WO2024179182A1 - 空调系统及其控制方法、装置及存储介质 - Google Patents
空调系统及其控制方法、装置及存储介质 Download PDFInfo
- Publication number
- WO2024179182A1 WO2024179182A1 PCT/CN2024/070414 CN2024070414W WO2024179182A1 WO 2024179182 A1 WO2024179182 A1 WO 2024179182A1 CN 2024070414 W CN2024070414 W CN 2024070414W WO 2024179182 A1 WO2024179182 A1 WO 2024179182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control valve
- delivery pipe
- heat exchanger
- gas
- compressor
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000007788 liquid Substances 0.000 claims abstract description 217
- 239000003507 refrigerant Substances 0.000 claims abstract description 180
- 238000000926 separation method Methods 0.000 claims abstract description 53
- 238000012546 transfer Methods 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 34
- 238000005057 refrigeration Methods 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/65—Concentration of specific substances or contaminants
- F24F2110/70—Carbon dioxide
Definitions
- the present disclosure belongs to the technical field of electrical equipment, and in particular relates to an air-conditioning system and a control method, device and storage medium thereof.
- a gas-liquid separator is used to separate the gaseous refrigerant and the liquid refrigerant.
- the gaseous refrigerant and the liquid refrigerant separated by the gas-liquid separator are both input into the outdoor heat exchanger.
- the heat transfer coefficient of the gaseous refrigerant in the outdoor heat exchanger is very low, directly inputting the gaseous refrigerant into the outdoor heat exchanger will cause a waste of the heat exchange area of the outdoor heat exchanger.
- the refrigerant is output from the outdoor heat exchanger and enters the gas-liquid separator through the outlet of the gas-liquid separator. In this case, the effect of gas-liquid separation cannot be achieved, so that the refrigerant input into the indoor heat exchanger is a gas-liquid mixed refrigerant, resulting in a decrease in the heat exchange performance of the indoor heat exchanger.
- the present disclosure proposes an air conditioning system and its control method, device and storage medium, which realizes good gas-liquid separation of refrigerant from indoor heat exchanger or outdoor heat exchanger through gas-liquid separator, and solves the problem of insufficient refrigeration capacity due to failure to realize gas-liquid separation under refrigeration conditions in related technologies.
- the gaseous refrigerant can be not input into the outdoor heat exchanger, thereby improving the utilization rate of the heat exchange area of the outdoor heat exchanger, and improving the heat exchange performance and energy efficiency of the outdoor heat exchanger.
- Some embodiments of the first aspect of the present disclosure provide an air conditioning system, including a compressor, an outdoor heat exchanger, a gas-liquid separator, an indoor heat exchanger, a four-way valve, and a first throttling device;
- the first throttling device is arranged between the first delivery pipe of the gas-liquid separator and the second end of the indoor heat exchanger, and the second delivery pipe of the gas-liquid separator is connected to the first end of the outdoor heat exchanger;
- the third delivery pipe of the gas-liquid separator is connected to the return air pipeline between the four-way valve and the compressor, and communicates with the return air pipeline; or the third delivery pipe is connected to the first chamber of the compressor, and communicates with the first chamber;
- the gas-liquid separator separates the refrigerant from the first delivery pipe or the second delivery pipe into gas and liquid, and the separated gaseous refrigerant is output from the third delivery pipe.
- Some embodiments of the second aspect of the present disclosure provide a control method for an air-conditioning system, in which a second delivery pipe of a gas-liquid separator is connected to a first end of an outdoor heat exchanger; a third delivery pipe of the gas-liquid separator is connected to a return air pipeline between a four-way valve and a compressor through a first control valve, and is connected to the return air pipeline; or, the third delivery pipe is connected to a first chamber of the compressor through the first control valve, and is connected to the first chamber; the gas-liquid separator performs gas-liquid separation on the refrigerant from the first delivery pipe or the second delivery pipe, and the separated gaseous refrigerant is output from the third delivery pipe; the method comprises:
- the superheat of the compressor and the closing time of the first control valve the connection or disconnection of the first control valve is controlled.
- Some embodiments of the third aspect of the present disclosure provide a control device for the air-conditioning system as described in the first aspect, the device comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor executing the computer program to implement the method as described in the second aspect.
- Some embodiments of the fourth aspect of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the method described in the second aspect.
- a gas-liquid separator is used to achieve good gas-liquid separation of the refrigerant from the indoor heat exchanger or the outdoor heat exchanger, thereby solving the problem of insufficient refrigeration capacity due to the inability to achieve gas-liquid separation under refrigeration conditions in the related art.
- the third delivery pipe of the gas-liquid separator is connected to the return air pipeline between the four-way valve and the compressor, or to the first chamber of the compressor.
- the gaseous refrigerant is output from the third delivery pipe and flows back into the compressor. In this way, the gaseous refrigerant does not need to be input into the outdoor heat exchanger, thereby improving the utilization rate of the heat exchange area of the outdoor heat exchanger, and improving the heat exchange performance and energy efficiency of the outdoor heat exchanger.
- connection or disconnection of the first control valve is controlled based on whether the flow distribution between the various flow paths of the outdoor heat exchanger is uniform, which can maximize the uniformity of the flow distribution of the various flow paths of the outdoor heat exchanger, thereby improving the heat exchange performance and energy efficiency of the air conditioning system.
- connection or disconnection of the first control valve it is possible to reduce the amount of gaseous refrigerant input into the outdoor heat exchanger and reduce the amount of liquid refrigerant from the gas-liquid separator.
- the direct output of the three delivery pipes helps to reduce the return air superheat or exhaust air superheat of the compressor.
- the purity of the liquid refrigerant input to the indoor heat exchanger can be maximized, and the mixed gaseous refrigerant can be reduced, thereby reducing the noise of the first throttling device, making the actual maximum flow of the first throttling device consistent with the design value, and improving the heat exchange performance and energy efficiency of the indoor heat exchanger.
- FIG1 shows a first structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure
- FIG2 shows a second structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure
- FIG3 shows a third structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG4 shows a fourth structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG5 is a schematic diagram showing a cross-sectional structure of a gas-liquid separator along the axial direction provided in some embodiments of the present disclosure
- FIG6 shows another schematic cross-sectional structure diagram of a gas-liquid separator provided in some embodiments of the present disclosure along the axial direction;
- FIG7 shows a fifth structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG8 shows a sixth structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG9 shows a seventh structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG10 shows an eighth structural schematic diagram of an air conditioning system provided by some embodiments of the present disclosure.
- FIG11 is a flow chart showing a method for controlling an air conditioning system provided by some embodiments of the present disclosure.
- FIG12 shows a control flow chart of the first control valve under heating conditions provided by some embodiments of the present disclosure
- FIG13 shows a flow chart for detecting whether the flow distribution of each flow path of an outdoor heat exchanger is uniform, provided in some embodiments of the present disclosure
- FIG14 shows a control flow chart of the first control valve under refrigeration conditions provided by some embodiments of the present disclosure
- FIG15 shows another control flow chart of the first control valve under heating conditions provided by some embodiments of the present disclosure
- FIG16 shows another control flow chart of the first control valve under refrigeration conditions provided by some embodiments of the present disclosure
- FIG17 shows a structural block diagram of a control device for an air conditioning system provided by some embodiments of the present disclosure
- FIG. 18 shows a schematic diagram of the structure of a control device for an air conditioning system provided in some embodiments of the present disclosure. picture;
- FIG. 19 shows a schematic diagram of a storage medium provided in some embodiments of the present disclosure.
- 1 compressor, 2: outdoor heat exchanger, 3: gas-liquid separator, 4: indoor heat exchanger, 5: first control valve, 8: second control valve, 9: third control valve, 10: fourth control valve, 11: fifth control valve, 12: low-pressure tank, 13: four-way valve, 14: first chamber, 15: first distributor, 16: second distributor, 17: first throttling device, 18: second throttling device, 19: first temperature sensor, 20: first pressure sensor, 21: second temperature sensor, 22: second pressure sensor; 41: first end of indoor heat exchanger, 42: second end of indoor heat exchanger, 210, first end of outdoor heat exchanger, 220: second end of outdoor heat exchanger;
- i first delivery pipe
- j second delivery pipe
- k third delivery pipe.
- a gas-liquid separator is used to separate gaseous refrigerant and liquid refrigerant.
- the gas-liquid separator is connected to the outdoor heat exchanger through two sets of branches, which are the gas pipe for conveying the gaseous refrigerant and the liquid pipe for conveying the liquid refrigerant.
- the gaseous refrigerant separated by the gas-liquid separator is input into the outdoor heat exchanger through the gas pipe, and the separated liquid refrigerant is input into the outdoor heat exchanger through the liquid pipe. In this way, both the gaseous refrigerant and the liquid refrigerant are input into the outdoor heat exchanger.
- the heat transfer coefficient of gaseous refrigerant in the outdoor heat exchanger is very low. Directly inputting gaseous refrigerant into the outdoor heat exchanger will waste the heat exchange area of the outdoor heat exchanger. Under refrigeration conditions, the refrigerant is output from the outdoor heat exchanger and enters the separation chamber of the gas-liquid separator through the outlet of the gas-liquid separator. In this case, the gas-liquid separation effect cannot be achieved, making the refrigerant input into the indoor heat exchanger a gas-liquid mixed refrigerant, resulting in reduced heat exchange performance of the indoor heat exchanger.
- some embodiments of the present disclosure provide an air conditioning system, which can separate the refrigerant into gas and liquid under both heating and cooling conditions, reduce the situation where the gas-liquid mixed refrigerant enters the indoor heat exchanger under cooling conditions, causing insufficient refrigerant circulation, and improve the heat exchange performance and energy efficiency of the indoor heat exchanger under cooling conditions.
- the gaseous refrigerant separated by the air conditioning system under heating conditions can be directly input into the indoor heat exchanger.
- the heat exchange area of the outdoor heat exchanger can be fully utilized, thereby improving the heat exchange performance and energy efficiency ratio of the outdoor heat exchanger.
- the air conditioning system includes a compressor 1 , an outdoor heat exchanger 2 , a gas-liquid separator 3 , an indoor heat exchanger 4 , a four-way valve 13 and a first throttling device 17 .
- the four-way valve 13 is respectively connected to the compressor 1, the second end 220 of the outdoor heat exchanger 2 and the first end 41 of the indoor heat exchanger 4.
- the first throttling device 17 is arranged between the first delivery pipe i of the gas-liquid separator 3 and the second end 42 of the indoor heat exchanger 4.
- the second delivery pipe j of the gas-liquid separator 3 is connected to the first end 210 of the outdoor heat exchanger 2.
- the third delivery pipe k of the gas-liquid separator 3 is connected to the return air pipeline between the four-way valve 13 and the compressor 1 and is connected to the return air pipeline.
- the gas-liquid separator 3 performs gas-liquid separation on the refrigerant from the first delivery pipe i or the second delivery pipe j, and the separated gaseous refrigerant is output from the third delivery pipe k.
- the third delivery pipe k is connected to the first chamber 14 of the compressor 1 and communicates with the first chamber 14.
- the first chamber 14 may include a medium-pressure chamber of the compressor 1.
- the gaseous refrigerant is directly delivered to the first chamber 14 of the compressor 1 to achieve the effect of jet enthalpy increase, increase the return air superheat of the compressor 1, and reduce the exhaust temperature of the compressor 1.
- the gas-liquid separator 3 has a bidirectional separation function, and the first delivery pipe i and the second delivery pipe j can both be used as a refrigerant inlet and a refrigerant outlet.
- the gas-liquid separator 3 can separate the gas and liquid of the refrigerant entering the separation chamber from the first delivery pipe i or the second delivery pipe j.
- a low-pressure tank 12 is also connected to the return air pipeline between the four-way valve 13 and the compressor 1. In actual applications, the low-pressure tank 12 may not be provided on the return air pipeline between the four-way valve 13 and the compressor 1, and the present disclosure does not limit this.
- the refrigerant flows out from the outlet of the compressor 1, flows into the indoor heat exchanger 4 from the first end 41 of the indoor heat exchanger 4, releases heat at the indoor heat exchanger 4, and then flows out from the second end 42 of the indoor heat exchanger 4, passes through the first throttling device 17, flows into the gas-liquid separator 3 from the first delivery pipe i of the gas-liquid separator 3, performs gas-liquid separation in the gas-liquid separator 3, and the separated liquid refrigerant with higher purity flows out from the second delivery pipe j of the gas-liquid separator 3, flows into the outdoor heat exchanger 2 from the first end 210 of the outdoor heat exchanger 2, flows out from the second end 220 of the outdoor heat exchanger 2, flows through the four-way valve 13 and the low-pressure tank 12 in sequence, and returns to the compressor 1 from the inlet of the compressor 1.
- the gaseous refrigerant with higher purity separated by the gas-liquid separator 3 can be output from the third delivery pipe k of the gas-liquid separator 3, passes through the low-pressure tank 12, and returns to the compressor 1 from the inlet of the compressor 1. In the heating condition, the refrigerant circulates in the entire air-conditioning system in the above manner to achieve the indoor heating function.
- the gaseous refrigerant since the gaseous refrigerant can be output from the third delivery pipe k of the gas-liquid separator 3 back to the compressor 1, the gaseous refrigerant does not need to be directly input into the outdoor heat exchanger 2.
- the refrigerant input into the outdoor heat exchanger 2 is a liquid refrigerant with a higher purity.
- the heat transfer coefficient of the liquid refrigerant in the outdoor heat exchanger 2 is higher, so that the heat transfer area of the outdoor heat exchanger 2 can be fully utilized, thereby improving the heat transfer efficiency of the outdoor heat exchanger 2. performance and energy efficiency ratio, thereby improving the heating performance of the entire air-conditioning system under heating conditions.
- the four-way valve 13 is reversed so that the outlet of the compressor 1 is connected to the second end 220 of the outdoor heat exchanger 2, and the first end 41 of the indoor heat exchanger 4 is connected to the inlet of the compressor 1.
- the flow direction of the refrigerant is opposite to that in FIG1.
- the refrigerant flows out from the outlet of the compressor 1, flows into the outdoor heat exchanger 2 from the second end 220 of the outdoor heat exchanger 2, and then flows out from the first end 210 of the outdoor heat exchanger 2, flows into the gas-liquid separator 3 from the second delivery pipe j of the gas-liquid separator 3, and performs gas-liquid separation in the gas-liquid separator 3.
- the separated liquid refrigerant with higher purity flows out from the first delivery pipe i of the gas-liquid separator 3, passes through the first throttling device 17, flows into the indoor heat exchanger 4 from the second end 42 of the indoor heat exchanger 4, flows out from the first end 41 of the indoor heat exchanger 4, and returns to the compressor 1 from the inlet of the compressor 1.
- the gaseous refrigerant with higher purity separated by the gas-liquid separator 3 can be output from the third delivery pipe k of the gas-liquid separator 3 and returned to the compressor 1 from the inlet of the compressor 1. Under the refrigeration condition, the refrigerant circulates in the entire air-conditioning system in the above manner to achieve the indoor refrigeration function.
- the refrigerant can also achieve gas-liquid separation when it is input from the second delivery pipe j of the gas-liquid separator 3, and the separated liquid refrigerant with higher purity is sent to the indoor heat exchanger 4.
- the liquid refrigerant with higher purity flows through the throttling device, and there is noise flowing through a smaller throttling device.
- the setting value of the maximum flow of the throttling device is designed based on the liquid refrigerant during the design process, the liquid refrigerant with higher purity flows through the throttling device, so that the actual maximum flow of the throttling device is consistent with the design value, reducing the situation of insufficient refrigerant flow entering the indoor heat exchanger 4, and reducing the situation of insufficient refrigeration capacity and reduced energy efficiency of the air-conditioning system due to insufficient refrigerant flow.
- the gas-liquid separator 3 can separate the gas and liquid of the refrigerant input from the first delivery pipe i or the second delivery pipe j under heating and cooling conditions, the problem in the related art that the refrigerant input from the outdoor heat exchanger 2 to the gas-liquid separator cannot be separated into gas and liquid under cooling conditions is solved.
- the first throttling device 17 throttles the refrigerant flowing through the pipeline between the gas-liquid separator 3 and the indoor heat exchanger 4. Under refrigeration conditions, the liquid refrigerant output from the first delivery pipe i of the gas-liquid separator 3 flows into the indoor heat exchanger 4 after being throttled by the first throttling device 17. Since the purity of the liquid refrigerant after separation by the gas-liquid separator 3 is relatively high, it is beneficial to reduce the noise of the first throttling device 17, and at the same time, the actual maximum flow of the first throttling device 17 can be consistent with the design value, avoiding the system capacity shortage and energy efficiency reduction caused by insufficient refrigerant circulation flow under refrigeration conditions.
- the air conditioning system further includes a first control valve 5, a first end of the first control valve 5 is connected to the third delivery pipe k, and a second end of the first control valve 5 is connected to the return air pipeline between the four-way valve 13 and the compressor 1 or the first chamber 14 of the compressor 1.
- the pressure in the gas-liquid separator 3 is adjusted by controlling the connection or disconnection of the first control valve 5, thereby ensuring that the separated gaseous refrigerant can be output from the third delivery pipe k.
- the gas-liquid separator 3 can perform gas-liquid separation on the refrigerant from the indoor heat exchanger 4 and the outdoor heat exchanger 2.
- FIG. 5 shows a schematic cross-sectional view of the gas-liquid separator 3 along the axial direction.
- the third delivery pipe k of the gas-liquid separator 3 is arranged at the upper part of the gas-liquid separator 3, and the second delivery pipe j is arranged at the lower part of the gas-liquid separator 3.
- the first delivery pipe i is arranged on the side wall of the gas-liquid separator 3, and the position of the first delivery pipe i is lower than the position of the third delivery pipe k and higher than the position of the second delivery pipe j.
- the port orientation of the second delivery pipe j enables the refrigerant input from the second delivery pipe j to be sprayed onto the side wall and/or bottom surface of the gas-liquid separator 3.
- angle a is the possible angle range between the port orientation of the third delivery pipe k and the horizontal line
- angle b is the possible angle range between the port orientation of the first delivery pipe i and the horizontal line
- angle c is the possible angle range between the port orientation of the second delivery pipe j and the horizontal line.
- the first delivery pipe i is arranged on the side wall of the gas-liquid separator 3.
- the refrigerant from the indoor heat exchanger 4 enters the separation chamber from the first delivery pipe i and is sprayed onto the side wall of the gas-liquid separator 3.
- the refrigerant is sprayed onto the side wall and flows downward under the action of gravity.
- the gas-liquid separator 3 also applies centrifugal force to the refrigerant.
- the refrigerant undergoes gas-liquid separation under the action of gravity and centrifugal force, and separates gaseous refrigerant and liquid refrigerant.
- the separated gaseous refrigerant can be output from the third delivery pipe k at the top, and the separated liquid refrigerant can be output from the second delivery pipe j on the bottom.
- the second delivery pipe j is arranged on the bottom surface of the gas-liquid separator 3, and the port of the second delivery pipe j is oriented so that the refrigerant from the outdoor heat exchanger 2 can be sprayed onto the side wall and/or bottom surface of the gas-liquid separator 3.
- the refrigerant sprayed onto the side wall will produce gas-liquid separation under the action of gravity and centrifugal force, and the refrigerant sprayed onto the bottom surface will also achieve a certain gas-liquid separation effect under the action of centrifugal force.
- the separated gaseous refrigerant can be output from the third delivery pipe k at the top, and the separated liquid refrigerant can be output from the first delivery pipe i after accumulating in the gas-liquid separator 3 to cover the first delivery pipe i.
- the gas-liquid separator 3 can achieve good gas-liquid separation effect both in heating and cooling conditions, and bidirectional gas-liquid separation can be achieved by using only one component, the gas-liquid separator 3, thereby reducing product costs.
- the port of the second delivery pipe j faces the bottom surface or side wall of the gas-liquid separator 3, and the angle between the direction of the port of the second delivery pipe j and the perpendicular to the bottom surface is greater than or equal to 0° and less than a preset angle, which is an obtuse angle between the perpendicular to the bottom surface and the direction of the port of the first delivery pipe i.
- the port of the second delivery pipe j faces the bottom surface or side wall of the gas-liquid separator 3, which can ensure that the refrigerant sprayed from the second delivery pipe j can be sprayed onto the side wall and/or bottom surface of the gas-liquid separator 3, which is conducive to achieving a better gas-liquid separation effect.
- the port of the second delivery pipe j faces the bottom surface of the gas-liquid separator 3 and the angle between the port and the vertical line of the bottom surface is equal to 0°, the refrigerant sprayed from the second delivery pipe j will be vertically sprayed onto the bottom surface of the gas-liquid separator 3.
- the refrigerant ejected from the second delivery pipe j will be sprayed onto the side wall of the gas-liquid separator 3, and the refrigerant will be sprayed onto the side wall of the gas-liquid separator 3 within the entire angle range at an angle close to the preset angle.
- the position where the refrigerant is sprayed onto the side wall is relatively high, and the gas-liquid separation effect achieved under the action of gravity and centrifugal force is better, and it can be ensured that the refrigerant sprayed onto the side wall will not be directly sprayed out from the first delivery pipe i on the side wall.
- the refrigerant ejected from the second delivery pipe j will be sprayed onto the bottom surface and/or the side wall, which is conducive to achieving gas-liquid separation when the refrigerant enters from the second delivery pipe j.
- the angle between the port direction of the third delivery pipe k and the top surface of the gas-liquid separator 3 may be within [0°, 90°], for example, the angle may be 0°, 30°, 50° or 90°, etc.
- the angle within [0°, 90°] mentioned here refers to the smaller angle of the two angles.
- the liquid refrigerant will accumulate at the bottom of the gas-liquid separator 3, and the gaseous refrigerant will fill the space between the upper surface of the liquid refrigerant and the top of the gas-liquid separator 3.
- the angle between the port direction of the third delivery pipe k and the top surface is within [0°, 90°], which helps the gaseous refrigerant to be output from the third delivery pipe k to the outside of the gas-liquid separator 3.
- the port of the first delivery pipe i is inclined in a direction parallel to the top surface or toward the bottom surface, and the inclination angle is within the range of (0°, 10°]. Therefore, the port of the first delivery pipe i will not be oriented toward the top surface, thereby preventing the refrigerant sprayed from the first delivery pipe i from being directly sprayed from the third delivery pipe k to the outside of the two-way separator.
- the inclination angle of the first delivery pipe i toward the bottom surface is within the range of (0°, 10°], which enables the refrigerant sprayed from the first delivery pipe i to be sprayed to a relatively upper position on the side wall opposite to the side wall where the first delivery pipe i is located, so that the refrigerant can achieve a better gas-liquid separation effect under the action of gravity and centrifugal force.
- the first delivery pipe i, the second delivery pipe j, and the third delivery pipe k can all be pipes arranged on the corresponding surfaces of the gas-liquid separator 3, and do not extend into the separation chamber of the gas-liquid separator 3.
- the port orientations of the above three delivery pipes can be achieved by setting the pipe inclination angles of the three delivery pipes.
- a pipe may be inserted into the separation chamber of the gas-liquid separator 3, and an opening is provided at the end of the pipe inserted into the separation chamber, and these openings are the ports of the above-mentioned delivery pipes.
- the inclination direction of these pipes is set in the separation chamber, so as to realize the port orientation of the above-mentioned three delivery pipes.
- the air conditioning system further includes a plurality of control valves, and a combination of a gas-liquid separator and a plurality of control valves is used to realize a bidirectional gas-liquid separation function. As shown in FIG. 7 , the air conditioning system further includes a second control valve 8, a third control valve 9, a fourth control valve 10, and a fifth control valve 11.
- the second control valve 8 has a first end and a second end.
- the first end of the second control valve 8 is located between the first delivery pipe i of the gas-liquid separator 3 and the fifth control valve 11.
- the second end of the second control valve 8 is located between the third control valve 9 and the first throttling device 17.
- the fourth control valve 10 has a first end and a second end. The first end of the control valve (10) is located between the third control valve 9 and the second delivery pipe j; the second end of the fourth control valve 10 is located between the first end 210 of the outdoor heat exchanger 2 and the fifth control valve 11.
- the second control valve 8, the third control valve 9, the fourth control valve 10 and the fifth control valve 11 may be control valves with an electric drive control function, or may be passively controlled control valves, such as a one-way valve.
- the first delivery pipe i in the gas-liquid separator 3 is the refrigerant inlet
- the second delivery pipe j is the refrigerant outlet.
- the second control valve 8 and the fourth control valve 10 are connected, and the third control valve 9 and the fifth control valve 11 are disconnected.
- the refrigerant from the indoor heat exchanger 4 passes through the second control valve 8 and enters the separation chamber of the gas-liquid separator 3 from the first delivery pipe i of the gas-liquid separator 3.
- the separated liquid refrigerant flows out from the second delivery pipe j of the gas-liquid separator 3 and enters the outdoor heat exchanger 2 through the fourth control valve 10.
- the flow direction of the refrigerant under heating conditions is shown by the arrow in Figure 5.
- the third control valve 9 is connected to the fifth control valve 11
- the second control valve 8 is disconnected from the fourth control valve 10
- the refrigerant from the outdoor heat exchanger 2 enters the separation chamber of the gas-liquid separator 3 from the first delivery pipe i of the gas-liquid separator 3 through the fifth control valve 11
- the separated liquid refrigerant flows out from the second delivery pipe j of the gas-liquid separator 3 and enters the indoor heat exchanger 4 through the third control valve 9.
- the flow direction of the refrigerant under the refrigeration condition is shown in Figure 8.
- the refrigerant from the outdoor heat exchanger 2 can be transported to the first delivery pipe i of the gas-liquid separator 3, and enter the separation chamber from the first delivery pipe i for gas-liquid separation.
- the separated liquid refrigerant is then output from the second delivery pipe j and transported to the indoor heat exchanger 4 through the pipeline where the third control valve 9 is located.
- the refrigerant from the indoor heat exchanger 4 or the outdoor heat exchanger 2 can be separated into gas and liquid, so that the flow rate of the liquid refrigerant entering the indoor heat exchanger 4 under refrigeration conditions is more sufficient, the heat exchange performance of the indoor heat exchanger 4 under refrigeration conditions is improved, and the refrigeration performance of the air-conditioning system is improved.
- the third delivery pipe k of the gas-liquid separator 3 is connected to the first control valve 5 through the second throttling device 18, and the first control valve 5 can be directly connected to the first chamber 14 of the compressor 1, thereby achieving the effect of jet enthalpy increase, increasing the return air superheat of the compressor 1, and reducing the exhaust temperature of the compressor 1.
- FIG9 shows a schematic diagram of the flow direction of the refrigerant under heating conditions when the first control valve 5 is directly connected to the first chamber 14 of the compressor 1.
- FIG10 shows a schematic diagram of the flow direction of the refrigerant under cooling conditions when the first control valve 5 is directly connected to the first chamber 14 of the compressor 1.
- the first control valve 5 in FIG. 1 is used to control the connection or disconnection of the third delivery pipe k of the gas-liquid separator 3 for delivering the gaseous refrigerant to the outside.
- the air conditioning system further includes a low-pressure tank 12.
- the four-way valve 13 is respectively connected to the compressor 1, the first end 41 of the indoor heat exchanger 4, the second end 220 of the outdoor heat exchanger 2 and the inlet of the low-pressure tank 12; the first end of the first control valve 5 is connected to the third delivery pipe k of the gas-liquid separator 3.
- the second end of the first control valve 5 can be connected to the return air pipeline between the four-way valve 13 and the compressor 1.
- the second end of the first control valve 5 is connected to the return air pipeline between the four-way valve 13 and the compressor 1, so that the gaseous refrigerant output from the third delivery pipe k of the gas-liquid separator 3 can be directly output to the return air pipeline between the four-way valve 13 and the compressor 1, so that the gaseous refrigerant can be not input into the outdoor heat exchanger 2, thereby improving the heat exchange performance and energy efficiency of the outdoor heat exchanger 2.
- directly inputting the gaseous refrigerant into the pipeline between the four-way valve 13 and the inlet of the low-pressure tank 12 is conducive to reducing the exhaust temperature of the compressor 1.
- the air conditioning system further includes a first distributor 15 and a second distributor 16.
- the main pipe end of the first distributor 15 is connected to the second delivery pipe j, and each branch end of the first distributor 15 is respectively connected to the first end of each flow path in the outdoor heat exchanger 2; the main pipe end of the second distributor 16 is connected to the four-way valve 13, and each branch end of the second distributor 16 is respectively connected to the second end of each flow path in the outdoor heat exchanger 2.
- Each branch of the first distributor 15 and each branch of the second distributor 16 are connected to each flow path in the outdoor heat exchanger 2 in a one-to-one correspondence. That is, for a flow path in the outdoor heat exchanger 2, one end of the flow path is connected to a branch of the first distributor 15, and the other end of the flow path is connected to a branch in the second distributor 16.
- the refrigerant from the indoor heat exchanger 4 enters the separation chamber of the gas-liquid separator 3 from the first delivery pipe i, and is separated into gaseous refrigerant and liquid refrigerant in the separation chamber.
- the liquid refrigerant is output from the second delivery pipe j of the gas-liquid separator 3, enters each branch of the first distributor 15 from the main pipe end of the first distributor 15, enters each flow path in the outdoor heat exchanger 2 from each branch end of the first distributor 15, and then enters each branch of the second distributor 16 from each flow path of the outdoor heat exchanger 2, and finally converges to the main pipe of the second distributor 16, outputs from the main pipe end of the second distributor 16, enters the low-pressure tank 12 after passing through the four-way valve 13, and then inputs into the compressor 1 from the low-pressure tank 12.
- the refrigerant output by the compressor 1 passes through the four-way valve 13, enters the main pipe of the second distributor 16, and is divided from the main pipe end of the second distributor 16 to each branch of the second distributor 16, and then flows from each branch of the second distributor 16 into each flow path of the outdoor heat exchanger 2.
- each branch of the first distributor 15 enters each branch of the first distributor 15 from each flow path of the outdoor heat exchanger 2, and then converges into the main pipe of the first distributor 15, and then is output from the main pipe of the first distributor 15, enters the separation chamber through the second delivery pipe j of the gas-liquid separator 3, and the separated liquid refrigerant is input into the indoor heat exchanger 4 from the first delivery pipe i, and finally flows back to the compressor 1 from the first end 41 of the indoor heat exchanger 4 through the four-way valve 13 and the low-pressure tank 12.
- the first distributor 15 and the second distributor 16 can be a flute or capillary distributor.
- the first distributor 15 and the second distributor 16 in Figures 1-4 and 7-10 are illustrated as a flute distributor.
- the flute distributor has a simpler structure, is standardized, and has a low cost.
- the flute distributor has a smaller pressure drop.
- the use of a flute distributor helps to reduce the flow path pressure drop under heating conditions and improve the heat exchange capacity and efficiency of the air conditioning system.
- the air conditioning system further includes a second throttling device 18, one end of which is connected to the third delivery pipe k, and the other end of which is connected to the first end of the first control valve 5. Connectivity.
- a first temperature sensor 19 and a first pressure sensor 20 are also provided on the return air pipeline between the four-way valve 13 and the low-pressure tank 12.
- the first temperature sensor 19 is used to detect the return air temperature
- the first pressure sensor 20 is used to detect the return air pressure.
- FIGS. 2 , 4 , 9 and 10 also show a second temperature sensor 21 and a second pressure sensor 22 arranged on the pipeline at the outlet of the compressor 1 .
- the second temperature sensor 21 is used to detect the exhaust temperature of the compressor 1
- the second pressure sensor 22 is used to detect the exhaust pressure of the compressor 1 .
- a gas-liquid separator is used to achieve good gas-liquid separation of the refrigerant from the indoor heat exchanger or the outdoor heat exchanger, thereby solving the problem of insufficient refrigeration capacity due to the inability to achieve gas-liquid separation under refrigeration conditions in the related art.
- the third delivery pipe of the gas-liquid separator is connected to the pipeline between the second end of the outdoor heat exchanger and the compressor through the first control valve, and the gaseous refrigerant is output from the third delivery pipe and refluxes into the compressor. In this way, the gaseous refrigerant can be not input into the outdoor heat exchanger, thereby improving the utilization rate of the heat exchange area of the outdoor heat exchanger, and improving the heat exchange performance and energy efficiency of the outdoor heat exchanger.
- the first control valve is used to control the connection or disconnection of the pipeline output from the third delivery pipe of the gas-liquid separator.
- the gaseous refrigerant separated in the gas-liquid separator will be output from the third delivery pipe, and the air pressure in the separation chamber of the gas-liquid separator will change.
- liquid refrigerant may also flow out from the third delivery pipe. Therefore, the valve needs to be closed after the first control valve is connected for a period of time. After the valve is closed for a period of time, more and more gaseous refrigerant is separated in the separation chamber of the gas-liquid separator, and the air pressure in the separation chamber becomes higher.
- the gaseous refrigerant separated from the gas-liquid separator will also be output from the third delivery pipe, and the air pressure in the separation chamber of the gas-liquid separator will change.
- liquid refrigerant may also flow out from the third delivery pipe. Therefore, the valve needs to be closed after the first control valve is connected for a period of time. After the valve is closed for a period of time, more and more gaseous refrigerant is separated from the separation chamber of the gas-liquid separator, and the air pressure in the separation chamber becomes higher. Some of the gaseous refrigerant will be pressed out of the first delivery pipe and enter the indoor heat exchanger due to the air pressure. The gaseous refrigerant entering the indoor heat exchanger will affect the heat exchange performance of the indoor heat exchanger. Therefore, under refrigeration conditions, it is also necessary to reasonably control the connection or disconnection of the first control valve.
- Some embodiments of the present disclosure provide a control method for the air conditioning system described in any of the above embodiments. As shown in FIG11 , the method specifically includes the following steps:
- Step 101 Under heating conditions, detect whether the refrigerant is evenly distributed among the flow paths of the outdoor heat exchanger to obtain a detection result.
- the execution subject of some embodiments of the present disclosure may be a controller in an air conditioning system.
- the refrigerant comes out of the compressor, it first enters the indoor heat exchanger, then flows out of the indoor heat exchanger and is input into the separation chamber through the first delivery pipe of the gas-liquid separator. After the gaseous refrigerant and the liquid refrigerant are separated in the separation chamber, the gaseous refrigerant is output from the third delivery pipe of the gas-liquid separator. The liquid refrigerant flows out from the second delivery pipe of the gas-liquid separator and is input into the outdoor heat exchanger through the first distributor. There are multiple flow paths in the outdoor heat exchanger, and the refrigerant is divided between the flow paths. The more uniform the flow division between the flow paths, the better the heat exchange performance of the outdoor heat exchanger. If the flow division between the flow paths is uneven, the heat transfer capacity of the outdoor heat exchanger will be attenuated.
- the gaseous refrigerant is output from the third delivery pipe and will not be input into the outdoor heat exchanger.
- the outdoor heat exchanger is input with a liquid refrigerant of higher purity.
- the flow distribution of each flow path of the outdoor heat exchanger is usually relatively uniform.
- the liquid refrigerant is mixed with the gaseous refrigerant, which will cause the flow distribution of each flow path of the outdoor heat exchanger to be uneven.
- the average heat transfer coefficient of the outdoor heat exchanger within the first preset time is obtained. Based on the fact that the heat transfer coefficients of the outdoor heat exchangers within the second preset time are all less than the product of the average heat transfer coefficient and the preset attenuation coefficient, it is determined that the detection result is that the flow distribution between the various flow paths of the outdoor heat exchanger is uneven. Based on the fact that the heat transfer coefficients of the outdoor heat exchangers within the second preset time are greater than or equal to the product, it is determined that the detection result is that the flow distribution between the various flow paths of the outdoor heat exchanger is uniform.
- the first preset time length is greater than the second preset time length, and the first preset time length may be 5 minutes, 6 minutes, 8 minutes, 10 minutes, etc.
- the second preset time length may be 1 minute, 1.5 minutes, 1.8 minutes, 2 minutes, etc.
- the heat transfer coefficient of the outdoor heat exchanger is determined at intervals of a certain length of time within the first preset time length, and the certain length of the interval can be 0.5min or 1min, etc.
- the calculation process of the heat transfer coefficient of the outdoor heat exchanger is to obtain the actual operating parameters of the compressor and the bypass flow in the pipeline of the air-conditioning system. Based on the actual operating parameters of the compressor and the bypass flow, the refrigerant flow through the outdoor heat exchanger is calculated. The enthalpy difference of the air-conditioning system is measured, and the product of the refrigerant flow through the outdoor heat exchanger and the enthalpy difference is calculated to obtain the heat transfer capacity of the outdoor heat exchanger.
- the outdoor ambient temperature is detected by the temperature sensor on the outdoor heat exchanger, and the temperature difference between the outdoor ambient temperature and the saturation temperature is calculated.
- the ratio of the heat transfer capacity of the outdoor heat exchanger to the temperature difference is calculated, and the ratio is used as the heat transfer coefficient of the outdoor heat exchanger.
- the actual operating parameters of the above compressor may include volume, flow, suction pressure, exhaust pressure, etc.
- the multiple heat transfer coefficients are averaged to obtain the average heat transfer coefficient of the outdoor heat exchanger in the first preset time. After that, the heat transfer coefficient of the outdoor heat exchanger is obtained at intervals of the above-mentioned certain time. After each time the heat transfer coefficient of the outdoor heat exchanger is obtained, it is determined whether the heat transfer coefficient is less than the product of the above-mentioned average heat transfer coefficient and the preset attenuation coefficient.
- the preset attenuation coefficient is a pre-configured attenuation coefficient of the heat transfer efficiency of the outdoor heat exchanger.
- the timing starts and the timing duration is set to Compare with the second preset time, if the timing time is less than the second preset time, continue to judge whether the heat transfer coefficient obtained each time is less than the average heat transfer coefficient in the above manner. If it is judged that the heat transfer coefficient obtained at a certain time is greater than or equal to the second preset time when the timing time is less than the second preset time, it is determined that the flow distribution between the various flow paths of the outdoor heat exchanger is uniform, and the timing time is reset to zero. If the heat transfer coefficient obtained each time is less than the average heat transfer coefficient during the process of the timing time reaching the second preset time, it is determined that the flow distribution between the various flow paths of the outdoor heat exchanger is uneven.
- Step 102 Record the superheat of the compressor and the closing time of the first control valve each time.
- the air-conditioning system has a first temperature sensor arranged on the pipeline between the four-way valve and the low-pressure tank to detect the return air temperature, and a first pressure sensor to detect the return air pressure.
- the saturation temperature corresponding to the detected return air pressure is obtained, and the temperature difference between the return air temperature and the saturation temperature is calculated, and the temperature difference is used as the return air superheat of the compressor.
- the air-conditioning system has a second temperature sensor arranged on the pipeline at the compressor outlet to detect the exhaust temperature, and a second pressure sensor detects the exhaust pressure.
- the saturation temperature corresponding to the detected exhaust pressure is obtained, and the temperature difference between the exhaust temperature and the saturation temperature is calculated, and the temperature difference is used as the exhaust superheat of the compressor.
- Step 103 Based on the detection result, the superheat of the compressor and the closing time of the first control valve, the connection or disconnection of the first control valve is controlled.
- the first control valve when the heating program start instruction is detected to start heating, the first control valve is first controlled to be disconnected. And the valve closing time of the first control valve being disconnected this time is recorded. It is determined whether the valve closing time reaches the third preset time. If not, the first control valve is kept disconnected. If the valve closing time of the first control valve reaches the third preset time, the first control valve is controlled to be connected. After the first control valve is connected, the superheat of the compressor is obtained in real time. It is determined whether the superheat of the compressor is lower than the first preset temperature threshold.
- the return air superheat of the compressor is obtained.
- the second end of the first control valve is connected to the medium pressure chamber of the compressor, the exhaust gas superheat of the compressor is obtained.
- the first preset temperature thresholds corresponding to the return air superheat and the exhaust gas superheat are different.
- the first control valve In the case of obtaining the return air superheat of the compressor, it is determined whether the obtained return air superheat is lower than the corresponding first preset temperature threshold. If not, the first control valve is kept connected. If yes, the first control valve is controlled to be disconnected, and the valve closing time of this disconnection is recorded.
- the first control valve In the case of obtaining the exhaust gas superheat of the compressor, it is determined whether the obtained exhaust gas superheat is lower than the corresponding first preset temperature threshold. If not, the first control valve is kept connected. If yes, the first control valve is controlled to be disconnected, and the valve closing time of this disconnection is recorded.
- step 101 After the first control valve is disconnected this time, the operation of step 101 is used to detect whether the flow distribution between the various flow paths of the outdoor heat exchanger is uniform. Based on the detection result indicating that the flow distribution is uneven, and/or the valve closing time of the first control valve disconnected this time reaches the fourth preset time, the first control valve is controlled to be connected.
- the fourth preset time length can be 1 minute, 1.5 minutes or 2 minutes, etc.
- the superheat of the compressor is obtained again, and the connection or disconnection of the first control valve is controlled based on the superheat. If the first control valve is controlled to be disconnected, the connection or disconnection of the first control valve is controlled again based on the detection result of whether the flow distribution between the various flow paths of the outdoor heat exchanger is uniform or the closing time of the first control valve.
- connection or disconnection of the first control valve is cyclically controlled in the above manner until the current heating program ends.
- the flow distribution of each flow path of the outdoor heat exchanger can be kept uniform to the greatest extent during the entire heating process, thereby improving the heat exchange performance and energy efficiency of the air conditioning system. It also helps to reduce the situation where the return air superheat or exhaust air superheat of the compressor is too low.
- connection or disconnection of the first control valve under refrigeration conditions, it is also necessary to flexibly control the connection or disconnection of the first control valve. Specifically, under refrigeration conditions, the superheat of the compressor and the closing time of the first control valve each time are recorded. Based on the superheat or the closing time of the first control valve, the connection or disconnection of the first control valve is controlled.
- the first control valve When the refrigeration program start instruction is detected, the first control valve is controlled to be disconnected, and the valve closing time of this disconnection is recorded. When the valve closing time of the first control valve reaches the fifth preset time, the first control valve is controlled to be connected.
- the fifth preset time can be 5 minutes, 8 minutes or 10 minutes.
- the first control valve is controlled to be disconnected based on the superheat of the compressor being lower than the second preset temperature threshold.
- the second preset temperature thresholds corresponding to the return air superheat and the exhaust gas superheat are different.
- the first control valve is controlled to be disconnected based on the return air superheat of the compressor being lower than the second preset temperature threshold corresponding to the return air superheat.
- the first control valve is controlled to be disconnected based on the exhaust gas superheat of the compressor being lower than the second preset temperature threshold corresponding to the exhaust gas superheat.
- the sixth preset time can be 1 minute, 1.5 minutes or 2 minutes.
- the superheat of the compressor is obtained again, and the connection or disconnection of the first control valve is controlled based on the superheat. If the first control valve is controlled to be disconnected, the connection or disconnection of the first control valve is controlled again based on the closing time of the first control valve. The connection or disconnection of the first control valve is cyclically controlled in the above manner until the current refrigeration program ends.
- the purity of the liquid refrigerant input to the indoor heat exchanger can be maximized, and the mixed gaseous refrigerant can be reduced, thereby reducing the noise of the first throttling device, so that the actual maximum flow of the first throttling device is consistent with the design value, and the heat exchange performance and energy efficiency of the indoor heat exchanger are improved.
- Figure 12 shows the control process of the first control valve under heating conditions when the second end of the first control valve is connected to the pipeline between the second end of the outdoor heat exchanger and the inlet of the compressor.
- the first control valve is disconnected first to determine whether the valve closing time reaches the first preset time. If not, the first control valve is kept disconnected. If yes, the first control valve is controlled to be connected to determine whether the return air superheat of the compressor is lower than the threshold. If not, the first control valve is kept connected.
- the first control valve is disconnected to determine whether the flow paths of the outdoor heat exchanger are evenly diverted, or to determine whether the valve closing time of the first control valve is less than the second preset time. If yes, the first control valve is kept disconnected. If not, the first control valve is connected.
- the above-mentioned judgment process of judging whether the flow distribution of each flow path of the outdoor heat exchanger is uniform is shown in FIG13.
- the first control valve is disconnected, and the average heat transfer coefficient of the outdoor heat exchanger within the preset valve closing time is recorded. It is judged whether the heat transfer coefficient of the outdoor heat exchanger is less than the product of the preset attenuation coefficient and the average heat transfer coefficient and lasts for a certain period of time. If yes, it is determined that the flow distribution is uneven, and if not, it is determined that the flow distribution is uniform.
- FIG14 shows the control process of the first control valve under refrigeration conditions when the second end of the first control valve is connected to the pipeline between the second end of the outdoor heat exchanger and the inlet of the compressor.
- the first control valve is disconnected first to determine whether the valve closing time reaches the first preset time. If not, the first control valve is kept disconnected. If yes, the first control valve is controlled to be connected to determine whether the return air superheat of the compressor is lower than the threshold. If not, the first control valve is kept connected. If yes, the first control valve is disconnected to determine whether the valve closing time of the first control valve is less than the second preset time. If yes, the first control valve is kept disconnected. If not, the first control valve is connected.
- FIG15 shows the control process of the first control valve under heating conditions when the second end of the first control valve is connected to the medium-pressure chamber of the compressor.
- the first control valve is disconnected first to determine whether the valve closing time reaches the first preset time. If not, the first control valve is kept disconnected. If yes, the first control valve is controlled to be connected to determine whether the exhaust superheat of the compressor is lower than the threshold. If not, the first control valve is kept connected. If yes, the first control valve is disconnected to determine whether the flow paths of the outdoor heat exchanger are evenly divided, or to determine whether the valve closing time of the first control valve is less than the second preset time. If yes, the first control valve is kept disconnected. If not, the first control valve is connected.
- FIG16 shows the control process of the first control valve under refrigeration conditions when the second end of the first control valve is connected to the medium-pressure chamber of the compressor.
- the first control valve is disconnected first to determine whether the valve closing time reaches the first preset time. If not, the first control valve is kept disconnected. If yes, the first control valve is controlled to be connected to determine whether the exhaust superheat of the compressor is lower than the threshold. If not, the first control valve is kept connected. If yes, the first control valve is disconnected to determine whether the valve closing time of the first control valve is less than the second preset time. If yes, the first control valve is kept disconnected. If not, the first control valve is connected.
- connection or disconnection of the first control valve is controlled based on whether the flow distribution between the various flow paths of the outdoor heat exchanger is uniform, which can maximize the uniformity of the flow distribution of the various flow paths of the outdoor heat exchanger, thereby improving the heat exchange performance and energy efficiency of the air-conditioning system.
- the purity of the liquid refrigerant input into the indoor heat exchanger can be maximized, and the mixed gaseous refrigerant can be reduced, thereby reducing the noise of the first throttling device, so that the actual maximum flow of the first throttling device is consistent with the design value, and the heat exchange performance and energy efficiency of the indoor heat exchanger are improved.
- Some embodiments of the present disclosure provide a control device for an air conditioning system, the device being used to execute the control method for an air conditioning system provided by any of the above embodiments. As shown in FIG17 , the device comprises:
- the detection module 201 is used to detect whether the refrigerant is evenly distributed among the flow paths of the outdoor heat exchanger under heating conditions, and obtain a detection result;
- the recording module 202 is used to record the superheat of the compressor and the closing time of the first control valve each time;
- the control module 203 is used to control the connection or disconnection of the first control valve based on the detection result, the superheat of the compressor and the closing time of the first control valve.
- the detection module 201 is used to obtain the average heat transfer coefficient of the outdoor heat exchanger within a first preset time period when the first control valve is disconnected; based on the fact that the heat transfer coefficients of the outdoor heat exchangers within a second preset time period are all less than the product of the average heat transfer coefficient and the preset attenuation coefficient, it is determined that the detection result is that the flow distribution between the various flow paths of the outdoor heat exchanger is uneven; based on the fact that the heat transfer coefficients of the outdoor heat exchangers within the second preset time period are greater than or equal to the product, it is determined that the detection result is that the flow distribution between the various flow paths of the outdoor heat exchanger is uniform.
- the recording module 202 is used to record the return air superheat of the compressor when the second end of the first control valve is connected to the pipeline between the second end of the outdoor heat exchanger and the inlet of the compressor; or to record the exhaust gas superheat of the compressor when the second end of the first control valve is connected to the medium-pressure chamber of the compressor.
- the control module 203 is used to detect the heating program start instruction, control the first control valve to be disconnected; based on the closing time of the first control valve reaching the third preset time, control the first control valve to be connected; based on the superheat of the compressor being lower than the first preset temperature threshold, control the first control valve to be disconnected; based on the detection result indicating uneven diversion Evenly, and/or, the valve closing time of the first control valve disconnected this time reaches a fourth preset time, and the first control valve is controlled to be connected.
- the control module 203 is also used to record the superheat of the compressor and the closing time of the first control valve each time under refrigeration conditions; and control the connection or disconnection of the first control valve based on the superheat or the closing time of the first control valve.
- the control module 203 is also used to detect the refrigeration program start instruction and control the first control valve to be disconnected; based on the closing time of the first control valve reaching the fifth preset time, control the first control valve to be connected; based on the superheat of the compressor being lower than the second preset temperature threshold, control the first control valve to be disconnected; based on the closing time of the first control valve being disconnected this time reaching the sixth preset time, control the first control valve to be connected.
- control device of the air-conditioning system provided by some of the above-mentioned embodiments of the present disclosure and the control method of the air-conditioning system provided by some of the embodiments of the present disclosure are based on the same inventive concept and have the same beneficial effects as the methods adopted, run or implemented by the application programs stored therein.
- the embodiment of the present disclosure also provides a control device for an air-conditioning system to execute the control method of the above-mentioned air-conditioning system.
- the control device of the air-conditioning system can be a controller in the air-conditioning system.
- Figure 18, shows a schematic diagram of a control device for an air-conditioning system provided by some embodiments of the present disclosure.
- the control device 40 of the air-conditioning system includes: a processor 400, a memory 401, a bus 402 and a communication interface 403, and the processor 400, the communication interface 403 and the memory 401 are connected via the bus 402; the memory 401 stores a computer program that can be run on the processor 400, and the processor 400 executes the control method of the air-conditioning system provided by any of the aforementioned embodiments of the present disclosure when running the computer program.
- the memory 401 may include a high-speed random access memory (RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk storage.
- RAM random access memory
- non-volatile memory non-volatile memory
- the communication connection between the device network element and at least one other network element is realized through at least one communication interface 403 (which may be wired or wireless), and the Internet, wide area network, local area network, metropolitan area network, etc. may be used.
- the bus 402 may be an ISA bus, a PCI bus, or an EISA bus, etc.
- the bus may be divided into an address bus, a data bus, a control bus, etc.
- the memory 401 is used to store a program, and the processor 400 executes the program after receiving an execution instruction.
- the control method of the air conditioning system disclosed in any of the embodiments of the present disclosure may be applied to the processor 400, or implemented by the processor 400.
- the processor 400 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 400 or by instructions in the form of software.
- the above processor 400 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; It is a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA off-the-shelf programmable gate array
- the methods, steps, and logic block diagrams disclosed in some embodiments of the present disclosure can be implemented or executed.
- the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
- the steps of the method disclosed in some embodiments of the present disclosure can be directly embodied as being executed by a hardware decoding processor, or can be executed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, etc.
- the storage medium is located in the memory 401, and the processor 400 reads the information in the memory 401 and completes the steps of the above method in combination with its hardware.
- control device of the air-conditioning system provided in some embodiments of the present disclosure and the control method of the air-conditioning system provided in some embodiments of the present disclosure are based on the same inventive concept and have the same beneficial effects as the methods adopted, operated or implemented therein.
- the disclosed embodiment also provides a computer-readable storage medium corresponding to the control method of the air-conditioning system provided in the aforementioned embodiment.
- the computer-readable storage medium is a CD 30 on which a computer program (i.e., a program product) is stored.
- a computer program i.e., a program product
- the computer program When the computer program is run by the processor, it will execute the control method of the air-conditioning system provided in any of the aforementioned embodiments.
- examples of the computer-readable storage medium may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other optical or magnetic storage media, which are not listed here one by one.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory or other optical or magnetic storage media, which are not listed here one by one.
- the computer-readable storage medium provided by some of the above-mentioned embodiments of the present disclosure and the control method of the air-conditioning system provided by some embodiments of the present disclosure are based on the same inventive concept, and have the same beneficial effects as the methods adopted, run or implemented by the application programs stored therein.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
一种空调系统及其控制方法、装置及存储介质,该空调系统包括:气液分离器的第一输送管与室内换热器的第二端连通,气液分离器的第二输送管与室外换热器的第一端连通;气液分离器的第三输送管连接至四通阀与压缩机间的回气管路上,并与回气管路连通;或者气液分离器的第三输送管连接至压缩机的中压腔上;气液分离器对来自第一输送管或第二输送管的冷媒进行气液分离,分离出的气态冷媒从第三输送管输出。
Description
本公开要求于2023年02月27日提交中国国家知识产权局、申请号为202310181349.9、发明名称为“空调系统及其控制方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开属于电器设备技术领域,具体涉及一种空调系统及其控制方法、装置及存储介质。
在空调系统中采用气液分离器来分离气态冷媒和液态冷媒,相关技术中在制热工况下,气液分离器分离出的气态冷媒和液态冷媒均输入到室外换热器中。但由于气态冷媒在室外换热器中的换热系数很低,将气态冷媒直接输入到室外换热器中,会造成室外换热器换热面积的浪费。而且在制冷工况下冷媒从室外换热器输出,经气液分离器的出口进入气液分离器,在这种情况下无法实现气液分离的效果,使得输入室内换热器的冷媒为气液混合的冷媒,导致室内换热器换热性能降低。
发明内容
本公开提出一种空调系统及其控制方法、装置及存储介质,通过气液分离器实现对来自室内换热器或室外换热器的冷媒均进行很好地气液分离,解决了相关技术中制冷工况下因无法实现气液分离导致制冷能力不足的问题。且气态冷媒可以不输入到室外换热器中,从而提高室外换热器换热面积的利用率,提高室外换热器的换热性能及能效。
本公开第一方面一些实施例提出了一种空调系统,包括压缩机、室外换热器、气液分离器、室内换热器、四通阀和第一节流装置;
所述第一节流装置设置在所述气液分离器的第一输送管与所述室内换热器的第二端之间,所述气液分离器的第二输送管与所述室外换热器的第一端连通;所
述气液分离器的第三输送管连接至所述四通阀与所述压缩机之间的回气管路上,并与所述回气管路连通;或者,所述第三输送管连接至所述压缩机的第一腔室上,并与所述第一腔室连通;
所述气液分离器对来自所述第一输送管或所述第二输送管的冷媒进行气液分离,分离出的气态冷媒从所述第三输送管输出。
本公开第二方面的一些实施例提供了一种空调系统的控制方法,所述空调系统中气液分离器的第二输送管与室外换热器的第一端连通;所述气液分离器的第三输送管通过第一控制阀连接至四通阀与压缩机之间的回气管路上,并与所述回气管路连通;或者,所述第三输送管通过所述第一控制阀连接至所述压缩机的第一腔室上,并与所述第一腔室连通;所述气液分离器对来自所述第一输送管或所述第二输送管的冷媒进行气液分离,分离出的气态冷媒从所述第三输送管输出;所述方法包括:
在制热工况下,检测冷媒在所述室外换热器的各流路之间分流是否均匀,得到检测结果;
记录所述压缩机的过热度及所述第一控制阀每次关阀的关阀时长;
基于所述检测结果、所述压缩机的过热度及所述第一控制阀的关阀时长,控制所述第一控制阀的连通或断开。
本公开第三方面的一些实施例提供了一种第一方面所述的空调系统的控制装置,所述装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序以实现如第二方面所述的方法。
本公开第四方面的一些实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行实现上述第二方面所述的方法。
本公开一些实施例中提供的技术方案,至少具有如下技术效果或优点:
在本公开一些实施例中,通过气液分离器实现对来自室内换热器或室外换热器的冷媒均进行很好地气液分离,解决了相关技术中制冷工况下因无法实现气液分离导致制冷能力不足的问题。气液分离器的第三输送管连接至四通阀与压缩机之间的回气管路上,或者连接至压缩机的第一腔室上。气态冷媒从第三输送管输出并回流到压缩机中。如此气态冷媒可以不输入到室外换热器中,从而提高室外换热器换热面积的利用率,提高室外换热器的换热性能及能效。
进一步地,在制热过程中基于室外换热器的各流路之间分流是否均匀,来控制第一控制阀的连通或断开,能够最大程度地保持室外换热器各流路分流均匀,从而提高空调系统的换热性能及能效。通过灵活控制第一控制阀的连通或断开,能够减少气态冷媒被输入到室外换热器中,以及减少液态冷媒从气液分离器的第
三输送管直接输出的情况,有助于减少压缩机的回气过热度或排气过热度过低的情况。在制冷过程中,能够最大程度地提高输入室内换热器的液态冷媒的纯度,减少混入的气态冷媒,从而降低第一节流装置的噪音,使得第一节流装置的实际最大流量与设计值相符,提高室内换热器的换热性能及能效。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变的明显,或通过本公开的实践了解到。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本公开一些实施例所提供的一种空调系统的第一结构示意图;
图2示出了本公开一些实施例所提供的一种空调系统的第二结构示意图;
图3示出了本公开一些实施例所提供的一种空调系统的第三结构示意图;
图4示出了本公开一些实施例所提供的一种空调系统的第四结构示意图;
图5示出了本公开一些实施例所提供的气液分离器沿轴向的剖面结构示意图;
图6示出了本公开一些实施例所提供的气液分离器沿轴向的另一剖面结构示意图;
图7示出了本公开一些实施例所提供的一种空调系统的第五结构示意图;
图8示出了本公开一些实施例所提供的一种空调系统的第六结构示意图;
图9示出了本公开一些实施例所提供的一种空调系统的第七结构示意图;
图10示出了本公开一些实施例所提供的一种空调系统的第八结构示意图;
图11示出了本公开一些实施例所提供的一种空调系统的控制方法的流程图;
图12示出了本公开一些实施例所提供的制热工况下第一控制阀的控制流程图;
图13示出了本公开一些实施例所提供的检测室外换热器各流路分流是否均匀的流程图;
图14示出了本公开一些实施例所提供的制冷工况下第一控制阀的控制流程图;
图15示出了本公开一些实施例所提供的制热工况下第一控制阀的另一控制流程图;
图16示出了本公开一些实施例所提供的制冷工况下第一控制阀的另一控制流程图;
图17示出了本公开一些实施例所提供的一种空调系统的控制装置的结构框图;
图18示出了本公开一些实施例所提供的一种空调系统的控制装置的结构示意
图;
图19示出了本公开一些实施例所提供的一种存储介质的示意图。
上述附图中各标号代表的含义如下所示:
1:压缩机,2:室外换热器,3:气液分离器,4:室内换热器,5:第一控制阀,8:第二控制阀,9:第三控制阀,10:第四控制阀,11:第五控制阀,12:低压罐,13:四通阀,14:第一腔室,15:第一分配器,16:第二分配器,17:第一节流装置,18:第二节流装置,19:第一温度传感器,20:第一压力传感器,21:第二温度传感器,22:第二压力传感器;41:室内换热器的第一端,42:室内换热器的第二端,210,室外换热器的第一端,220:室外换热器的第二端;
i:第一输送管,j:第二输送管,k:第三输送管。
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要注意的是,除非另有说明,本公开使用的技术术语或者科学术语应当为本公开所属领域技术人员所理解的通常意义。
下面结合附图来描述根据本公开一些实施例提出的一种空调系统及其控制方法、装置及存储介质。
目前,相关技术的空调系统中采用气液分离器来分离气态冷媒和液态冷媒,气液分离器通过两组分路连接室外换热器,这两组分路分别是输送气态冷媒的气管和输送液态冷媒的液管。气液分离器分离出的气态冷媒通过气管输入室外换热器中,分离出的液态冷媒通过液管输入到室外换热器中。如此气态冷媒和液态冷媒均输入到室外换热器中。
但气态冷媒在室外换热器中的换热系数很低,将气态冷媒直接输入到室外换热器中,会造成室外换热器换热面积的浪费。而在制冷工况下冷媒从室外换热器输出,经气液分离器的出口进入气液分离器的分离腔内,在这种情况下无法实现气液分离的效果,使得输入室内换热器的冷媒为气液混合的冷媒,导致室内换热器换热性能降低。
基于此,本公开一些实施例提供了一种空调系统,该空调系统在制热工况和制冷工况下都能够实现对冷媒进行气液分离,减少在制冷工况下气液混合的冷媒进入室内换热器造成冷媒循环量不足的情况,提高制冷工况下室内换热器的换热性能及能效比。而且该空调系统在制热工况下分离出的气态冷媒可以不直接输入
室外换热器中,能够使得室外换热器的换热面积得到充分利用,提高室外换热器的换热性能及能效比。
参见图1,该空调系统包括压缩机1、室外换热器2、气液分离器3、室内换热器4、四通阀13和第一节流装置17。
其中,四通阀13分别与压缩机1、室外换热器2的第二端220及室内换热器4的第一端41连通。第一节流装置17设置在气液分离器3的第一输送管i与室内换热器4的第二端42之间,气液分离器3的第二输送管j与室外换热器2的第一端210连通;气液分离器3的第三输送管k连接至四通阀13与压缩机1之间的回气管路上,并与该回气管路连通。气液分离器3对来自第一输送管i或第二输送管j的冷媒进行气液分离,分离出的气态冷媒从第三输送管k输出。
或者,如图2所示,第三输送管k连接至压缩机1的第一腔室14上,并与第一腔室14连通,该第一腔室14可以包括压缩机1的中压腔,气态冷媒直接输送到压缩机1的第一腔室14可以实现喷气增焓的效果,增加压缩机1的回气过热度,降低压缩机1的排气温度。
图1和2所示的空调系统中,气液分离器3具有双向分离功能,第一输送管i和第二输送管j均即可以作为冷媒入口,也可以作为冷媒出口。气液分离器3对从第一输送管i或第二输送管j进入分离腔的冷媒都可以实现气液分离。
图1和2中的箭头均指的是制热工况下空调系统中的冷媒流向。图1和2中四通阀13与压缩机1之间的回气管路上还连接有低压罐12。实际应用中四通阀13与压缩机1之间的回气管路上也可以不设置低压罐12,本公开对此并不进行限制。
在制热工况下,冷媒从压缩机1出口流出,从室内换热器4的第一端41流入室内换热器4中,在室内换热器4处释放热量,之后冷媒从室内换热器4的第二端42流出,经第一节流装置17,从气液分离器3的第一输送管i流入气液分离器3中,在气液分离器3中进行气液分离,分离出的纯度较高的液态冷媒从气液分离器3的第二输送管j流出,从室外换热器2的第一端210流入室外换热器2内,从室外换热器2的第二端220流出,依次流经四通阀13和低压罐12,从压缩机1的进口回到压缩机1内。气液分离器3分离出的纯度较高的气态冷媒可以从气液分离器3的第三输送管k输出,经过低压罐12,从压缩机1的进口回到压缩机1内。制热工况下冷媒按照上述方式在整个空调系统中循环流动,实现室内制热的功能。
在此过程中,由于气态冷媒可以从气液分离器3的第三输送管k输出回到压缩机1中,使得气态冷媒可以不直接输入到室外换热器2中,输入室外换热器2中的冷媒为纯度较高的液态冷媒,液态冷媒在室外换热器2中的换热系数较高,从而能够使得室外换热器2的换热面积得到充分利用,提高室外换热器2的换热
性能及能效比,进而提高整个空调系统在制热工况下的制热性能。
在制冷工况下四通阀13换向,使得压缩机1的出口与室外换热器2的第二端220连通,室内换热器4的第一端41与压缩机1的进口连通,冷媒的流向与图1中的流向相反。如图3所示,冷媒从压缩机1出口流出,从室外换热器2的第二端220流入室外换热器2中,然后冷媒从室外换热器2的第一端210流出,从气液分离器3的第二输送管j流入气液分离器3中,在气液分离器3中进行气液分离,分离出的纯度较高的液态冷媒从气液分离器3的第一输送管i流出,经第一节流装置17,从室内换热器4的第二端42流入室内换热器4内,从室内换热器4的第一端41流出,从压缩机1的进口回到压缩机1内。气液分离器3分离出的纯度较高的气态冷媒可以从气液分离器3的第三输送管k输出,从压缩机1的进口回到压缩机1内。制冷工况下冷媒按照上述方式在整个空调系统中循环流动,实现室内制冷的功能。
气液分离器3的第三输送管k连接至压缩机1的第一腔室14的情况下,制冷工况下冷媒的流向如图4所示。
在制冷过程中,冷媒从气液分离器3的第二输送管j输入时也能够实现气液分离,分离出的纯度较高的液态冷媒进行室内换热器4中。在气液分离器3与室内换热器4之间设置有节流装置的情况下,纯度较高的液态冷媒流经节流装置,有流于较小节流装置的噪音。由于在设计过程中节流装置的最大流量的设置值是以液态冷媒进行设计的,因此纯度较高的液态冷媒流经节流装置,能够使得节流装置的实际最大流量与设计值相符,减少进入室内换热器4的冷媒流量不足的情况,减少因冷媒流量不足导致空调系统制冷能力不足及能效下降的情况。
由于在制热工况和制冷工况下,气液分离器3能够对从第一输送管i或第二输送管j输入的冷媒进行气液分离,因此解决了相关技术中在制冷工况下室外换热器2输入到气液分离器中的冷媒无法实现气液分离的问题。
第一节流装置17对流经气液分离器3与室内换热器4之间管路的冷媒进行节流。在制冷工况下,从气液分离器3的第一输送管i输出的液态冷媒经第一节流装置17节流后流入室内换热器4中。由于经气液分离器3分离后的液态冷媒纯度较高,有利于减小第一节流装置17的噪音,同时能够让第一节流装置17的实际最大流量与设计值相符,避免制冷工况下冷媒循环流量不足带来的系统能力不足及能效下降的情况。
如图1和2所示,该空调系统还包括第一控制阀5,第一控制阀5的第一端与第三输送管k连接,第一控制阀5的第二端连接至四通阀13与压缩机1之间的回气管路或压缩机1的第一腔室14上。通过控制第一控制阀5的连通或断开来调节气液分离器3内的压强,从而确保分离出的气态冷媒能够从第三输送管k输出。
在本公开的一些实施例中,气液分离器3对来自室内换热器4和室外换热器2的冷媒均能够进行气液分离。图5示出了该气液分离器3沿轴向的剖面示意图,如图5所示,气液分离器3的第三输送管k设置于气液分离器3的上部,第二输送管j设置于气液分离器3的下部。第一输送管i设置在气液分离器3的侧壁上,第一输送管i的位置低于第三输送管k的位置,且高于第二输送管j的位置。第二输送管j的端口朝向使得从第二输送管j输入的冷媒能够喷到气液分离器3的侧壁和/或底面上。图5中角度a为第三输送管k的端口朝向与水平线之间可能的夹角范围,角度b为第一输送管i的端口朝向与水平线之间可能的夹角范围,角度c为第二输送管j的端口朝向与水平线之间可能的夹角范围。
图5中第一输送管i设置在气液分离器3的侧壁上,来自室内换热器4的冷媒从第一输送管i进入分离腔会被喷到气液分离器3的侧壁上,冷媒被喷到侧壁上在重力的作用下往下流,气液分离器3还施加给冷媒离心力,冷媒在重力及离心力的作用下发生气液分离,分离出气态冷媒和液态冷媒。分离出的气态冷媒可以从顶端的第三输送管k输出,而分离出的液体冷媒可以从底面上的第二输送管j输出。
第二输送管j设置在气液分离器3的底面上,第二输送管j的端口朝向能够使得来自室外换热器2的冷媒被喷到气液分离器3的侧壁和/或底面上。被喷到侧壁上冷媒会在重力及离心力的作用下产生气液分离,被喷到底面上的冷媒也会在离心力的作用下实现一定的气液分离的效果。分离出的气态冷媒可以从顶端的第三输送管k输出,而分离出的液态冷媒在气液分离器3中积聚到没过第一输送管i之后可以从第一输送管i输出。
采用上述气液分离器3在制热工况下和制冷工况下都能够实现很好的气液分离效果,且仅采用气液分离器3一个部件即可实现双向气液分离,降低了产品成本。
在本公开的一些实施例中,上述气液分离器3中,第二输送管j的端口朝向气液分离器3的底面或侧壁,且第二输送管j的端口朝向与底面的垂线之间的夹角大于等于0°且小于预设角度,该预设角度为底面的垂线与第一输送管i的端口朝向之间的钝角。
第二输送管j的端口朝向气液分离器3的底面或侧壁,能够确保从第二输送管j喷出的冷媒能够喷到气液分离器3侧壁和/或底面上,有利于实现更好地气液分离效果。第二输送管j的端口朝向气液分离器3的底面且与底面的垂线之间的夹角等于0°时,从第二输送管j喷出的冷媒将垂直喷射到气液分离器3的底面上。
第二输送管j的端口朝向气液分离器3的侧壁,且与底面的垂线之间的夹角接近上述预设角度时,如图6中第二输送管j处的箭头所示,从第二输送管j喷出的冷媒将喷射到气液分离器3的侧壁上,且在整个角度范围内在夹角接近预设角度
的情况下,冷媒喷到侧壁上的位置比较高,在重力和离心力的作用下所达到的气液分离效果更好,而且能够确保喷射到侧壁上的冷媒不会直接从侧壁上的第一输送管i喷出。
第二输送管j的端口朝向与底面的垂线之间的夹角在0°至上述预设角度之间时,从第二输送管j喷射出的冷媒会被喷到底面和/或侧壁上,有利于实现冷媒从第二输送管j进入时也能够实现气液分离。
在一些实施例中,上述气液分离器3中,第三输送管k的端口朝向与气液分离器3的顶面的夹角可以在[0°,90°]内,例如该夹角可以为0°、30°、50°或90°等。第三输送管k的端口朝向与气液分离器3之间存在两个夹角,这两个夹角互补,此处所说的夹角可以在[0°,90°]内是指两个夹角中角度较小的夹角。
气液分离器3分离出气态冷媒和液态冷媒之后,液态冷媒会积聚到气液分离器3的底部,气态冷媒会充盈在液态冷媒的上表面与气液分离器3的顶部之间的空间内。第三输送管k的端口朝向与顶面的夹角在[0°,90°]内,有助于气态冷媒从第三输送管k输出至气液分离器3之外。
在本公开一些实施例中,第一输送管i的端口朝向平行于顶面或向底面的方向倾斜,倾斜角度位于在(0°,10°]范围内。因此第一输送管i的端口朝向不会是朝着顶面的,如此能够避免从第一输送管i喷出的冷媒直接从第三输送管k喷出到双向分离器之外的情况。第一输送管i向底面的方向倾斜的倾斜角度在(0°,10°]内,能够使得从第一输送管i喷出的冷媒能够喷到第一输送管i所在侧壁对侧的侧壁上比较靠上的位置,如此冷媒在重力和离心力的作用下能够实现更好的气液分离效果。
在本公开一些实施例中,第一输送管i、第二输送管j和第三输送管k均可以为设置在气液分离器3的相应表面上的管道,并不伸入气液分离器3的分离腔内。上述三个输送管的端口朝向,可以通过设置这三个输送管的管道倾斜角度来实现这三个输送管的端口朝向。
在本公开的另一些实施例中,也可以通过管道伸入气液分离器3的分离腔内,伸入分离腔内的管道的末端设置有开口,这些开口即为上述的输送管的端口。在分离腔内设置这些管道的倾斜方向,从而实现上述三个输送管的端口朝向。
在本公开的另一些实施例中,该空调系统还包括多个控制阀,采用一个气液分离器和多个控制阀的组合方式来实现双向的气液分离功能。如图7所示,该空调系统还包括第二控制阀8、第三控制阀9、第四控制阀10和第五控制阀11。
其中,第二控制阀8存在第一端和第二端,第二控制阀8的第一端位于气液分离器3的第一输送管i及第五控制阀11之间,第二控制阀8的第二端位于第三控制阀9及第一节流装置17之间。第四控制阀10存在第一端和第二端,第四控
制阀(10)的第一端位于第三控制阀9及第二输送管j之间;第四控制阀10的第二端位于室外换热器2的第一端210及第五控制阀11之间。
上述第二控制阀8、第三控制阀9、第四控制阀10和第五控制阀11可以采用具备电驱动控制功能的控制阀,也可以采用被动控制的控制阀,如单向阀。
上述气液分离器3中第一输送管i为冷媒进口,第二输送管j为冷媒出口。在制热工况下,第二控制阀8和第四控制阀10连通,第三控制阀9和第五控制阀11断开,来自室内换热器4的冷媒经过第二控制阀8从气液分离器3的第一输送管i进入气液分离器3的分离腔内,分离后的液态冷媒从气液分离器3的第二输送管j流出,经第四控制阀10进入室外换热器2内。制热工况下冷媒的流向如图5中箭头所示。
在制冷工况下,第三控制阀9和第五控制阀11连通,第二控制阀8和第四控制阀10断开,来自室外换热器2的冷媒经第五控制阀11从气液分离器3的第一输送管i进入气液分离器3的分离腔内,分离后的液态冷媒从气液分离器3的第二输送管j流出,经第三控制阀9进入室内换热器4内。制冷工况下冷媒的流向如图8所示。
通过气液分离器3与第二控制阀8、第三控制阀9、第四控制阀10和第五控制阀11之间的结构组合,能够将来自室外换热器2的冷媒输送到气液分离器3的第一输送管i,从第一输送管i进入分离腔进行气液分离。分离出的液态冷媒再从第二输送管j输出,经第三控制阀9所在的管路输送至室内换热器4中。如此实现了对来自室内换热器4或室外换热器2的冷媒都能够进行气液分离,使得制冷工况下进入室内换热器4的液态冷媒的流量更足,提高制冷工况下室内换热器4的换热性能,提高空调系统的制冷性能。
在另一些实施例中,气液分离器3的第三输送管k通过第二节流装置18与第一控制阀5连接,且第一控制阀5可以直接连接至压缩机1的第一腔室14上,从而实现喷气增焓的效果,增加压缩机1的回气过热度,降低压缩机1的排气温度。
如图9示出了第一控制阀5直接连接至压缩机1的第一腔室14上的情况下,制热工况下冷媒的流向示意图。图10示出了第一控制阀5直接连接至压缩机1的第一腔室14上的情况下,制冷工况下冷媒的流向示意图。
在本公开一些实施例中,图1中第一控制阀5是用于控制气液分离器3的第三输送管k向外输送气态冷媒的管路的连通或断开的。
如图1-4、7-10所示,该空调系统还包括低压罐12。其中,四通阀13分别与压缩机1、室内换热器4的第一端41、室外换热器2的第二端220及低压罐12的进口连接;第一控制阀5的第一端与气液分离器3的第三输送管k连通。第一控制阀5的第二端可以连接至四通阀13与压缩机1之间的回气管路上。
第一控制阀5的第二端连接至四通阀13与压缩机1之间的回气管路上,使得气液分离器3的第三输送管k输出的气态冷媒可以直接输出到四通阀13与压缩机1之间的回气管路中,从而可以不将气态冷媒输入到室外换热器2中,提高室外换热器2的换热性能及能效。而且将气态冷媒直接输到四通阀13与低压罐12的进口之间的管路中,有利于降低压缩机1排气温度。
如图1-4、7-10所示,该空调系统还包括第一分配器15和第二分配器16。其中,第一分配器15的总管端与第二输送管j连通,第一分配器15的各支路端分别与室外换热器2中的各流路的第一端连通;第二分配器16的总管端与四通阀13连通,第二分配器16的各支路端分别与室外换热器2中各流路的第二端连通。
其中,第一分配器15的各支路、第二分配器16的各支路均与室外换热器2中各流路一一对应连接。即对于室外换热器2中的一个流路来说,该流路的一端连接第一分配器15的一条支路,该流路的另一端连接第二分配器16中的一条支路。
在制热工况下,来自室内换热器4的冷媒从第一输送管i进入气液分离器3的分离腔内,在分离腔内分离出气态冷媒和液态冷媒。其中,液态冷媒从气液分离器3的第二输送管j输出,从第一分配器15的总管端进入第一分配器15的各支路中,从第一分配器15的各支路端进入室外换热器2内的各流路中,然后从室外换热器2的各流路进入第二分配器16的各支路中,最后汇聚到第二分配器16的总管中,从第二分配器16的总管端输出,经过四通阀13后进入低压罐12中,再从低压罐12输入到压缩机1中。
在制冷工况下,压缩机1输出的冷媒经过四通阀13,进入第二分配器16的总管,从第二分配器16的总管端分流至第二分配器16的各支路中,然后从第二分配器16的各支路流入室外换热器2的各流路中。再从室外换热器2的各流路进入第一分配器15的各支路中,然后汇聚到第一分配器15的总管中,再从第一分配器15的总管中输出,经气液分离器3的第二输送管j进入分离腔,分离出的液态冷媒从第一输送管i输入到室内换热器4中,最后从室内换热器4的第一端41经四通阀13和低压罐12回流到压缩机1中。
上述第一分配器15和第二分配器16可以采用笛形管或毛细管形式的分配器,图1-4、7-10中的第一分配器15和第二分配器16就是以笛形管形式的分配器进行示意的。其中笛形管形式的分配器结构更加简单,标准化,且成本低。而且笛形管的分配器的压降更小,使用笛形管的分配器,有助于降低制热工况下的流路压降,提升空调系统的换热能力及效能。
如图1-4、7-10所示,该空调系统还包括第二节流装置18,第二节流装置18的一端与第三输送管k连通,第二节流装置18的另一端与第一控制阀5的第一端
连通。
如图1、3、7和8所示,四通阀13与低压罐12之间的回气管路上还设置有第一温度传感器19和第一压力传感器20,第一温度传感器19用于检测回气温度,第一压力传感器20用于检测回气压力。
图2、4、9、10中还示出了设置于压缩机1出口处的管路上的第二温度传感器21和第二压力传感器22,第二温度传感器21用于检测压缩机1的排气温度,第二压力传感器22用于检测压缩机1的排气压力。
在本公开一些实施例中,通过气液分离器实现对来自室内换热器或室外换热器的冷媒均进行很好地气液分离,解决了相关技术中制冷工况下因无法实现气液分离导致制冷能力不足的问题。气液分离器的第三输送管通过第一控制阀连接至室外换热器的第二端与压缩机之间的管路上,气态冷媒从第三输送管输出并回流到压缩机中。如此气态冷媒可以不输入到室外换热器中,从而提高室外换热器换热面积的利用率,提高室外换热器的换热性能及能效。
在本公开一些实施例中,第一控制阀用于控制气液分离器的第三输送管输出的管路的连通或断开。在制热工况下,第一控制阀连通后,气液分离器中分离出的气态冷媒会从第三输送管输出,气液分离器的分离腔中气压发生变化,随着时间的延长可能会有液态冷媒也从第三输送管流出,因此在第一控制阀连通一段时间后需要关阀。而关阀一段时间后,气液分离器的分离腔中分离出的气态冷媒越来越多,分离腔内的气压变高,也会存在一部分气态冷媒受气压影响被从第二输送管压出而进入室外换热器中,气态冷媒进入室外换热器中会影响室外换热器的换热性能。因此在制热工况下需要合理地控制第一控制阀的连通或断开。
在制冷工况下,第一控制阀连通后,气液分离器中分离出的气态冷媒也会从第三输送管输出,气液分离器的分离腔中气压发生变化,随着时间的延长可能会有液态冷媒也从第三输送管流出,因此在第一控制阀连通一段时间后需要关阀。而关阀一段时间后,气液分离器的分离腔中分离出的气态冷媒越来越多,分离腔内的气压变高,也会存在一部分气态冷媒受气压影响被从第一输送管压出而进入室内换热器中,气态冷媒进入室内换热器中会影响室内换热器的换热性能。因此在制冷工况下也需要合理地控制第一控制阀的连通或断开。
本公开一些实施例提出了上述任一些实施例所述的空调系统的控制方法,如图11所示,该方法具体包括以下步骤:
步骤101:在制热工况下,检测冷媒在室外换热器的各流路之间分流是否均匀,得到检测结果。
本公开一些实施例的执行主体可以为空调系统中的控制器。在制热工况下,
冷媒从压缩机出来后首先进入室内换热器中,然后从室内换热器流出,经气液分离器的第一输送管输入到分离腔内。在分离腔内分离出气态冷媒和液态冷媒后,气态冷媒从气液分离器的第三输送管输出。而液态冷媒从气液分离器的第二输送管流出,经过第一分配器输入到室外换热器中。室外换热器中有多条流路,冷媒在各流路之间分流,各流路之间分流的越均匀,则室外换热器的换热性能会越好。若各流路之间分流的不均匀,则会导致室外换热器化热能力衰减。
而在第一控制阀连通的情况下,气态冷媒从第三输送管输出,气态冷媒不会被输入到室外换热器中,室外换热器中输入的是纯度较高的液态冷媒,在这种情况下室外换热器各流路分流通常是比较均匀的。而当有气态冷媒被输入到室外换热器中时,液态冷媒中掺杂了气态冷媒,会导致室外换热器各流路分流不均匀。
因此本公开一些实施例在制热工况下,第一控制阀断开的情况下,实时检测冷媒在室外换热器的各流路之间分流是否均匀。
具体地,在第一控制阀断开的情况下,获取室外换热器在第一预设时长内的平均换热系数。基于第二预设时长内室外换热器的换热系数均小于平均换热系数与预设衰减系数的乘积,确定检测结果为室外换热器的各流路之间分流不均匀。基于第二预设时长内室外换热器的换热系数存在大于等于乘积的情况,确定检测结果为室外换热器的各流路之间分流均匀。
其中,第一预设时长大于第二预设时长,第一预设时长可以为5min、6min、8min、10min等。第二预设时长可以为1min、1.5min、1.8min、2min等。
在第一预设时长内每间隔一定时长确定室外换热器的换热系数,间隔的一定时长可以为0.5min或1min等。室外换热器的换热系数的计算过程为,获取压缩机的实际运行参数及空调系统的管路中的旁通流量。基于压缩机的实际运行参数和旁通流量,计算流经室外换热器的冷媒流量。测定该空调系统的焓差,计算流经室外换热器的冷媒流量与焓差的乘积,得到室外换热器的换热能力。通过室外换热器上的温度传感器检测室外环境温度,计算室外环境温度与饱和温度之间的温差。计算室外换热器的换热能力与该温差的比值,将该比值作为室外换热器的换热系数。
上述压缩机的实际运行参数可以包括容积、流量、吸气压力、排气压力等。
在第一预设时长内按照上述方式计算得到多个时刻室外换热器的换热系数后,对这多个换热系数求平均,得到第一预设时长内室外换热器的平均换热系数。之后每间隔上述一定时长获取室外换热器的换热系数,每次获得室外换热器的换热系数后,都判断该换热系数是否小于上述平均换热系数与预设衰减系数的乘积。其中,预设衰减系数为预先配置的室外换热器换热效率的衰减系数。
第一次判断出换热系数小于上述平均换热系数时,开始计时,并将计时时长
与第二预设时长进行比较,若计时时长小于第二预设时长,则继续按照上述方式判断每次获得的换热系数是否小于平均换热系数。若在计时时长小于第二预设时长时判断出某次获得的换热系数大于等于第二预设时长,则确定室外换热器的各流路之间分流均匀,将计时时长清零。若在计时时长达到第二预设时长的过程中每次获得的换热系数均小于平均换热系数,则确定室外换热器的各流路之间分流不均匀。
步骤102:记录压缩机的过热度及第一控制阀每次关阀的关阀时长。
在制热工况下,第一控制阀断开的情况下,还记录第一控制阀的关阀时长。在第一控制阀连通的情况下获取压缩机的过热度,在图10-13所示的空调系统中第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,获取的是压缩机的回气过热度。在图14-17所示的空调系统中第一控制阀的第二端与压缩机的中压腔连通的情况下,记录的是压缩机的排气过热度。
如图1、3、7和8中所示的空调系统,在四通阀与低压罐之间的管路上设置的第一温度传感器检测回气温度,第一压力传感器检测回气压力,获取检测的回气压力对应的饱和温度,计算回气温度与该饱和温度之间的温差,将该温差作为压缩机的回气过热度。
如图2、4、9、10中所示的空调系统,在压缩机出口处的管路上设置的第二温度传感器检测排气温度,第二压力传感器检测排气压力,获取检测的排气压力对应的饱和温度,计算排气温度与该饱和温度之间的温差,将该温差作为压缩机的排气过热度。
步骤103:基于检测结果、压缩机的过热度及第一控制阀的关阀时长,控制第一控制阀的连通或断开。
本公开一些实施例中,在检测到制热程序开启指令开始制热时,首先控制第一控制阀断开。并记录本次第一控制阀断开的关阀时长。判断关阀时长是否达到第三预设时长,若未达到,则继续保持第一控制阀断开。若第一控制阀的关阀时长达到第三预设时长,则控制第一控制阀连通。第一控制阀连通之后实时获取压缩机的过热度。判断压缩机的过热度是否低于第一预设温度阈值。
在第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,获取的是压缩机的回气过热度。在第一控制阀的第二端与压缩机的中压腔连通的情况下,获取的是压缩机的排气过热度。回气过热度和排气过热度对应的第一预设温度阈值不同。
在获取的是压缩机的回气过热度的情况下,判断获取到的回气过热度是否低于对应的第一预设温度阈值。如果否,则继续保持第一控制阀连通。如果是,则控制第一控制阀断开,并记录本次断开的关阀时长。
在获取的是压缩机的排气过热度的情况下,判断获取到的排气过热度是否低于对应的第一预设温度阈值。如果否,则继续保持第一控制阀连通。如果是,则控制第一控制阀断开,并记录本次断开的关阀时长。
在本次控制第一控制阀断开之后,按照步骤101的操作检测室外换热器的各流路之间分流是否均匀,基于检测结果指示分流不均匀,和/或,第一控制阀本次断开的关阀时长达到第四预设时长,控制第一控制阀连通。
其中,第四预设时长可以为1min、1.5min或2min等。
控制第一控制阀连通之后,再次获取压缩机的过热度,并基于过热度控制第一控制阀的连通或断开,若控制第一控制阀断开之后,则再次基于室外换热器的各流路之间分流是否均匀的检测结果或第一控制阀的关阀时长来控制第一控制阀的连通或断开。
按照上述方式来循环控制第一控制阀的连通或断开,直至当前制热程序结束为止。如此在整个制热过程中,能够最大程度地保持室外换热器各流路分流均匀,从而提高空调系统的换热性能及能效。而且有助于减少压缩机的回气过热度或排气过热度过低的情况。
在本公开一些实施例中,在制冷工况下,也需要对第一控制阀的连通或断开进行灵活控制。具体地,在制冷工况下,记录压缩机的过热度及第一控制阀每次关阀的关阀时长。基于过热度或第一控制阀的关阀时长,控制第一控制阀的连通或断开。
同样地,在第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,获取的是压缩机的回气过热度。在第一控制阀的第二端与压缩机的中压腔连通的情况下,获取的是压缩机的排气过热度。
检测到制冷程序开启指令,控制第一控制阀断开,并记录本次断开的关阀时长,基于第一控制阀的关阀时长达到第五预设时长,控制第一控制阀连通。第五预设时长可以为5min、8min或10min等。
在第一流程控制阀连通后,基于压缩机的过热度低于第二预设温度阈值,控制第一控制阀断开。在本公开一些实施例中,回气过热度和排气过热度对应的第二预设温度阈值不同。在获取的是回气过热度的情况下,基于压缩机的回气过热度低于回气过热度对应的第二预设温度阈值,控制第一控制阀断开。在获取的是排气过热度的情况下,基于压缩机的排气过热度低于排气过热度对应的第二预设温度阈值,控制第一控制阀断开。
控制第一控制阀断开后,还记录本次断开的关阀时长,基于第一控制阀本次断开的关阀时长达到第六预设时长,控制第一控制阀连通。第六预设时长可以为1min、1.5min或2min等。
控制第一控制阀连通之后,再次获取压缩机的过热度,并基于过热度控制第一控制阀的连通或断开,若控制第一控制阀断开之后,则再次基于第一控制阀的关阀时长来控制第一控制阀的连通或断开。按照上述方式来循环控制第一控制阀的连通或断开,直至当前制冷程序结束为止。如此在整个制冷过程中,能够最大程度地提高输入室内换热器的液态冷媒的纯度,减少混入的气态冷媒,从而降低第一节流装置的噪音,使得第一节流装置的实际最大流量与设计值相符,提高室内换热器的换热性能及能效。
为了便于理解本公开一些实施例提供的空调系统的控制方法,下面结合附图进行说明。图12示出了在第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,制热工况下第一控制阀的控制过程。如图12所示,制热程序开始后,先断开第一控制阀,判断关阀时长是否达到第一预设时长,如果否,则继续保持断开第一控制阀。如果是,则控制第一控制阀连通,判断压缩机的回气过热度是否低于阈值,如果否,则继续保持连通第一控制阀。如果是,则断开第一控制阀,判断室外换热器各流路分流是否均匀,或者,判断第一控制阀的关阀时长是否小于第二预设时长,如果是,则继续保持断开第一控制阀。如果否,则连通第一控制阀。
其中,上述判断室外换热器各流路分流是否均匀的判断过程如图13所示,断开第一控制阀,记录关阀预设时长内室外换热器的平均换热系数。判断室外换热器的换热系数是否小于预设衰减系数与平均换热系数的乘积并持续一定时长,如果是,则确定分流不均匀,如果否,则确定分流均匀。
图14示出了在第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,制冷工况下第一控制阀的控制过程。如图14所示,制冷程序开始后,先断开第一控制阀,判断关阀时长是否达到第一预设时长,如果否,则继续保持断开第一控制阀。如果是,则控制第一控制阀连通,判断压缩机的回气过热度是否低于阈值,如果否,则继续保持连通第一控制阀。如果是,则断开第一控制阀,判断第一控制阀的关阀时长是否小于第二预设时长,如果是,则继续保持断开第一控制阀。如果否,则连通第一控制阀。
图15示出了在第一控制阀的第二端与压缩机的中压腔连通的情况下,制热工况下第一控制阀的控制过程。如图15所示,制热程序开始后,先断开第一控制阀,判断关阀时长是否达到第一预设时长,如果否,则继续保持断开第一控制阀。如果是,则控制第一控制阀连通,判断压缩机的排气过热度是否低于阈值,如果否,则继续保持连通第一控制阀。如果是,则断开第一控制阀,判断室外换热器各流路分流是否均匀,或者,判断第一控制阀的关阀时长是否小于第二预设时长,如果是,则继续保持断开第一控制阀。如果否,则连通第一控制阀。
图16示出了在第一控制阀的第二端与压缩机的中压腔连通的情况下,制冷工况下第一控制阀的控制过程。如图16所示,制冷程序开始后,先断开第一控制阀,判断关阀时长是否达到第一预设时长,如果否,则继续保持断开第一控制阀。如果是,则控制第一控制阀连通,判断压缩机的排气过热度是否低于阈值,如果否,则继续保持连通第一控制阀。如果是,则断开第一控制阀,判断第一控制阀的关阀时长是否小于第二预设时长,如果是,则继续保持断开第一控制阀。如果否,则连通第一控制阀。
在本公开一些实施例中,在制热过程中基于室外换热器的各流路之间分流是否均匀,来控制第一控制阀的连通或断开,能够最大程度地保持室外换热器各流路分流均匀,从而提高空调系统的换热性能及能效。通过灵活控制第一控制阀的连通或断开,能够减少气态冷媒被输入到室外换热器中,以及减少液态冷媒从气液分离器的第三输送管直接输出的情况,有助于减少压缩机的回气过热度或排气过热度过低的情况。在制冷过程中,能够最大程度地提高输入室内换热器的液态冷媒的纯度,减少混入的气态冷媒,从而降低第一节流装置的噪音,使得第一节流装置的实际最大流量与设计值相符,提高室内换热器的换热性能及能效。
本公开一些实施例提供了一种空调系统的控制装置,该装置用于执行上述任一些实施例所提供的空调系统的控制方法。如图17所示,该装置包括:
检测模块201,用于在制热工况下,检测冷媒在室外换热器的各流路之间分流是否均匀,得到检测结果;
记录模块202,用于记录压缩机的过热度及第一控制阀每次关阀的关阀时长;
控制模块203,用于基于检测结果、压缩机的过热度及第一控制阀的关阀时长,控制第一控制阀的连通或断开。
检测模块201,用于在第一控制阀断开的情况下,获取室外换热器在第一预设时长内的平均换热系数;基于第二预设时长内室外换热器的换热系数均小于平均换热系数与预设衰减系数的乘积,确定检测结果为室外换热器的各流路之间分流不均匀;基于第二预设时长内室外换热器的换热系数存在大于等于乘积的情况,确定检测结果为室外换热器的各流路之间分流均匀。
记录模块202,用于在第一控制阀的第二端连接至室外换热器的第二端与压缩机的进口之间的管路的情况下,记录压缩机的回气过热度;或者,在第一控制阀的第二端与压缩机的中压腔连通的情况下,记录压缩机的排气过热度。
控制模块203,用于检测到制热程序开启指令,控制第一控制阀断开;基于第一控制阀的关阀时长达到第三预设时长,控制第一控制阀连通;基于压缩机的过热度低于第一预设温度阈值,控制第一控制阀断开;基于检测结果指示分流不均
匀,和/或,第一控制阀本次断开的关阀时长达到第四预设时长,控制第一控制阀连通。
控制模块203,还用于在制冷工况下,记录压缩机的过热度及第一控制阀每次关阀的关阀时长;基于过热度或第一控制阀的关阀时长,控制第一控制阀的连通或断开。
控制模块203,还用于检测到制冷程序开启指令,控制第一控制阀断开;基于第一控制阀的关阀时长达到第五预设时长,控制第一控制阀连通;基于压缩机的过热度低于第二预设温度阈值,控制第一控制阀断开;基于第一控制阀本次断开的关阀时长达到第六预设时长,控制第一控制阀连通。
本公开的上述一些实施例提供的空调系统的控制装置与本公开一些实施例提供的空调系统的控制方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
本公开实施方式还提供一种空调系统的控制装置,以执行上述空调系统的控制方法。该空调系统的控制装置可以为空调系统中的控制器。请参考图18,其示出了本公开的一些实施方式所提供的一种空调系统的控制装置的示意图。如图18所示,空调系统的控制装置40包括:处理器400,存储器401,总线402和通信接口403,所述处理器400、通信接口403和存储器401通过总线402连接;所述存储器401中存储有可在所述处理器400上运行的计算机程序,所述处理器400运行所述计算机程序时执行本公开前述任一实施方式所提供的空调系统的控制方法。
其中,存储器401可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口403(可以是有线或者无线)实现该装置网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线402可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。其中,存储器401用于存储程序,所述处理器400在接收到执行指令后,执行所述程序,前述本公开一些实施例任一实施方式揭示的所述空调系统的控制方法可以应用于处理器400中,或者由处理器400实现。
处理器400可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器400中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器400可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以
是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器401,处理器400读取存储器401中的信息,结合其硬件完成上述方法的步骤。
本公开一些实施例提供的空调系统的控制装置与本公开一些实施例提供的空调系统的控制方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本公开实施方式还提供一种与前述实施方式所提供的空调系统的控制方法对应的计算机可读存储介质,请参考图19,其示出的计算机可读存储介质为光盘30,其上存储有计算机程序(即程序产品),所述计算机程序在被处理器运行时,会执行前述任意实施方式所提供的空调系统的控制方法。
需要说明的是,所述计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本公开的上述一些实施例提供的计算机可读存储介质与本公开一些实施例提供的空调系统的控制方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
需要说明的是:
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的一些实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本公开的一些示例性实施例的描述中,本公开的各个特征有时被一起分组到一些实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下示意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方
面在于少于前面公开的一些实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的一些实施例。例如,在下面的权利要求书中,所要求保护的一些实施例的任意之一都可以以任意的组合方式来使用。
以上所述,仅为本公开可选的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (20)
- 一种空调系统,包括压缩机(1)、室外换热器(2)、气液分离器(3)、室内换热器(4)、四通阀(13)和第一节流装置(17),所述第一节流装置(17)设置在所述气液分离器(3)的第一输送管(i)与所述室内换热器(4)的第二端(42)之间,所述气液分离器(3)的第二输送管(j)与所述室外换热器(2)的第一端(210)连通;所述气液分离器(3)的第三输送管(k)连接至所述四通阀(13)与所述压缩机(1)之间的回气管路上,并与所述回气管路连通;或者,所述第三输送管(k)连接至所述压缩机(1)的第一腔室(14)上,并与所述第一腔室(14)连通;所述气液分离器(3)对来自所述第一输送管(i)或所述第二输送管(j)的冷媒进行气液分离,分离出的气态冷媒从所述第三输送管(k)输出。
- 根据权利要求1所述的空调系统,其中,所述第一输送管(i)设置在所述气液分离器(3)的侧壁上,所述第一输送管(i)的位置低于所述第三输送管(k)的位置,且高于所述第二输送管(j)的位置;所述第二输送管(j)的端口朝向使得从所述第二输送管(j)输入的冷媒能够喷到所述气液分离器(3)的侧壁和/或底面上。
- 根据权利要求1所述的空调系统,其中,所述系统还包括第一控制阀(5),所述第一控制阀(5)的第一端与所述第三输送管(k)连接,所述第一控制阀(5)的第二端连接至所述回气管路或所述第一腔室(14)上,所述第一腔室(14)包括所述压缩机(1)的中压腔。
- 根据权利要求1所述的空调系统,其中,所述系统还包括第二控制阀(8)、第三控制阀(9)、第四控制阀(10)和第五控制阀(11);所述第二控制阀(8)存在第一端和第二端,所述第二控制阀(8)的第一端位于所述第一输送管(i)及所述第五控制阀(11)之间,所述第二控制阀(8)的第二端位于第三控制阀(9)及所述第一节流装置(17)之间;所述第四控制阀(10)存在第一端和第二端,所述第四控制阀(10)的第一端位于所述第三控制阀(9)及所述第二输送管(j)之间;所述第四控制阀(10)的第二端位于所述室外换热器(2)的第一端及所述第五控制阀(11)之间。
- 根据权利要求4所述的空调系统,其中,在制热工况下,所述第二控制阀(8)和所述第四控制阀(10)连通,所述第三控制阀(9)和所述第五控制阀(11)断开,来自所述室内换热器(4)的冷媒经过所述第二控制阀(8)从所述第一输送管(i)进入所述气液分离器(3)的分离腔内,分离后的液态冷媒从所述第二输送管(j)流出,经所述第四控制阀(10)进入所述室外换热器(2)内。
- 根据权利要求4所述的空调系统,其中,在制冷工况下,所述第三控制阀(9)和所述第五控制阀(11)连通,所述第二控制阀(8)和所述第四控制阀(10)断开,来自所述室外换热器(2)的冷媒经所述第五控制阀(11)从所述第一输送管(i)进入所述气液分离器(3)的分离腔内,分离后的液态冷媒从所述第二输送管(j)流出,经所述第三控制阀(9)进入所述室内换热器(4)内。
- 根据权利要求2所述的空调系统,其中,所述第二输送管(j)的端口朝向所述底面或所述侧壁,且所述第二输送管(j)的端口朝向与所述底面的垂线之间的夹角大于等于0°且小于预设角度,所述预设角度为所述底面的垂线与所述第一输送管(i)的端口朝向之间的钝角。
- 根据权利要求2或7所述的空调系统,其中,所述第三输送管(k)的端口朝向与所述气液分离器(3)的顶面的夹角在[0°,90°]内;和/或,所述第一输送管(i)的端口朝向平行于所述顶面或向所述底面的方向倾斜,所述倾斜角度在(0°,10°]范围内。
- 根据权利要求1-8任一项所述的空调系统,其中,所述空调系统还包括低压罐(12);所述四通阀(13)分别与所述压缩机(1)、所述室内换热器(4)的第一端(41)、所述室外换热器(2)的第二端(220)及所述低压罐(12)的进口连接;所述低压罐(12)的出口连接至所述压缩机(1)的进口。
- 根据权利要求1-8任一项所述的空调系统,其中,所述空调系统还包括第一分配器(15)和第二分配器(16);所述第一分配器(15)的总管端与所述第二输送管(j)连通,所述第一分配器(15)的各支路端分别与所述室外换热器(2)中的各流路的第一端连通;所述第二分配器(16)的总管端与所述四通阀(13)连接,所述第二分配器(16)的各支路端分别与所述室外换热器(2)中所述各流路的第二端连通。
- 根据权利要求10所述的空调系统,其中,所述第一分配器(15)和/或所述第二分配器(16)采用笛形管或毛细管形式的分配器。
- 根据权利要求3所述的空调系统,其中,所述空调系统还包括第二节流装置(18),所述第二节流装置(18)位于所述第三输送管(k)及所述第一控制阀(5)之间。
- 一种空调系统的控制方法,所述空调系统中气液分离器(3)的第二输送管(j)与室外换热器(2)的第一端(210)连通;所述气液分离器(3)的第三输送管(k)通过第一控制阀(5)连接至四通阀(13)与压缩机(1)之间的回气管路上,并与所述回气管路连通;或者,所述第三输送管(k)通过所述第一控制阀(5)连接至所述压缩机(1)的第一腔室(14)上,并与所述第一腔室(14)连通;所述气液分离器(3)对来自所述第一输送管(i)或所述第二输送管(j)的冷媒进行气液分离,分离出的气态冷媒从所述第三输送管(k)输出;所述方法包括:在制热工况下,检测冷媒在室外换热器(2)的各流路之间分流是否均匀,得到检测结果;记录压缩机(1)的过热度及第一控制阀(5)每次关阀的关阀时长;基于所述检测结果、所述压缩机(1)的过热度及所述第一控制阀(5)的关阀时长,控制所述第一控制阀(5)的连通或断开。
- 根据权利要求13所述的方法,其中,所述检测冷媒在所述室外换热器(2)的各流路之间分流是否均匀,得到检测结果,包括:在所述第一控制阀(5)断开的情况下,获取所述室外换热器(2)在第一预设时长内的平均换热系数;基于第二预设时长内所述室外换热器(2)的换热系数均小于所述平均换热系数与预设衰减系数的乘积,确定检测结果为所述室外换热器(2)的各流路之间分流不均匀;基于所述第二预设时长内所述室外换热器(2)的换热系数存在大于等于所述乘积的情况,确定检测结果为所述室外换热器(2)的各流路之间分流均匀。
- 根据权利要求13所述的方法,其中,所述记录所述压缩机(1)的过热度,包括:在所述第一控制阀(5)连接至所述四通阀(13)与所述压缩机(1)之间的回气管路的情况下,记录所述压缩机(1)的回气过热度;或者,在所述第一控制阀(5)与所述压缩机(1)的第一腔室(14)连接的情况下,记录所述压缩机(1)的排气过热度。
- 根据权利要求13所述的方法,其中,所述基于所述检测结果、所述压缩机(1)的过热度及所述第一控制阀(5)的关阀时长,控制所述第一控制阀(5)的连通或断开,包括:检测到制热程序开启指令,控制所述第一控制阀(5)断开;基于所述第一控制阀(5)的关阀时长达到第三预设时长,控制所述第一控制阀(5)连通;基于所述压缩机(1)的过热度低于第一预设温度阈值,控制所述第一控制阀(5)断开;基于所述检测结果指示分流不均匀,和/或,所述第一控制阀(5)本次断开的关阀时长达到第四预设时长,控制所述第一控制阀(5)连通。
- 根据权利要求13-16任一项所述的方法,其中,所述方法还包括:在制冷工况下,记录所述压缩机(1)的过热度及所述第一控制阀(5)每次关阀的关阀时长;基于所述过热度或所述第一控制阀(5)的关阀时长,控制所述第一控制阀(5)的连通或断开。
- 根据权利要求17所述的方法,其中,所述基于所述过热度或所述第一控制阀(5)的关阀时长,控制所述第一控制阀(5)的连通或断开,包括:检测到制冷程序开启指令,控制所述第一控制阀(5)断开;基于所述第一控制阀(5)的关阀时长达到第五预设时长,控制所述第一控制阀(5)连通;基于所述压缩机(1)的过热度低于第二预设温度阈值,控制所述第一控制阀(5)断开;基于所述第一控制阀(5)本次断开的关阀时长达到第六预设时长,控制所述 第一控制阀(5)连通。
- 一种权利要求1-12任一项所述的空调系统的控制装置,所述装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器运行所述计算机程序以实现如权利要求13-18任一项所述的方法。
- 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行实现如权利要求13-18中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310181349.9A CN118548597A (zh) | 2023-02-27 | 2023-02-27 | 空调系统及其控制方法、装置及存储介质 |
CN202310181349.9 | 2023-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024179182A1 true WO2024179182A1 (zh) | 2024-09-06 |
Family
ID=92453665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/070414 WO2024179182A1 (zh) | 2023-02-27 | 2024-01-03 | 空调系统及其控制方法、装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118548597A (zh) |
WO (1) | WO2024179182A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651535A (en) * | 1984-08-08 | 1987-03-24 | Alsenz Richard H | Pulse controlled solenoid valve |
CN205037475U (zh) * | 2015-08-20 | 2016-02-17 | 广东美的制冷设备有限公司 | 冷暖型空调系统和单冷型空调系统 |
WO2019091241A1 (zh) * | 2017-11-09 | 2019-05-16 | 青岛海尔空调器有限总公司 | 空调制冷循环系统及空调器 |
CN112050292A (zh) * | 2020-08-24 | 2020-12-08 | 珠海格力电器股份有限公司 | 一种空调系统、空调系统控制方法及装置 |
CN113503662A (zh) * | 2021-07-20 | 2021-10-15 | 美的集团武汉暖通设备有限公司 | 空调系统及空调系统的控制方法 |
WO2022110901A1 (zh) * | 2020-11-26 | 2022-06-02 | 珠海格力电器股份有限公司 | 多联机空调系统及其控制方法 |
-
2023
- 2023-02-27 CN CN202310181349.9A patent/CN118548597A/zh active Pending
-
2024
- 2024-01-03 WO PCT/CN2024/070414 patent/WO2024179182A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651535A (en) * | 1984-08-08 | 1987-03-24 | Alsenz Richard H | Pulse controlled solenoid valve |
CN205037475U (zh) * | 2015-08-20 | 2016-02-17 | 广东美的制冷设备有限公司 | 冷暖型空调系统和单冷型空调系统 |
WO2019091241A1 (zh) * | 2017-11-09 | 2019-05-16 | 青岛海尔空调器有限总公司 | 空调制冷循环系统及空调器 |
CN112050292A (zh) * | 2020-08-24 | 2020-12-08 | 珠海格力电器股份有限公司 | 一种空调系统、空调系统控制方法及装置 |
WO2022110901A1 (zh) * | 2020-11-26 | 2022-06-02 | 珠海格力电器股份有限公司 | 多联机空调系统及其控制方法 |
CN113503662A (zh) * | 2021-07-20 | 2021-10-15 | 美的集团武汉暖通设备有限公司 | 空调系统及空调系统的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118548597A (zh) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104634009B (zh) | 空调循环装置的控制方法 | |
CN202973639U (zh) | 可变制冷剂流冷却系统 | |
CN104613665A (zh) | 热泵空调系统 | |
WO2019179452A1 (zh) | 室外机、多联机系统及其控制方法 | |
CN112050292B (zh) | 一种空调系统、空调系统控制方法及装置 | |
WO2022017297A1 (zh) | 热泵系统 | |
WO2007115494A1 (fr) | Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé | |
WO2022160764A1 (zh) | 用于空调系统除霜控制的方法及装置、空调系统 | |
WO2018086383A1 (zh) | 空调的多联机机组和空调 | |
CN104634008A (zh) | 空调装置的控制方法 | |
CN204494894U (zh) | 热泵空调系统 | |
JP2008224190A (ja) | 冷凍サイクル装置 | |
CN104633871A (zh) | 空调系统的控制方法 | |
US20080229782A1 (en) | Refrigerating Apparatus | |
CN105091437A (zh) | 一种风冷冰箱的自动化霜系统及其控制方法 | |
CN112696839B (zh) | 空调系统、空调器及其控制方法、控制装置 | |
WO2024179182A1 (zh) | 空调系统及其控制方法、装置及存储介质 | |
CN210861783U (zh) | 冷媒循环系统及空调 | |
CN208254038U (zh) | 一种跨临界二氧化碳空气源热泵除霜系统 | |
CN206739693U (zh) | 一种空调器系统 | |
WO2024021439A1 (zh) | 用于控制空调的方法、装置、空调和存储介质 | |
CN202813921U (zh) | 一种带经济器的制冷循环系统 | |
WO2022007739A1 (zh) | 热泵系统 | |
CN204880911U (zh) | 一种风冷冰箱的自动化霜系统 | |
CN209893675U (zh) | 冷暖型热回收系统及单冷型热回收系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24762865 Country of ref document: EP Kind code of ref document: A1 |