている。複数の通油孔14のそれぞれの周方向に沿った断面形状は、例えば略楕円形状となっている。図4に示されるように、通油孔14は、柱部13の軸方向中央部に設けられている。通油孔14は、柱部13を径方向に貫通している。
 複数の通油孔14は、例えば切削又はレーザによる穿孔によって形成される。シリンダ内周面を潤滑するためのオイルは、これら複数の通油孔14を柱部13よりも内周側から外周側に通過することで、シリンダ内周面に供給される。シリンダ内周面のオイルは、これら複数の通油孔14を柱部13よりも外周側から内周側に通過することで、例えばオイルパンに戻される。
 図1~図3に示されるように、合口部4は、本体部2の一部が分断された部分であり、互いに対向する一対の合口端部5,6によって形成されている。一対の合口端部5,6のそれぞれは、本体部2の自由端である。合口部4の隙間(合口隙間s1)は、例えばオイルコントロールリング1が加熱されて熱膨張したときに突き当たらないように設定されている。合口部4は、オイルコントロールリング1の使用時において、オイルコントロールリング1とシリンダとの間の温度差に起因する本体部2の熱膨張分の逃げ部として機能する。
 このようなオイルコントロールリング1では、例えばピストンが上死点側に移動する際、第1レール部7及び第2レール部8によってオイルがシリンダ内周面に塗布されて油膜が形成される。オイルコントロールリング1は、例えばピストンが下死点側に移動する際、シリンダ内周面の余剰なオイルを第1レール部7及び第2レール部8によって掻き落とす。これにより、シリンダ内周面への適切な厚さの油膜の形成が図られる。
 次に、本体部2の外周面2bについて詳細に説明する。図4に示されるように、本体部2の外周面2bは、第1レール部7の外周面7aと、第2レール部8の外周面8aと、を含む。ここでの第2レール部8は、第1レール部7と軸方向について本体部2の幅方向の中央に関して対称であるため、代表として第1レール部7の構成について説明し、第2レール部8についての重複する説明は省略する。
 第1レール部7の外周面7aは、突出面10と、ベベル面7cと、ベベル面7dと、を有している。突出面10は、径方向外側に向かって凸状に突出する断面形状の部分である。ベベル面7c,7dは、径方向に対して所定角度θ1,θ2でそれぞれ傾斜するテーパ面である。ベベル面7cは、接続部7bを介して突出面10と側面2cとを連結する。ベベル面7dは、突出面10と柱部13とを連結する。所定角度θ1,θ2は、例えば、10°以上35°以下であってもよい。突出面10は、シリンダ内周面への油膜を形成しやすいように、その断面形状及び突出の程度が規定されている。所定角度θ1,θ2は、互いに等しくてもよいし、互いに異なっていてもよい。
 図5は、図4の断面の要部拡大図(第1レール部7の外周面7aの拡大図)である。図6(a)は、図5の断面における摺接部の拡大断面図である。図5及び図6(a)に示されるように、突出面10(第1レール部7の外周面7a)は、第1円弧面11と、一対のベベル面7c,7dと、第1円弧面11とベベル面7c,7dとを接続する一対の第2円弧面12と、を含む。突出面10は、一例として、3つの湾曲領域である第1円弧面11及び一対の第2円弧面12で構成されている。換言すれば、第1レール部7の外周面7aの最外点(頂点10a)を含む第1円弧面11を境に幅方向Aに対称な対称バレル形状となっている。
 摺接領域15(第1円弧面11)は、シリンダ内周面と摺接する摺接部と、摺接部を挟んで軸方向の両側の一定範囲内の摺接周辺部とを含む領域である。一定範囲とは、第1レール部7のシリンダ内周面との実当り幅Lh1の範囲に相当する。一定範囲は、例えば、第1円弧面11の上死点側の端部11aから下死点側の端部11bまでの範囲と一致している。一定範囲は、第1円弧面11の上死点側の端部11aから下死点側の端部11bまでの一部であってもよい。実当り幅Lh1は、0.010mm以上0.15mm以下であってもよい。実当り幅Lh1は、例えば、0.10mmとすることができる。
 第1円弧面11は、第1レール部7の径方向最外点である頂点10aを含む。頂点10aは、シリンダ内周面と摺接する摺接部に相当する。第1円弧面11のうち、頂点10aから端部11aまでの間、及び、頂点10aから端部11bまでの間は、摺接部を挟んで軸方向の両側の一定範囲内である摺接周辺部に相当する。
 頂点10a及びこの一定範囲において、突出面10は、摺接領域15を含んでいる。摺接領域15は、第1レール部7の外周面7aのうちシリンダ内周面への油膜形成に寄与する部分である。摺接領域15は、油膜形成に寄与する部分である。一般的に、油膜形成に寄与する部分は、例えば工夫を重ねると断面形状が複雑化する傾向がある。摺接領域15の断面形状をシンプル化することで、製造コストを抑制し易くなる。そのため、摺接領域15は、頂点10aに関して軸方向に対称(上下対称)な断面形状を有している。図5及び図6(a)の例では、摺接領域15は、第1円弧面11の範囲と一致している。なお、摺接領域15は、第1円弧面11の一部であって頂点10aに関して軸方向に対称な範囲であってもよい。
 図5及び図6(a)の例では、頂点10aは、第1レール部7の外周面7aの軸方向中央部に位置している。つまり、第1レール部7は、頂点10aに関して軸方向に対称な断面形状を有している。
 第1円弧面11は、曲率半径R1が0.30mm以下の円弧面となっている。曲率半径R1が0.050mm以上であってもよい。曲率半径R1が0.076mm以上0.276mm以下であってもよい。第1円弧面11は、頂点10aに関して軸方向に対称となる摺接領域15をなしている。
 第1円弧面11の曲率半径R1は、第2円弧面12の曲率半径R2,R3よりも大きい。例えば、第1円弧面11の曲率半径R1と、第2円弧面12の曲率半径R2,R3との比R2/R1及びR3/R1は、0.1以上0.6以下である。第2円弧面12の曲率半径R2,R3は、例えば、互いに等しい。第2円弧面12の曲率半径R2,R3は、例えば、互いに異なっていてもよい。
 突出面10の軸方向寸法(外周面幅Lh0)は、例えば、0.10mm以上0.30mm以下である。突出面10の軸方向寸法は、ベベル面7cと突出面10との境界からベベル面7dと突出面10との境界までの軸方向寸法に相当する。ベベル面7c(又はベベル面7d)と突出面10との境界までの頂点10aからの径方向寸法D2は、0.0045mm以上0.0150mm以下であってもよい。
 別の観点で規定すると、突出面10の少なくとも一部(ここでは第1円弧面11)は、頂点10aと、一対の点である端部11a,11bと、を通る仮想凸面16上に位置している。一対の点である端部11a,11bは、頂点10aから軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差D1にて位置する点である。落差D1は、0.0045mm以上である。落差D1は、0.0150mm以下であってもよい。落差D1は、0.0075mm以上0.0100mm以下であってもよい。
 本開示を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
 表1に示されるように、以下の手順で実施例1のオイルコントロールリング1を作製した。まず、第1レール部7の外周面7a及び第2レール部8の外周面8aに第1円弧面11を設けた本体部2を作製した。本体部2は、JIS規格である硬鋼線(SWRH77B相当)を用い、当該線材に圧延ロール成形及び引き抜き成形を施して作製した。本体部2の幅を3.0mmとした。本体部2の厚さを2.5mmとした。実当り幅Lh1と0.04mmとした。張力を12.48Nとした。第1円弧面11は、中央部に頂点10aを配置し、曲率半径R1が0.30mmの円弧面とした。第1レール部7及び第2レール部8の幅を0.25mmとした。オイル消費性能を比較するためにオイルコントロールリング1の面圧を2.6MPa(計算面圧幅=Lh1)とした。本体部2に対して側面加工及び合口加工を行った後、本体部2の外周面2bにPVD法により硬質膜として硬質炭素膜(DLC膜)を形成した。
(実施例2)
 実施例2のオイルコントロールリング1を作製した。実当り幅Lh1を0.05mm、張力を15.60Nとしたほかは、実施例1のオイルコントロールリング1と同様とした。
(比較例1)
 オイルコントロールリングの本体部の外周面として軸方向に沿う摺接面とテーパ面とを有する比較例1のオイルコントロールリングを作製した。テーパ面の軸方向に対する角度は9°とした。本体部の外周面の形状を除き、実施例1と同様の手順で作製した。摺接面とシリンダ内周面との当り幅は、0.18mmであった。
Figure JPOXMLDOC01-appb-T000001
 直列6気筒ディーゼルエンジンの各気筒に実施例1,2及び比較例1のオイルコントロールリングを装着した実機試験でオイル消費量(LOC)を評価した。運転条件は、2000rpm、2種類の負荷モード(100%負荷及び50%負荷)とした。オイル消費量の評価結果を表2に示す。LOC改善率は、比較例1のLOC量を100%としたときの実施例1,2のLOC量を%で表した値である。
Figure JPOXMLDOC01-appb-T000002
 表2の評価結果から、実施例1,2のオイルコントロールリング1によれば、比較例1と比べて、100%負荷(全負荷)においてLOC量が約20%改善し、50%負荷(中負荷)においてLOC量が約40%改善した。この結果、第1円弧面11によれば、シリンダ内周面への油膜形成に寄与する部分である摺接領域15が構成された。第1円弧面11は、軸方向寸法(実当り幅Lh1)を弦長とする曲率半径R1の円弧面を形成している。第1円弧面11の断面形状がシンプル化されるにもかかわらず、ピストン下降時にシリンダ内周面のオイルを掻き落とし易い作用を得られることが判った。
 以上説明したように、本開示の一態様に係るオイルコントロールリング1によれば、第1レール部7の外周面7a及び第2レール部8の外周面8aは、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面10を有している。突出面10は、第1レール部7又は第2レール部8の径方向最外点である頂点10aを含む摺接領域15において曲率半径が0.30mm以下の円弧面である。このような構成によれば、円弧面をなす突出面10の少なくとも一部(第1円弧面11)は、頂点10aに関して軸方向に対称となる摺接領域15を形成する。このように少なくとも摺接領域15において上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域15によってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部7の外周面7a及び第2レール部8の外周面8aの断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 本開示の他の態様に係るオイルコントロールリング1によれば、第1レール部7の外周面7a及び第2レール部8の外周面8aは、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面10を有している。突出面10の少なくとも一部(第1円弧面11)は、頂点10aと、頂点10aから軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差にて位置する一対の点である端部11a,11bと、を通る仮想凸面16上に位置しており、落差は、0.0045mm以上である。このような構成によれば、突出面10のうち仮想凸面16に沿う少なくとも一部は、頂点10aに関して軸方向に対称となる摺接領域15を形成する。このように少なくとも摺接領域15において上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域15によってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部7の外周面7a及び第2レール部8の外周面8aの断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 頂点10aは、第1レール部7の外周面7a及び第2レール部8の外周面8aのそれぞれの軸方向の中央部に位置している。このような構成によれば、摺接領域15だけでなく、第1レール部7の外周面7a及び第2レール部8の外周面8aのそれぞれが全体として上下対称となる。そのため、オイルコントロールリング1の表裏の逆組みを未然に抑制することができる。
 第1レール部7の外周面7a及び第2レール部8の外周面8aは、頂点10aを含む第1円弧面11と、径方向に対して所定角度で傾斜するテーパ面である一対のベベル面7c,7dと、突出面10とベベル面7c,7dとを接続する第2円弧面12と、を含む。第1円弧面11の曲率半径R1は、第2円弧面12の曲率半径R2,R3よりも大きい。このような構成によれば、第1レール部7,第2レール部8のうちオイルコントロールリング1の側面2c又は側面2dに近い部分が鋭利ではない形状となる。そのため、鋭利な形状であった場合に生じ得る欠損を未然に抑制することができる。
[変形例]
 以上、本開示の実施形態について説明したが、本開示は上述した実施形態に限定されるものではない。本開示は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。
 図5及び図6(a)の例では、摺接領域15は、第1円弧面11の範囲と一致しており、摺接領域15の全体が、曲率半径R1が0.30mm以下の円弧面となっていたが、この例に限定されない。摺接領域は、軸方向に平行に延在する平坦部を含んでもよい。図6(b)は、変形例に係るオイルコントロールリング1Mについての図6(a)に相当する拡大断面図である。
 図4及び図6(b)に示されるように、変形例に係る第1レール部7Mの外周面7Maにおいて、突出面10Mは、一対の部分円弧面11c,11fと、一対の部分円弧面11c,11fを接続する平坦部17と、を有する摺接領域15Mを含んでいる。第1レール部7Mの断面形状は、例えば、上述の第1レール部7の外周面7aにおいて頂点10aに関して上下対称な所定範囲(平坦部17)で外周面7aを切り欠いたような形状となっている。
 一対の部分円弧面11c,11fは、側面2c(一側面)側及び側面2d(他側面)側にそれぞれ設けられている。部分円弧面11cの側面2c側の端部は、第1円弧面11の側面2c側の端部と一致しており、端部11aである。部分円弧面11fの側面2d側の端部は、第1円弧面11の側面2d側の端部と一致しており、端部11bである。一対の部分円弧面11c,11fは、それぞれ、上述の第1円弧面11の上下両端側の一部分に相当している。つまり、一対の部分円弧面11c,11fは、摺接領域15Mの幅方向A(軸方向)の両端である端部11a,11bを通る曲率半径が0.30mm以下の第1円弧面11の一部分である。
 一対の部分円弧面11c,11fは、仮想頂点10xに関して上下対称となっている。仮想頂点10xは、端部11a,11bを通る第1円弧面11の仮想的な径方向最外点である。仮想頂点10xは、上述の頂点10aに相当する仮想的な頂点である。一対の部分円弧面11c,11fが上述の第1円弧面11とは異なり実際には頂点10aを含まないため、ここでは、頂点10aに相当する仮想的な頂点として仮想頂点10xを規定することができる。
 平坦部17は、図6(b)において断面形状が直線状の部分である。平坦部17は、一対の部分円弧面11c,11fを接続するように幅方向Aに平行に延在している。平坦部17の側面2c側の端部は、部分円弧面11cの側面2d側の端部と一致しており、頂端部11dである。平坦部17の側面2d側の端部は、部分円弧面11fの側面2c側の端部と一致しており、頂端部11eである。平坦部17は、頂端部11dから頂端部11eまで、仮想頂点10xに関して上下対称な所定範囲で延在している。したがって、一対の部分円弧面11c,11f及び平坦部17は、仮想頂点10xに関して上下対称となっている。すなわち、摺接領域15Mは、第1円弧面11の仮想的な径方向最外点である仮想頂点10xに関して上下対称な断面形状である。
 摺接領域15Mは、シリンダ内周面と摺接する摺接部と、摺接部を挟んで軸方向の両側の一定範囲内の摺接周辺部とを含む領域である。平坦部17は、シリンダ内周面と摺接する摺接部に相当する。頂端部11dから端部11aまでの間、及び、頂端部11eから端部11bまでの間は、摺接部を挟んで軸方向の両側の一定範囲内であるの摺接周辺部とを含む領域に相当する。平坦部17及びこの一定範囲において、突出面10Mは、第1レール部7Mの外周面7Maのうちシリンダ内周面への油膜形成に寄与する部分である摺接領域15Mを含んでいる。
 平坦部17は、頂端部11dから頂端部11eまでの軸方向寸法である平坦部幅Lh2は、0mmよりも大きく0.100mmよりも小さくてもよい。平坦部17の平坦部幅Lh2は、0mmよりも大きく0.085mm以下であってもよい。平坦部17の平坦部幅Lh2は、0mmよりも大きく0.070mm以下であってもよい。
 具体的には、図7は、図6(b)の断面を有するオイルコントロールリング1Mのシミュレーション結果を示す図である。図7の横軸は、平坦部幅Lh2である。縦軸は、内燃機関のピストンの下降行程における平均最小油膜厚さである。横軸及び縦軸のそれぞれの単位はμmとなっている。図7では、オイルコントロールリング1Mについて、オイル消費量低減効果を確認するためのシミュレーション結果が示されている。シミュレーションとして、図7の例では、オイルコントロールリング1Mとシリンダ内周面との油膜厚さについて、Patir&Chengの平均レイノルズ方程式を用いた理論計算を行った。シミュレーションでは、上述の実施例1で用いた仕様のオイルコントロールリング1に平坦部17を設けると共に、平坦部17の平坦部幅Lh2を複数の数値で変化させて計算を行った。
 図7には、平坦部幅Lh2が0μm(破線の円)、70μm(0.070mm)、85μm(0.085mm)、100μm(0.100mm)(破線の円)、120μm(0.120mm)(破線の円)、及び、150μm(0.150mm)(破線の円)の計算結果がプロットされている。実線の円が実施例3に対応する。比較例として、外周面が軸方向に平行なストレート形状のオイルコントロールリングのプロット(ストレート)と、外周面が軸方向に傾斜したテーパ形状のオイルコントロールリングのプロット(テーパ)と、の計算結果が図7にプロットされている。油膜厚さとして、内燃機関のピストンの下降行程における平均最小油膜厚さが計算されている。図7に示されるように、平坦部幅Lh2が100μm(0.100mm)よりも小さい範囲において、比較例のストレート及びテーパの計算結果よりも小さい油膜厚さが得られることがわかる。平坦部幅Lh2が85μm(0.085mm)以下の範囲において、平坦部幅Lh2が100μm(0.100mm)である場合よりも更に小さい油膜厚さが得られることがわかる。平坦部幅Lh2が70μm(0.070mm)以下の範囲において、平坦部幅Lh2が85μm(0.085mm)である場合よりも更に小さい油膜厚さが得られることがわかる。
 このように、オイルコントロールリング1Mによれば、第1レール部7Mの外周面7Ma(第2レール部の外周面も同様)は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面10Mを有している。突出面10Mは、側面2c(一側面)側及び側面2d(他側面)側にそれぞれ設けられた一対の部分円弧面11c,11fと、一対の部分円弧面11c,11fを接続するように幅方向Aに平行に延在する平坦部17と、を有する摺接領域15Mを含んでいる。一対の部分円弧面11c,11fは、摺接領域15Mの幅方向A(軸方向)の両端である端部11a,11bを通る曲率半径が0.30mm以下の第1円弧面11の一部分である。摺接領域15Mは、第1円弧面11の仮想的な径方向最外点である仮想頂点10xに関して上下対称な断面形状である。このような構成によれば、突出面10Mのうち平坦部17及び平坦部17の上下両側の一対の部分円弧面11c,11fは、仮想頂点10xに関して幅方向Aに対称となる摺接領域15Mを形成する。このように少なくとも摺接領域15Mにおいて上下対称な断面形状とすることで断面形状がシンプル化される。摺接領域15Mによってオイルを十分に掻き下げることができる。よって、オイル消費量の低減を図ることができる。したがって、第1レール部7M及び第2レール部の外周面7Maの断面形状をシンプル化しつつオイル消費量の低減を図ることができる。
 上述した実施形態では、仮想凸面16は、曲率半径R1の円弧面と一致していたが、この例に限定されない。例えば、突出面10の少なくとも一部が、頂点10aと一対の点とを通るような多角形状断面の仮想凸面16上に位置していてもよい。
 上述した実施形態では、突出面10の一部である第1円弧面11の実当り幅Lh1が0.10mmであったが、実施例のように0.10mm未満であってもよい。つまり、仮想凸面16の落差を規定するための頂点10aから軸方向の両側にそれぞれ0.05mm離れた一対の位置が、仮想凸面16上に位置する突出面10の一部を挟むような位置関係となっていてもよい。このような場合、相似の考え方で落差を換算してもよい。例えば、突出面10の少なくとも一部は、頂点10aと、頂点10aから軸方向の両側にそれぞれ0.01mm離れると共に径方向内側に所定の落差にて位置する一対の点と、を通る仮想凸面16上に位置しており、落差は、0.0009mm以上であってもよい。
 上述した実施形態では、頂点10aは、第1レール部7の外周面7aの軸方向中央部に位置していたが、この例に限定されない。例えば、少なくとも摺接領域15が頂点10aに関して軸方向に対称な断面形状を有していればよく、第1レール部7及び第2レール部8のそれぞれは、全体として頂点10aに関して軸方向に対称でなくてもよい。
 上述した実施形態では、突出面10は、突出面10とベベル面7c,7dとを接続する第2円弧面12を有していたが、この例に限定されない。例えば、第2円弧面12に代えて、多角形状の断面形状でもよいし、直線状のテーパ形状の面でもよい。
 なお、以下、本開示の種々の態様の構成要件を記載する。
<発明1>
 内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
 前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
 前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、
 前記突出面は、前記第1レール部又は前記第2レール部の径方向最外点である頂点を含む摺接領域において曲率半径が0.30mm以下の円弧面である、オイルコントロールリング。
<発明2>
 内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
 前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
 前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を含み、
 前記突出面の少なくとも一部は、前記第1レール部又は前記第2レール部の径方向最外点である頂点と、前記頂点から軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差にて位置する一対の点と、を通る仮想凸面上に位置しており、
 前記落差は、0.0045mm以上である、オイルコントロールリング。
<発明3>
 前記頂点は、前記第1レール部及び前記第2レール部の前記外周面のそれぞれの軸方向の中央部に位置している、発明1又は2に記載のオイルコントロールリング。
<発明4>
 前記第1レール部及び前記第2レール部の前記外周面は、前記頂点を含む第1円弧面と、径方向に対して所定角度で傾斜するテーパ面である一対のベベル面と、前記突出面と前記ベベル面とを接続する第2円弧面と、を含み、
 前記第1円弧面の曲率半径は、前記第2円弧面の曲率半径よりも大きい、発明1~3の何れか一つに記載のオイルコントロールリング。
<発明5>
 前記第1円弧面の曲率半径R1と、前記第2円弧面の曲率半径R2との比R2/R1は、0.1以上0.6以下である、発明4に記載のオイルコントロールリング。
<発明6>
 内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
 前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
 前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、
 前記突出面は、前記一側面側及び前記他側面側にそれぞれ設けられた一対の部分円弧面と、一対の部分円弧面を接続するように軸方向に平行に延在する平坦部と、を有する摺接領域を含み、
 一対の前記部分円弧面は、前記摺接領域の軸方向の両端を通る曲率半径が0.30mm以下の円弧面の一部分であり、
 前記摺接領域は、前記円弧面の仮想的な径方向最外点である仮想頂点に関して上下対称な断面形状である、オイルコントロールリング。
<発明7>
 前記平坦部の軸方向寸法は、0mmよりも大きく0.100mmよりも小さい、発明6に記載のオイルコントロールリング。
 1,1M…オイルコントロールリング、2…本体部、2a…内周面、2b…外周面、2c…側面(一側面)、2d…側面(他側面)、3…コイルエキスパンダ、7,7M…第1レール部、8…第2レール部、7a,8a…外周面、7c…ベベル面、7d…ベベル面、10,10M…突出面、10a…頂点、10x…仮想頂点、11…第1円弧面、11c,11f…部分円弧面、12…第2円弧面、13…柱部、15,15M…摺接領域、D1…落差、R1,R2,R3…曲率半径。

 

Claims (7)

  1.  内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
     前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
     前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、
     前記突出面は、前記第1レール部又は前記第2レール部の径方向最外点である頂点を含む摺接領域において曲率半径が0.30mm以下の円弧面である、オイルコントロールリング。
  2.  内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
     前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
     前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を含み、
     前記突出面の少なくとも一部は、前記第1レール部又は前記第2レール部の径方向最外点である頂点と、前記頂点から軸方向の両側にそれぞれ0.05mm離れると共に径方向内側に所定の落差にて位置する一対の点と、を通る仮想凸面上に位置しており、
     前記落差は、0.0045mm以上である、オイルコントロールリング。
  3.  前記頂点は、前記第1レール部及び前記第2レール部の前記外周面のそれぞれの軸方向の中央部に位置している、請求項1又は2に記載のオイルコントロールリング。
  4.  前記第1レール部及び前記第2レール部の前記外周面は、前記頂点を含む第1円弧面と、径方向に対して所定角度で傾斜するテーパ面である一対のベベル面と、前記突出面と前記ベベル面とを接続する第2円弧面と、を含み、
     前記第1円弧面の曲率半径は、前記第2円弧面の曲率半径よりも大きい、請求項1又は2に記載のオイルコントロールリング。
  5.  前記第1円弧面の曲率半径R1と、前記第2円弧面の曲率半径R2との比R2/R1は、0.1以上0.6以下である、請求項4に記載のオイルコントロールリング。
  6.  内周面及び外周面と、前記内周面に略直交する一側面及び他側面とを有する環状の本体部と、前記内周面に沿って装着されるコイルエキスパンダと、を備えたオイルコントロールリングであって、
     前記本体部は、一対の環状の第1レール部及び第2レール部と、前記第1レール部及び前記第2レール部を接続する柱部と、を有し、
     前記第1レール部及び前記第2レール部の外周面は、それぞれの径方向外側に向かって凸状に突出する断面形状の突出面を有し、
     前記突出面は、前記一側面側及び前記他側面側にそれぞれ設けられた一対の部分円弧面と、一対の部分円弧面を接続するように軸方向に平行に延在する平坦部と、を有する摺接領域を含み、
     一対の前記部分円弧面は、前記摺接領域の軸方向の両端を通る曲率半径が0.30mm以下の円弧面の一部分であり、
     前記摺接領域は、前記円弧面の仮想的な径方向最外点である仮想頂点に関して上下対称な断面形状である、オイルコントロールリング。
  7.  前記平坦部の軸方向寸法は、0mmよりも大きく0.100mmよりも小さい、請求項6に記載のオイルコントロールリング。

     
PCT/JP2022/046912 2022-12-20 2022-12-20 オイルコントロールリング WO2024134774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/046912 WO2024134774A1 (ja) 2022-12-20 2022-12-20 オイルコントロールリング
JP2022580528A JP7339456B1 (ja) 2022-12-20 2022-12-20 オイルコントロールリング

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046912 WO2024134774A1 (ja) 2022-12-20 2022-12-20 オイルコントロールリング

Publications (1)

Publication Number Publication Date
WO2024134774A1 true WO2024134774A1 (ja) 2024-06-27

Family

ID=87882239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046912 WO2024134774A1 (ja) 2022-12-20 2022-12-20 オイルコントロールリング

Country Status (2)

Country Link
JP (1) JP7339456B1 (ja)
WO (1) WO2024134774A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144881A (ja) * 1995-11-21 1997-06-03 Teikoku Piston Ring Co Ltd 組合せオイルリング
JP2004197818A (ja) * 2002-12-18 2004-07-15 Teikoku Piston Ring Co Ltd 組合せオイルリング
JP2018112276A (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 オイルリング

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822440U (ja) * 1981-08-05 1983-02-12 帝国ピストンリング株式会社 コイルエキスパンダ付き鋼製オイルリング

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144881A (ja) * 1995-11-21 1997-06-03 Teikoku Piston Ring Co Ltd 組合せオイルリング
JP2004197818A (ja) * 2002-12-18 2004-07-15 Teikoku Piston Ring Co Ltd 組合せオイルリング
JP2018112276A (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 オイルリング

Also Published As

Publication number Publication date
JP7339456B1 (ja) 2023-09-05

Similar Documents

Publication Publication Date Title
US8539928B2 (en) Piston assembly and connecting rod having a profiled wrist pin bore therefor
EP1557594B1 (en) Oil ring
JP4633639B2 (ja) 3ピースオイルリング及び3ピースオイルリングとピストンとの組合せ
US8157268B2 (en) Piston for internal combustion engines
JP7254836B2 (ja) 組合せオイルリング
JPH09144881A (ja) 組合せオイルリング
JPH05223170A (ja) ピストン
WO2023127607A1 (ja) ピストンリング及びピストンリングセット
JPH0329979B2 (ja)
JP4382229B2 (ja) 組合せオイルリング
CN112771290B (zh) 内燃机用油环
JP6894879B2 (ja) 内燃機関のシリンダ及び製造方法
WO2024134774A1 (ja) オイルコントロールリング
JP2004526926A (ja) 内燃機関用オイルリング
WO2020050336A1 (ja) ピストンリング、及びピストンリングの製造方法
JP2005264978A (ja) 圧力リング
JP7393567B2 (ja) コンプレッションリング
JP6603284B2 (ja) サイドレール
WO2016194767A1 (ja) オイルコントロールリング
JP7478901B1 (ja) ピストンリング及びピストンリングの組合せ
KR100724693B1 (ko) 내연 기관용 오일 링
JP7284308B1 (ja) ピストンリング
JP6914291B2 (ja) 内燃機関のシリンダ
KR102604136B1 (ko) 사이드 레일 및 이것을 구비하는 오일 컨트롤 링
JP6438679B2 (ja) オイルリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22969163

Country of ref document: EP

Kind code of ref document: A1