WO2024114607A1 - 传输控制方法、装置及通信设备 - Google Patents
传输控制方法、装置及通信设备 Download PDFInfo
- Publication number
- WO2024114607A1 WO2024114607A1 PCT/CN2023/134545 CN2023134545W WO2024114607A1 WO 2024114607 A1 WO2024114607 A1 WO 2024114607A1 CN 2023134545 W CN2023134545 W CN 2023134545W WO 2024114607 A1 WO2024114607 A1 WO 2024114607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- offset
- communication device
- target
- value
- frequency
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 314
- 230000005540 biological transmission Effects 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 101
- 230000015654 memory Effects 0.000 claims description 32
- 238000004590 computer program Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 description 46
- 230000000875 corresponding effect Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 238000007726 management method Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 230000001360 synchronised effect Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
Definitions
- the present application belongs to the field of communication technology, and specifically relates to a transmission control method, device and communication equipment.
- Backscatter Communication refers to the use of radio frequency signals from other devices or environments by backscatter communication equipment to modulate signals to transmit information (as shown in Figure 2).
- TX BB in FIG3 represents the baseband module of the transmitting end of the network side device
- RX BB represents the baseband processing module of the receiving end of the network side device
- Logic represents the logic unit
- Clock represents the clock unit
- Demod represents the demodulator
- RF harvester represents the energy storage module of the tag.
- the frequency of the tag transmission signal or the symbol duration is less accurate.
- the tag frequency may be offset within the frequency range of ⁇ -22%, +22% ⁇ . If the tag frequency deviation is serious, it may be offset to the range of other signals, thereby increasing the interference between signals.
- the embodiments of the present application provide a transmission control method, apparatus and communication device to solve the problem in the related art that the frequency of a tag transmission signal is offset, thereby increasing mutual interference between signals.
- a transmission control method comprising:
- the first communication device estimates a target offset of the second communication device, where the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by the second communication device;
- the first communication device sends parameter information of the target offset to the second communication device.
- a transmission control method comprising:
- the second communication device receives parameter information of a target offset sent by the first communication device, wherein the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by the second communication device;
- the second communication device adjusts the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device according to the parameter information.
- a transmission control device comprising:
- an estimation module configured to estimate a target offset of a second communication device, wherein the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by the second communication device;
- the first sending module is used to send parameter information of the target offset to the second communication device.
- a transmission control device comprising:
- a first receiving module configured to receive parameter information of a target offset sent by a first communication device, wherein the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by a second communication device;
- An adjustment module is used to adjust the time domain resources and/or frequency domain resources of the second communication device for transmitting signals according to the parameter information.
- a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
- a transmission control system comprising: a first communication device and a second communication device, wherein the first communication device can be used to execute the steps of the transmission control method as described in the first aspect above, and the second communication device can be used to execute the steps of the transmission control method as described in the second aspect above.
- a readable storage medium on which a program or instruction is stored.
- the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
- a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
- a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
- an embodiment of the present application provides a transmission control device, which is used to execute the steps of the transmission control determination method as described in the first aspect or the second aspect.
- the first communication device can estimate the target offset of the second communication device, and the target offset is used to indicate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, so that the first communication device sends parameter information of the target offset to the second communication device.
- the first communication device can estimate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, thereby indicating the parameter information of the offset to the second communication device, so that the second communication device can adjust the time domain resources and/or frequency domain resources based on the offset, thereby reducing the probability of the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device interfering with the time domain resources and/or frequency domain resources of other signals, thereby improving the communication quality.
- FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
- FIG2 is a schematic diagram of backscatter communication according to an embodiment of the present application.
- FIG3 is a second schematic diagram of backscatter communication in an embodiment of the present application.
- FIG4 is a schematic diagram of the operation instructions of a reader and the status of a tag in an embodiment of the present application
- FIG5 is a schematic diagram of a process of receiving and sending data by a tag in an embodiment of the present application
- FIG6 is a flow chart of a transmission control method in an embodiment of the present application.
- FIG7 is a flow chart of another transmission control method in an embodiment of the present application.
- FIG. 8 is a schematic diagram of a frequency offset value and a transmission time offset value of a target object in an implementation of a transmission control method according to an embodiment of the present application;
- FIG9 is a schematic diagram of correlation values between candidate sequences and synchronization sequences corresponding to different frequency offset values in an embodiment of the present application.
- FIG10 is a structural block diagram of a transmission control device in an embodiment of the present application.
- FIG11 is a structural block diagram of another transmission control device in an embodiment of the present application.
- FIG12 is a structural block diagram of a communication device in an embodiment of the present application.
- FIG13 is a block diagram of a terminal in an embodiment of the present application.
- FIG14 is a structural block diagram of a network side device in an embodiment of the present application.
- FIG15 is a structural block diagram of another network-side device in an embodiment of the present application.
- first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
- the first object can be one or more.
- “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency Division Multiple Access
- NR new radio
- FIG1 shows a block diagram of a wireless communication system applicable to the embodiment of the present application.
- the wireless communication system includes a terminal 11 and a network side device 12.
- the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), Laptop Computer (also called notebook computer), Personal Digital Assistant (PDA), PDA, netbook, ultra-mobile personal computer (UMPC), mobile Internet Device (MID), augmented reality (AR)/virtual reality (VR) equipment, robot, wearable device (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication function, such as refrigerator, TV, washing machine or furniture, etc.), game console, personal computer (personal computer, PC), teller machine or self-service machine and other terminal side equipment, wearable device includes: smart watch, smart bracelet, smart headset, smart glasses, smart jewelry (smart bracelet, smart bracelet, smart ring, smart necklace, smart anklet, smart anklet, etc.), smart wristband, smart clothing, etc.
- PDA Personal Digital Assistant
- the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
- the access network device may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
- WLAN wireless local area network
- the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmission reception point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
- the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
- MME mobility management entity
- AMF Access and Mobility Management Function
- SMF Session Management Function
- SMF Session Management Function
- UPF User Plane Function
- Policy Control Function Policy Control Function
- PCRF Policy and Charging Rules Function
- edge application service discovery function Edge Application Server Discovery ...
- the backscatter communication device can be one of the following:
- the first type the backscatter communication device in the traditional RFID is generally a tag, which belongs to the passive IoT Devices (Passive-IoT);
- the second type semi-passive tags, which have a certain amplification capability in downlink reception or uplink reflection.
- the third type Tags with active sending capabilities, that is, active Tags.
- This type of terminal can actively generate carrier signals and send information to the 5G base station (the next Generation Node B, gNB) or Reader without relying on the reflection of the incident signal.
- the 5G base station the next Generation Node B, gNB
- Reader without relying on the reflection of the incident signal.
- the backscatter communication device can control the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
- the reflection coefficient of the signal can be characterized as:
- Z0 represents the antenna characteristic impedance and Z1 represents the load impedance.
- the output signal is Therefore, corresponding amplitude modulation, frequency modulation or phase modulation can be achieved by properly controlling the reflection coefficient.
- the reader in the protocol design of ultra-high frequency (UHF) RFID, in the inventory mode, the reader is required to send a query command (Query), and the tag responds (Reply), that is, generates a 16-bit random number to the reader, and then the reader sends the sequence to the tag through the ACK command, and the tag sends the relevant data to the reader.
- Query query command
- Reply responses
- RN16 in FIG5 represents a random number with a length of 16 bits; PC represents protocol control. control); PacketCRC stands for packet cyclic redundancy check.
- the method may include the following steps 601 to 602:
- Step 601 The first communication device estimates the target offset of the second communication device.
- the first communication device may be a Reader, wherein the Reader may be a network side device or a terminal.
- the second communication device may be a Tag.
- the target offset is used to indicate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device.
- the first communication device can estimate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device. For example, if the first communication device is a Reader and the second communication device is a Tag, the Reader can estimate the time domain offset and/or frequency domain offset when the Tag transmits the signal.
- the above-mentioned time domain offset is the time domain resource used by the second communication device when transmitting a signal, which is an offset relative to the already configured time domain resource
- the above-mentioned frequency domain offset is the frequency domain resource used by the second communication device when transmitting a signal, which is an offset relative to the already configured frequency domain resource.
- the target offset includes at least one of the following items A-1 to A-2:
- Item A-1 frequency offset value
- Item A-2 a duration offset value of a target object, wherein the target object includes at least one of a transmission unit symbol, a code chip, a high level, and a low level.
- the above item A-1 is the offset value of the frequency used by the second communication device when transmitting a signal relative to the configured frequency
- the above-mentioned item A-2 indicates that the first communication device can estimate at least one of the duration offset value of the transmission unit symbol, the duration offset value of the code bit, the duration offset value of the high level, the duration offset value of the low level, and the duration offset value of the high level and the low level when the second communication device transmits a signal.
- the duration offset value of the transmission unit symbol is the offset value of the duration of the transmission unit symbol used by the second communication device to transmit the signal relative to the duration of the transmission unit symbol that has been configured to transmit the signal;
- the chip duration offset value is the offset value of the chip duration used by the second communication device to transmit a signal relative to the configured chip duration used to transmit a signal;
- the high-level duration offset value is, that is, the high-level duration of the transmission signal of the second communication device, relative to the high-level duration of the transmission signal that has been configured;
- the high level and low level duration offset value is the offset value of the high level and low level duration of the transmission signal of the second communication device relative to the high level and low level duration of the transmission signal that has been configured.
- Step 602 The first communication device sends parameter information of the target offset to the second communication device.
- the second communication device after the second communication device receives the parameter information of the target offset sent by the first communication device, it can adjust the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device according to the parameter information, thereby using the adjusted time domain resources and/or adjusted frequency domain resources to transmit the signal.
- the first communication device can estimate the target offset of the second communication device, and the target offset is used to indicate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, so that the first communication device sends parameter information of the target offset to the second communication device.
- the first communication device can estimate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, thereby indicating the parameter information of the offset to the second communication device, so that the second communication device can adjust the time domain resources and/or frequency domain resources based on the offset, thereby reducing the probability of the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device interfering with the time domain resources and/or frequency domain resources of other signals, thereby improving the communication quality.
- step 601 “the first communication device estimates the target offset of the signal transmitted by the second communication device” includes:
- the first communication device respectively calculates the correlation between the synchronization sequence and each candidate sequence in the first set to obtain a corresponding correlation sequence, wherein the synchronization sequence is a synchronization sequence of a signal transmitted by the second communication device and received by the first communication device, and different candidate sequences correspond to different target offsets;
- the first communication device selects the maximum value of each of the related sequences to form a target sequence
- the first communication device selects at least one value from the target sequence as a target correlation value
- the first communication device determines the target offset corresponding to the candidate sequence corresponding to the target correlation value as the target offset of the signal transmitted by the second communication device.
- the candidate sequence corresponding to the target correlation value is the candidate sequence corresponding to the correlation sequence to which the target correlation value belongs.
- a first set is stored on the first communication device side, and the first set includes multiple candidate sequences, and each candidate sequence corresponds to a corresponding target offset (i.e., time domain offset and/or frequency domain offset).
- the target offset corresponds to the waveform of the transmission signal of the second communication device.
- the correlation sequence between the synchronization sequence and each candidate sequence can be calculated respectively to obtain L correlation sequences, and then the maximum value in each correlation sequence can be selected respectively to obtain a target sequence with L values, and then at least one value can be selected from the target sequence as the above target correlation value.
- the target offset corresponding to the candidate sequence corresponding to the target correlation value is the target offset of the second communication device transmission signal estimated by the first communication device.
- the candidate sequences in the first set are ⁇ A1 A2 A3 A4 A5 ⁇ , where the A3 sequence is a sequence without frequency domain offset and time domain offset.
- the sampling rate per symbol corresponding to the sequence is 48.
- each candidate sequence in the first set is The sampling rates corresponding to the candidate sequences are: ⁇ 48-2x, 48-x, 48 48+x, 48+2x ⁇ (that is, each candidate sequence has a corresponding sampling frequency);
- the target waveform is the waveform of the signal sent by the second communication device
- the synchronization sequence obtained based on the target waveform is correlated with each candidate sequence in the aforementioned A1 to A5 sequences to obtain 5 correlation sequences, so that the maximum values can be selected from the 5 correlation sequences respectively.
- These 5 maximum values constitute a target sequence, and then at least one value can be selected from the target sequence as the above-mentioned target correlation value.
- the selected target correlation value belongs to the correlation sequence corresponding to the A3 sequence
- the target offset corresponding to the A3 sequence is the target offset of the above-mentioned target waveform sent by the second communication device estimated by the first communication device (that is, the first communication device estimates that the above-mentioned target waveform sent by the second communication device has not undergone frequency domain offset and time domain offset).
- the first communication device can use the correlation value comparison method to estimate the target offset of the second communication device.
- the first communication device selects at least one value from the target sequence as a target related value, including:
- the first communication device selects the top M values in the target ranking as the target related values, wherein the target ranking is the ranking of the values in the target sequence from large to small, and M is greater than zero and less than or equal to the total number of values in the target sequence.
- the first communication device can select the top M values in the target ranking as the target related value (for example, the maximum value in the target sequence can be selected as the target related value, or the maximum value, the second maximum value, and the third maximum value in the target sequence can be selected as the target related value).
- the specific value of M can be set on the network side.
- the parameter information includes at least one of the following items B-1 to B-4:
- Item B-1 frequency offset value
- Item B-2 a second set and a first index, wherein the second set includes at least one frequency offset value, and the first index includes an index of at least one frequency offset value in the second set;
- Item B-3 duration offset value of the target object, the target object including at least one of a transmission unit symbol, a chip, a high level, and a low level;
- Item B-4 a third set and a second index, wherein the third set includes at least one duration offset value of the target object, and the second index includes an index of the duration offset value of at least one target object in the third set.
- the above item B-1 indicates that if the target offset of the second communication device estimated by the first communication device includes a frequency offset value, the first communication device may indicate the frequency offset value to the second communication device.
- the above item B-2 indicates that a second set can be maintained on the first communication device side, and the second set includes at least one frequency offset value. If the target offset of the second communication device estimated by the first communication device includes a frequency offset value, the first communication device can indicate the second set and the index of the frequency offset value estimated by the first communication device in the second set to the second communication device.
- the above item B-3 indicates that if the target offset of the second communication device estimated by the first communication device includes a duration offset value of the target object, the first communication device may indicate the duration offset value of the target object to the second communication device.
- Item B-4 above indicates that a third set can be maintained on the first communication device side, and the third set includes at least one duration offset value of a target object. If the target offset of the second communication device estimated by the first communication device includes the duration offset value of the target object, the first communication device can indicate the third set and the index of the duration offset value of the target object estimated by the first communication device in the third set to the second communication device.
- the frequency offset value estimated by the first communication device can be one or more. If the frequency offset value estimated by the first communication device is multiple, the first index in the above item B-2 includes multiple indexes in the second set; similarly, the duration offset value of the target object estimated by the first communication device can also be one or more. If the duration offset value of the target object estimated by the first communication device is multiple, the second index in the above item B-4 includes multiple indexes in the third set.
- the second set is: [-N*offset, ..., -2*offset, -offset, 0, offset, 2*offset, ..., N*offset], wherein offset represents the step size of the frequency offset value, and N represents the range value of the frequency offset value;
- the third set is [-K*T_offset, ..., -2*T_offset, -T_offset, 0, T_offset, 2*T_offset, ..., K*T_offset], where T_offset represents the step size of the duration offset value of the target object, and K represents the range value of the duration offset value of the target object.
- the frequency offset values in the above-mentioned second set can be sorted in order from small to large, and the interval between each two adjacent frequency offset values is the first preset value (that is, the above-mentioned offset); and/or, the duration offset values of the target objects in the above-mentioned third set can be sorted in order from small to large, and the interval between the durations of each two adjacent target objects is the second preset value (that is, the above-mentioned T_offset).
- the method further comprises:
- the first communication device receives the hardware capability information and the frequency offset range of the second communication device sent by the second communication device;
- At least one of offset, T_offset, N, and K is determined according to the hardware capability information and the frequency offset range of the second communication device.
- the interval between each adjacent two frequency offset values in the second set, and/or the interval between each adjacent two target object durations in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device;
- the maximum value of the frequency offset values in the second set and/or the maximum value of the duration offset values of the target objects in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device;
- the minimum value of the frequency offset values in the second set and/or the minimum value of the duration offset values of the target objects in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device.
- the parameter information is carried in at least one of the following items C-1 to C-4:
- Item C-1 Control orders for inventory taking
- Item C-2 Control orders for inquiry
- Item C-3 Read control commands
- Item C-4 Send a control command to query the identity of the second communication device.
- the identity identification in the above item C-4 can be a temporary identity identification.
- the first communication device can carry the parameter information of the above-mentioned target offset in at least one of the above-mentioned items C-1 to C-4 and send it to the second communication device.
- the method may include the following steps 701 to 702:
- Step 701 The second communication device receives parameter information of the target offset sent by the first communication device.
- the first communication device may be a Reader, wherein the Reader may be a network side device or a terminal.
- the second communication device may be a Tag.
- the target offset is used to indicate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device.
- the first communication device can estimate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device. For example, if the first communication device is a Reader and the second communication device is a Tag, the Reader can estimate the time domain offset and/or frequency domain offset when the Tag transmits the signal.
- the above-mentioned time domain offset is the time domain resource used by the second communication device when transmitting a signal, which is an offset relative to the already configured time domain resource
- the above-mentioned frequency domain offset is the frequency domain resource used by the second communication device when transmitting a signal, which is an offset relative to the already configured frequency domain resource.
- the target offset includes at least one of the following items A-1 to A-2:
- Item A-1 frequency offset value
- Item A-2 a duration offset value of a target object, wherein the target object includes at least one of a transmission unit symbol, a code chip, a high level, and a low level.
- the above item A-1 is the offset value of the frequency used by the second communication device when transmitting a signal relative to the configured frequency
- the above-mentioned item A-2 indicates that the first communication device can estimate at least one of the duration offset value of the transmission unit symbol, the duration offset value of the code bit, the duration offset value of the high level, the duration offset value of the low level, and the duration offset value of the high level and the low level when the second communication device transmits a signal.
- the duration offset value of the transmission unit symbol is the offset value of the duration of the transmission unit symbol used by the second communication device to transmit the signal relative to the duration of the transmission unit symbol that has been configured to transmit the signal;
- the chip duration offset value is the offset value of the chip duration used by the second communication device to transmit a signal relative to the configured chip duration used to transmit a signal;
- the high-level duration offset value is, that is, the high-level duration of the transmission signal of the second communication device, relative to the high-level duration of the transmission signal that has been configured;
- the low-level duration offset value is the low-level duration of the transmission signal of the second communication device, which is an offset value relative to the low-level duration of the transmission signal that has been configured;
- the high level and low level duration offset value is the offset value of the high level and low level duration of the transmission signal of the second communication device relative to the high level and low level duration of the transmission signal that has been configured.
- Step 702 The second communication device adjusts the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device according to the parameter information.
- the first communication device can estimate the target offset of the second communication device, and the target offset is used to indicate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, so that the first communication device sends parameter information of the target offset to the second communication device.
- the first communication device can estimate the time domain offset and/or frequency domain offset of the signal transmitted by the second communication device, thereby indicating the parameter information of the offset to the second communication device, so that the second communication device can adjust the time domain resources and/or frequency domain resources based on the offset, thereby reducing the probability of the time domain resources and/or frequency domain resources of the signal transmitted by the second communication device interfering with the time domain resources and/or frequency domain resources of other signals, thereby improving the communication quality.
- the parameter information includes at least one of the following items B-1 to B-4:
- Item B-1 frequency offset value
- Item B-2 a second set and a first index, wherein the second set includes at least one frequency offset value, and the first index includes an index of at least one frequency offset value in the second set;
- Item B-3 duration offset value of the target object, the target object including at least one of a transmission unit symbol, a chip, a high level, and a low level;
- Item B-4 a third set and a second index, wherein the third set includes at least one duration offset value of the target object, and the second index includes an index of the duration offset value of at least one target object in the third set.
- the above item B-1 indicates that if the target offset of the second communication device estimated by the first communication device includes a frequency offset value, the first communication device may indicate the frequency offset value to the second communication device.
- the above item B-2 indicates that a second set can be maintained on the first communication device side, and the second set includes at least one frequency offset value. If the target offset of the second communication device estimated by the first communication device includes a frequency offset value, the first communication device can indicate the second set and the index of the frequency offset value estimated by the first communication device in the second set to the second communication device.
- the above item B-3 indicates that if the target offset of the second communication device estimated by the first communication device includes a duration offset value of the target object, the first communication device may indicate the duration offset value of the target object to the second communication device.
- the above item B-4 indicates that: a third set may be maintained on the first communication device side, and the third set includes at least one duration offset value of a target object. If the target offset of the second communication device estimated by the first communication device includes the duration offset value of the target object, then the first communication device may store the third set and the target offset of the second communication device estimated by the first communication device. The index of the calculated duration offset value of the target object in the third set is indicated to the second communication device.
- the frequency offset value estimated by the first communication device can be one or more. If the frequency offset value estimated by the first communication device is multiple, the first index in the above item B-2 includes multiple indexes in the second set; similarly, the duration offset value of the target object estimated by the first communication device can also be one or more. If the duration offset value of the target object estimated by the first communication device is multiple, the second index in the above item B-4 includes multiple indexes in the third set.
- the second set is: [-N*offset, ..., -2*offset, -offset, 0, offset, 2*offset, ..., N*offset], wherein offset represents the step size of the frequency offset value, and N represents the range value of the frequency offset value;
- the third set is [-K*T_offset, ..., -2*T_offset, -T_offset, 0, T_offset, 2*T_offset, ..., K*T_offset], where T_offset represents the step size of the duration offset value of the target object, and K represents the range value of the duration offset value of the target object.
- the frequency offset values in the above-mentioned second set can be sorted in order from small to large, and the interval between each two adjacent frequency offset values is the first preset value (that is, the above-mentioned offset); and/or, the duration offset values of the target objects in the above-mentioned third set can be sorted in order from small to large, and the interval between the durations of each two adjacent target objects is the second preset value (that is, the above-mentioned T_offset).
- the method further comprises:
- the second communication device sends hardware capability information and a frequency offset range of the second communication device to the first communication device;
- At least one of offset, T_offset, N, and K is determined according to the hardware capability information and the frequency offset range of the second communication device.
- the interval between each adjacent two frequency offset values in the second set, and/or the interval between each adjacent two target object durations in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device;
- the maximum value of the frequency offset values in the second set and/or the maximum value of the duration offset values of the target objects in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device;
- the minimum value of the frequency offset values in the second set and/or the minimum value of the duration offset values of the target objects in the third set are determined according to the hardware capability information and the frequency offset range of the second communication device.
- the parameter information is carried in at least one of the following items C-1 to C-4:
- Item C-1 Control orders for inventory taking
- Item C-2 Control orders for inquiry
- Item C-3 Read control commands
- Item C-4 Send a control command to query the identity of the second communication device.
- the identity identification in the above item C-4 can be a temporary identity identification.
- the first communication device can carry the parameter information of the target offset in the above items C-1 to C-4. At least one of the items is sent to the second communication device.
- the method further includes:
- the signal is transmitted in the first time using the adjusted time domain resources and/or the adjusted frequency domain resources.
- the method further comprises:
- the signal is transmitted within the second time period using predetermined time domain resources and frequency domain resources.
- the second communication device when the second communication device receives the parameter information of the target offset sent by the first communication device, it can use the time domain resources and/or the adjusted frequency domain resources according to the parameter information to transmit the signal within the first time; when the second communication device does not receive the above parameter information, it can use the predetermined time domain resources and frequency domain resources (i.e., the default time domain resources and frequency domain resources) to transmit the signal within the second time.
- the predetermined time domain resources and frequency domain resources i.e., the default time domain resources and frequency domain resources
- the priority of the first time is higher than the second priority, that is, when the above-mentioned parameter information is received, the priority of transmitting the signal using the time domain resources adjusted according to the parameter information and/or the adjusted frequency domain resources is higher than the priority of transmitting the signal using predetermined time domain resources and frequency domain resources.
- the second set [-N*offset,....,-2*offset,-offset,0,offset,2*offset,...,N*offset] and/or the third set [-K*T_offset,...,-2*T_offset,-T_offset,0,T_offset,2*T_offset,...,K*T_offset] are maintained.
- offset represents the step size of the frequency offset value
- T_offset represents the step size of the duration offset value of the target object
- N represents the range value of the frequency offset value
- K represents the range value of the duration offset value of the target object
- the target object includes at least one of the transmission unit symbol, code bit, high level, and low level
- the parameters N, offset, T_offset, and K can be set to different values according to the hardware capabilities reported by the Tag and the frequency offset range of the Tag.
- each frequency offset value corresponds to an estimated tag carrier frequency or the duration of the target object.
- the waveform has no frequency offset
- the duration of a target object is B, corresponding to the second waveform from top to bottom in the figure
- the frequency offset value is N*offset
- the frequency has a positive frequency offset
- the frequency increases, resulting in a shorter duration of the target object in the time domain
- the duration of the target object is A, corresponding to the first waveform from top to bottom in the figure
- the frequency offset value is -N*offset
- the frequency has a negative frequency offset
- the frequency decreases, resulting in a longer duration of the target object in the time domain
- the duration of the target object is C. It can be seen that whether a positive frequency offset or a negative frequency offset occurs, the duration of the target object will change.
- each discrete sequence can be obtained, and each discrete sequence can be stored in the first set as a candidate sequence, so that each candidate sequence in the first set corresponds to a frequency offset value and an offset value of the duration of a target object. That is, the first set has a corresponding relationship with the elements in the second set and the third set.
- a frequency offset When a frequency offset occurs, whether it is a positive frequency offset or a negative frequency offset, it will change the target object.
- the duration length and the corresponding candidate sequence will also change, so the correlation value between the synchronization sequence of the reflected signal sent by the Tag received by the Reader and the candidate sequence will change.
- the waveform corresponding to the frequency of 2*offset can match the waveform of the Tag with frequency offset, that is, the correlation of these two waveforms has the maximum correlation value (that is, the candidate sequence obtained by sampling the waveform corresponding to the frequency of 2*offset in the second set and the synchronization sequence of the waveform with frequency offset (that is, the reflected signal sent by the Tag) have the maximum correlation value in the correlation sequence obtained by correlating), and the values in the correlation sequence corresponding to the waveforms corresponding to other frequency offset values and the waveform sent by the Tag received by the Reader are all smaller than the above maximum correlation value, as shown in Figure 9.
- the Reader may feed back at least one of the following a) to d) to the Tag:
- At least one of the above a) to d) may be carried in at least one of the following:
- the Tag When the Tag receives at least one of the above items a) to d) indicated by the Reader, it transmits according to the content indicated by the parameter information within D1. If the Tag does not receive at least one of the above items a) to d) fed back by the Reader, the Tag does not perform frequency offset adjustment and/or transmission time adjustment of the target object, and samples the default time domain resources and frequency domain resources, and transmits within D2.
- the priority of D1 is higher than the priority of D2.
- an embodiment of the present application can estimate the time domain offset and/or frequency offset of the Tag on the Reader side and indicate the estimation result to the Tag.
- the Tag adjusts the corresponding frequency domain resources and/or time domain resources according to the parameter information of the Reader, so that in the cellular network, after the Tag is transmitted on the specified frequency resources, the Reader can better schedule and allocate resources and reduce interference between simultaneously sent or received signals.
- embodiments of the present application can be applicable to two forms: direct communication between Tag and gNB, and communication between UE-assisted Tag and gNB.
- the transmission control method provided in the embodiment of the present application can be executed by a transmission control device.
- the transmission control device executing the transmission control method is taken as an example to illustrate the transmission control device provided in the embodiment of the present application.
- an embodiment of the present application further provides a transmission control device, which is applied to a first communication device.
- the transmission control device 100 includes:
- An estimation module 1001 is used to estimate a target offset of a second communication device, where the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by the second communication device;
- the first sending module 1002 is configured to send parameter information of the target offset to the second communication device.
- the estimation module 1001 includes:
- a calculation submodule configured to respectively calculate the correlation between the synchronization sequence and each candidate sequence in the first set to obtain a corresponding correlation sequence, wherein the synchronization sequence is a synchronization sequence of a signal transmitted by the second communication device and received by the first communication device, and different candidate sequences correspond to different target offsets;
- a first selection submodule used for selecting the maximum value of each of the related sequences to form a target sequence
- a second selection submodule configured to select at least one value from the target sequence as a target related value
- a determination submodule is used to determine the target offset corresponding to the candidate sequence corresponding to the target correlation value as the target offset of the transmission signal of the second communication device.
- the second selection submodule is specifically used to:
- the top M values in the target ranking are selected as the target related values, wherein the target ranking is the ranking of the values in the target sequence from large to small, and M is greater than zero and less than or equal to the total number of values in the target sequence.
- the target offset includes at least one of the following:
- a duration offset value of a target object wherein the target object includes at least one of a transmission unit symbol, a code chip, a high level, and a low level.
- the parameter information includes at least one of the following:
- a second set comprising at least one frequency offset value and a first index comprising an index of at least one frequency offset value in the second set
- a duration offset value of a target object wherein the target object includes at least one of a transmission unit symbol, a chip, a high level, and a low level;
- a third set and a second index includes at least one duration offset value of the target object, and the second index includes an index of the duration offset value of at least one target object in the third set.
- the second set is: [-N*offset, ..., -2*offset, -offset, 0, offset, 2*offset, ..., N*offset], wherein offset represents the step size of the frequency offset value, and N represents the range value of the frequency offset value;
- the third set is [-K*T_offset, ..., -2*T_offset, -T_offset, 0, T_offset, 2*T_offset, ..., K*T_offset], where T_offset represents the step size of the duration offset value of the target object, and K represents the range value of the duration offset value of the target object.
- the device further comprises:
- a second receiving module configured to receive the hardware capability information and the frequency offset range of the second communication device sent by the second communication device
- At least one of offset, T_offset, N, and K is determined according to the hardware capability information and the frequency offset range of the second communication device.
- the parameter information is carried in at least one of the following:
- the transmission control device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device may be a terminal or a network-side device.
- the terminal may include but is not limited to the types of the terminal 11 listed above
- the network-side device may include but is not limited to the types of the network-side device 12 listed above, which are not specifically limited in the embodiment of the present application.
- the transmission control device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 6 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- an embodiment of the present application further provides a transmission control device, which is applied to a second communication device.
- the transmission control device 110 includes:
- the first receiving module 1101 is used to receive parameter information of a target offset sent by a first communication device, wherein the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by a second communication device;
- the adjustment module 1102 is used to adjust the time domain resources and/or frequency domain resources of the second communication device for transmitting the signal according to the parameter information.
- the parameter information includes at least one of the following:
- a second set comprising at least one frequency offset value and a first index comprising an index of at least one frequency offset value in the second set
- a duration offset value of a target object wherein the target object includes at least one of a transmission unit symbol, a chip, a high level, and a low level;
- a third set and a second index includes at least one duration offset value of the target object, and the second index includes an index of the duration offset value of at least one target object in the third set.
- the second set is: [-N*offset, ..., -2*offset, -offset, 0, offset, 2*offset, ..., N*offset], wherein offset represents the step size of the frequency offset value, and N represents the range value of the frequency offset value;
- the third set is [-K*T_offset, ..., -2*T_offset, -T_offset, 0, T_offset, 2*T_offset, ..., K*T_offset], where T_offset represents the step size of the duration offset value of the target object, and K represents the range value of the duration offset value of the target object.
- the device further comprises:
- the second sending module is used to send the hardware capability information and the hardware capability information of the second communication device to the first communication device.
- Frequency deviation range
- At least one of offset, T_offset, N, and K is determined according to the hardware capability information and the frequency offset range of the second communication device.
- the parameter information is carried in at least one of the following:
- the device further comprises:
- the first transmission module is used to transmit the signal within the first time using the adjusted time domain resources and/or adjusted frequency domain resources after the adjustment module 1102 adjusts the time domain resources and/or frequency domain resources of the second communication device for transmitting the signal according to the parameter information.
- the device further comprises:
- the second transmission module is used to transmit the signal within the second time by using the predetermined time domain resources and frequency domain resources when the parameter information is not received.
- the transmission control device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or a chip.
- the transmission control device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- an embodiment of the present application further provides a communication device 1200, including a processor 1201 and a memory 1202, wherein the memory 1202 stores a program or instruction that can be run on the processor 1201.
- the communication device 1200 is a first communication device
- the program or instruction is executed by the processor 1201 to implement the various steps of the transmission control method embodiment described in the first aspect above, and can achieve the same technical effect.
- the communication device 1200 is a second communication device
- the program or instruction is executed by the processor 1201 to implement the various steps of the transmission control method embodiment described in the second aspect above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the embodiment of the present application also provides a terminal, as shown in FIG13 , which is a schematic diagram of the hardware structure of a terminal for implementing the embodiment of the present application.
- the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309 and at least some of the components of a processor 1310.
- the terminal 1300 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1310 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
- a power source such as a battery
- the terminal structure shown in FIG13 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
- the input unit 1304 may include a graphics processing unit (GPU) 13041 and a microphone 13042, and the graphics processor 13041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
- the display unit 1306 may include a display panel 13061, and the display panel 13061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
- the user input unit 1307 includes a touch panel 13071 and at least one of other input devices 13072.
- the touch panel 13071 is also called a touch screen.
- the touch panel 13071 may include two parts: a touch detection device and a touch controller.
- Other input devices 13072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
- the RF unit 1301 can transmit the data to the processor 1310 for processing; in addition, the RF unit 1301 can send uplink data to the network side device.
- the RF unit 1301 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
- the memory 1309 can be used to store software programs or instructions and various data.
- the memory 1309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
- the memory 1309 may include a volatile memory or a non-volatile memory, or the memory 1309 may include both volatile and non-volatile memories.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
- the memory 1309 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
- the processor 1310 may include one or more processing units; optionally, the processor 1310 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1310.
- the processor 1310 is used to estimate a target offset of a second communication device, where the target offset is used to indicate a time domain offset and/or a frequency domain offset of a signal transmitted by the second communication device;
- the radio frequency unit 1301 is used to send parameter information of the target offset to the second communication device.
- the processor 1310 estimates a target offset of a signal transmitted by the second communication device, specifically configured to:
- Correlation calculation is performed on the synchronization sequence and each candidate sequence in the first set to obtain a corresponding correlation sequence, wherein the synchronization sequence is a signal transmitted by the second communication device and received by the first communication device.
- a synchronization sequence wherein different candidate sequences correspond to different target offsets;
- the target offset corresponding to the candidate sequence corresponding to the target correlation value is determined as the target offset of the transmission signal of the second communication device.
- the processor 1310 selects at least one value from the target sequence as a target related value, specifically for:
- the top M values in the target ranking are selected as the target related values, wherein the target ranking is the ranking of the values in the target sequence from large to small, and M is greater than zero and less than or equal to the total number of values in the target sequence.
- the target offset includes at least one of the following:
- a duration offset value of a target object wherein the target object includes at least one of a transmission unit symbol, a code chip, a high level, and a low level.
- the parameter information includes at least one of the following:
- a second set comprising at least one frequency offset value and a first index comprising an index of at least one frequency offset value in the second set
- a duration offset value of a target object wherein the target object includes at least one of a transmission unit symbol, a chip, a high level, and a low level;
- a third set and a second index includes at least one duration offset value of the target object, and the second index includes an index of the duration offset value of at least one target object in the third set.
- the second set is: [-N*offset, ..., -2*offset, -offset, 0, offset, 2*offset, ..., N*offset], wherein offset represents the step size of the frequency offset value, and N represents the range value of the frequency offset value;
- the third set is [-K*T_offset, ..., -2*T_offset, -T_offset, 0, T_offset, 2*T_offset, ..., K*T_offset], where T_offset represents the step size of the duration offset value of the target object, and K represents the range value of the duration offset value of the target object.
- the radio frequency unit 1301 is further used to: receive the hardware capability information sent by the second communication device and the frequency offset range of the second communication device;
- At least one of offset, T_offset, N, and K is determined according to the hardware capability information and the frequency offset range of the second communication device.
- the parameter information is carried in at least one of the following:
- the network side device 1400 includes: The antenna 141 is connected to the radio frequency device 142.
- the radio frequency device 142 receives information through the antenna 141 and sends the received information to the baseband device 143 for processing.
- the baseband device 143 processes the information to be sent and sends it to the radio frequency device 142.
- the radio frequency device 142 processes the received information and sends it out through the antenna 141.
- the method executed by the network-side device in the above embodiment may be implemented in the baseband device 143, which includes a baseband processor.
- the baseband device 143 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 14, one of the chips is, for example, a baseband processor, which is connected to the memory 145 through a bus interface to call the program in the memory 145 to execute the network device operations shown in the above method embodiment.
- the network side device may also include a network interface 146, which is, for example, a common public radio interface (CPRI).
- a network interface 146 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the network side device 1400 of the embodiment of the present application also includes: instructions or programs stored in the memory 145 and executable on the processor 144.
- the processor 144 calls the instructions or programs in the memory 145 to execute the method shown in Figure 6 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the embodiment of the present application further provides a network side device.
- the network side device 1500 includes: a processor 1501, a network interface 1502, and a memory 1503.
- the network interface 1502 is, for example, a CPRI interface.
- the network side device 1500 of the embodiment of the present application also includes: instructions or programs stored in the memory 1503 and executable on the processor 1501.
- the processor 1501 calls the instructions or programs in the memory 1503 to execute the method shown in Figure 6 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
- a program or instruction is stored.
- the various processes of the above-mentioned transmission control method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
- the processor is the processor in the terminal described in the above embodiment.
- the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
- An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the transmission control method embodiment described in the first aspect or the second aspect above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
- An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
- the computer program/program product is executed by at least one processor to implement the various processes of the transmission control method embodiment described in the first aspect or the second aspect above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a transmission control system, including: a first communication device and a second communication device, wherein the first communication device can be used to execute the steps of the transmission control method described in the first aspect above, and the second communication device can be used to execute the steps of the transmission control method described in the second aspect above.
- the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to execute the methods described in each embodiment of the present application.
- a storage medium such as ROM/RAM, magnetic disk, optical disk
- a terminal which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种传输控制方法、装置及通信设备,属于通信技术领域,本申请实施例的传输控制方法包括第一通信设备估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;所述第一通信设备向所述第二通信设备发送所述目标偏移的参数信息。
Description
相关申请的交叉引用
本申请要求在2022年12月2日提交中国专利局、申请号为202211538584.9、名称为“传输控制方法、装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于通信技术领域,具体涉及一种传输控制方法、装置及通信设备。
反向散射通信(Backscatter Communication,BSC),是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输信息(例如图2所示)。
其中,如图3所示,反向散射通信的一种简单的实现方式为:标签(Tag)需要发送‘1’时,对阅读器(Reader)入射载波信号进行反射,Tag需要发送‘0’时不进行反射。这里,图3中的TX BB表示网络侧设备发端基带模块;RX BB表示网络侧设备接收端基带处理模块,Logic表示逻辑单元,Clock表示时钟单元,Demod表示解调器,RF harvester表示Tag的能量存储模块。
然而,在Reader与Tag通信过程中,由于Tag硬件能力有限,导致Tag传输信号的频率或者符号持续时间长度的准确性较差,例如,Tag频率有可能在频率范围{-22%,+22%}之间偏移。其中,Tag频偏严重的话,可能会偏移到其他信号的范围,从而会增大信号之间的干扰。
发明内容
本申请实施例提供一种传输控制方法、装置及通信设备,以解决相关技术中Tag传输信号的频率发生偏移从而增大信号之间的相互干扰的问题。
第一方面,提供了一种传输控制方法,包括:
第一通信设备估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;
所述第一通信设备向所述第二通信设备发送所述目标偏移的参数信息。
第二方面,提供了一种传输控制方法,包括:
第二通信设备接收第一通信设备发送的目标偏移的参数信息,其中,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;
所述第二通信设备根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
第三方面,提供了一种传输控制装置,包括:
估计模块,用于估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;
第一发送模块,用于向所述第二通信设备发送所述目标偏移的参数信息。
第四方面,提供了一种传输控制装置,包括:
第一接收模块,用于接收第一通信设备发送的目标偏移的参数信息,其中,所述目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移;
调整模块,用于根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种传输控制系统,包括:第一通信设备和第二通信设备,所述第一通信设备可用于执行如上述第一方面所述的传输控制方法的步骤,所述第二通信设备可用于执行如上述第二方面所述的传输控制方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或者第二方面所述的方法的步骤。
第十方面,本申请实施例提供了一种传输控制装置,所述装置用于执行如第一方面或第二方面所述的传输控制确定方法的步骤。
在本申请实施例中,第一通信设备能够估计第二通信设备的目标偏移,该目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移,从而使得第一通信设备向第二通信设备发送该目标偏移的参数信息。由此可见,在本申请实施例中,第一通信设备可以估计第二通信设备传输信号的时域偏移和/或频域偏移,从而向第二通信设备指示该偏移的参数信息,这样,第二通信设备则可以基于该偏移进行时域资源和/或频域资源调整,从而可以降低第二通信设备传输信号的时域资源和/或频域资源与其他信号的时域资源和/或频域资源相互干扰的几率,进而可以提升通信质量。
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中反向散射通信的示意图之一;
图3是本申请实施例中反向散射通信的示意图之二;
图4是本申请实施例中阅读器(Reader)的操作指令与标签(Tag)的状态的示意图;
图5是本申请实施例中Tag接收和发送数据的流程示意图;
图6是本申请实施例中的一种传输控制方法的流程图;
图7是本申请实施例中的另一种传输控制方法的流程图;
图8是本申请实施例的传输控制方法的实施方式中频率偏移值与目标对象的传输时间偏移值的示意图;
图9是本申请实施例中不同频率偏移值对应的候选序列与同步序列的相关值的示意图;
图10是本申请实施例中的一种传输控制装置的结构框图;
图11是本申请实施例中的另一种传输控制装置的结构框图;
图12是本申请实施例中的一种通信设备的结构框图;
图13是本申请实施例中的一种终端的结构框图;
图14是本申请实施例中的一种网络侧设备的结构框图;
图15是本申请实施例中的另一种网络侧设备的结构框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、
膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了便于理解本申请实施例的传输控制方法,首先对如下相关技术进行介绍:
一、反向散射通信设备
反向散射通信设备,可以是如下中的其中一种:
第一种:传统RFID中的反向散射通信设备,一般是一个标签(Tag),属于无源IoT
设备(Passive-IoT);
第二种:半无源(semi-passive)的Tag,这类Tag的下行接收或者上行反射具备一定的放大能力;
第三种:具备主动发送能力的Tag,即有源Tag(active Tag),这类终端可以不依赖对入射信号的反射,主动生成载波信号并向5G基站(the next Generation Node B,gNB)或Reader发送信息。
其中,反向散射通信设备可以通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0表示天线特性阻抗,Z1表示负载阻抗。
假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。
二、射频识别(Radio Frequency Identification,RFID)中阅读器(Reader)和Tag之间的信息传输
其中,Reader的操作指令如表1以及图4所示:
表1 Reader的操作指令
另外,Tag的状态如表2以及图4所示。
表2 Tag的状态
三、阅读器与标签之间的收发流程
如图5所示,在特高频(UHF)RFID的协议设计中,在盘点模式下,要求阅读器发送查询指令(Query)后,标签响应回应(Reply),即产生一个16-bit的随机数给阅读器,然后阅读器将该序列通过ACK指令发给标签后,标签将相关的数据发送给阅读器。
其中,图5中的RN16表示一个长度为16bit的随机数;PC表示协议控制(protocol
control);PacketCRC表示包循环冗余校验。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输控制方法进行详细地说明。
第一方面,参见图6所示,为本申请实施例所提供的一种传输控制方法的流程图,该方法可以包括以下步骤601至602:
步骤601:第一通信设备估计第二通信设备的目标偏移。
这里,第一通信设备可以为Reader,其中,Reader可以为网络侧设备,也可为终端。第二通信设备可以为Tag。
其中,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移。由此可知,第一通信设备可以估计第二通信设备传输信号的时域偏移和/或频域偏移,例如第一通信设备为Reader,第二通信设备为Tag,则Reader可以估计Tag传输信号时的时域偏移和/或频域偏移。
另外,上述时域偏移即为第二通信设备传输信号时采用的时域资源,相对于已经配置的时域资源的偏移;上述频域偏移即为第二通信设备传输信号时采用的频域资源,相对于已经配置的频域资源的偏移。
可选地,所述目标偏移包括如下A-1至A-2项中至少一项:
A-1项:频率偏移值;
A-2项:目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项。
上述A-1项,即为第二通信设备传输信号时采用的频率,相对于已经配置的频率的偏移值;
上述A-2项,表示第一通信设备可以估计第二通信设备传输信号时传输单位符号的持续时间偏移值、码片的持续时间偏移值、高电平的持续时间偏移值、低电平的持续时间偏移值、高电平和低电平的持续时间偏移值中的至少一项。
这里,传输单位符号的持续时间偏移值,即为第二通信设备用于传输信号的传输单位符号的持续时间,相对于已经配置的用于传输信号的传输单位符号的持续时间的偏移值;
码片的持续时间偏移值,即为第二通信设备用于传输信号的码片的持续时间,相对于已经配置的用于传输信号的码片的持续时间的偏移值;
高电平的持续时间偏移值,即为第二通信设备的传输信号的高电平的持续时间,相对于已经配置的传输信号的高电平的持续时间的偏移值;
低电平的持续时间偏移值,即为第二通信设备的传输信号的低电平的持续时间,相对于已经配置的传输信号的低电平的持续时间的偏移值;
高电平和低电平的持续时间偏移值,即为第二通信设备的传输信号的高电平和低电平的持续时间,相对于已经配置的传输信号的高电平和低电平的持续时间的偏移值。
步骤602:所述第一通信设备向所述第二通信设备发送所述目标偏移的参数信息。
其中,第二通信设备接收到第一通信设备发送的目标偏移的参数信息后,则可以根据该参数信息,调整第二通信设备传输信号的时域资源和/或频域资源,从而采用调整后的时域资源和/或调整后的频域资源,传输信号。
由上述步骤601至602可知,在本申请实施例中,第一通信设备能够估计第二通信设备的目标偏移,该目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移,从而使得第一通信设备向第二通信设备发送该目标偏移的参数信息。由此可见,在本申请实施例中,第一通信设备可以估计第二通信设备传输信号的时域偏移和/或频域偏移,从而向第二通信设备指示该偏移的参数信息,这样,第二通信设备则可以基于该偏移进行时域资源和/或频域资源调整,从而可以降低第二通信设备传输信号的时域资源和/或频域资源与其他信号的时域资源和/或频域资源相互干扰的几率,进而可以提升通信质量。
可选地,上述步骤601“所述第一通信设备估计第二通信设备传输信号的目标偏移”,包括:
所述第一通信设备分别对同步序列与第一集合中的每一个候选序列进行相关性计算,得到对应的相关序列,其中,所述同步序列为所述第一通信设备接收到的所述第二通信设备传输的信号的同步序列,不同的所述候选序列对应不同的所述目标偏移;
所述第一通信设备选择各个所述相关序列的最大值组成目标序列;
所述第一通信设备从所述目标序列中选出至少一个值作为目标相关值;
所述第一通信设备将所述目标相关值对应的候选序列对应的目标偏移,确定为所述第二通信设备传输信号的目标偏移。
这里,目标相关值对应的候选序列,即为目标相关值所属的相关序列对应的候选序列。
由此可知,在第一通信设备一侧存储有第一集合,该第一集合中包括多个候选序列,且每一个候选序列对应有相应的目标偏移(即时域偏移和/或频域偏移)。这里,目标偏移与第二通信设备的传输信号的波形存在对应关系,按照目标偏移后的传输信号波形对应的采样频率对该波形进行采样,则可以得到离散序列,该离散序列即为该目标偏移对应的候选序列。
例如第一集合中包括L个候选序列,则可以分别计算上述同步序列与每一个候选序列的相关序列,从而得到L个相关序列,然后分别选取每个相关序列中的最大值,得到一个有L个值的目标序列,进而可以从该目标序列中选择至少一个值作为上述目标相关值,则该目标相关值对应的候选序列对应的目标偏移即为第一通信设备估计的第二通信设备传输信号的目标偏移。
示例性地,第一集合中的候选序列为{A1 A2 A3 A4 A5},其中,A3序列是没有发生频域偏移和时域偏移的序列,此时该序列对应的每符号采样率为48,则第一集合中的各
个候选序列对应的采样率分别为:{48-2x,48-x,48 48+x,48+2x}(即每一个候选序列都有一个对应的采样频率);
若目标波形是第二通信设备发送的信号的波形,则基于目标波形得到的同步序列,与前述A1至A5序列中的每一个候选序列进行相关计算,可以得到5个相关序列,从而可以分别从5个相关序列中选出最大值,这5个最大值组成一个目标序列,进而可以从目标序列中选出至少一个值作为上述目标相关值,例如选出的目标相关值属于A3序列对应的相关序列,则A3序列对应的目标偏移即为第一通信设备估计的第二通信设备发送的上述目标波形的目标偏移(即第一通信设备估计出第二通信设备发送的上述目标波形并未发生频域偏移和时域偏移)。
由此可知,在本申请实施例中,第一通信设备可以采用相关值比较的方法,估计出第二通信设备的目标偏移。
可选地,所述第一通信设备从所述目标序列中选出至少一个值作为目标相关值,包括:
所述第一通信设备选择目标排序中排位前M的值作为所述目标相关值,所述目标排序是所述目标序列中的值从大到小的排序,M大于零且小于或等于所述目标序列中的值的总数。
即第一通信设备可以选择上述目标排序中排位前M的值作为上述目标相关值(例如可以选择上述目标序列中的最大值作为上述目标相关值,或者选择上述目标序列中的最大值、第二最大值、第三最大值作为上述目标相关值)。这里,M的具体数值可以在网络侧设置。
可选地,所述参数信息包括如下B-1至B-4项中至少一项:
B-1项:频率偏移值;
B-2项:第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;
B-3项:目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;
B-4项:第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
上述B-1项表示:若第一通信设备估计的第二通信设备的目标偏移包括频率偏移值,则第一通信设备可以将该频率偏移值指示给第二通信设备。
上述B-2项表示:在第一通信设备侧可以维护第二集合,该第二集合包括至少一个频率偏移值,则若第一通信设备估计的第二通信设备的目标偏移包括频率偏移值,那么,第一通信设备可以将第二集合,以及第一通信设备估计的频率偏移值在第二集合中的索引指示给第二通信设备。
上述B-3项表示:若第一通信设备估计的第二通信设备的目标偏移包括目标对象的持续时间偏移值,则第一通信设备可以将该目标对象的持续时间偏移值指示给第二通信设备。
上述B-4项表示:在第一通信设备侧可以维护第三集合,该第三集合包括至少一个目标对象的持续时间偏移值,则若第一通信设备估计的第二通信设备的目标偏移包括目标对象的持续时间偏移值,那么,第一通信设备可以将第三集合,以及第一通信设备估计的目标对象的持续时间偏移值在第三集合中的索引指示给第二通信设备。
可以理解的是,第一通信设备估计的频率偏移值可以为一个或多个,若第一通信设备估计的频率偏移值为多个,则上述B-2项中的第一索引则包括第二集合中的多个索引;同理,第一通信设备估计的目标对象的持续时间偏移值也可以为一个或多个,若第一通信设备估计的目标对象的持续时间偏移值为多个,则上述B-4项中的第二索引则包括第三集合中的多个索引。
可选地,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;
和/或,
所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示目标对象的持续时间偏移值的步长,K表示目标对象的持续时间偏移值的范围值。
由此可知,上述第二集合中的频率偏移值可以按照从小到大的顺序排序,且每相邻的两个频率偏移值的间隔为第一预设值(即为上述的offset);和/或,上述第三集合中的目标对象的持续时间偏移值可以按照从小到大的顺序排序,且每相邻的两个目标对象的持续时间的间隔为第二预设值(即为上述的T_offset)。
可选地,所述方法还包括:
所述第一通信设备接收所述第二通信设备发送的硬件能力信息和所述第二通信设备的频率偏移范围;
其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
即上述第二集合中每相邻的两个频率偏移值的间隔,和/或上述第三集合中每相邻的两个目标对象的持续时间的间隔,根据上述硬件能力信息和第二通信设备的频率偏移范围确定;
上述第二集合中的频率偏移值的最大值,和/或上述第三集合中的目标对象的持续时间偏移值的最大值,根据上述硬件能力信息和第二通信设备的频率偏移范围确定;
上述第二集合中的频率偏移值的最小值,和/或上述第三集合中的目标对象的持续时间偏移值的最小值,根据上述硬件能力信息和所述第二通信设备的频率偏移范围确定。
可选地,所述参数信息承载在如下C-1项至C-4项中至少一项中:
C-1项:盘点的控制命令;
C-2项:查询的控制命令;
C-3项:读取的控制命令;
C-4项:发送查询所述第二通信设备的身份标识的控制命令。
其中,上述C-4项中的身份标识可以为临时身份标识。
由此可知,第一通信设备可以将上述目标偏移的参数信息携带在上述C-1至C-4项中的至少一项中发送给第二通信设备。
第二方面,参见图7所示,为本申请实施例所提供的另一种传输控制方法的流程图,该方法可以包括以下步骤701至702:
步骤701:第二通信设备接收第一通信设备发送的目标偏移的参数信息。
这里,第一通信设备可以为Reader,其中,Reader可以为网络侧设备,也可为终端。第二通信设备可以为Tag。
其中,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移。由此可知,第一通信设备可以估计第二通信设备传输信号的时域偏移和/或频域偏移,例如第一通信设备为Reader,第二通信设备为Tag,则Reader可以估计Tag传输信号时的时域偏移和/或频域偏移。
另外,上述时域偏移即为第二通信设备传输信号时采用的时域资源,相对于已经配置的时域资源的偏移;上述频域偏移即为第二通信设备传输信号时采用的频域资源,相对于已经配置的频域资源的偏移。
可选地,所述目标偏移包括如下A-1至A-2项中至少一项:
A-1项:频率偏移值;
A-2项:目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项。
上述A-1项,即为第二通信设备传输信号时采用的频率,相对于已经配置的频率的偏移值;
上述A-2项,表示第一通信设备可以估计第二通信设备传输信号时传输单位符号的持续时间偏移值、码片的持续时间偏移值、高电平的持续时间偏移值、低电平的持续时间偏移值、高电平和低电平的持续时间偏移值中的至少一项。
这里,传输单位符号的持续时间偏移值,即为第二通信设备用于传输信号的传输单位符号的持续时间,相对于已经配置的用于传输信号的传输单位符号的持续时间的偏移值;
码片的持续时间偏移值,即为第二通信设备用于传输信号的码片的持续时间,相对于已经配置的用于传输信号的码片的持续时间的偏移值;
高电平的持续时间偏移值,即为第二通信设备的传输信号的高电平的持续时间,相对于已经配置的传输信号的高电平的持续时间的偏移值;
低电平的持续时间偏移值,即为第二通信设备的传输信号的低电平的持续时间,相对于已经配置的传输信号的低电平的持续时间的偏移值;
高电平和低电平的持续时间偏移值,即为第二通信设备的传输信号的高电平和低电平的持续时间,相对于已经配置的传输信号的高电平和低电平的持续时间的偏移值。
步骤702:所述第二通信设备根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
由上述步骤701至702可知,在本申请实施例中,第一通信设备能够估计第二通信设备的目标偏移,该目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移,从而使得第一通信设备向第二通信设备发送该目标偏移的参数信息。由此可见,在本申请实施例中,第一通信设备可以估计第二通信设备传输信号的时域偏移和/或频域偏移,从而向第二通信设备指示该偏移的参数信息,这样,第二通信设备则可以基于该偏移进行时域资源和/或频域资源调整,从而可以降低第二通信设备传输信号的时域资源和/或频域资源与其他信号的时域资源和/或频域资源相互干扰的几率,进而可以提升通信质量。
可选地,所述参数信息包括如下B-1至B-4项中至少一项:
B-1项:频率偏移值;
B-2项:第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;
B-3项:目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;
B-4项:第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
上述B-1项表示:若第一通信设备估计的第二通信设备的目标偏移包括频率偏移值,则第一通信设备可以将该频率偏移值指示给第二通信设备。
上述B-2项表示:在第一通信设备侧可以维护第二集合,该第二集合包括至少一个频率偏移值,则若第一通信设备估计的第二通信设备的目标偏移包括频率偏移值,那么,第一通信设备可以将第二集合,以及第一通信设备估计的频率偏移值在第二集合中的索引指示给第二通信设备。
上述B-3项表示:若第一通信设备估计的第二通信设备的目标偏移包括目标对象的持续时间偏移值,则第一通信设备可以将该目标对象的持续时间偏移值指示给第二通信设备。
上述B-4项表示:在第一通信设备侧可以维护第三集合,该第三集合包括至少一个目标对象的持续时间偏移值,则若第一通信设备估计的第二通信设备的目标偏移包括目标对象的持续时间偏移值,那么,第一通信设备可以将第三集合,以及第一通信设备估
计的目标对象的持续时间偏移值在第三集合中的索引指示给第二通信设备。
可以理解的是,第一通信设备估计的频率偏移值可以为一个或多个,若第一通信设备估计的频率偏移值为多个,则上述B-2项中的第一索引则包括第二集合中的多个索引;同理,第一通信设备估计的目标对象的持续时间偏移值也可以为一个或多个,若第一通信设备估计的目标对象的持续时间偏移值为多个,则上述B-4项中的第二索引则包括第三集合中的多个索引。
可选地,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;
和/或,
所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示目标对象的持续时间偏移值的步长,K表示目标对象的持续时间偏移值的范围值。
由此可知,上述第二集合中的频率偏移值可以按照从小到大的顺序排序,且每相邻的两个频率偏移值的间隔为第一预设值(即为上述的offset);和/或,上述第三集合中的目标对象的持续时间偏移值可以按照从小到大的顺序排序,且每相邻的两个目标对象的持续时间的间隔为第二预设值(即为上述的T_offset)。
可选地,所述方法还包括:
所述第二通信设备向所述第一通信设备发送硬件能力信息和所述第二通信设备的频率偏移范围;
其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
即上述第二集合中每相邻的两个频率偏移值的间隔,和/或上述第三集合中每相邻的两个目标对象的持续时间的间隔,根据上述硬件能力信息和第二通信设备的频率偏移范围确定;
上述第二集合中的频率偏移值的最大值,和/或上述第三集合中的目标对象的持续时间偏移值的最大值,根据上述硬件能力信息和第二通信设备的频率偏移范围确定;
上述第二集合中的频率偏移值的最小值,和/或上述第三集合中的目标对象的持续时间偏移值的最小值,根据上述硬件能力信息和所述第二通信设备的频率偏移范围确定。
可选地,所述参数信息承载在如下C-1项至C-4项中至少一项中:
C-1项:盘点的控制命令;
C-2项:查询的控制命令;
C-3项:读取的控制命令;
C-4项:发送查询所述第二通信设备的身份标识的控制命令。
其中,上述C-4项中的身份标识可以为临时身份标识。
由此可知,第一通信设备可以将上述目标偏移的参数信息携带在上述C-1至C-4项
中的至少一项中发送给第二通信设备。
可选地,所述第二通信设备根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源之后,所述方法还包括:
采用调整后的时域资源和/或调整后的频域资源,在第一时间内传输信号。
可选地,所述方法还包括:
在未接收到所述参数信息的情况下,采用预先确定的时域资源和频域资源,在第二时间内传输信号。
由此可知,在第二通信设备接收到第一通信设备发送的目标偏移的参数信息的情况下,则可以采用根据该参数信息调整后的时域资源和/或调整后的频域资源,在第一时间内传输信号;在第二通信设备未接收到上述参数信息的情况下,则可以采用预先确定的时域资源和频域资源(即默认的时域资源和频域资源)在第二时间内传输信号。
可选地,第一时间的优先级高于第二优先级,即在接收到上述参数信息的情况下,采用根据该参数信息调整后的时域资源和/或调整后的频域资源传输信号的优先级,高于采用预先确定的时域资源和频域资源传输信号的优先级。
综上所述,本申请实施例的传输控制方法的具体实施方式可如下所述:
在Reader侧,会维护第二集合:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset]和/或第三集合:[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset]。
其中,offset表示频率偏移值的步长,T_offset表示目标对象的持续时间偏移值的步长,N表示频率偏移值的范围值,K表示目标对象的持续时间偏移值的范围值,目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;参数N、offset、T_offset、K可以根据Tag上报的硬件能力以及Tag的频率偏移范围,设置为不同的值。
另外,每一个频率偏移值,都对应一个估计Tag的载波频率或者目标对象的持续时间长度。例如图8所示,当频率偏移值为0时,此时波形没有发生频偏,一个目标对象的持续时间是B,对应图中从上往下的第二个波形;当频率偏移值为N*offset时,此时频率发生了正向频偏,频率提高,导致时域的目标对象的持续时间变短,目标对象的持续时间是A,对应图中从上往下的第一个波形;当频率偏移值为-N*offset时,此时频率发生了负向频偏,频率降低,导致时域的目标对象的持续时间变长,目标对象的持续时间是C。由此可见,无论是发生了正向频偏还是负向频偏,都会改变目标对象的持续时间长度。
此外,对图8中的每一个波形按照相对应的采样频率进行采样,则可以得到离散序列,则每一个离散序列可以作为一个候选序列存储至第一集合中,这样第一集合中的每一个候选序列对应一个频率偏移值以及一个目标对象的持续时间的偏移值。即第一集合与前述第二集合以及第三集合中的元素存在对应关系。
而当发生频率偏移时,无论是发生了正向频偏还是负向频偏,都会改变目标对象的
持续时间长度,并且对应的候选序列也会发生改变,这样,Reader接收到的Tag发送的反射信号的同步序列与候选序列之间的相关值则会发生改变。
假设Tag发生了2*offset的频率偏移,则在Reader侧的第二集合中,只有2*offset这个频率对应的波形能够与Tag发生了频偏的波形相匹配,即这两个波形做相关才有最大相关值(亦即第二集合中2*offset这个频率对应的波形采样得到的候选序列,与Tag发生了频偏的波形(即Tag发送的反射信号)的同步序列,做相关得到的相关序列中才有最大相关值),其它频率偏移值对应的波形与Reader收到的Tag发送的波形做相关的相关序列中的值均小于上述最大相关值,如图9所示。
当Reader侧估计出Tag的频率偏移值和/或目标对象的持续时间偏移值之后,Reader可以向Tag反馈如下a)至d)中的至少一项:
a)频率偏移值;
b)第二集合[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset]和至少一个频率偏移值索引F_index;
c)目标对象的持续时间偏移值;
d)第三集合[-N*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,N*T_offset]和至少一个目标对象的持续时间偏移值索引T_index。
其中,上述a)至d)中的至少一项可以承载在如下中至少一项中:
盘点的控制信令;
查询的控制信令;
读取的控制信令;
发送查询Tag的身份标识的控制命令。
当Tag收到了Reader指示的上述a)至d)中的至少一项之后,则在D1时间内按照参数信息指示的内容进行传输,若Tag没有收到Reader反馈的上述a)至d)中的至少一项,则Tag不执行频偏调整和/或目标对象的传输时间调整,并采样默认的时域资源和频域资源,在D2时间内进行传输。可选地:D1的优先级高于D2的优先级。
因此,本申请的实施例,可以在Reader侧估计Tag的时域偏移和/或频率偏移,并将估计结果指示给Tag,Tag根据Reader的参数信息,调整相应的频域资源和/或时域资源,从而在蜂窝网络中,使得Tag在规定的频率资源上传输之后,Reader可以更好的调度和分配资源,并且降低同时发送或者接收的信号之间的干扰。
此外,需要说明的是,本申请的实施例,可以适用于Tag与gNB直接通信,以及UE辅助Tag与gNB之间的通信两种形式。
本申请实施例提供的传输控制方法,执行主体可以为传输控制装置。本申请实施例中以传输控制装置执行传输控制方法为例,说明本申请实施例提供的传输控制装置。
第三方面,本申请实施例还提供了一种传输控制装置,应用于第一通信设备,如图10所示,该传输控制装置100包括:
估计模块1001,用于估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;
第一发送模块1002,用于向所述第二通信设备发送所述目标偏移的参数信息。
可选地,所述估计模块1001包括:
计算子模块,用于分别对同步序列与第一集合中的每一个候选序列进行相关性计算,得到对应的相关序列,其中,所述同步序列为所述第一通信设备接收到的所述第二通信设备传输的信号的同步序列,不同的所述候选序列对应不同的所述目标偏移;
第一选择子模块,用于选择各个所述相关序列的最大值组成目标序列;
第二选择子模块,用于从所述目标序列中选出至少一个值作为目标相关值;
确定子模块,用于将所述目标相关值对应的候选序列对应的目标偏移,确定为所述第二通信设备传输信号的目标偏移。
可选地,所述第二选择子模块具体用于:
选择目标排序中排位前M的值作为所述目标相关值,所述目标排序是所述目标序列中的值从大到小的排序,M大于零且小于或等于所述目标序列中的值的总数。。
可选地,所述目标偏移包括如下中至少一项:
频率偏移值;
目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项。
可选地,所述参数信息包括如下中至少一项:
频率偏移值;
第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;
目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;
第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
可选地,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;
和/或,
所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示目标对象的持续时间偏移值的步长,K表示目标对象的持续时间偏移值的范围值。
可选地,所述装置还包括:
第二接收模块,用于接收所述第二通信设备发送的硬件能力信息和所述第二通信设备的频率偏移范围;
其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
可选地,所述参数信息承载在如下至少一项中:
盘点的控制命令;
查询的控制命令;
读取的控制命令;
发送查询所述第二通信设备的身份标识的控制命令。
本申请实施例中的传输控制装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为网络侧设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的传输控制装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第四方面,本申请实施例还提供了一种传输控制装置,应用于第二通信设备,如图11所示,该传输控制装置110包括:
第一接收模块1101,用于接收第一通信设备发送的目标偏移的参数信息,其中,所述目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移;
调整模块1102,用于根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
可选地,所述参数信息包括如下中至少一项:
频率偏移值;
第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;
目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;
第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
可选地,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;
和/或,
所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示目标对象的持续时间偏移值的步长,K表示目标对象的持续时间偏移值的范围值。
可选地,所述装置还包括:
第二发送模块,用于向所述第一通信设备发送硬件能力信息和所述第二通信设备的
频率偏移范围;
其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
可选地,所述参数信息承载在如下至少一项中:
盘点的控制命令;
查询的控制命令;
读取的控制命令;
发送查询所述第二通信设备的身份标识的控制命令。
可选地,所述装置还包括:
第一传输模块,用于在调整模块1102根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源之后,采用调整后的时域资源和/或调整后的频域资源,在第一时间内传输信号。
可选地,所述装置还包括:
第二传输模块,用于在未接收到所述参数信息的情况下,采用预先确定的时域资源和频域资源,在第二时间内传输信号。
本申请实施例中的传输控制装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。
本申请实施例提供的传输控制装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201和存储器1202,存储器1202上存储有可在所述处理器1201上运行的程序或指令,例如,该通信设备1200为第一通信设备时,该程序或指令被处理器1201执行时实现上述第一方面所述的传输控制方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1200为第二通信设备时,该程序或指令被处理器1201执行时实现上述第二方面所述的传输控制方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,如图13所示,为实现本申请实施例的一种终端的硬件结构示意图。
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309以及处理器1310等中的至少部分部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理单元(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072中的至少一种。触控面板13 071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301接收来自网络侧设备的下行数据后,可以传输给处理器1310进行处理;另外,射频单元1301可以向网络侧设备发送上行数据。通常,射频单元1301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括易失性存储器或非易失性存储器,或者,存储器1309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1309包括但不限于这些和任意其它适合类型的存储器。
处理器1310可包括一个或多个处理单元;可选地,处理器1310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
其中,处理器1310用于估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;
射频单元1301用于向所述第二通信设备发送所述目标偏移的参数信息。
可选地,处理器1310估计第二通信设备传输信号的目标偏移,具体用于:
分别对同步序列与第一集合中的每一个候选序列进行相关性计算,得到对应的相关序列,其中,所述同步序列为所述第一通信设备接收到的所述第二通信设备传输的信号
的同步序列,不同的所述候选序列对应不同的所述目标偏移;
选择各个所述相关序列的最大值组成目标序列;
从所述目标序列中选出至少一个值作为目标相关值;
将所述目标相关值对应的候选序列对应的目标偏移,确定为所述第二通信设备传输信号的目标偏移。
可选地,处理器1310从所述目标序列中选出至少一个值作为目标相关值,具体用于:
选择目标排序中排位前M的值作为所述目标相关值,所述目标排序是所述目标序列中的值从大到小的排序,M大于零且小于或等于所述目标序列中的值的总数。。
可选地,所述目标偏移包括如下中至少一项:
频率偏移值;
目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项。
可选地,所述参数信息包括如下中至少一项:
频率偏移值;
第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;
目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;
第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
可选地,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;
和/或,
所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示目标对象的持续时间偏移值的步长,K表示目标对象的持续时间偏移值的范围值。可选地,射频单元1301还用于:接收所述第二通信设备发送的硬件能力信息和所述第二通信设备的频率偏移范围;
其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
可选地,所述参数信息承载在如下至少一项中:
盘点的控制命令;
查询的控制命令;
读取的控制命令;
发送查询所述第二通信设备的身份标识的控制命令。
本申请实施例还提供一种网络侧设备,如图14所示,该网络侧设备1400包括:天
线141、射频装置142、基带装置143、处理器144和存储器145。天线141与射频装置142连接。在上行方向上,射频装置142通过天线141接收信息,将接收的信息发送给基带装置143进行处理。在下行方向上,基带装置143对要发送的信息进行处理,并发送给射频装置142,射频装置142对收到的信息进行处理后经过天线141发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置143中实现,该基带装置143包括基带处理器。
基带装置143例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器145连接,以调用存储器145中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口146,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1400还包括:存储在存储器145上并可在处理器144上运行的指令或程序,处理器144调用存储器145中的指令或程序执行图6所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:处理器1501、网络接口1502和存储器1503。其中,网络接口1502例如为CPRI接口。
具体地,本申请实施例的网络侧设备1500还包括:存储在存储器1503上并可在处理器1501上运行的指令或程序,处理器1501调用存储器1503中的指令或程序执行图6所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述第一方面或第二方面所述的传输控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述第一方面或第二方面所述的传输控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种传输控制系统,包括:第一通信设备和第二通信设备,所述第一通信设备可用于执行如上第一方面所述的传输控制方法的步骤,所述第二通信设备可用于执行如上第二方面所述的传输控制方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (21)
- 一种传输控制方法,包括:第一通信设备估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;所述第一通信设备向所述第二通信设备发送所述目标偏移的参数信息。
- 根据权利要求1所述的方法,其中,所述第一通信设备估计第二通信设备传输信号的目标偏移,包括:所述第一通信设备分别对同步序列与第一集合中的每一个候选序列进行相关性计算,得到对应的相关序列,其中,所述同步序列为所述第一通信设备接收到的所述第二通信设备传输的信号的同步序列,不同的所述候选序列对应不同的所述目标偏移;所述第一通信设备选择各个所述相关序列的最大值组成目标序列;所述第一通信设备从所述目标序列中选出至少一个值作为目标相关值;所述第一通信设备将所述目标相关值对应的候选序列对应的目标偏移,确定为所述第二通信设备传输信号的目标偏移。
- 根据权利要求2所述的方法,其中,所述第一通信设备从所述目标序列中选出至少一个值作为目标相关值,包括:所述第一通信设备选择目标排序中排位前M的值作为所述目标相关值,所述目标排序是所述目标序列中的值从大到小的排序,M大于零且小于或等于所述目标序列中的值的总数。
- 根据权利要求1所述的方法,其中,所述目标偏移包括如下中至少一项:频率偏移值;目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项。
- 根据权利要求1所述的方法,其中,所述参数信息包括如下中至少一项:频率偏移值;第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
- 根据权利要求5所述的方法,其中,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;和/或,所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示所述目标对象的持续时间偏移值的步长,K表示所述目标对象的持续时间偏移值的范围值。
- 根据权利要求6所述的方法,其中,所述方法还包括:所述第一通信设备接收所述第二通信设备发送的硬件能力信息和所述第二通信设备的频率偏移范围;其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
- 根据权利要求1所述的方法,其中,所述参数信息承载在如下至少一项中:盘点的控制命令;查询的控制命令;读取的控制命令;发送查询所述第二通信设备的身份标识的控制命令。
- 一种传输控制方法,包括:第二通信设备接收第一通信设备发送的目标偏移的参数信息,其中,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;所述第二通信设备根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
- 根据权利要求9所述的方法,其中,所述参数信息包括如下中至少一项:频率偏移值;第二集合以及第一索引,所述第二集合包括至少一个频率偏移值,所述第一索引包括所述第二集合中的至少一个频率偏移值的索引;目标对象的持续时间偏移值,所述目标对象包括传输单位符号、码片、高电平、低电平中的至少一项;第三集合以及第二索引,所述第三集合包括至少一个所述目标对象的持续时间偏移值,所述第二索引包括所述第三集合中的至少一个目标对象的持续时间偏移值的索引。
- 根据权利要求10所述的方法,其中,所述第二集合为:[-N*offset,….,-2*offset,-offset,0,offset,2*offset,…,N*offset],其中,offset表示频率偏移值的步长,N表示频率偏移值的范围值;和/或,所述第三集合为[-K*T_offset,…,-2*T_offset,-T_offset,0,T_offset,2*T_offset,…,K*T_offset],其中,T_offset表示所述目标对象的持续时间偏移值的步长,K表示所述目标对象的持续时间偏移值的范围值。
- 根据权利要求11所述的方法,其中,所述方法还包括:所述第二通信设备向所述第一通信设备发送硬件能力信息和所述第二通信设备的频 率偏移范围;其中,offset、T_offset、N、K中的至少一项根据所述硬件能力信息和所述第二通信设备的频率偏移范围确定。
- 根据权利要求9所述的方法,其中,所述参数信息承载在如下至少一项中:盘点的控制命令;查询的控制命令;读取的控制命令;发送查询所述第二通信设备的身份标识的控制命令。
- 根据权利要求9所述的方法,其中,所述第二通信设备根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源之后,所述方法还包括:采用调整后的时域资源和/或调整后的频域资源,在第一时间内传输信号。
- 根据权利要求9所述的方法,其中,所述方法还包括:在未接收到所述参数信息的情况下,采用预先确定的时域资源和频域资源,在第二时间内传输信号。
- 一种传输控制装置,包括:估计模块,用于估计第二通信设备的目标偏移,所述目标偏移用于指示所述第二通信设备传输信号的时域偏移和/或频域偏移;第一发送模块,用于向所述第二通信设备发送所述目标偏移的参数信息。
- 一种传输控制装置,包括:第一接收模块,用于接收第一通信设备发送的目标偏移的参数信息,其中,所述目标偏移用于指示第二通信设备传输信号的时域偏移和/或频域偏移;调整模块,用于根据所述参数信息,调整所述第二通信设备传输信号的时域资源和/或频域资源。
- 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8中任一项所述的传输控制方法的步骤,或者实现如权利要求9至15中任一项所述的传输控制方法的步骤。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8中任一项所述的传输控制方法的步骤,或者实现如权利要求9至15中任一项所述的传输控制方法的步骤。
- 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至8中任一项所述的传输控制方法的步骤,或者实现如权利要求9至15中任一项所述的传输控制方法的步骤。
- 一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程 序产品被至少一个处理器执行,以实现如权利要求1至8中任一项所述的传输控制方法的步骤,或者实现如权利要求9至15中任一项所述的传输控制方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211538584.9 | 2022-12-02 | ||
CN202211538584.9A CN118139189A (zh) | 2022-12-02 | 2022-12-02 | 传输控制方法、装置及通信设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024114607A1 true WO2024114607A1 (zh) | 2024-06-06 |
Family
ID=91246370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/134545 WO2024114607A1 (zh) | 2022-12-02 | 2023-11-28 | 传输控制方法、装置及通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118139189A (zh) |
WO (1) | WO2024114607A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651650A (zh) * | 2009-09-15 | 2010-02-17 | 北京天碁科技有限公司 | 一种同步与频偏的联合估计方法及装置 |
CN101932060A (zh) * | 2009-06-19 | 2010-12-29 | 大唐移动通信设备有限公司 | 频偏传输及频偏预校准方法、系统和设备 |
CN110943948A (zh) * | 2018-09-21 | 2020-03-31 | 中国移动通信有限公司研究院 | 一种信息配置的方法和设备 |
WO2020233231A1 (zh) * | 2019-05-22 | 2020-11-26 | 华为技术有限公司 | 反向散射通信方法、激励设备、反射设备以及接收设备 |
WO2022200673A1 (en) * | 2021-03-22 | 2022-09-29 | Nokia Technologies Oy | Use of sidelink communications for backscatter node positioning within wireless networks |
-
2022
- 2022-12-02 CN CN202211538584.9A patent/CN118139189A/zh active Pending
-
2023
- 2023-11-28 WO PCT/CN2023/134545 patent/WO2024114607A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101932060A (zh) * | 2009-06-19 | 2010-12-29 | 大唐移动通信设备有限公司 | 频偏传输及频偏预校准方法、系统和设备 |
CN101651650A (zh) * | 2009-09-15 | 2010-02-17 | 北京天碁科技有限公司 | 一种同步与频偏的联合估计方法及装置 |
CN110943948A (zh) * | 2018-09-21 | 2020-03-31 | 中国移动通信有限公司研究院 | 一种信息配置的方法和设备 |
WO2020233231A1 (zh) * | 2019-05-22 | 2020-11-26 | 华为技术有限公司 | 反向散射通信方法、激励设备、反射设备以及接收设备 |
WO2022200673A1 (en) * | 2021-03-22 | 2022-09-29 | Nokia Technologies Oy | Use of sidelink communications for backscatter node positioning within wireless networks |
Also Published As
Publication number | Publication date |
---|---|
CN118139189A (zh) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240022460A1 (en) | Guard period determination method and apparatus, terminal and storage medium | |
US20240334495A1 (en) | Prach transmission method and apparatus, and terminal | |
WO2024114607A1 (zh) | 传输控制方法、装置及通信设备 | |
WO2023236962A1 (zh) | 资源分配方法、装置、通信设备、系统及存储介质 | |
CN116367312A (zh) | 传输确定方法、装置、终端、网络侧设备和存储介质 | |
WO2024061111A1 (zh) | 资源处理方法、装置及通信设备 | |
WO2024027618A1 (zh) | gap配置方法、装置、网络侧设备及存储介质 | |
WO2024149127A1 (zh) | 信息获取、发送方法、装置及通信设备 | |
WO2023202632A1 (zh) | 资源分配方法、设备及可读存储介质 | |
WO2023151650A1 (zh) | 信息激活方法、终端及网络侧设备 | |
WO2024022316A1 (zh) | 下行参考信号发送方法、装置、终端及网络侧设备 | |
WO2023236868A1 (zh) | 反向散射通信配置方法、装置、网络侧设备和终端 | |
WO2024120444A1 (zh) | 模型监督方法、装置、终端、网络侧设备及可读存储介质 | |
WO2024199078A1 (zh) | 信号传输方法、信号检测方法、装置及通信设备 | |
WO2024149103A1 (zh) | 一种盘点处理方法、装置及设备 | |
EP4451749A1 (en) | Prach transmission method and apparatus, and terminal | |
WO2023165395A1 (zh) | 切换行为确定方法、参数信息配置方法、终端和设备 | |
WO2024067443A1 (zh) | 指示方法、第一设备及第二设备 | |
WO2024160108A1 (zh) | 资源获取、确定方法及通信设备 | |
WO2023241448A1 (zh) | 测量处理方法、终端及网络侧设备 | |
WO2024149180A1 (zh) | 供能时间的确定方法、装置、通信设备及可读存储介质 | |
WO2024067878A1 (zh) | 信道预测方法、装置及通信设备 | |
WO2024160153A1 (zh) | 定位方法、装置、通信设备及可读存储介质 | |
WO2023236826A1 (zh) | 反向散射通信的接入方法、装置、终端及网络侧设备 | |
WO2023241449A1 (zh) | 测量处理方法、装置及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23896756 Country of ref document: EP Kind code of ref document: A1 |