[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024176761A1 - Stator and motor using same - Google Patents

Stator and motor using same Download PDF

Info

Publication number
WO2024176761A1
WO2024176761A1 PCT/JP2024/003115 JP2024003115W WO2024176761A1 WO 2024176761 A1 WO2024176761 A1 WO 2024176761A1 JP 2024003115 W JP2024003115 W JP 2024003115W WO 2024176761 A1 WO2024176761 A1 WO 2024176761A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
inner layer
outer layer
height
base
Prior art date
Application number
PCT/JP2024/003115
Other languages
French (fr)
Japanese (ja)
Inventor
洸太郎 森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024176761A1 publication Critical patent/WO2024176761A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • This disclosure relates to a stator and a motor using the same.
  • stator is placed on the outer or inner circumference of a rotor to which a magnet is attached.
  • coils are attached via insulators to salient poles formed on the inner or outer circumference of a roughly cylindrical stator core.
  • Patent Document 1 discloses annular insulators A101 and B201 that are attached to a stator core having salient poles by sandwiching them from both axial sides as shown in Figures 7A and 7B.
  • the insulator A101 has a substantially cylindrical first wall portion 103 extending axially from the base portion 102
  • the insulator B201 has a substantially cylindrical second wall portion 203 extending axially from the base portion 202.
  • the insulators also have a first protrusion portion 204 that thickens the second wall portion 203 over the entire circumference of the second wall portion 203.
  • the first protrusion portion 204 abuts against the wall surface of the salient pole.
  • the first wall portion 103 is located between the second wall portion 203 and the wall surface of the salient pole, and the first wall portion 103 and the second wall portion 203 overlap by a predetermined dimension.
  • wall portions extending from a pair of insulators overlap each other along the wall surfaces of the salient poles, ensuring insulation between the coil and the stator core.
  • the shapes of the walls of one insulator and the other insulator are different in order to overlap one wall portion with the other wall portion.
  • a first protrusion 204 is provided around the entire circumference of the second wall portion 203 in order to position the first wall portion 103 between the second wall portion 203 and the wall surface of the salient pole. Therefore, when machining a pair of insulators, different dies are required for one insulator and the other insulator, leaving room for improvement in productivity.
  • the purpose of this disclosure is to provide a stator that has an insulator that is highly manufacturable and provides high insulation between the stator core and the coil.
  • the stator comprises a stator core having a plurality of teeth protruding radially outward from the outer peripheral surface of the cylinder and slots formed between adjacent teeth, and a pair of insulators sandwiching the plurality of teeth from both sides in the axial direction of the cylinder, the insulator being composed of surfaces perpendicular to the axial direction and comprising a base abutting the axial end of the stator core and a wall extending in the axial direction from the base along the inner wall of the slot, the wall comprising an inner layer having a positive inclined surface whose height from the base increases at a predetermined angle from one side to the other of adjacent teeth forming the inner wall of the slot, and an outer layer having a reverse inclined surface whose height from the base decreases at a predetermined angle from one side to the other, thereby achieving the intended object.
  • the present disclosure can provide a stator that has an insulator that is highly manufacturable and provides high insulation between the stator core and the coil.
  • FIG. 2 is a cross-sectional view showing the internal configuration of a motor according to the present disclosure.
  • 1 is a schematic diagram showing a configuration of a stator according to the present disclosure.
  • FIG. 2 is an exploded perspective view of a stator according to the present disclosure.
  • 1A and 1B are a perspective view and a partially enlarged view of an insulator according to the present disclosure.
  • FIG. 4 is a partial enlarged view of a wall portion according to the present disclosure.
  • FIG. 13 is a top view showing a wall portion according to the present disclosure inserted into a slot.
  • 11A to 11C are schematic diagrams showing a procedure for inserting a wall portion 22a into a slot as a procedure for mounting an insulator according to the present disclosure.
  • FIG. 13A to 13C are schematic diagrams showing a procedure for inserting a wall portion 22b into a slot as a procedure for mounting an insulator according to the present disclosure.
  • 5A and 5B show wall portions 22a and 22b overlapping inside the slot according to the present disclosure.
  • FIG. FIG. 13 is a schematic diagram of a structure in which an inner low wall is directly connected to an inner high wall, and an outer low wall is directly connected to an outer high wall, as an example showing the effect of the positive inclined surface according to the present disclosure.
  • FIG. 13 is a schematic diagram of a structure in which the height is continuously changed by providing an inner layer inclined wall and an outer layer inclined wall, as an example showing the effect of the positive inclined surface according to the present disclosure.
  • FIG. 2 is a perspective view of an insulator mounted on a stator of Patent Document 1.
  • FIG. 2 is a perspective view of an insulator mounted on a stator of Patent Document 1.
  • Fig. 1 is a cross-sectional view showing the internal configuration of motor 1.
  • axial direction a direction parallel to the rotation axis of motor 1
  • radial direction a direction perpendicular to the axial direction
  • radial outer direction a direction away from the rotation axis
  • radial inner direction a direction approaching the rotation axis
  • the motor 1 includes a stator 2, a rotor yoke 3, a rotor cover 4, a shaft 5, and a bearing 6.
  • the stator 2 generates a magnetic flux when supplied with current from the outside, causing the rotor yoke 3 to rotate. Details of the stator 2 will be described later.
  • the rotor yoke 3 is cylindrical with an opening on the bottom side, and contains the stator 2 inside the cylindrical shape. In other words, the rotor yoke 3 surrounds the outer periphery of the stator 2 in an annular shape with a uniform spatial gap.
  • the rotor yoke 3 includes a magnet 7, a housing 14a, and an upper shaft opening 12.
  • the magnets 7 generate torque to rotate the rotor yoke 3 by receiving the magnetic flux generated by the stator 2.
  • Multiple magnets 7 are provided at predetermined intervals around the circumferential direction on the inner surface of the cylindrical rotor yoke 3.
  • the housing 14a is cylindrical and has a space inside for holding the bearing 6.
  • the housing 14a protrudes axially outward from the center of the rotor yoke 3.
  • the upper shaft opening 12 is located at the center of the top surface of the cylindrical shape. In other words, the upper shaft opening 12 is located at the center of the housing 14a.
  • the rotor cover 4 covers the opening on the bottom side of the rotor yoke 3.
  • the rotor cover 4 is, for example, provided in a roughly circular shape that is larger than the opening on the bottom side of the rotor yoke 3.
  • the rotor cover 4 includes a housing 14b and a lower shaft opening 13.
  • Housing 14b is cylindrical and has a space inside for holding bearing 6. Housing 14b protrudes axially outward from the center of rotor cover 4. Housing 14b has the same inner diameter as housing 14a.
  • the lower shaft opening 13 is provided at the center of the approximately circular shape of the rotor cover 4. In other words, the lower shaft opening 13 is provided at the center of the housing 14b.
  • the shaft 5 is cylindrical.
  • the shaft 5 is inserted through the upper shaft opening 12 and the lower shaft opening 13 and fixed to the center of the stator 2.
  • the central axis of the cylindrical shaft 5 is aligned in the same line as the rotation axis of the motor 1.
  • the bearing 6 holds the shaft 5 so that it can rotate freely.
  • the bearing 6 is a hollow cylinder with an outer diameter equal to the inner diameter of the housings 14a and 14b.
  • the shaft 5 is inserted into the inside of the hollow cylinder.
  • the bearings 6 are provided in a pair and are positioned so as to sandwich the stator 2 in the axial direction. Specifically, one of the pair, the bearing 6a, is press-fitted and fixed to the shaft 5 on the axially upper side of the stator 2, and the other bearing 6b is press-fitted and fixed to the shaft 5 on the axially lower side of the stator 2.
  • the inner circumferential surface of one bearing 6a is held on the outside of the shaft 5, and the inner circumferential surface of the other bearing 6b is held on the outside of the shaft 5.
  • the motor 1 configured in this way rotates the rotor yoke 3 and rotor cover 4 around the shaft 5 in response to the magnetic flux generated by the stator 2.
  • the motor 1 is an outer rotor type motor.
  • FIG. 2 is a schematic diagram showing the configuration of the stator 2.
  • Figure 3 is an exploded perspective view of the stator 2.
  • the stator 2 includes a stator core 8, terminals 10, a substrate 9, a coil 11, and an insulator 20.
  • the stator core 8 is formed into a generally cylindrical shape by stacking multiple roughly disk-shaped steel plates in the axial direction.
  • the stator core 8 has a cylindrical portion 43, a central hole 40, teeth 41, and slots 42.
  • the cylindrical portion 43 is the inner peripheral portion that constitutes the roughly cylindrical shape of the stator core 8.
  • the central hole 40 is a through hole for inserting the shaft 5 and is provided at the center of the stator core 8. In other words, the central hole 40 is provided at the center of the cylindrical portion 43.
  • the tooth portion 41 is a protruding portion for winding the coil 11 around the stator core 8.
  • the tooth portion 41 protrudes radially outward from the outer circumferential surface of the cylindrical portion 43.
  • a plurality of tooth portions 41 are provided at equal intervals around the circumference of the cylindrical portion 43. In other words, the tooth portions 41 are provided radially on the outer circumferential side of the cylindrical portion 43.
  • the number of tooth portions 41 may be freely changed depending on the specifications of the motor 1.
  • the tooth portion 41 includes a winding portion 44 and a curved portion 45.
  • the winding portion 44 connects the cylindrical portion 43 and the curved portion 45.
  • the coil 11 is wound around the winding portion 44 via the insulator 20.
  • the curved surface portion 45 increases the surface area of the stator core 8 in the circumferential direction, thereby increasing the area that receives the magnetic flux generated by the magnet 7. In other words, the curved surface portion 45 allows the stator core 8 to efficiently receive the magnetic flux from the magnet 7.
  • the curved surface portion 45 is arranged to extend from the radially outer end of the winding portion 44 to both sides in the circumferential direction relative to the rotating shaft of the motor 1 by the same length.
  • the slot 42 is a space for winding the coil 11 around the tooth portion 41.
  • the slot 42 is formed with the outer peripheral surface of the cylindrical portion 43 and the side surface of the adjacent tooth portion 41 as inner walls.
  • the slot 42 is a space having a thickness of h0 in the axial direction.
  • h0 is equal to the axial thickness of the stator core 8.
  • the terminal 10 is installed at the axial end of the cylindrical portion 43 of the stator core 8.
  • the terminal 10 is formed in a disk shape.
  • the terminal 10 supports a jumper wire for electrically connecting the coils 11 to each other on the opposite side of the terminal 10 from the stator core 8. With this configuration, the terminal 10 maintains insulation between the jumper wire and the stator core 8.
  • the circuit board 9 is installed on the side opposite the side facing the stator core of the terminal 10.
  • the circuit board 9 controls the flow of current through a drive circuit board installed outside the motor 1, and supplies current to the coil 11.
  • the coil 11 is a conductive wire whose main material is an alloy of copper and aluminum.
  • the coil 11 is wound around the stator core 8 via the insulator 20, and generates magnetic flux when electricity is passed through it.
  • the insulators 20 are installed in pairs at both axial ends of the tooth portion 41 of the stator core 8.
  • the insulators 20 are provided in an annular shape and are attached by sandwiching the stator core 8 from both axial sides as shown in FIG. 3.
  • the insulators 20 are made of, for example, a resin molded product. By winding the coil 11 through the insulator 20, insulation between the stator core 8 and the coil 11 is ensured.
  • the insulator 20 has a base 21 and a wall portion 22.
  • the base 21 is formed in an annular shape having a surface perpendicular to the axial direction.
  • the base 21 is provided in contact with the axial end face of the stator core 8 and is positioned so as to cover the tooth portion 41.
  • the wall portion 22 is formed in a cylindrical shape extending axially inward from the base portion 21.
  • the wall portion 22 extends along the inner wall of the slot 42. In other words, the wall portion 22 extends along the side surface of the tooth portion 41 and the outer peripheral surface of the cylindrical portion 43.
  • Figure 4A is a perspective view of the insulator 20.
  • Figure 4B is a partially enlarged view of the wall portion 22.
  • Figure 4C is a top view showing the wall portion 22 inserted into the slot 42.
  • the left side of the adjacent tooth portions 41 that form the slot 42 in Figure 4C will be referred to as one tooth portion 41a and the right side as the other tooth portion 41b.
  • a wall midline 33 is provided as a virtual line for explaining the wall 22.
  • the wall midline 33 is a straight line parallel to the axis and is provided at a position that bisects the wall 22 into one tooth portion 41a side and the other tooth portion 41b side.
  • the wall midline 33 is provided along the inner layer inclined wall 31 and the outer layer inclined wall 32, which will be described later.
  • the wall portion 22 includes a winding opening 35, a winding locking portion 36, an inner layer portion 23, and an outer layer portion 24.
  • the winding opening 35 is an opening provided to pass the coil 11 from the radially outer side.
  • the winding opening 35 is provided by cutting out a part of the cylindrical wall portion 22 radially outward.
  • the winding locking portion 36 is a protrusion that prevents the coil 11 from moving radially outward through the winding opening 35 after it has been wound around the tooth portion 41.
  • the winding locking portion 36 also serves to provide a physical distance between the tip of the curved portion 45 and the coil 11 and improve insulation by locking the coil 11 closer to the tooth portion 41 than to the winding opening 35.
  • the winding locking portion 36 protrudes radially inward from both ends of the wall portion 22 that forms the winding opening 35.
  • the inner layer portion 23 is a wall surface that constitutes the inner peripheral side of the wall portion 22.
  • the inner layer portion 23 is provided on the opposite side of the inner wall of the slot 42, sandwiching the outer layer portion 24. In other words, the outer peripheral surface of the inner layer portion 23 abuts against the inner peripheral surface of the outer layer portion 24.
  • the inner layer portion 23 includes an inner layer high wall 29, an inner layer low wall 27, an inner layer inclined wall 31, and a positive inclined surface 25.
  • the inner layer low wall 27 is the wall surface that has the lowest height from the base 21 in the inner layer portion 23.
  • the inner layer low wall 27 protrudes in the axial direction from the base 21 along one of the adjacent tooth portions 41a.
  • the inner layer low wall 27 includes a wall surface that protrudes in the axial direction along one of the winding portions 44a and a wall surface that protrudes in the axial direction along one of the curved portions 45a, and is provided in a generally L-shape when viewed from above (see FIG. 4C).
  • the protruding tip of the inner layer low wall 27 protrudes to a position where the height from the base 21 is h1.
  • h1 is, for example, a value smaller than half the axial thickness h0 of the stator core 8.
  • the inner layer high wall 29 is the wall surface that is the highest from the base 21 in the inner layer portion 23.
  • the inner layer high wall 29 protrudes in the axial direction from the base 21 along the other tooth portion 41b of the adjacent tooth portions 41.
  • the inner layer high wall 29 includes a wall surface that protrudes in the axial direction along the other winding portion 44b and a wall surface that protrudes in the axial direction along the other curved surface portion 45b, and is provided in a generally inverted L shape when viewed from above (see FIG. 4C).
  • the protruding tip of the inner layer high wall 29 protrudes to a position where the height from the base 21 is h2.
  • h2 is, for example, smaller than h0, which is the axial thickness of the stator core 8, and is greater than half of h0.
  • the inner layer inclined wall 31 is located between the inner layer low wall 27 and the inner layer high wall 29, and protrudes axially from the base 21 along the outer circumferential surface of the cylindrical portion 43. In other words, the inner layer inclined wall 31 is adjacent to the inner layer low wall 27 and the inner layer high wall 29.
  • the inner layer inclined wall 31 has a lowest part that abuts against the inner layer low wall 27 and has the lowest height from the base 21 in the inner layer portion 23, and a highest part that abuts against the inner layer high wall 29 and has the highest height from the base 21.
  • the height of the lowest part is h1, which is equal to the inner layer low wall 27, and the height of the highest part is h2, which is equal to the inner layer high wall 29. It also has a middle part whose height from the base 21 is h3, which is halfway between the lowest part and the highest part.
  • the height of the inner layer inclined wall 31 increases continuously at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side. Continuously means that there is no step.
  • the height of the inner layer inclined wall 31 is h1 at the lowest part that contacts the inner layer low wall 27, and gradually increases as it approaches the other tooth portion 41b. In addition, when it passes the position of the wall midline 33, it reaches a height h3 that is halfway between the lowest part and the highest part (middle part). Furthermore, the height reaches h2 at the highest part that contacts the inner layer high wall 29.
  • the positive inclined surface 25 is a slope formed at the protruding tip of the inner layer inclined wall 31.
  • the positive inclined surface 25 becomes continuously higher at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side.
  • the positive inclined surface 25 connects the protruding tip of the inner layer low wall 27 and the protruding tip of the inner layer high wall 29.
  • the outer layer portion 24 is a wall surface that constitutes the outer peripheral side of the wall portion 22.
  • the outer layer portion 24 is located on the outer peripheral side of the inner layer portion 23, and is located between the inner layer portion 23 and the inner wall of the slot 42 when inserted into the slot 42.
  • the outer peripheral surface of the outer layer portion 24 abuts against the inner wall of the slot 42
  • the inner peripheral surface abuts against the outer peripheral surface of the inner layer portion 23.
  • the outer layer portion 24 comprises an outer layer high wall 30, an outer layer low wall 28, an outer layer inclined wall 32, a counter-inclined surface 26, and a protrusion portion 34.
  • the outer layer low wall 28 is the wall surface in the outer layer portion 24 that has the lowest height from the base 21.
  • the outer layer low wall 28 protrudes axially from the base 21 along the other tooth portion 41b of the adjacent tooth portions 41.
  • the outer layer low wall 28 includes a wall surface that protrudes axially along the other winding portion 44b and a wall surface that protrudes axially along the other curved surface portion 45b, and is provided in a generally inverted L shape when viewed from above (see FIG. 4C).
  • the protruding tip of the outer layer low wall 28 protrudes to a position where the height from the base 21 is h1.
  • the outer layer high wall 30 is the wall surface in the outer layer portion 24 that has the highest height from the base portion 21.
  • the outer layer high wall 30 protrudes in the axial direction from the base portion 21 along one of the adjacent tooth portions 41a.
  • the outer layer high wall 30 includes a wall surface that protrudes in the axial direction along one of the winding portions 44a and a wall surface that protrudes in the axial direction along one of the curved portions 45a, and is provided in a substantially L-shape when viewed from above (see FIG. 4C).
  • the protruding tip of the outer layer high wall 30 protrudes to a position where the height from the base portion 21 is h2.
  • the outer layer inclined wall 32 is located between the outer layer low wall 28 and the outer layer high wall 30, and protrudes axially from the base 21 along the outer peripheral surface of the cylindrical portion 43. In other words, the outer layer inclined wall 32 is adjacent to the outer layer low wall 28 and the outer layer high wall 30.
  • the outer layer inclined wall 32 has a lowest part that abuts against the outer layer low wall 28 and has the lowest height from the base 21 in the outer layer portion 24, and a highest part that abuts against the outer layer high wall 30 and has the highest height from the base 21.
  • the height of the lowest part is h1, which is the same as the inner layer low wall 27 and the outer layer low wall 28, and the height of the highest part is h2, which is the same as the inner layer high wall 29 and the outer layer high wall 30. It also has a middle part whose height from the base 21 is h3, which is intermediate between the lowest part and the highest part.
  • the height of the outer layer inclined wall 32 decreases continuously at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side.
  • the height of the outer layer inclined wall 32 is h2 at the highest portion that contacts the outer layer high wall 30, and gradually decreases as it approaches the other tooth portion 41b.
  • h3 that is halfway between the lowest portion and the highest portion (middle portion).
  • the height reaches h1 at the lowest portion that contacts the outer layer low wall 28.
  • the wall 22 has a cross-shaped structure in which the height of the inner layer 23 and the height of the outer layer 24 are switched at the wall midline 33. Furthermore, the inner high wall 29 has the same height as the outer high wall 30, and the inner low wall 27 has the same height as the outer low wall 28. In other words, the height of the inner layer 23 and the height of the outer layer 24 are linearly symmetrical with the wall midline as the axis of symmetry.
  • the counter-inclined surface 26 is a slope formed at the protruding tip of the outer layer inclined wall 32.
  • the counter-inclined surface 26 becomes continuously lower at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side.
  • the counter-inclined surface 26 connects the protruding tip of the outer layer low wall 28 and the protruding tip of the outer layer high wall 30.
  • the protrusion 34 is a protrusion that protrudes radially inward on the wall midline 33 of the outer layer inclined wall 32. In other words, it protrudes from the outer layer inclined wall 32 toward the outer periphery beyond the wall 22.
  • the tip of the protrusion 34 abuts against the outer peripheral surface of the cylindrical portion 43, ensuring a physical distance between the wall 22 and the cylindrical portion 43. This configuration can further ensure insulation between the coil 11 and the stator core 8. It can also assist in positioning the insulator 20 relative to the stator core 8 when inserting the wall 22 into the slot 42.
  • insulator 20a the insulator arranged on the lower side in Figures 5A to 5C
  • insulator 20b the insulator arranged on the upper side
  • insulators 20a and 20b have the same shape.
  • Other components such as the inner layer portion 23 and outer layer portion 24 will also be described by adding the letter a to those arranged on the lower side and the letter b to those arranged on the upper side.
  • Figures 5A to 5C are schematic diagrams seen from the radial inside showing the procedure for placing the insulator 20 on the stator core 8.
  • Figure 5A shows the procedure for inserting wall portion 22a into slot 42.
  • Figure 5B shows the procedure for inserting wall portion 22b into slot 42.
  • Figure 5C shows the state of wall portion 22a and wall portion 22b overlapped inside slot 42 in Figures 5A and 5B. Note that the inner layer portion 23 hidden behind the outer layer portion 24 in Figure 5B is indicated by a dashed line.
  • the outer layer high-level wall 30a is inserted into the slot 42. At this time, the outer peripheral surface of the outer layer high-level wall 30a is slid against the side surface of one of the teeth 41a that constitutes the inner wall of the slot 42, making it easy to position the insulator 20a relative to the stator core 8.
  • the outer wall of the outer layer lower wall 28a is slid against the side of the other tooth portion 41b and further inserted, and the base 21a is abutted against one end of the stator core 8. This procedure allows the insulator 20a to be placed on one end of the stator core 8.
  • FIG. 5B the insulator 20a has already been placed on one end of the stator core 8 by the procedure in FIG. 5A.
  • the outer layer high-level wall 30b is inserted into the slot 42.
  • the outer peripheral surface of the outer layer high-level wall 30b is slid against the side surface of the other tooth portion 41b, and the outer wall of the inner layer high-level wall 29a and the inner peripheral surface of the outer layer high-level wall 30b are slid against each other to insert the outer layer high-level wall 30b.
  • the outer layer high-level wall 30b is positioned between the inner layer high-level wall 29a and the inner wall of the slot 42. This configuration makes it easy to position the insulator 20b relative to the stator core 8.
  • the outer wall of the outer layer low-level wall 28b is slid against the side of one of the teeth 41a and further inserted, and the base 21b is abutted against one end of the stator core 8.
  • the outer wall of the inner layer high-level wall 29b is inserted along the inner wall of the outer layer high-level wall 30a, so that the outer layer high-level wall 30a is positioned between the inner layer high-level wall 29b and the inner wall of the slot 42.
  • the insulator 20b can be placed on the other end of the stator core 8.
  • the inner high-level wall 29 may be thinner than the outer low-level wall 28, and the outer high-level wall 30 may be thinner than the inner low-level wall 27.
  • the outer high-level wall 30 can be easily inserted between the inner high-level wall 29 and the inner wall of the slot 42, improving assembly.
  • the positive inclined surface 25a faces the positive inclined surface 25b.
  • the protruding tip of the inner layer low wall 27a faces the protruding tip of the inner layer high wall 29b
  • the protruding tip of the inner layer low wall 27b faces the protruding tip of the inner layer high wall 29b.
  • the inverse inclined surface 26a faces the inverse inclined surface 26b.
  • the protruding tip of the outer layer low wall 28a faces the protruding tip of the outer layer high wall 30b
  • the protruding tip of the outer layer low wall 28b faces the protruding tip of the outer layer high wall 30a.
  • the inner layer portion 23 is connected by an inner layer low-level wall 27 having a lowest part and an inner layer high-level wall 29 having a highest part, with an inner layer inclined wall 31, with the height continuously changing, to form a positive inclined surface 25.
  • the outer layer portion 24 is connected by an outer layer high-level wall 30 having a highest part and an outer layer low-level wall 28 having a lowest part, with the height continuously changing, to form an anti-inclined surface 26, with an outer layer inclined wall 32.
  • Figures 6A and B are diagrams showing the movement when wall portion 22a and wall portion 22b are overlapped with the positions of insulator 20a arranged on the lower side and insulator 20b arranged on the upper side shifted in the circumferential direction.
  • insulator 20a is shown shifted to the right relative to insulator 20b.
  • Fig. 6A shows a structure in which the inner layer low wall 27 and the inner layer high wall 29 are directly connected, and the outer layer low wall 28 and the outer layer high wall 30 are directly connected.
  • this structure has a step because the inner layer inclined wall 31 and the outer layer inclined wall 32 are not provided.
  • Fig. 6B shows a structure in which the height changes continuously by providing the inner layer inclined wall 31 and the outer layer inclined wall 32, so no step is created, i.e., it is a slope.
  • the first wall portion 103 and the second wall portion 203 are overlapped by making the insulator B201 have a different shape from the insulator A101, as shown in Figures 7A and B.
  • insulators 20a and 20b have the same shape, wall portions 22a and 22b are overlapped inside slot 42 to ensure insulation. Because insulators 20a and 20b have the same shape, only one type of mold is required, reducing costs and labor required to switch molds and increasing productivity.
  • the wall 22 has a cross-shaped structure in which the height of the inner layer 23 and the height of the outer layer 24 are switched at the wall midline 33. Furthermore, the inner high wall 29 has the same height as the outer high wall 30, and the inner low wall 27 has the same height as the outer low wall 28. In other words, the height of the inner layer 23 and the height of the outer layer 24 are linearly symmetrical with the wall midline as the axis of symmetry. With this configuration, the overlapping area of the inner layer 23 and the outer layer 24 is maximized, and the gap 46 is minimized when a pair of wall sections 22 are overlapped as shown in FIG. 5C, improving insulation.
  • the wall portion 22 is described as having an inner layer portion 23 and an outer layer portion 24.
  • the inner layer portion 23 and the outer layer portion 24 may be provided separately, or may be molded together to provide a single wall portion 22. It is sufficient that the insulators 20a and 20b have the same shape and the wall portions 22a and 22b can be overlapped inside the slots 42.
  • the stator used in an outer rotor type motor has been described, but the present invention is not limited to this and can also be applied to an inner rotor type motor.
  • the tooth portion 41 protrudes radially outward from the outer peripheral surface of the cylindrical portion 43, but in the inner rotor type, it protrudes radially inward from the inner peripheral surface of the cylindrical portion 43.
  • the protrusion portion 34 has a shape that protrudes radially inward from the outer layer inclined wall 32. In other words, it protrudes from the outer layer inclined wall 32 toward the outer peripheral side beyond the wall portion 22.
  • the tip of the protrusion portion 34 abuts the inner peripheral surface of the cylindrical portion 43, ensuring a physical distance between the wall portion 22 and the cylindrical portion 43.
  • stator disclosed herein and the motor using it can be used as a motor for ceiling fans, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

A stator (2) comprises: a stator core (8) that has a plurality of tooth parts (41) that protrude toward the outside in the radial direction from the outer circumferential surface of a cylinder and slots (42) that are formed between adjacent tooth parts; and a pair of insulators (20) that sandwich the plurality of tooth parts (41) from respective sides in the axial direction of the cylinder. The insulators (20) comprise: a base part (21) that is formed at a surface orthogonal to the axial direction and abuts an end of the stator core (8) in the axial direction; and wall parts (22) that extend from the base part in the axial direction along inner walls of the slots (42). The wall parts (22) comprise: an inner layer part (23) that has a positive slope surface (25) at which the height from the base part (21) increases at a slope of a prescribed angle from one side to the other side of the adjacent tooth parts (41) that form the inner wall of the respective slot (42); and an outer layer part (24) that is positioned between the outer perimeter of the inner layer part (23) and the inner wall of the respective slot (42) and has a negative slope surface (26) at which the height from the base part (21) decreases at a slope of a prescribed angle from one side to the other side.

Description

ステータ、及び、それを用いたモータStator and motor using same
 本開示は、ステータと、それを用いたモータに関するものである。 This disclosure relates to a stator and a motor using the same.
 従来、マグネットを取り付けたロータの外周または内周にステータが配置される電動機が知られている。このような電動機のステータは、略円筒状のステータコアの内周面または外周面に形成された突極にインシュレータを介してコイルが装着される。  Conventionally, electric motors are known in which a stator is placed on the outer or inner circumference of a rotor to which a magnet is attached. In the stator of such an electric motor, coils are attached via insulators to salient poles formed on the inner or outer circumference of a roughly cylindrical stator core.
 例えば特許文献1では、図7A及び図7Bに示すように、突極を有するステータコアの軸方向両側から挟むようにして取り付けられる円環状のインシュレータA101及びインシュレータB201が開示されている。インシュレータA101は、基部102から軸方向に延出した略筒状の第1壁部103を有し、インシュレータB201は、基部202から軸方向に延出した略筒状の第2壁部203を有する。また、第2壁部203の全周にわたって第2壁部203の肉厚を厚くした第1突起部204を有する。ステータコアへの装着時には第1突起部204が突極の壁面に当接する。さらに、第1壁部103は第2壁部203と突極の壁面との間に位置して、第1壁部103と第2壁部203とが所定の寸法だけ重なりあった状態になる。 For example, Patent Document 1 discloses annular insulators A101 and B201 that are attached to a stator core having salient poles by sandwiching them from both axial sides as shown in Figures 7A and 7B. The insulator A101 has a substantially cylindrical first wall portion 103 extending axially from the base portion 102, and the insulator B201 has a substantially cylindrical second wall portion 203 extending axially from the base portion 202. The insulators also have a first protrusion portion 204 that thickens the second wall portion 203 over the entire circumference of the second wall portion 203. When attached to the stator core, the first protrusion portion 204 abuts against the wall surface of the salient pole. Furthermore, the first wall portion 103 is located between the second wall portion 203 and the wall surface of the salient pole, and the first wall portion 103 and the second wall portion 203 overlap by a predetermined dimension.
特許第6484824号公報Patent No. 6484824
 このように従来では一対のインシュレータから延出された壁部が突極の壁面に沿って互いに重なり合う事で、コイルとステータコアとの絶縁性を確保していた。しかしながら、従来の形状では一方の壁部と他方の壁部とを重ね合わせるために一方のインシュレータと他方のインシュレータとで壁部の形状が異なる。例えば、特許文献1では第2壁部203と突極の壁面との間に第1壁部103を配置するために、第2壁部203の全周にわたって第1突起部204を設けている。したがって、一対のインシュレータを加工する際に、一方のインシュレータと他方のインシュレータとで異なる金型を必要とするため、生産性について改善する余地があった。 In this way, conventionally, wall portions extending from a pair of insulators overlap each other along the wall surfaces of the salient poles, ensuring insulation between the coil and the stator core. However, in conventional shapes, the shapes of the walls of one insulator and the other insulator are different in order to overlap one wall portion with the other wall portion. For example, in Patent Document 1, a first protrusion 204 is provided around the entire circumference of the second wall portion 203 in order to position the first wall portion 103 between the second wall portion 203 and the wall surface of the salient pole. Therefore, when machining a pair of insulators, different dies are required for one insulator and the other insulator, leaving room for improvement in productivity.
 そこで本開示では、生産性及びステータコアとコイルとの絶縁性が高いインシュレータを有するステータを提供する事を目的とする。 The purpose of this disclosure is to provide a stator that has an insulator that is highly manufacturable and provides high insulation between the stator core and the coil.
 そして、上記目的を達成するために、本開示に係るステータは、円筒状における外周面から径方向外側に突出する複数の歯部と、隣り合う当該歯部間に形成されるスロットと、を有するステータコアと、複数の歯部を円筒状における軸方向の両側から挟む一対のインシュレータと、を備え、インシュレータは、軸方向に直交する面で構成され、ステータコアの軸方向の端部に当接する基部と、基部からスロットの内壁に沿って軸方向に延出する壁部と、を備え、壁部は、基部からの高さがスロットの内壁を形成する隣り合う歯部の一方側から他方側にかけて所定の角度の傾斜で高くなる正傾斜面を有する内層部と、内層部の外周とスロットの内壁との間に位置し、基部からの高さが一方側から他方側にかけて所定の角度の傾斜で低くなる反傾斜面を有する外層部と、を備えた構成とし、これにより所期の目的を達成する。 In order to achieve the above object, the stator according to the present disclosure comprises a stator core having a plurality of teeth protruding radially outward from the outer peripheral surface of the cylinder and slots formed between adjacent teeth, and a pair of insulators sandwiching the plurality of teeth from both sides in the axial direction of the cylinder, the insulator being composed of surfaces perpendicular to the axial direction and comprising a base abutting the axial end of the stator core and a wall extending in the axial direction from the base along the inner wall of the slot, the wall comprising an inner layer having a positive inclined surface whose height from the base increases at a predetermined angle from one side to the other of adjacent teeth forming the inner wall of the slot, and an outer layer having a reverse inclined surface whose height from the base decreases at a predetermined angle from one side to the other, thereby achieving the intended object.
 そこで本開示は、生産性及びステータコアとコイルとの絶縁性が高いインシュレータを有するステータを提供できる。 The present disclosure can provide a stator that has an insulator that is highly manufacturable and provides high insulation between the stator core and the coil.
本開示に係るモータの内部構成を示す断面図。FIG. 2 is a cross-sectional view showing the internal configuration of a motor according to the present disclosure. 本開示に係るステータの構成を示す概略図。1 is a schematic diagram showing a configuration of a stator according to the present disclosure. 本開示に係るステータの分解斜視図。FIG. 2 is an exploded perspective view of a stator according to the present disclosure. 本開示に係るインシュレータの斜視図と部分拡大図。1A and 1B are a perspective view and a partially enlarged view of an insulator according to the present disclosure. 本開示に係る壁部を拡大した部分拡大図。FIG. 4 is a partial enlarged view of a wall portion according to the present disclosure. 本開示に係る壁部をスロットに挿入した状態を示す上面視図。FIG. 13 is a top view showing a wall portion according to the present disclosure inserted into a slot. 本開示に係るインシュレータを載置する手順として、スロットに壁部22aを挿入する際の手順を示す概要図。11A to 11C are schematic diagrams showing a procedure for inserting a wall portion 22a into a slot as a procedure for mounting an insulator according to the present disclosure. 本開示に係るインシュレータを載置する手順として、スロットに壁部22bを挿入する際の手順を示す概要図。13A to 13C are schematic diagrams showing a procedure for inserting a wall portion 22b into a slot as a procedure for mounting an insulator according to the present disclosure. 本開示に係る図5Aと図5Bとによってスロットの内側にて重ね合わされた壁部22aと壁部22bとの状態を示す図。5A and 5B show wall portions 22a and 22b overlapping inside the slot according to the present disclosure. FIG. 本開示に係る正傾斜面の効果を示すものとして、内層低位壁と内層高位壁とを直接接続し、外層低位壁と外層高位壁とを直接接続する構造の概要図。FIG. 13 is a schematic diagram of a structure in which an inner low wall is directly connected to an inner high wall, and an outer low wall is directly connected to an outer high wall, as an example showing the effect of the positive inclined surface according to the present disclosure. 本開示に係る正傾斜面の効果を示すものとして、内層傾斜壁及び外層傾斜壁を設けることで高さを連続的に変化する構造の概要図。FIG. 13 is a schematic diagram of a structure in which the height is continuously changed by providing an inner layer inclined wall and an outer layer inclined wall, as an example showing the effect of the positive inclined surface according to the present disclosure. 特許文献1のステータに載置されるインシュレータの斜視図。FIG. 2 is a perspective view of an insulator mounted on a stator of Patent Document 1. 特許文献1のステータに載置されるインシュレータの斜視図。FIG. 2 is a perspective view of an insulator mounted on a stator of Patent Document 1.
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して二度目以降の説明を省略している。さらに、各図面において、本開示に直接には関係しない各部の詳細については説明を省略している。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the embodiment below is an example of a concrete embodiment of the present disclosure, and does not limit the technical scope of the present disclosure. Furthermore, the same parts are given the same reference numerals throughout the drawings, and descriptions thereof will be omitted from the second and subsequent drawings. Furthermore, detailed descriptions of each part that is not directly related to the present disclosure will be omitted in each drawing.
 (実施の形態)
 本開示に係るモータについて、図1を参照しながら説明する。図1はモータ1の内部構成を示す断面図である。以下、モータ1の回転軸に平行な方向を「軸方向」、軸方向に直交する方向を「径方向」と称する。また、径方向について、回転軸から遠ざかる方向を「径方向外側」、回転軸へ近づく方向を「径方向内側」と称する。
(Embodiment)
A motor according to the present disclosure will be described with reference to Fig. 1. Fig. 1 is a cross-sectional view showing the internal configuration of motor 1. Hereinafter, a direction parallel to the rotation axis of motor 1 will be referred to as the "axial direction", and a direction perpendicular to the axial direction will be referred to as the "radial direction". In addition, with regard to the radial direction, a direction away from the rotation axis will be referred to as the "radial outer direction", and a direction approaching the rotation axis will be referred to as the "radial inner direction".
 モータ1は、ステータ2と、ロータヨーク3と、ロータカバー4と、シャフト5と、ベアリング6と、を備える。 The motor 1 includes a stator 2, a rotor yoke 3, a rotor cover 4, a shaft 5, and a bearing 6.
 ステータ2は、外部から電流を供給されることで磁束を発生させ、ロータヨーク3を回転させる。ステータ2の詳細については後述する。 The stator 2 generates a magnetic flux when supplied with current from the outside, causing the rotor yoke 3 to rotate. Details of the stator 2 will be described later.
 ロータヨーク3は、底面側に開口を有する有天円筒形状に設けられ、有天円筒形状の内側にステータ2を内包する。言い換えると、ロータヨーク3は、ステータ2の外周側を均一な空間ギャップを有して円環状に囲む。ロータヨーク3は、マグネット7と、ハウジング14aと、上部シャフト開口12と、を備える。 The rotor yoke 3 is cylindrical with an opening on the bottom side, and contains the stator 2 inside the cylindrical shape. In other words, the rotor yoke 3 surrounds the outer periphery of the stator 2 in an annular shape with a uniform spatial gap. The rotor yoke 3 includes a magnet 7, a housing 14a, and an upper shaft opening 12.
 マグネット7は、ステータ2が発生させた磁束を受けることでロータヨーク3が回転するためのトルクを生みだす。マグネット7は、ロータヨーク3の有天円筒形状の内周面において周方向に所定間隔で複数設けられる。 The magnets 7 generate torque to rotate the rotor yoke 3 by receiving the magnetic flux generated by the stator 2. Multiple magnets 7 are provided at predetermined intervals around the circumferential direction on the inner surface of the cylindrical rotor yoke 3.
 ハウジング14aは、円筒形状に設けられ、内側にベアリング6を保持するための空間を有する。ハウジング14aはロータヨーク3の中央から軸方向外側へ突出して設けられる。 The housing 14a is cylindrical and has a space inside for holding the bearing 6. The housing 14a protrudes axially outward from the center of the rotor yoke 3.
 上部シャフト開口12は、有天円筒形状における天面の中心に設けられる。言い換えると、上部シャフト開口12は、ハウジング14aの中心に設けられる。 The upper shaft opening 12 is located at the center of the top surface of the cylindrical shape. In other words, the upper shaft opening 12 is located at the center of the housing 14a.
 ロータカバー4は、ロータヨーク3における底面側の開口を覆う。ロータカバー4は、例えばロータヨーク3における底面側の開口よりも大きな略円形状に設けられる。ロータカバー4は、ハウジング14bと、下部シャフト開口13を備える。 The rotor cover 4 covers the opening on the bottom side of the rotor yoke 3. The rotor cover 4 is, for example, provided in a roughly circular shape that is larger than the opening on the bottom side of the rotor yoke 3. The rotor cover 4 includes a housing 14b and a lower shaft opening 13.
 ハウジング14bは、円筒形状に設けられ、内側にベアリング6を保持するための空間を有する。ハウジング14bはロータカバー4の中央から軸方向外側へ突出して設けられる。ハウジング14bは、ハウジング14aと同等の内径を有する。 Housing 14b is cylindrical and has a space inside for holding bearing 6. Housing 14b protrudes axially outward from the center of rotor cover 4. Housing 14b has the same inner diameter as housing 14a.
 下部シャフト開口13は、ロータカバー4における略円形状の中心に設けられる。言い換えると、下部シャフト開口13は、ハウジング14bの中心に設けられる。 The lower shaft opening 13 is provided at the center of the approximately circular shape of the rotor cover 4. In other words, the lower shaft opening 13 is provided at the center of the housing 14b.
 シャフト5は、円筒形状に設けられる。シャフト5は、上部シャフト開口12及び下部シャフト開口13を挿通してステータ2の中央に固定される。シャフト5は、円筒形状における中心軸がモータ1の回転軸と同一直線上に位置する。 The shaft 5 is cylindrical. The shaft 5 is inserted through the upper shaft opening 12 and the lower shaft opening 13 and fixed to the center of the stator 2. The central axis of the cylindrical shaft 5 is aligned in the same line as the rotation axis of the motor 1.
 ベアリング6は、シャフト5を回転自在に把持する。ベアリング6は、ハウジング14a及びハウジング14bの内径と同等の外径を有する中空円筒形である。ベアリング6は、中空円筒形における内側にシャフト5を挿通する。ベアリング6は、一対に設けられ、ステータ2を軸方向に挟み込むように位置する。具体的には、一対のうち一方のベアリング6aは、ステータ2の軸方向上側にてシャフト5に圧入して固定され、他方のベアリング6bはステータ2の軸方向下側にてシャフト5に圧入して固定される。言い換えると、一方のベアリング6aの内周面がシャフト5の外側に保持され、他方のベアリング6bの内周面がシャフト5の外側に保持される。 The bearing 6 holds the shaft 5 so that it can rotate freely. The bearing 6 is a hollow cylinder with an outer diameter equal to the inner diameter of the housings 14a and 14b. The shaft 5 is inserted into the inside of the hollow cylinder. The bearings 6 are provided in a pair and are positioned so as to sandwich the stator 2 in the axial direction. Specifically, one of the pair, the bearing 6a, is press-fitted and fixed to the shaft 5 on the axially upper side of the stator 2, and the other bearing 6b is press-fitted and fixed to the shaft 5 on the axially lower side of the stator 2. In other words, the inner circumferential surface of one bearing 6a is held on the outside of the shaft 5, and the inner circumferential surface of the other bearing 6b is held on the outside of the shaft 5.
 このような構成のモータ1は、ステータ2が発生させた磁束に応じてシャフト5を軸にロータヨーク3とロータカバー4とを回転させる。言い換えるとモータ1は、アウターロータ型のモータである。 The motor 1 configured in this way rotates the rotor yoke 3 and rotor cover 4 around the shaft 5 in response to the magnetic flux generated by the stator 2. In other words, the motor 1 is an outer rotor type motor.
 続いて、図2、図3を参照して、本実施の形態に係るステータ2について説明する。図2はステータ2の構成を示す概略図である。また、図3はステータ2の分解斜視図である。 Next, the stator 2 according to this embodiment will be described with reference to Figures 2 and 3. Figure 2 is a schematic diagram showing the configuration of the stator 2. Figure 3 is an exploded perspective view of the stator 2.
 ステータ2は、ステータコア8と、ターミナル10と、基板9と、コイル11と、インシュレータ20と、を備える。 The stator 2 includes a stator core 8, terminals 10, a substrate 9, a coil 11, and an insulator 20.
 ステータコア8は、略円盤状の複数枚の鋼板を軸方向に積層して略円筒状に形成される。ステータコア8は、円筒部43と、中心孔40と、歯部41と、スロット42と、を備える。 The stator core 8 is formed into a generally cylindrical shape by stacking multiple roughly disk-shaped steel plates in the axial direction. The stator core 8 has a cylindrical portion 43, a central hole 40, teeth 41, and slots 42.
 円筒部43は、ステータコア8の略円筒状を構成する内周側の部位である。 The cylindrical portion 43 is the inner peripheral portion that constitutes the roughly cylindrical shape of the stator core 8.
 中心孔40は、シャフト5を挿通するための貫通孔でありステータコア8の中心に設けられる。言い換えると、中心孔40は、円筒部43の中心に設けられる。 The central hole 40 is a through hole for inserting the shaft 5 and is provided at the center of the stator core 8. In other words, the central hole 40 is provided at the center of the cylindrical portion 43.
 歯部41は、ステータコア8にコイル11を巻回するための突出部である。歯部41は、円筒部43の外周面から径方向外側に突出する。歯部41は、円筒部43の周方向に等間隔で複数設けられる。言い換えると、歯部41は、円筒部43の外周側に放射状に設けられる。なお、歯部41の本数はモータ1の仕様に応じて自由に変更してよい。歯部41は、巻回部44と曲面部45を備える。 The tooth portion 41 is a protruding portion for winding the coil 11 around the stator core 8. The tooth portion 41 protrudes radially outward from the outer circumferential surface of the cylindrical portion 43. A plurality of tooth portions 41 are provided at equal intervals around the circumference of the cylindrical portion 43. In other words, the tooth portions 41 are provided radially on the outer circumferential side of the cylindrical portion 43. The number of tooth portions 41 may be freely changed depending on the specifications of the motor 1. The tooth portion 41 includes a winding portion 44 and a curved portion 45.
 巻回部44は、円筒部43と曲面部45とを連結する。巻回部44には、インシュレータ20を介してコイル11が巻回される。 The winding portion 44 connects the cylindrical portion 43 and the curved portion 45. The coil 11 is wound around the winding portion 44 via the insulator 20.
 曲面部45は、ステータコア8の周方向における表面積を広くしマグネット7が発生させた磁束を受けとる面積を大きくする。言い換えると、曲面部45によってステータコア8がマグネット7からの磁束を効率よく受け取ることができる。曲面部45は、巻回部44における径方向外側の端部からモータ1の回転軸に対して周方向両側に同じ長さで広がるように設けられる。 The curved surface portion 45 increases the surface area of the stator core 8 in the circumferential direction, thereby increasing the area that receives the magnetic flux generated by the magnet 7. In other words, the curved surface portion 45 allows the stator core 8 to efficiently receive the magnetic flux from the magnet 7. The curved surface portion 45 is arranged to extend from the radially outer end of the winding portion 44 to both sides in the circumferential direction relative to the rotating shaft of the motor 1 by the same length.
 スロット42は、コイル11を歯部41に巻装するための空間である。スロット42は、円筒部43の外周面と隣り合う歯部41の側面とを内壁として形成される。スロット42は軸方向にh0の厚みを有する空間である。ここで、h0は、ステータコア8の軸方向の厚みに等しい。 The slot 42 is a space for winding the coil 11 around the tooth portion 41. The slot 42 is formed with the outer peripheral surface of the cylindrical portion 43 and the side surface of the adjacent tooth portion 41 as inner walls. The slot 42 is a space having a thickness of h0 in the axial direction. Here, h0 is equal to the axial thickness of the stator core 8.
 ターミナル10は、ステータコア8における円筒部43の軸方向端部に設置される。ターミナル10は、円盤状に形成される。ターミナル10は、当該ターミナル10を挟んでステータコア8とは反対側にてコイル11同士を電気的に接続するための渡り線を支持する。このような構成によって、ターミナル10は、渡り線とステータコア8との絶縁を保つ。 The terminal 10 is installed at the axial end of the cylindrical portion 43 of the stator core 8. The terminal 10 is formed in a disk shape. The terminal 10 supports a jumper wire for electrically connecting the coils 11 to each other on the opposite side of the terminal 10 from the stator core 8. With this configuration, the terminal 10 maintains insulation between the jumper wire and the stator core 8.
 基板9は、ターミナル10のステータコアに対向する面とは逆側の面に設置される。基板9は、モータ1の外部に設置された駆動用基板によって通電制御を行い、コイル11へ電流を供給する。 The circuit board 9 is installed on the side opposite the side facing the stator core of the terminal 10. The circuit board 9 controls the flow of current through a drive circuit board installed outside the motor 1, and supplies current to the coil 11.
 コイル11は、銅やアルミニウムの合金を主な素材とする導電線である。コイル11は、インシュレータ20を介してステータコア8に巻回され、通電により磁束を発生させる。 The coil 11 is a conductive wire whose main material is an alloy of copper and aluminum. The coil 11 is wound around the stator core 8 via the insulator 20, and generates magnetic flux when electricity is passed through it.
 インシュレータ20は、ステータコア8における歯部41の軸方向両端に一対に設置される。インシュレータ20は、円環状に設けられ、図3のようにステータコア8の軸方向の両側から挟み込むようにして取り付けられる。インシュレータ20は、例えば樹脂成形品から成る。インシュレータ20を介してコイル11を巻回することで、ステータコア8とコイル11との絶縁性が確保される。インシュレータ20は、基部21と、壁部22と、を備える。 The insulators 20 are installed in pairs at both axial ends of the tooth portion 41 of the stator core 8. The insulators 20 are provided in an annular shape and are attached by sandwiching the stator core 8 from both axial sides as shown in FIG. 3. The insulators 20 are made of, for example, a resin molded product. By winding the coil 11 through the insulator 20, insulation between the stator core 8 and the coil 11 is ensured. The insulator 20 has a base 21 and a wall portion 22.
 基部21は、軸方向に直交する面を有する円環状に形成される。基部21は、ステータコア8の軸方向の端面に当接して設けられ、歯部41を覆うように配置される。 The base 21 is formed in an annular shape having a surface perpendicular to the axial direction. The base 21 is provided in contact with the axial end face of the stator core 8 and is positioned so as to cover the tooth portion 41.
 壁部22は、基部21から筒状に軸方向内側へ延出して形成される。壁部22は、スロット42の内壁に沿って延出する。言い換えると、壁部22は、歯部41の側面及び円筒部43の外周面に沿って延出する。 The wall portion 22 is formed in a cylindrical shape extending axially inward from the base portion 21. The wall portion 22 extends along the inner wall of the slot 42. In other words, the wall portion 22 extends along the side surface of the tooth portion 41 and the outer peripheral surface of the cylindrical portion 43.
 次に図4A~Cを参照して、インシュレータ20の構造についてさらに詳しく説明する。図4Aは、インシュレータ20の斜視図である。また、図4Bは、壁部22を拡大した部分拡大図である。また、図4Cは、壁部22をスロット42に挿入した状態を示す上面視図である。以下の説明では、壁部22の形状を詳しく説明するために図4Cのスロット42を形成する隣り合う歯部41のうち、左側を一方の歯部41a、右側を他方の歯部41bと称する。 Next, the structure of the insulator 20 will be described in more detail with reference to Figures 4A to 4C. Figure 4A is a perspective view of the insulator 20. Figure 4B is a partially enlarged view of the wall portion 22. Figure 4C is a top view showing the wall portion 22 inserted into the slot 42. In the following description, to explain the shape of the wall portion 22 in detail, the left side of the adjacent tooth portions 41 that form the slot 42 in Figure 4C will be referred to as one tooth portion 41a and the right side as the other tooth portion 41b.
 また、図4Bでは壁部22の説明のために仮想的な線として壁部中間線33を設けている。壁部中間線33は、軸に平行な直線であり壁部22を一方の歯部41a側と他方の歯部41b側とに二等分する位置に設けられる。壁部中間線33は、後述の内層傾斜壁31及び外層傾斜壁32に沿って設けられる。 In addition, in FIG. 4B, a wall midline 33 is provided as a virtual line for explaining the wall 22. The wall midline 33 is a straight line parallel to the axis and is provided at a position that bisects the wall 22 into one tooth portion 41a side and the other tooth portion 41b side. The wall midline 33 is provided along the inner layer inclined wall 31 and the outer layer inclined wall 32, which will be described later.
 壁部22は、巻回開口35と、巻線係止部36と、内層部23と、外層部24と、を備える。 The wall portion 22 includes a winding opening 35, a winding locking portion 36, an inner layer portion 23, and an outer layer portion 24.
 巻回開口35は、径方向外側からコイル11を通すために設けられた開口である。巻回開口35は、径方向外側へ壁部22の筒状の一部を切り欠いた形状で設けられる。 The winding opening 35 is an opening provided to pass the coil 11 from the radially outer side. The winding opening 35 is provided by cutting out a part of the cylindrical wall portion 22 radially outward.
 巻線係止部36は、コイル11が歯部41に巻回されたあとに巻回開口35を介して径方向外側へ移動することを抑止するための突出部である。また、巻線係止部36は、コイル11を巻回開口35よりも歯部41側に係止することで、曲面部45の先端とコイル11との物理的な距離を設け、絶縁性を高める役割も有する。巻線係止部36は、巻回開口35を形成する壁部22の両端部から径方向内側へ向けて突出する。 The winding locking portion 36 is a protrusion that prevents the coil 11 from moving radially outward through the winding opening 35 after it has been wound around the tooth portion 41. The winding locking portion 36 also serves to provide a physical distance between the tip of the curved portion 45 and the coil 11 and improve insulation by locking the coil 11 closer to the tooth portion 41 than to the winding opening 35. The winding locking portion 36 protrudes radially inward from both ends of the wall portion 22 that forms the winding opening 35.
 内層部23は、壁部22のうち内周側を構成する壁面である。内層部23は、外層部24を挟んでスロット42の内壁とは逆側に設けられる。言い換えると、内層部23は、外周面が外層部24の内周面に当接する。内層部23は、内層高位壁29と、内層低位壁27と、内層傾斜壁31と、正傾斜面25と、を備える。 The inner layer portion 23 is a wall surface that constitutes the inner peripheral side of the wall portion 22. The inner layer portion 23 is provided on the opposite side of the inner wall of the slot 42, sandwiching the outer layer portion 24. In other words, the outer peripheral surface of the inner layer portion 23 abuts against the inner peripheral surface of the outer layer portion 24. The inner layer portion 23 includes an inner layer high wall 29, an inner layer low wall 27, an inner layer inclined wall 31, and a positive inclined surface 25.
 内層低位壁27は、内層部23において基部21からの高さが最も低い壁面である。内層低位壁27は、隣り合う歯部41のうち一方の歯部41aに沿って基部21から軸方向に突出する。内層低位壁27は、一方の巻回部44aに沿って軸方向に突出する壁面と一方の曲面部45aに沿って軸方向に突出する壁面とを含み上面視にして略L字形状に設けられる(図4C参照)。内層低位壁27の突出先端は、基部21からの高さがh1となる位置まで突出する。h1は、例えばステータコア8の軸方向の厚みであるh0の半分よりも小さな値である。 The inner layer low wall 27 is the wall surface that has the lowest height from the base 21 in the inner layer portion 23. The inner layer low wall 27 protrudes in the axial direction from the base 21 along one of the adjacent tooth portions 41a. The inner layer low wall 27 includes a wall surface that protrudes in the axial direction along one of the winding portions 44a and a wall surface that protrudes in the axial direction along one of the curved portions 45a, and is provided in a generally L-shape when viewed from above (see FIG. 4C). The protruding tip of the inner layer low wall 27 protrudes to a position where the height from the base 21 is h1. h1 is, for example, a value smaller than half the axial thickness h0 of the stator core 8.
 内層高位壁29は、内層部23において基部21からの高さが最も高い壁面である。内層高位壁29は、隣り合う歯部41のうち他方の歯部41bに沿って基部21から軸方向に突出する。内層高位壁29は、他方の巻回部44bに沿って軸方向に突出する壁面と他方の曲面部45bに沿って軸方向に突出する壁面とを含み上面視にして略逆L字形状に設けられる(図4C参照)。内層高位壁29の突出先端は、基部21からの高さがh2となる位置まで突出する。h2は、例えばステータコア8の軸方向の厚みであるh0よりも小さく、h0の半分よりも大きな値である。 The inner layer high wall 29 is the wall surface that is the highest from the base 21 in the inner layer portion 23. The inner layer high wall 29 protrudes in the axial direction from the base 21 along the other tooth portion 41b of the adjacent tooth portions 41. The inner layer high wall 29 includes a wall surface that protrudes in the axial direction along the other winding portion 44b and a wall surface that protrudes in the axial direction along the other curved surface portion 45b, and is provided in a generally inverted L shape when viewed from above (see FIG. 4C). The protruding tip of the inner layer high wall 29 protrudes to a position where the height from the base 21 is h2. h2 is, for example, smaller than h0, which is the axial thickness of the stator core 8, and is greater than half of h0.
 内層傾斜壁31は、内層低位壁27と内層高位壁29との間に位置し、円筒部43の外周面に沿って基部21から軸方向に突出する。言い換えると、内層傾斜壁31は、内層低位壁27と内層高位壁29とに隣接する。内層傾斜壁31は、内層低位壁27に当接し内層部23において基部21からの高さが最も低い最低位部と、内層高位壁29に当接し基部21からの高さが最も高い最高位部とを有する。ここで最低位部の高さは、内層低位壁27と等しいh1であり、最高位部の高さは、内層高位壁29と等しいh2である。また、基部21からの高さが最低位部と最高位部との中間であるh3となる中位部も有する。 The inner layer inclined wall 31 is located between the inner layer low wall 27 and the inner layer high wall 29, and protrudes axially from the base 21 along the outer circumferential surface of the cylindrical portion 43. In other words, the inner layer inclined wall 31 is adjacent to the inner layer low wall 27 and the inner layer high wall 29. The inner layer inclined wall 31 has a lowest part that abuts against the inner layer low wall 27 and has the lowest height from the base 21 in the inner layer portion 23, and a highest part that abuts against the inner layer high wall 29 and has the highest height from the base 21. Here, the height of the lowest part is h1, which is equal to the inner layer low wall 27, and the height of the highest part is h2, which is equal to the inner layer high wall 29. It also has a middle part whose height from the base 21 is h3, which is halfway between the lowest part and the highest part.
 内層傾斜壁31の高さは、一方の歯部41a側から他方の歯部41b側にかけて所定の角度の傾斜で連続的に高くなる。ここで連続的とは段差が無いことである。内層傾斜壁31の高さは、内層低位壁27に接する最低位部ではh1であり、他方の歯部41bへ近づくにつれて徐々に高くなる。また、壁部中間線33の位置を通過する際に最低位部と最高位部との中間の高さh3となる(中位部)。さらに内層高位壁29に接する最高位部にて高さがh2に到達する。 The height of the inner layer inclined wall 31 increases continuously at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side. Continuously means that there is no step. The height of the inner layer inclined wall 31 is h1 at the lowest part that contacts the inner layer low wall 27, and gradually increases as it approaches the other tooth portion 41b. In addition, when it passes the position of the wall midline 33, it reaches a height h3 that is halfway between the lowest part and the highest part (middle part). Furthermore, the height reaches h2 at the highest part that contacts the inner layer high wall 29.
 正傾斜面25は、内層傾斜壁31の突出先端に形成される斜面である。正傾斜面25は、一方の歯部41a側から他方の歯部41b側にかけて所定の角度の傾斜で連続的に高くなる。正傾斜面25は、内層低位壁27の突出先端と内層高位壁29の突出先端とを接続する。 The positive inclined surface 25 is a slope formed at the protruding tip of the inner layer inclined wall 31. The positive inclined surface 25 becomes continuously higher at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side. The positive inclined surface 25 connects the protruding tip of the inner layer low wall 27 and the protruding tip of the inner layer high wall 29.
 外層部24は、壁部22のうち外周側を構成する壁面である。外層部24は、内層部23の外周側に位置し、スロット42に挿入された際には内層部23とスロット42の内壁との間に位置する。言い換えると外層部24は、外周面がスロット42の内壁に当接し、内周面が内層部23の外周面に当接する。外層部24は、外層高位壁30と、外層低位壁28と、外層傾斜壁32と、反傾斜面26と、突起部34と、を備える。 The outer layer portion 24 is a wall surface that constitutes the outer peripheral side of the wall portion 22. The outer layer portion 24 is located on the outer peripheral side of the inner layer portion 23, and is located between the inner layer portion 23 and the inner wall of the slot 42 when inserted into the slot 42. In other words, the outer peripheral surface of the outer layer portion 24 abuts against the inner wall of the slot 42, and the inner peripheral surface abuts against the outer peripheral surface of the inner layer portion 23. The outer layer portion 24 comprises an outer layer high wall 30, an outer layer low wall 28, an outer layer inclined wall 32, a counter-inclined surface 26, and a protrusion portion 34.
 外層低位壁28は、外層部24において基部21からの高さが最も低い壁面である。外層低位壁28は、隣り合う歯部41のうち他方の歯部41bに沿って基部21から軸方向に突出する。外層低位壁28は、他方の巻回部44bに沿って軸方向に突出する壁面と他方の曲面部45bに沿って軸方向に突出する壁面とを含み上面視にして略逆L字形状に設けられる(図4C参照)。外層低位壁28の突出先端は、基部21からの高さがh1となる位置まで突出する。 The outer layer low wall 28 is the wall surface in the outer layer portion 24 that has the lowest height from the base 21. The outer layer low wall 28 protrudes axially from the base 21 along the other tooth portion 41b of the adjacent tooth portions 41. The outer layer low wall 28 includes a wall surface that protrudes axially along the other winding portion 44b and a wall surface that protrudes axially along the other curved surface portion 45b, and is provided in a generally inverted L shape when viewed from above (see FIG. 4C). The protruding tip of the outer layer low wall 28 protrudes to a position where the height from the base 21 is h1.
 外層高位壁30は、外層部24において基部21からの高さが最も高い壁面である。外層高位壁30は、隣り合う歯部41のうち一方の歯部41aに沿って基部21から軸方向に突出する。外層高位壁30は、一方の巻回部44aに沿って軸方向に突出する壁面と一方の曲面部45aに沿って軸方向に突出する壁面とを含み上面視にして略L字形状に設けられる(図4C参照)。外層高位壁30の突出先端は、基部21からの高さがh2となる位置まで突出する。 The outer layer high wall 30 is the wall surface in the outer layer portion 24 that has the highest height from the base portion 21. The outer layer high wall 30 protrudes in the axial direction from the base portion 21 along one of the adjacent tooth portions 41a. The outer layer high wall 30 includes a wall surface that protrudes in the axial direction along one of the winding portions 44a and a wall surface that protrudes in the axial direction along one of the curved portions 45a, and is provided in a substantially L-shape when viewed from above (see FIG. 4C). The protruding tip of the outer layer high wall 30 protrudes to a position where the height from the base portion 21 is h2.
 外層傾斜壁32は、外層低位壁28と外層高位壁30との間に位置し、円筒部43の外周面に沿って基部21から軸方向に突出する。言い換えると、外層傾斜壁32は、外層低位壁28と外層高位壁30とに隣接する。外層傾斜壁32は、外層低位壁28に当接し外層部24において基部21からの高さが最も低い最低位部と、外層高位壁30に当接し基部21からの高さが最も高い最高位部とを有する。ここで最低位部の高さは、内層低位壁27及び外層低位壁28と等しいh1であり、最高位部の高さは、内層高位壁29及び外層高位壁30と等しいh2である。また、基部21からの高さが最低位部と最高位部との中間であるh3となる中位部も有する。 The outer layer inclined wall 32 is located between the outer layer low wall 28 and the outer layer high wall 30, and protrudes axially from the base 21 along the outer peripheral surface of the cylindrical portion 43. In other words, the outer layer inclined wall 32 is adjacent to the outer layer low wall 28 and the outer layer high wall 30. The outer layer inclined wall 32 has a lowest part that abuts against the outer layer low wall 28 and has the lowest height from the base 21 in the outer layer portion 24, and a highest part that abuts against the outer layer high wall 30 and has the highest height from the base 21. Here, the height of the lowest part is h1, which is the same as the inner layer low wall 27 and the outer layer low wall 28, and the height of the highest part is h2, which is the same as the inner layer high wall 29 and the outer layer high wall 30. It also has a middle part whose height from the base 21 is h3, which is intermediate between the lowest part and the highest part.
 外層傾斜壁32の高さは、一方の歯部41a側から他方の歯部41b側にかけて所定の角度の傾斜で連続的に低くなる。外層傾斜壁32の高さは、外層高位壁30に接する最高位部ではh2であり、他方の歯部41bへ近づくにつれて徐々に低くなる。また、壁部中間線33の位置を通過する際に最低位部と最高位部との中間の高さh3となる(中位部)。さらに外層低位壁28に接する最低位部にて高さがh1に到達する。 The height of the outer layer inclined wall 32 decreases continuously at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side. The height of the outer layer inclined wall 32 is h2 at the highest portion that contacts the outer layer high wall 30, and gradually decreases as it approaches the other tooth portion 41b. In addition, when passing through the position of the wall portion midline 33, it reaches a height h3 that is halfway between the lowest portion and the highest portion (middle portion). Furthermore, the height reaches h1 at the lowest portion that contacts the outer layer low wall 28.
 このように壁部22は、内層部23の高さと外層部24の高さとが壁部中間線33を境にして入れ替わるたすき掛け状の構造を有する。また、内層高位壁29は、外層高位壁30と高さが等しく、内層低位壁27は、外層低位壁28と高さが等しい。言い換えると、内層部23の高さと外層部24の高さとが壁部中間線を対称軸として線対称となる。 In this way, the wall 22 has a cross-shaped structure in which the height of the inner layer 23 and the height of the outer layer 24 are switched at the wall midline 33. Furthermore, the inner high wall 29 has the same height as the outer high wall 30, and the inner low wall 27 has the same height as the outer low wall 28. In other words, the height of the inner layer 23 and the height of the outer layer 24 are linearly symmetrical with the wall midline as the axis of symmetry.
 反傾斜面26は、外層傾斜壁32の突出先端に形成される斜面である。反傾斜面26は、一方の歯部41a側から他方の歯部41b側にかけて所定の角度の傾斜で連続的に低くなる。反傾斜面26は、外層低位壁28の突出先端と外層高位壁30の突出先端とを接続する。 The counter-inclined surface 26 is a slope formed at the protruding tip of the outer layer inclined wall 32. The counter-inclined surface 26 becomes continuously lower at a predetermined angle from one tooth portion 41a side to the other tooth portion 41b side. The counter-inclined surface 26 connects the protruding tip of the outer layer low wall 28 and the protruding tip of the outer layer high wall 30.
 突起部34は、外層傾斜壁32における壁部中間線33上にて径方向内側に突出する突出部である。言い換えると外層傾斜壁32から壁部22よりも外周へむかって突出する。突起部34は、先端が円筒部43の外周面に当接し、壁部22と円筒部43との物理的な距離を確保する。この構成によってコイル11とステータコア8との絶縁性を更に確保できる。また、壁部22をスロット42に挿入する際にステータコア8に対するインシュレータ20の位置決めを補助できる。 The protrusion 34 is a protrusion that protrudes radially inward on the wall midline 33 of the outer layer inclined wall 32. In other words, it protrudes from the outer layer inclined wall 32 toward the outer periphery beyond the wall 22. The tip of the protrusion 34 abuts against the outer peripheral surface of the cylindrical portion 43, ensuring a physical distance between the wall 22 and the cylindrical portion 43. This configuration can further ensure insulation between the coil 11 and the stator core 8. It can also assist in positioning the insulator 20 relative to the stator core 8 when inserting the wall 22 into the slot 42.
 次に図5A~Cを参照して、一対のインシュレータ20の壁部22を軸方向両側から重ね合わせる際の動きについて詳しく説明する。以下では説明のために、図5A~Cにて下側に配置されたインシュレータをインシュレータ20aとし、上側に配置されたインシュレータをインシュレータ20bとして説明する。なおインシュレータ20aとインシュレータ20bとはどちらも同じ形状である。内層部23や外層部24といったほかの構成についても、下側に配置されたものにはaを付与し、上側に配置されたものにはbを付与して説明する。 Next, referring to Figures 5A to 5C, the movement when the wall portions 22 of a pair of insulators 20 are overlapped from both axial sides will be described in detail. For the sake of explanation, the insulator arranged on the lower side in Figures 5A to 5C will be referred to as insulator 20a, and the insulator arranged on the upper side will be referred to as insulator 20b. Note that insulators 20a and 20b have the same shape. Other components such as the inner layer portion 23 and outer layer portion 24 will also be described by adding the letter a to those arranged on the lower side and the letter b to those arranged on the upper side.
 図5A~Cはステータコア8にインシュレータ20を載置する際の手順を径方向内側から見た概要図である。図5Aはスロット42に壁部22aを挿入する際の手順を示す。図5Bは、スロット42に壁部22bを挿入する際の手順を示す。図5Cは、図5Aと図5Bとによってスロット42の内側にて重ね合わされた壁部22aと壁部22bとの状態を示す。なお、図5Bにて外層部24の奥に隠れた内層部23については破線で表記している。 Figures 5A to 5C are schematic diagrams seen from the radial inside showing the procedure for placing the insulator 20 on the stator core 8. Figure 5A shows the procedure for inserting wall portion 22a into slot 42. Figure 5B shows the procedure for inserting wall portion 22b into slot 42. Figure 5C shows the state of wall portion 22a and wall portion 22b overlapped inside slot 42 in Figures 5A and 5B. Note that the inner layer portion 23 hidden behind the outer layer portion 24 in Figure 5B is indicated by a dashed line.
 最初に図5Aを参照してインシュレータ20aの載置について説明する。 First, we will explain how to place the insulator 20a with reference to Figure 5A.
 まず、外層高位壁30aをスロット42に挿入する。このとき、スロット42の内壁を構成する一方の歯部41aの側面に外層高位壁30aの外周面を摺動させて挿入することで、ステータコア8に対するインシュレータ20aの位置決めを容易にできる。 First, the outer layer high-level wall 30a is inserted into the slot 42. At this time, the outer peripheral surface of the outer layer high-level wall 30a is slid against the side surface of one of the teeth 41a that constitutes the inner wall of the slot 42, making it easy to position the insulator 20a relative to the stator core 8.
 次に、他方の歯部41bの側面に外層低位壁28aの外壁を摺動させてさらに挿入し、ステータコア8の一端に基部21aを当接させる。このような手順によってステータコア8の一端にインシュレータ20aを載置できる。 Next, the outer wall of the outer layer lower wall 28a is slid against the side of the other tooth portion 41b and further inserted, and the base 21a is abutted against one end of the stator core 8. This procedure allows the insulator 20a to be placed on one end of the stator core 8.
 次に図5Bを参照してインシュレータ20bの載置について説明する。図5Bでは、図5Aの手順によって既にステータコア8の一端にインシュレータ20aが載置された状態である。 Next, the placement of the insulator 20b will be described with reference to FIG. 5B. In FIG. 5B, the insulator 20a has already been placed on one end of the stator core 8 by the procedure in FIG. 5A.
 まず、外層高位壁30bをスロット42に挿入する。このとき、他方の歯部41bの側面に外層高位壁30bの外周面を摺動させ、内層高位壁29aの外壁と外層高位壁30bの内周面とを摺動させて挿入する。言い換えると、外層高位壁30bを内層高位壁29aとスロット42の内壁との間に位置させる。このような構成によってステータコア8に対するインシュレータ20bの位置決めを容易にできる。 First, the outer layer high-level wall 30b is inserted into the slot 42. At this time, the outer peripheral surface of the outer layer high-level wall 30b is slid against the side surface of the other tooth portion 41b, and the outer wall of the inner layer high-level wall 29a and the inner peripheral surface of the outer layer high-level wall 30b are slid against each other to insert the outer layer high-level wall 30b. In other words, the outer layer high-level wall 30b is positioned between the inner layer high-level wall 29a and the inner wall of the slot 42. This configuration makes it easy to position the insulator 20b relative to the stator core 8.
 次に、一方の歯部41aの側面に外層低位壁28bの外壁を摺動させてさらに挿入し、ステータコア8の一端に基部21bを当接させる。このとき、内層高位壁29bの外壁を外層高位壁30aの内壁に沿って挿入することで、外層高位壁30aを内層高位壁29bとスロット42の内壁との間に位置させる。このような手順によってステータコア8の他端にインシュレータ20bを載置できる。 Next, the outer wall of the outer layer low-level wall 28b is slid against the side of one of the teeth 41a and further inserted, and the base 21b is abutted against one end of the stator core 8. At this time, the outer wall of the inner layer high-level wall 29b is inserted along the inner wall of the outer layer high-level wall 30a, so that the outer layer high-level wall 30a is positioned between the inner layer high-level wall 29b and the inner wall of the slot 42. By this procedure, the insulator 20b can be placed on the other end of the stator core 8.
 なお壁部22について、内層高位壁29の厚みを外層低位壁28よりも薄くし、外層高位壁30の厚みを内層低位壁27よりも薄く形成してもよい。このような構成によれば、外層高位壁30を内層高位壁29とスロット42の内壁との間に挿入しやすくなり組立性を向上できる。 Furthermore, for the wall portion 22, the inner high-level wall 29 may be thinner than the outer low-level wall 28, and the outer high-level wall 30 may be thinner than the inner low-level wall 27. With this configuration, the outer high-level wall 30 can be easily inserted between the inner high-level wall 29 and the inner wall of the slot 42, improving assembly.
 次に、図5Cを参照してスロット42の内側にて重ね合わされた壁部22aと壁部22bとの状態を説明する。 Next, the state of wall portion 22a and wall portion 22b overlapping on the inside of slot 42 will be described with reference to FIG. 5C.
 内層部23については正傾斜面25aと正傾斜面25bとが対向する。また、内層低位壁27aの突出先端と内層高位壁29bの突出先端とが対向し、内層低位壁27bの突出先端と内層高位壁29bの突出先端とが対向した状態となる。 In the inner layer portion 23, the positive inclined surface 25a faces the positive inclined surface 25b. In addition, the protruding tip of the inner layer low wall 27a faces the protruding tip of the inner layer high wall 29b, and the protruding tip of the inner layer low wall 27b faces the protruding tip of the inner layer high wall 29b.
 外層部24については反傾斜面26aと反傾斜面26bとが対向する。また、外層低位壁28aの突出先端と外層高位壁30bの突出先端とが対向し、外層低位壁28bの突出先端と外層高位壁30aの突出先端とが対向した状態となる。 In the outer layer portion 24, the inverse inclined surface 26a faces the inverse inclined surface 26b. In addition, the protruding tip of the outer layer low wall 28a faces the protruding tip of the outer layer high wall 30b, and the protruding tip of the outer layer low wall 28b faces the protruding tip of the outer layer high wall 30a.
 ここで、内層部23は、最低位部を有する内層低位壁27と、最高位部を有する内層高位壁29とを内層傾斜壁31によって高さを連続的に変化させて接続し正傾斜面25を形成している。外層部24も同様に最高位部を有する外層高位壁30と、最低位部を有する外層低位壁28とを外層傾斜壁32によって高さを連続的に変化させて接続し反傾斜面26を形成している。 Here, the inner layer portion 23 is connected by an inner layer low-level wall 27 having a lowest part and an inner layer high-level wall 29 having a highest part, with an inner layer inclined wall 31, with the height continuously changing, to form a positive inclined surface 25. Similarly, the outer layer portion 24 is connected by an outer layer high-level wall 30 having a highest part and an outer layer low-level wall 28 having a lowest part, with the height continuously changing, to form an anti-inclined surface 26, with an outer layer inclined wall 32.
 このように高さを変化させる際に段差ではなく斜面とした構造の効果について、図6A及びBを参照して説明する。図6A及びBは、下側に配置されたインシュレータ20aと上側に配置されたインシュレータ20bとの位置が周方向にずれた状態で壁部22aと壁部22bとを重ね合わせる際の動きを示す図である。図6A及びBの図面上では、インシュレータ20aはインシュレータ20bに対して右側にずれたものとして表示している。 The effect of using a slope instead of a step when changing the height will be described with reference to Figures 6A and B. Figures 6A and B are diagrams showing the movement when wall portion 22a and wall portion 22b are overlapped with the positions of insulator 20a arranged on the lower side and insulator 20b arranged on the upper side shifted in the circumferential direction. In Figures 6A and B, insulator 20a is shown shifted to the right relative to insulator 20b.
 ここで、図6Aは、内層低位壁27と内層高位壁29とを直接接続し、外層低位壁28と外層高位壁30とを直接接続する構造である。言い換えると内層傾斜壁31及び外層傾斜壁32を設けないため段差が生じる構造である。また、図6Bは、内層傾斜壁31及び外層傾斜壁32を設けることで高さを連続的に変化するため段差が生じず、つまり斜面とする構造である。 Here, Fig. 6A shows a structure in which the inner layer low wall 27 and the inner layer high wall 29 are directly connected, and the outer layer low wall 28 and the outer layer high wall 30 are directly connected. In other words, this structure has a step because the inner layer inclined wall 31 and the outer layer inclined wall 32 are not provided. Also, Fig. 6B shows a structure in which the height changes continuously by providing the inner layer inclined wall 31 and the outer layer inclined wall 32, so no step is created, i.e., it is a slope.
 図6Aの構造で壁部22aと壁部22bとを重ね合わせようとする場合、インシュレータ20aがインシュレータ20bに対して右側にずれているため内層高位壁29aの先端と内層高位壁29bの先端とが接触する。言い換えると、インシュレータ20aとインシュレータ20bとが周方向に少しでもずれた場合には壁部22aと壁部22bとを重ね合わせることが困難になる。 When attempting to overlap wall portion 22a and wall portion 22b in the structure of FIG. 6A, the tip of inner layer high wall 29a and the tip of inner layer high wall 29b come into contact with each other because insulator 20a is shifted to the right relative to insulator 20b. In other words, if insulator 20a and insulator 20b are shifted even slightly in the circumferential direction, it becomes difficult to overlap wall portion 22a and wall portion 22b.
 これに対して図6Bの構造ならば、インシュレータ20aがインシュレータ20bに対して右側にずれても正傾斜面25aと正傾斜面25bとが対向することで互いに斜面に沿って摺動するためずれを吸収できる。このような構造であれば、壁部22aと壁部22bとを重ね合わせる際に軸方向だけでなく、スロット42の周方向についても寸法公差を許容できる。ステータ2を組み立てる際に精度を厳密にせずとも壁部22aと壁部22bとを重ね合わせられるため、生産性が高くなる。 In contrast, with the structure of FIG. 6B, even if insulator 20a is misaligned to the right relative to insulator 20b, positive inclined surface 25a and positive inclined surface 25b face each other and slide along the inclined surfaces, absorbing the misalignment. With this structure, when overlapping wall portion 22a and wall portion 22b, dimensional tolerances can be tolerated not only in the axial direction but also in the circumferential direction of slot 42. Since wall portion 22a and wall portion 22b can be overlapped without strict precision when assembling stator 2, productivity is improved.
 また、従来では図7A及びBのようにインシュレータB201をインシュレータA101とは異なる形状にすることで第1壁部103と第2壁部203とを重ね合わせていた。 Also, conventionally, the first wall portion 103 and the second wall portion 203 are overlapped by making the insulator B201 have a different shape from the insulator A101, as shown in Figures 7A and B.
 本実施の形態の形状によれば、インシュレータ20aとインシュレータ20bとはどちらも同じ形状でありながら、スロット42の内側にて壁部22aと壁部22bとを重ね合わせて絶縁性を確保できる。インシュレータ20aとインシュレータ20bとはどちらも同じ形状であるため、必要な金型が1種類で良く、費用及び金型を切り替える工数を削減し生産性を高めることができる。 According to the shape of this embodiment, while insulators 20a and 20b have the same shape, wall portions 22a and 22b are overlapped inside slot 42 to ensure insulation. Because insulators 20a and 20b have the same shape, only one type of mold is required, reducing costs and labor required to switch molds and increasing productivity.
 また、壁部22は、内層部23の高さと外層部24の高さとが壁部中間線33を境にして入れ替わるたすき掛け状の構造を有する。さらに、内層高位壁29は、外層高位壁30と高さが等しく、内層低位壁27は、外層低位壁28と高さが等しい。言い換えると、内層部23の高さと外層部24の高さとが壁部中間線を対称軸として線対称となる。このような構成によって、内層部23と外層部24とで重なり合う面積が最も広くなり、図5Cに示すように一対の壁部22を重ね合わせた際の隙間46が最も小さくなるため絶縁性を向上できる。 The wall 22 has a cross-shaped structure in which the height of the inner layer 23 and the height of the outer layer 24 are switched at the wall midline 33. Furthermore, the inner high wall 29 has the same height as the outer high wall 30, and the inner low wall 27 has the same height as the outer low wall 28. In other words, the height of the inner layer 23 and the height of the outer layer 24 are linearly symmetrical with the wall midline as the axis of symmetry. With this configuration, the overlapping area of the inner layer 23 and the outer layer 24 is maximized, and the gap 46 is minimized when a pair of wall sections 22 are overlapped as shown in FIG. 5C, improving insulation.
 なお、本実施の形態では壁部22が内層部23と、外層部24と、を備えると説明した。内層部23と外層部24とは別々に設けてもよいし一体に成形して一つの壁部22として設けてもよい。インシュレータ20aとインシュレータ20bとが同じ形状でありながらスロット42の内側にて壁部22aと壁部22bとを重ね合わせ可能であればよい。 In this embodiment, the wall portion 22 is described as having an inner layer portion 23 and an outer layer portion 24. The inner layer portion 23 and the outer layer portion 24 may be provided separately, or may be molded together to provide a single wall portion 22. It is sufficient that the insulators 20a and 20b have the same shape and the wall portions 22a and 22b can be overlapped inside the slots 42.
 また、本実施の形態では、アウターロータ型のモータに使用するステータについて説明したがこれに限られるものではなく、インナーロータ型のモータについても適用可能である。アウターロータ型において、歯部41は、円筒部43の外周面から径方向外側に突出したが、インナーロータ型では円筒部43の内周面から径方向内側に突出する。それに合わせて、突起部34は、外層傾斜壁32から径方向内側に突出する形状となる。言い換えると外層傾斜壁32から壁部22よりも外周側へむかって突出する形状である。インナーロータ型では突起部34は、先端が円筒部43の内周面に当接し、壁部22と円筒部43との物理的な距離を確保する。 In addition, in this embodiment, the stator used in an outer rotor type motor has been described, but the present invention is not limited to this and can also be applied to an inner rotor type motor. In the outer rotor type, the tooth portion 41 protrudes radially outward from the outer peripheral surface of the cylindrical portion 43, but in the inner rotor type, it protrudes radially inward from the inner peripheral surface of the cylindrical portion 43. Accordingly, the protrusion portion 34 has a shape that protrudes radially inward from the outer layer inclined wall 32. In other words, it protrudes from the outer layer inclined wall 32 toward the outer peripheral side beyond the wall portion 22. In the inner rotor type, the tip of the protrusion portion 34 abuts the inner peripheral surface of the cylindrical portion 43, ensuring a physical distance between the wall portion 22 and the cylindrical portion 43.
 本開示にかかるステータ及びそれを用いたモータは、天井扇などのモータとして適用できる。 The stator disclosed herein and the motor using it can be used as a motor for ceiling fans, etc.
 1 モータ
 2 ステータ
 3 ロータヨーク
 4 ロータカバー
 5 シャフト
 6、6a、6b ベアリング
 7 マグネット
 8 ステータコア
 9 基板
 10 ターミナル
 11 コイル
 20、20a、20b インシュレータ
 21、21a、21b 基部
 22、22a、22b 壁部
 23 内層部
 24 外層部
 25、25a、25b 正傾斜面
 26、26a、26b 反傾斜面
 27、27a、27b 内層低位壁
 28、28a、28b 外層低位壁
 29、29a、29b 内層高位壁
 30、30a、30b 外層高位壁
 31 内層傾斜壁
 32 外層傾斜壁
 33 壁部中間線
 34 突起部
 35 巻回開口
 36 巻線係止部
 40 中心孔
 41 歯部
 41a 一方の歯部
 41b 他方の歯部
 42 スロット
 43 円筒部
 44a 一方の巻回部
 44b 他方の巻回部
 45a 一方の曲面部
 45b 他方の曲面部
 46 隙間
 101 インシュレータA
 102 基部
 103 第1壁部
 201 インシュレータB
 202 基部
 203 第2壁部
 204 第1突起部
REFERENCE SIGNS LIST 1 motor 2 stator 3 rotor yoke 4 rotor cover 5 shaft 6, 6a, 6b bearing 7 magnet 8 stator core 9 substrate 10 terminal 11 coil 20, 20a, 20b insulator 21, 21a, 21b base 22, 22a, 22b wall 23 inner layer 24 outer layer 25, 25a, 25b positive inclined surface 26, 26a, 26b reverse inclined surface 27, 27a, 27b inner layer lower wall 28, 28a, 28b outer layer lower wall 29, 29a, 29b inner layer high wall 30, 30a, 30b outer layer high wall 31 inner layer inclined wall 32 outer layer inclined wall 33 wall midline 34 protrusion 35 Winding opening 36 Winding locking portion 40 Center hole 41 Tooth portion 41a One tooth portion 41b Other tooth portion 42 Slot 43 Cylindrical portion 44a One winding portion 44b Other winding portion 45a One curved portion 45b Other curved portion 46 Gap 101 Insulator A
102 Base portion 103 First wall portion 201 Insulator B
202 Base 203 Second wall 204 First protrusion

Claims (11)

  1. 円筒状における外周面から径方向外側に突出する複数の歯部と、隣り合う当該歯部間に形成されるスロットと、を有するステータコアと、
    前記複数の歯部を前記円筒状における軸方向の両側から挟む一対のインシュレータと、を備え、
    前記インシュレータは、
     前記軸方向に直交する面で構成され、前記ステータコアの前記軸方向の端部に当接する基部と、
     前記基部から前記スロットの内壁に沿って前記軸方向に延出する壁部と、を備え、
    前記壁部は、
     前記基部からの高さが前記スロットの内壁を形成する前記隣り合う歯部の一方側から他方側にかけて所定の角度の傾斜で高くなる正傾斜面を有する内層部と、
     前記内層部の外周と前記スロットの内壁との間に位置し、前記基部からの高さが前記一方側から前記他方側にかけて前記所定の角度の傾斜で低くなる反傾斜面を有する外層部と、を備えたステータ。
    a stator core having a plurality of teeth protruding radially outward from an outer circumferential surface of the cylindrical core and a slot formed between adjacent teeth;
    a pair of insulators sandwiching the plurality of teeth from both sides in the axial direction of the cylindrical shape,
    The insulator comprises:
    a base portion configured with a surface perpendicular to the axial direction and abutting against an end portion of the stator core in the axial direction;
    a wall portion extending in the axial direction from the base portion along an inner wall of the slot,
    The wall portion is
    an inner layer portion having a positive inclination surface whose height from the base portion increases at a predetermined angle from one side of the adjacent tooth portions forming the inner wall of the slot to the other side;
    an outer layer portion located between the outer periphery of the inner layer portion and the inner wall of the slot, the outer layer portion having a reverse inclined surface whose height from the base decreases at the specified angle from the one side to the other side.
  2. 円筒状における内周面から径方向内側に突出する複数の歯部と、隣り合う当該歯部間に形成されるスロットと、を有するステータコアと、
    前記複数の歯部を前記円筒状における軸方向の両側から挟む一対のインシュレータと、を備え、
    前記インシュレータは、
     前記軸方向に直交する面で構成され、前記ステータコアの前記軸方向の端部に当接する基部と、
     前記基部から前記スロットの内壁に沿って前記軸方向に延出する壁部と、を備え、
    前記壁部は、
     前記基部からの高さが前記スロットの内壁を形成する前記隣り合う歯部の一方側から他方側にかけて所定の角度の傾斜で高くなる正傾斜面を有する内層部と、
     前記内層部の外周と前記スロットの内壁との間に位置し、前記基部からの高さが前記一方側から前記他方側にかけて前記所定の角度の傾斜で低くなる反傾斜面を有する外層部と、を備えたステータ。
    A stator core having a plurality of teeth protruding radially inward from an inner peripheral surface of the cylindrical core and slots formed between adjacent teeth;
    a pair of insulators sandwiching the plurality of teeth from both sides in the axial direction of the cylindrical shape,
    The insulator comprises:
    a base portion configured with a surface perpendicular to the axial direction and abutting against an end portion of the stator core in the axial direction;
    a wall portion extending in the axial direction from the base portion along an inner wall of the slot,
    The wall portion is
    an inner layer portion having a positive inclination surface whose height from the base portion increases at a predetermined angle from one side of the adjacent tooth portions forming the inner wall of the slot to the other side;
    an outer layer portion located between the outer periphery of the inner layer portion and the inner wall of the slot, the outer layer portion having a reverse inclined surface whose height from the base decreases at the specified angle from the one side to the other side.
  3. 前記内層部は、
     前記外層部と一体に設けられて前記壁部を構成する、請求項1または2に記載のステータ。
    The inner layer portion is
    The stator according to claim 1 , wherein the wall portion is integral with the outer layer portion.
  4. 前記内層部における前記正傾斜面は、
     前記基部からの高さが最も高い最高位部と、前記基部からの高さが最も低い最低位部と、前記基部からの高さが前記最高位部と最低位部との中間に位置する中位部と、を備え、前記外層部における前記反傾斜面は、
     前記内層部の外周にて前記最高位部と、前記最低位部と、前記中位部と、を備え、
    前記壁部は、
     前記内層部の前記一方側にて前記最低位部を含み当該最低位部の高さで前記一方側の壁部を構成する内層低位壁と、
     前記内層部の前記他方側にて前記最高位部を含み当該最高位部の高さで前記他方側の壁部を構成する内層高位壁と、
     前記正傾斜面を有し前記内層低位壁と前記内層高位壁とに隣接する内層傾斜壁と、
     前記外層部の前記一方側にて前記最高位部を含み当該最高位部の高さで前記一方側の壁部を構成する外層高位壁と、
     前記外層部の前記他方側にて前記最低位部を含み当該最低位部の高さで前記他方側の壁
    部を構成する外層低位壁と、
     前記反傾斜面を有し前記外層低位壁と前記外層高位壁とに隣接する外層傾斜壁と、を備える請求項1または2に記載のステータ。
    The positive inclined surface in the inner layer portion is
    The outer layer portion has a highest portion having a highest height from the base portion, a lowest portion having a lowest height from the base portion, and a middle portion having a height from the base portion intermediate between the highest portion and the lowest portion, and the inclined surface of the outer layer portion is
    The inner layer portion has a highest portion, a lowest portion, and a middle portion at an outer periphery thereof,
    The wall portion is
    an inner layer lower wall including the lowest portion on the one side of the inner layer portion and constituting the wall portion on the one side at a height of the lowest portion;
    an inner layer high wall that includes the highest portion on the other side of the inner layer portion and configures the wall portion on the other side at a height of the highest portion;
    an inner layer inclined wall having the positive inclined surface and adjacent to the inner layer lower wall and the inner layer high wall;
    an outer layer high wall including the highest part on the one side of the outer layer part and constituting the wall part on the one side at a height of the highest part;
    an outer layer lower wall that includes the lowest portion on the other side of the outer layer portion and configures the wall portion on the other side at a height of the lowest portion;
    3. The stator according to claim 1, further comprising: an outer layer inclined wall having the reverse inclined surface and adjacent to the outer layer lower wall and the outer layer high wall.
  5. 前記内層高位壁の厚みは、
     前記内層低位壁の厚みよりも薄く、
    前記外層高位壁の厚みは、
     前記外層低位壁の厚みよりも薄い、請求項4に記載のステータ。
    The thickness of the inner layer high wall is
    The thickness of the inner layer lower wall is thinner than the thickness of the inner layer lower wall.
    The thickness of the outer layer high wall is
    The stator according to claim 4 , wherein the thickness is thinner than the thickness of the outer lower wall.
  6. 前記一対のインシュレータは、
     前記ステータコアの両端部に前記基部が当接した状態で、
     一方のインシュレータが有する前記内層部の前記正傾斜面と他方のインシュレータが有する前記内層部の前記正傾斜面とが対向し、
     一方のインシュレータが有する前記外層部の前記反傾斜面と他方のインシュレータが有する前記外層部の前記反傾斜面とが対向する、請求項4に記載のステータ。
    The pair of insulators include
    With the base portion in contact with both ends of the stator core,
    the positive inclined surface of the inner layer portion of one insulator faces the positive inclined surface of the inner layer portion of the other insulator,
    5. The stator according to claim 4, wherein the counter-inclined surface of the outer layer portion of one insulator faces the counter-inclined surface of the outer layer portion of the other insulator.
  7. 前記軸方向に平行で前記壁部を前記一方側と前記他方側とに2等分する壁部中間線を備え、
    前記壁部は、
     前記内層部における前記基部からの高さと前記外層部における前記基部からの高さとが前記壁部中間線を対称軸として線対称になる、請求項1または2に記載のステータ。
    a wall midline that is parallel to the axial direction and divides the wall into two equal parts, the one side and the other side;
    The wall portion is
    3. The stator according to claim 1, wherein a height of the inner layer portion from the base and a height of the outer layer portion from the base are symmetrical with respect to the wall midline.
  8. 前記内層部における前記正傾斜面は、
     前記基部からの高さが最も高い最高位部と、前記基部からの高さが最も低い最低位部と、前記基部からの高さが前記最高位部と最低位部との中間に位置する中位部と、を備え、前記外層部における前記反傾斜面は、
     前記内層部の外周にて前記最高位部と、前記最低位部と、前記中位部と、を備え、
    前記壁部中間線は、
     前記正傾斜面の中位部と、前記反傾斜面の中位部とを含む、請求項7に記載のステータ。
    The positive inclined surface in the inner layer portion is
    The outer layer portion has a highest portion having a highest height from the base portion, a lowest portion having a lowest height from the base portion, and a middle portion having a height from the base portion intermediate between the highest portion and the lowest portion, and the inclined surface of the outer layer portion is
    The inner layer portion has a highest portion, a lowest portion, and a middle portion at an outer periphery thereof,
    The wall midline is
    The stator of claim 7 including a median portion of said positive inclined surface and a median portion of said reverse inclined surface.
  9. 前記外層部は、
     前記壁部中間線上に前記壁部よりも外周に向かって突出する突起部を備えた、請求項7に記載のステータ。
    The outer layer portion is
    The stator according to claim 7 , further comprising a protrusion on the wall midline, the protrusion protruding further toward an outer periphery than the wall.
  10. 前記一対のインシュレータは、
     一方のインシュレータと他方のインシュレータとが同一の形状である請求項1または2に記載のステータ。
    The pair of insulators include
    3. The stator according to claim 1, wherein one insulator and the other insulator have the same shape.
  11. 請求項1または2に記載のステータを備えたモータ。 A motor equipped with a stator according to claim 1 or 2.
PCT/JP2024/003115 2023-02-22 2024-01-31 Stator and motor using same WO2024176761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023026695A JP2024119643A (en) 2023-02-22 2023-02-22 Stator, motor
JP2023-026695 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024176761A1 true WO2024176761A1 (en) 2024-08-29

Family

ID=92500644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003115 WO2024176761A1 (en) 2023-02-22 2024-01-31 Stator and motor using same

Country Status (2)

Country Link
JP (1) JP2024119643A (en)
WO (1) WO2024176761A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006366A (en) * 2003-06-10 2005-01-06 Moric Co Ltd Insulator for armature
JP2013158194A (en) * 2012-01-31 2013-08-15 Nippon Densan Corp Armature and motor
WO2016047033A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Electric motor
CN107248794A (en) * 2017-07-10 2017-10-13 珠海格力节能环保制冷技术研究中心有限公司 A kind of insulation system and motor stator
JP2019097282A (en) * 2017-11-21 2019-06-20 山洋電気株式会社 Stator for rotary electric machine, and assembly method therefor
JP2021072660A (en) * 2019-10-29 2021-05-06 東洋電装株式会社 Insulator pair, stator and manufacturing method of stator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006366A (en) * 2003-06-10 2005-01-06 Moric Co Ltd Insulator for armature
JP2013158194A (en) * 2012-01-31 2013-08-15 Nippon Densan Corp Armature and motor
WO2016047033A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Electric motor
CN107248794A (en) * 2017-07-10 2017-10-13 珠海格力节能环保制冷技术研究中心有限公司 A kind of insulation system and motor stator
JP2019097282A (en) * 2017-11-21 2019-06-20 山洋電気株式会社 Stator for rotary electric machine, and assembly method therefor
JP2021072660A (en) * 2019-10-29 2021-05-06 東洋電装株式会社 Insulator pair, stator and manufacturing method of stator

Also Published As

Publication number Publication date
JP2024119643A (en) 2024-09-03

Similar Documents

Publication Publication Date Title
JP6667084B2 (en) Surface magnet type motor
US7323801B2 (en) Axial air-gap electronic motor
US11121596B2 (en) Stator of brushless motor, brushless motor, and method of manufacturing stator of brushless motor
US20070035197A1 (en) Outer rotor motor
JP6461381B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP5612405B2 (en) Brushless motor
JPH08331807A (en) Small-sized motor
JP5839627B2 (en) Brushless motor
US20190103781A1 (en) Motor
WO2014069288A1 (en) Inner rotor motor
WO2024176761A1 (en) Stator and motor using same
CN211930351U (en) Stator and brushless motor
JP2015027175A (en) Rotating electrical machine and method of manufacturing rotating electrical machine
EP1424765B1 (en) Low-profile stepping motor with two coils arranged flush with each other
WO2023228582A1 (en) Electric motor, core block, and stator core
EP4203255B1 (en) Motor with bidirectional terminals
WO2023101029A1 (en) Axial gap motor
JP7229203B2 (en) Permanent magnet rotary electric machine and rotor
WO2023058420A1 (en) Method for manufacturing dynamo-electric machine, and dynamo-electric machine
WO2022107713A1 (en) Motor and stator manufacturing method
CN115995906A (en) Motor
JP2001286084A (en) Motor
JP2024122508A (en) Motor
JP2023053644A (en) Stator, motor with the same, and manufacturing method of stator
JP6724319B2 (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24760068

Country of ref document: EP

Kind code of ref document: A1