WO2024105331A1 - Systeme de modules articules et emboitables pour former un element de structure - Google Patents
Systeme de modules articules et emboitables pour former un element de structure Download PDFInfo
- Publication number
- WO2024105331A1 WO2024105331A1 PCT/FR2023/051783 FR2023051783W WO2024105331A1 WO 2024105331 A1 WO2024105331 A1 WO 2024105331A1 FR 2023051783 W FR2023051783 W FR 2023051783W WO 2024105331 A1 WO2024105331 A1 WO 2024105331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modules
- module
- chains
- supporting structure
- chain
- Prior art date
Links
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 239000007787 solid Substances 0.000 abstract description 7
- 238000005452 bending Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 241001310793 Podium Species 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16S—CONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
- F16S3/00—Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles
- F16S3/02—Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles composed of two or more elongated members secured together side by side
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/005—Girders or columns that are rollable, collapsible or otherwise adjustable in length or height
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/08—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16G—BELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
- F16G11/00—Means for fastening cables or ropes to one another or to other objects; Caps or sleeves for fixing on cables or ropes
- F16G11/02—Means for fastening cables or ropes to one another or to other objects; Caps or sleeves for fixing on cables or ropes with parts deformable to grip the cable or cables; Fastening means which engage a sleeve or the like fixed on the cable
- F16G11/025—Fastening means which engage a sleeve or the like fixed on the cable, e.g. caps
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0486—Truss like structures composed of separate truss elements
- E04C2003/0495—Truss like structures composed of separate truss elements the truss elements being located in several non-parallel surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16S—CONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
- F16S3/00—Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles
- F16S3/04—Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles designed for being joined to similar members in various relative positions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16S—CONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
- F16S3/00—Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles
- F16S3/06—Assemblies of elongated members
- F16S3/08—Assemblies of elongated members forming frameworks, e.g. gratings
Definitions
- the invention relates to the field of construction of a temporary type supporting structure.
- the assembly of a temporary structure requires assembling a large quantity of components such as bars, beams and others, which must be carefully secured to each other by multiple mechanical joining elements.
- the aim of the invention is to provide a solution for forming a temporary structure which is compact when dismantled to facilitate its transport, and which is simple to assemble to allow rapid installation.
- the subject of the invention is a supporting structure composed of modules of which at least part are connected to each other by pivot connections of parallel axes to form at least two distinct chains of modules, each module comprising at least a lug and/or at least one recess, these modules having complementary shapes and being fitted together by engagement of the lugs in the recesses to constitute at least one rigid beam.
- the invention also relates to a structure thus defined, comprising two chains of modules constituting a beam, these two chains of modules extending along two opposite edges of this beam.
- the invention also relates to a structure thus defined, each module of which has an essentially planar shape.
- the invention also relates to a structure thus defined, the modules of which are identical.
- the invention also relates to a structure thus defined, comprising independent modules interposed between the modules of the two chains of modules which extend along two opposite edges of the beam.
- the invention also relates to a structure thus defined, comprising three chains of modules connected by interlocking their modules, to form three beams connected to each other by a Y connection.
- the invention also relates to a structure thus defined, comprising three chains of modules connected by interlocking their modules, in which each module has the shape of a prism with a triangular base to form a beam with a triangular section.
- the invention also relates to a structure thus defined, comprising four chains of modules connected by interlocking their modules, these chains being arranged in helicoids to form a beam with a square section.
- the invention also relates to a structure thus defined, comprising at least one lug having a shape curved in an arc of a circle centered on a pivot connection of the module to which this lug belongs.
- FIG. 1 is a side view of a rectilinear beam formed by assembling a system according to the invention comprising two chains of modules with transverse pivot connections;
- FIG. 2 is a side view of a module shown alone;
- FIG. 3 is a side view of the assembly of a system according to the invention comprising modules with transverse pivot connections for the constitution of a rectilinear beam;
- FIG. 4 is a side view of a curved beam formed by assembling a system according to the invention comprising two chains of modules with transverse pivot connections;
- FIG. 5 is a side view of the assembly of the modules of a variant of the system according to the invention to constitute a rectilinear beam formed of a series of independent blocks held by two chains of modules with transverse pivot connections;
- FIG. 6 is a perspective view showing four beams according to the invention assembled to support a floor
- FIG. 7 is a side view of a Y-shaped structure obtained by assembling a system according to the invention comprising three chains of modules with transverse pivot connections;
- FIG. 8 is a schematic representation of a system according to the invention for forming a rectilinear beam whose pivot module connections are oriented parallel to the shear force;
- FIG. 9 is a schematic perspective representation of the assembly of a system according to the invention with three chains of modules forming a rectilinear beam
- FIG. 10 is a schematic perspective representation of the assembly of a system according to the invention with three chains following a helical arrangement constituting a rectilinear beam.
- a supporting structure in the form of a rectilinear beam PI formed by assembling a system according to the invention comprises a lower chain Cl formed of twelve modules Ml connected to each other, and an upper chain C2 formed of eleven M2 modules connected to each other, the Ml modules being nested with the modules
- each module Ml has a generally planar and triangular shape, comprising a first side 1 extended by a second side 2, these sides being joined by a base 3.
- Each module Ml is here formed of a triangular plate equipped with two reinforcing bars 4. These two bars 4 extend on either side of the plate, the base of which they run along, being rigidly secured to it, these bars 4 having ends which protrude slightly beyond sides 1 and 2.
- the modules Ml form the chain Cl by being secured to each other by pivot links 6 formed at the ends of the bars 4.
- Each bar 4 here has a hole at each of its ends, and the ends of the bars 4 of two consecutive modules Ml are connected for example by an axis passing through these holes while being crimped at its ends, to form a pivot connection 6 with an axis normal to the plane of these modules.
- the modules Ml which are generally planar are thus secured to each other by pivot connections 6 parallel to each other and of orientation normal to the planes of these modules Ml. These modules thus constitute a polyarticulated chain-type solid.
- the module Ml is provided with two lugs El and E2 protruding from its first side 1, and with two recesses E'1 and E'2 which open in its second side 2.
- the two lugs El and E2 have arcuate shapes of circles centered on the vertex joining the sides 1 and 2, and the recesses E'1 and E'2 have the shape of an arc of a circle centered on the vertex joining the second side 2 and the base 3.
- the assembly of the beam PI consists first of all in arranging the two chains Cl and C2 on the same plane, in such a way that the bases of one are opposed to the bases of the other, the modules extending between the bases of the chain Cl and those of the chain C2 the lugs of the modules Ml and M2 all being oriented towards the right.
- the module M2 of the left end of the chain C2 is then moved to fit its lugs El and E2 into the recesses E'1 and E'2 of the module Ml of the left end of the chain C2.
- the next module Ml of the chain Cl can be pivoted around the pivot link 6 linking it to the end module Ml, to engage its recesses on the lugs of the module M2 of the end of the chain C2.
- the process is then continued by pivoting the next module M2 of the chain C2, around the pivot link 6 linking it to the module M2 previously fitted, to engage its recesses on the lugs of the module Ml of the chain Cl previously fitted.
- the next module Ml of the chain Cl is then pivoted around the pivot link 6 linking it to the module Ml previously fitted, to engage its recesses on the lugs of the module M2 previously fitted.
- the PI beam obtained is a rectilinear beam which is full, that is to say without openings thanks to the complementarity of the shapes of the modules which are all nested, and presenting resistance to significant bending.
- This resistance is due to the fact that when this beam is subjected to a load, the shear forces which it undergoes are taken up by the interlocking of the lugs in the notches, while the bending forces which it undergoes are taken up by the bars delimiting the opposite edges of this beam.
- the modules Ml and M2 are all identical in having the same shape and the same dimensions, but the dimensions of these modules can be provided to give the beam obtained a non-rectilinear shape.
- modules Ml have been provided for the chain Cl whose bases are significantly shorter than those of the modules M2 of the chain C2. This dimensioning thus makes it possible to generate a solid beam having a curved shape instead of a rectilinear shape, as illustrated in Figure 4.
- all the modules are part of a chain: the modules M1 are all linked together by the pivot links 6 to form the chain Cl, and in an analogous manner, the modules M2 are linked to form the C2 chain.
- This beam P2 comprises a chain of modules C3 whose modules are marked M3 and a chain of modules C4 whose modules are marked M4, as well as independent modules Mi, the whole assembly being assembled to form a rectilinear beam having a greater height, and thereby greater rigidity.
- the M3 modules are of the same type as the Ml and M2 modules: they have a generally triangular shape comprising two adjacent sides 1 and 2 joined by a base 3 reinforced by a bar 4 whose ends constitute pivot connections 6.
- the first side 1 is here devoid of lug and recess, and the second side, located on the left in Figure 5, here only has a lug El in the shape of an arc of a circle centered on the pivot connection 6 to which it is closest.
- Each M4 module of the C4 chain is identical to the M3 modules, with the difference that its first side has a lug E2 in the shape of an arc of a circle centered on the pivot link 6 of the module from which it is furthest away.
- the two lugs El and E2 of a module M4 have the shape of an arc of circles centered on the same pivot connection 6 which is the connection located on the left in Figure 5.
- the modules M3 and M4 have very similar shapes, and they are, just like in the example of Figures 1 to 4, arranged head to tail.
- the M3 modules of the C3 chain thus have their bases which form the lower edge of the beam while having their lugs oriented towards the left in Figure 5.
- the M4 modules of the C4 chain have their bases which form the edge upper part of the beam while having their lugs El and E2 also oriented towards the left in these figures.
- the independent modules Mi here have generally rectangular shapes comprising, in Figure 5, an upper edge 7, a lower edge 8, a left side edge 9, and a right side edge 11.
- the lower and upper edges are the short edges fitting respectively with the M3 and M4 modules.
- the left lateral edge 9 fits with another independent module Mi and with a module M3, while the right lateral edge 11 fits with another independent module Mi and with a module M4.
- each upper edge 7 has a recess E'1 curved to receive a lug El of a module M4
- each right side edge 11 has a recess E'2 curved to receive a lug E2 of a another M4 module.
- Each lower edge 8 has a curved recess E"1 to receive a lug El of a module M3.
- each left lateral edge 9 comprises a rectilinear lug E3 perpendicular to the edge 9
- each right lateral edge 11 comprises a rectilinear recess E'3 perpendicular to the edge 11 and intended to receive a lug E3 of another independent module Mi.
- the assembly of the beam P2 consists first of all in arranging the two chains C3 and C4 on the same plane, such that the bases of one are opposite the bases of the other.
- the M3 and M4 modules then extend between the bases of the C3 chain and those of the C4 chain, the lugs of these M3 and M4 modules all being oriented towards the left.
- the two chains C3 and C4 are further arranged to be spaced at a distance greater than the height of the independent modules Mi.
- An independent module Mi is then fitted with an end module M3 of the chain C3 by engaging its recess E “1 on the lug El of the module M3, after which the end module M4 is fitted with the independent module Mi by engagement of its lug El in the corresponding recess E'1 of the module Mi.
- the following independent module Mi is fitted with the module Mi in place by engaging its lug E3 in the recess E'3 of the independent module in place.
- the next M3 module is pivoted around the pivot link 6 linking it to the previous M3 module which is in place to engage its lug El in the recess E''l of the independent module Mi which has just been put in place .
- the following M4 module is pivoted around link 6 connecting it to the M4 module previous which is in place, to simultaneously engage its lugs El and E2 in the recesses E'1 and E'2 of the two independent modules.
- This beam P2 obtained is a solid beam thanks to the complementary shape of the modules which are all nested, and which has significantly increased bending resistance due to the fact that it has a greater height, that is to say a greatest distance separating its opposite edges.
- the beam P2 in Figure 5 is also advantageous because its independent modules Mi are adapted to facilitate its assembly with another beam of the same type. As illustrated schematically in Figure 6, four beams P2 can thus be joined to each other by crossing in a grid-type pattern to constitute a support structure intended to support, for example, a floor of a stage or a podium.
- the assembly of these four beams P2 is obtained thanks to four octahedral junction modules JO making it possible to join two beams P2 perpendicular to each other.
- a JO junction module replaces an independent module in each of the two beams that it joins, given that it includes lugs and recesses (not shown) allowing it to fit together with the modules of one and the other of the two beams that it joins together.
- the independent modules Mi have plane diamond shapes
- the junction modules JO are volume modules in the shape of octahedrons which have in their two main perpendicular section planes the same diamond contour as the independent Mi modules.
- the JO junction modules have octahedral shapes in the example of Figure 5, but other shapes are possible to implement such junction modules, such as cruciform or other shapes, as long as they allow the rigid connection of two beams at their intersection.
- the invention also makes it possible to constitute a structure in the form of a split Y-shaped beam, which corresponds to the connection of three beams, using an arrangement of the same type as that of Figures 1 to 4, but based on the combination of three chains of modules.
- This structure comprises three chains of modules C5, C6, C7, the modules of which are marked respectively by M5, M6 and M7.
- the chains C5 and C6 each comprise a first half by which they are secured to each other by interlocking their modules M5 and M6 to constitute a beam P3 of the same type as that of Figure 1 or 4, the second halves of these C5 and C6 chains being dissociated from each other.
- the chain C7 has a half by which it is secured to the second half of the chain C5 by interlocking their modules to form another beam P4, and it has a second half by which it is secured to the second half of the chain C6 by interlocking their modules to form another beam P5.
- the modules M5-M7 of the chains C5-C7 are triangular modules, that is to say of the same type as the modules of the examples illustrated in Figures 1 to 4.
- modules M' 5, M'6 and M'7 of the chains C5-C7 which are located in the junction region of the beams P3, P4 and P5 are modules having here the shapes of quadrilaterals, to allow the dissociation of the three beams P3, P4 and P5, this can also be ensured by using triangular shapes.
- the modules in the example in Figure 7 are planar modules whose shapes are complementary, such that the beams Tl, T2 and T3 are solid, in the same way as the structure that they constitute.
- the modules of a chain are articulated to each other by pivot links 6 oriented transversely, that is to say that the axes of these pivot links 6 are perpendicular to the planes of the modules to be oriented transversely in relation to the beam that these modules form.
- modules connected to each other by pivot connections 6 extending in the plane of these modules and perpendicular to the direction general of the beam they form.
- two chains of modules C8 and C9 are thus provided, formed of modules M8 and M9 which are essentially parallelepiped to form a beam P6.
- the modules of the same chain are connected to each other by parallel pivot connections 6 which extend in the direction of the shear force experienced by the beam P6 when it is loaded.
- the lugs and recesses of the modules are formed at the level of the faces of the modules which are applied against each other during assembly of the assembly.
- the modules are all essentially planar elements of the plate type, the lugs of which extend the edges, and the recesses of which are notches opening into these edges.
- the lugs and the recesses are formed directly during the cutting of these plates, so that the lugs have the same thickness as these plates, and the notches pass through these plates right through.
- the lugs then have a thickness less than that of the plate and the recesses a diameter less than the thickness of the plate. This arrangement makes it possible, if necessary, to increase the mechanical strength of the beam obtained.
- modules which are all planar in the examples of Figures 1 to 5 and 7 can also be volumetric elements, as in the example of Figure 9 where a beam P7 is formed from three chains of CIO modules, Cil, C12, whose modules M10, Mil and M12 have the shape of prisms with triangular sections.
- each module has an external face, as well as two internal faces which are provided with lugs and recesses (not shown) allowing their nesting.
- modules M13-M16 making it possible to constitute a beam P8 with four chains of modules C13-C16 which are arranged in helicoids wound with each other, as illustrated schematically in Figure 10.
- the beam obtained can be a rectilinear beam with a square section.
- the modules are made of a construction material, such as wood, steel, possibly concrete, or even a suitable plastic material.
- the modules are solid and substantially planar elements forming solid beams, but these modules can also be hollow or have recesses, by being formed for example by assembling steel bars.
- the reinforcing bars 4 are advantageously manufactured from a material having a mechanical strength greater than that of the rest of the module, in particular in traction and compression, due to the fact that they take up most of the bending forces of the beam, which are result in tensile and compressive stresses along its edges.
- the lugs and the recesses are elements curved in arcs of circles and having relatively significant lengths.
- Other shapes are possible for these lugs and these recesses, these being able for example to have frustoconical shapes, by not being curved, and by having shorter lengths.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Manipulator (AREA)
- Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
- Mutual Connection Of Rods And Tubes (AREA)
- Toys (AREA)
Abstract
L'invention a pour objet un élément de structure, comportant des modules (M1, M2) dont au moins une partie sont reliés les uns aux autres par des liaisons pivot (6) d'axes parallèles pour former une chaîne de modules (C1, C2), chaque module (M1, M2) comportant au moins un ergot (E1, E2) et/ou au moins un évidement (E'1, E'2). Ces modules (M1, M2) ont des formes complémentaires et sont emboîtés les uns avec les autres par engagement des ergots (E1, E2) dans les évidements (E'1, E'2) pour constituer un ensemble plein rigide.
Description
Description
Titre : Système de modules articulés et emboîtables pour former un élément de structure
DOMAINE TECHNIQUE
L'invention concerne le domaine de la construction d'une structure porteuse de type temporaire.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Le montage d'une structure temporaire nécessite d'assembler une quantité importante de composants tel que des barres, des poutres et autres, qui doivent être soigneusement solidarisés les uns aux autres par de multiples éléments mécaniques de jonction.
En pratique, l'installation d'une structure temporaire nécessite de disposer de moyens de transport importants pour acheminer ses composants qui sont volumineux, et de disposer d'une main d'œuvre dûment qualifiée pour procéder à son montage.
Le but de l'invention est d'apporter une solution pour former une structure temporaire qui soit compacte lorsque démontée pour faciliter son transport, et qui soit simple à monter pour permettre une installation rapide.
EXPOSÉ DE L'INVENTION
A cet effet, l'invention a pour objet une structure porteuse composée de modules dont au moins une partie sont reliés les uns aux autres par des liaisons pivot d'axes parallèles pour former au moins deux chaînes de modules distinctes, chaque module comportant au moins un ergot et/ou au moins un évidement, ces modules ayant des formes complémentaires et étant emboîtés les uns avec les autres par engagement des ergots dans les évidements pour constituer au moins une poutre rigide.
Avec cet agencement, la structure peut être transportée en repliant les chaînes de modules pour qu'elles occupent un encombrement compact, et le montage de la structure consiste essentiellement à emboîter les modules les uns avec les autres, de sorte qu'il peut être exécuté de manière rapide.
L'invention concerne également une structure ainsi définie, comprenant deux chaînes de modules constituant une poutre, ces deux chaînes de modules s'étendant selon deux bords opposés de cette poutre.
L'invention concerne également une structure ainsi définie, dont chaque module a une forme essentiellement plane.
L'invention concerne également une structure ainsi définie, dont les modules sont identiques.
L'invention concerne également une structure ainsi définie, comprenant des modules indépendants interposés entre les modules des deux chaînes de modules qui s'étendent selon deux bords opposés de la poutre.
L'invention concerne également une structure ainsi définie, comprenant trois chaînes de modules reliées par emboîtement de leurs modules, pour former trois poutres reliées les unes aux par un raccordement en Y.
L'invention concerne également une structure ainsi définie, comprenant trois chaînes de modules reliées par emboîtement de leurs modules, dans laquelle chaque module présente une forme de prisme à base triangulaire pour former une poutre à section triangulaire.
L'invention concerne également une structure ainsi définie, comprenant quatre chaînes de modules reliées par emboîtement de leurs modules, ces chaînes étant agencées en hélicoïdes pour former une poutre à section carrée.
L'invention concerne également une structure ainsi définie, comprenant au moins un ergot ayant une forme incurvée selon un arc de cercle centré sur une liaison pivot du module auquel appartient cet ergot.
BRÈVE DESCRIPTION DES DESSINS
La [Fig. 1] est une vue latérale d'une poutre rectiligne formée par assemblage d'un système selon l'invention comportant deux chaînes de modules à liaisons pivot transversales ;
La [Fig. 2] est une vue latérale d'un module représenté seul ;
La [Fig. 3] est une vue latérale de l'assemblage d'un système selon l'invention comportant des modules à liaisons pivots transversales pour la constitution d'une poutre rectiligne ;
La [Fig. 4] est une vue latérale d'une poutre incurvée formée par assemblage d'un système selon l'invention comportant deux chaînes de modules à liaisons pivot transversales ;
La [Fig. 5] est une vue latérale de l'assemblage des modules d'une variante de système selon l'invention pour constituer une poutre rectiligne formée d'une série de blocs indépendants maintenus par deux chaînes de modules à liaisons pivot transversales ;
La [Fig. 6] est une vue en perspective montrant quatre poutres selon l'invention assemblées pour supporter un plancher ;
La [Fig. 7] est une vue latérale d'une structure en forme de Y obtenue par assemblage d'un système selon l'invention comportant trois chaînes de modules à liaisons pivot transversales ;
La [Fig. 8] est une représentation schématique d'un système selon l'invention pour former une poutre rectiligne dont les liaisons pivot de modules sont orientées parallèlement à l'effort tranchant ;
La [Fig. 9] est une représentation schématique en perspective de l'assemblage d'un système selon à l'invention à trois chaînes de modules formant une poutre rectiligne ; La [Fig. 10] est une représentation schématique en perspective de l'assemblage d'un système selon l'invention à trois chaînes suivant un agencement hélicoïdal constituant une poutre rectiligne.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Sur la figure 1, une structure porteuse sous forme d'une poutre rectiligne PI formée par assemblage d'un système selon l'invention comporte une chaîne Cl inférieure formée de douze modules Ml reliés les uns aux autres, et une chaîne C2 supérieure formée de onze modules M2 reliés les uns aux autres, les modules Ml étant emboîtés avec les modules
Comme visibles plus clairement sur la figure 2, chaque module Ml a une forme généralement plane et triangulaire, comprenant un premier côté 1 prolongé par un deuxième côté 2, ces côtés étant réunis par une base 3.
Chaque module Ml est ici formé d'une plaque triangulaire équipée de deux barrettes 4 de renforcement. Ces deux barrettes 4 s'étendent de part et d'autre de la plaque dont elles longent la base en étant rigidement solidarisées à celle-ci, ces barrettes 4 ayant des extrémités qui dépassent légèrement au-delà des côtés 1 et 2.
Les modules Ml forment la chaîne Cl en étant solidarisés les uns aux autres par des liaisons pivot 6 formées aux extrémités des barrettes 4. Chaque barrette 4 comporte ici un trou à chacune de ses extrémités, et les extrémités des barrettes 4 de deux modules Ml consécutifs sont raccordées par exemple par un axe traversant ces trous en étant serti à ses extrémités, pour former une liaison pivot 6 d'axe normal au plan de ces modules.
Les modules Ml qui sont généralement plans sont ainsi solidarisés les uns aux autres par des liaisons pivot 6 parallèles les unes aux autres et d'orientation normale aux plans de ces modules Ml. Ces modules constituent ainsi un solide polyarticulé de type chaîne.
Le module Ml est pourvu de deux ergots El et E2 dépassant de son premier côté 1, et de deux évidements E'1 et E'2 qui s'ouvrent dans son deuxième côté 2. Les deux ergots El et E2 ont des formes en arc de cercle centrés sur le sommet réunissant les côtés 1 et 2, et les évidements E'1 et E'2 ont des formes en arc de cercle centrés sur le sommet réunissant le deuxième côté 2 et la base 3.
Dans l'exemple des figures 1 à 3, les modules Ml de la chaîne Cl sont identiques aux modules M2 de la chaîne C2, mais ils sont orientés tête-bêche. Les modules Ml de la chaîne Cl ont ainsi leurs bases qui forment le bord inférieur de la poutre PI tout en ayant leurs ergots orientés vers la droite sur ces figures. Les modules M2 de la chaîne C2 ont quant à eux leurs bases qui forment le bord supérieur de la poutre PI tout en ayant leurs ergots orientés aussi vers la droite sur ces figures.
Comme représenté sur la figure 3, l'assemblage de la poutre PI consiste en premier lieu à disposer les deux chaînes Cl et C2 sur un même plan, de telle manière que les bases de
l'une soient opposées aux bases de l'autre, les modules s'étendant entre les bases de la chaîne Cl et celles de la chaîne C2 les ergots des modules Ml et M2 étant tous orientés vers la droite.
Le module M2 de l'extrémité gauche de la chaîne C2 est alors déplacé pour emboîter ses ergots El et E2 dans les évidements E'1 et E'2 du module Ml de l'extrémité gauche de la chaîne C2. A ce stade, le module Ml suivant de la chaîne Cl peut être pivoté autour de la liaison pivot 6 le liant au module Ml d'extrémité, pour engager ses évidements sur les ergots du module M2 de l'extrémité de la chaîne C2.
Le processus est alors continué en pivotant le module M2 suivant de la chaîne C2, autour de la liaison pivot 6 le liant au module M2 précédemment emboîté, pour engager ses évidements sur les ergots du module Ml de la chaîne Cl précédemment emboîté. Le module Ml suivant de la chaîne Cl est alors pivoté autour de la liaison pivot 6 le liant au module Ml précédemment emboîté, pour engager ses évidements sur les ergots du module M2 précédemment emboîté.
Une fois que tous les modules ont été emboîtés, la poutre PI obtenue est une poutre rectiligne qui est pleine, c'est-à-dire sans ajour grâce à la complémentarité des formes des modules qui sont tous emboîtés, et présentant une résistance à la flexion significative. Cette résistance est due au fait que lorsque cette poutre est soumise à une charge, les efforts tranchants qu'elle subit sont repris par les emboîtements des ergots dans les encoches, alors que les efforts de flexion qu'elle subit sont repris par les barrettes délimitant les bords opposés de cette poutre.
Dans l'exemple des figures 1 à 3, les modules Ml et M2 sont tous identiques en ayant la même forme et les mêmes dimensions, mais les dimensions de ces modules peuvent être prévues pour donner à la poutre obtenue une forme non rectiligne. Ainsi, dans l'exemple de la figure 4, on a prévu des modules Ml pour la chaîne Cl dont les bases sont sensiblement plus courtes que celles des modules M2 de la chaîne C2. Ce dimensionnement permet ainsi de générer une poutre pleine ayant une forme incurvée au lieu d'une forme rectiligne, comme l'illustre la figure 4.
Dans les exemples des figures 1 à 4, tous les modules font partie d'une chaîne : les modules Ml sont tous liés entre eux par les liaisons pivot 6 pour former la chaîne Cl, et de manière analogue, les modules M2 sont liés pour former la chaîne C2. Mais il est également possible de prévoir un agencement comportant des modules indépendants qui sont interposés entre les modules de la chaîne Cl et les modules de la chaîne C2, comme dans l'exemple de la poutre P2 représentée sur la figure 5.
Cette poutre P2 comporte une chaîne de modules C3 dont les modules sont repérés par M3 et une chaîne de modules C4 dont les modules sont repérés par M4, ainsi que des modules indépendants Mi, l'ensemble s'assemblant pour former une poutre rectiligne présentant une plus grande hauteur, et par là-même une plus grande rigidité.
Les modules M3 sont du même type que les modules Ml et M2 : ils ont une forme généralement triangulaire comportant deux côtés adjacents 1 et 2 réunis par une base 3 renforcée par une barrette 4 dont les extrémités constituent des liaisons pivot 6. Le premier côté 1 est ici dépourvu d'ergot et d'évidement, et le deuxième côté, situé à gauche sur la figure 5, comporte ici seulement un ergot El en forme d'arc de cercle centré sur la liaison pivot 6 dont il est le plus proche.
Chaque module M4 de la chaîne C4 est identiques aux modules M3, à la différence près que son premier côté comporte un ergot E2 en forme d'arc de cercle centré sur la liaison pivot 6 du module dont il est le plus éloigné. Ainsi, les deux ergots El et E2 d'un module M4 ont des formes d'arc de cercles centrés sur une même liaison pivot 6 qui est la liaison située à gauche sur la figure 5.
Comme visible sur la figure 5, les modules M3 et M4 ont des formes très similaires, et ils sont, tout comme dans l'exemple des figures 1 à 4, agencés tête-bêche. Les modules M3 de la chaîne C3 ont ainsi leurs bases qui forment le bord inférieur de la poutre tout en ayant leurs ergots orientés vers la gauche sur la figure 5. Les modules M4 de la chaîne C4 ont quant à eux leurs bases qui forment le bord supérieur de la poutre tout en ayant leurs ergots El et E2 orientés aussi vers la gauche sur ces figures.
Les modules indépendants Mi ont ici des formes généralement rectangulaires comportant, sur la figure 5, un bord supérieur 7, un bord inférieur 8, un bord latéral gauche 9, et un bord latéral droit 11. Les bords inférieur et supérieur sont les bords courts
s'emboîtant respectivement avec les modules M3 et M4. Le bord latéral gauche 9 s'emboîte avec un autre module indépendant Mi et avec un module M3, alors que le bord latéral droit 11 s'emboîte avec un autre module indépendant Mi et avec un module M4. Comme visible sur la figure 5, chaque bord supérieur 7 comporte un évidement E'1 incurvé pour recevoir un ergot El d'un module M4, et chaque bord latéral droit 11 comporte un évidement E'2 incurvé pour recevoir un ergot E2 d'un autre module M4. Chaque bord inférieur 8 comporte un évidement E"1 incurvé pour recevoir un ergot El d'un module M3.
Complémentairement, chaque bord latéral gauche 9 comporte un ergot E3 rectiligne perpendiculaire au bord 9, et chaque bord latéral droit 11 comporte un évidement rectiligne E'3 perpendiculaire au bord 11 et destinés à recevoir un ergot E3 d'un autre module indépendant Mi.
Comme représenté sur la figure 5, l'assemblage de la poutre P2 consiste en premier lieu à disposer les deux chaînes C3 et C4 sur un même plan, de telle manière que les bases de l'une soient opposées aux bases de l'autre. Les modules M3 et M4 s'étendent alors entre les bases de la chaîne C3 et celles de la chaîne C4, les ergots de ces modules M3 et M4 étant tous orientés vers la gauche. Les deux chaînes C3 et C4 sont de plus disposées pour être espacées d'une distance supérieure à la hauteur des modules indépendants Mi. Un module indépendant Mi est alors emboîté avec un module M3 d'extrémité de la chaîne C3 par engagement de son évidement E"1 sur l'ergot El du module M3, après quoi le module M4 d'extrémité est emboîté avec le module indépendant Mi par engagement de son ergot El dans l'évidement correspondant E'1 du module Mi.
A ce stade, le module indépendant Mi suivant est emboîté avec le module Mi en place par engagement de son ergot E3 dans l'évidement E'3 du module indépendant en place. Après cette opération, le module M3 suivant est pivoté autour de la liaison pivot 6 le liant au module M3 précédent qui est en place pour engager son ergot El dans l'évidement E''l du module indépendant Mi venant d'être mis en place. Un fois cette opération réalisée, le module M4 suivant est pivoté autour de la liaison 6 le reliant au module M4
précédent qui est en place, pour engager simultanément ses ergots El et E2 dans les évidements E'1 et E'2 des deux modules indépendants.
L'opération ci-dessus est alors renouvelée jusqu'à emboîter tous les modules les uns avec les autres de manière à constituer entièrement la poutre P2 qui est alors une poutre rectiligne. Cette poutre P2 obtenue est une poutre pleine grâce à la complémentarité de forme des modules qui sont tous emboîtés, et qui présente une résistance à la flexion significativement accrue du fait qu'elle présente une plus grande hauteur, c'est-à-dire une plus grande distance séparant ses bords opposés.
La poutre P2 de la figure 5 est aussi avantageuse du fait que ses modules indépendants Mi sont adaptés pour faciliter son assemblage avec une autre poutre du même type. Comme illustré schématiquement sur la figure 6, quatre poutres P2 peuvent ainsi être solidarisées les unes aux autres par croisement selon un motif de type quadrillage pour constituer une structure de support destinée à porter par exemple un plancher d'une scène ou d'un podium.
Comme il ressort de cette figure 5, l'assemblage de ces quatre poutres P2 est obtenu grâce à quatre modules de jonction octaédraux JO permettant de solidariser deux poutres P2 perpendiculairement l'une à l'autre. Comme visible sur la figure 5, un tel module de jonction JO remplace un module indépendant dans chacune des deux poutres qu'il réunit, attendu qu'il comporte des ergots et des évidements (non représentés) lui permettant de s'emboîter avec les modules de l'une et de l'autre des deux poutres qu'il réunit.
Plus particulièrement, dans l'exemple de la figure 5, les modules indépendants Mi ont des formes de losanges plans, et les modules de jonction JO sont des modules volumiques en forme d'octaèdres qui présentent dans leurs deux plans de coupe principaux perpendiculaires le même contour de losange que les modules indépendants Mi.
Les modules de jonction JO ont des formes d'octaèdres dans l'exemple de la figure 5, mais d'autres formes sont possibles pour mettre en œuvre de tels modules de jonction, tels que des formes cruciformes ou autres, dès lors qu'elles permettent la solidarisation rigide de deux poutres au niveau de leur croisement.
Comme illustré sur l'exemple de la figure 7 , l'invention permet aussi de constituer une structure en forme de poutre dédoublée en forme de Y, qui correspond au raccordement de trois poutres, en utilisant un agencement du même type que celui des figures 1 à 4, mais basé sur la combinaison de trois chaînes de modules.
Cette structure comporte trois chaînes de modules C5, C6, C7, dont les modules sont repérés respectivement par M5, M6 et M7. Les chaînes C5 et C6 comportent chacune une première moitié par laquelle elles sont solidarisées l'une à l'autre par emboîtement de leurs modules M5 et M6 pour constituer une poutre P3 du même type que celle de la figure 1 ou 4, les deuxièmes moitiés de ces chaînes C5 et C6 étant dissociées l'une de l'autre.
La chaîne C7 comporte une moitié par laquelle elle est solidarisée à la deuxième moitié de la chaîne C5 par emboîtement de leurs modules pour former une autre poutre P4, et elle comporte une deuxième moitié par laquelle elle est solidarisée à la deuxième moitié de la chaîne C6 par emboîtement de leurs modules pour constituer une autre poutre P5. Comme visible sur la figure 7, les modules M5-M7 des chaînes C5-C7 sont des modules triangulaires, c'est-à-dire du même type que les modules des exemples illustrés sur les figures 1 à 4. Mais les modules M'5, M'6 et M'7 des chaînes C5-C7 qui sont situés dans la région de jonction des poutres P3, P4 et P5 sont des modules ayant ici des formes de quadrilatères, pour permettre la dissociation des trois poutres P3, P4 et P5, celle-ci pouvant aussi être assurée en utilisant des formes triangulaires.
Comme pour tous les exemples des figures 1 à 4, les modules de l'exemple de la figure 7 sont des modules plans dont les formes sont complémentaires, de telle sorte que les poutres Tl, T2 et T3 sont pleins, au même titre que la structure qu'ils constituent.
Dans les exemples des figures 1 à 7, les modules d'une chaîne sont articulés les uns aux autres par des liaisons pivot 6 orientées transversalement, c'est-à-dire que les axes de ces liaisons pivot 6 sont perpendiculaires aux plans des modules pour être orientés transversalement par rapport à la poutre que forment ces modules.
Il est également possible de prévoir des modules reliés les uns aux autres par des liaisons pivot 6 s'étendant dans le plan de ces modules et perpendiculairement à la direction
générale de la poutre qu'ils forment. Dans une telle solution qui est représentée sur la figure 8, on prévoit ainsi deux chaînes de modules C8 et C9, formées de modules M8 et M9 qui sont essentiellement parallélépipédiques pour former une poutre P6. Les modules d'une même chaîne sont reliés les uns aux autres par des liaisons pivot 6 parallèles qui s'étendent selon la direction de l'effort tranchant subi par la poutre P6 lorsqu'elle est chargée.
Dans cet exemple de la figure 8, les ergots et évidements des modules (non représentés) sont formés au niveau des faces des modules qui sont appliquées l'une contre l'autre lors de l'assemblage de l'ensemble.
Dans les exemples des figures 1 à 5 et 7, les modules sont tous des éléments essentiellement plans de type plaques, dont les ergots prolongent les bords, et dont les évidements sont des encoches s'ouvrant dans ces bords. Ainsi, les ergots et les évidements sont formés de manière directe lors de la découpe de ces plaques, de sorte que les ergots ont la même épaisseur que ces plaques, et que les encoches traversent ces plaques de part en part.
Il est aussi possible de prévoir des ergots sous forme de plots dépassant de la tranche des plaques s'engageant dans des évidements sous forme de trous formés dans la tranche de ces plaques. Les ergots ont alors une épaisseur inférieure à celle de la plaque et les évidements un diamètre inférieur à l'épaisseur de la plaque. Cet agencement permet le cas échéant d'accroître la tenue mécanique de la poutre obtenue.
Par ailleurs, les modules qui sont tous plans dans les exemples des figures 1 à 5 et 7 peuvent aussi être des éléments volumiques, comme dans l'exemple de la figure 9 où une poutre P7 est formée à partir de trois chaînes de modules CIO, Cil, C12, dont les modules M10, Mil et M12 ont des formes de prismes à sections triangulaires.
Comme visible sur la figure 9, les trois chaînes C10-C12 sont agencées de manière rectilignes, de sorte que la poutre P7 présente une section triangulaire. Selon cet agencement, chaque module comporte une face externe, ainsi que deux faces internes qui sont pourvues d'ergots et d'évidements (non représentés) permettant leur
emboîtement. Une fois que deux modules M10 et Mil ont été emboîtés l'un avec l'autre, un module M12 est rapporté par ses deux faces internes contre les deux faces internes de modules M10 et Mil pour l'emboîter avec eux.
Il est également possible de prévoir des formes volumiques de modules M13-M16 permettant de constituer une poutre P8 avec quatre chaînes de modules C13-C16 qui sont agencées en hélicoïdes enroulées les unes avec les autres, comme illustré schématiquement sur la figure 10. Dans ce cas, comme visible sur la figure 10, la poutre obtenue peut être une poutre rectiligne à section carrée.
D'une manière générale, les modules sont fabriqués en un matériau de construction, tel que du bois, de l'acier, éventuellement du béton, ou encore une matière plastique appropriée. Dans les exemple décrits en relation avec les figures, les modules sont des éléments pleins et sensiblement plans formant des poutres pleines, mais ces modules peuvent également être creux ou comporter des évidement, en étant formés par exemple par assemblage de barres en acier.
Les barrettes 4 de renforcement sont avantageusement fabriquées dans un matériau ayant une tenue mécanique supérieure à celle du reste du module, en particulier en traction et en compression, du fait qu'elles reprennent l'essentiel des efforts de flexion de la poutre, qui se traduisent par des contraintes de traction et de compression le long de ses bords.
Dans les exemples décrits en relation avec les figures, les ergots et les évidements, sont des éléments incurvés en arcs de cercles et présentant des longueurs relativement significatives. D'autres formes sont envisageables pour ces ergots et ces évidements, ceux-ci pouvant par exemple avoir des formes tronconiques, en n'étant pas incurvés, et en présentant des longueurs plus réduites.
Claims
1. Structure porteuse composée de modules (M1-M7, Mi, M'5-M'7) dont au moins une partie sont reliés les uns aux autres par des liaisons pivot (6) d'axes parallèles pour former au moins deux chaînes de modules distinctes, chaque module (M1-M7, Mi, M'5-M'7) comportant au moins un ergot (El, E2, E3) et/ou au moins un évidement (E'1, E"l, E'2, E'3), ces modules (M1-M7, Mi, M'5-M'7) ayant des formes complémentaires et étant emboîtés les uns avec les autres par engagement des ergots (El, E2, E3) dans les évidements (E'1, E"l, E'2, E'3) pour constituer au moins une poutre rigide.
2. Structure porteuse selon la revendication 1, comprenant deux chaînes de modules (Cl- C7) constituant une poutre, ces deux chaînes de modules (C1-C7) s'étendant selon deux bords opposés de cette poutre.
3. Structure porteuse selon la revendication 2, dont chaque module (M1-M7, Mi, M'5- M'7) a une forme essentiellement plane.
4. Structure porteuse selon la revendication 2, dont les modules (Ml, M2) sont identiques.
5. Structure porteuse selon la revendication 2, comprenant des modules indépendants (Mi) interposés entre les modules (M3, M4) des deux chaînes de modules (C3, C4) qui s'étendent selon deux bords opposés de la poutre (P2).
6. Structure porteuse selon la revendication 1, comprenant trois chaînes de modules (C5, C6, C7) reliées par emboîtement de leurs modules (M5-M7, M'5-M'7), pour former trois poutres (P3-P5) reliées les unes aux par un raccordement en Y.
7. Structure porteuse selon la revendication 1, comprenant trois chaînes de modules (C10-C12) reliées par emboîtement de leurs modules (M10-M12), dans laquelle chaque
module (M10-M12) présente une forme de prisme à base triangulaire pour former une poutre (P7) à section triangulaire.
8. Structure porteuse selon la revendication 1, comprenant quatre chaînes de modules (C13-C16) reliées par emboîtement de leurs modules (M13-M16), ces chaînes (C13-C16) étant agencées en hélicoïdes pour former une poutre (P8) à section carrée.
9. Elément de structure selon la revendication 1, comprenant au moins un ergot (El, E2, E3) ayant une forme incurvée selon un arc de cercle centré sur une liaison pivot (6) du module auquel appartient cet ergot (El, E2, E3).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2211816A FR3141975A1 (fr) | 2022-11-14 | 2022-11-14 | Système de modules articulés et emboîtables pour former un élément de structure |
FRFR2211816 | 2022-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105331A1 true WO2024105331A1 (fr) | 2024-05-23 |
Family
ID=84820416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/051783 WO2024105331A1 (fr) | 2022-11-14 | 2023-11-13 | Systeme de modules articules et emboitables pour former un element de structure |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3141975A1 (fr) |
WO (1) | WO2024105331A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1200405A (fr) * | 1957-06-03 | 1959-12-21 | Barre rigide décomposable | |
US3883975A (en) * | 1972-12-01 | 1975-05-20 | Robert Mentken | Picture frame strip |
JP2014001791A (ja) * | 2012-06-18 | 2014-01-09 | Tsubakimoto Chain Co | 噛合チェーンユニット、噛合チェーン式進退作動装置 |
US20140259609A1 (en) * | 2013-03-15 | 2014-09-18 | Philip Aaron Blackstone | Extendable Interlocking Structures and Methods |
-
2022
- 2022-11-14 FR FR2211816A patent/FR3141975A1/fr active Pending
-
2023
- 2023-11-13 WO PCT/FR2023/051783 patent/WO2024105331A1/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1200405A (fr) * | 1957-06-03 | 1959-12-21 | Barre rigide décomposable | |
US3883975A (en) * | 1972-12-01 | 1975-05-20 | Robert Mentken | Picture frame strip |
JP2014001791A (ja) * | 2012-06-18 | 2014-01-09 | Tsubakimoto Chain Co | 噛合チェーンユニット、噛合チェーン式進退作動装置 |
US20140259609A1 (en) * | 2013-03-15 | 2014-09-18 | Philip Aaron Blackstone | Extendable Interlocking Structures and Methods |
Also Published As
Publication number | Publication date |
---|---|
FR3141975A1 (fr) | 2024-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3131746B1 (fr) | Pièce polygonale à alvéoles pour une âme de panneau, en particulier de réflecteur d'antenne de satellite | |
EP0442830A1 (fr) | Glissière de sécurité | |
EP2665597A1 (fr) | Ferrure multi-branche en materiau composite et procede de fabrication d'une telle ferrure multi-branche | |
EP3476740B1 (fr) | Structure primaire de mât de support d'un groupe propulseur d'aéronef en caisson formée par assemblage de deux demi-coquilles | |
EP2725171B1 (fr) | Panneau de clôture assemblé sans soudure et clôture et kit comportant un tel panneau | |
EP2264324A1 (fr) | Procédé de fabrication d'une bielle pour la construction aéronautique | |
WO2024105331A1 (fr) | Systeme de modules articules et emboitables pour former un element de structure | |
FR2547875A1 (fr) | Piece d'assemblage metallique nervuree pour realiser un element structural de charpente en bois tel qu'une structure de solive | |
EP2767499B1 (fr) | Dispositif d'éclissage pour lier deux éléments de mât et ensemble comprenant deux éléments de mât et de tels dispositifs d'éclissage | |
EP0031804A2 (fr) | Structure spatiale en treillis | |
EP0975843B1 (fr) | Paroi de construction avec dispositif d'assemblage des planches de bois constitutives de la paroi | |
EP1135565B1 (fr) | Systemes structurels triangules en bois, tels que charpentes, ponts, planchers | |
FR3004067A1 (fr) | Profile, notamment metallique, destine a permettre une fixation d'un film sur une structure de serre et systeme de fixation d'un film sur une structure de serre comprenant un tel profile | |
EP3334874A1 (fr) | Ancre dynamique de levage d'un element de construction, renforcee | |
EP0014144A1 (fr) | Charpente ou ossature cintrée de volume solide | |
FR2666612A1 (fr) | Structure demontable de halls, chapiteaux ou analogues. | |
FR2744786A1 (fr) | Assemblage de poutrelles comportant des liaisons directes entre poutrelles | |
EP1426673A2 (fr) | Réservoir pour fluides sous pression et procédé de fabrication | |
EP1079039A1 (fr) | Structure porteuse et éléments en treillis démontables | |
FR2593214A1 (fr) | Elements modulaires prefabriques pour construction de piscines et procede de fabrication (coffrages perdus) | |
FR2770595A1 (fr) | Element d'assemblage angulaire et ensemble de boites aux lettres comprenant au moins un tel element | |
FR3108888A1 (fr) | Bielle structurale pour aeronef, comprenant un corps de bielle a structure sandwich | |
CH684014A5 (fr) | Structure spatiale tridimensionnelle. | |
FR2748769A1 (fr) | Cellule de stockage | |
CA3035512A1 (fr) | Ancre dynamique renforcee de levage, de relevage, de retournement d'un element de construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23828225 Country of ref document: EP Kind code of ref document: A1 |