WO2024125557A1 - 冰箱及其控制方法 - Google Patents
冰箱及其控制方法 Download PDFInfo
- Publication number
- WO2024125557A1 WO2024125557A1 PCT/CN2023/138492 CN2023138492W WO2024125557A1 WO 2024125557 A1 WO2024125557 A1 WO 2024125557A1 CN 2023138492 W CN2023138492 W CN 2023138492W WO 2024125557 A1 WO2024125557 A1 WO 2024125557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage space
- temperature
- oxygen
- oxygen content
- control method
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 239000001301 oxygen Substances 0.000 claims abstract description 223
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 223
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 194
- 230000008569 process Effects 0.000 claims abstract description 31
- 238000000746 purification Methods 0.000 claims abstract description 18
- 230000000813 microbial effect Effects 0.000 claims abstract description 13
- 230000000977 initiatory effect Effects 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 73
- 230000008859 change Effects 0.000 claims description 64
- 239000013078 crystal Substances 0.000 claims description 40
- 238000004659 sterilization and disinfection Methods 0.000 claims description 18
- 230000015654 memory Effects 0.000 claims description 11
- 238000007710 freezing Methods 0.000 claims description 4
- 230000008014 freezing Effects 0.000 claims description 4
- 235000013305 food Nutrition 0.000 abstract description 28
- 238000004378 air conditioning Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 34
- 238000005057 refrigeration Methods 0.000 description 20
- 244000005700 microbiome Species 0.000 description 15
- 238000003487 electrochemical reaction Methods 0.000 description 11
- 238000004321 preservation Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 230000003750 conditioning effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/04—Treating air flowing to refrigeration compartments
Definitions
- the invention relates to atmosphere-controlled freshness preservation, and in particular to a refrigerator and a control method thereof.
- Controlled atmosphere preservation technology is a technology that extends the storage life of food by adjusting the ambient gas composition. Refrigeration and freezing devices with controlled atmosphere preservation function are widely favored. Among the many gas components, oxygen has attracted much attention. Some food ingredients, such as meat, are suitable for storage in a high-oxygen environment.
- An object of the present invention is to overcome at least one technical defect in the prior art and to provide a refrigerator and a control method thereof.
- a further object of the present invention is to reduce or avoid rapid spoilage of food materials caused by the atmosphere conditioning process of the refrigerator.
- Another further object of the present invention is to kill various types of microorganisms using a simple method to ensure purification effect.
- a further object of the present invention is to take into account both atmosphere conditioning and freshness preservation, so that the storage space can create a good storage environment according to storage needs.
- a control method of a refrigerator wherein a storage space is provided in the refrigerator, and the control method comprises:
- Oxygen is input into the storage space to form a high-oxygen fresh-keeping environment in the storage space.
- the step of initiating purification to reduce the microbial content of the storage space includes:
- the air in the storage space is extracted to form a vacuum disinfection environment in the storage space.
- the process further includes:
- a refrigeration airflow is input into the storage space to form a low-temperature environment in the storage space.
- the process of inputting refrigeration airflow into the storage space further includes:
- the step of coordinating the temperature change and the oxygen content change of the storage space includes:
- the temperature change and the oxygen content change of the storage space are coordinated according to the temperature of the storage space to prevent the oxygen content of the storage space from changing slowly.
- the step of coordinating the temperature change and the oxygen content change of the storage space according to the temperature of the storage space includes:
- the cooling rate of the storage space is reduced so that the oxygen content in the storage space reaches the target value before the temperature of the storage space drops to the ice crystal point temperature.
- the step of determining whether the temperature of the storage space is about to drop to the freezing point temperature includes:
- the method further comprises:
- the refrigerator is further provided with a vacuum pump connected to the storage space to extract air from the storage space; and
- the step of extracting air from the storage space includes: operating the vacuum pump.
- a storage space is provided in the refrigerator, and the refrigerator further comprises:
- a processor and a memory wherein the memory stores a machine executable program, and when the machine executable program is executed by the processor, it is used to implement the control method according to any one of the above items.
- the refrigerator and control method thereof of the present invention when determining that the storage space is closed and before inputting oxygen into the storage space to form a high-oxygen fresh-keeping environment in the storage space, initiates purification to reduce the microbial content in the storage space, and can kill microorganisms before creating a high-oxygen atmosphere in the storage space, thereby reducing or avoiding rapid spoilage of food due to the refrigerator's gas conditioning process.
- oxygen is input into the storage space to form a high-oxygen disinfection environment in the storage space, thereby killing anaerobic microorganisms, and air is extracted from the storage space to form a vacuum disinfection environment in the storage space, thereby killing aerobic microorganisms. Therefore, by adopting the scheme of the present invention, various types of microorganisms can be killed based on a simple method, thereby ensuring the purification effect.
- the refrigerator and control method thereof of the present invention during the process of inputting oxygen into the storage space to form a high-oxygen fresh-keeping environment in the storage space, inputs a refrigeration airflow into the storage space to form a low-temperature environment in the storage space, thereby achieving both air conditioning and fresh-keeping, and is conducive to creating a good storage environment for the storage space according to storage needs.
- FIG1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
- FIG2 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
- FIG3 is a schematic structural diagram of an oxygen processing device of a refrigerator according to an embodiment of the present invention.
- FIG4 is a schematic exploded view of the oxygen processing device of the refrigerator shown in FIG3 ;
- FIG5 is a schematic diagram of a method for controlling a refrigerator according to an embodiment of the present invention.
- FIG. 6 is a control flow chart of a refrigerator according to an embodiment of the present invention.
- FIG1 is a schematic structural diagram of a refrigerator 20 according to an embodiment of the present invention.
- the refrigerator 20 of the embodiment of the present invention should be understood in a broad sense, and can be a refrigeration device with a low-temperature storage function such as a refrigerator, a freezer, a freezer or a refrigerator.
- the refrigerator 20 generally includes a processor 110 and a memory 120, and can further include a box 600.
- the interior of the box 600 defines a storage space 610 for storing food.
- FIG2 is a schematic block diagram of a refrigerator 20 according to an embodiment of the present invention.
- the refrigerator 20 of this embodiment may further include an oxygen processing device 300, which is used to adjust the oxygen content of the storage space 610 through an electrochemical reaction, for example, to provide oxygen to the storage space 610.
- the oxygen processing device 300 can generate oxygen through an electrochemical reaction under the action of an electrolysis voltage, thereby serving as an oxygen supply source for the storage space 610.
- the oxygen processing device 300 can also consume oxygen through an electrochemical reaction to reduce the oxygen content of the storage space 610.
- FIG3 is a schematic structural diagram of an oxygen processing device 300 of a refrigerator 20 according to an embodiment of the present invention
- FIG4 is a schematic exploded diagram of the oxygen processing device 300 of the refrigerator 20 shown in FIG3
- the oxygen processing device 300 may include a shell 320, a cathode plate 330, and an anode plate 340.
- the shell 320 has a lateral opening 321.
- the shell 320 may be in the shape of a flat rectangular parallelepiped.
- the lateral opening 321 may be provided on any surface of the shell 320, such as the top surface, the bottom surface, or the side surface. In one example, the lateral opening 321 may be provided on the surface of the shell 320 with the largest area.
- the cathode plate 330 is disposed at the lateral opening 321 to define an electrolysis chamber for containing electrolyte together with the housing 320 and to consume oxygen through electrochemical reaction under the action of the electrolysis voltage. Under the action of the electrolysis voltage, oxygen in the air can undergo a reduction reaction at the cathode plate 330, i.e., O2 + 2H2O + 4e- ⁇ 4OH- .
- the anode plate 340 and the cathode plate 330 are arranged in the electrolysis chamber at intervals, and are used to provide reactants to the cathode plate 330 and generate oxygen through an electrochemical reaction.
- the OH- generated by the cathode plate 330 can undergo an oxidation reaction at the anode plate 340 and generate oxygen, that is: 4OH- ⁇ O2 + 2H2O + 4e- .
- the shell 320 can be provided with an exhaust hole 323 for discharging the oxygen generated by the anode plate 340, for example, to the above-mentioned storage space 610.
- the exhaust hole 323 and the storage space 610 can be connected through a pipeline.
- the shell 320 can also be provided with a liquid replenishment port 322, and the liquid replenishment port 322 can be connected to an external liquid source through a pipeline, so that the liquid from the external liquid source can flow into the electrolysis chamber to achieve liquid replenishment.
- the exhaust hole 323 can be connected to the storage space 610 through a pipeline.
- the cathode plate 330 may be in gas flow communication with the storage space 610 to utilize oxygen from the storage space 610 as a reactant for the electrochemical reaction.
- the oxygen processing device 300 may be disposed in the refrigerator 20. In one example, the oxygen processing device 300 may be disposed outside the storage space 610. In a further example, the oxygen processing device 300 may be disposed in the foaming layer or the compressor chamber of the refrigerator 20, and connected to the storage space 610 through a pipeline to deliver the generated oxygen to the storage space 610. Of course, in another example, another storage space 610 may be defined in the box body 600, such as a refrigerated space, and the oxygen processing device 300 may be disposed in the refrigerated space.
- the memory 120 and the processor 110 may form a part of the main control board of the refrigerator 20.
- the memory 120 stores a machine executable program 121, which is used to implement the control method of the refrigerator 20 of any of the following embodiments when executed by the processor 110.
- the processor 110 may be a central processing unit (CPU), or a digital processing unit (DSP), etc.
- the memory 120 is used to store the program executed by the processor 110.
- the memory 120 may be any medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the memory 120 may also be a combination of various memories 120. Since the machine executable program 121 implements the various processes of the following method embodiments when executed by the processor 110, and can achieve the same technical effect, it will not be repeated here to avoid repetition.
- FIG5 is a schematic diagram of a control method of a refrigerator 20 according to an embodiment of the present invention.
- the control method of the refrigerator 20 may generally include the following steps:
- Step S502 obtaining a closing signal of the storage space 610. That is, determining that the storage space 610 is closed.
- the closing signal of the storage space 610 may be triggered after the user closes the storage space 610.
- "closing" the storage space 610 means making the storage space 610 in a closed state.
- Step S504 start purification to reduce the microbial content of the storage space 610.
- the purification method can be set according to actual needs, for example, ozone, ultraviolet rays and/or other particles with microbial killing function can be released into the storage space 610, etc.
- Step S504 oxygen is input into the storage space 610 to form a high-oxygen fresh-keeping environment in the storage space 610. That is, after reducing the microbial content in the storage space 610, the storage space 610 is formed into a high-oxygen fresh-keeping environment with a relatively high oxygen content.
- the storage space 610 when it is determined that the storage space 610 is closed, and before oxygen is input into the storage space 610 to form a high-oxygen preservation environment in the storage space 610, purification is started to reduce the microbial content in the storage space 610.
- the microorganisms can be killed in the storage space 610 before creating a high-oxygen atmosphere, thereby reducing or avoiding the rapid spoilage of food due to the gas conditioning process of the refrigerator 20.
- the step of initiating purification to reduce the microbial content in the storage space 610 includes: inputting oxygen into the storage space 610 to form a high-oxygen disinfection environment in the storage space 610, and extracting air from the storage space 610 to form a vacuum disinfection environment in the storage space 610.
- the high-oxygen sterilization environment refers to a high-oxygen environment with a relatively high oxygen content, in which anaerobic microorganisms can be killed.
- the vacuum sterilization environment refers to a vacuum environment with thin air, in which various types of microorganisms including aerobic microorganisms can be killed.
- oxygen is input into the storage space 610 to form a high-oxygen disinfection environment in the storage space 610, which can kill anaerobic microorganisms.
- the air in the storage space 610 is extracted to form a vacuum disinfection environment in the storage space 610, which can kill aerobic microorganisms. Therefore, by adopting the scheme of the present invention, various types of microorganisms can be killed based on a simple method to ensure the purification effect.
- the refrigerator 20 may further include a vacuum pump, which is connected to the storage space 610 to extract the air in the storage space 610.
- the vacuum pump may be started in a controlled manner to extract the air in the storage space 610, so that the storage space 610 forms a vacuum sterilization environment.
- the step of extracting the air in the storage space 610 may include: running the vacuum pump.
- the vacuum pump When the running time of the vacuum pump reaches a preset time, or when the oxygen concentration in the storage space 610 is lower than a preset threshold, the vacuum pump can be turned off in a controlled manner.
- the preset time can be 3 minutes, and the preset threshold can be 5%.
- the oxygen processing device 300 may be started, and the oxygen generated by the oxygen processing device 300 may be delivered to the storage space 610.
- the exhaust hole 323 of the oxygen processing device 300 may be connected to the storage space 610 through a pipeline.
- control method may further include: inputting a cooling airflow into the storage space 610 to form a low-temperature environment in the storage space 610 .
- the internal temperature of the storage space 610 may fluctuate. By inputting refrigeration airflow into the storage space 610, the temperature of the storage space 610 can be timely lowered.
- control method may further include: coordinating the temperature change and oxygen content change of the storage space 610 to prevent the oxygen content of the storage space 610 from changing slowly.
- the step of coordinating the temperature change and the oxygen content change of the storage space 610 includes: detecting the temperature of the storage space 610, and coordinating the temperature change and the oxygen content change of the storage space 610 according to the temperature of the storage space 610 to prevent the oxygen content of the storage space 610 from changing slowly.
- the rate of change of the oxygen content can be increased, and/or the rate of change of the temperature of the storage space 610 can be reduced, so that the oxygen content of the storage space 610 reaches a preset target value before the temperature of the storage space 610 drops to the ice crystal point temperature, so as to prevent the oxygen content of the storage space 610 from changing slowly.
- the main control board of the refrigerator 20 provides an electrolysis voltage to the oxygen processing device 300. By increasing the electrolysis voltage of the oxygen processing device 300, the rate of change of the oxygen content can be increased. By reducing the operating frequency of the compressor of the refrigerator 20, and/or reducing the opening of the cooling air door of the storage space 610, the rate of change of the temperature of the storage space 610 can be reduced.
- control method of the embodiment of the present invention is applicable to both the oxygen increase process of the storage space 610 and the oxygen decrease process of the storage space 610 .
- the step of coordinating the temperature change of the storage space 610 and the oxygen content change according to the temperature of the storage space 610 includes:
- the oxygen content of the storage space 610 is detected, and it is determined whether the oxygen content of the storage space 610 has risen to a preset target value;
- the cooling rate of the storage space 610 is reduced so that the oxygen content in the storage space 610 reaches the target value before the temperature of the storage space 610 drops to the ice crystal point temperature.
- the ice crystal point temperature refers to the critical temperature at which the moisture in the food forms small ice crystals.
- the temperature of the storage space 610 drops to the ice crystal point temperature, the moisture in the food forms ice crystals, thereby forming a gas barrier between the food and its surroundings, so that the gas in the surroundings cannot contact the food.
- the temperature of the storage space 610 When the temperature of the storage space 610 is about to drop to the ice crystal point, by detecting whether the oxygen content in the storage space 610 rises to a preset target value, it can be determined whether the food has been fully exposed to oxygen before the temperature of the storage space 610 drops to the ice crystal point. By reducing the cooling rate of the storage space 610, the time for the temperature of the storage space 610 to drop to the ice crystal point can be delayed, so that the food can be fully exposed to the surrounding oxygen.
- the cooling rate of the storage space 610 is reduced to coordinate the low-temperature adjustment process and the high-oxygen atmosphere adjustment process of the storage space 610, so that the oxygen content of the storage space 610 reaches the target value before the temperature of the storage space 610 drops to the ice crystal point temperature. This is beneficial to ensure that the food in the storage space is fully in contact with oxygen of an appropriate concentration, thereby maintaining a good state.
- the inventors of the present application creatively reduce the cooling rate of the storage space 610 when the temperature of the storage space 610 is about to drop to the ice crystal point temperature and the oxygen content of the storage space 610 has not yet risen to the target value, so as to coordinate the low temperature adjustment process and the high oxygen atmosphere adjustment process of the storage space 610, which breaks through the ideological shackles of the prior art and provides a new idea for reducing or avoiding the inability of food to contact oxygen due to the formation of an airflow barrier between the food and the surrounding environment, and improving the preservation effect of the food.
- the step of determining whether the temperature of the storage space 610 is about to drop to the ice crystal point temperature includes: determining whether the difference between the temperature of the storage space 610 and the ice crystal point temperature is less than or equal to a preset temperature difference threshold, and if so, determining that the temperature of the storage space 610 is about to drop to the ice crystal point temperature.
- the temperature threshold can be any value in the range of 2 to 8°C.
- the cooling rate of the storage space 610 can be adjusted in time, delaying the time for the temperature of the storage space 610 to drop to the ice crystal point temperature, thereby creating opportunities for the food to fully contact with oxygen of appropriate concentration.
- an oxygen concentration sensor may be provided in the storage space 610 to detect the oxygen content of the storage space 610.
- the target value of the oxygen content of the storage space 610 may be set according to the oxygen concentration value required by the food.
- the oxygen content of the storage space 610 may be indirectly determined according to the length of time the storage space 610 receives oxygen.
- the oxygen processing device 300 may generate oxygen at a fixed rate and supply it to the storage space 610. Therefore, the oxygen content of the storage space 610 is determined according to the length of time the storage space 610 receives oxygen.
- the working duration of the oxygen processing device 300 is the length of time the storage space 610 receives oxygen.
- control method may further include: if the oxygen content in the storage space 610 has risen to the target value, maintaining the cooling rate of the storage space 610 unchanged until the temperature of the storage space 610 drops to a preset shutdown point temperature.
- the food can be fully in contact with oxygen of a suitable concentration before the surface of the food is frozen, thereby achieving a good storage state and being frozen and preserved in a good storage state.
- the oxygen processing device 300 can be turned off to stop the electrochemical reaction.
- the step of reducing the cooling rate of the storage space 610 includes: determining the degree of deviation between the temperature change and the oxygen content change of the storage space 610, determining the amplitude of change of the cooling rate of the storage space 610 according to the degree of deviation, and adjusting the cooling rate of the storage space 610 according to the amplitude of change of the cooling rate, so that the cooling rate of the storage space 610 matches the oxygen increase rate of the storage space 610.
- the temperature of the storage space 610 drops to the ice crystal point temperature
- the oxygen content of the storage space 610 has already risen to the target value in advance for a preset time.
- the temperature change of the storage space 610 is synchronized with the change of the oxygen content, and there is no need to adjust the cooling rate of the storage space 610.
- the temperature of the storage space 610 cannot drop to the ice crystal point temperature after the oxygen content of the storage space 610 rises to the target value for a preset time, it is necessary to adjust the cooling rate of the storage space 610.
- the degree of deviation between the temperature change of the storage space 610 and the oxygen content change refers to the deviation between the timing when the temperature of the storage space 610 drops to the ice crystal point temperature and the timing when the oxygen content of the storage space 610 rises to the target value.
- the cooling rate change amplitude of the storage space 610 is determined according to the degree of deviation between the temperature change and the oxygen content change of the storage space 610, and the cooling rate of the storage space 610 is adjusted according to the cooling rate change amplitude, so that the cooling rate of the storage space 610 matches the change of the oxygen content in the storage space 610.
- the cooling process and the oxygenation process of the storage space 610 can be carried out synchronously and orderly, so that the food can be locked in time and effectively, which is conducive to reducing or avoiding the low efficiency of locking food due to unilateral successive adjustments.
- the temperature drop rate variation range of the storage space 610 is used to describe the degree of temperature drop rate variation of the storage space 610.
- the storage space 610 may refer to the internal space of the storage compartment, and of course, may also refer to the internal space of a storage container disposed in the storage compartment.
- the refrigerator 20 may further include a refrigeration system, which may be a vapor compression refrigeration system, and may include a compressor, a condenser, a throttling device, and an evaporator.
- a refrigeration chamber for installing an evaporator may be provided in the box body 600 of the refrigerator 20.
- the storage space 610 is connected to the refrigeration chamber through an air duct to receive heat exchange airflow from the refrigeration chamber.
- the heat exchange airflow is in a low temperature state due to heat exchange with the evaporator provided in the refrigeration chamber.
- the air duct may be connected to the storage space 610 through a cold supply port.
- a cold supply air door is provided at the cold supply port for controlled opening and closing to adjust the opening and closing state and opening and closing degree of the cold supply port.
- the opening of the cooling air door is a preset value, so that the storage space 610 reaches a preset low temperature state according to a preset cooling rate.
- the step of adjusting the cooling rate of the storage space 610 according to the cooling rate variation includes: determining a target opening of the cooling air door of the storage space 610 according to the cooling rate variation, the target opening of the cooling air door increases accordingly with the increase of the cooling rate variation, and adjusting the cooling air door of the storage space 610 to the target opening.
- the target opening of the cooling air door of the storage space 610 is determined according to the change amplitude of the cooling rate, and the working state of the cooling air door is adjusted according to the determined target opening, so as to adjust the cooling rate of the storage space 610.
- the method has the advantages of being simple, flexible and efficient.
- the method of adjusting the cooling rate of the storage space 610 according to the cooling rate change amplitude can also be transformed into: determining the target speed of the compressor according to the cooling rate change amplitude, the target speed of the compressor increases accordingly with the increase of the cooling rate change amplitude, and adjusting the speed of the compressor to the target speed.
- the target speed of the compressor is determined according to the change range of the cooling rate of the storage space 610, and the working state of the compressor is adjusted according to the determined target speed, so as to adjust the cooling rate of the storage space 610, which has the advantages of significant effect and energy saving.
- the step of determining the degree of deviation between the temperature change and the oxygen content change of the storage space 610 includes: estimating the length of time required for the temperature of the storage space 610 to drop to the ice crystal point temperature, recorded as the first time; estimating the length of time required for the oxygen content of the storage space 610 to rise to the target value, recorded as the second time; determining the degree of deviation according to the relative size of the first time and the second time.
- the first time and the second time are estimated based on the current cooling rate and the current oxygen increase rate, respectively.
- the current cooling rate refers to the temperature change rate of the storage space 610 before adjusting the cooling rate.
- the oxygen processing device 300 can release oxygen according to a preset oxygen release per unit time.
- the current oxygen increase rate can be determined by the oxygen release per unit time of the oxygen processing device 300.
- the first duration can be used to describe the timing when the temperature of the storage space 610 drops to the ice crystal point temperature.
- the second duration can be used to describe the timing when the oxygen content of the storage space 610 rises to the target value.
- the relative size of the first time length and the second time length can reflect the difference between the timing when the temperature of the storage space 610 drops to the ice crystal point temperature and the timing when the oxygen content in the storage space 610 rises to the target value, therefore, by determining the above-mentioned deviation degree according to the relative size of the first time length and the second time length, the deviation degree between the temperature change and the oxygen content change in the storage space 610 can be directly and accurately evaluated, thereby reasonably adjusting the cooling rate of the storage space 610.
- the step of determining the degree of deviation according to the relative size of the first duration and the second duration there are multiple preset degrees of deviation, and each degree of deviation is corresponding to a value range of the ratio of the first duration and the second duration.
- the step of determining the degree of deviation according to the relative size of the first duration and the second duration includes: calculating the ratio of the first duration and the second duration; determining the value range to which the ratio belongs, and determining the degree of deviation corresponding to the value range to which the ratio belongs as the degree of deviation between the temperature change and the oxygen content change of the storage space 610.
- the degree of deviation can be preset to be low, medium, and high.
- the ratio is greater than a first preset threshold, the degree of deviation is determined to be low; when the ratio is greater than a second preset threshold and less than or equal to the first preset threshold, the degree of deviation is determined to be medium, and the second preset threshold is less than the first preset threshold; when the ratio is less than the second preset threshold, the degree of deviation is determined to be high.
- the first preset threshold value may be any value in the range of 0.8 to 1.2, for example, 1.0 or 1.1.
- the second preset threshold value may be any value in the range of 0.3 to 0.8, for example, 0.5 or 0.6.
- the step of determining the cooling rate change amplitude of the storage space 610 according to the degree of deviation includes: obtaining a preset corresponding relationship, the corresponding relationship stipulates multiple cooling rate change amplitudes and the degree of deviation corresponding to each cooling rate change amplitude; determining the cooling rate change amplitude corresponding to the degree of deviation according to the corresponding relationship.
- the temperature drop rate when the degree of deviation is low, can be any value in the range of 10% to 30%, for example, 20%, and the opening of the cooling air door can be adjusted to 80% of the preset value.
- the temperature drop rate when the degree of deviation is medium, can be any value in the range of 30% to 70%, for example, 50%, and the opening of the cooling air door can be adjusted to 50% of the preset value.
- the temperature drop rate when the degree of deviation is high, can be any value in the range of 70% to 100%, for example, 100%, and the cooling air door can be switched to a closed state, and the heat exchange airflow in the refrigeration room cannot be delivered to the storage space 610.
- the change range of the cooling rate can be quickly determined based on the mapping principle, thereby omitting the complicated calculation process, and having the advantages of simple logic and simple operation.
- the control method may further include: detecting the oxygen content in the storage space 610, and determining whether the oxygen content in the storage space 610 has risen to a preset target value; if so, stopping supplying oxygen to the storage space 610, and increasing the cooling rate of the storage space 610, so that the temperature of the storage space 610 drops to a preset shutdown point temperature.
- the cooling rate of the storage space 610 can be restored to an initial value.
- the opening of the cooling air door can be restored to a preset value.
- the oxygen processing device 300 can be turned off to stop the electrochemical reaction.
- the temperature of the storage space 610 can quickly reach a preset preservation level by increasing the cooling rate of the storage space 610, thereby improving the preservation performance of the storage space 610.
- the refrigerator 20 may further include a door opening and closing detection device, and use the door opening and closing detection device to detect the opening and closing state of the storage space 610. Since the storage space 610 will exchange gas with the surrounding environment when it is opened, in order to restore the storage space 610 to a preset fresh-keeping state, after detecting that the storage space 610 is closed, oxygen can be delivered to the storage space 610, and the refrigeration system can be started, thereby starting to deliver heat exchange airflow to the storage space 610. By starting the oxygen processing device 300, the oxygen generated by the oxygen processing device 300 can be delivered to the storage space 610. In one example, the refrigeration system can be started after the set time of starting the oxygen processing device 300. The set time can be any value in the range of 1 to 5 minutes.
- control method may further include: increasing the power-on point for the storage space 610.
- the power-on point for the storage space 610 may be increased by 1°C.
- An air pump may be connected to the pipeline between the exhaust hole 323 of the oxygen processing device 300 and the storage space 610 to facilitate the oxygen flowing out of the exhaust hole 323 to quickly flow into the storage space 610.
- the oxygen processing device 300 may be turned off, and/or the air pump may be turned off.
- the oxygen processing device 300 After the oxygen processing device 300 is turned off, if the storage space 610 is continuously closed for a time greater than a preset closing time threshold, the oxygen processing device 300 can be restarted, and/or the air pump can be started.
- the closing time threshold can be 5 hours.
- the oxygen processing device 300 can be turned off, and/or the air pump can be turned off. At this time, the power-on point for the storage space 610 can be restored to normal.
- the step of inputting oxygen into the storage space 610 to form a high-oxygen disinfection environment in the storage space 610 when the oxygen content in the storage space 610 reaches a set value or the working time of the oxygen treatment device 300 reaches a set time, the input of oxygen into the storage space 610 can be stopped.
- a refrigerant airflow may be first input into the storage space 610 to form a low-temperature environment in the storage space 610.
- the temperature of the storage space 610 may be reduced to a preset temperature threshold or after a preset time interval, and then the purification step may be started.
- refrigeration airflow can be first input into the storage space 610 according to 50% of the target cooling capacity per unit time, so that the temperature of the storage space 610 reaches 5°C higher than the ice crystal point temperature, and then after the oxygen content in the storage space 610 reaches the target value, refrigeration airflow can be input into the storage space 610 according to the target cooling capacity per unit time.
- the process if it is detected that the storage space 610 is opened, the process returns to the step of obtaining a closing signal of the storage space 610 and re-executes the step.
- the refrigerator 20 can achieve higher technical effects by further optimizing and configuring the above steps.
- the control method of the refrigerator 20 of this embodiment is described in detail below in combination with the introduction to the optional execution process of this embodiment. This embodiment is only an example of the execution process. During the specific implementation, the execution order and operating conditions of some steps can be modified according to the specific implementation requirements.
- FIG6 is a control flow chart of a refrigerator 20 according to an embodiment of the present invention.
- the control flow generally may include the following steps:
- Step S602 obtaining a closing signal of the storage space 610 .
- Step S604 inputting oxygen into the storage space 610 to form a high-oxygen disinfection environment in the storage space 610.
- Step S606 extracting the air from the storage space 610 to create a vacuum sterilization environment in the storage space 610.
- Step S608 inputting oxygen into the storage space 610, so that the storage space 610 forms a high-oxygen fresh-keeping environment.
- Step S610 inputting cooling airflow into the storage space 610 to form a low-temperature environment in the storage space 610 .
- Step S612 detecting the temperature of the storage space 610 .
- Step S614 determine whether the difference between the temperature of the storage space 610 and the ice crystal point temperature is less than or equal to a preset temperature difference threshold, that is, determine whether the temperature of the storage space 610 is about to drop to the ice crystal point temperature. If so, execute step S616, if not, execute step S612.
- Step S616 detecting the oxygen content in the storage space 610 .
- Step S618, determining whether the oxygen content in the storage space 610 reaches a preset target value, if so, executing step S626, if not, executing step S620.
- Step S620 reducing the cooling rate of the storage space so that the oxygen content in the storage space reaches the target value before the temperature of the storage space drops to the ice crystal point temperature.
- Step S622 detecting the oxygen content in the storage space 610 .
- Step S624 determining whether the oxygen content in the storage space 610 reaches a preset target value, if so, executing step S626, if not, executing step S624.
- Step S626 stop delivering oxygen to the storage space 610, and adjust the temperature of the storage space 610 according to the initial cooling rate, so that the temperature of the storage space 610 drops to a preset shutdown point temperature.
- the refrigerator 20 and the control method thereof of the present invention when determining that the storage space 610 is closed and before inputting oxygen into the storage space 610 to form a high-oxygen fresh-keeping environment in the storage space 610, initiates purification to reduce the microbial content in the storage space 610. This can kill microorganisms in the storage space 610 before creating a high-oxygen atmosphere, thereby reducing or avoiding the rapid spoilage of food caused by the gas conditioning process of the refrigerator 20.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
冰箱(20)及其控制方法,控制方法包括:获取储物空间(610)的关闭信号;启动净化,以降低储物空间(610)的微生物含量;向储物空间(610)输入氧气,使储物空间(610)形成高氧保鲜环境。通过启动净化,以降低储物空间(610)的微生物含量,可使储物空间在营造高氧气氛之前杀灭微生物,从而减少或避免冰箱(20)的气调过程导致食材快速腐败。
Description
本发明涉及气调保鲜,特别是涉及冰箱及其控制方法。
气调保鲜技术是通过调节环境气体成分来延长食品贮藏寿命的技术。具备气调保鲜功能的冷藏冷冻装置广受青睐。在众多的气体成分中,氧气备受关注。部分食材,例如肉类,适于存放于高氧环境中。
虽然一些现有技术记载了通过向储物空间输送氧气使储物空间营造高氧环境的方案,然而发明人认识到,高氧环境易于滋生微生物或者导致微生物大量繁殖,进而导致食材快速腐败。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱及其控制方法。
本发明的一个进一步的目的是要减少或避免冰箱的气调过程导致食材快速腐败。
本发明的另一个进一步的目的是要采用简单的方法杀灭多种类型的微生物,保证净化效果。
本发明的又一个进一步的目的是要兼顾气调和保鲜,使储物空间根据储物需求营造良好的储藏环境。
特别地,根据本发明的一方面,提供了一种冰箱的控制方法,所述冰箱内设置有储物空间,并且所述控制方法包括:
获取所述储物空间的关闭信号;
启动净化,以降低所述储物空间的微生物含量;
向所述储物空间输入氧气,使所述储物空间形成高氧保鲜环境。
可选地,启动净化,以降低所述储物空间的微生物含量的步骤包括:
向所述储物空间输入氧气,使所述储物空间形成高氧消杀环境;
抽出所述储物空间的空气,使所述储物空间形成真空消杀环境。
可选地,在向所述储物空间输入氧气的过程中,还包括:
向所述储物空间输入制冷气流,使所述储物空间形成低温环境。
可选地,在向所述储物空间输入制冷气流的过程中,还包括:
协调所述储物空间的温度变化和氧气含量变化,以防所述储物空间的氧气含量变化滞缓。
可选地,协调所述储物空间的温度变化和氧气含量变化的步骤包括:
检测所述储物空间的温度;
根据所述储物空间的温度协调所述储物空间的温度变化和氧气含量变化,以防所述储物空间的氧气含量变化滞缓。
可选地,根据所述储物空间的温度协调所述储物空间的温度变化和氧气含量变化的步骤包括:
判断所述储物空间的温度是否即将降至冰晶点温度;
若是,则检测所述储物空间的氧气含量,并判断所述储物空间的氧气含量是否升至预设的目标值;
若否,则降低所述储物空间的降温速率,以在所述储物空间的温度降至所述冰晶点温度之前,使所述储物空间的氧气含量达到所述目标值。
可选地,判断所述储物空间的温度是否即将降至冰晶点温度的步骤包括:
判断所述储物空间的温度与所述冰晶点温度之间的差值是否小于等于预设的温差阈值;
若是,则确定所述储物空间的温度即将降至所述冰晶点温度。
可选地,在降低所述储物空间的降温速率的步骤之后,还包括:
检测所述储物空间的氧气含量;
判断所述储物空间的氧气含量是否升至预设的目标值;
若是,则停止向所述储物空间输送氧气,并提高所述储物空间的降温速率,使储物空间的温度降至预设的关机点温度。
可选地,所述冰箱还设置有与所述储物空间相连通以将所述储物空间内的空气抽出的真空泵;且
抽出所述储物空间的空气的步骤包括:运行所述真空泵。
根据本发明的另一方面,还提供了一种冰箱,所述冰箱内设置有储物空间,并且所述冰箱还包括:
处理器以及存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据以上任一项所述的控制方法。
本发明的冰箱及其控制方法,在确定储物空间关闭的情况下,且在向储物空间输入氧气,使储物空间形成高氧保鲜环境之前,通过启动净化,以降低储物空间的微生物含量,可使储物空间在营造高氧气氛之前杀灭微生物,从而减少或避免冰箱的气调过程导致食材快速腐败。
进一步地,本发明的冰箱及其控制方法,在启动净化的步骤中,通过向储物空间输入氧气,使储物空间形成高氧消杀环境,可杀灭厌氧型微生物,通过抽出储物空间的空气,使储物空间形成真空消杀环境,可杀灭好氧型微生物,因此,采用本发明的方案,可基于简单的方法杀灭多种类型的微生物,保证净化效果。
进一步地,本发明的冰箱及其控制方法,在向储物空间输入氧气,使储物空间形成高氧保鲜环境的过程中,通过向储物空间输入制冷气流,使储物空间形成低温环境,可实现气调和保鲜的兼顾,有利于使储物空间根据储物需求营造良好的储藏环境。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的冰箱的示意性框图;
图3是根据本发明一个实施例的冰箱的氧气处理装置的示意性结构图;
图4是图3所示的冰箱的氧气处理装置的示意性分解图;
图5是根据本发明一个实施例的冰箱的控制方法的示意图;
图6是根据本发明一个实施例的冰箱的控制流程图。
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图6来描述本发明实施例的冰箱20及其控制方法。除非另有明确具体的限定,当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“一些示例”、“一个示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明实施例首先提供了一种冰箱20。图1是根据本发明一个实施例的冰箱20的示意性结构图。本发明实施例的冰箱20应做广义理解,可以为冰箱、冷柜、冷冻柜或者冷藏柜等具备低温储存功能的制冷设备。冰箱20一般性地可包括处理器110和存储器120,还可以进一步地包括箱体600。箱体600的内部限定出储物空间610,用于存储食材。
图2是根据本发明一个实施例的冰箱20的示意性框图。本实施例的冰箱20还可以进一步地包括氧气处理装置300,其用于通过电化学反应调节储物空间610的氧气含量,例如可以向储物空间610提供氧气。氧气处理装置300可以在电解电压的作用下通过电化学反应生成氧气,从而作为储物空间610的氧气供应源。当然,在另一个示例中,氧气处理装置300还可以通过电化学反应消耗氧气,以降低储物空间610的氧气含量。
图3是根据本发明一个实施例的冰箱20的氧气处理装置300的示意性结构图,图4是图3所示的冰箱20的氧气处理装置300的示意性分解图。在一些可选的实施例中,氧气处理装置300可包括壳体320、阴极板330和阳极板340。其中,壳体320具有侧向开口321。例如壳体320可以呈扁平的长方体形状。侧向开口321可以设置在壳体320的任意面上,例如顶面、底面或者侧面。在一个示例中,侧向开口321可以设置在壳体320的面积最大的面上。
阴极板330设置于侧向开口321处,以与壳体320共同限定出用于盛装电解液的电解仓,并用于在电解电压的作用下通过电化学反应消耗氧气。在电解电压的作用下,空气中的氧气可以在阴极板330处发生还原反应,即,O
2+2H
2O+4e
-→4OH
-。
阳极板340与阴极板330相互间隔地设置于电解仓内,并用于通过电化学反应向阴极板330提供反应物并生成氧气。阴极板330产生的OH
-可以在阳极板340处发生氧化反应,并生成氧气,即:4OH
-→O
2+2H
2O+4e
-。壳体320上可以开设有排气孔323,用于排出阳极板340生成的氧气,例如,排向上述储物空间610。排气孔323与储物空间610之间可以通过管路实现连通。壳体320上还可以开设有补液口322,补液口322与外部液源之间可以通过管路实现连通,使得来自外部液源的液体可以流入电解仓,以实现补液。在一个示例中,排气孔323可以通过管路连通储物空间610。在另一个示例中,阴极板330可以与储物空间610气流连通,以利用来自储物空间610的氧气作为电化学反应的反应物。
以上关于阴极板330和阳极板340的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置300的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
氧气处理装置300可以设置冰箱20内。在一个示例中,氧气处理装置300可以设置在储物空间610的外部。在一个进一步的示例中,氧气处理装置300可以设置在冰箱20的发泡层内或者压缩机室内,并通过管路连通储物空间610,以将产生的氧气输送至储物空间610。当然,在另一个示例中,箱体600内还可以限定出另一储物空间610,例如冷藏空间,氧气处理装置300可以设置在冷藏空间内。
存储器120和处理器110可以形成冰箱20的主控板的一部分。存储器120内存储有机器可执行程序121,机器可执行程序121被处理器110执行时用于实现以下任一实施例的冰箱20的控制方法。处理器110可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器120用于存储处理器110执行的程序。存储器120可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器120也可以是各种存储器120的组合。由于机器可执行程序121被处理器110执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图5是根据本发明一个实施例的冰箱20的控制方法的示意图。冰箱20的控制方法一般性地可包括如下步骤:
步骤S502,获取储物空间610的关闭信号。也即,确定储物空间610被关闭。储物空间610的关闭信号可以在用户关闭储物空间610之后触发。其中,“关闭”储物空间610是指,使储物空间610处于封闭状态。
步骤S504,启动净化,以降低储物空间610的微生物含量。净化的方式可以根据实际需要进行设置,例如可以向储物空间610释放臭氧、紫外线和/或其他具有杀灭微生物功能的粒子,等等。
步骤S504,向储物空间610输入氧气,使储物空间610形成高氧保鲜环境。也即,在降低储物空间610的微生物含量之后,再使储物空间610形成具有较高氧气含量的高氧保鲜环境。
使用上述方法,在确定储物空间610关闭的情况下,且在向储物空间610输入氧气,使储物空间610形成高氧保鲜环境之前,通过启动净化,以降低储物空间610的微生物含量,可使储物空间610在营造高氧气氛之前杀灭微生物,从而减少或避免冰箱20的气调过程导致食材快速腐败。
在一些可选的实施例中,启动净化,以降低储物空间610的微生物含量的步骤包括:向储物空间610输入氧气,使储物空间610形成高氧消杀环境,抽出储物空间610的空气,使储物空间610形成真空消杀环境。
在向储物空间610输入氧气,使储物空间610形成高氧消杀环境的过程中,高氧消杀环境是指具有较高氧气含量的高氧环境,在该环境下,可以杀灭厌氧型微生物。在抽出储物空间610的空气,使储物空间610形成真空消杀环境的过程中,真空消杀环境是指空气稀薄的真空环境,在该环境下,可以杀灭包括好氧型微生物在内多种类型的微生物。
在启动净化的步骤中,通过向储物空间610输入氧气,使储物空间610形成高氧消杀环境,可杀灭厌氧型微生物,通过抽出储物空间610的空气,使储物空间610形成真空消杀环境,可杀灭好氧型微生物,因此,采用本发明的方案,可基于简单的方法杀灭多种类型的微生物,保证净化效果。
在一些可选的实施例中,冰箱20可以进一步地包括真空泵,真空泵连通储物空间610以将储物空间610内的空气抽出。真空泵可以受控地启动,以抽出储物空间610的空气,使储物空间610形成真空消杀环境。并且抽出储物空间610的空气的步骤可以包括:运行真空泵。
在真空泵的运行时间达到预设时长,或者在储物空间610的氧气浓度低于预设阈值时,真空泵可以受控地关闭。其中,预设时长可以为3min,预设阈值可以为5%。
在向储物空间610输入氧气的步骤中,可以启动氧气处理装置300,并将氧气处理装置300生成的氧气输送至储物空间610。例如,氧气处理装置300的排气孔323可以通过管路连通储物空间610。
在一些可选的实施例中,在向储物空间610输入氧气的过程中,控制方法还可以进一步地包括:向储物空间610输入制冷气流,使储物空间610形成低温环境。
在储物空间610被关闭前,由于储物空间610连通冰箱20的外部环境,因此,储物空间610的内部温度会有所波动,通过向储物空间610输入制冷气流,可以及时地降低储物空间610的温度。
使用上述方法,在向储物空间610输入氧气,使储物空间610形成高氧保鲜环境的过程中,通过向储物空间610输入制冷气流,使储物空间610形成低温环境,可实现气调和保鲜的兼顾,有利于使储物空间610根据储物需求营造良好的储藏环境。
在一些可选的实施例中,在向储物空间610输入制冷气流的过程中,控制方法还可以进一步地包括:协调储物空间610的温度变化和氧气含量变化,以防储物空间610的氧气含量变化滞缓。
使用上述方法,通过协调储物空间610的温度变化和氧气含量变化,以防储物空间610的氧气含量变化滞缓,可减少或避免食材因与周围环境之间形成气流屏障而无法接触周围氧气环境,有利于规避氧气调节过程的失效问题,提高食材的保鲜效果。
在一些可选的实施例中,协调储物空间610的温度变化和氧气含量变化的步骤包括:检测储物空间610的温度,根据储物空间610的温度协调储物空间610的温度变化和氧气含量变化,以防储物空间610的氧气含量变化滞缓。
在一个示例中,在根据储物空间610的温度协调储物空间610的温度变化和氧气含量变化的步骤中,在储物空间610的温度即将降至冰晶点温度时,可以提高氧气含量变化速率,和/或降低储物空间610的温度变化速率,使储物空间610的氧气含量在储物空间610的温度降至冰晶点温度之前达到预设的目标值,以防储物空间610的氧气含量变化滞缓。冰箱20的主控板向氧气处理装置300提供电解电压。通过提高氧气处理装置300的电解电压,可以提高氧气含量变化速率。通过降低冰箱20的压缩机运行频率,和/或减小储物空间610的供冷风门开度,可以降低储物空间610的温度变化速率。
值得说明的是,本发明实施例的控制方法既适用于储物空间610的升氧过程,同样也可以适用于储物空间610的降氧过程。
在一些可选的实施例中,根据储物空间610的温度协调储物空间610的温度变化和氧气含量变化的步骤包括:
判断储物空间610的温度是否即将降至冰晶点温度;
若是,则检测储物空间610的氧气含量,并判断储物空间610的氧气含量是否升至预设的目标值;
若否,则降低储物空间610的降温速率,以在储物空间610的温度降至冰晶点温度之前,使储物空间610的氧气含量达到目标值。
以上步骤中,冰晶点温度是指使得食材的水分形成小冰晶的临界温度。当储物空间610的温度降至冰晶点温度时,食材的水分会形成冰晶,从而使得食材与其周围环境之间产生气体屏障,导致周围环境中的气体无法与食材接触。
在储物空间610的温度即将降至冰晶点温度时,通过检测储物空间610的氧气含量是否升至预设的目标值,可以确定食材是否已在储物空间610的温度降至冰晶点温度之前已与氧气充分接触。通过降低储物空间610的降温速率,可以延迟储物空间610的温度降至冰晶点温度的时间,使食材得以与周围氧气充分接触。
通过对储物空间610的温度进行检测,并在确定储物空间610的温度即将达到冰晶点温度且储物空间610的氧气含量尚未升至预设的目标值的情况下,降低储物空间610的降温速率,以协调储物空间610的低温调节过程和高氧气氛调节过程,从而在储物空间610的温度降至冰晶点温度之前,使储物空间610的氧气含量达到目标值,这有利于保证储物空间的食材与适宜浓度的氧气充分接触,从而维持良好的状态。
需要强调的是,虽然现有技术已公开通过向储物空间610输送氧气来提高氧气含量的方案,但是,发明人认识到,当向储物空间610输送氧气时,现有技术往往关注储物空间610的氧气含量是否达到预设值,然而并未关心这些氧气是否已与食材进行了实质上的有效接触,也并未关心这些氧气是否能够在实质上发挥气调功能。受限于现有技术的上述方案的制约,本领域普通技术人员显然不会想到在储物空间610的温度降至冰晶点温度之前,使储物空间610的氧气含量达到目标值。因此,本申请的发明人创造性地在储物空间610的温度即将降至冰晶点温度且储物空间610的氧气含量尚未升至目标值的情况下,降低储物空间610的降温速率,以协调储物空间610的低温调节过程和高氧气氛调节过程,这突破了现有技术的思想桎梏,为减少或避免食材因与周围环境之间形成气流屏障而无法接触氧气,提高食材的保鲜效果提供了全新思路。
在一些可选的实施例中,判断储物空间610的温度是否即将降至冰晶点温度的步骤包括:判断储物空间610的温度与冰晶点温度之间的差值是否小于等于预设的温差阈值,若是,则确定储物空间610的温度即将降至冰晶点温度。其中,温度阈值可以为2~8℃范围内的任意值。
使用上述方法,可以在储物空间610的温度降至低于冰晶点温度的设定值时及时地调整储物空间610的降温速率,延缓储物空间610的温度适降至冰晶点温度的时间,从而为食材与适宜浓度氧气进行充分接触创造时机。
在一些可选的实施例中,储物空间610内可以设置有氧气浓度传感器,用于检测储物空间610的氧气含量。储物空间610的氧气含量的目标值可以根据食材所需的氧气浓度值进行设定。在另一个示例中,储物空间610的氧气含量可以根据。储物空间610接收氧气的时长进行间接地确定。氧气处理装置300可以按照固定的速率产生氧气,并供应给储物空间610。因此,根据储物空间610接收氧气的时长确定储物空间610的氧气含量。在一个示例中,氧气处理装置300的工作时长即为储物空间610接收氧气的时长。
在一些可选的实施例中,在判断储物空间610的氧气含量是否升至预设的目标值的步骤之后,控制方法还可以进一步地包括:若储物空间610的氧气含量升至目标值,则维持储物空间610的降温速率不变,直至储物空间610的温度降至预设的关机点温度。
使用上述方法,在储物空间610的温度降至冰晶点温度之前,由于储物空间610的氧气含量已经预先达到预设的目标值,并且储物空间610的氧气能够在较高浓度范围内持续若干时长,在食材表面被冰封之前,食材可与适宜浓度的氧气进行充分接触,从而达到良好的存储状态,并以良好的存储状态进行冰封保存。
若储物空间610的氧气含量升至目标值,则在维持储物空间610的降温速率不变的同时,还可以停止向储物空间610输送氧气,例如可以关闭氧气处理装置300,使氧气处理装置300停止进行电化学反应。
在一些可选的实施例中,降低储物空间610的降温速率的步骤包括:确定储物空间610的温度变化与氧气含量变化之间的偏差程度,根据偏差程度确定储物空间610的降温速率变化幅度,按照降温速率变化幅度调节储物空间610的降温速率,使储物空间610的降温速率与储物空间610的升氧速率相匹配。
理想情况下,若储物空间610的温度降至冰晶点温度时,储物空间610的氧气含量已提前预设时长预先升至目标值,此时储物空间610的温度变化与氧气含量变化同步,无需调整储物空间610的降温速率。当储物空间610的温度无法在储物空间610的氧气含量升至目标值的预设时长之后降至冰晶点温度时,则有必要调整储物空间610的降温速率。储物空间610的温度变化与氧气含量变化之间的偏差程度是指储物空间610的温度降至冰晶点温度的时机与储物空间610的氧气含量升至目标值的时机之间的偏差大小。
使用上述方法,通过根据储物空间610的温度变化与氧气含量变化之间的偏差程度确定储物空间610的降温速率变化幅度,并按照降温速率变化幅度调节储物空间610的降温速率,使储物空间610的降温速率与储物空间610的氧气含量变化情况相匹配,可使储物空间610的降温过程和升氧过程同步有序进行,从而使食材及时有效地锁鲜,这有利于减少或避免因单方面逐次调节导致锁鲜效率低下。
储物空间610的降温速率变化幅度用于描述储物空间610的降温速率变化程度。储物空间610可以指储物间室的内部空间,当然,也可以指设置于储物间室内的储物容器的内部空间。冰箱20还可以进一步地包括制冷系统,其可以为蒸汽压缩制冷系统,并且可以包括压缩机、冷凝器、节流装置和蒸发器。
冰箱20的箱体600内可以设置有用于安装蒸发器的制冷室。储物空间610与制冷室通过风道相连通,以接收来自制冷室的换热气流。换热气流因与设置于制冷室内的蒸发器换热而呈现为低温状态。风道可以通过供冷口连通储物空间610。在一个示例中,供冷口处设置有供冷风门,用于受控地开闭以调节供冷口的开闭状态和开闭程度。
在正常制冷状态下,供冷风门的开度为预设值,使储物空间610按照预设的降温速率达到预设的低温状态。在一些可选的实施例中,按照降温速率变化幅度调节储物空间610的降温速率的步骤包括:根据降温速率变化幅度确定储物空间610的供冷风门的目标开度,供冷风门的目标开度随降温速率变化幅度的增大而相应增大,将储物空间610的供冷风门调节至目标开度。
使用上述方法,通过根据降温速率变化幅度确定储物空间610的供冷风门的目标开度,并按照确定出的目标开度调节供冷风门的工作状态,以此调整储物空间610的降温速率,具有方法简便、灵活高效的优点。
在另一些可选的实施例中,按照降温速率变化幅度调节储物空间610的降温速率的方法还可以变换为:根据降温速率变化幅度确定压缩机的目标转速,压缩机的目标转速随降温速率变化幅度的增大而相应增大,将压缩机的转速调节至目标转速。
使用上述方法,通过根据储物空间610的降温速率变化幅度确定压缩机的目标转速,并按照确定出的目标转速调节压缩机的工作状态,以此调节储物空间610的降温速率,具有效果显著、节约能耗的优点。
在一些可选的实施例中,确定储物空间610的温度变化与氧气含量变化之间的偏差程度的步骤包括:预估储物空间610的温度降至冰晶点温度所需的时间长度,记为第一时长;预估储物空间610的氧气含量升至目标值所需的时间长度,记为第二时长;根据第一时长和第二时长的相对大小确定偏差程度。第一时长和第二时长分别基于当前的降温速率和当前的升氧速率进行预估。其中,当前的降温速率是指调整降温速率之前储物空间610的温度变化速率。氧气处理装置300可以按照预设的单位时间氧气释放量释放氧气。当前的升氧速率可以由氧气处理装置300的单位时间氧气释放量进行确定。
第一时长可用于描述储物空间610的温度降至冰晶点温度的时机。第二时长可用于描述储物空间610的氧气含量升至目标值的时机。通过确定第一时长和第二时长的相对大小,可确定储物空间610的温度降至冰晶点温度的时机与储物空间610的氧气含量升至目标值的时机之间的偏差程度,从而准确地确定储物空间610的降温速率的调整幅度,使储物空间610的温度在储物空间610的氧气含量升至目标值的预设时长之后降至冰晶点温度。
由于第一时长和第二时长的相对大小能够反映确定储物空间610的温度降至冰晶点温度的时机与储物空间610的氧气含量升至目标值的时机之间的差值,因此,根据第一时长和第二时长的相对大小确定上述偏差程度,可以直接并精确地评估储物空间610的温度变化与氧气含量变化之间的偏差程度,从而合理地调节储物空间610的降温速率。
在一些可选的实施例中,在根据第一时长和第二时长的相对大小确定偏差程度的步骤中,偏差程度预设有多个,每一偏差程度对应设置有第一时长和第二时长的比值的取值范围。且根据第一时长和第二时长的相对大小确定偏差程度的步骤包括:计算第一时长和第二时长的比值;确定比值所属的取值范围,并将与比值所属的取值范围相对应的偏差程度确定为储物空间610的温度变化与氧气含量变化之间的偏差程度。
在一个示例中,偏差程度可以预设有低等程度、中等程度和高等程度。在比值大于第一预设阈值的情况下,确定偏差程度为低等程度;在比值大于第二预设阈值且小于等于第一预设阈值的情况下,确定偏差程度为中等程度,第二预设阈值小于第一预设阈值;在比值小于第二预设阈值的情况下,确定偏差程度为高等程度。
第一预设阈值可以为0.8~1.2范围内的任意值,例如可以为1.0或者1.1。第二预设阈值可以为0.3~0.8范围内的任意值,例如可以为0.5或者0.6。
在一些可选的实施例中,根据偏差程度确定储物空间610的降温速率变化幅度的步骤包括:获取预设的对应关系,对应关系规定有多个降温速率变化幅度以及与每一降温速率变化幅度相对应的偏差程度;根据对应关系确定与偏差程度相对应的降温速率变化幅度。
在一个进一步的示例中,当偏差程度为低等程度时,降温速率变化幅度可以为10%~30%范围内的任意值,例如可以为20%,此时供冷风门的开度可以调整为预设值的80%。当偏差程度为中等程度时,降温速率变化幅度可以为30%~70%范围内的任意值,例如可以为50%,此时供冷风门的开度可以调整为预设值的50%。当偏差程度为高等程度时,降温速率变化幅度可以为70%~100%范围内的任意值,例如可以为100%,此时供冷风门可以切换为关闭状态,制冷室内的换热气流无法输送至储物空间610。
使用上述方法,通过预设对应关系,并根据对应关系确定储物空间610的降温速率变化幅度,可以基于映射原理快速地确定降温速率变化幅度,从而省略复杂的计算过程,具备逻辑简单、运算简便的优点。
在一些可选的实施例中,在降低储物空间610的降温速率的步骤之后,控制方法还可以进一步地包括:检测储物空间610的氧气含量,并判断储物空间610的氧气含量是否升至预设的目标值;若是,则停止向储物空间610输送氧气,并提高储物空间610的降温速率,使储物空间610的温度降至预设的关机点温度。
其中,在提高储物空间610的降温速率的步骤中,储物空间610的降温速率可以恢复至初始值,在一个示例中,供冷风门的开度可以恢复为预设值。在停止向储物空间610输送氧气的步骤中,例如可以关闭氧气处理装置300,使氧气处理装置300停止进行电化学反应
使用上述方法,在储物空间610的氧气含量升至预设的目标值之后,通过提高储物空间610的降温速率,可使储物空间610的温度快速达到预设的保鲜水平,从而提高储物空间610的保鲜性能。
在一些可选的实施例中,冰箱20还可以进一步地包括门体开闭检测装置,并利用门体开闭检测装置检测储物空间610的开闭状态。由于储物空间610被打开时会与周围环境发生气体交换,因此,为使储物空间610恢复至预设的保鲜状态,在检测到储物空间610被关闭之后,可以开始向储物空间610输送氧气,并启动制冷系统,从而开始向储物空间610输送换热气流。通过启动氧气处理装置300,可以将氧气处理装置300生成的氧气输送至储物空间610。在一个示例中,可以在启动氧气处理装置300的设定时长之后,再启动制冷系统。设定时长可以为1~5min范围内的任意值。
在一些可选的实施例中,在抽出储物空间610的空气的步骤之后,控制方法还可以进一步地包括:提高针对储物空间610的开机点。在一个示例中,可以将针对储物空间610的开机点提高1℃。
氧气处理装置300的排气孔323与储物空间610之间的管路上可以连接有气泵,用于促使流出排气孔323的氧气快速地流入储物空间610。在一些可选的实施例中,当储物空间610的氧气含量达到目标值或氧气处理装置300的工作时长达到预定值时,可以关闭氧气处理装置300,和/或关闭气泵。
在关闭氧气处理装置300之后,若储物空间610持续关闭的时间大于预设的关闭时长阈值,则可以再次启动氧气处理装置300,和/或启动气泵。在一个示例中,关闭时长阈值可以为5h。当储物空间610的氧气含量升至目标值时,可以关闭氧气处理装置300,和/或关闭气泵。此时,针对储物空间610的开机点可以恢复正常。
在一些可选的实施例中,在向储物空间610输入氧气,使储物空间610形成高氧消杀环境的步骤中,当储物空间610的氧气含量达到设定值或者氧气处理装置300的工作时长达到设定时长时,可以停止向储物空间610输入氧气。
在一些可选的实施例中,在获取到储物空间610的关闭信号之后,可以先向储物空间610输入制冷气流,使储物空间610形成低温环境,例如,可使储物空间610的温度降至预设的温度阈值时或间隔预设时间之后,再执行启动净化的步骤。
在向储物空间610输入制冷气流的过程中,可以先按照单位时间目标供冷量的50%向储物空间610输入制冷气流,使储物空间610的温度达到比冰晶点温度高5℃,然后在储物空间610的氧气含量达到目标值之后,再按照单位时间目标供冷量向储物空间610输入制冷气流。
以上步骤中,若检测到储物空间610被打开,则返回重新执行获取储物空间610的关闭信号的步骤。
在一些可选实施例中,可以通过对上述步骤的进一步优化和配置使得冰箱20实现更高的技术效果,以下结合对本实施例的可选执行流程的介绍对本实施例的冰箱20的控制方法进行详细说明,该实施例仅为对执行流程的举例说明,在具体实施时,可以根据具体实施需求,对部分步骤的执行顺序、运行条件进行修改。
图6是根据本发明一个实施例的冰箱20的控制流程图。该控制流程一般性地可包括如下步骤:
步骤S602,获取储物空间610的关闭信号。
步骤S604,向储物空间610输入氧气,使储物空间610形成高氧消杀环境。
步骤S606,抽出储物空间610的空气,使储物空间610形成真空消杀环境。
步骤S608,向储物空间610输入氧气,使储物空间610形成高氧保鲜环境。
步骤S610,向储物空间610输入制冷气流,使储物空间610形成低温环境。
步骤S612,检测储物空间610的温度。
步骤S614,判断储物空间610的温度与冰晶点温度之间的差值是否小于等于预设的温差阈值,也即,判断储物空间610的温度是否即将降至冰晶点温度,若是,则执行步骤S616,若否,则执行步骤S612。
步骤S616,检测储物空间610的氧气含量。
步骤S618,判断储物空间610的氧气含量是否升至预设的目标值,若是,则执行步骤S626,若否,则执行步骤S620。
步骤S620,降低所述储物空间的降温速率,以在所述储物空间的温度降至所述冰晶点温度之前,使所述储物空间的氧气含量达到所述目标值。
步骤S622,检测储物空间610的氧气含量。
步骤S624,判断储物空间610的氧气含量是否升至预设的目标值,若是,则执行步骤S626,若否,则执行步骤S624。
步骤S626,停止向储物空间610输送氧气,并按照初始降温速率调节储物空间610的温度,使储物空间610的温度降至预设的关机点温度。
本发明的冰箱20及其控制方法,在确定储物空间610关闭的情况下,且在向储物空间610输入氧气,使储物空间610形成高氧保鲜环境之前,通过启动净化,以降低储物空间610的微生物含量,可使储物空间610在营造高氧气氛之前杀灭微生物,从而减少或避免冰箱20的气调过程导致食材快速腐败。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种冰箱的控制方法,所述冰箱内设置有储物空间,其特征在于,所述控制方法包括:获取所述储物空间的关闭信号;启动净化,以降低所述储物空间的微生物含量;向所述储物空间输入氧气,使所述储物空间形成高氧保鲜环境。
- 根据权利要求1所述的控制方法,其特征在于,启动净化,以降低所述储物空间的微生物含量的步骤包括:向所述储物空间输入氧气,使所述储物空间形成高氧消杀环境;抽出所述储物空间的空气,使所述储物空间形成真空消杀环境。
- 根据权利要求1所述的控制方法,其特征在于,在向所述储物空间输入氧气的过程中,还包括:向所述储物空间输入制冷气流,使所述储物空间形成低温环境。
- 根据权利要求3所述的控制方法,其特征在于,在向所述储物空间输入制冷气流的过程中,还包括:协调所述储物空间的温度变化和氧气含量变化,以防所述储物空间的氧气含量变化滞缓。
- 根据权利要求4所述的控制方法,其特征在于,协调所述储物空间的温度变化和氧气含量变化的步骤包括:检测所述储物空间的温度;根据所述储物空间的温度协调所述储物空间的温度变化和氧气含量变化,以防所述储物空间的氧气含量变化滞缓。
- 根据权利要求5所述的控制方法,其特征在于,根据所述储物空间的温度协调所述储物空间的温度变化和氧气含量变化的步骤包括:判断所述储物空间的温度是否即将降至冰晶点温度;若是,则检测所述储物空间的氧气含量,并判断所述储物空间的氧气含量是否升至预设的目标值;若否,则降低所述储物空间的降温速率,以在所述储物空间的温度降至所述冰晶点温度之前,使所述储物空间的氧气含量达到所述目标值。
- 根据权利要求6所述的控制方法,其特征在于,判断所述储物空间的温度是否即将降至冰晶点温度的步骤包括:判断所述储物空间的温度与所述冰晶点温度之间的差值是否小于等于预设的温差阈值;若是,则确定所述储物空间的温度即将降至所述冰晶点温度。
- 根据权利要求6所述的控制方法,其特征在于,在降低所述储物空间的降温速率的步骤之后,还包括:检测所述储物空间的氧气含量;判断所述储物空间的氧气含量是否升至预设的目标值;若是,则停止向所述储物空间输送氧气,并提高所述储物空间的降温速率,使储物空间的温度降至预设的关机点温度。
- 根据权利要求1所述的控制方法,其特征在于,所述冰箱还设置有与所述储物空间相连通以将所述储物空间内的空气抽出的真空泵;且抽出所述储物空间的空气的步骤包括:运行所述真空泵。
- 一种冰箱,所述冰箱内设置有储物空间,其特征在于,所述冰箱还包括:处理器以及存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据权利要求1所述的控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211610756.9 | 2022-12-14 | ||
CN202211610756.9A CN118189494A (zh) | 2022-12-14 | 2022-12-14 | 冰箱及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024125557A1 true WO2024125557A1 (zh) | 2024-06-20 |
Family
ID=91401435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/138492 WO2024125557A1 (zh) | 2022-12-14 | 2023-12-13 | 冰箱及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118189494A (zh) |
WO (1) | WO2024125557A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6083459A (en) * | 1997-06-30 | 2000-07-04 | Matsushita Electric Industrial Co., Ltd. | Reservoir and method for storing articles |
KR20030036384A (ko) * | 2003-03-22 | 2003-05-09 | 주식회사 엔바이온 | 산소 농도 조절을 통한 악취 제거 및 신선도 유지 방법 |
JP2005016875A (ja) * | 2003-06-27 | 2005-01-20 | Matsushita Electric Ind Co Ltd | 保存庫 |
JP2010144993A (ja) * | 2008-12-18 | 2010-07-01 | Panasonic Corp | 冷蔵庫 |
CN102374720A (zh) * | 2010-08-11 | 2012-03-14 | 株式会社东芝 | 冰箱以及含有肌红蛋白的食品的储藏方法 |
CN211748393U (zh) * | 2019-10-10 | 2020-10-27 | 香河品图科技发展有限公司 | 多功能气体自动修复文物展示存储柜 |
CN213549403U (zh) * | 2020-08-13 | 2021-06-29 | 株洲明扬农业科技股份公司 | 一种屠宰生猪肉质保鲜装置 |
CN114484970A (zh) * | 2020-10-23 | 2022-05-13 | 青岛海尔电冰箱有限公司 | 冰箱及其控制方法 |
CN216897963U (zh) * | 2021-12-28 | 2022-07-05 | Tcl家用电器(合肥)有限公司 | 一种真空保鲜装置和冰箱 |
-
2022
- 2022-12-14 CN CN202211610756.9A patent/CN118189494A/zh active Pending
-
2023
- 2023-12-13 WO PCT/CN2023/138492 patent/WO2024125557A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6083459A (en) * | 1997-06-30 | 2000-07-04 | Matsushita Electric Industrial Co., Ltd. | Reservoir and method for storing articles |
KR20030036384A (ko) * | 2003-03-22 | 2003-05-09 | 주식회사 엔바이온 | 산소 농도 조절을 통한 악취 제거 및 신선도 유지 방법 |
JP2005016875A (ja) * | 2003-06-27 | 2005-01-20 | Matsushita Electric Ind Co Ltd | 保存庫 |
JP2010144993A (ja) * | 2008-12-18 | 2010-07-01 | Panasonic Corp | 冷蔵庫 |
CN102374720A (zh) * | 2010-08-11 | 2012-03-14 | 株式会社东芝 | 冰箱以及含有肌红蛋白的食品的储藏方法 |
CN211748393U (zh) * | 2019-10-10 | 2020-10-27 | 香河品图科技发展有限公司 | 多功能气体自动修复文物展示存储柜 |
CN213549403U (zh) * | 2020-08-13 | 2021-06-29 | 株洲明扬农业科技股份公司 | 一种屠宰生猪肉质保鲜装置 |
CN114484970A (zh) * | 2020-10-23 | 2022-05-13 | 青岛海尔电冰箱有限公司 | 冰箱及其控制方法 |
CN216897963U (zh) * | 2021-12-28 | 2022-07-05 | Tcl家用电器(合肥)有限公司 | 一种真空保鲜装置和冰箱 |
Also Published As
Publication number | Publication date |
---|---|
CN118189494A (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109737671B (zh) | 冷藏冷冻装置及其控制方法 | |
CN106679320B (zh) | 冷藏冷冻装置及其控制方法 | |
CN107367126B (zh) | 冰箱的控制方法与计算机存储介质 | |
WO2024125557A1 (zh) | 冰箱及其控制方法 | |
JP7016002B2 (ja) | 冷蔵庫 | |
JP5630106B2 (ja) | 冷蔵庫 | |
CN106679277B (zh) | 冷藏冷冻装置及其控制方法 | |
CN116164472A (zh) | 冰箱及其控制方法 | |
WO2024125568A1 (zh) | 冰箱及其控制方法 | |
JP2012037202A (ja) | 食品の貯蔵方法 | |
CN108061420B (zh) | 温度调控方法、温度调控装置、制冷设备和可读存储介质 | |
CN114857836A (zh) | 一种冰箱及控制方法 | |
WO2023279988A1 (zh) | 冷藏冷冻装置及其控制方法 | |
CN116045575A (zh) | 冰箱 | |
WO2023169344A1 (zh) | 冰箱及其控制方法 | |
CN114485005B (zh) | 除味装置、制冷设备、除味控制方法以及控制组件 | |
WO2023231979A1 (zh) | 设置有磁场保鲜间室的冰箱及其控制方法 | |
JP2003279230A (ja) | 冷蔵庫の加湿装置 | |
CN109998016B (zh) | 一种蒸箱保鲜方法、蒸箱保鲜机构以及保鲜蒸箱 | |
CN110940128B (zh) | 冰箱 | |
JPH09187164A (ja) | 貯蔵庫 | |
CN114485022B (zh) | 冰箱 | |
CN212244586U (zh) | 一种新鲜蔬菜保鲜装置 | |
CN216953698U (zh) | 一种保湿保鲜装置及果蔬鲜花保鲜器及冰箱 | |
WO2024012133A1 (zh) | 一种冰箱冷藏室的防结冰控制方法及冰箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23902752 Country of ref document: EP Kind code of ref document: A1 |