[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022110901A1 - 多联机空调系统及其控制方法 - Google Patents

多联机空调系统及其控制方法 Download PDF

Info

Publication number
WO2022110901A1
WO2022110901A1 PCT/CN2021/111812 CN2021111812W WO2022110901A1 WO 2022110901 A1 WO2022110901 A1 WO 2022110901A1 CN 2021111812 W CN2021111812 W CN 2021111812W WO 2022110901 A1 WO2022110901 A1 WO 2022110901A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
control valve
conditioning system
storage tank
air conditioning
Prior art date
Application number
PCT/CN2021/111812
Other languages
English (en)
French (fr)
Inventor
杨玉生
胡强
王永立
顾思忠
徐如好
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022110901A1 publication Critical patent/WO2022110901A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular to a multi-connected air conditioner system and a control method thereof.
  • Micro-channel heat exchangers have higher heat transfer coefficient and lower cost than ordinary copper tube finned tube heat exchangers.
  • micro-channel heat exchangers With the continuous promotion and upgrading of aluminum micro-channel heat exchanger technology, micro-channel heat exchangers have begun to be used in the field of multi-line air conditioning systems such as central air conditioners.
  • the area of the heat exchanger is large, and the number and length of the total flat tubes in the microchannel increase.
  • a flow path of a microchannel heat exchanger is combined with multiple flat tubes in parallel to form a process. Therefore, there will be uneven distribution among the flat tubes inside the flow path.
  • the refrigerant exists in a gas-liquid two-phase state. Therefore, when it reaches the inlet of a flat tube of a certain flow path, the gaseous refrigerant will go up and the liquid refrigerant will go down due to the influence of gravity.
  • the amount of liquid refrigerant distributed by the upper and lower flat tubes is inconsistent, resulting in uneven distribution, which in turn will cause uneven temperature distribution in the heat exchanger and reduce heat exchange efficiency.
  • the technical problem to be solved by the present application is to provide a multi-line air conditioning system and a control method thereof, which can improve the uniformity of refrigerant distribution in the microchannel heat exchanger and improve the heat exchange efficiency of the heat exchanger.
  • the present application provides a multi-line air conditioning system, including a compressor, an outdoor heat exchanger, a throttling device and an indoor unit, the outdoor heat exchanger includes a micro-channel heat exchanger, and the throttling device is located in the A liquid storage tank is arranged on the pipeline between the microchannel heat exchanger and the indoor unit, and the pipeline between the throttling device and the microchannel heat exchanger, and the liquid storage tank is connected with a first A liquid pipe, a second liquid pipe and a first gas pipe, the first gas pipe is connected to the suction port of the compressor, the first liquid pipe is connected to the throttling device, and the second liquid pipe is connected to the microchannel heat exchanger.
  • the first liquid pipe is provided with a first control valve
  • the first air pipe is provided with a second control valve
  • the liquid storage tank is further connected with a second gas pipe, the second gas pipe is connected to the exhaust port of the compressor, and a third control valve is provided on the second gas pipe.
  • a bypass pipeline is further provided between the throttling device and the microchannel heat exchanger, the bypass pipeline is connected in parallel with the liquid storage tank, and a bypass pipeline is provided on the There is a fourth control valve.
  • the fourth control valve is a one-way valve that controls the one-way flow of fluid from the microchannel heat exchanger to the throttling device.
  • the multi-line air conditioning system further includes a gas-liquid separator, the gas-liquid separator is arranged at the suction end of the compressor, and the outlet of the gas-liquid separator is connected to the inlet of the compressor , the first gas pipe is connected to the inlet of the gas-liquid separator.
  • the multi-line air conditioning system further includes a four-way valve connected to the compressor, the indoor unit and the outdoor heat exchanger.
  • the first control valve, the second control valve and the third control valve are solenoid valves.
  • the nozzle of the first gas pipe is located at the top of the liquid storage tank, and the nozzles of the first liquid pipe and the second liquid pipe are located at the bottom of the liquid storage tank.
  • the first interface of the four-way valve is connected to the exhaust port of the compressor, the second interface is connected to the micro-channel heat exchanger, and the third interface is connected to the indoor unit, so The fourth interface is connected to the suction port of the compressor.
  • a method for controlling the above-mentioned multi-line air conditioning system comprising:
  • the operation state of the liquid storage tank is controlled according to the operation mode of the multi-line air conditioning system.
  • the operating mode of the multi-line air conditioning system is a heating cycle mode
  • controlling the operating state of the liquid storage tank according to the operating mode of the multi-line air conditioning system includes:
  • the refrigerant After controlling the refrigerant to flow out from the throttling device, it enters the liquid storage tank through the first liquid pipe, the gaseous refrigerant enters the suction port of the compressor through the first gas pipe, and the liquid refrigerant passes through the first air pipe.
  • the two liquid pipes enter the microchannel heat exchanger for heat exchange.
  • the operating mode of the multi-line air conditioning system is a refrigeration cycle mode
  • controlling the operating state of the liquid storage tank according to the operating mode of the multi-line air conditioning system includes:
  • control refrigerant flows out of the micro-channel heat exchanger, it enters the throttling device through the bypass pipeline for throttling, and then enters the indoor unit for heat exchange.
  • the operation mode of the multi-line air conditioning system is a refrigeration cycle liquid storage mode
  • controlling the operation state of the liquid storage tank according to the operation mode of the multi-line air conditioning system includes:
  • control refrigerant flows out of the micro-channel heat exchanger, it is divided into two parts, one part enters the throttling device through the bypass pipeline for throttling, and then enters the indoor unit for heat exchange, and the other part passes through the second liquid pipe. into the liquid storage tank, and then the gaseous refrigerant in the liquid storage tank enters the suction port of the compressor through the first gas pipe, and the liquid refrigerant is stored in the liquid storage tank.
  • the operation mode of the multi-connection air conditioning system is a refrigeration cycle liquid discharge mode
  • controlling the operation state of the liquid storage tank according to the operation mode of the multi-connection air conditioning system includes:
  • control refrigerant flows out of the compressor discharge port, it is divided into two parts, one part enters the micro-channel heat exchanger through the four-way valve for heat exchange, and then enters the The throttling device throttles, and then enters the indoor unit for heat exchange, and the other part enters the liquid storage tank through the third control valve and the second gas pipe, so that the liquid refrigerant in the liquid storage tank passes through the third control valve and the second gas pipe.
  • a liquid pipe is discharged, and enters the throttling device through the first control valve for throttling, and then enters the indoor unit for heat exchange, and the liquid refrigerant is discharged from the liquid storage tank to participate in the refrigeration cycle.
  • the multi-line air conditioning system includes a compressor, an outdoor heat exchanger, a throttling device and an indoor unit.
  • the outdoor heat exchanger includes a microchannel heat exchanger, and the throttling device is located between the microchannel heat exchanger and the indoor unit.
  • the pipeline between the throttling device and the microchannel heat exchanger is provided with a liquid storage tank, the liquid storage tank is connected with a first liquid pipe, a second liquid pipe and a first gas pipe, and the first gas pipe is connected to the compressor The first liquid pipe is connected to the throttling device, and the second liquid pipe is connected to the microchannel heat exchanger.
  • the multi-line air conditioning system is provided with a liquid storage tank on the pipeline between the throttling device and the micro-channel heat exchanger, and uses the liquid storage tank to adjust the flow of the refrigerant.
  • the multi-line air conditioning system is in the heating mode, from the indoor unit After the outflowing refrigerant is throttled by the throttling device, it enters the liquid storage tank through the first liquid pipe, and the gaseous refrigerant in the liquid storage tank can enter the suction port of the compressor through the first gas pipe, while the liquid refrigerant in the liquid storage tank The refrigerant enters the micro-channel heat exchanger through the second liquid pipe.
  • the flow distribution between the flat tubes of the first flow path is uniform, which improves the uniformity of refrigerant distribution in the microchannel heat exchanger, improves the heat exchange efficiency of the microchannel heat exchanger, and ensures the temperature uniformity between the flat tubes.
  • FIG. 1 is a schematic structural diagram of a multi-connected air conditioning system according to an embodiment of the application
  • FIG. 2 is a schematic diagram of refrigerant flow when the multi-connected air conditioning system according to an embodiment of the application is in a heating cycle mode;
  • FIG. 3 is a schematic diagram of refrigerant flow when the multi-connected air conditioning system according to an embodiment of the application is in a refrigeration cycle mode;
  • FIG. 4 is a schematic diagram of refrigerant flow when the multi-connected air conditioning system according to an embodiment of the application is in a refrigeration cycle liquid storage mode;
  • FIG. 5 is a schematic diagram of refrigerant flow when the multi-connected air conditioning system according to an embodiment of the present application is in a refrigeration cycle liquid discharge mode.
  • Compressor 1. Compressor; 2. Four-way valve; 3. Micro-channel heat exchanger; 4. Liquid storage tank; 4a, first control valve; 4b, second control valve; 4c, third control valve; 4d, fourth Control valve; 5. Throttle device; 6. Indoor unit; 7. Gas-liquid separator; 8. First liquid pipe; 9. Second liquid pipe; 10. First gas pipe; 11. Second gas pipe; 12. Side through the pipeline.
  • a multi-line air conditioning system includes a compressor 1, an outdoor heat exchanger, a throttling device 5 and an indoor unit 6, and the outdoor heat exchanger includes a microchannel heat exchanger 3.
  • the throttling device 5 is located on the pipeline between the microchannel heat exchanger 3 and the indoor unit 6, and the pipeline between the throttling device 5 and the microchannel heat exchanger 3 is provided with a liquid storage tank 4, and the liquid storage tank 4 A first liquid pipe 8, a second liquid pipe 9 and a first gas pipe 10 are connected, the first gas pipe 10 is connected to the suction port of the compressor 1, the first liquid pipe 8 is connected to the throttling device 5, and the second liquid pipe 9 Connect to microchannel heat exchanger 3.
  • the multi-line air conditioning system is provided with a liquid storage tank on the pipeline between the throttling device 5 and the micro-channel heat exchanger, and uses the liquid storage tank to adjust the flow of the refrigerant. After the refrigerant flowing out of the compressor is throttled by the throttling device 5, it enters the liquid storage tank through the first liquid pipe 8. The gaseous refrigerant in the liquid storage tank can enter the suction port of the compressor 1 through the first gas pipe 10, and the storage tank is stored.
  • the liquid refrigerant in the liquid tank enters the microchannel heat exchanger through the second liquid pipe 9, because the refrigerant entering the microchannel heat exchanger through the second liquid pipe 9 is all liquid refrigerant, and the The state of each inlet is the same, so when the liquid refrigerant enters the flat tubes of each flow path of the microchannel heat exchanger through the liquid separation head, there will be no uneven distribution between the flat tubes in the same flow path caused by gas-liquid mixing. It can ensure the uniform flow distribution of the refrigerant between the flat tubes in the same flow path, improve the uniformity of refrigerant distribution in the microchannel heat exchanger, improve the heat exchange efficiency of the microchannel heat exchanger, and ensure the temperature between the flat tubes. uniformity.
  • the first liquid pipe 8 is provided with a first control valve 4a
  • the first gas pipe 10 is provided with a second control valve 4b.
  • the control valves can be used to control the on-off of the respective pipelines, and then the on-off combination of these pipelines can make the liquid storage tank 4 show different working states , to meet different control requirements, so as to better meet the operation requirements of the multi-line air conditioning system.
  • the liquid storage tank 4 is also connected with a second gas pipe 11 , the second gas pipe 11 is connected to the exhaust port of the compressor 1 , and a third control valve 4 c is arranged on the second gas pipe 11 .
  • the second gas pipe 11 enables the liquid storage tank 4 to be selectively communicated with the exhaust port of the compressor 1. Therefore, when the liquid refrigerant in the liquid storage tank 4 needs to be discharged to the liquid storage tank 4, the exhaust gas of the compressor 1 can be used.
  • the pressure brought by the high-pressure refrigerant at the outlet discharges the liquid refrigerant in the liquid storage tank 4, so as to avoid excessive storage of the liquid refrigerant in the liquid storage tank 4, and increase the amount of refrigerant participating in the heat exchange cycle.
  • the communication of the second air pipe 11 can be disconnected, so as to prevent the high-pressure refrigerant from the exhaust port of the compressor 1 from directly affecting the pressure in the liquid storage tank 4, and to ensure that the liquid storage tank 4 can Participate in the heat exchange cycle normally.
  • a bypass pipeline 12 is also arranged between the throttling device 5 and the microchannel heat exchanger 3 .
  • the bypass pipeline 12 is connected in parallel with the liquid storage tank 4 , and a fourth control valve 4d is arranged on the bypass pipeline 12 .
  • the function of the bypass line 12 is to enable the refrigerant to directly participate in the circulating heat exchange flow without passing through the liquid storage tank 4 , so that the normal operation of the multi-line air conditioning system can be realized without the participation of the liquid storage tank 4 .
  • the fourth control valve 4d on the bypass pipeline 12 cooperates with the first control valve 4a, the second control valve 4b, and the third control valve 4c to realize the liquid storage function of the liquid storage tank 4, so as to reasonably adjust the participation in heat exchange amount of refrigerant.
  • the multi-line air conditioning system can present different operating modes, so that the liquid storage tank 4 can realize
  • the gas-liquid separation function, refrigeration liquid storage function and refrigeration liquid discharge function can not only solve the problem of reduced heat exchange efficiency caused by uneven distribution between the flat tubes in the microchannel heat exchanger 3 during heating operation, but also solve the problem of reducing heat exchange efficiency.
  • the multi-line air conditioning system using the microchannel heat exchanger 3 has a large difference in the optimal amount of refrigerant in the cooling operation process, and the cooling operation is prone to refrigerant accumulation, low heat exchange efficiency, and low energy efficiency.
  • the fourth control valve 4d is a one-way valve that controls the one-way flow of the fluid from the microchannel heat exchanger 3 to the throttling device 5 .
  • the one-way valve can automatically control the opening and closing of the bypass pipeline 12 according to the flow state of the refrigerant, so there is no need to control the one-way valve through the controller, and the control procedure is simpler.
  • the multi-line air conditioning system also includes a gas-liquid separator 7, which is arranged at the suction end of the compressor 1, the outlet of the gas-liquid separator 7 is connected to the inlet of the compressor 1, and the first gas pipe 10 Connect to the inlet of the gas-liquid separator 7.
  • the multi-line air conditioning system further includes a four-way valve 2, which is connected with the compressor 1, the indoor unit 6 and the outdoor heat exchanger. Specifically, the first port 21 of the four-way valve 2 is connected to the exhaust port of the compressor 1, the second port 22 is connected to the microchannel heat exchanger 3, the third port 23 is connected to the indoor unit 6, and the fourth port 24 It is connected to the suction port of the compressor 1, so that the four-way valve 2 can be used to conveniently switch the operating state of the multi-line air conditioning system.
  • the first control valve 4a, the second control valve 4b and the third control valve 4c are solenoid valves, and the fourth control valve 4d can also be a solenoid valve, so that these control valves can be controlled by the controller , to achieve linkage control, and to facilitate the adjustment and control of the operating state of the multi-line air conditioning system.
  • the nozzle of the first gas pipe 10 is located at the top of the liquid storage tank 4, and the nozzles of the first liquid pipe 8 and the second liquid pipe 9 are located at the bottom of the liquid storage tank 4, thereby ensuring the nozzle of the first gas pipe 10 and the liquid storage tank.
  • the gaseous refrigerant region of The refrigerant flowing out of the liquid tank 4 into the first liquid pipe 8 or the second liquid pipe 9 is a liquid refrigerant.
  • the mouth of the second gas pipe 11 is located on the top of the liquid storage tank 4 .
  • the above-mentioned gas pipe means that when the refrigerant enters the gas pipe from the liquid storage tank 4, the refrigerant entering the gas pipe is a gaseous refrigerant, and the above-mentioned liquid pipe means that when the refrigerant enters the liquid pipe from the liquid storage tank 4, it enters the gas pipe.
  • the refrigerant in the liquid pipe is a liquid refrigerant.
  • the above-mentioned throttle device 5 is, for example, an electronic expansion valve.
  • the above-mentioned control method of the multi-line air conditioning system includes: acquiring the operation mode of the multi-line air conditioning system; and controlling the operation state of the liquid storage tank 4 according to the operation mode of the multi-line air conditioning system.
  • the liquid storage tank 4 can realize various functions such as gas-liquid separation, refrigeration liquid storage, and refrigeration liquid discharge, thereby meeting the operation needs of the multi-connected air conditioning system.
  • the adjustment of various operating states of the liquid storage tank 4 is realized by the state combination of the above-mentioned control valves. By controlling the above-mentioned control valves to be in different working states, the liquid storage tank 4 can realize different specific functions.
  • the operation mode of the multi-line air conditioning system is one of the following: a heating cycle mode, a refrigeration cycle mode, a refrigeration cycle liquid storage mode, and a refrigeration cycle liquid discharge mode.
  • controlling the operation state of the liquid storage tank 4 according to the operation mode of the multi-line air conditioning system includes: when the multi-line air conditioning system is in the heating cycle mode, controlling the first control valve 4a and the second control valve 4b Open, the third control valve 4c is closed, and the fourth control valve 4d is closed; after the control refrigerant flows out from the throttling device 5, it enters the liquid storage tank 4 through the first liquid pipe 8, and the gaseous refrigerant enters the compressor 1 through the first gas pipe 10. At the suction port, the liquid refrigerant enters the microchannel heat exchanger 3 through the second liquid pipe 9 for heat exchange.
  • the low-temperature and low-pressure gaseous refrigerant enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 7, and is compressed into a high-temperature and high-pressure gaseous refrigerant through the compressor 1, and passes through the first interface 21 of the four-way valve 2.
  • the indoor unit 6 and the third interface 23 After entering the indoor unit 6 and the third interface 23, it is throttled and evaporated, and then condensed into a high-pressure high-temperature liquid refrigerant, which is throttled by an electronic expansion valve to form a gas-liquid two-phase refrigerant.
  • the liquid refrigerant After the gas-liquid two-phase refrigerant passes through the liquid storage tank 4 for gas-liquid separation, the liquid refrigerant enters the microchannel heat exchanger 3, evaporates through the microchannel heat exchanger 3, and passes through the second interface 22 and the fourth The interface 24 returns to the gas-liquid separator 7 to complete a heating cycle, and the gaseous refrigerant after gas-liquid separation in the liquid storage tank 4 directly enters the gas-liquid separator 7 to complete a heating cycle.
  • controlling the operation state of the liquid storage tank 4 according to the operation mode of the multi-line air conditioning system includes: when the multi-line air conditioning system is in the refrigeration cycle mode, controlling the first control valve 4a, the second control valve 4b and the The third control valve 4c is closed, and the fourth control valve 4d is opened; after the control refrigerant flows out of the microchannel heat exchanger 3, it enters the throttling device 5 through the bypass line 12 for throttling, and then enters the indoor unit 6 for heat exchange.
  • the low-temperature and low-pressure gaseous refrigerant enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 7, and is compressed into a high-temperature and high-pressure gaseous refrigerant through the compressor 1.
  • the interface 22 enters the micro-channel heat exchanger 3, condenses into a high-pressure high-temperature liquid refrigerant, flows through the fourth control valve 4d, passes through the throttling device 5, that is, the electronic expansion valve, and then passes through the indoor unit 6 after throttling and evaporation, and passing through the four-way valve.
  • the third port 23 and the fourth port 24 of 2 return to the gas-liquid separator 7 to complete a refrigeration cycle. During this process, the liquid storage tank 4 does not participate in the work.
  • controlling the operation state of the liquid storage tank 4 according to the operation mode of the multi-line air conditioning system includes: when the multi-line air conditioning system is in the refrigeration cycle liquid storage mode, controlling the first control valve 4a and the third control valve 4c is closed, the second control valve 4b and the fourth control valve 4d are opened; after the control refrigerant flows out from the microchannel heat exchanger 3, it is divided into two parts, and a part enters the throttling device 5 through the bypass line 12 for throttling, and then enters the room
  • the compressor 6 exchanges heat, and the other part enters the liquid storage tank 4 through the second liquid pipe 9, and then the gaseous refrigerant in the liquid storage tank 4 enters the suction port of the compressor 1 through the first gas pipe 10, and the liquid refrigerant is stored in the liquid storage tank. in tank 4.
  • the low-temperature and low-pressure gaseous refrigerant enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 7, and is compressed into a high-temperature and high-pressure gaseous refrigerant through the compressor 1.
  • the second port 22 enters the micro-channel heat exchanger 3, and after condensing into a high-pressure and high-temperature liquid refrigerant, a part of it passes through the fourth control valve 4d, namely the one-way valve, and then passes through the electronic expansion valve of the throttling device 5 for throttling, and then passes through the indoor unit 6.
  • the liquid storage tank 4 is used for liquid storage, and the excess liquid refrigerant is stored in the liquid storage tank 4 during the refrigeration operation, so that the amount of refrigerant participating in the heat exchange cycle matches the filling amount required by the multi-line air conditioning system , effectively improve the operating energy efficiency of the multi-line air conditioning system.
  • controlling the operation state of the liquid storage tank 4 according to the operation mode of the multi-line air conditioning system includes: when the multi-line air conditioning system is in the refrigeration cycle liquid discharge mode, controlling the second control valve 4b to close, and the first control The valve 4a, the third control valve 4c and the fourth control valve 4d are opened; after the control refrigerant flows out from the exhaust port of the compressor 1, it is divided into two parts, one part enters the microchannel heat exchanger 3 through the four-way valve 2 for heat exchange, and then passes through the four-way valve 2.
  • the bypass pipeline 12 and the fourth control valve 4d enter the throttling device 5 for throttling, and then enter the indoor unit 6 for heat exchange, and the other part enters the liquid storage tank 4 through the third control valve 4c and the second air pipe 11, so that the storage
  • the liquid refrigerant in the liquid tank 4 is discharged through the first liquid pipe 8, and enters the throttling device 5 through the first control valve 4a for throttling, and then enters the indoor unit 6 for heat exchange.
  • the liquid refrigerant is discharged from the liquid storage tank 4 and participates in the refrigeration cycle.
  • the low-temperature and low-pressure gaseous refrigerant enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 7, and is compressed into a high-temperature and high-pressure gaseous refrigerant through the compressor 1.
  • the second interface 22 enters the micro-channel heat exchanger 3 and condenses into a high-pressure and high-temperature liquid refrigerant, and then a part of it passes through the fourth control valve 4d, namely the one-way valve, and is throttled through the throttling device 5, namely the electronic expansion valve, and then passes through the indoor unit 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种多联机空调系统及其控制方法。所述多联机空调系统包括压缩机(1)、室外换热器、节流装置(5)和室内机(6);所述室外换热器包括微通道换热器(3);所述节流装置(5)位于所述微通道换热器(3)和所述室内机(6)之间的管路上;所述节流装置(5)与所述微通道换热器(3)之间的管路上设置有储液罐(4),所述储液罐(4)连接有第一液管(8)、第二液管(9)和第一气管(10),所述第一气管(10)连接至压缩机(1)的吸气口,所述第一液管(8)连接至所述节流装置(5),所述第二液管(9)连接至所述微通道换热器(3)。

Description

多联机空调系统及其控制方法
相关申请的交叉引用
本申请要求于2020年11月26日提交中国专利局,申请号为202011351249.9,申请名称为“多联机系统及其控制方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调技术领域,具体涉及一种多联机空调系统及其控制方法。
背景技术
微通道换热器比普通的铜管翅片管换热器换热系数高,且相对成本较低,是替换翅片铜管的最佳替代品,在家用空调、热水机领域大量应用。随着铝制微通道换热器技术的不断推广及升级,微通道换热器开始使用在中央空调等多联机空调系统领域,而由于多联机空调系统运行功率普遍在5匹以上,因此要求换热器面积较大,微通道总扁管数量及长度增加,而往往微通道换热器一个流路由多个扁管并联汇合形成一个流程,因此流路内部会存在扁管间分流不均现象。
在制热运行过程中,液态冷媒经过电子膨胀阀节流后冷媒以气液两相状态存在,因此到达某一流路扁管入口时受重力影响,气态冷媒会往上走,液态冷媒会往下走,上下扁管分配的液态冷媒量不一致,造成分流不均,进而会造成换热器温度分布不均匀而降低换热效率。
发明内容
本申请要解决的技术问题在于提供一种多联机空调系统及其控制方法,能够提高微通道换热器的冷媒分配均匀性,提高换热器的换热效率。
为了解决上述问题,本申请提供一种多联机空调系统,包括压缩机、室外换热器、节流装置和室内机,所述室外换热器包括微通道换热器,所述节流装置位于所述微通道换热器和所述室内机之间的管路上,所述节流装置与所述微通道换热器之间的管路上设置有储液罐,所述储液罐连接有第一液管、第二液管和第一气管,所述第一气管连接至所述压缩机的吸气口,所述 第一液管连接至所述节流装置,所述第二液管连接至所述微通道换热器。
在一些实施例中,所述第一液管上设置有第一控制阀,所述第一气管上设置有第二控制阀。
在一些实施例中,所述储液罐还连接有第二气管,所述第二气管连接至所述压缩机的排气口,所述第二气管上设置有第三控制阀。
在一些实施例中,所述节流装置与所述微通道换热器之间还设置有旁通管路,所述旁通管路与所述储液罐并联,所述旁通管路上设置有第四控制阀。
在一些实施例中,所述第四控制阀为控制流体从所述微通道换热器到所述节流装置单向导通的单向阀。
在一些实施例中,所述多联机空调系统还包括气液分离器,所述气液分离器设置在压缩机的吸气端,所述气液分离器的出口连接至所述压缩机的入口,第一气管连接至气液分离器的入口。
在一些实施例中,多联机空调系统还包括四通阀,所述四通阀与所述压缩机、所述室内机和所述室外换热器连接。
在一些实施例中,所述第一控制阀、所述第二控制阀和所述第三控制阀为电磁阀。
在一些实施例中,所述第一气管的管口位于所述储液罐的顶部,所述第一液管和所述第二液管的管口位于所述储液罐的底部。
在一些实施例中,所述四通阀的第一接口连接至所述压缩机的排气口,第二接口连接至所述微通道换热器,第三接口连接至所述室内机,所述第四接口连接至所述压缩机的吸气口。
根据本申请的另一方面,提供了一种上述的多联机空调系统的控制方法,包括:
获取所述多联机空调系统的运行模式;
根据所述多联机空调系统的所述运行模式对所述储液罐的运行状态进行控制。
在一些实施例中,所述多联机空调系统的所述运行模式为制热循环模式,根据所述多联机空调系统的所述运行模式对储液罐的运行状态进行控制包括:
控制第一控制阀和第二控制阀打开,第三控制阀关闭,第四控制阀关闭;
控制冷媒从所述节流装置流出后,经所述第一液管进入所述储液罐,气态冷媒经所述第一气管进入到所述压缩机的吸气口,液态冷媒经所述第二液管进入所述微通道换热器进行换热。
在一些实施例中,所述多联机空调系统的所述运行模式为制冷循环模式,根据所述多联机空调系统的运行模式对储液罐的运行状态进行控制包括:
控制第一控制阀、第二控制阀和第三控制阀关闭,第四控制阀打开;
控制冷媒从所述微通道换热器流出后,经旁通管路进入所述节流装置节流,之后进入所述室内机换热。
在一些实施例中,所述多联机空调系统的所述运行模式为制冷循环储液模式,根据所述多联机空调系统的所述运行模式对所述储液罐的运行状态进行控制包括:
控制第一控制阀和第三控制阀关闭,第二控制阀和第四控制阀打开;
控制冷媒从所述微通道换热器流出后,分成两部分,一部分经旁通管路进入所述节流装置节流,之后进入所述室内机换热,另一部分经所述第二液管进入到所述储液罐,然后所述储液罐内的气态冷媒经所述第一气管进入到所述压缩机的吸气口,液态冷媒储存在所述储液罐内。
在一些实施例中,所述多联机空调系统的所述运行模式为制冷循环排液模式,根据所述多联机空调系统的所述运行模式对储液罐的运行状态进行控制包括:
控制第二控制阀关闭,第一控制阀、第三控制阀和第四控制阀打开;
控制冷媒从所述压缩机排气口流出后,分成两部分,一部分经四通阀进入所述微通道换热器换热,之后经旁通管路和所述第四控制阀,进入所述节流装置节流,之后进入所述室内机换热,另一部分经所述第三控制阀和第二气管进入到所述储液罐,使得所述储液罐内的液态冷媒经所述第一液管排出,并经所述第一控制阀进入到所述节流装置节流,之后进入所述室内机换热,液态冷媒从所述储液罐内排出,参与制冷循环。
本申请提供的多联机空调系统,包括压缩机、室外换热器、节流装置和室内机,室外换热器包括微通道换热器,节流装置位于微通道换热器和室内机之间的管路上,节流装置与微通道换热器之间的管路上设置有储液罐,储液罐连接有第一液管、第二液管和第一气管,第一气管连接至压缩机的吸气口,第一液管连接至节流装置,第二液管连接至微通道换热器。多联机空调 系统在节流装置与微通道换热器之间的管路上设置有储液罐,并利用储液罐对冷媒流动进行调节,在多联机空调系统处于制热模式时,从室内机流出的冷媒经节流装置节流后,经第一液管进入到储液罐,储液罐内的气态冷媒可以经第一气管进入到压缩机的吸气口,而储液罐内的液态冷媒则经过第二液管进入到微通道换热器,由于经第二液管进入到微通道换热器内的冷媒均为液态冷媒,且微通道换热器的各个进口状态一致,因此液态冷媒经过分液头进入到微通道换热器的各个流路扁管中时,不会出现由于气液混合而导致的同一流路内部扁管之间分流不均的现象,可以保证冷媒在同一流路的各个扁管之间的流量分配均匀,提高微通道换热器的冷媒分配均匀性,提高微通道换热器的换热效率,保证扁管之间的温度均匀性。
附图说明
图1为本申请一实施例的多联机空调系统的结构原理图;
图2为本申请一实施例的多联机空调系统处于制热循环模式时的冷媒流动示意图;
图3为本申请一实施例的多联机空调系统处于制冷循环模式时的冷媒流动示意图;
图4为本申请一实施例的多联机空调系统处于制冷循环储液模式时的冷媒流动示意图;
图5为本申请一实施例的多联机空调系统处于制冷循环排液模式时的冷媒流动示意图。
附图标记表示为:
1、压缩机;2、四通阀;3、微通道换热器;4、储液罐;4a、第一控制阀;4b、第二控制阀;4c、第三控制阀;4d、第四控制阀;5、节流装置;6、室内机;7、气液分离器;8、第一液管;9、第二液管;10、第一气管;11、第二气管;12、旁通管路。
具体实施方式
结合参见图1至图5所示,根据本申请的实施例,多联机空调系统包括压缩机1、室外换热器、节流装置5和室内机6,室外换热器包括微通道换 热器3,节流装置5位于微通道换热器3和室内机6之间的管路上,节流装置5与微通道换热器3之间的管路上设置有储液罐4,储液罐4连接有第一液管8、第二液管9和第一气管10,第一气管10连接至压缩机1的吸气口,第一液管8连接至节流装置5,第二液管9连接至微通道换热器3。
多联机空调系统在节流装置5与微通道换热器之间的管路上设置有储液罐,并利用储液罐对冷媒流动进行调节,在多联机空调系统处于制热模式时,从室内机流出的冷媒经节流装置5节流后,经第一液管8进入到储液罐,储液罐内的气态冷媒可以经第一气管10进入到压缩机1的吸气口,而储液罐内的液态冷媒则经过第二液管9进入到微通道换热器,由于经第二液管9进入到微通道换热器内的冷媒均为液态冷媒,且微通道换热器的各个进口状态一致,因此液态冷媒经过分液头进入到微通道换热器的各个流路扁管中时,不会出现由于气液混合而导致的同一流路内部扁管之间分流不均的现象,可以保证冷媒在同一流路的各个扁管之间的流量分配均匀,提高微通道换热器的冷媒分配均匀性,提高微通道换热器的换热效率,保证扁管之间的温度均匀性。
第一液管8上设置有第一控制阀4a,第一气管10上设置有第二控制阀4b。通过在第一液管8和第一气管10上分别设置控制阀,可以利用控制阀控制各自所在管路的通断,进而通过这些管路的通断组合使得储液罐4呈现不同的工作状态,满足不同的控制需求,从而更好地满足多联机空调系统的运行需求。
储液罐4还连接有第二气管11,第二气管11连接至压缩机1的排气口,第二气管11上设置有第三控制阀4c。该第二气管11使得储液罐4能够选择地与压缩机1的排气口连通,因此可以在需要将储液罐4内的液态冷媒排出储液罐4时,利用压缩机1的排气口的高压冷媒所带来的压力将储液罐4内的液态冷媒排出,避免储液罐4内的液态冷媒储存过多,增加参与到换热循环的冷媒量。在多联机空调系统正常工作形态下,则可以断开第二气管11的连通,避免压缩机1的排气口的高压冷媒直接对储液罐4内的压力造成影响,保证储液罐4能够正常参与换热循环。
节流装置5与微通道换热器3之间还设置有旁通管路12,旁通管路12与储液罐4并联,旁通管路12上设置有第四控制阀4d。该旁通管路12的作用在于,能够使得冷媒不经过储液罐4而直接参与循环换热流动,可以在无需储液罐4参与的情况下,实现多联机空调系统的正常运行,也可以通过旁 通管路12上的第四控制阀4d与第一控制阀4a、第二控制阀4b、第三控制阀4c相互协同,实现储液罐4的储液功能,从而合理调整参与换热的冷媒量。
通过控制第一控制阀4a、第二控制阀4b、第三控制阀4c和第四控制阀4d的工作状态,能够使得多联机空调系统呈现出不同的运行模式,从而使得储液罐4能够实现气液分离功能、制冷储液功能以及制冷排液功能,不仅能够解决制热运行过程中微通道换热器3内部扁管之间分流不均导致的换热效率降低的问题,而且还可以解决采用微通道换热器3的多联机空调系统在制冷运行过程中冷媒最佳灌注量差距大,制冷运行容易出现冷媒堆积,换热效率低,能效低的问题。
在一个实施例中,第四控制阀4d为控制流体从微通道换热器3到节流装置5单向导通的单向阀。单向阀,能够根据冷媒的流动状态自动控制旁通管路12的通断,因此无需通过控制器对单向阀进行控制,控制程序更加简单。
多联机空调系统还包括气液分离器7,气液分离器7设置在压缩机1的吸气端,所述气液分离器7的出口连接至所述压缩机1的入口,第一气管10连接至气液分离器7的入口。
多联机空调系统还包括四通阀2,四通阀2与压缩机1、室内机6和室外换热器连接。具体而言,四通阀2的第一接口21连接至压缩机1的排气口,第二接口22连接至微通道换热器3,第三接口23连接至室内机6,第四接口24连接至压缩机1的吸气口,从而能够利用四通阀2方便地切换多联机空调系统的运行状态。
在一个实施例中,第一控制阀4a、第二控制阀4b和第三控制阀4c为电磁阀,第四控制阀4d也可以为电磁阀,从而使得这些控制阀均能够通过控制器进行控制,实现联动控制,方便进行多联机空调系统的运行状态的调整和控制。
第一气管10的管口位于储液罐4的顶部,第一液管8和第二液管9的管口位于储液罐4的底部,从而保证第一气管10的管口与储液罐4的气态冷媒区域连通,第一液管8和第二液管9与储液罐4的液态冷媒区域连通,保证从储液罐4流出到第一气管10内的冷媒为气态冷媒,从储液罐4流出到第一液管8或者第二液管9内的冷媒为液态冷媒。第二气管11的管口位于储液罐4的顶部。
上述的气管是指,当冷媒从储液罐4进入到气管时,进入到气管内的冷媒为气态冷媒,上述的液管是指,当冷媒从储液罐4进入到液管时,进入到液管内的冷媒为液态冷媒。
上述的节流装置5例如为电子膨胀阀。
根据本申请的实施例,上述的多联机空调系统的控制方法包括:获取多联机空调系统的运行模式;根据多联机空调系统的运行模式对储液罐4的运行状态进行控制。
通过调整储液罐4的运行状态,可以使得储液罐4能够实现气液分离、制冷储液以及制冷排液等多种功能,进而满足多联机空调系统的运行需要。储液罐4的各种运行状态的调整,是通过上述的控制阀的状态组合实现的,通过控制上述的控制阀处于不同的工作状态,能够使得储液罐4实现不同的特定功能。
多联机空调系统的运行模式为下列之一:制热循环模式、制冷循环模式、制冷循环储液模式以及制冷循环排液模式。
如图2所示,根据多联机空调系统的运行模式对储液罐4的运行状态进行控制包括:当多联机空调系统处于制热循环模式时,控制第一控制阀4a和第二控制阀4b打开,第三控制阀4c关闭,第四控制阀4d关闭;控制冷媒从节流装置5流出后,经第一液管8进入储液罐4,气态冷媒经第一气管10进入到压缩机1的吸气口,液态冷媒经第二液管9进入微通道换热器3进行换热。
制热循环模式下,低温低压的气态冷媒从气液分离器7的出口进入到压缩机1的吸气口,经过压缩机1压缩成高温高压气态冷媒,经四通阀2的第一接口21和第三接口23进入室内机6节流蒸发后,冷凝成高压高温液态冷媒,经过电子膨胀阀节流后形成气液两相冷媒。气液两相冷媒再经过储液罐4进行气液分离后,液态冷媒进入微通道换热器3,经微通道换热器3蒸发后,经四通阀2的第二接口22和第四接口24,回到气液分离器7中,完成一个制热循环,而经储液罐4进行气液分离后的气态冷媒则直接进入气液分离器7中,完成一个制热循环。
如图3所示,根据多联机空调系统的运行模式对储液罐4的运行状态进行控制包括:当多联机空调系统处于制冷循环模式时,控制第一控制阀4a、第二控制阀4b和第三控制阀4c关闭,第四控制阀4d打开;控制冷媒从微通道换热器3流出后,经旁通管路12进入节流装置5节流,之后进入室内 机6换热。
制冷循环模式下,低温低压气态冷媒由气液分离器7的出口进入压缩机1的吸气口,经过压缩机1压缩成高温高压气态冷媒,经四通阀2的第一接口21、第二接口22进入微通道换热器3,冷凝成高压高温液态冷媒后,流经第四控制阀4d,经过节流装置5即电子膨胀阀,再经室内机6节流蒸发后,经四通阀2的第三接口23和第四接口24回到气液分离器7中,完成一个制冷循环,此过程中,储液罐4不参与工作。
如图4所示,根据多联机空调系统的运行模式对储液罐4的运行状态进行控制包括:当多联机空调系统处于制冷循环储液模式时,控制第一控制阀4a和第三控制阀4c关闭,第二控制阀4b和第四控制阀4d打开;控制冷媒从微通道换热器3流出后,分成两部分,一部分经旁通管路12进入节流装置5节流,之后进入室内机6换热,另一部分经第二液管9进入到储液罐4,然后储液罐4内的气态冷媒经第一气管10进入到压缩机1的吸气口,液态冷媒储存在储液罐4内。
制冷循环储液模式下,低温低压气态冷媒由气液分离器7的出口进入压缩机1的吸气口,经过压缩机1压缩成高温高压气态冷媒,经四通阀2第一接口21和第二接口22,进入微通道换热器3,冷凝成高压高温液态冷媒后,一部分经过第四控制阀4d即单向阀后,经过节流装置5电子膨胀阀进行节流,再经室内机6节流蒸发后,流经四通阀2的第三接口23和第四接口24,回到气液分离器7中,完成一个制冷循环;另一部分液态冷媒则由于储液罐4处于低压状态,液态冷媒会通过储液罐4的进液口进入储液罐4内存储起来,实现对多联机空调系统内参与换热的冷媒量的调节。
在此过程中,储液罐4为储液作用,制冷运行将多余的液态冷媒储存在储液罐4中,从而使得参与换热循环的冷媒量与多联机空调系统所需的灌注量相匹配,有效提高多联机空调系统的运行能效。
如图5所示,根据多联机空调系统的运行模式对储液罐4的运行状态进行控制包括:当多联机空调系统处于制冷循环排液模式时,控制第二控制阀4b关闭,第一控制阀4a、第三控制阀4c和第四控制阀4d打开;控制冷媒从压缩机1排气口流出后,分成两部分,一部分经四通阀2进入微通道换热器3换热,之后经旁通管路12和第四控制阀4d,进入节流装置5节流,之后进入室内机6换热,另一部分经第三控制阀4c和第二气管11进入到储液罐4,使得储液罐4内的液态冷媒经第一液管8排出,并经第一控制阀4a进入 到节流装置5节流,之后进入室内机6换热。液态冷媒从储液罐4内排出,参与制冷循环。
制冷循环排液模式下,低温低压气态冷媒由气液分离器7的出口进入压缩机1的吸气口,经过压缩机1压缩成高温高压气态冷媒,经四通阀2的第一接口21和第二接口22进入微通道换热器3,冷凝成高压高温液态冷媒,然后一部分经过第四控制阀4d即单向阀后,经过节流装置5即电子膨胀阀节流,再经室内机6节流蒸发后,经四通阀2的第三接口23和第四接口24回到气液分离器7中,完成一个制冷循环。由于第一控制阀4a、第三控制阀4c处于打开状态,压缩机排气口的高压冷媒所形成的高压将储液罐4中的液态冷媒排出,进入节流装置5即电子膨胀阀节流,完成排液控制。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (15)

  1. 一种多联机空调系统,其特征在于,包括压缩机(1)、室外换热器、节流装置(5)和室内机(6);
    所述室外换热器包括微通道换热器(3);
    所述节流装置(5)位于所述微通道换热器(3)和所述室内机(6)之间的管路上;
    所述节流装置(5)与所述微通道换热器(3)之间的管路上设置有储液罐(4),所述储液罐(4)连接有第一液管(8)、第二液管(9)和第一气管(10),所述第一气管(10)连接至所述压缩机(1)的吸气口,所述第一液管(8)连接至所述节流装置(5),所述第二液管(9)连接至所述微通道换热器(3)。
  2. 根据权利要求1所述的多联机空调系统,其特征在于,所述第一液管(8)上设置有第一控制阀(4a),所述第一气管(10)上设置有第二控制阀(4b)。
  3. 根据权利要求2所述的多联机空调系统,其特征在于,所述储液罐(4)还连接有第二气管(11),所述第二气管(11)连接至所述压缩机(1)的排气口,所述第二气管(11)上设置有第三控制阀(4c)。
  4. 根据权利要求2或3所述的多联机空调系统,其特征在于,所述节流装置(5)与所述微通道换热器(3)之间还设置有旁通管路(12),所述旁通管路(12)与所述储液罐(4)并联,所述旁通管路(12)上设置有第四控制阀(4d)。
  5. 根据权利要求4所述的多联机空调系统,其特征在于,所述第四控制阀(4d)为控制流体从所述微通道换热器(3)到所述节流装置(5)单向导通的单向阀。
  6. 根据权利要求2所述的多联机空调系统,其特征在于,所述多联机空调系统还包括气液分离器(7),所述气液分离器(7)设置在所述压缩机(1)的吸气端,所述气液分离器(7)的出口连接至所述压缩机(1)的入口,所述第一气管(10)连接至所述气液分离器(7)的入口。
  7. 根据权利要求2所述的多联机空调系统,其特征在于,所述多联机空调系统还包括四通阀(2),所述四通阀(2)与所述压缩机(1)、所述室内机(6)和所述室外换热器连接。
  8. 根据权利要求3所述的多联机空调系统,其特征在于,所述第一控制 阀(4a)、所述第二控制阀(4b)和所述第三控制阀(4c)为电磁阀。
  9. 根据权利要求2所述的多联机空调系统,其特征在于,所述第一气管(10)的管口位于所述储液罐(4)的顶部,所述第一液管(8)和所述第二液管(9)的管口位于所述储液罐(4)的底部。
  10. 根据权利要求7所述的多联机空调系统,其特征在于,所述四通阀(2)的第一接口(21)连接至所述压缩机(1)的排气口,第二接口(22)连接至所述微通道换热器(3),第三接口(23)连接至所述室内机(6),所述第四接口(24)连接至所述压缩机(1)的吸气口。
  11. 一种如权利要求1至10中任一项所述的多联机空调系统的控制方法,其特征在于,包括:
    获取所述多联机空调系统的运行模式;
    根据所述多联机空调系统的所述运行模式对所述储液罐(4)的运行状态进行控制。
  12. 根据权利要求11所述的控制方法,其特征在于:
    所述多联机空调系统的所述运行模式为制热循环模式,根据所述多联机空调系统的所述运行模式对所述储液罐(4)的运行状态进行控制包括:
    控制第一控制阀(4a)和第二控制阀(4b)打开,第三控制阀(4c)关闭,第四控制阀(4d)关闭;
    控制冷媒从所述节流装置(5)流出后,经所述第一液管(8)进入所述储液罐(4),气态冷媒经所述第一气管(10)进入到所述压缩机(1)的吸气口,液态冷媒经所述第二液管(9)进入所述微通道换热器(3)进行换热。
  13. 根据权利要求11所述的控制方法,其特征在于,所述多联机空调系统的所述运行模式为制冷循环模式,根据所述多联机空调系统的所述运行模式对所述储液罐(4)的运行状态进行控制包括:
    控制第一控制阀(4a)、第二控制阀(4b)和第三控制阀(4c)关闭,第四控制阀(4d)打开;
    控制冷媒从所述微通道换热器(3)流出后,经旁通管路(12)进入所述节流装置(5)节流,之后进入所述室内机(6)换热。
  14. 根据权利要求11所述的控制方法,其特征在于,所述多联机空调系统的所述运行模式为制冷循环储液模式,根据所述多联机空调系统的所述运行模式对所述储液罐(4)的运行状态进行控制包括:
    控制第一控制阀(4a)和第三控制阀(4c)关闭,第二控制阀(4b)和第四控制阀(4d)打开;
    控制冷媒从所述微通道换热器(3)流出后,分成两部分,一部分经旁通管路(12)进入所述节流装置(5)节流,之后进入所述室内机(6)换热,另一部分经所述第二液管(9)进入到所述储液罐(4),然后所述储液罐(4)内的气态冷媒经所述第一气管(10)进入到所述压缩机(1)的吸气口,液态冷媒储存在所述储液罐(4)内。
  15. 根据权利要求11所述的控制方法,其特征在于,所述多联机空调系统的所述运行模式为制冷循环排液模式,根据多联机空调系统的运行模式对储液罐(4)的运行状态进行控制包括:
    控制第二控制阀(4b)关闭,第一控制阀(4a)、第三控制阀(4c)和第四控制阀(4d)打开;
    控制冷媒从所述压缩机(1)排气口流出后,分成两部分,一部分经四通阀(2)进入所述微通道换热器(3)换热,之后经旁通管路(12)和所述第四控制阀(4d),进入所述节流装置(5)节流,之后进入所述室内机(6)换热,另一部分经所述第三控制阀(4c)和第二气管(11)进入到所述储液罐(4),使得所述储液罐(4)内的液态冷媒经所述第一液管(8)排出,并经所述第一控制阀(4a)进入到所述节流装置(5)节流,之后进入所述室内机(6)换热,液态冷媒从所述储液罐(4)内排出,参与制冷循环。
PCT/CN2021/111812 2020-11-26 2021-08-10 多联机空调系统及其控制方法 WO2022110901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011351249.9A CN112361669B (zh) 2020-11-26 2020-11-26 多联机系统及其控制方法
CN202011351249.9 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022110901A1 true WO2022110901A1 (zh) 2022-06-02

Family

ID=74536256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111812 WO2022110901A1 (zh) 2020-11-26 2021-08-10 多联机空调系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112361669B (zh)
WO (1) WO2022110901A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024179182A1 (zh) * 2023-02-27 2024-09-06 广东美的暖通设备有限公司 空调系统及其控制方法、装置及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361669B (zh) * 2020-11-26 2023-07-28 珠海格力电器股份有限公司 多联机系统及其控制方法
CN113959111B (zh) * 2021-10-29 2023-03-31 青岛海尔空调电子有限公司 热泵系统及用于控制热泵系统的方法、装置
CN115899886A (zh) * 2022-11-15 2023-04-04 珠海格力电器股份有限公司 制冷系统及其控制方法和控制装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106685A (ja) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp 冷凍空調装置
JP2007032857A (ja) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd 冷凍装置
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
CN201043823Y (zh) * 2007-02-14 2008-04-02 珠海格力电器股份有限公司 一种空调系统
CN103411353A (zh) * 2013-07-26 2013-11-27 宁波奥克斯空调有限公司 一种空气源低温双级压缩热泵空调
JP2019066133A (ja) * 2017-10-04 2019-04-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法
CN211503039U (zh) * 2019-10-16 2020-09-15 珠海格力电器股份有限公司 一种中央空调系统
CN112361669A (zh) * 2020-11-26 2021-02-12 珠海格力电器股份有限公司 多联机系统及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149750A (ja) * 1984-12-21 1986-07-08 Mitsubishi Electric Corp 除湿機
DE19926488B4 (de) * 1999-06-10 2004-05-27 Dataprint R. Kaufmann Gmbh Gerät, insbesondere Schreibgerät
CN201053785Y (zh) * 2007-06-11 2008-04-30 广东美的电器股份有限公司 一种热泵空调器
CN102734881B (zh) * 2011-04-08 2014-07-16 约克广州空调冷冻设备有限公司 一种快速排出气液分离器中积存的液体的热泵空调系统及方法
CN103673424A (zh) * 2012-09-17 2014-03-26 珠海格力电器股份有限公司 制冷系统及具有其的空调系统
CN203163360U (zh) * 2013-01-27 2013-08-28 宁波奥克斯空调有限公司 热泵空调的冷媒循环系统
CN213841417U (zh) * 2020-11-26 2021-07-30 珠海格力电器股份有限公司 多联机系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106685A (ja) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp 冷凍空調装置
JP2007032857A (ja) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd 冷凍装置
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
CN201043823Y (zh) * 2007-02-14 2008-04-02 珠海格力电器股份有限公司 一种空调系统
CN103411353A (zh) * 2013-07-26 2013-11-27 宁波奥克斯空调有限公司 一种空气源低温双级压缩热泵空调
JP2019066133A (ja) * 2017-10-04 2019-04-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法
CN211503039U (zh) * 2019-10-16 2020-09-15 珠海格力电器股份有限公司 一种中央空调系统
CN112361669A (zh) * 2020-11-26 2021-02-12 珠海格力电器股份有限公司 多联机系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024179182A1 (zh) * 2023-02-27 2024-09-06 广东美的暖通设备有限公司 空调系统及其控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN112361669B (zh) 2023-07-28
CN112361669A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2022110901A1 (zh) 多联机空调系统及其控制方法
CN213841417U (zh) 多联机系统
WO2015188656A1 (zh) 双级压缩空调系统及其控制方法
WO2019134509A1 (zh) 室外机、空调系统及控制方法
CN107178833B (zh) 热回收外机系统和空调系统
WO2019196311A1 (zh) 空调系统及空调系统的控制方法
WO2016000656A1 (zh) 空调系统
WO2020186906A1 (zh) 空调器化霜控制方法及空调器
KR100569554B1 (ko) 공기 조화 장치의 열원 유닛 및 공기 조화 장치
WO2021142993A1 (zh) 多联式空调机组的控制方法
CN208620489U (zh) 空调器系统及具有其的空调器
WO2017012382A1 (zh) 多联机室外机和具有其的多联机
WO2024187755A1 (zh) 空调
EP3734199B1 (en) Air-conditioner system
CN104879950A (zh) 空调一体机系统及其控制方法
JP2017142027A (ja) 空気調和装置
CN116241962A (zh) 空调系统、空调机组及控制方法
CN211952986U (zh) 三管式多联机
CN210832267U (zh) 空调室内机和空调器
WO2021047158A1 (zh) 空调器及其控制方法
CN208887169U (zh) 空调器的换热机及空调器
WO2022228345A1 (zh) 热泵系统
CN218915159U (zh) 换热器系统、室外机及空调器
CN218915208U (zh) 蓄能空调系统
CN217031455U (zh) 一种热泵空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896407

Country of ref document: EP

Kind code of ref document: A1