[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024179533A1 - 一种水系粘结剂及其在钠离子电池硬碳负极中的应用 - Google Patents

一种水系粘结剂及其在钠离子电池硬碳负极中的应用 Download PDF

Info

Publication number
WO2024179533A1
WO2024179533A1 PCT/CN2024/079175 CN2024079175W WO2024179533A1 WO 2024179533 A1 WO2024179533 A1 WO 2024179533A1 CN 2024079175 W CN2024079175 W CN 2024079175W WO 2024179533 A1 WO2024179533 A1 WO 2024179533A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sodium
negative electrode
hard carbon
water
Prior art date
Application number
PCT/CN2024/079175
Other languages
English (en)
French (fr)
Inventor
陈卫华
李文斌
刘春太
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Publication of WO2024179533A1 publication Critical patent/WO2024179533A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to the technical field of sodium ion batteries, and in particular to an aqueous binder and application thereof in a hard carbon negative electrode of a sodium ion battery.
  • Sodium-ion batteries are considered to be one of the most promising new generation high-energy storage systems due to their advantages such as rich sodium elements, high safety and good low-temperature performance.
  • the electrode materials of sodium-ion batteries mainly include three parts: active materials, binders and conductive agents.
  • the binder system occupies a very small proportion in the entire electrode system, but it plays an important role in improving battery performance.
  • the main function of the binder is to maintain the integrity of the electrode structure.
  • Adding an appropriate amount of binder with excellent performance can enable the battery to obtain a larger capacity and a longer cycle life, and it can also reduce the internal resistance of the battery, which is conducive to improving the discharge platform and large current discharge capacity of the battery, reducing the internal resistance during low-rate charging, and improving the fast charging capacity of the battery.
  • Hard carbon is the most likely negative electrode material for commercialization due to its suitable sodium insertion potential, high safety and low cost, but it still faces a low first effect.
  • the poor cycle and rate performance in ester electrolytes restricts the large-scale commercial application of hard carbon negative electrode materials. At the same time, carbon materials have poor hydrophilicity and are difficult to disperse evenly in water.
  • binders are mainly oily polyvinylidene fluoride (PVDF) and aqueous carboxymethyl cellulose (CMC).
  • PVDF oily polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • NMP N-methylpyrrolidone
  • H-F bond mainly contained in PVDF is an inactive bond, so it cannot provide sufficient force to connect the electrode material, which is not conducive to the long-term cycle stability of the battery.
  • CMC contains a large number of functional groups and has a good fixing effect on the electrode material, but it is relatively brittle, and the prepared hard carbon electrode is easy to lose powder and slag, which is not conducive to the long-term operation of the electrode. At the same time, its ionic conductivity needs to be improved.
  • the present invention proposes an aqueous binder and its application in the hard carbon negative electrode of a sodium ion battery.
  • the aqueous binder is applied to the hard carbon negative electrode of a sodium ion battery, which effectively improves the first-week coulombic efficiency, cycle stability and rate performance of the battery.
  • the present invention discloses a water-based binder, which comprises a first component and a second component; the first component is one or more of a styrene derivative polymer containing sodium ions as shown in formula I or a pyran derivative polymer containing sodium ions as shown in formula II, and the second component is a conductive polymer containing an ether bond;
  • R in Formula I is any one of -H, -OH, -COOH, -CH 3 , -CO-NH 2 and -SO 3 H;
  • R 1 is any one of -H, -O-, -COO-, -CH 2 -, -CO-NH- and -SO 3 -;
  • X is a sodium ion;
  • R at different positions in Formula II is independently any one of -H, -O-, -COO-, -CH 2 -, -CO-NH- and -SO 3 -;
  • X is a sodium ion.
  • the sodium ion-containing styrene derivative polymer is one or both of poly(sodium 4-styrene sulfonate) and polystyrene-co-styrene sulfonate;
  • the sodium ion-containing pyran derivative polymer is one or both of chondroitin sulfate A sodium salt and chondroitin sulfate B sodium salt.
  • the invention discloses another water-based binder, which comprises a first component and a second component; the first component is sodium polyanethole sulfonate or sodium chondroitin sulfate C, and the second component is a conductive polymer containing an ether bond.
  • the average molecular weight of the poly(sodium 4-styrene sulfonate) is 60,000-100,000; the average molecular weight of the polyanethole sulfonate sodium is 10,000-20,000; and the average molecular weight of the chondroitin sulfate A sodium salt is 40,000-50,000.
  • the conductive polymer containing ether bonds is one of polyethylene oxide (PEO), polypropylene oxide, polyoxyethylene diamine, and polyepichlorohydrin.
  • PEO polyethylene oxide
  • polypropylene oxide polypropylene oxide
  • polyoxyethylene diamine polyoxyethylene diamine
  • polyepichlorohydrin polyepichlorohydrin
  • the average molecular weight of the first component is greater than 10,000; the average molecular weight of the second component is 100,000-1,000,000.
  • the molar percentage of the first component in the water-based binder is 70%-90%; the molar percentage of the second component in the water-based binder is 10%-30%.
  • the present invention also includes a method for preparing the above-mentioned water-based binder, the steps of which are as follows:
  • step (1) Drying the mixed solution of step (1) at 60-100° C. to obtain a solid aqueous binder.
  • the solvent is deionized water; the mass ratio of the total mass of the first component and the second component to deionized water is 0.1 g:(1-3) mL.
  • the present invention also includes a sodium ion battery hard carbon negative electrode, which comprises the aqueous binder according to any one of claims 1 to 5, a hard carbon negative electrode material and a conductive agent.
  • the conductive agent is any one of acetylene black, Ketjen black, carbon nanotubes, conductive carbon black and graphene; and the hard carbon negative electrode material is a commercial hard carbon material.
  • the mass ratio of the hard carbon negative electrode material, the conductive agent and the aqueous binder is (16-19):(1-2):(1-3).
  • the mass ratio of the hard carbon negative electrode material, the conductive agent and the aqueous binder is 8:1:1.
  • a method for preparing a hard carbon negative electrode sheet for a sodium ion battery comprises the following steps:
  • the aqueous binder provided by the present invention comprises one or more of a styrene derivative polymer containing sodium ions or a pyran derivative polymer containing sodium ions as a first component and a conductive polymer containing a polar group ether bond (COC) as a second component.
  • COC polar group ether bond
  • the fibrous network polymer rich in polar hydrophilic functional groups can react with the active functional groups (oxygen functional groups) on the surface of the hard carbon negative electrode material, effectively coat the surface of the hard carbon negative electrode material, improve the hydrophilicity of the hard carbon negative electrode material, increase the dispersion of the carbon material in water, and help the binder and the carbon material to mix more evenly, so that the surface of the hard carbon negative electrode sheet of the sodium ion battery containing the binder is relatively flat, reducing the contact area between the electrode material and the electrolyte and the exposure of surface defects, thereby reducing the excessive consumption of the electrolyte and the corresponding irreversible capacity loss, and improving the first week coulomb efficiency of the sodium ion battery.
  • active functional groups oxygen functional groups
  • the polar group can reduce the desolvation energy barrier, and the ether bond (-COC-) group contained in the polyethylene oxide can form a coordination bond with the Na ion through sufficient electron donor ability, thereby improving the ionic conductivity of the polymer electrolyte and improving the kinetic characteristics.
  • the sodium ion half-cell using the aqueous binder of the present invention has a first-week coulomb efficiency greater than 80%, and the specific capacity can still reach 317 mAh/g after 100 cycles; the sodium ion full battery assembled with the hard carbon negative electrode using the aqueous binder of the present invention has good cycle stability, with a capacity retention rate of 74% after 150 cycles, and an energy density of up to 181.05 Wh ⁇ kg -1 .
  • the sodium ion battery using the aqueous binder of the present invention has a large number of strongly electronegative groups on the surface of the hard carbon electrode, which can effectively adsorb sodium ions, reduce the desolvation barrier of sodium ions, accelerate the desolvation process, and reduce the decomposition of organic solvents on the electrode surface, thereby forming a thinner SEI; at the same time, the strong polar functional groups in the two components can adsorb anions in the electrolyte to the electrode surface, thereby accelerating the decomposition of anions to form an inorganic-rich SEI, which is thin and rich in inorganic substances.
  • the SEI helps maintain the stability of the interface, reduce the interface impedance, and improve the first efficiency, long cycle performance and rate performance of the battery.
  • the complexed sodium salt in the first component can supplement the irreversible sodium ion consumption during the sodium insertion process of the sodium ion battery, play a role in sodium supplementation, and help improve the first efficiency and cycle stability of the sodium ion battery.
  • the swelling rate of the water-based binder prepared by the present invention does not exceed 30%, which is significantly lower than the swelling rate of the oily binder PVDF and the water-based binder CMC.
  • the volume change in the electrolyte is small, which helps to maintain the integrity of the electrode structure and the rapid transmission of sodium ions.
  • the preparation method of the water-based binder of the present invention is simple and convenient, the raw materials are economical, and the deionized water is used as the solvent, which is green and environmentally friendly.
  • the sodium ion battery using the water-based binder has a high first-week coulomb efficiency, cycle stability and rate performance, and has a good commercial application prospect.
  • FIG. 1 is a comparison chart of the swelling rates of the binders prepared in Example 3 and Comparative Examples 1 and 2.
  • FIG. 2 is an infrared spectrum of the adhesive of Example 3.
  • FIG3 is a scanning electron microscope image of the hard carbon negative electrode sheets prepared in Example 9 and Comparative Examples 3 and 4.
  • FIG4 is a transmission electron micrograph of the SEI of the hard carbon negative electrode sheets prepared in Example 9 and Comparative Examples 3 and 4 after the first week of discharge.
  • FIG5 is a comparison chart of the first-week charge and discharge curves of sodium ion half-cells prepared using the hard carbon negative electrode sheets of Example 7 and Comparative Examples 3 and 4.
  • FIG6 is a comparison chart of the first-week charge and discharge curves of sodium ion half-cells prepared using the hard carbon negative electrode sheets of Example 10 and Comparative Examples 5 and 6.
  • FIG7 is a comparison chart of the cycle performance of sodium ion half-cells prepared using the hard carbon negative electrode sheets of Example 8 and Comparative Examples 3 and 4.
  • FIG8 is a comparison chart of the cycle performance of sodium ion half-cells prepared using the hard carbon negative electrode sheets of Example 9 and Comparative Examples 3 and 4.
  • FIG9 is a first-week charge and discharge curve diagram of a sodium ion half-cell prepared using the hard carbon negative electrode sheets of Example 11 and Example 12.
  • Figure 10 is a cycle performance diagram of a sodium ion full battery prepared using the hard carbon negative electrode sheet of Example 9.
  • the weight of the relevant components mentioned in the embodiments of the present invention can not only refer to the specific content of each component, but also represent the proportional relationship of the weights of the components. Therefore, as long as the content of the relevant components in the embodiments of the present invention is proportionally enlarged or reduced, it is within the scope disclosed in the embodiments of the present invention.
  • the weight described in the embodiments of the present invention can be a mass unit known in the chemical industry such as ⁇ g, mg, g, kg, etc.
  • the molecular weight of PVDF used in the embodiments of the present invention and the comparative examples is 500000, the molecular weight of CMC is 90000, the molecular weight of polyethylene oxide (PEO) is 1000000, the average molecular weight of poly(sodium 4-styrene sulfonate) is 60000-100000, the molecular weight of sodium polyanethole sulfonate is 10000-20000, the molecular weight of chondroitin sulfate A sodium salt is 40000-50000, the molecular weight of polypropylene oxide is 100000, the molecular weight of chondroitin sulfate B sodium salt is 30000-40000, and the molecular weight of chondroitin sulfate C sodium salt is 40000-50000. All of the above materials were purchased from Aladdin's official website.
  • a water-based binder including 0.18 g of poly(sodium 4-styrene sulfonate), 0.02 g of PEO and 4 mL of deionized water.
  • the preparation steps are as follows:
  • Poly(sodium 4-styrene sulfonate) and PEO are added to a sample bottle, dissolved in deionized water, stirred for 3 hours, and mixed evenly to obtain a mixed solution rich in polar functional groups.
  • step (2) The mixed solution of step (1) is reacted and dried at 80° C. to obtain a water-based adhesive solid film.
  • a water-based binder including 0.16 g of sodium polyanethole sulfonate, 0.04 g of PEO and 4 mL of deionized water.
  • the preparation steps are as follows:
  • step (2) The mixed solution of step (1) is reacted and dried at 80° C. to obtain a water-based binder solid.
  • an aqueous binder including 0.18 g of chondroitin sulfate A sodium salt, 0.02 g of PEO and 4 mL of deionized water, and the preparation steps are as follows:
  • step (2) The mixed solution of step (1) is reacted and dried at 80° C. to obtain a water-based binder solid.
  • an aqueous binder including 0.16 g of chondroitin sulfate B sodium salt, 0.04 g of polypropylene oxide and 4 mL of deionized water.
  • the preparation steps are as follows:
  • Chondroitin sulfate B sodium salt and polypropylene oxide are added to a sample bottle, deionized water is added to dissolve, and stirred for 3 hours. After mixing evenly, a mixed solution rich in polar functional groups is obtained.
  • step (2) The mixed solution of step (1) is reacted and dried at 80° C. to obtain a water-based binder solid.
  • a water-based binder including 0.14 g of sodium polystyrene-costyrene sulfonate, 0.06 g of polyoxyethylene diamine and 4 mL of deionized water.
  • the preparation steps are as follows:
  • step (2) The mixed solution of step (1) is reacted and dried at 80° C. to obtain a water-based binder solid.
  • a water-based binder including 0.08 g of chondroitin sulfate C sodium salt, 0.02 g of polyepichlorohydrin and 3 mL of deionized water.
  • the preparation steps are as follows:
  • step (2) The mixed solution of step (1) is reacted and dried at 60° C. to obtain a water-based binder solid.
  • the aqueous binder solid prepared in Examples 1-6, solvent water, and different electrode materials and conductive agents are used to prepare hard carbon negative electrode sheets for sodium ion batteries.
  • the method is as follows: the electrode material (hard carbon negative electrode material), conductive agent and binder are weighed and mixed evenly according to different mass ratios, and then deionized water is added and stirred to mix evenly to prepare battery electrode sheet slurry; the battery electrode sheet slurry is evenly coated on the current collector copper foil with a scraper, and dried in a forced air drying oven at 80°C for 8h to obtain the sodium ion battery hard carbon negative electrode sheet.
  • the types and proportions of the electrode materials, conductive agents and aqueous binders used are shown in Table 1.
  • an oily adhesive is prepared, the adhesive is selected as PVDF, and the solvent is selected as NMP solvent.
  • a water-based binder is prepared, wherein CMC is selected as the binder and water is selected as the solvent.
  • a sodium ion battery hard carbon negative electrode sheet is prepared using the binder prepared in Comparative Example 1-2 and different solvents, electrode materials (hard carbon negative electrode materials) and conductive agents, and the method is as follows: the electrode material, conductive agent and binder are weighed and mixed evenly in a mass ratio of 8:1:1, and then deionized water (or NMP) is added and stirred to mix evenly to prepare a battery electrode sheet slurry; the battery electrode sheet slurry is evenly coated on the current collector copper foil (or aluminum foil) with a scraper, and dried in a forced air drying oven at 80°C for 8 hours to obtain a sodium ion battery hard carbon negative electrode sheet.
  • deionized water or NMP
  • the types and proportions of the electrode materials, conductive agents and aqueous binders used are shown in Table 2.
  • the sodium ion battery hard carbon negative electrode sheets of Examples 7-15 and Comparative Examples 3-6 were assembled into button-type half-cells, and the method was as follows: the prepared hard carbon negative electrode sheets were punched into small discs with a diameter of 13 mm, and then the sheets, diaphragms, electrolytes, sodium sheets, springs and gaskets were packaged with positive and negative electrode shells in a glove box filled with argon to obtain 2025 button-type half-cells, wherein the electrolyte was a 1M NaPF6 solution of ethylene carbonate (EC)/dimethyl carbonate (DMC) (volume ratio 1:1).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the constant current method was used to test the cycle stability and rate performance of each sodium ion half-cell.
  • the potential window for the hard carbon negative electrode material was 0.01-2 V and the current density was 50 mA/g.
  • the test results are shown in Table 3.
  • Figure 1 shows the swelling ratio of the aqueous binder of Example 3 to the binders of Comparative Examples 1 and 2 in an organic solvent (test method reference Xia J., Z. Wang, NDRodrig, et al. Super-Reversible CuF 2 Cathodes Enabled by Cu2 + -Coordinated Alginate [J]. Adv. Mater., 2022. 34 (43).), it can be seen that the swelling rate of the aqueous binder of Example 3 is the lowest, indicating that its volume change in the electrolyte is small, which helps to maintain the integrity of the electrode structure. At the same time, the lower swelling rate also contributes to the rapid transmission of sodium ions.
  • Figure 3 is a scanning electron microscope (SEM) image of the hard carbon negative electrode sheets of Example 9 and Comparative Examples 3 and 4. It can be seen from the figure that there is obvious fibrous binder on the surface of the hard carbon negative electrode sheet of Example 7, which means that the mixture of the binder and the hard carbon is more uniform, and the adhesion between the materials is tighter than that of Comparative Examples 3 and 4, which can reduce the contact between defects on the electrode and the electrolyte, thereby reducing excessive consumption of the electrolyte, and helping to improve the first-week coulombic efficiency and cycle stability of the battery.
  • SEM scanning electron microscope
  • FIG4 is a transmission electron microscope (TEM) image of the solid electrolyte membrane (SEI) of the hard carbon negative electrode sheets of Example 9 and Comparative Examples 3 and 4 after the first week of discharge.
  • TEM transmission electron microscope
  • FIG5 is a comparison chart of the first week charge and discharge curves of the sodium ion half-cell prepared using the hard carbon negative electrode sheets of Example 7 and Comparative Examples 3 and 4.
  • FIG6 is a comparison chart of the first week charge and discharge curves of the sodium ion half-cell prepared using the hard carbon negative electrode sheets of Example 10 and Comparative Examples 5 and 6.
  • the hard carbon negative electrode using the aqueous binder of the present invention has more specific charge capacity, indicating that the irreversible capacity of the electrode is greatly reduced compared with the comparative example, for example, the excessive consumption of electrolyte caused by surface defects is greatly reduced, and at the same time, the overall polarization of the electrode is small, which is conducive to the long cycle stability of the battery.
  • Figures 7 and 8 are comparison diagrams of the cycle performance of sodium ion half-cells prepared using hard carbon negative electrode sheets of different embodiments and comparative examples. It can be seen that the hard carbon negative electrode using the aqueous binder of the present invention has higher specific capacity and cycle stability, and the excellent SEI induced by the binder is beneficial to the long cycle performance of the battery, indicating that the binder has a great effect on the cycle stability of the battery and other aspects.
  • FIG9 is a comparison diagram of the first-week charge and discharge curves of the sodium ion half-cells of the hard carbon negative electrode sheets of Examples 11 and 12. It can be seen that by adjusting the ratio of binder component one and component two, the hard carbon negative electrode material can still maintain a relatively high first-week coulombic efficiency, indicating that binders with different ratios can still induce high-performance SEI, which is beneficial to the cycle stability of the battery.
  • Example 9 The hard carbon negative electrode prepared in Example 9 is matched with a commercial sodium vanadium phosphate positive electrode to assemble a sodium ion full battery: the dried electrode electrode is punched into a small disc with a diameter of 13 mm, and then the electrode electrode, diaphragm, electrolyte, spring and gasket are packaged with positive and negative electrode shells in a glove box filled with argon to obtain a 2032 button-type full battery, wherein the electrolyte is a 1M NaPF6 ethylene carbonate (EC)/dimethyl carbonate (DMC) (volume ratio 1:1) solution; the n/p ratio is 1.1:1.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • FIG10 is a cycle performance diagram of the sodium ion full battery, indicating that the full battery assembled with the negative electrode of the aqueous binder of the present invention has good cycle stability, the capacity retention rate after 150 cycles is 74%, and the energy density is as high as 181.05Wh ⁇ kg -1 . This shows that the aqueous binder has good commercial application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及钠离子电池技术领域,具体涉及一种水系粘结剂及其在钠离子电池硬碳负极中的应用。所述水系粘结剂包括第一组分和第二组分,第一组分为含钠离子的苯乙烯衍生物聚合物或含钠离子的吡喃衍生物聚合物中的一种或多种,第二组分为含醚键的导电聚合物,通过控制第一组分和第二组分的添加量,得到含大量极性亲水基团的水系粘结剂,适用于钠离子电池的硬碳负极。本发明的水系粘结剂制备简单便捷、原料经济、以去离子水为溶剂绿色环保,以使用该水系粘结剂的硬碳负极制备的钠离子电池具有较高的首周库伦效率、循环稳定性和倍率性能,具有较好的商业化应用前景。

Description

一种水系粘结剂及其在钠离子电池硬碳负极中的应用 技术领域
本发明涉及钠离子电池技术领域,具体涉及一种水系粘结剂及其在钠离子电池硬碳负极中的应用。
背景技术
钠离子电池由于钠元素丰富、安全性高和较好的低温性能等优点,被认为是最具潜力新一代高能储能体系之一。一般来讲钠离子电池的电极材料主要包含三部分:活性材料、粘结剂和导电剂。其中,粘结剂体系在整个电极体系中占据非常小的比例,但对于电池性能的提升有重要作用。粘结剂的主要作用是保持电极结构完整,加入适量性能优良的粘结剂可使电池获得较大容量和较长的循环寿命,而且还能降低电池内阻,对提高电池的放电平台和大电流放电能力、降低小倍率充电时的内阻、提高电池的快充能力等均有促进作用。硬碳由于其合适的嵌钠电位、高的安全性和较低的成本作为最有可能商业化的负极材料,但仍面临着较低的首效。在酯类电解液中较差的循环与倍率性能,制约了硬碳负极材料的大规模商业化应用。同时,碳材料的亲水性较差,在水中很难分散均匀。
目前最常用的粘结剂主要是油性的聚偏氟乙烯(PVDF)和水系的羧甲基纤维素(CMC)。PVDF作为一种油性粘结剂,需要使用N-甲基吡咯烷酮(NMP)这种有毒且昂贵的有机物作为溶剂,对环境及生产成本的控制是不利的;同时,PVDF中主要含有的H-F键是一种非活性的键,因此不能够提供足够的作用力来连接电极材料,不利于电池的长循环稳定性。CMC作为最常用的水系粘结剂,含有大量的官能团,对电极材料有较好的固定作用,但其脆性较大,制备的硬碳电极容易脱粉,掉渣,不利于电极的长时间工作,同时其离子电导率还有待提高。
因此,针对上述常用粘结剂的问题,开发出一种新型且性能优异的水系粘结剂是非常重要的。
发明内容
针对现有粘结剂的缺陷和不足,本发明提出一种水系粘结剂及其在钠离子电池硬碳负极中的应用,将该水系粘结剂应用于钠离子电池的硬碳负极中,有效提高了电池的首周库伦效率、循环稳定性和倍率性能。
为了达到上述目的,本发明的技术方案是这样实现的:
本发明公开的一种水系粘结剂,所述水系粘结剂包括第一组分和第二组分;第一组分为如式Ⅰ所示的含钠离子的苯乙烯衍生物聚合物或如式Ⅱ所示的含钠离子的吡喃衍生物聚合物中的一种或多种,第二组分为含醚键的导电聚合物;
其中,式Ⅰ中的R为-H、-OH、-COOH、-CH3、-CO-NH2和-SO3H中的任意一种;R1为-H、-O-、-COO-、-CH2-、-CO-NH-和-SO3-中的任意一种;X为钠离子;
式Ⅱ中的不同位置的R各自独立的为-H、-O-、-COO-、-CH2-、-CO-NH-和-SO3-中的任意一种;X为钠离子。
优选地,所述含钠离子的苯乙烯衍生物聚合物为聚(4-苯乙烯磺酸钠)、聚苯乙烯-共苯乙烯磺酸钠中的一种或两种;含钠离子的吡喃衍生物聚合物为硫酸软骨素A钠盐、硫酸软骨素B钠盐中的一种或两种。
本发明公开的另一种水系粘结剂,所述水系粘结剂包括第一组分和第二组分;第一组分为聚茴脑磺酸钠或硫酸软骨素C钠盐,第二组分为含醚键的导电聚合物。
优选地,所述聚(4-苯乙烯磺酸钠)的平均分子量为60000-100000;所述聚茴脑磺酸钠的平均分子量为10000-20000;所述硫酸软骨素A钠盐的平均分子量为40000-50000。
优选地,所述含醚键的导电聚合物为聚氧化乙烯(PEO),聚环氧丙烷,聚氧乙烯二胺,聚环氧氯丙烷中的一种。
优选地,所述第一组分的平均分子量大于1万;第二组分的平均分子量为10-100万。
优选地,所述第一组分占水系粘结剂的摩尔百分数为70%-90%;第二组分占水系粘结剂的摩尔百分数为10%-30%。
本发明还包括上述水系粘结剂的制备方法,步骤如下:
(1)将第一组分和第二组分溶解于溶剂中,然后在混合搅拌1-4h,得到混合溶液;
(2)将步骤(1)的混合溶液于60-100℃下进行干燥,得到固态的水系粘结剂。
优选地,所述溶剂为去离子水;所述第一组分和第二组分的总质量与去离子水的质量比为0.1g:(1-3)mL。
本发明还包括一种钠离子电池硬碳负极,所述钠离子电池硬碳负极包括权利要求1-5任一项所述的水系粘结剂、硬碳负极材料和导电剂。
优选地,所述导电剂为乙炔黑、科琴黑、碳纳米管、导电炭黑和石墨烯中的任意一种;所述硬碳负极材料为商业化硬碳材料。
更优选地,所述硬碳负极材料、导电剂和水系粘结剂的质量比为(16-19):(1-2):(1-3)。
最优选地,所述硬碳负极材料、导电剂和水系粘结剂的质量比为8:1:1。
钠离子电池硬碳负极极片的制备方法,包括以下步骤:
(1)制备负极浆料:按质量比加入导电剂、硬碳负极材料和本发明的水系粘结剂,然后加入去离子水搅拌混合均匀,得到负极浆料;
(2)制备钠离子电池硬碳负极极片:将上述负极浆料涂覆在集流体上,60-100℃干燥6-10h后,得到钠离子电池硬碳负极极片。
本发明的有益效果:
1、本发明提供的水系粘结剂,第一组分含钠离子的苯乙烯衍生物聚合物或含钠离子的吡喃衍生物聚合物中的一种或多种和第二组分含极性基团醚键(C-O-C)的导电聚合物,通过溶解和加热反应,两种组分中的极性官能团发生作用形成氢键,形成富含极性亲水基团的纤维状聚合物。该富含极性亲水官能团的纤维网状聚合物能够与硬碳负极材料表面的活性官能团(氧官能团)反应,有效包覆在硬碳负极材料表面,改善了硬碳负极材料的亲水性,提高了碳材料在水中的分散程度,有助于粘结剂与碳材料混合更均匀,使得含有该粘结剂的钠离子电池硬碳负极极片表面较为平整,降低电极材料与电解液的接触面积与表面缺陷的暴露,从而减少电解液的过度消耗以及相应的不可逆容量损失,提高钠离子电池的首周库伦效率。同时,极性基团可以降低脱溶剂能量势垒,聚氧化乙烯含有的醚键(-C-O-C-)基团可以通过足够的电子供体能力与Na离子形成配位键,提高聚合物电解质的离子电导率,改善动力学特性。使用本发明水系粘结剂的钠离子半电池的首周库伦效率大于80%,且循环100周后的比容量仍可达到317mAh/g;以使用本发明水系粘结剂的硬碳负极组装的钠离子全电池具有较好的循环稳定性,循环150周容量保持率为74%,能量密度高达181.05Wh·kg-1
2、使用了本发明水系粘结剂的钠离子电池,由于硬碳电极表面覆盖的粘结剂拥有大量强电负性基团,能有效吸附钠离子、降低钠离子的脱溶剂势垒,加速脱溶剂过程,减少有机溶剂在电极表面的分解,从而形成较薄的SEI;同时,两种组分中的强极性官能团能够吸附电解质中的阴离子到电极表面,从而加速阴离子分解形成富含无机物的SEI,薄且富含无机物 的SEI有助于维护界面的稳定性,降低界面阻抗,提高电池的首效、长循环性能与倍率性能。此外,第一组分中络合的钠盐可以补充钠离子电池嵌钠过程中的不可逆钠离子的消耗,起到补钠的作用,有助于提高钠离子电池的首效与循环稳定性。
3、本发明制得的水系粘结剂的溶胀率不超过30%,明显低于油性粘结剂PVDF和水系粘结剂CMC的溶胀率,在电解液中的体积变化较小,有助于维护电极结构的完整以及钠离子的快速传输。本发明的水系粘结剂制备方法简单便捷、原料经济、以去离子水为溶剂绿色环保,且使用该水系粘结剂的钠离子电池具有较高的首周库伦效率、循环稳定性和倍率性能,具有较好的商业化应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例3与对比例1、2制备的粘结剂的溶胀率对比图。
图2为实施例3的粘结剂的红外谱图。
图3为实施例9与对比例3、4制备的硬碳负极极片的扫描电镜图。
图4为实施例9与对比例3、4制备的硬碳负极极片在首周放电后的SEI透射电镜图。
图5为利用实施例7与对比例3、4的硬碳负极极片制备的钠离子半电池的首周充放电曲线对比图。
图6为利用实施例10与对比例5、6的硬碳负极极片制备的钠离子半电池的首周充放电曲线对比图。
图7为利用实施例8与对比例3、4的硬碳负极极片制备的钠离子半电池的循环性能对比图。
图8为利用实施例9与对比例3、4的硬碳负极极片制备的钠离子半电池的循环性能对比图。
图9为利用实施例11与实施例12的硬碳负极极片制备的钠离子半电池的首周充放电曲线图。
图10为利用实施例9的硬碳负极极片制备的钠离子全电池的循环性能图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明 中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例相关组分的含量按比例放大或缩小均在本发明实施例公开的范围之内。具体地,本发明实施例中所述的重量可以是μg、mg、g、kg等化工领域公知的质量单位。
本发明实施例和对比例中所用PVDF的分子量为500000,CMC的分子量为90000,聚氧化乙烯(PEO)的分子量为1000000,聚(4-苯乙烯磺酸钠)的平均分子量为60000-100000,聚茴脑磺酸钠的分子量为10000-20000,硫酸软骨素A钠盐的分子量为40000-50000,聚环氧丙烷的分子量为100000,硫酸软骨素B钠盐的分子量为30000-40000,硫酸软骨素C钠盐的分子量为40000-50000,以上材料均购买于阿拉丁官网。
实施例1
本实施例制备一种水系粘结剂,包含聚(4-苯乙烯磺酸钠)0.18g、PEO 0.02g和4mL去离子水,制备步骤如下:
(1)将聚(4-苯乙烯磺酸钠)和PEO加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后,得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在80℃下进行反应干燥,得到水系粘结剂固体膜。
实施例2
本实施例制备一种水系粘结剂,包括聚茴脑磺酸钠0.16g、PEO 0.04g和4mL去离子水,制备步骤如下:
(1)将聚茴脑磺酸钠和PEO加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在80℃下进行反应干燥,得到水系粘结剂固体。
实施例3
本实施例制备一种水系粘结剂,包括硫酸软骨素A钠盐0.18g、PEO 0.02g和4mL去离子水,制备步骤如下:
(1)将硫酸软骨素A钠盐和PEO加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在80℃下进行反应干燥,得到水系粘结剂固体。
实施例4
本实施例制备一种水系粘结剂,包括硫酸软骨素B钠盐0.16g、聚环氧丙烷0.04g和4mL去离子水,制备步骤如下:
(1)将硫酸软骨素B钠盐和聚环氧丙烷加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在80℃下进行反应干燥,得到水系粘结剂固体。
实施例5
本实施例制备一种水系粘结剂,包括聚苯乙烯-共苯乙烯磺酸钠0.14g、聚氧乙烯二胺0.06g和4mL去离子水,制备步骤如下:
(1)将聚苯乙烯-共苯乙烯磺酸钠和聚氧乙烯二胺加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在80℃下进行反应干燥,得到水系粘结剂固体。
实施例6
本实施例制备一种水系粘结剂,包括硫酸软骨素C钠盐0.08g、聚环氧氯丙烷0.02g和3mL去离子水。制备步骤如下:
(1)将硫酸软骨素C钠盐和聚环氧氯丙烷加入样品瓶中,加去离子水溶解,搅拌3h,混合均匀后得到富含极性官能团的混合溶液。
(2)将步骤(1)的混合溶液在60℃下进行反应干燥,得到水系粘结剂固体。
实施例7-15
以实施例1-6制得的水系粘结剂固体、溶剂水以及不同的电极材料和导电剂制备钠离子电池硬碳负极极片,方法如下:将电极材料(硬碳负极材料)、导电剂和粘结剂按不同质量比,称取并混合均匀,然后加入去离子水搅拌混合均匀,制成电池极片浆料;用刮刀将电池极片浆料均匀涂布在集流体铜箔上,于鼓风干燥箱中80℃下干燥8h,即得钠离子电池硬碳负极极片。
其中,具体使用的电极材料、导电剂和水系粘结剂的种类及配比如表1所示。
表1实施例7-15钠离子电池硬碳负极极片所用材料及配比

对比例1
本对比例制备一种油性粘结剂,粘结剂选取PVDF,溶剂选取NMP溶剂。
称取0.3g PVDF,溶于9.7mL NMP溶剂中,搅拌得到3%PVDF粘结剂溶液;取5mL 3%PVDF粘结剂溶液80℃下干燥8h,得到PVDF膜。
对比例2
本对比例制备一种水系粘结剂,粘结剂选取CMC,溶剂选取水。
称取0.3g CMC,溶于5.7mL水溶剂中,搅拌得到5%CMC粘结剂溶液;取5mL 5%CMC粘结剂溶液80℃下干燥8h,得到CMC膜。
对比例3-6
以对比例1-2制得的粘结剂以及不同的溶剂、电极材料(硬碳负极材料)和导电剂制备钠离子电池硬碳负极极片,方法如下:将电极材料、导电剂和粘结剂按照质量比8:1:1称取并混合均匀,然后加入去离子水(或NMP)搅拌混合均匀,制成电池极片浆料;用刮刀将电池极片浆料均匀涂布在集流体铜箔(或铝箔)上,于鼓风干燥箱中80℃下干燥8h,即得钠离子电池硬碳负极极片。
其中,具体使用的电极材料、导电剂和水系粘结剂的种类及配比如表2所示。
表2对比例3-6钠离子电池硬碳负极极片所用材料及配比
实施效果例
(1)采用实施例7-15以及对比例3-6的钠离子电池硬碳负极极片组装成扣式半电池,方法如下:将制得的硬碳负极极片冲压成直径为13mm的小圆片,然后在充满氩气的手套箱中用正、负极壳将极片、隔膜、电解液、钠片、弹片和垫片封装,得到2025扣式半电池,其中,电解液为1M NaPF6的碳酸乙烯酯(EC)/碳酸二甲酯(DMC)(体积比1:1)溶液。
采用恒电流法测试各钠离子半电池的循环稳定性和倍率性能,电位窗口为硬碳负极材料为0.01-2V,电流密度为50mA/g;测试结果如表3所示。
表3实施例7-15和对比例3-6的钠离子半电池性能测试结果
从表3的数据可以看出,实施例7-15使用本发明水系粘结剂的钠离子半电池的首周库伦效率普遍较高,且循环一定周数后的比容量相较对比例3-6的钠离子半电池均有一定提升,说明本发明制备的水系粘结剂能较好适用于钠离子电池硬碳负极,对钠离子电池的性能提升有重要作用。
图1为实施例3的水系粘结剂与对比例1和对比例2的粘结剂在有机溶剂中的溶胀比(测试方法参考文献Xia J.,Z.Wang,N.D.Rodrig,et al.Super-Reversible CuF2 Cathodes Enabled by Cu2+-Coordinated Alginate[J].Adv.Mater.,2022.34(43).),可以看出实施例3的水系粘结剂的溶胀率最低,说明其在电解液中的体积变化较小,有助于维护电极结构的完整。同时,较低的溶胀率也有助于钠离子的快速传输。
图2为实施例3的粘结剂的红外谱图,可以看到其在3564、3304、1418和1047cm-1的特征峰,分别属于-OH、-NH、-S=O和C-O-C键,可以确定这种水系粘结剂有多种的极性官能团的存在,能够更好的与硬碳表面的氧官能团结合,提高其分散程度,有助于极片的平滑并增强对电极的粘结作用。
图3为实施例9和对比例3、4的硬碳负极极片的扫描电镜(SEM)图,由图可以看出实施例7的硬碳负极极片表面有明显的纤维状粘结剂存在,说明粘结剂与硬碳的混合更加均匀,且材料之间的粘附相比对比例3、4更加紧密,这能够降低电极上的缺陷与电解液的接触,进而减少电解液的过度消耗,有助于提高电池的首周库伦效率和循环稳定性。
图4为实施例9和对比例3、4的硬碳负极极片经历首周放电后的固态电解质膜(SEI)透射电镜(TEM)图,可以看出,使用本发明水系粘结剂诱导电极表面形成的SEI更薄(10nm)且均匀,对比例3、4的SEI更厚且不均匀。较薄的SEI说明电极表面的电解液消耗较少,同时均匀的界面有助于提高钠离子的传输速率,从而提高其动力学特性与循环稳定。较厚的SEI说明电解液将被过度消耗,同时不利于钠离子的快速传输,进而导致电池的首周库伦效率及循环稳定性更低。
图5为利用实施例7与对比例3、4的硬碳负极极片制备的钠离子半电池的首周充放电曲线对比图。图6为利用实施例10与对比例5、6的硬碳负极极片制备的钠离子半电池的首周充放电曲线对比图。结合图5、图6可以看出,使用本发明水系粘结剂的硬碳负极拥有更多的充电比容量,说明该电极的不可逆容量相较对比例有很大的减少,例如表面缺陷等导致的电解液过度消耗大大减少,同时电极整体的极化较小,有助于电池的长循环稳定性。
图7、8为利用不同实施例和对比例的硬碳负极极片制备的钠离子半电池的循环性能对比图,可以看出使用本发明水系粘结剂的硬碳负极拥有更高的比容量及循环稳定性,该粘结剂诱导形成的性能优异的SEI有利于电池的长循环性能,说明所述粘结剂对于电池的循环稳定性等方面有较大的作用。
图9为实施例11,12的硬碳负极极片植被的钠离子半电池的首周充放电曲线对比图,可以看出,通过调整粘结剂组分一和组分二的配比,硬碳负极材料仍能保持较高的首周库伦效率,说明不同配比的粘结剂仍能诱导高性能SEI,有利于电池的循环稳定性。
(2)以实施例9制备的硬碳负极极片匹配商业化磷酸钒钠正极极片,组装钠离子全电池:将烘干的电极极片冲压成直径为13mm的小圆片,然后在充满氩气的手套箱中用正、负极壳将电极极片、隔膜、电解液、弹片、垫片封装得到2032扣式全电池,其中,电解液为1M NaPF6的碳酸乙烯酯(EC)/碳酸二甲酯(DMC)(体积比1:1)溶液;n/p比为1.1:1。
采用恒电流法测试该钠离子全电池的循环稳定性,电位窗口为2-3.9V,电流密度为59mA/g,图10为该钠离子全电池的循环性能图,说明使用本发明水系粘结剂的负极组装的全电池有较好的循环稳定性,循环150周容量保持率74%,能量密度高达181.05Wh·kg-1。说明该水系粘结剂有较好的商业化应用前景。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种水系粘结剂,其特征在于:所述水系粘结剂包括第一组分和第二组分;第一组分为如式Ⅰ所示的含钠离子的苯乙烯衍生物聚合物或如式Ⅱ所示的含钠离子的吡喃衍生物聚合物中的一种或多种,第二组分为含醚键的导电聚合物;
    其中,式Ⅰ中的R为-H、-OH、-COOH、-CH3、-CO-NH2和-SO3H中的任意一种;R1为-H、-O-、-COO-、-CH2-、-CO-NH-和-SO3-中的任意一种;X为钠离子;
    式Ⅱ中的不同位置的R各自独立的为-H、-O-、-COO-、-CH2-、-CO-NH-和-SO3-中的任意一种;X为钠离子。
  2. 根据权利要求1所述的水系粘结剂,其特征在于:所述含钠离子的苯乙烯衍生物聚合物为聚(4-苯乙烯磺酸钠)、聚苯乙烯-共苯乙烯磺酸钠中的一种或两种;含钠离子的吡喃衍生物聚合物为硫酸软骨素A钠盐、硫酸软骨素B钠盐中的一种或两种。
  3. 一种水系粘结剂,其特征在于:所述水系粘结剂包括第一组分和第二组分;第一组分为聚茴脑磺酸钠或硫酸软骨素C钠盐,第二组分为含醚键的导电聚合物。
  4. 根据权利要求1或3所述的水系粘结剂,其特征在于:所述含醚键的导电聚合物为聚氧化乙烯,聚环氧丙烷,聚氧乙烯二胺,聚环氧氯丙烷中的一种。
  5. 根据权利要求1或3所述的水系粘结剂,其特征在于:所述第一组分的平均分子量大于1万;第二组分的平均分子量为10-100万。
  6. 根据权利要求1或3所述的水系粘结剂,其特征在于:所述第一组分占水系粘结剂的摩尔百分数为70%-90%;第二组分占水系粘结剂的摩尔百分数为10%-30%。
  7. 权利要求1或3所述的水系粘结剂的制备方法,其特征在于,步骤如下:
    (1)将第一组分和第二组分溶解于溶剂中,然后混合搅拌1-4h,得到混合溶液;
    (2)将步骤(1)的混合溶液于60-100℃下进行干燥,得到固态的水系粘结剂。
  8. 根据权利要求7所述的水系粘结剂的制备方法,其特征在于:所述溶剂为去离子水;所述 第一组分和第二组分的总质量与去离子水的质量比为0.1g:(1-3)mL。
  9. 一种钠离子电池硬碳负极,其特征在于:所述钠离子电池硬碳负极包括权利要求1-5任一项所述的水系粘结剂、硬碳负极材料和导电剂。
  10. 根据权利要求9所述的钠离子电池硬碳负极,其特征在于:所述导电剂为乙炔黑、科琴黑、碳纳米管、导电炭黑和石墨烯中的任意一种;所述硬碳负极材料为商业化硬碳材料;所述硬碳负极材料、导电剂和水系粘结剂的质量比为(16-19):(1-2):(1-3)。
PCT/CN2024/079175 2023-03-01 2024-02-29 一种水系粘结剂及其在钠离子电池硬碳负极中的应用 WO2024179533A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202310187515.6 2023-03-01
CN202310187515 2023-03-01
CN202410218479.X 2024-02-28
CN202410218479.XA CN118580804A (zh) 2023-03-01 2024-02-28 一种水系粘结剂及其在钠离子电池硬碳负极中的应用

Publications (1)

Publication Number Publication Date
WO2024179533A1 true WO2024179533A1 (zh) 2024-09-06

Family

ID=92533830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/079175 WO2024179533A1 (zh) 2023-03-01 2024-02-29 一种水系粘结剂及其在钠离子电池硬碳负极中的应用

Country Status (2)

Country Link
CN (1) CN118580804A (zh)
WO (1) WO2024179533A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003529A (ja) * 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
CN102569700A (zh) * 2011-12-23 2012-07-11 深圳市星源材质科技股份有限公司 一种陶瓷涂覆隔膜及其制备方法
CN103236511A (zh) * 2013-04-18 2013-08-07 广东工业大学 一种超耐热有机/无机复合隔膜的制备方法
CN103956450A (zh) * 2014-05-16 2014-07-30 中国东方电气集团有限公司 一种锂离子电池用复合隔膜及其制备方法
CN103956451A (zh) * 2014-05-16 2014-07-30 中国东方电气集团有限公司 一种锂离子电池用复合陶瓷隔膜及其制备方法
US20150044550A1 (en) * 2013-08-07 2015-02-12 Hyundai Motor Company Sulfur cathode for lithium-sulfur battery
CN107681192A (zh) * 2017-09-29 2018-02-09 清华大学 锂离子电池及其制造方法、电子装置
CN109378466A (zh) * 2018-12-08 2019-02-22 河南师范大学 一种球形锂硫电池正极材料的制备方法及产品
WO2019120140A1 (zh) * 2017-12-22 2019-06-27 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池
CN110112416A (zh) * 2019-04-19 2019-08-09 合肥国轩高科动力能源有限公司 一种水系复合粘结剂及其在锂离子电池硅负极中的应用
CN110190284A (zh) * 2019-06-25 2019-08-30 武汉大学 一种锂硫电池正极用水系粘结剂及其制备方法和应用
CN110336037A (zh) * 2019-07-18 2019-10-15 上海交通大学 一种用于锂离子电池负极材料的水系粘结剂及其制备方法
CN111213268A (zh) * 2017-10-16 2020-05-29 株式会社Lg化学 粘结剂以及包含所述粘结剂的电极和锂二次电池
CN111640921A (zh) * 2020-05-22 2020-09-08 大连海事大学 一种钒类化合物电极材料的制备方法及其在水系锌离子电池中的应用
CN113054197A (zh) * 2021-04-21 2021-06-29 中国科学院物理研究所 硬碳粘结剂、包含硬碳粘结剂的负极片和钠离子电池
CN113113727A (zh) * 2021-03-29 2021-07-13 湖南博盛新能源技术有限公司 一种锂离子电池隔膜及其制备方法
CN113193196A (zh) * 2021-04-25 2021-07-30 大连理工大学 一种钠离子电池用多功能水性粘结剂及其应用
CN115440931A (zh) * 2022-09-13 2022-12-06 季华实验室 一种锂离子电池电极极片及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003529A (ja) * 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
CN102569700A (zh) * 2011-12-23 2012-07-11 深圳市星源材质科技股份有限公司 一种陶瓷涂覆隔膜及其制备方法
CN103236511A (zh) * 2013-04-18 2013-08-07 广东工业大学 一种超耐热有机/无机复合隔膜的制备方法
US20150044550A1 (en) * 2013-08-07 2015-02-12 Hyundai Motor Company Sulfur cathode for lithium-sulfur battery
CN103956450A (zh) * 2014-05-16 2014-07-30 中国东方电气集团有限公司 一种锂离子电池用复合隔膜及其制备方法
CN103956451A (zh) * 2014-05-16 2014-07-30 中国东方电气集团有限公司 一种锂离子电池用复合陶瓷隔膜及其制备方法
CN107681192A (zh) * 2017-09-29 2018-02-09 清华大学 锂离子电池及其制造方法、电子装置
CN111213268A (zh) * 2017-10-16 2020-05-29 株式会社Lg化学 粘结剂以及包含所述粘结剂的电极和锂二次电池
WO2019120140A1 (zh) * 2017-12-22 2019-06-27 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池
CN109378466A (zh) * 2018-12-08 2019-02-22 河南师范大学 一种球形锂硫电池正极材料的制备方法及产品
CN110112416A (zh) * 2019-04-19 2019-08-09 合肥国轩高科动力能源有限公司 一种水系复合粘结剂及其在锂离子电池硅负极中的应用
CN110190284A (zh) * 2019-06-25 2019-08-30 武汉大学 一种锂硫电池正极用水系粘结剂及其制备方法和应用
CN110336037A (zh) * 2019-07-18 2019-10-15 上海交通大学 一种用于锂离子电池负极材料的水系粘结剂及其制备方法
CN111640921A (zh) * 2020-05-22 2020-09-08 大连海事大学 一种钒类化合物电极材料的制备方法及其在水系锌离子电池中的应用
CN113113727A (zh) * 2021-03-29 2021-07-13 湖南博盛新能源技术有限公司 一种锂离子电池隔膜及其制备方法
CN113054197A (zh) * 2021-04-21 2021-06-29 中国科学院物理研究所 硬碳粘结剂、包含硬碳粘结剂的负极片和钠离子电池
CN113193196A (zh) * 2021-04-25 2021-07-30 大连理工大学 一种钠离子电池用多功能水性粘结剂及其应用
CN115440931A (zh) * 2022-09-13 2022-12-06 季华实验室 一种锂离子电池电极极片及其制备方法

Also Published As

Publication number Publication date
CN118580804A (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
CN110137485B (zh) 一种含有表面修饰膜的硅负极材料的制备方法
CN111640910B (zh) 一种高比能量的快充正极片及其制备方法和用途
CN109786748A (zh) 一种锂硫电池正极片及其制备方法、锂硫电池
KR20040110665A (ko) 리튬 전지용 음극 조성물과 이를 채용한 음극 및 리튬 전지
CN114759157B (zh) 一种负极极片及其制备方法、锂二次电池
WO2023138577A1 (zh) 正极补锂添加剂及其制备方法和应用
CN110137496B (zh) 一种聚合物单离子导体及其制备方法及一种复合正极和全固态锂硫电池
CN111682211B (zh) 一种大豆蛋白基双交联自愈合超分子硫正极水性粘结剂及其制备方法与应用
CN106784841A (zh) 一种油系电极浆料组合物及其制备电极和电化学电池的用途
CN111799437B (zh) 正极极片及钠离子电池
CN117096279A (zh) 一种含锂复合负极的制备,其在锂二次电池中的应用
CN111933892B (zh) 负极片及其制备方法和包括该负极片的锂离子二次电池
EP4425640A1 (en) Lithium supplementing additive, preparation method therefor and application thereof
CN101937982A (zh) 一种负极材料及含有该负极材料的电池
CN111490285B (zh) 锂硫电池固态电解质膜、其制备方法及锂硫电池
WO2024179533A1 (zh) 一种水系粘结剂及其在钠离子电池硬碳负极中的应用
CN111916731A (zh) 一种正极片及其制备方法和包括该正极片的锂离子二次电池
CN116731635A (zh) 一种导电粘结剂及其制备方法和应用
JP4581196B2 (ja) リチウム二次電池用正極
CN115513513A (zh) 二次电池及用电设备
CN113161603A (zh) 一种新型钾离子电池及其制备方法
CN113611820A (zh) 一种固态电池极片、其制备方法及应用
CN115000342B (zh) 具有双重捕获功能的锂硫电池正极及其制备方法和应用
CN118530677B (zh) 粘结剂及含其的极片、电化学装置和电子设备
CN117638083B (zh) 锂离子电池和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763213

Country of ref document: EP

Kind code of ref document: A1