WO2024199306A1 - 一种混动汽车的远程控制方法、装置、存储介质及车辆 - Google Patents
一种混动汽车的远程控制方法、装置、存储介质及车辆 Download PDFInfo
- Publication number
- WO2024199306A1 WO2024199306A1 PCT/CN2024/084203 CN2024084203W WO2024199306A1 WO 2024199306 A1 WO2024199306 A1 WO 2024199306A1 CN 2024084203 W CN2024084203 W CN 2024084203W WO 2024199306 A1 WO2024199306 A1 WO 2024199306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- remote control
- vehicle
- instruction
- state
- type
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 8
- 238000009423 ventilation Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 76
- 230000004044 response Effects 0.000 description 13
- 238000004378 air conditioning Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 7
- 230000001960 triggered effect Effects 0.000 description 6
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
- G05B23/0213—Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present application relates to the field of automobile technology, and in particular to a remote control method, device, storage medium and vehicle for a hybrid vehicle.
- the present application aims to propose a remote control method, device, storage medium and vehicle for a hybrid vehicle, so that the hybrid vehicle can at least realize partial remote control functions regardless of whether the power battery pack is charged or not.
- a remote control method for a hybrid vehicle comprising:
- the vehicle When the remote control command is executed, the vehicle is controlled to execute the remote control function corresponding to the remote control command.
- the remote control command including include:
- the charging state is a state where the vehicle is not plugged into a charging gun, executing a remote control instruction
- the charging state is a state where the vehicle is plugged into a charging gun, and when it is determined that the control type corresponding to the remote control command is a first type, prohibiting execution of the remote control command;
- the charging state is a state in which the vehicle is plugged into a charging gun, and when it is determined that the control type corresponding to the remote control instruction is the second type, executing the remote control instruction;
- the first type of remote control refers to the command used to control the vehicle to enter a corresponding driving condition
- the second type of remote control command is used to control the on-board components of the vehicle to enter a corresponding working state.
- control type corresponding to the remote control instruction when it is determined that the charging state is a state where the vehicle is not plugged into a charging gun, executing the remote control instruction includes:
- determining a starting power supply node when the component to be controlled enters a working state wherein the starting power supply node is used to supply power to the component to be controlled;
- the path between the starting power supply node and the component to be controlled is turned on to enable the component to be controlled to enter a working state.
- determining the starting power supply node when the component to be controlled enters the working state includes:
- the starting power supply node is determined to be the power battery pack
- the starting power supply node is determined to be the engine of the vehicle.
- the first type of remote control instructions include: instructions for remotely starting the vehicle and instructions for remotely parking the vehicle;
- the second type of remote control instructions includes at least one of: an instruction to remotely start the air conditioner, an instruction to remotely clean the cabin, an instruction to remotely turn on seat heating and ventilation, and an instruction to remotely turn on steering wheel heating.
- the remote control method further comprises:
- the remote control method further includes:
- a disable instruction is sent to the user end to indicate Indicates that the user terminal locks the triggering of the first type of remote control instruction
- an unlocking instruction is sent to the user terminal to instruct the user terminal to adjust the triggering of the first type of remote control instruction from the locked state to the unlocked state.
- the remote control method of a hybrid vehicle in the present application has the following advantages:
- the present application provides a remote control method for a hybrid vehicle, which includes: upon receiving a remote control command for the vehicle, determining the charging state of the vehicle's power battery pack and the control type corresponding to the remote control command; based on the charging state and the control type, determining whether to execute the remote control command; and when executing the remote control command, controlling the vehicle to execute a remote control function corresponding to the control type.
- the present application when receiving a remote control instruction, the present application first confirms the charging status of the power battery pack, that is, whether the vehicle is plugged into a charging gun to charge the power battery pack, and at the same time determines the control type corresponding to the remote control instruction, thereby determining whether the remote control instruction can be executed.
- the vehicle is not plugged into a charging gun to charge the power battery pack, all remote control functions of the vehicle can be executed.
- the remote control function corresponding to the second type of remote control instruction the power of the power battery can be used first; when the power battery is low, the engine is started to continue to execute the remote control function.
- the control type of the remote control instruction is the second type
- Another object of the present application is to provide a remote control device for a hybrid vehicle, so that the hybrid vehicle can at least realize a partial remote control function regardless of whether the power battery pack is charged or not.
- a remote control device for a hybrid vehicle comprising:
- a first determination unit configured to determine, upon receiving a remote control instruction for the vehicle, a charging state of a power battery pack of the vehicle and a control type corresponding to the remote control instruction;
- a second determining unit configured to determine whether to execute the remote control instruction based on the charging state and the control type
- the control unit is used to control the vehicle to perform a remote control function corresponding to the control type when executing a remote control instruction.
- the remote control device has the same advantages as the above remote control method over the prior art, which will not be described in detail here.
- Another object of the present application is to provide a computer-readable storage medium so that the hybrid vehicle can at least implement a partial remote control function regardless of whether the power battery pack is charged or not.
- a computer-readable storage medium is used to store a computer program for executing the above remote control method.
- Another object of the present application is to provide a vehicle, so that the hybrid vehicle can at least realize partial remote control functions regardless of whether the power battery pack is charged or not.
- a vehicle comprises a control module, and the control module is used to implement the above remote control method.
- FIG1 is a flowchart of a method for remotely controlling a hybrid vehicle according to an embodiment of the present application
- FIG2 is a flowchart of another method for remotely controlling a hybrid vehicle according to an embodiment of the present application.
- FIG3 is a module diagram of a remote control device for a hybrid vehicle shown in an embodiment of the present application.
- FIG4 is a block diagram of a computing and processing device shown in an embodiment of the present application.
- FIG. 5 is a storage unit of a program code shown in an embodiment of the present application.
- the vehicle when a hybrid vehicle is plugged into a charging gun, in order to avoid safety accidents, the vehicle is usually prohibited from starting (the starting refers to the vehicle's preparation for starting before the vehicle engine starts). At this time, the engine cannot be started, and the components on the vehicle, such as air conditioning, seats, etc., cannot be started, making the vehicle unable to realize related remote control functions.
- FIG. 1 shows a flow chart of the steps of a remote control method for a hybrid vehicle shown in an embodiment of the present application. As shown in FIG. 1 , the steps of the remote control method are as follows:
- Step S101 when receiving a remote control instruction for a vehicle, determining the charging state of the power battery pack of the vehicle and the control type corresponding to the remote control instruction.
- the user can trigger the remote control function through the APP.
- the APP sends the corresponding remote control command to the vehicle.
- the APP sends a command to start the vehicle.
- the APP sends a remote control command to the T-BOX (Telematics BOX, a smart terminal for the Internet of Vehicles).
- the T-BOX will first detect the charging status of the power battery pack to determine the charging status of the power battery pack.
- the charging status refers to the state of the vehicle being plugged into the charging gun, or the state of the vehicle not being plugged into the charging gun, that is, the power battery pack is in a charging state, or the power battery pack is in a charging state.
- the T-BOX will also determine the control type corresponding to the remote control command.
- the control types corresponding to the remote control instructions include two categories. One is the instructions for controlling the entire vehicle type, such as the remote vehicle start instruction and remote parking instruction, etc.; the other is the instructions for controlling the components on the vehicle, such as the instructions for controlling the air conditioner, seats, steering wheel, etc. on the vehicle. Specifically, it can be the remote air conditioning start instruction, the remote cabin cleaning instruction, the remote seat heating and ventilation instruction, and the remote steering wheel heating instruction, etc.
- Step S102 determining whether to execute the remote control instruction based on the charging state and the control type.
- T-BOX After determining the charging status of the power battery pack and the control type corresponding to the remote control command, T-BOX determines whether to execute the received remote control command based on the determined charging status and control type. If it is to be executed, it sends an execution signal to the gateway, which receives the execution signal and forwards it to the vehicle controller; if it is not to be executed, it feeds back to the APP, which prompts the user that "the remote control function is disabled" after receiving the feedback.
- Step S103 when executing the remote control instruction, controlling the vehicle to execute the remote control function corresponding to the remote control instruction.
- the vehicle controller After the vehicle controller receives the execution signal sent by the gateway, it controls the vehicle to execute the remote control function corresponding to the remote control instruction. For example, if the remote control function triggered by the user in the APP is to remotely start the vehicle, then after the vehicle controller receives the execution signal, it will send a start signal to the engine controller, and the engine controller will start the engine in response to the start signal, thereby realizing the remote start of the vehicle. Alternatively, if the remote control function triggered by the user in the APP is to remotely start the air conditioner, then after the vehicle controller receives the execution signal, it will send a start signal to the air conditioner controller, and the air conditioner controller will start the air conditioner in response to the start signal, thereby realizing the remote start of the air conditioner.
- the vehicle controller after controlling the vehicle to execute the remote control function, the vehicle controller will also feedback the execution success signal to the gateway.
- the gateway receives the execution success signal and forwards it to the T-BOX. After receiving it, the T-BOX forwards it to the APP. After receiving it, the APP prompts the user that "the remote control function is executed successfully.”
- T-BOX does not receive the execution success signal within the first preset time, it will send the execution signal to the gateway again. Among them, the number of times T-BOX sends the execution signal does not exceed 3 times. If T-BOX still does not receive the execution success signal after sending the execution signal for the third time, it will feedback the execution failure signal to the APP. After receiving the feedback, the APP prompts the user that "the remote control function execution failed". After receiving the prompt, the user can choose to trigger the remote control function again. Among them, the first preset time is 5 seconds.
- the remote control function corresponding to the instruction to control the components on the vehicle, such as remote start of air conditioning, remote cleaning of the cabin, remote start of seat heating and ventilation, etc.
- T-BOX receives the execution success signal
- the gateway receives the end signal and forwards it to the vehicle controller.
- the vehicle controller After the vehicle controller receives the end signal, it controls the vehicle to stop executing the corresponding remote control function.
- the second preset time is actually the execution time of the remote control function. Therefore, different remote control functions correspond to different execution times, that is, the second preset time. For example, if the remote cleaning of the cabin is triggered, the corresponding second preset time is 2 minutes, that is, the vehicle executes the cabin cleaning for 2 minutes.
- the vehicle controller When the vehicle stops executing the remote control function, the vehicle controller sends an end signal to the gateway, the gateway receives the end signal and forwards it to the T-BOX, the T-BOX forwards it to the APP, and the APP prompts the user that "the remote control function has been completed" after receiving it.
- determining whether to execute the remote control instruction based on the charging state and the control type includes:
- the charging state is a state where the vehicle is not plugged into a charging gun, executing a remote control instruction
- the remote control command is prohibited
- the charging state is a state in which the vehicle is plugged into a charging gun, and when it is determined that the control type corresponding to the remote control instruction is the second type, executing the remote control instruction;
- the first type of remote control instructions are used to control the vehicle to enter a corresponding driving condition, wherein the driving condition includes starting the vehicle, parking, etc., that is, therefore, the first type of remote control instructions can be instructions for remotely starting the vehicle, remotely parking instructions, etc.
- the second type of remote control command is used to control the vehicle's onboard components to enter corresponding working states, for example, controlling the vehicle's air conditioning, seats, and steering wheels to enter corresponding working states. Therefore, the second type of remote control command can be a command to remotely start the air conditioning, a command to remotely clean the cabin, a command to remotely turn on seat heating and ventilation, and a command to remotely turn on steering wheel heating, etc.
- T-BOX determines that the charging state is the state of the vehicle being plugged into the charging gun, that is, the power battery pack is in the charging state, and determines that the control type corresponding to the remote control command is the first type
- the APP After receiving the feedback, the APP prompts the user that "the remote control function is prohibited".
- the first type of remote control command is a command to control the entire vehicle, such as a command to start the vehicle and a command to park the vehicle, etc. In order to avoid safety accidents, it is prohibited to start the vehicle or park the vehicle when the vehicle is plugged into the charging gun.
- a user triggers the remote control function of remotely starting a vehicle on the APP.
- the APP sends a corresponding remote control instruction to the T-BOX, i.e., an instruction to remotely start the vehicle.
- the T-BOX determines that the charging state at this time is the state of the vehicle being inserted into the charging gun, and after determining that the control type corresponding to the instruction to remotely start the vehicle is the first type, it feeds back to the APP that the instruction to remotely start the vehicle is prohibited from being executed.
- the APP prompts the user that "the remote control function is prohibited.”
- T-BOX determines that the charging state is the state where the vehicle is plugged into the charging gun, that is, the power battery pack is in the charging state, and determines that the control type corresponding to the remote control instruction is the second type, it is determined that the remote control instruction can be executed. After determining that the remote control instruction can be executed, T-BOX sends a first execution signal to the gateway, and the gateway receives the first execution signal and forwards it to the vehicle controller. After receiving the first execution signal, the vehicle controller controls the vehicle to execute the remote control function corresponding to the remote control instruction.
- the first execution signal carries a remote high-voltage power-on signal.
- the vehicle controller executes the remote high-voltage power-on and switches the vehicle's power mode to ON.
- the vehicle is started (the start refers to the ready-to-start state of the vehicle before the vehicle engine is started), which can control the vehicle to execute the remote control function corresponding to the remote control instruction.
- a user triggers the remote control function of remotely starting the air conditioner in the APP.
- the APP sends a corresponding remote control instruction to the T-BOX, that is, an instruction to remotely start the air conditioner.
- the T-BOX determines that the charging state at this time is the state of the vehicle being inserted into the charging gun, and after determining that the control type corresponding to the instruction to remotely start the air conditioner is the second type, it sends a first execution signal to the gateway.
- the gateway receives the first execution signal and forwards it to the vehicle controller.
- the vehicle controller After receiving the first execution signal, the vehicle controller executes remote high-voltage power-on and switches the vehicle's power mode to ON, and then sends a start signal to the air-conditioning controller.
- the air-conditioning controller starts the air conditioner in response to the start signal, thereby realizing remote start of the air conditioner.
- T-BOX determines that the charging state is a state where the vehicle is not plugged in with a charging gun, that is, the power battery pack is not in a charging state, regardless of whether the control type corresponding to the received remote control instruction is the first type or the second type, it is determined that the remote control instruction can be executed. Therefore, in specific implementation, when T-BOX determines that the charging state is a state where the vehicle is not plugged in with a charging gun, there is no need to determine the control type corresponding to the remote control instruction.
- T-BOX After determining that the remote control instruction can be executed, T-BOX sends a second execution signal to the gateway, the gateway receives the second execution signal and forwards it to the vehicle controller, and after the vehicle controller receives the second execution signal, it controls the vehicle to execute the remote control function corresponding to the remote control instruction.
- the second execution signal carries the vehicle request signal and the power mode signal.
- the vehicle controller After receiving the vehicle request signal and the power mode signal, the vehicle controller starts the vehicle (the start refers to the vehicle's ready-to-start state before the vehicle engine is started), and then switches the vehicle's power mode to ON, thereby controlling the vehicle to execute the remote control function corresponding to the remote control command.
- the user triggers the remote control function of remotely starting the vehicle on the APP.
- the APP sends the corresponding remote control instruction to the T-BOX, that is, the instruction to remotely start the vehicle.
- the T-BOX determines that the charging status at this time is the state where the vehicle is not plugged into the charging gun, and then sends a second execution signal to the gateway.
- the gateway receives the second execution signal and forwards it to the vehicle controller.
- the vehicle controller starts the vehicle (the start refers to the ready-to-start state of the vehicle before the vehicle engine is started), then switches the vehicle's power mode to ON, and then sends a start signal to the engine controller.
- the engine controller responds to the start signal, it starts the engine, thereby realizing remote starting of the vehicle.
- the remote control method when it is determined that the charging state is a state in which the vehicle is plugged into a charging gun, and when it is determined that the control type corresponding to the remote control instruction is the first type, the remote control method further comprises:
- T-BOX determines that the charging state is the state where the vehicle is plugged into the charging gun, and determines that the control type corresponding to the remote control instruction is the first type, it is determined that the remote control instruction is prohibited from being executed.
- the first prompt information will be sent to the user end, that is, the first prompt information will be sent to the APP, and the first prompt information is used to prompt the user to disconnect the charging gun.
- the APP prompts the user "Please disconnect the charging gun".
- the remote control function can be triggered again on the APP after the charging gun is disconnected.
- the APP In response to the triggering of the remote control function, the APP sends the corresponding remote control instruction to the T-BOX, detects the charging state again, and determines that the charging state at this time is the state where the vehicle is not plugged into the charging gun, that is, the charging gun is disconnected, and then sends a second execution signal to the gateway.
- the gateway receives the second execution signal and forwards it to the vehicle controller.
- the vehicle controller After receiving the second execution signal, the vehicle controller starts the vehicle (the start refers to the vehicle's ready-to-start state before the vehicle engine is started), and then switches the vehicle's power mode to ON, thereby controlling the vehicle to execute the first type of remote control instruction.
- the remote control method before determining whether to execute the remote control instruction based on the charging state and the control type, the remote control method further includes:
- the charging state is a state where the charging gun is inserted, sending a disabling instruction to the user terminal to instruct the user terminal to lock the triggering of the first type of remote control instruction;
- an unlocking instruction is sent to the user terminal to instruct the user terminal to adjust the triggering of the first type of remote control instruction from the locked state to the unlocked state.
- the user end can lock the triggering of the first type of remote control instructions, that is, the user cannot trigger the remote control function corresponding to the first type of remote control instructions on the user end.
- T-BOX determines that the charging status is the state of the vehicle being inserted into the charging gun, it sends a disable instruction to the user end, that is, the APP.
- the APP After receiving the disable instruction, the APP locks the triggering of the first type of remote control instructions, so that the user disables the remote control function corresponding to the first type of remote control instructions.
- Remote control functions such as remote start of the vehicle.
- the APP will also prompt the user that "the vehicle is plugged into the charging gun, and some remote functions are disabled". After receiving this prompt, if the user wants to use the remote control function corresponding to the first type of remote control command, he can disconnect the charging gun.
- T-BOX sends an unlocking command to the user end, that is, the APP.
- the APP adjusts the triggering of the first type of remote control command from the locked state to the unlocked state, so that the user can use the remote control function corresponding to the first type of remote control command, such as the remote control function of remotely starting the vehicle.
- hybrid vehicles can use power battery packs to realize remote control functions such as remote air conditioning and remote cabin cleaning compared to traditional fuel vehicles; hybrid vehicles can start the engine and continue to work after low battery when executing remote control functions compared to pure electric vehicles.
- the embodiment of the present application proposes another remote control method for hybrid vehicles, which is specifically used to determine that the charging state is a state where the vehicle is not plugged into a charging gun, and when the control type corresponding to the remote control instruction is the second type, refer to Figure 2, which shows another remote control method for hybrid vehicles in the embodiment of the present application.
- the remote control method includes:
- Step S201 obtain the SOC (State of Charge) of the power battery pack and the components to be controlled corresponding to the remote control instructions.
- the components to be controlled are vehicle-mounted components, such as air conditioners, seats, steering wheels, etc. on the vehicle.
- T-BOX determines that the charging status is the state where the vehicle is not plugged in the charging gun, and determines that the control type corresponding to the remote control instruction is the second type, it sends a second execution signal to the gateway.
- the second execution signal also carries the SOC acquisition signal.
- the gateway receives the second execution signal and forwards it to the vehicle controller.
- the vehicle controller receives the second execution signal and sends the SOC acquisition signal to the BMS (Battery Management System).
- the BMS receives the SOC acquisition signal to obtain the SOC of the current power battery pack. After the acquisition is completed, the acquired SOC is sent to the vehicle controller.
- T-BOX will also obtain the component to be controlled corresponding to the remote control instruction.
- the user triggers the remote control function of remotely starting the air conditioner in the APP.
- the APP sends the corresponding remote control instruction to T-BOX, that is, the instruction to remotely start the air conditioner.
- T-BOX determines that the component to be controlled corresponding to the instruction to remotely start the air conditioner is the air conditioner, and forwards the information of the component to be controlled to the vehicle controller through the gateway.
- Step S202 based on the SOC, determine the starting power supply time when the component to be controlled enters the working state. Point; wherein the starting power supply node is used to power the component to be controlled.
- Step S203 connecting the path between the starting power supply node and the component to be controlled, so that the component to be controlled enters a working state.
- the vehicle controller After the vehicle controller receives the SOC sent by the BMS and the information of the component to be controlled forwarded by the gateway, it determines the starting power supply node when the component to be controlled enters the working state, and conducts the path between the starting power supply node and the component to be controlled, so that the component to be controlled enters the working state. For example, the user triggers the remote control function of remotely starting the air conditioner in the APP. In response to the triggering of the remote control function, the APP sends the corresponding remote control instruction to the T-BOX, that is, the instruction to remotely start the air conditioner.
- the T-BOX After the T-BOX receives the instruction to remotely start the air conditioner, it determines that the charging state at this time is the state where the vehicle is not plugged in the charging gun, and sends a second execution signal to the gateway.
- the gateway receives the second execution signal and forwards it to the vehicle controller.
- the vehicle controller After receiving the second execution signal, the vehicle controller starts the vehicle (the start refers to the vehicle's ready-to-start state before the vehicle engine is started), and then switches the vehicle's power mode to ON.
- the vehicle controller also sends an SOC acquisition signal to the BMS.
- the BMS receives the SOC acquisition signal to obtain the SOC of the current power battery pack. After the acquisition is completed, the acquired SOC is sent to the vehicle controller.
- the vehicle controller After receiving it, the vehicle controller determines the starting power supply node when the component to be controlled enters the working state, that is, the starting power supply node when the air conditioner enters the working state, and connects the path between the starting power supply node and the air conditioner, starts the air conditioner, and puts the air conditioner into the working state, thereby realizing remote start of the air conditioner.
- determining, based on the SOC, a starting power supply node when the component to be controlled enters a working state includes:
- the starting power supply node is determined to be the power battery pack
- the starting power supply node is determined to be the engine of the vehicle.
- the vehicle controller When the vehicle controller receives the SOC sent by the BMS, it determines whether the SOC is lower than the preset SOC. If not, it indicates that the SOC of the current power battery pack satisfies the component to be controlled to enter the working state.
- the starting power supply node when the component to be controlled enters the working state is the power battery pack. If it is lower, it indicates that the SOC of the current power battery pack cannot satisfy the component to be controlled to enter the working state.
- the starting power supply node when the component to be controlled enters the working state is the engine.
- the starting power supply node is a generator connected to the engine. When the engine starts, it drives the generator to rotate, thereby supplying power to the component to be controlled.
- the preset SOC may be determined according to the actual vehicle model. In the embodiment of the present application, the preset SOC is determined to be 15%.
- the embodiment of the present application After receiving the remote control command for the vehicle, the embodiment of the present application first determines the charging status of the power battery pack, that is, whether the vehicle is plugged into a charging gun to charge the power battery pack, and at the same time determines the control type corresponding to the remote control command, thereby determining whether the remote control command can be executed.
- the vehicle is not plugged into a charging gun to charge the power battery pack, all remote control functions of the vehicle can be executed.
- the power of the power battery can be used preferentially; when the power battery is low, the engine is started to continue to execute the remote control function.
- the embodiment of the present application further proposes a remote control device for a hybrid vehicle.
- the remote control device refers to FIG3 , which shows a module diagram of a remote control device for a hybrid vehicle in an embodiment of the present application.
- the remote control device 1 includes:
- the first determination unit 101 is used to determine the charging state of the power battery pack of the vehicle and the control type corresponding to the remote control instruction when receiving the remote control instruction for the vehicle.
- the user can trigger the remote control function through the APP.
- the APP sends the corresponding remote control instruction to the vehicle.
- the APP sends an instruction to start the vehicle.
- the APP sends a remote control instruction to the first determination unit 101.
- the first determination unit 101 will first detect the charging status of the power battery pack to determine the charging status of the power battery pack.
- the charging status refers to the state of the vehicle being inserted into the charging gun, or the state of the vehicle not being inserted into the charging gun, that is, the power battery pack is in a charging state, or the power battery pack is in a charging state.
- the first determination unit 101 will also determine the control type corresponding to the remote control instruction.
- the control types corresponding to the remote control instructions include two categories. One is the instructions for controlling the entire vehicle type, such as the remote vehicle start instruction and remote parking instruction, etc.; the other is the instructions for controlling the components on the vehicle, such as the instructions for controlling the air conditioner, seats, steering wheel, etc. on the vehicle. Specifically, it can be the remote air conditioning start instruction, the remote cabin cleaning instruction, the remote seat heating and ventilation instruction, and the remote steering wheel heating instruction, etc.
- the second determining unit 102 is configured to determine whether to execute the remote control instruction based on the charging state and the control type.
- the second determination unit 102 determines whether to execute the received remote control instruction based on the determined charging state and control type. If it is to be executed, an execution signal is sent to the second sub-determination unit, and the second sub-determination unit receives the execution signal and forwards it to the control unit 103; if it is not to be executed, it is fed back to the APP, and after receiving the feedback, the APP prompts the user that "the remote control function is disabled".
- the control unit 103 is used to control the vehicle to execute a remote control function corresponding to the control type when executing a remote control instruction.
- control unit 103 After the control unit 103 receives the execution signal sent by the second sub-determination unit, it controls the vehicle to execute the remote control function corresponding to the remote control instruction. For example, if the remote control function triggered by the user in the APP is to remotely start the vehicle, then after the control unit 103 receives the execution signal, it will send a start signal to the engine controller, and the engine controller will start the engine in response to the start signal, thereby realizing the remote start of the vehicle.
- the remote control function triggered by the user in the APP is to remotely start the air conditioner
- the vehicle controller After the vehicle controller receives the execution signal, it will send a start signal to the air conditioner controller, and the air conditioner controller will start the air conditioner in response to the start signal, thereby realizing the remote start of the air conditioner.
- an embodiment of the present application further proposes a vehicle, the vehicle includes a control module, and the control module is used to implement the above-mentioned remote control method.
- the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiment.
- the various component embodiments of the present application can be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. It should be understood by those skilled in the art that a microprocessor or digital signal processor (DSP) can be used in practice to implement some or all functions of some or all components in the computing processing device according to the embodiment of the present application.
- DSP digital signal processor
- the application can also be implemented as a device or apparatus program (e.g., computer program and computer program product) for executing a part or all of the methods described herein.
- Such a program implementing the present application can be stored on a computer-readable medium, or can have the form of one or more signals. Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
- FIG4 shows a computer processing device that can implement the method according to the present application.
- the computer processing device conventionally includes a processor 1010 and a computer program product or a memory 1020 in the form of a processor 1010 and a memory 1020.
- the memory 1020 may be an electronic memory such as a flash memory, an EEPROM (electrically erasable programmable read-only memory), an EPROM, a hard disk or a ROM.
- the memory 1020 has a storage space 1030 for a program code 1031 for executing any method step in the above method.
- the storage space 1030 for the program code may include individual program codes 1031 for implementing the various steps in the above method, respectively. These program codes may be read from or written to one or more computer program products.
- These computer program products include program code carriers such as a hard disk, a compact disk (CD), a memory card or a floppy disk.
- a computer program product is generally a portable or fixed storage unit as described with reference to FIG. 5.
- the storage unit may have a storage segment, a storage space, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4.
- the program code may be compressed, for example, in an appropriate form.
- the storage unit includes computer readable codes 1031 ′, ie, codes that can be read by a processor such as 1010 , which, when executed by a computing processing device, cause the computing processing device to perform the steps of the method described above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本申请提供了一种混动汽车的远程控制方法、装置、存储介质及车辆,该远程控制方法包括:在接收到针对车辆的远程控制指令时,确定所述车辆的动力电池包的充电状态,以及所述远程控制指令对应的控制类型;基于所述充电状态和所述控制类型,确定是否执行所述远程控制指令;在执行所述远程控制指令时,控制所述车辆执行与所述远程控制指令对应的远程控制功能。本申请通过确认动力电池包的充电状态和远程控制指令对应的控制类型,使用户可以远程控制车辆执行远程控制功能,提高用户的体验感。
Description
相关申请的交叉引用
本申请要求在2023年03月28日提交中国专利局、申请号为202310325080.7、发明名称为“一种混动汽车的远程控制方法、装置、存储介质及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及汽车技术领域,特别涉及一种混动汽车的远程控制方法、装置、存储介质及车辆。
目前,随着智能化车辆的快速发展,大多数车辆配置有远程控制功能,凭借该功能,人们可以实现远程启动车辆、远程启动空调、远程清洁座舱等功能。
然而,在相关技术中,对于混动汽车,当其插入充电枪为动力电池包充电时,上述远程控制功能均无法实现。
发明内容
基于上述内容,本申请旨在提出一种混动汽车的远程控制方法、装置、存储介质及车辆,使得无论动力电池包充电与否,混动汽车至少能实现部分远程控制功能。
为达到上述目的,本申请的技术方案是这样实现的:
一种混动汽车的远程控制方法,远程控制方法包括:
在接收到针对车辆的远程控制指令时,确定车辆的动力电池包的充电状态,以及远程控制指令对应的控制类型;
基于充电状态和控制类型,确定是否执行远程控制指令;
在执行远程控制指令时,控制车辆执行与远程控制指令对应的远程控制功能。
进一步的,基于充电状态和控制类型,确定是否执行远程控制指令,包
括:
在确定充电状态为车辆未插入充电枪的状态时,执行远程控制指令;
在确定充电状态为车辆插入充电枪的状态,以及确定远程控制指令对应的控制类型为第一类型时,禁止执行远程控制指令;
在确定充电状态为车辆插入充电枪的状态,以及确定远程控制指令对应的控制类型为第二类型时,执行远程控制指令;
其中,第一类型的远程控制指用于控制车辆进入对应的行驶工况,第二类型的远程控制指令用于控制车辆上的车载部件进入对应的工作状态。
进一步的,远程控制指令对应的控制类型为第二类型的情况下,在确定充电状态为车辆未插入充电枪的状态时,执行远程控制指令,包括:
获取动力电池包的SOC,以及远程控制指令所对应的待控制部件;
基于SOC,确定待控制部件进入工作状态时的起始供电节点;其中,起始供电节点用于为待控制部件供电;
导通起始供电节点与待控制部件的通路,以使待控制部件进入工作状态。
进一步的,基于SOC,确定待控制部件进入工作状态时的起始供电节点,包括:
当SOC不低于预设SOC时,确定起始供电节点为动力电池包;
当SOC低于预设SOC时,确定起始供电节点为车辆的发动机。
进一步的,第一类型的远程控制指令包括:远程启动车辆的指令和远程泊车的指令;
第二类型的远程控制指令包括:远程启动空调的指令、远程清洁座舱的指令、远程开启座椅加热及通风的指令,以及远程开启方向盘加热的指令中的至少一种。
进一步的,在在确定充电状态为所车辆插入充电枪的状态,以及确定远程控制指令对应的控制类型为第一类型时,禁止执行远程控制指令的情况下,远程控制方法还包括:
向用户端发送第一提示信息,以提示用户断开充电枪;
在检测到断开充电枪的情况下,执行第一类型的远程控制指令。
进一步的,在基于充电状态和控制类型,确定是否执行远程控制指令之前,远程控制方法还包括:
当确定充电状态为插入充电枪的状态时,向用户端发送禁用指令,以指
示用户端锁定第一类型的远程控制指令的触发;
当确定充电状态为未插入充电枪的状态时,向用户端发送解锁指令,以指示用户端将第一类型的远程控制指令的触发由锁定状态调整为解锁状态。
相对于现有技术,本申请的一种混动汽车的远程控制方法具有以下优势:
本申请提供了一种混动汽车的远程控制方法,该远程控制方法包括:在接收到针对车辆的远程控制指令时,确定车辆的动力电池包的充电状态,以及远程控制指令对应的控制类型;基于充电状态和控制类型,确定是否执行远程控制指令;在执行远程控制指令时,控制车辆执行与控制类型对应的远程控制功能。
由此,本申请在接收到远程控制指令时,先确认动力电池包的充电状态,即车辆是否插入充电枪为动力电池包充电,同时确定远程控制指令对应的控制类型,由此来确定是否可以执行远程控制指令。车辆未插入充电枪为动力电池包充电时,车辆的所有远程控制功能均能执行。并且,在执行第二类型的远程控制指令对应的远程控制功能时,可以优先使用动力电池的电量;当动力电池电量较低时,启动发动机继续执行远程控制功能。而车辆插入充电枪为动力电池包充电时,且确定远程控制指令的控制类型为第二类型时,仅需车辆上高压,无需启动发动机,从而实现对应的远程控制功能。由此,无论车辆是否插入充电枪为动力电池包充电,用户均能远程控制车辆执行远程控制功能,大大提高了用户的体验感。
本申请的另一目的在于提出一种混动汽车的远程控制装置,使得无论动力电池包充电与否,混动汽车至少能实现部分远程控制功能。
为达到上述目的,本申请的技术方案是这样实现的:
一种混动汽车的远程控制装置,远程控制装置包括:
第一确定单元,用于在接收到针对车辆的远程控制指令时,确定车辆的动力电池包的充电状态,以及远程控制指令对应的控制类型;
第二确定单元,用于基于充电状态和控制类型,确定是否执行远程控制指令;
控制单元,用于在执行远程控制指令时,控制车辆执行与控制类型对应的远程控制功能。
远程控制装置与上述远程控制方法相对于现有技术所具有的优势相同,在此不做赘述。
本申请的另一目的在于提出计算机可读存储介质,使得无论动力电池包充电与否,混动汽车至少能实现部分远程控制功能。
为达到上述目的,本申请的技术方案是这样实现的:
一种计算机可读存储介质,计算机可读存储介质用于存储执行上述的远程控制方法的计算机程序。
计算机可读存储介质与上述远程控制方法相对于现有技术所具有的优势相同,在此不做赘述。
本申请的另一目的在于提出一种车辆,使得无论动力电池包充电与否,混动汽车至少能实现部分远程控制功能。
为达到上述目的,本申请的技术方案是这样实现的:
一种车辆,车辆包括控制模块,控制模块用于实现上述的远程控制方法。
车辆与上述远程控制方法相对于现有技术所具有的优势相同,在此不做赘述。
图1为本申请实施例所示的一种混动汽车的远程控制方法的步骤流程图;
图2为本申请实施例所示的另一种混动汽车的远程控制方法的步骤流程图;
图3为本申请实施例所示的一种混动汽车的远程控制装置的模块图;
图4为本申请实施例所示的一种计算处理设备的框图;
图5为本申请实施例所示的程序代码的一种存储单元。
附图标记:1、远程控制装置;101、第一确定单元;102、第二确定单元;103、控制单元。
要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请。
在相关技术中,当混动汽车插入充电枪时,为了避免出现安全事故,通常禁止车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动
状态),此时,发动机无法启动,车辆上的部件,如空调、座椅等也无法被启动,致使车辆无法实现相关的远程控制功能。
基于上述内容,本申请实施例提出一种混动汽车的远程控制方法,使得即使混动汽车插入了充电枪,仍然可以实现上述部分远程控制功能,参照图1,图1示出了本申请实施例所示的一种混动汽车的远程控制方法的步骤流程图,如图1所示,该远程控制方法的步骤如下:
步骤S101,在接收到针对车辆的远程控制指令时,确定车辆的动力电池包的充电状态,以及远程控制指令对应的控制类型。
在具体实施时,用户可以通过APP触发远程控制功能,响应于该远程控制功能的触发,APP向车辆发送对应的远程控制指令,示例地,用户在APP触发远程启动车辆的远程控制功能后,APP向车辆发送启动车辆的指令。具体的,APP向T-BOX(Telematics BOX,车联网智能终端)发送远程控制指令,T-BOX接收到该远程控制指令后,会先检测动力电池包的充电状态,以确定动力电池包的充电状态,该充电状态指的是车辆插入充电枪的状态,或车辆未插入充电枪的状态,即动力电池包处于充电的状态,或动力电池包为处于充电的状态。并且,T-BOX还会确定该远程控制指令对应的控制类型。
其中,远程控制指令对应的控制类型包括两类,一类是控制整车类型的指令,例如,远程启动车辆的指令和远程泊车的指令等等;另一类是控制车辆上的部件的指令,例如,控制车辆上的空调、座椅、方向盘等等的指令,具体可以是远程启动空调的指令、远程清洁座舱的指令、远程开启座椅加热及通风的指令,以及远程开启方向盘加热的指令等等。
步骤S102,基于充电状态和控制类型,确定是否执行远程控制指令。
T-BOX在确定动力电池包的充电状态和远程控制指令对应的控制类型后,基于确定好的充电状态和控制类型,确定是否要执行接收到的远程控制指令。若要执行,则向网关发送执行信号,网关接收该执行信号并转发给整车控制器;若不执行,则反馈给APP,APP接收到反馈后提示用户“远程控制功能被禁止”。
步骤S103,在执行远程控制指令时,控制车辆执行与远程控制指令对应的远程控制功能。
整车控制器接收到网关发送的执行信号后,控制车辆执行与远程控制指令对应的远程控制功能。示例地,用户在APP触发的远程控制功能为远程启动车辆,那么整车控制器接收到执行信号后,将发送启动信号至发动机控制器,发动机控制器响应于该启动信号,启动发动机,从而实现远程启动车辆。或者,用户在APP触发的远程控制功能为远程启动空调,那么整车控制器接收到执行信号后,将发送启动信号至空调控制器,空调控制器响应于该启动信号启动空调,从而实现远程启动空调。
其中,整车控制器在控制车辆执行远程控制功能后,还会向网关反馈执行成功信号,网关接收该执行成功信号并转发至T-BOX,T-BOX接收后再转发至APP,APP接收后提示用户“远程控制功能执行成功”。
此外,若T-BOX在第一预设时长内未收到执行成功信号,则再次向网关发送执行信号。其中,T-BOX发送执行信号的次数不超过3次,若T-BOX在发送第三次执行信号后,仍未收到执行成功信号,则向APP反馈执行失败信号,APP接收到反馈后提示用户“远程控制功能执行失败”,用户接收到该提示后可选择再次触发远程控制功能。其中,第一预设时长为5秒。
在具体实施时,为了节约整车能耗,当用户触发的是控制车辆上的部件的指令对应的远程控制功能,如远程启动空调、远程清洁座舱、远程开启座椅加热及通风等等时,T-BOX接收到执行成功信号后,等待第二预设时长,向网关发送结束信号,网关接收该结束信号并转发给整车控制器,整车控制器接收到结束信号后,控制车辆停止执行对应的远程控制功能。其中,第二预设时长实际为远程控制功能的执行时长,因此,不同的远程控制功能对应了不同的执行时长,即第二预设时长。例如,触发的是远程清洁座舱,对应的第二预设时长为2分钟,即车辆执行清洁座舱2分钟。
当车辆停止执行远程控制功能后,整车控制器向网关发送结束信号,网关接收该结束信号并转发给T-BOX,T-BOX接收后转发至APP,APP接收后提示用户“远程控制功能执行完毕”。
在一种可选的实施方式中,基于充电状态和控制类型,确定是否执行远程控制指令,包括:
在确定充电状态为车辆未插入充电枪的状态时,执行远程控制指令;
在确定充电状态为车辆插入充电枪的状态,以及确定远程控制指令对应
的控制类型为第一类型时,禁止执行远程控制指令;
在确定充电状态为车辆插入充电枪的状态,以及确定远程控制指令对应的控制类型为第二类型时,执行远程控制指令;
其中,第一类型的远程控制指令用于控制车辆进入对应的行驶工况,其中,行驶工况包括启动车辆、泊车等等,即因此,第一类型的远程控制指令可以是远程启动车辆的指令、远程泊车的指令等等。
第二类型的远程控制指令用于控制车辆上的车载部件进入对应的工作状态,例如,控制车辆上的空调、座椅、方向盘进入对应的工作状态,因此,第二类型的远程控制指令可以是远程启动空调的指令、远程清洁座舱的指令、远程开启座椅加热及通风的指令,以及远程开启方向盘加热的指令等等。
当T-BOX确定充电状态为车辆插入充电枪的状态,即动力电池包动力电池包为处于充电的状态,并且,确定远程控制指令对应的控制类型为第一类型时,将反馈APP该远程控制指令被禁止执行,APP接收到反馈后提示用户“远程控制功能被禁止”。这是因为,第一类型的远程控制指令为控制整车类型的指令,例如,启动车辆的指令和泊车的指令等等,为了避免出现安全事故,车辆插入充电枪时禁止启动车辆或泊车。
示例地,用户在APP触发远程启动车辆的远程控制功能,响应于该远程控制功能的触发,APP向T-BOX发送对应的远程控制指令,即远程启动车辆的指令,T-BOX接收到远程启动车辆的指令后,确定此时的充电状态为车辆插入充电枪的状态,并且,确定远程启动车辆的指令对应的控制类型为第一类型后,反馈APP远程启动车辆的指令被禁止执行,APP接收到反馈后提示用户“远程控制功能被禁止”。
当T-BOX确定充电状态为车辆插入充电枪的状态,即动力电池包动力电池包为处于充电的状态,并且,确定远程控制指令对应的控制类型为第二类型时,确定可以执行远程控制指令。在确定可以执行远程控制指令之后,T-BOX向网关发送第一执行信号,网关接收该第一执行信号并转发给整车控制器,整车控制器接收第一执行信号后,控制车辆执行与远程控制指令对应的远程控制功能。
其中,第一执行信号携带了远程高压上电信号,整车控制器接收到远程高压上电信号后执行远程高压上电,并将车辆的电源模式切换为ON。无需
车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动状态),即可控制控制车辆执行与远程控制指令对应的远程控制功能。
示例地,用户在APP触发远程启动空调的远程控制功能,响应于该远程控制功能的触发,APP向T-BOX发送对应的远程控制指令,即远程启动空调的指令,T-BOX接收到远程启动空调的指令后,确定此时的充电状态为车辆插入充电枪的状态,并且,确定远程启动空调的指令对应的控制类型为第二类型后,向网关发送第一执行信号,网关接收该第一执行信号并转发给整车控制器,整车控制器接收第一执行信号后,执行远程高压上电,并将车辆的电源模式切换为ON,再向空调控制器发送启动信号,空调控制器响应于该启动信号后启动空调,从而实现远程启动空调。
当T-BOX确定充电状态为车辆未插入充电枪的状态,即动力电池包动力电池包为未处于充电的状态时,无论所接收到的远程控制指令对应的控制类型为第一类型还是第二类型,均确定可以执行远程控制指令。因此,在具体实施时,当T-BOX确定充电状态为车辆未插入充电枪的状态时,无需再确定远程控制指令对应的控制类型。在确定可以执行远程控制指令之后,T-BOX向网关发送第二执行信号,网关接收该第二执行信号并转发给整车控制器,整车控制器接收第二执行信号后,控制车辆执行与远程控制指令对应的远程控制功能。
其中,第二执行信号携带了整车请求信号和电源模式信号,整车控制器收到整车请求信号和电源模式信号后,将车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动状态),再将车辆的电源模式切换为ON,从而控制控制车辆执行与远程控制指令对应的远程控制功能。
示例地,用户在APP触发远程启动车辆的远程控制功能,响应于该远程控制功能的触发,APP向T-BOX发送对应的远程控制指令,即远程启动车辆的指令,T-BOX接收到远程启动车辆的指令后,确定此时的充电状态为车辆未插入充电枪的状态后,向网关发送第二执行信号,网关接收该第二执行信号并转发给整车控制器,整车控制器接收第二执行信号后,将车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动状态),再将车辆的电源模式切换为ON,再向发动机控制器发送启动信号,发动机控制器响应于该启动信号后,启动发动机,从而实现远程启动车辆。
在一种可选的实施方式中,在在确定充电状态为所车辆插入充电枪的状态,以及确定远程控制指令对应的控制类型为第一类型时,禁止执行远程控制指令的情况下,远程控制方法还包括:
向用户端发送第一提示信息,以提示用户断开充电枪;
在检测到断开充电枪的情况下,执行第一类型的远程控制指令。
当T-BOX确定充电状态为车辆插入充电枪的状态,并且,确定远程控制指令对应的控制类型为第一类型时,确定禁止执行该远程控制指令。确定后,将向用户端发送第一提示信息,即向APP发送第一提示信息,第一提示信息用于提示用户断开充电枪。APP接收到第一提示信息后,向用户提示“请断开充电枪”。用户收到提示后,若想继续执行第一类型的远程控制指令,则可在断开充电枪后再次在APP上触发远程控制功能,APP响应于该远程控制功能的触发,向T-BOX发送对应的远程控制指令,再次检测充电状态,确定此时的充电状态为车辆未插入充电枪的状态后,即充电枪已断开,则向网关发送第二执行信号,网关接收该第二执行信号并转发给整车控制器,整车控制器接收第二执行信号后,将车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动状态),再将车辆的电源模式切换为ON,从而控制车辆执行第一类型的远程控制指令。
在一种可选的实施方式中,在基于充电状态和控制类型,确定是否执行远程控制指令之前,远程控制方法还包括:
当确定充电状态为插入充电枪的状态时,向用户端发送禁用指令,以指示用户端锁定第一类型的远程控制指令的触发;
当确定充电状态为未插入充电枪的状态时,向用户端发送解锁指令,以指示用户端将第一类型的远程控制指令的触发由锁定状态调整为解锁状态。
当充电状态为插入充电枪的状态时,为了避免出现安全事故,车辆被禁止执行第一类型的远程控制指令。因此,在具体实施时,为了提高用户的体验性,可以在确定充电状态为插入充电枪的状态时,使用户端锁定第一类型的远程控制指令的触发,即用户无法在用户端触发第一类型的远程控制指令对应的远程控制功能。具体的,T-BOX确定充电状态为车辆插入充电枪的状态时,向用户端,即APP发送禁用指令,APP收到禁用指令后,锁定第一类型的远程控制指令的触发,以使用户禁用第一类型的远程控制指令对应的
远程控制功能,例如远程启动车辆的远程控制功能。同时,APP还会提示用户“车辆插入充电枪,部分远程功能被禁用”,用户接收到该提示后,若想要使用第一类型的远程控制指令对应的远程控制功能,可断开充电枪。
当确定充电枪被断开后,即充电状态为未插入充电枪的状态时,T-BOX向用户端,即APP发送解锁指令,APP收到解锁指令后,将第一类型的远程控制指令的触发由锁定状态调整为解锁状态,以使用户可以使用第一类型的远程控制指令对应的远程控制功能,例如远程启动车辆的远程控制功能。
在相关技术中,混动汽车相较于传统燃油车,可以利用动力电池包实现远程启动空调、远程清洁座舱等远程控制功能;混动汽车相较于纯电车,执行远控功能时在低电量后可以启动发动机继续工作。基于此,本申请实施例提出另一种混动汽车的远程控制方法,具体用于确定充电状态为车辆未插入充电枪的状态,且远程控制指令对应的控制类型为第二类型时,参照图2,图2示出了本申请实施例的另一种混动汽车的远程控制方法,如图2所示,该远程控制方法包括:
步骤S201,获取动力电池包的SOC(State of Charge),以及远程控制指令所对应的待控制部件。
其中,待控制部件为车辆的车载部件,例如,车辆上的空调、座椅、方向盘等等。
当T-BOX确定充电状态为车辆未插入充电枪的状态时,并且,确定远程控制指令对应的控制类型为第二类型时,向网关发送第二执行信号,第二执行信号还携带有SOC获取信号,网关接收该第二执行信号并转发给整车控制器,整车控制器接收第二执行信号,并将SOC获取信号发送给BMS(Battery Management System,电池管理系统),BMS接收SOC获取信号获取当前动力电池包的SOC,获取完成后,将获取的SOC发送给整车控制器。
同时,T-BOX还会获取远程控制指令所对应的待控制部件,示例地,用户在APP触发远程启动空调的远程控制功能,响应于该远程控制功能的触发,APP向T-BOX发送对应的远程控制指令,即远程启动空调的指令,T-BOX接收到远程启动空调的指令后,确定远程启动空调的指令对应的待控制部件为空调,并将待控制部件信息通过网关转发给整车控制器。
步骤S202,基于SOC,确定待控制部件进入工作状态时的起始供电节
点;其中,起始供电节点用于为待控制部件供电。
步骤S203,导通起始供电节点与待控制部件的通路,以使待控制部件进入工作状态。
整车控制器收到BMS发送的SOC后,以及网关转发的待控制部件信息后,确定待控制部件进入工作状态时的起始供电节点,并导通该起始供电节点与待控制部件的通路,以使待控制部件进入工作状态。示例地,用户在APP触发远程启动空调的远程控制功能,响应于该远程控制功能的触发,APP向T-BOX发送对应的远程控制指令,即远程启动空调的指令,T-BOX接收到远程启动空调的指令后,确定此时的充电状态为车辆未插入充电枪的状态后,向网关发送第二执行信号,网关接收该第二执行信号并转发给整车控制器,整车控制器接收第二执行信号后,将车辆启动(该启动指的是车辆发动机启动之前,车辆所处的准备启动状态),再将车辆的电源模式切换为ON。同时,整车控制器还向BMS发送SOC获取信号,BMS接收SOC获取信号获取当前动力电池包的SOC,获取完成后,将获取的SOC发送给整车控制器,整车控制器收到后,确定待控制部件进入工作状态时的起始供电节点,即空调进入工作状态时的起始供电节点,并导通该起始供电节点与空调的通路,将空调启动,使空调进入工作状态,从而实现远程启动空调。
在一种可选的实施方式中,基于SOC,确定待控制部件进入工作状态时的起始供电节点,包括:
当SOC不低于预设SOC时,确定起始供电节点为动力电池包;
当SOC低于预设SOC时,确定起始供电节点为车辆的发动机。
当整车控制器接收到BMS发送的SOC后,确定该SOC是否低于预设SOC,若不低于,则表明当前动力电池包的SOC满足待控制部件进入工作状态,那么,待控制部件进入工作状态时的起始供电节点为动力电池包;若低于,则表明当前动力电池包的SOC无法满足待控制部件进入工作状态,那么,待控制部件进入工作状态时的起始供电节点为发动机,具体的,该起始供电节点为与发动机连接的发电机,当发动机启动时,带动发电机转动,从而为待控制部件供电。
其中,预设SOC可以根据实际的车型确定,在本申请实施例中将预设SOC确定为15%。
本申请实施例在接收到针对车辆的远程控制指令后,先确定动力电池包的充电状态,即车辆是否插入充电枪为动力电池包充电,同时确定远程控制指令对应的控制类型,由此来确定是否可以执行远程控制指令。车辆未插入充电枪为动力电池包充电时,车辆的所有远程控制功能均能执行。并且,在执行第二类型的远程控制指令对应的远程控制功能时,可以优先使用动力电池的电量;当动力电池电量较低时,启动发动机继续执行远程控制功能。而车辆插入充电枪为动力电池包充电时,且确定远程控制指令的控制类型为第二类型时,仅需车辆上高压,无需启动发动机,从而实现对应的远程控制功能。
基于同一发明构思,本申请实施例还提出一种混动汽车的远程控制装置,该远程控制装置参照图3,图3示出了本申请实施例的一种混动汽车的远程控制装置的模块图,如图3所示,该远程控制装置1包括:
第一确定单元101,用于在接收到针对车辆的远程控制指令时,确定车辆的动力电池包的充电状态,以及远程控制指令对应的控制类型。
在具体实施时,用户可以通过APP触发远程控制功能,响应于该远程控制功能的触发,APP向车辆发送对应的远程控制指令,示例地,用户在APP触发远程启动车辆的远程控制功能后,APP向车辆发送启动车辆的指令。具体的,APP向第一确定单元101发送远程控制指令,第一确定单元101接收到该远程控制指令后,会先检测动力电池包的充电状态,以确定动力电池包的充电状态,该充电状态指的是车辆插入充电枪的状态,或车辆未插入充电枪的状态,即动力电池包处于充电的状态,或动力电池包为处于充电的状态。同时,第一确定单元101还会确定该远程控制指令对应的控制类型。
其中,远程控制指令对应的控制类型包括两类,一类是控制整车类型的指令,例如,远程启动车辆的指令和远程泊车的指令等等;另一类是控制车辆上的部件的指令,例如,控制车辆上的空调、座椅、方向盘等等的指令,具体可以是远程启动空调的指令、远程清洁座舱的指令、远程开启座椅加热及通风的指令,以及远程开启方向盘加热的指令等等。
第二确定单元102,用于基于充电状态和控制类型,确定是否执行远程控制指令。
第二确定单元102基于确定好的充电状态和控制类型,确定是否要执行接收到的远程控制指令。若要执行,则向第二子确定单元发送执行信号,第二子确定单元接收该执行信号并转发给控制单元103;若不执行,则反馈给APP,APP接收到反馈后提示用户“远程控制功能被禁止”。
控制单元103,用于在执行远程控制指令时,控制车辆执行与控制类型对应的远程控制功能。
控制单元103接收到第二子确定单元发送的执行信号后,控制车辆执行与远程控制指令对应的远程控制功能。示例地,用户在APP触发的远程控制功能为远程启动车辆,那么控制单元103接收到执行信号后,将发送启动信号至发动机控制器,发动机控制器响应于该启动信号,启动发动机,从而实现远程启动车辆。或者,用户在APP触发的远程控制功能为远程启动空调,那么整车控制器接收到执行信号后,将发送启动信号至空调控制器,空调控制器响应于该启动信号启动空调,从而实现远程启动空调。
基于同一发明构思,本申请实施例还提出一种车辆,车辆包括控制模块,控制模块用于实现上述的远程控制方法。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本申请的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或
者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请,本说明书内容不应理解为对本申请的限制。同时,对于本领域的一般技术人员,依据本申请,在具体实施方式及应用范围上均会有不同形式的改变之处,这里无需也无法对所有的实施方式予以穷举,而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。
Claims (15)
- 一种混动汽车的远程控制方法,其中,所述远程控制方法包括:在接收到针对车辆的远程控制指令时,确定所述车辆的动力电池包的充电状态,以及所述远程控制指令对应的控制类型;基于所述充电状态和所述控制类型,确定是否执行所述远程控制指令;在执行所述远程控制指令时,控制所述车辆执行与所述远程控制指令对应的远程控制功能。
- 根据权利要求1所述的远程控制方法,其中,所述基于所述充电状态和所述控制类型,确定是否执行所述远程控制指令,包括:在确定所述充电状态为车辆未插入充电枪的状态时,执行所述远程控制指令;在确定所述充电状态为车辆插入充电枪的状态,以及确定所述远程控制指令对应的控制类型为第一类型时,禁止执行所述远程控制指令;在确定所述充电状态为车辆插入充电枪的状态,以及确定所述远程控制指令对应的控制类型为第二类型时,执行所述远程控制指令;其中,所述第一类型的远程控制指令用于控制所述车辆进入对应的行驶工况,第二类型的远程控制指令用于控制所述车辆上的车载部件进入对应的工作状态。
- 根据权利要求2所述的远程控制方法,其中,所述远程控制指令对应的控制类型为所述第二类型的情况下,所述在确定所述充电状态为车辆未插入充电枪的状态时,执行所述远程控制指令,包括:获取所述动力电池包的SOC,以及所述远程控制指令所对应的待控制部件;基于所述SOC,确定所述待控制部件进入工作状态时的起始供电节点;其中,所述起始供电节点用于为所述待控制部件供电;导通所述起始供电节点与所述待控制部件的通路,以使所述待控制部件进入所述工作状态。
- 根据权利要求3所述的远程控制方法,其中,所述基于所述SOC,确定所述待控制部件进入工作状态时的起始供电节点,包括:当所述SOC不低于预设SOC时,确定所述起始供电节点为所述动力电池包;当所述SOC低于所述预设SOC时,确定所述起始供电节点为所述车辆的发动机。
- 根据权利要求2所述的远程控制方法,其中,所述第一类型的远程控制指令包括:远程启动车辆的指令和远程泊车的指令;所述第二类型的远程控制指令包括:远程启动空调的指令、远程清洁座舱的指令、远程开启座椅加热及通风的指令,以及远程开启方向盘加热的指令中的至少一种。
- 根据权利要求3所述的远程控制方法,其中,所述待控制部件为所述车辆的车载部件,所述车载部件包括:空调、座椅、方向盘中的至少一种。
- 根据权利要求2所述的远程控制方法,其中,在所述在确定所述充电状态为所车辆插入充电枪的状态,以及确定所述远程控制指令对应的控制类型为第一类型时,禁止执行所述远程控制指令的情况下,所述远程控制方法还包括:向用户端发送第一提示信息,以提示用户断开所述充电枪;在检测到断开所述充电枪的情况下,执行所述第一类型的远程控制指令。
- 根据权利要求2所述的远程控制方法,其中,在所述基于所述充电状态和所述控制类型,确定是否执行所述远程控制指令之前,所述远程控制方法还包括:当确定所述充电状态为所述插入充电枪的状态时,向用户端发送禁用指令,以指示所述用户端锁定所述第一类型的远程控制指令的触发;当确定所述充电状态为所述未插入充电枪的状态时,向所述用户端发送解锁指令,以指示所述用户端将所述第一类型的远程控制指令的触发由锁定状态调整为解锁状态。
- 根据权利要求8所述的远程控制方法,其中,所述在执行所述远程控制指令时,控制所述车辆执行与所述远程控制指令对应的远程控制功能,包括:向所述用户端发送执行成功信号,以提示所述用户所述远程控制功能执行成功;若所述向所述用户端发送执行成功信号的次数超过预设次数,则向所述用户端发送执行失败信号,以提示所述用户所述远程控制功能执行 失败。
- 根据权利要求9所述的远程控制方法,其中,所述在执行所述远程控制指令时,控制所述车辆执行与所述远程控制指令对应的远程控制功能之后,所述远程控制方法还包括:若所述远程控制指令对应的控制类型为所述第二类型时,当到达所述远程控制功能对应的执行时长时,发送结束信号,以控制所述车辆停止执行与所述远程控制指令对应的远程控制功能。
- 根据权利要求10所述的远程控制方法,其中,所述在确定所述充电状态为车辆插入充电枪的状态,以及确定所述远程控制指令对应的控制类型为第二类型时,执行所述远程控制指令,包括:发送第一执行信号,根据所述第一执行信号控制所述车辆的电源模式切换为开模式,以控制所述车辆在不启动的情况下执行所述远程控制指令;其中,所述第一执行信号包括远程高压上电信号。
- 根据权利要求11所述的远程控制方法,其中,所述在确定所述充电状态为车辆未插入充电枪的状态时,执行所述远程控制指令,包括:发送第二执行信号,根据所述第二执行信号控制所述车辆进入准备启动状态后,将所述车辆的电源模块切换为所述开模式,以控制所述车辆执行所述远程控制指令。
- 一种混动汽车的远程控制装置,其中,所述远程控制装置包括:第一确定单元,用于在接收到针对车辆的远程控制指令时,确定所述车辆的动力电池包的充电状态,以及所述远程控制指令对应的控制类型,其中,所述充电状态包括车辆未插入充电枪的状态和车辆插入充电枪的状态;第二确定单元,用于基于所述充电状态和所述控制类型,确定是否执行所述远程控制指令;控制单元,用于在执行所述远程控制指令时,控制所述车辆执行与所述控制类型对应的远程控制功能。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质用于存储执行如权利要求1-12任一项所述的远程控制方法的计算机程序。
- 一种车辆,其中,所述车辆包括控制模块,所述控制模块用于实现如权利要求1-12任一项所述的远程控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310325080.7A CN116300826A (zh) | 2023-03-28 | 2023-03-28 | 一种混动汽车的远程控制方法、装置、存储介质及车辆 |
CN202310325080.7 | 2023-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024199306A1 true WO2024199306A1 (zh) | 2024-10-03 |
Family
ID=86777829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/084203 WO2024199306A1 (zh) | 2023-03-28 | 2024-03-27 | 一种混动汽车的远程控制方法、装置、存储介质及车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116300826A (zh) |
WO (1) | WO2024199306A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116300826A (zh) * | 2023-03-28 | 2023-06-23 | 蜂巢传动系统(江苏)有限公司 | 一种混动汽车的远程控制方法、装置、存储介质及车辆 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040069000A1 (en) * | 2002-10-15 | 2004-04-15 | Kunio Iritani | Air conditioner for hybrid vehicle |
CN106515366A (zh) * | 2016-11-14 | 2017-03-22 | 山东理工大学 | 一种汽车内温度自动调节系统及其控制方法 |
CN107089114A (zh) * | 2017-04-28 | 2017-08-25 | 北京新能源汽车股份有限公司 | 一种空调的控制方法及装置 |
CN107187319A (zh) * | 2017-05-27 | 2017-09-22 | 北京新能源汽车股份有限公司 | 一种电动汽车启动控制方法、装置及电动汽车 |
CN108638791A (zh) * | 2018-06-13 | 2018-10-12 | 阿尔特汽车技术股份有限公司 | 一种基于电池电量的电动车远程空调控制系统及控制方法 |
CN109017210A (zh) * | 2018-08-27 | 2018-12-18 | 奇瑞汽车股份有限公司 | 一种混合动力汽车的空调系统及其工作方法 |
CN116300826A (zh) * | 2023-03-28 | 2023-06-23 | 蜂巢传动系统(江苏)有限公司 | 一种混动汽车的远程控制方法、装置、存储介质及车辆 |
-
2023
- 2023-03-28 CN CN202310325080.7A patent/CN116300826A/zh active Pending
-
2024
- 2024-03-27 WO PCT/CN2024/084203 patent/WO2024199306A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040069000A1 (en) * | 2002-10-15 | 2004-04-15 | Kunio Iritani | Air conditioner for hybrid vehicle |
CN106515366A (zh) * | 2016-11-14 | 2017-03-22 | 山东理工大学 | 一种汽车内温度自动调节系统及其控制方法 |
CN107089114A (zh) * | 2017-04-28 | 2017-08-25 | 北京新能源汽车股份有限公司 | 一种空调的控制方法及装置 |
CN107187319A (zh) * | 2017-05-27 | 2017-09-22 | 北京新能源汽车股份有限公司 | 一种电动汽车启动控制方法、装置及电动汽车 |
CN108638791A (zh) * | 2018-06-13 | 2018-10-12 | 阿尔特汽车技术股份有限公司 | 一种基于电池电量的电动车远程空调控制系统及控制方法 |
CN109017210A (zh) * | 2018-08-27 | 2018-12-18 | 奇瑞汽车股份有限公司 | 一种混合动力汽车的空调系统及其工作方法 |
CN116300826A (zh) * | 2023-03-28 | 2023-06-23 | 蜂巢传动系统(江苏)有限公司 | 一种混动汽车的远程控制方法、装置、存储介质及车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN116300826A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10800282B2 (en) | Vehicle reservation-based charging device and method of controlling the same | |
US10179514B2 (en) | Battery charging system and battery charging method for electrically driven vehicle | |
CN108001407B (zh) | 一种插电式混合动力汽车的防盗和上电方法 | |
JP2017099250A (ja) | 車両用バッテリーの過放電防止装置及びその方法 | |
JP6598542B2 (ja) | 電源装置および電源装置の制御方法 | |
CN103963725A (zh) | 车辆的电源系统、车辆和车辆控制方法 | |
US9487103B2 (en) | Auxiliary battery management system and method | |
KR20160119167A (ko) | 전력 수수 제어 장치 | |
WO2024199306A1 (zh) | 一种混动汽车的远程控制方法、装置、存储介质及车辆 | |
JP2008155814A (ja) | 車両用電源装置 | |
US9630512B2 (en) | System and method for controlling energy under interlock of eco-friendly vehicle | |
CN104340081B (zh) | 用于控制混合电动车的低电压dc/dc转换器(ldc)的系统和方法 | |
US9030164B2 (en) | Vehicle | |
CN112383558A (zh) | 车辆空调远程控制方法、车辆及计算机可读存储介质 | |
JP2008199761A (ja) | 電源制御装置 | |
US9108522B2 (en) | Vehicle-mounted controller | |
CN115220435B (zh) | 一种车辆远程起动的控制系统 | |
CN113696748B (zh) | 一种燃料电池供电系统及其控制方法和控制装置 | |
CN112224022A (zh) | 蓄电池补电方法、系统及可读存储介质 | |
KR101838506B1 (ko) | 차량 및 그 충전 제어방법 | |
JP2014131434A (ja) | 車両用制御装置 | |
JP2007137275A (ja) | 電源制御装置 | |
KR101390911B1 (ko) | 전기자동차 충전 제어 시스템 및 그 방법 | |
JP5293160B2 (ja) | 車両の制御装置 | |
CN113002453A (zh) | 一种混动汽车远程热车控制系统及控制方法 |