[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024172330A1 - Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy - Google Patents

Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy Download PDF

Info

Publication number
WO2024172330A1
WO2024172330A1 PCT/KR2024/001165 KR2024001165W WO2024172330A1 WO 2024172330 A1 WO2024172330 A1 WO 2024172330A1 KR 2024001165 W KR2024001165 W KR 2024001165W WO 2024172330 A1 WO2024172330 A1 WO 2024172330A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
shape memory
fcc
entropy alloy
entropy
Prior art date
Application number
PCT/KR2024/001165
Other languages
French (fr)
Korean (ko)
Inventor
이제인
임진수랑
정수진
김태윤
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2024172330A1 publication Critical patent/WO2024172330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect

Definitions

  • the present invention relates to a Cr-Fe-Co high-entropy alloy having shape memory characteristics and a method for predicting the composition range of the alloy, and more specifically, to a Cr-Fe-Co high-entropy alloy having shape memory characteristics at high temperatures, a method for predicting the composition range of the Cr-Fe-Co high-entropy alloy, and a high-entropy alloy manufactured by the method, characterized in that the alloy can be easily manufactured from an existing high-entropy alloy by thermodynamic calculation.
  • High entropy alloys are alloys made by mixing a number of elements in nearly equal proportions, and are attracting attention as next-generation structural materials due to their excellent mechanical properties.
  • shape memory alloys include Ti-Ni, Cu-Al-Ni, and Fe-Mn-Si, and the number of alloy systems that exhibit shape memory properties among metal materials is very limited.
  • the Ti-Ni shape memory alloy which is the most widely used in industry, has the advantages of excellent recovery rate and rapid recovery reaction, but its formability is poor, making it expensive to process into products.
  • the Ti-Ni shape memory alloy has a fatal disadvantage in that it cannot be used as a shape memory alloy at temperatures higher than 100°C because its phase transformation temperature is low.
  • Research has been conducted to change the Ti/Ni composition in the alloy or to add new elements to increase the phase transformation temperature of the Ti-Ni alloy, but there remains a challenge in that brittle intermetallic compounds that lower the recovery properties are formed during the alloy manufacturing process.
  • the purpose of the present invention is to provide a Cr-Fe-Co high-entropy alloy having shape memory characteristics at high temperatures, a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy characterized in that the alloy can be easily manufactured by predicting the alloy composition range with low stacking fault energy (SFE) from an existing high-entropy alloy through thermodynamic calculation, and a high-entropy alloy manufactured by the method.
  • SFE stacking fault energy
  • a preferred embodiment of the present invention for achieving the above-mentioned task is a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized by being a ternary alloy of Cr (chromium), Fe (iron), and Co (cobalt), as a means for solving the task.
  • the ternary alloy is characterized by being a Cr-Fe-Co high-entropy alloy having shape memory properties represented by the following [chemical formula].
  • the ternary alloy is characterized by being composed of FCC or FCC + HCP or FCC + HCP + ⁇ or FCC + HCP + BCC phases at room temperature when homogenized at 1,473 K, a phase equilibrium temperature (T O ) of 200 to 1,060 K, and a free energy change amount [ ⁇ G (hcp-fcc) ] (based on 300 K) of -2,013 to 228 J/mol.
  • Another preferred embodiment of the present invention is a method for predicting a composition region of a Cr-Fe-Co high-entropy alloy having a shape memory characteristic, which comprises the steps of: (S1) predicting an alloy composition region having a low stacking fault energy (SFE) by thermodynamic calculation in a high-entropy alloy; (S2) selecting a composition region of a high-entropy alloy in which a stable phase is predicted at a high temperature in the composition region of the high-entropy alloy; and (S3) confirming whether shape memory characteristics are expressed in the selected alloy composition region.
  • SFE stacking fault energy
  • the alloy composition region prediction step (S1) determines the phase equilibrium temperature T 0 at which the free energy change amount ( ⁇ G (HCP-FCC) ) of the ⁇ austenite phase (FCC) and the ⁇ martensite phase (HCP) in the component region of the high-entropy alloy is 0 , and the phase equilibrium temperature is characterized by T 0 >0K.
  • the high temperature is 1,473 K (1,200°C)
  • the stable phase is the ⁇ austenite phase (FCC).
  • the present invention has the effect of enabling the simple manufacture of a high-entropy alloy having shape memory characteristics by predicting an alloy composition region having a low stacking fault energy (SFE) through thermodynamic calculations.
  • SFE stacking fault energy
  • the Cr-Fe-Co high-entropy alloy according to the present invention is a shape memory alloy that can be used in a high-temperature environment with a phase transformation temperature of 100°C or higher, and can be applied in a temperature range where the existing Ti-Ni alloy cannot be used, and therefore can be applied as a structural material for parts that require shape memory characteristics at high temperatures, such as actuators.
  • the high-temperature shape memory alloy is a material that is very suitable for miniaturizing heavy and bulky actuators, and can be widely applied in the transportation/power generation fields, such as automobiles, airplanes, and power plants, in the future.
  • the present invention has the effect of enabling the development of various types of shape memory alloys not previously reported by a simple method by predicting, through thermodynamic calculations, the composition expected to exhibit shape memory characteristics among numerous combinations of high-entropy alloys made by mixing a number of elements in nearly equal proportions, by identifying the compositional region in which shape memory characteristics appear in a Cr-Fe-Co ternary alloy through thermodynamic calculations using CALPHAD thermodynamic calculations.
  • Figure 1 is a block diagram showing a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the change in Gibbs free energy ( ⁇ G) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy in comparison thereto.
  • FIG. 3 is a graph showing the results of changes in equilibrium phase fractions according to temperature changes in a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention and a Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy in comparison thereto.
  • FIG. 4 is a diagram showing a ternary phase diagram according to the Cr-Fe-Co mole fraction of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
  • FIG. 5 is a drawing showing an XRD analysis graph of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
  • Figure 6 is a photograph taken to check whether the shape of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention is restored as a result of a bending test.
  • Figure 7 is a graph showing the results of the recovery strain rate to show the extent of recovery after deformation for a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
  • FIGS. 8 to 10 are graphs showing the results of differential thermal analysis performed on a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
  • high-entropy alloy Cr-Fe-Co high-entropy alloy having shape memory characteristics according to a preferred embodiment of the present invention
  • the high-entropy alloy according to the present invention is characterized by being a ternary alloy of Cr (chromium), Fe (iron), and Co (cobalt) that is easily predicted and manufactured through thermodynamic calculations of CALPHAD from an existing high-entropy alloy.
  • the above high-entropy alloy is specifically represented by the [chemical formula] below.
  • the above ternary high-entropy alloy is characterized by being composed of FCC or FCC + HCP or FCC + HCP + ⁇ or FCC + HCP + BCC phase at room temperature.
  • the ternary alloy has a phase equilibrium temperature (T O ) of 200 to 1,060 K and a free energy change amount [ ⁇ G (hcp-fcc) ] (based on 300 K) of -2,013 to 228 J/mol.
  • phase equilibrium temperature (T O ) and the free energy change [ ⁇ G (hcp-fcc) ] of the above high-entropy alloy must be satisfied at the same time, and if the temperature exceeds the limited range mentioned above, the shape memory is expressed in the case of the FCC single phase or the composite phase FCC + HCP or FCC + HCP + ⁇ or FCC + HCP + BCC phase at 1,473 K (1,200 °C), but there is a concern that the shape memory characteristics may not be expressed properly in the case of the BCC single phase or the composite phase BCC+ ⁇ .
  • FIG. 1 is a block diagram illustrating a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to an embodiment of the present invention.
  • a method for predicting a composition region of a Cr-Fe-Co high-entropy alloy having shape memory characteristics is characterized by including an alloy component region prediction step (S1), a high-entropy alloy composition region selection step (S2), and a step (S3) of confirming whether shape memory characteristics are expressed, as illustrated in FIG. 1.
  • the alloy composition region prediction step (S1) is a step of predicting an alloy composition region having low stacking fault energy (SFE) by thermodynamic calculation using CALPHAD in a high-entropy alloy, as shown in the attached Drawing 2, which shows a graph showing the change in Gibbs free energy ( ⁇ G) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a high-entropy alloy of a comparative example, and a description thereof is omitted here since it is specifically described below.
  • SFE stacking fault energy
  • the phase equilibrium temperature T 0 at which the change in free energy [ ⁇ G (HCP-FCC) ] is 0 exceeds 0 K.
  • the phase equilibrium temperature should be T 0 > 0 K so that the stress-induced martensitic transformation occurs at a temperature higher than 0 K, and it is more preferable that it be 200 K ⁇ T 0 ⁇ 1,060 K.
  • the stacking fault energy (SFE) calculation formula for FCC metals uses the known calculation formula as shown in the [mathematical formula] below to calculate the stacking fault energy (SFE).
  • ⁇ (SFE) is the stacking fault energy of the alloy
  • is the molar areal density of the (111) plane
  • ⁇ G hcp-fcc is the change in Gibbs free energy during the phase transformation from ⁇ austenite (FCC) to ⁇ martensite (HCP)
  • is the interfacial energy between the ⁇ / ⁇ phases.
  • which represents the stacking fault energy (SFE)
  • SFE stacking fault energy
  • the process of predicting an alloy with low stacking fault energy (SFE) using CALPHAD calculates ⁇ G hcp-fcc and considers a composition with a sufficiently low value as a composition that exhibits shape memory characteristics.
  • the possibility of implementing shape memory characteristics was predicted using the T 0 value, which is the phase equilibrium temperature, as in the high-entropy alloy composition region selection step (S2) below, as a more intuitive indicator.
  • the term 'alloy having low stacking fault energy (SFE)' means that the stacking fault energy (SFE) of the alloy predicted by thermodynamic calculations is lower than the stacking fault energy (SFE) reported in conventional high-entropy alloys.
  • the high-entropy alloy composition region selection step (S2) is a step of selecting a composition region of a high-entropy alloy in which a stable phase is predicted at high temperatures from the composition region of the high-entropy alloy.
  • the high-entropy alloy designed from the Cr-Fe-Co ternary alloy according to the present invention is an alloy in which shape memory characteristics are realized by reversible martensitic transformation of the FCC/HCP phase, and has the characteristic that formability and shape memory characteristics are reduced when a phase other than the FCC and HCP phases exists inside the shape memory alloy.
  • FIG. 3 is an example of this process
  • FIG. 4 shows the results of selecting an alloy composition region predicted to have T 0 and be an FCC single phase at 1,200 °C in a Cr-Fe-Co ternary alloy through this series of processes.
  • the Cr-Fe-Co high-entropy alloy predicted from the high-entropy alloy was actually manufactured as a ternary Cr-Fe-Co alloy having the composition specified in [Table 1] based on the predicted results in [Table 1] below.
  • the method of manufacturing the alloy can be either the powder metallurgy method or the casting method, which are conventional alloy manufacturing methods, but in the present invention, the alloy specimen was manufactured by the casting method.
  • the present invention compares a high-entropy alloy having a predicted composition ratio as shown in [Table 1] below with an actually manufactured high-entropy alloy, thereby predicting a composition that is expected to exhibit shape memory characteristics among numerous combinations of high-entropy alloys made by mixing a number of elements in nearly equal proportions through thermodynamic calculations, thereby enabling the development of various types of shape-memory alloys that have not been previously reported by a simple method.
  • the Cr-Fe-Co high-entropy alloy having shape memory characteristics according to the present invention was used as a comparative example with the Cr-Mn-Fe-Co-Ni high-entropy alloy known in patent document 3 as shown in [Table 1] below.
  • thermodynamic-based calculation software This figure shows the results of organizing the equilibrium phase at T 0 , ⁇ G (hcp-fcc) and 1,473 K (1,200 °C) and the crystal phase confirmed by actual experiments at room temperature for various alloy compositions of Cr-Fe-Co high-entropy alloys predicted using Thermo-Calc and actual Cr-Fe-Co high-entropy alloys.
  • Table 1 is a table that compares the predicted Cr-Fe-Co high-entropy alloys of Examples 1 to 14 and Comparative Examples 1 to 8, and then manufactures Cr-Fe-Co shape memory alloy specimens obtained by heat-treating at 1,473 K (1,200 °C) for 6 hours, and then organizes the predicted alloys with the actually manufactured alloys.
  • FIG. 2 is a graph showing the change in Gibbs free energy ( ⁇ G) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a conventional high-entropy alloy in comparison thereto.
  • FIG. 3 is a graph showing the results of temperature changes in the equilibrium phase fraction of a Cr 30 Fe 30 Co 40 high-entropy alloy according to the present invention and a comparable Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy.
  • Fig. 4 1 when the Cr content is 40 at.% or less, the microstructure of the alloy exhibits an FCC or FCC+BCC phase, 2 when the Cr content is 40 at.% or more, the formation of the ⁇ phase is expected to become dominant.
  • An increase in the Co content generally means an increase in the T 0 temperature.
  • FIG. 4 is a drawing showing a ternary phase diagram according to the Cr-Fe-Co mole fraction of a Cr-Fe-Co high-entropy alloy according to the present invention.
  • the operating temperature of a shape memory alloy is ultimately determined by the martensite transformation/reverse transformation temperature.
  • the upper limit of the operating temperature is determined as A s or A f .
  • FIGS. 8 to 10 are graphs showing the results of differential thermal analysis performed on a Cr-Fe-Co high-entropy alloy according to the present invention.
  • the Cr-Fe-Co high-entropy alloy according to the present invention showed a high-temperature martensitic transformation at Ms of 100°C or higher and As of 230°C or higher in all alloys in which a phase transformation was observed as shown in FIGS. 10(a) to 10(d) as a result of differential thermal analysis, and it is expected that the alloys can be manufactured easily since the compositional range in which shape memory characteristics are realized is wide, the martensite temperature control is also easy, and the formability is excellent due to the high-temperature fcc crystal structure, so that they can be manufactured into various shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to a Cr-Fe-Co-based high-entropy alloy with shape memory characteristics at high temperatures, a method for predicting the composition range of the Cr-Fe-Co-based high-entropy alloy, and a high-entropy alloy manufactured by the method, wherein the high-entropy alloy can be easily manufactured through thermodynamic calculations from existing high-entropy alloys. The invention allows for the development of various types of shape memory alloys that have not been previously reported, by predicting compositions expected to exhibit shape memory characteristics from numerous combinations of high-entropy alloys through thermodynamic calculations. In particular, the Cr-Fe-Co-based high-entropy alloy according to the present invention can be used as a shape memory alloy in high-temperature environments with a phase transformation temperature of 100°C or higher, where the conventional Ti-Ni alloy system cannot be applied. Therefore, the high-entropy alloy can be used as a structural material for components requiring shape memory characteristics at high temperatures, such as actuators. Particularly, the high-temperature shape memory alloy is especially suitable for miniaturizing heavy and bulky actuators and thus is expected to find applications in a wide spectrum of transportation and power generation fields, such as in automobiles, airplanes, and power plants.

Description

형상기억특성을 갖는 CR-FE-CO계 고엔트로피 합금 및 이 합금의 조성 영역의 예측방법CR-FE-CO high-entropy alloy with shape memory properties and method for predicting the composition range of the alloy
본 발명은 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금 및 이 합금의 조성 영역의 예측방법에 관한 것으로, 더욱 상세하게는 고온에서 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금과 이 합금을 기존의 고엔트로피 합금으로부터 열역학적 계산에 의해 간편하게 제조 가능한 것을 특징으로 하는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역의 예측방법 및 이 방법에 의해 제조된 고엔트로피 합금에 관한 것이다.The present invention relates to a Cr-Fe-Co high-entropy alloy having shape memory characteristics and a method for predicting the composition range of the alloy, and more specifically, to a Cr-Fe-Co high-entropy alloy having shape memory characteristics at high temperatures, a method for predicting the composition range of the Cr-Fe-Co high-entropy alloy, and a high-entropy alloy manufactured by the method, characterized in that the alloy can be easily manufactured from an existing high-entropy alloy by thermodynamic calculation.
고엔트로피 합금(High Entropy Alloy, HEA)은 다수의 원소를 거의 동등한 분율로 혼합하여 만드는 합금으로, 우수한 기계적 물성을 보여 차세대 구조 소재로 주목받고 있다.High entropy alloys (HEAs) are alloys made by mixing a number of elements in nearly equal proportions, and are attracting attention as next-generation structural materials due to their excellent mechanical properties.
최근에는, 보다 월등한 기계적 특성을 갖는 신합금을 개발하기 위해 고엔트로피 합금을 구성하는 원소비를 조절함으로써 적층결함에너지(Stacking Fault Energy, SFE)를 제어하여 쌍정유기소성(Twinning-Induced Plasticity, TWIP) 또는 변태유기소성(Transfomation Induced Plasticity, TRIP)이 나타나는 새로운 고엔트로피 합금을 개발하기 위한 연구가 다수 보고되고 있지만, 고엔트로피 합금의 개발 연구에서 형상기억특성에 관련된 논문 또는 특허는 아직 많지 않은 실정이다.Recently, many studies have been reported to develop new high-entropy alloys that exhibit twinning-induced plasticity (TWIP) or transformation-induced plasticity (TRIP) by controlling the stacking fault energy (SFE) by adjusting the element ratio constituting the high-entropy alloy in order to develop new alloys with superior mechanical properties. However, there are not many papers or patents related to shape memory characteristics in the development of high-entropy alloys.
현재 상용화된 형상기억합금은 Ti-Ni계, Cu-Al-Ni계, Fe-Mn-Si계 등으로 금속소재 중 형상기억특성이 발현되는 합금계의 수는 매우 제한적이다. 산업에서 가장 많이 사용되는 Ti-Ni계 형상기억합금은 회복률이 우수하고 회복반응이 빠르게 일어나는 장점이 있지만, 성형성이 좋지 않아 제품으로 가공하는데 많은 비용이 든다. 또한, Ti-Ni계 형상기억합금은 상변태 온도가 100℃ 이하로 낮아 그 이상의 온도 조건에서 형상기억합금으로 사용할 수 없는 치명적인 단점이 있다. Ti-Ni계 합금의 상변태 온도를 높이기 위해 합금 내 Ti/Ni 조성을 변경하거나 새로운 원소를 첨가하는 연구가 진행되어 왔지만, 합금의 제조과정에서 회복특성을 저하시키는 취성의 금속간화합물이 형성되는 난제가 남아있는 실정이다. Currently commercialized shape memory alloys include Ti-Ni, Cu-Al-Ni, and Fe-Mn-Si, and the number of alloy systems that exhibit shape memory properties among metal materials is very limited. The Ti-Ni shape memory alloy, which is the most widely used in industry, has the advantages of excellent recovery rate and rapid recovery reaction, but its formability is poor, making it expensive to process into products. In addition, the Ti-Ni shape memory alloy has a fatal disadvantage in that it cannot be used as a shape memory alloy at temperatures higher than 100℃ because its phase transformation temperature is low. Research has been conducted to change the Ti/Ni composition in the alloy or to add new elements to increase the phase transformation temperature of the Ti-Ni alloy, but there remains a challenge in that brittle intermetallic compounds that lower the recovery properties are formed during the alloy manufacturing process.
한편, 상기에서 설명한 바와 같은 문제점들을 개선하기 위한 방안으로 새로운 형상기억합금의 연구 결과물들이 나타나고 있지만, 일반적으로 알려진 상용 형상기억합금에 다른 종류의 원소를 혼합하고, 그 첨가량을 제어하는 방식으로 연구 개발의 폭이 한정적으로 제한되어 수행되는 문제점이 있었다.Meanwhile, as a means of improving the problems described above, research results on new shape memory alloys are emerging, but there has been a problem in that the scope of research and development is limited and carried out by mixing different types of elements into commonly known commercial shape memory alloys and controlling the amount of addition.
따라서, 상기에서 설명한 바와 같은 문제점들을 개선하기 위한 다양한 종류의 고엔트로피 합금과 그 합금의 조성 영역의 확장을 위한 방법의 개발이 절실하게 요구되고 있는 실정이다.Therefore, there is an urgent need for the development of various types of high-entropy alloys and methods for expanding the composition range of the alloys to improve the problems described above.
본 발명의 목적은 고온에서 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금과 이 합금을 기존의 고엔트로피 합금으로부터 열역학적 계산에 의해 적층결함에너지(SFE)가 낮은 합금 조성 영역을 예측하여 간편하게 제조 가능한 것을 특징으로 하는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역의 예측방법 및 이 방법에 의해 제조된 고엔트로피 합금을 제공하는 것을 과제로 한다.The purpose of the present invention is to provide a Cr-Fe-Co high-entropy alloy having shape memory characteristics at high temperatures, a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy characterized in that the alloy can be easily manufactured by predicting the alloy composition range with low stacking fault energy (SFE) from an existing high-entropy alloy through thermodynamic calculation, and a high-entropy alloy manufactured by the method.
상기의 과제를 달성하기 위한 본 발명의 바람직한 실시 예는 Cr(크롬), Fe(철), Co(코발트)의 삼원계 합금인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금을 과제의 해결 수단으로 한다.A preferred embodiment of the present invention for achieving the above-mentioned task is a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized by being a ternary alloy of Cr (chromium), Fe (iron), and Co (cobalt), as a means for solving the task.
또한, 상기 삼원계 합금은 아래 [화학식]으로 표시되는 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금인 것을 특징으로 한다.In addition, the ternary alloy is characterized by being a Cr-Fe-Co high-entropy alloy having shape memory properties represented by the following [chemical formula].
[화학식][chemical formula]
CraFebCoc Cr a Fe b Co c
(a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)(a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)
또한, 상기 삼원계 합금은 1,473K에서 균질화처리 되었을 때 상온에서 FCC 또는 FCC + HCP 또는 FCC + HCP + σ 또는 FCC + HCP + BCC 상으로 이루어져있고, 상 평형온도(TO)가 200 ~ 1,060K이고, 자유에너지 변화량[ΔG(hcp-fcc)](300K 기준)이 -2,013 ~ 228 J/mol인 것을 특징으로 한다.In addition, the ternary alloy is characterized by being composed of FCC or FCC + HCP or FCC + HCP + σ or FCC + HCP + BCC phases at room temperature when homogenized at 1,473 K, a phase equilibrium temperature (T O ) of 200 to 1,060 K, and a free energy change amount [ΔG (hcp-fcc) ] (based on 300 K) of -2,013 to 228 J/mol.
그리고 본 발명의 바람직한 다른 실시 예는 고엔트로피 합금에서 열역학 계산에 의해 적층결함에너지(SFE)가 낮은 합금조성 영역을 예측하는 단계(S1); 상기 고엔트로피 합금의 조성 영역에서 고온에서 안정상이 예측되는 고엔트로피 합금의 조성 영역을 선별하는 단계(S2); 및 선별한 합금 조성 영역에서 형상기억특성의 발현 여부를 확인하는 단계(S3);를 포함하는 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법을 과제의 다른 해결 수단으로 한다And another preferred embodiment of the present invention is a method for predicting a composition region of a Cr-Fe-Co high-entropy alloy having a shape memory characteristic, which comprises the steps of: (S1) predicting an alloy composition region having a low stacking fault energy (SFE) by thermodynamic calculation in a high-entropy alloy; (S2) selecting a composition region of a high-entropy alloy in which a stable phase is predicted at a high temperature in the composition region of the high-entropy alloy; and (S3) confirming whether shape memory characteristics are expressed in the selected alloy composition region.
또한, 상기 합금조성 영역 예측 단계(S1)는 고엔트로피 합금의 성분 영역에서 γ 오스테나이트상(FCC)과 ε 마르텐사이트상(HCP)의 자유에너지 변화량(ΔG(HCP-FCC))이 0인 상평형 온도 T0를 파악하며, 상기 상평형 온도는 T0 〉0K인 것을 특징으로 한다..In addition, the alloy composition region prediction step (S1) determines the phase equilibrium temperature T 0 at which the free energy change amount (ΔG (HCP-FCC) ) of the γ austenite phase (FCC) and the ε martensite phase (HCP) in the component region of the high-entropy alloy is 0 , and the phase equilibrium temperature is characterized by T 0 >0K.
또한, 상기 고엔트로피 합금 조성 영역 선별 단계(S2)에서 고온은 1,473K(1,200℃)이고, 안정상은 γ 오스테나이트상(FCC)인 것을 특징으로 한다.In addition, in the high-entropy alloy composition region selection step (S2), the high temperature is 1,473 K (1,200°C), and the stable phase is the γ austenite phase (FCC).
본 발명은 열역학 계산에 의해 적층결함에너지(SFE)가 낮은 합금 조성 영역을 예측하여 간편하게 형상기억특성을 갖는 고엔트로피 합금의 제조가 가능한 효과가 있다. The present invention has the effect of enabling the simple manufacture of a high-entropy alloy having shape memory characteristics by predicting an alloy composition region having a low stacking fault energy (SFE) through thermodynamic calculations.
그리고 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금은 상변태 온도가 100℃ 이상인 고온의 환경에서 사용 가능한 형상기억합금으로 기존의 Ti-Ni 합금계가 사용될 수 없는 온도영역에서 적용이 가능하므로 액츄에이터와 같이 고온에서 형상기억특성이 요구되는 부품의 구조재료로 응용될 수 있고. 특히 고온 형상기억합금은 무겁고 부피가 큰 액츄에이터를 소형화하는데 아주 적합한 소재로서 향후 자동차, 비행기 및 발전소와 같은 운송/발전 분야에 널리 적용될 수 있는 효과가 있다.And the Cr-Fe-Co high-entropy alloy according to the present invention is a shape memory alloy that can be used in a high-temperature environment with a phase transformation temperature of 100℃ or higher, and can be applied in a temperature range where the existing Ti-Ni alloy cannot be used, and therefore can be applied as a structural material for parts that require shape memory characteristics at high temperatures, such as actuators. In particular, the high-temperature shape memory alloy is a material that is very suitable for miniaturizing heavy and bulky actuators, and can be widely applied in the transportation/power generation fields, such as automobiles, airplanes, and power plants, in the future.
* 특히, 본 발명은 CALPHAD의 열역학 계산을 통해 Cr-Fe-Co 삼원계 합금에서 형상기억특성이 나타나는 조성영역을 규명함으로써, 다수의 원소를 거의 동등한 분율로 혼합하여 만드는 수많은 조합의 고엔트로피 합금 중에서 형상기억특성이 나타날 것으로 예상되는 조성을 열역학 계산으로 예측하여 기존에는 보고되지 않은 다양한 종류의 형상기억합금을 간편한 방법에 의해 개발할 수 있는 효과가 있다.* In particular, the present invention has the effect of enabling the development of various types of shape memory alloys not previously reported by a simple method by predicting, through thermodynamic calculations, the composition expected to exhibit shape memory characteristics among numerous combinations of high-entropy alloys made by mixing a number of elements in nearly equal proportions, by identifying the compositional region in which shape memory characteristics appear in a Cr-Fe-Co ternary alloy through thermodynamic calculations using CALPHAD thermodynamic calculations.
도 1은 본 발명의 실시예에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역을 예측하는 방법을 나타낸 블록도이고,Figure 1 is a block diagram showing a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 형상기억특성을 갖는 고엔트로피 합금 및 이에 대비되는 Cr20Mn20Fe20Co20Ni20 합금의 온도 변화에 따른 깁스 자유에너지의 변화량(ΔG)을 나타낸 그래프이며,FIG. 2 is a graph showing the change in Gibbs free energy (ΔG) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy in comparison thereto.
도 3은 본 발명의 실시예에 따른 Cr-Fe-Co계 고엔트로피 합금 및 이에 대비되는 Cr20Mn20Fe20Co20Ni20 합금의 온도변화에 따른 평형 상분율 변화의 결과를 나타낸 그래프이며,FIG. 3 is a graph showing the results of changes in equilibrium phase fractions according to temperature changes in a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention and a Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy in comparison thereto.
도 4는 본 발명의 실시예에 따른 Cr-Fe-Co계 고엔트로피 합금의 Cr-Fe-Co 몰 분율에 따른 삼원계 상태도를 나타낸 도면이며,FIG. 4 is a diagram showing a ternary phase diagram according to the Cr-Fe-Co mole fraction of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 Cr-Fe-Co계 고엔트로피 합금의 XRD 분석 그래프를 나타낸 도면이며,FIG. 5 is a drawing showing an XRD analysis graph of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른는 Cr-Fe-Co계 고엔트로피 합금의 굽힘시험결과 형상의 회복 여부를 확인하기 위하여 촬영한 사진이며,Figure 6 is a photograph taken to check whether the shape of a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention is restored as a result of a bending test.
도 7은 본 발명의 실시예에 따른 Cr-Fe-Co계 고엔트로피 합금에 대해 변형 이후 회복이 되는 정도를 회복변형률의 결과를 그래프로 나타낸 도면이며, Figure 7 is a graph showing the results of the recovery strain rate to show the extent of recovery after deformation for a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
도 8 내지 도 10은 본 발명의 실시예에 따른 Cr-Fe-Co계 고엔트로피 합금에 대해 시차열분석을 실시한 결과를 그래프로 나타낸 도면이다.FIGS. 8 to 10 are graphs showing the results of differential thermal analysis performed on a Cr-Fe-Co high-entropy alloy according to an embodiment of the present invention.
야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음에 유의하여야 한다.It should be noted that a person of ordinary skill in the art can make various modifications to the present invention without departing from the technical spirit of the present invention.
이하, 본 발명의 바람직한 실시 예에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금(이하, '고엔트로피 합금'이라 한다.)을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, a Cr-Fe-Co high-entropy alloy (hereinafter referred to as a “high-entropy alloy”) having shape memory characteristics according to a preferred embodiment of the present invention will be described in detail with reference to the attached drawings.
본 발명에 따른 고엔트로피 합금은 기존의 고엔트로피 합금으로부터 CALPHAD의 열역학 계산을 통해 간편하게 예측하여 제조한 Cr(크롬), Fe(철), Co(코발트)의 삼원계 합금인 것을 특징으로 한다.The high-entropy alloy according to the present invention is characterized by being a ternary alloy of Cr (chromium), Fe (iron), and Co (cobalt) that is easily predicted and manufactured through thermodynamic calculations of CALPHAD from an existing high-entropy alloy.
상기 고엔트로피 합금은 구체적으로 아래 [화학식]으로 표시된다.The above high-entropy alloy is specifically represented by the [chemical formula] below.
[화학식][chemical formula]
CraFebCoc Cr a Fe b Co c
(a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)(a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)
그리고 상기 삼원계 고엔트로피 합금은 상온에서 FCC 또는FCC + HCP 또는 FCC + HCP + σ 또는 FCC + HCP + BCC 상으로 이루어진 것을 특징으로 한다.And the above ternary high-entropy alloy is characterized by being composed of FCC or FCC + HCP or FCC + HCP + σ or FCC + HCP + BCC phase at room temperature.
또한, 상기 삼원계 합금은 상 평형온도(TO)가 200 ~ 1,060K이고, 자유에너지 변화량[ΔG(hcp-fcc)](300K 기준)이 -2,013 ~ 228 J/mol인 것이 바람직하다.In addition, it is preferable that the ternary alloy has a phase equilibrium temperature (T O ) of 200 to 1,060 K and a free energy change amount [ΔG (hcp-fcc) ] (based on 300 K) of -2,013 to 228 J/mol.
상기 고엔트로피 합금의 상 평형온도(TO)와 자유에너지 변화량[ΔG(hcp-fcc)]은 동시에 만족하여야 하며, 상기에서 한정한 범위를 벗어날 경우에는 1,473K(1,200℃)에서의 안정상이 FCC의 단일상이나 복합상인 FCC + HCP 또는 FCC + HCP + σ 또는 FCC + HCP + BCC 상의 경우에는 형상기억이 발현되지만, BCC의 단일상 또는 복합상인 BCC+σ의 경우에는 형상기억특성이 제대로 발현되지 않을 우려가 있다.The phase equilibrium temperature (T O ) and the free energy change [ΔG (hcp-fcc) ] of the above high-entropy alloy must be satisfied at the same time, and if the temperature exceeds the limited range mentioned above, the shape memory is expressed in the case of the FCC single phase or the composite phase FCC + HCP or FCC + HCP + σ or FCC + HCP + BCC phase at 1,473 K (1,200 °C), but there is a concern that the shape memory characteristics may not be expressed properly in the case of the BCC single phase or the composite phase BCC+σ.
이하, 본 발명에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금을 간편하게 제조하기 위한 Cr-Fe-Co계 고엔트로피 합금의 조성 영역을 예측하는 방법을 첨부된 도면 1을 중심으로 구체적으로 설명하면 아래의 내용과 같다.Hereinafter, a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy for easily manufacturing a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to the present invention will be specifically described with reference to the attached Drawing 1, as follows.
참고로, 도 1은 본 발명의 실시예에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역을 예측하는 방법을 나타낸 블록도이다.For reference, FIG. 1 is a block diagram illustrating a method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to an embodiment of the present invention.
본 발명에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역을 예측하는 방법은 도 1에 도시된 바와 같이, 합금성분 영역 예측 단계(S1), 고엔트로피 합금 조성 영역 선별 단계(S2) 및 형상기억특성 발현 여부 확인 단계(S3)를 포함하는 것을 특징으로 한다.A method for predicting a composition region of a Cr-Fe-Co high-entropy alloy having shape memory characteristics according to the present invention is characterized by including an alloy component region prediction step (S1), a high-entropy alloy composition region selection step (S2), and a step (S3) of confirming whether shape memory characteristics are expressed, as illustrated in FIG. 1.
이하, 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 조성 영역 예측 방법을 각 단계별로 구체적으로 설명하면 아래의 내용과 같다.Hereinafter, the method for predicting the composition range of a Cr-Fe-Co high-entropy alloy according to the present invention will be specifically described step by step as follows.
합금성분 영역 예측 단계(S1)는 고엔트로피 합금에서 CALPHAD를 이용하여 열역학 계산에 의해 적층결함에너지(SFE)가 낮은 합금조성 영역을 예측하는 단계로서, 첨부된 도면 2는 본 발명의 실시예에 따른 형상기억특성을 갖는 고엔트로피 합금 및 비교예의 고엔트로피 합금의 온도 변화에 따른 깁스 자유에너지의 변화량(ΔG)을 나타낸 그래프에서와 같이 예측되며, 이에 대한 설명은 아래에 구체적으로 설명되어 있으므로 여기서는 그 설명을 생략하기로 한다.The alloy composition region prediction step (S1) is a step of predicting an alloy composition region having low stacking fault energy (SFE) by thermodynamic calculation using CALPHAD in a high-entropy alloy, as shown in the attached Drawing 2, which shows a graph showing the change in Gibbs free energy (ΔG) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a high-entropy alloy of a comparative example, and a description thereof is omitted here since it is specifically described below.
본 단계에서는 고엔트로피 합금에서 열역학 계산에 의해 적층결함에너지(SFE)가 낮은 합금조성을 예측하고자 자유에너지의 변화량[ΔG(HCP-FCC)]이 0인 상평형 온도 T0가 0K를 초과하는지 여부를 파악하는 단계로서 상평형 온도는 T0 〉0K이 되어야만 응력유기 마르텐사이트 변태가 0K 이상의 온도에서 발생할 것이므로 바람직하며, 구체적으로는 200K < T0 < 1,060K인 것이 더욱 바람직하다.In this step, in order to predict an alloy composition having low stacking fault energy (SFE) in a high-entropy alloy by thermodynamic calculation, the phase equilibrium temperature T 0 at which the change in free energy [ΔG (HCP-FCC) ] is 0 exceeds 0 K. The phase equilibrium temperature should be T 0 > 0 K so that the stress-induced martensitic transformation occurs at a temperature higher than 0 K, and it is more preferable that it be 200 K < T 0 < 1,060 K.
FCC 금속의 적층결함에너지(SFE) 계산식은 아래 [수학식]과 같이 알려진 계산식을 이용하여 적층결함에너지(SFE)를 산출한다.The stacking fault energy (SFE) calculation formula for FCC metals uses the known calculation formula as shown in the [mathematical formula] below to calculate the stacking fault energy (SFE).
[수학식][Mathematical formula]
γ(SFE) = 2ρΔGhcp-fcc + 2σfcc/hcp γ(SFE) = 2ρΔG hcp-fcc + 2σ fcc/hcp
위 식에서 In the above equation
γ(SFE)는 합금의 적층결함에너지, ρ는 (111)면의 몰 면밀도, ΔGhcp-fcc 는 γ 오스테나이트(FCC)에서 ε 마르텐사이트(HCP)로 상변태 시의 Gibbs 자유에너지 변화량, σ는 γ/ε 상 사이의 계면 에너지이다.γ(SFE) is the stacking fault energy of the alloy, ρ is the molar areal density of the (111) plane, ΔG hcp-fcc is the change in Gibbs free energy during the phase transformation from γ austenite (FCC) to ε martensite (HCP), and σ is the interfacial energy between the γ/ε phases.
상기 SFE 계산식에서 적층결함에너지(SFE)를 의미하는 γ 는 ρ와 ΔGhcp-fcc 및 σfcc/hcp값에 의존하는 것으로 알려져 있으며, ρ 및 σfcc/hcp값의 경우 합금의 조성에 큰 영향을 받지 않는 것으로 알려져 있으나, ΔGhcp-fcc값의 경우 합금조성에 따라 큰 차이로 변화하는 것으로 알려져 있다. In the above SFE calculation formula, γ, which represents the stacking fault energy (SFE), is known to depend on the ρ and ΔG hcp-fcc and σ fcc/hcp values, and while the ρ and σ fcc/hcp values are known to be not greatly affected by the composition of the alloy, the ΔG hcp-fcc value is known to vary greatly depending on the alloy composition.
따라서 CALPHAD를 이용하여 적층결함에너지(SFE)가 낮은 합금을 예측하는 과정은 ΔGhcp-fcc을 계산하고, 이 값이 충분히 낮은 조성을 형상기억 특성이 나타나는 조성으로 간주한다.Therefore, the process of predicting an alloy with low stacking fault energy (SFE) using CALPHAD calculates ΔG hcp-fcc and considers a composition with a sufficiently low value as a composition that exhibits shape memory characteristics.
이를 보다 구체적으로 제시하기 위해 본 발명에서는 좀 더 직관적인 지표로 아래 고엔트로피 합금 조성 영역 선별 단계(S2)에서와 같이 상 평형온도인 T0값을 이용하여 형상기억특성 구현 가능성을 예측하였다.To present this more specifically, in the present invention, the possibility of implementing shape memory characteristics was predicted using the T 0 value, which is the phase equilibrium temperature, as in the high-entropy alloy composition region selection step (S2) below, as a more intuitive indicator.
본 발명에서 '적층결함에너지(SFE)가 낮은 합금'이라 함은 열역학 계산에 의해 예측한 합금의 적층결함에너지(SFE)가 기존의 고엔트로피 합금에서 보고된 적층결함에너지(SFE)보다 낮은 것을 의미한다.In the present invention, the term 'alloy having low stacking fault energy (SFE)' means that the stacking fault energy (SFE) of the alloy predicted by thermodynamic calculations is lower than the stacking fault energy (SFE) reported in conventional high-entropy alloys.
고엔트로피 합금 조성 영역 선별 단계(S2)는 상기 고엔트로피 합금의 조성 영역에서 고온에서 안정상이 예측되는 고엔트로피 합금의 조성 영역을 선별하는 단계이다.The high-entropy alloy composition region selection step (S2) is a step of selecting a composition region of a high-entropy alloy in which a stable phase is predicted at high temperatures from the composition region of the high-entropy alloy.
본 발명에 따른 Cr-Fe-Co삼원계 합금에서 설계하고자 한 고엔트로피 합금은 FCC/HCP상의 가역적인 마르텐사이트 변태에 의해 형상기억특성이 구현되는 합금으로, 형상기억합금 내부에 FCC, HCP상 이외의 다른 상이 존재할 경우 성형성 및 형상기억특성이 저하되는 특성이 있다.The high-entropy alloy designed from the Cr-Fe-Co ternary alloy according to the present invention is an alloy in which shape memory characteristics are realized by reversible martensitic transformation of the FCC/HCP phase, and has the characteristic that formability and shape memory characteristics are reduced when a phase other than the FCC and HCP phases exists inside the shape memory alloy.
따라서 아크 용해로 또는 전기로를 이용하여 제조되는 고엔트로피 합금은 FCC 단일상 또는 FCC+HCP 2상 구조로 이루어지는 것이 바람직하다.Therefore, it is desirable for high-entropy alloys manufactured using an arc furnace or electric furnace to have a FCC single-phase or FCC+HCP two-phase structure.
이러한 결과를 얻기 위해, 1,473K(1,200℃)에서 열처리 할 시 FCC 단일상이 나오는 것으로 예측되는 조성 영역을 CALPHAD 계산을 통하여 선별하는 단계로서, 도 3은 이러한 과정의 예시이며, 도 4는 이러한 일련의 과정을 통해 Cr-Fe-Co 삼원계 합금에서 T0를 가지며 1,200℃ 기준 FCC 단일상으로 예측되는 합금 조성영역의 선정 결과를 나타낸 것이다.To obtain these results, a step of selecting a composition region predicted to form an FCC single phase when heat-treated at 1,473 K (1,200 °C) through CALPHAD calculation is performed. FIG. 3 is an example of this process, and FIG. 4 shows the results of selecting an alloy composition region predicted to have T 0 and be an FCC single phase at 1,200 °C in a Cr-Fe-Co ternary alloy through this series of processes.
형상기억특성 발현 여부 확인 단계(S3)는 선별한 합금 조성 영역에서 예측한 고엔트로피 합금들을 실제로 아크 용해로를 이용하여 주조재를 만든 후, 1,473K(1,200℃)에서 6시간 동안 열처리하여 얻은 형상기억합금 시편의 결정구조, 형상기억회복 특성 및 열 특성을 첨부된 도면인 도 5 내지 도 9에 도시된 바와 같이 시험하여 평가하는 단계이다. The step (S3) for confirming whether shape memory characteristics are expressed is a step for making a cast material using an arc melting furnace using high-entropy alloys predicted in a selected alloy composition region, and then heat-treating the resulting shape memory alloy specimen at 1,473 K (1,200 °C) for 6 hours to evaluate the crystal structure, shape memory recovery characteristics, and thermal characteristics, as shown in the attached drawings, FIGS. 5 to 9.
따라서, 상기 S1 내지 S3의 단계를 거쳐 고엔트로피 합금으로부터 예측한 Cr-Fe-Co계 고엔트로피 합금은 아래 [표 1]에서 예측한 결과를 바탕으로 [표 1]에 명시된 조성의 삼원계 Cr-Fe-Co 합금을 실제로 제조하였으며, 이때 합금을 제조하는 방식은 통상적인 합금 제조방식인 분말야금법과 주조법 모두 가능하지만, 본 발명에서는 주조의 방식으로 합금시편을 제조하였다.Therefore, through the steps of S1 to S3, the Cr-Fe-Co high-entropy alloy predicted from the high-entropy alloy was actually manufactured as a ternary Cr-Fe-Co alloy having the composition specified in [Table 1] based on the predicted results in [Table 1] below. At this time, the method of manufacturing the alloy can be either the powder metallurgy method or the casting method, which are conventional alloy manufacturing methods, but in the present invention, the alloy specimen was manufactured by the casting method.
이와 같이 본 발명은 아래 [표 1]의 내용과 같이 예측한 조성비의 고엔트로피 합금과 실제 제조한 고엔트로피 합금을 대비하여 확인함으로써, 다수의 원소를 거의 동등한 분율로 혼합하여 만드는 수많은 조합의 고엔트로피 합금 중에서 형상기억특성이 나타날 것으로 예상되는 조성을 열역학 계산으로 예측하여 기존에는 보고되지 않은 다양한 종류의 형상기억합금을 간편한 방법에 의해 개발할 수 있는 효과가 있다.In this way, the present invention compares a high-entropy alloy having a predicted composition ratio as shown in [Table 1] below with an actually manufactured high-entropy alloy, thereby predicting a composition that is expected to exhibit shape memory characteristics among numerous combinations of high-entropy alloys made by mixing a number of elements in nearly equal proportions through thermodynamic calculations, thereby enabling the development of various types of shape-memory alloys that have not been previously reported by a simple method.
이하, 본 발명에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금 및 이 합금의 조성 영역의 예측방법을 아래의 실시 예를 통해 구체적으로 설명하면 다음과 같으며, 본 발명은 아래의 실시 예에 의해서만 반드시 한정되는 것이 아니다.Hereinafter, the Cr-Fe-Co high-entropy alloy having shape memory characteristics according to the present invention and the method for predicting the composition range of the alloy will be specifically described through the following examples, and the present invention is not necessarily limited to the following examples.
본 발명에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금은 아래 [표 1]의 내용과 같이 특허문헌 3에 알려진 바와 같은 Cr-Mn-Fe-Co-Ni계 고엔트로피 합금을 대상으로 비교예로 하였다. 즉, 비교예 1, 2인 고엔트로피 합금인 Cr20Mn20Fe20Co20Ni20 및 Cr20Mn20Fe20Co35Ni5로부터 열역학 기반 계산 소프트웨어인 Thermo-Calc를 이용하여 예측한 Cr-Fe-Co계 고엔트로피 합금과 실제 Cr-Fe-Co계 고엔트로피 합금의 다양한 합금조성에 대하여 T0, ΔG(hcp-fcc) 및 1,473K(1,200℃)에서의 평형상 및 상온에서 실제 실험에 의해 확인된 결정상을 정리한 결과를 나타낸 것이다.The Cr-Fe-Co high-entropy alloy having shape memory characteristics according to the present invention was used as a comparative example with the Cr-Mn-Fe-Co-Ni high-entropy alloy known in patent document 3 as shown in [Table 1] below. That is, from the high-entropy alloys of Comparative Examples 1 and 2, Cr 20 Mn 20 Fe 20 Co 20 Ni 20 and Cr 20 Mn 20 Fe 20 Co 35 Ni 5 , thermodynamic-based calculation software This figure shows the results of organizing the equilibrium phase at T 0 , ΔG (hcp-fcc) and 1,473 K (1,200 °C) and the crystal phase confirmed by actual experiments at room temperature for various alloy compositions of Cr-Fe-Co high-entropy alloys predicted using Thermo-Calc and actual Cr-Fe-Co high-entropy alloys.
아래 [표 1]은 실시예 1 내지 14 및 비교예 1 내지 8의 Cr-Fe-Co계 고엔트로피 합금을 예측한 다음 실제 1,473K(1,200℃)에서 6시간 동안 열처리하여 얻은 Cr-Fe-Co계 형상기억합금 시편들을 제조한 다음 예측한 합금과 실제 제조한 합금을 대비하여 정리한 표이다. [Table 1] below is a table that compares the predicted Cr-Fe-Co high-entropy alloys of Examples 1 to 14 and Comparative Examples 1 to 8, and then manufactures Cr-Fe-Co shape memory alloy specimens obtained by heat-treating at 1,473 K (1,200 °C) for 6 hours, and then organizes the predicted alloys with the actually manufactured alloys.
Cr-Fe-Co계 고엔트로피 합금은 일부 조성을 제외한 대부분의 조성에서 T0 값이 300K 이상으로 높아 형상기억특성이 나타날 여지가 큰 것으로 확인되며, 또한 대부분의 합금에서 열역학 계산으로 예측한 결과예측 결정구조와 실제 실험으로 관측한 결정구조가 일치하는 것을 확인하였다.It was confirmed that Cr-Fe-Co high-entropy alloys have a high T0 value of 300 K or higher in most compositions except for some compositions, indicating a high possibility of exhibiting shape memory characteristics. In addition, it was confirmed that the crystal structure predicted by thermodynamic calculations and the crystal structure observed in actual experiments were consistent in most alloys.
구분division 조성비(at.%)Composition ratio (at.%) T0(K)T 0 (K) ΔG(hcp-fcc)
(J/mol)
(300K 기준)
ΔG (hcp-fcc)
(J/mol)
(Based on 300K)
예측 안정상
(1473K 기준)
Predicted stability
(Based on 1473K)
관측상
(상온 기준)
Observation
(at room temperature)
비교예 1Comparative Example 1 Cr20Mn20Fe20Co20Ni20 Cr 20 Mn 20 Fe 20 Co 20 Ni 20 <0<0 10511051 FCCFCC FCCFCC
비교예 2Comparative Example 2 Cr20Mn20Fe20Co35Ni5 Cr 20 Mn 20 Fe 20 Co 35 Ni 5 320320 -47-47 FCCFCC FCCFCC
실시예 1Example 1 Cr40Fe10Co50 Cr 40 Fe 10 Co 50 10601060 -2013-2013 FCC + σFCC + σ FCC + HCP + σFCC + HCP + σ
실시예 2Example 2 Cr35Fe25Co40 Cr 35 Fe 25 Co 40 780780 -1272-1272 FCC + BCCFCC + BCC FCC + HCP + BCCFCC + HCP + BCC
실시예 3Example 3 Cr35Fe20Co45 Cr 35 Fe 20 Co 45 830830 -1413-1413 FCCFCC FCC + HCPFCC + HCP
실시예 4Example 4 Cr35Fe15Co50 Cr 35 Fe 15 Co 50 900900 -1590-1590 FCC FCC FCC + HCPFCC + HCP
실시예 5Example 5 Cr30Fe40Co30 Cr 30 Fe 40 Co 30 580580 -783-783 FCC + BCCFCC + BCC FCC + HCP + BCCFCC + HCP + BCC
실시예 6Example 6 Cr30Fe30Co40 Cr 30 Fe 30 Co 40 630630 -898-898 FCCFCC FCC + HCPFCC + HCP
실시예 7Example 7 Cr30Fe20Co50 Cr 30 Fe 20 Co 50 740740 -1161-1161 FCCFCC FCC + HCPFCC + HCP
실시예 8Example 8 Cr30Fe10Co60 Cr 30 Fe 10 Co 60 910910 -1566-1566 FCCFCC FCC + HCPFCC + HCP
실시예 9Example 9 Cr20Fe60Co20 Cr 20 Fe 60 Co 20 410410 -331-331 FCCFCC FCC + HCP + BCCFCC + HCP + BCC
실시예 10Example 10 Cr20Fe50Co30 Cr 20 Fe 50 Co 30 350350 -157-157 FCCFCC FCC + HCPFCC + HCP
실시예 11Example 11 Cr20Fe40Co40 Cr 20 Fe 40 Co 40 350350 -147-147 FCCFCC FCC + HCPFCC + HCP
실시예 12Example 12 Cr20Fe30Co50 Cr 20 Fe 30 Co 50 410410 -295-295 FCCFCC FCC + HCPFCC + HCP
실시예 13Example 13 Cr15Fe45Co40 Cr 15 Fe 45 Co 40 200200 228228 FCCFCC FCC + HCP + BCCFCC + HCP + BCC
실시예 14Example 14 Cr15Fe35Co50 Cr 15 Fe 35 Co 50 230230 159159 FCCFCC FCC + HCPFCC + HCP
비교예 3Comparative Example 3 Cr15Fe65Co20 Cr 15 Fe 65 Co 20 330330 -95-95 FCCFCC BCCBCC
비교예 4Comparative Example 4 Cr15Fe55Co30 Cr 15 Fe 55 Co 30 240240 149149 FCCFCC BCCBCC
비교예 5Comparative Example 5 Cr10Fe70Co20 Cr 10 Fe 70 Co 20 250250 132132 FCCFCC BCCBCC
비교예 6Comparative Example 6 Cr10Fe60Co30 Cr 10 Fe 60 Co 30 140140 448448 FCCFCC BCCBCC
비교예 7Comparative Example 7 Cr10Fe50Co40 Cr 10 Fe 50 Co 40 7070 624624 FCCFCC BCCBCC
비교예 8Comparative Example 8 Cr10Fe40Co50 Cr 10 Fe 40 Co 50 5050 642642 FCCFCC BCCBCC
본 발명에 따른 형상기억특성이 나타나는 Cr-Fe-Co계 고엔트로피 합금과 이에 대비되는 기존의 고엔트로피 합금으로써 대표적으로 널리 알려진 합금인 Cr20Mn20Fe20Co20Ni20에 대한 γ 오스테나이트상(FCC)과 ε 마르텐사이트상(HCP)의 상대적인 안정성을 살펴보면, 도 2에 도시된 바와 같이 0~1,000K 범위에서 깁스 자유에너지의 변화량이 ΔG(hcp-fcc) > 0인 것으로 나타났다. 이는 γ 오스테나이트상(FCC)이 모든 온도에서 ε 마르텐사이트상(HCP)보다 안정하다는 것을 의미한다.When examining the relative stabilities of the γ austenite phase (FCC) and the ε martensite phase (HCP) for the Cr-Fe-Co high-entropy alloy exhibiting shape memory characteristics according to the present invention and the Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy, which is a representative and widely known conventional high-entropy alloy, as shown in Fig. 2, the change in Gibbs free energy was found to be ΔG (hcp-fcc) > 0 in the range of 0 to 1,000 K. This means that the γ austenite phase (FCC) is more stable than the ε martensite phase (HCP) at all temperatures.
이에 반해, 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금인 Cr20Fe30Co50, Cr30Fe30Co40 및 Cr30Fe40Co30 합금의 경우에는 1000K에서 양의 값을 갖던 ΔG(hcp-fcc) 가 각각 50K, 410K, 580K, 630K 이하에서 음의 값을 갖는 것으로 나타났다. 이는 상기의 온도에서 FCC 모상보다 HCP 마르텐사이트상이 더 안정해진다는 것을 의미한다. In contrast, Cr 20 Fe 30 Co 50 , a Cr-Fe-Co high-entropy alloy according to the present invention, For Cr 30 Fe 30 Co 40 and Cr 30 Fe 40 Co 30 alloys, ΔG (hcp-fcc), which had a positive value at 1000 K, was found to have negative values below 50 K, 410 K, 580 K, and 630 K, respectively. This means that the HCP martensite phase is more stable than the FCC parent phase at the above temperatures.
참고로, 도 2는 본 발명의 실시예에 따른 형상기억특성을 갖는 고엔트로피 합금 및 이에 대비되는 기존의 고엔트로피 합금의 온도 변화에 따른 깁스 자유에너지의 변화량(ΔG)을 나타낸 그래프이다.For reference, FIG. 2 is a graph showing the change in Gibbs free energy (ΔG) according to temperature change of a high-entropy alloy having shape memory characteristics according to an embodiment of the present invention and a conventional high-entropy alloy in comparison thereto.
본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금인 Cr30Fe30Co40 고엔트로피 합금 및 이에 대비되는 Cr20Mn20Fe20Co20Ni20 합금의 온도변화에 따른 평형 상분율 변화를 살펴보면, 도 3에 도시된 바와 같이 Cr20Mn20Fe20Co20Ni20은 1100~1560K, Cr30Fe30Co40은 1230~1678K에서 단일한 FCC 상이 안정한 상태로 예측되는 온도구간이 존재한다. 이는 두 합금이 이 온도구간 내의 온도로 가열되어 열처리될 경우 단일한 FCC 상의 미세조직이 나타나는 결과를 의미한다. 이는 향후 재결정화, 결정립 성장과 같은 열처리 작업 이후 형상기억특성이 저하되지 않을 수 있다는 점을 의미한다. When examining the change in equilibrium phase fraction according to temperature of the Cr 30 Fe 30 Co 40 high-entropy alloy, which is a Cr-Fe-Co high-entropy alloy according to the present invention, and the Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy in comparison therewith, as shown in FIG. 3, there exists a temperature range in which a single FCC phase is predicted to be stable at 1100 to 1560 K for Cr 20 Mn 20 Fe 20 Co 20 Ni 20 and at 1230 to 1678 K for Cr 30 Fe 30 Co 40. This means that when the two alloys are heated to a temperature within this temperature range and heat-treated, a microstructure of a single FCC phase appears. This means that the shape memory characteristics may not be deteriorated after future heat treatment operations such as recrystallization and grain growth.
참고로, 도 3은 본 발명에 따른 Cr30Fe30Co40 고엔트로피 합금 및 이에 대비되는 Cr20Mn20Fe20Co20Ni20 합금의 평형 상분율 변화의 온도변화에 따른 결과를 나타낸 그래프이다.For reference, FIG. 3 is a graph showing the results of temperature changes in the equilibrium phase fraction of a Cr 30 Fe 30 Co 40 high-entropy alloy according to the present invention and a comparable Cr 20 Mn 20 Fe 20 Co 20 Ni 20 alloy.
본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 Cr-Fe-Co 몰 분율에 따른 삼원계 상태도를 살펴보면, 도 4에 도시된 바와 같이 ① Cr 함량이 40 at.% 이하일 때 합금의 미세구조는 FCC 또는 FCC+BCC 상을 보이게 되며, ② Cr 함량이 40 at.% 이상일 경우, σ 상의 형성이 우세하게 될 것으로 예측되며. ③ Co 함량의 증가는 대체로 T0 온도의 증가를 의미한다.Looking at the ternary phase diagram according to the Cr-Fe-Co mole fraction of the Cr-Fe-Co high-entropy alloy according to the present invention, as shown in Fig. 4, ① when the Cr content is 40 at.% or less, the microstructure of the alloy exhibits an FCC or FCC+BCC phase, ② when the Cr content is 40 at.% or more, the formation of the σ phase is expected to become dominant. ③ An increase in the Co content generally means an increase in the T 0 temperature.
참고로, 도 4는 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 Cr-Fe-Co 몰 분율에 따른 삼원계 상태도를 나타낸 도면이다.For reference, FIG. 4 is a drawing showing a ternary phase diagram according to the Cr-Fe-Co mole fraction of a Cr-Fe-Co high-entropy alloy according to the present invention.
상기 [표 1]에서 제시한 본 발명에 따른 Cr-Fe-Co계 합금조성 중 일부 시편에 대하여 엑스선 회절분석기법으로 결정구조를 확인한 결과 도 5에 도시된 바와 같다. 도 5에 의하면 본 발명에 따른 Cr-Fe-Co 합금은 열역학 계산에서 예측한 바와 같이 대부분의 합금이 FCC 상과 HCP 상의 회절피크를 보였으며, 일부 조성의 합금에서는 FCC 상과 더불어 작은 BCC 상의 피크가 관찰되었다.The crystal structure of some specimens of the Cr-Fe-Co alloy composition according to the present invention presented in the above [Table 1] was confirmed by X-ray diffraction analysis, as shown in Fig. 5. According to Fig. 5, most of the Cr-Fe-Co alloys according to the present invention showed diffraction peaks of the FCC phase and the HCP phase as predicted from the thermodynamic calculation, and in some alloys of the composition, a small peak of the BCC phase was observed in addition to the FCC phase.
본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금 중 일부 시편에 대하여 상온에서 굽힘시험을 실시하고, 고온에서 가열하여 초기상태로 형상이 회복되는지 여부를 확인한 결과 도 6에 도시된 사진의 내용과 같이 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 FCC + HCP 상인 Cr30Fe10Co60, Cr30Fe20Co50, Cr30Fe30Co40 및 FCC + HCP + BCC 상인 Cr30Fe40Co30 시편은 모두 형상이 회복되는 것을 확인할 수 있었다.Some specimens of the Cr-Fe-Co high-entropy alloy according to the present invention were subjected to a bending test at room temperature and heated at a high temperature to check whether the shape recovered to the initial state. As a result, as shown in the photograph illustrated in FIG. 6, it was confirmed that the specimens of the FCC + HCP phase Cr 30 Fe 10 Co 60 , Cr 30 Fe 20 Co 50 , Cr 30 Fe 30 Co 40 and the FCC + HCP + BCC phase Cr 30 Fe 40 Co 30 of the Cr-Fe-Co high-entropy alloy according to the present invention all recovered their shapes.
Cr-Fe-Co 합금에 대한 회복변형률(Recovery strain)을 살펴보면, 도 7에 도시된 바와 같이 시편마다 편차는 있지만, 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 FCC + HCP 상인 Cr30Fe10Co60, Cr30Fe20Co50, Cr30Fe30Co40 및 FCC + HCP + BCC 상인 Cr30Fe40Co30 시편은 0.1 ~ 1.0 %의 변형이 가열 이후 회복된 것을 굽힘시험으로부터 확인할 수 있었다. Looking at the recovery strain for the Cr-Fe-Co alloy, as shown in FIG. 7, there is a deviation for each specimen, but it was confirmed from the bending test that the FCC + HCP phase Cr 30 Fe 10 Co 60 , Cr 30 Fe 20 Co 50 , Cr 30 Fe 30 Co 40 and FCC + HCP + BCC phase Cr 30 Fe 40 Co 30 specimens of the Cr-Fe-Co high-entropy alloy according to the present invention recovered 0.1 to 1.0% of strain after heating.
그리고 상기 [표 1]에서 예측한 조성의 합금시편 중 일부의 시편에 대해 Cr-Fe-Co 합금에 대해 시차열분석을 실시한 결과 도 8에 도시된 바와 같이 600℃까지 가열한 이후, -50℃까지 냉각하고 다시 600℃까지 가열하면서 시편에서 발생하는 발열/흡열 반응을 기록한 것이다. 이처럼 승온과 냉각을 반복할 때, 일부 재료 내에서 모상이 마르텐사이트로 변태하는 열유기 마르텐사이트 변태와 그 역변태가 일어나는 것을 볼 수 있다.And as a result of performing differential thermal analysis on some of the alloy specimens of the predicted composition in the above [Table 1], the exothermic/endothermic reactions occurring in the specimen were recorded while heating to 600℃, cooling to -50℃, and then heating to 600℃ again, as shown in Fig. 8. In this way, when heating and cooling are repeated, it can be seen that heat-induced martensitic transformation and its reverse transformation occur in some materials, in which the matrix phase transforms into martensite.
형상기억합금의 작동 온도는 결국 마르텐사이트 변태/역변태온도에 따라 결정되며, 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금인 Cr30Fe30Co40를 대상으로 마르텐사이트 변태 거동을 상세히 살펴보면, As-Af구간에서 고온 안정상인 오스테나이트로 복원되므로(형상이 복원되므로), 작동온도 상한을 As, 또는 Af로 결정한다.The operating temperature of a shape memory alloy is ultimately determined by the martensite transformation/reverse transformation temperature. When examining the martensite transformation behavior in detail for Cr 30 Fe 30 Co 40 , a high-entropy alloy based on the Cr-Fe-Co system according to the present invention, since it is restored to austenite, which is a high-temperature stable phase, in the A s -A f section (since the shape is restored), the upper limit of the operating temperature is determined as A s or A f .
참고로, 도 8 내지 도 10은 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금에 대해 시차열분석을 실시한 결과를 그래프로 나타낸 도면이다.For reference, FIGS. 8 to 10 are graphs showing the results of differential thermal analysis performed on a Cr-Fe-Co high-entropy alloy according to the present invention.
그리고 1,473K에서 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금의 FCC + HCP 상을 갖는 Cr20Fe50Co30 합금을 대상으로 시차열분석을 반복적으로 5회 실시한 결과 도 9에 도시된 바와 같이 승온과 냉각과정을 수차례 반복하여도 상변태 온도와 엔탈피 변화량에 큰 차이가 없었다. 이는 실험에 사용된 재료가 액츄에이터로 사용되기에 매우 적합한 합금임을 확인할 수 있었다.And when differential thermal analysis was repeatedly performed five times on a Cr 20 Fe 50 Co 30 alloy having an FCC + HCP phase of a Cr-Fe-Co high-entropy alloy according to the present invention at 1,473 K, as shown in Fig. 9, there was no significant difference in the phase transformation temperature and enthalpy change even when the heating and cooling processes were repeated several times. This confirmed that the material used in the experiment is a very suitable alloy to be used as an actuator.
또한, 본 발명에 따른 Cr-Fe-Co계 고엔트로피 합금은 시차열분석 결과 도 10(a) 내지 도 10(d)에 도시된 바와 같이 상변태가 관찰된 합금에선 모두 Ms 100℃ 이상, As 230℃ 이상의 고온 마르텐사이트 변태를 보였으며, 형상기억특성이 구현되는 조성 영역이 넓어 제작이 용이하고, 마르텐사이트 온도 제어도 용이하며, 고온상인 fcc 결정 구조상 성형성이 우수하여 다양한 형상으로 제조 가능할 것으로 기대된다.In addition, the Cr-Fe-Co high-entropy alloy according to the present invention showed a high-temperature martensitic transformation at Ms of 100°C or higher and As of 230°C or higher in all alloys in which a phase transformation was observed as shown in FIGS. 10(a) to 10(d) as a result of differential thermal analysis, and it is expected that the alloys can be manufactured easily since the compositional range in which shape memory characteristics are realized is wide, the martensite temperature control is also easy, and the formability is excellent due to the high-temperature fcc crystal structure, so that they can be manufactured into various shapes.
상술한 바와 같은, 본 발명의 바람직한 실시 예에 따른 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금 및 이 합금의 조성 영역의 예측방법을 설명하였지만 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, the Cr-Fe-Co high-entropy alloy having shape memory characteristics according to preferred embodiments of the present invention and the method for predicting the composition range of the alloy have been described, but this has been described only as an example, and those skilled in the art will readily understand that various changes and modifications are possible within a scope that does not depart from the technical spirit of the present invention.

Claims (10)

  1. Cr(크롬), Fe(철), Co(코발트)의 삼원계 합금인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금.A Cr-Fe-Co high-entropy alloy having shape memory properties, characterized by being a ternary alloy of Cr (chromium), Fe (iron), and Co (cobalt).
  2. 제1항에 있어서, In the first paragraph,
    상기 삼원계 합금은 아래 [화학식]으로 표시되는 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금.The above ternary alloy is a Cr-Fe-Co high-entropy alloy having shape memory properties, characterized by the following [chemical formula].
    [화학식][chemical formula]
    CraFebCoc Cr a Fe b Co c
    (a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)(a+b+c=100, 15≤a≤40 at.%, 10≤b≤60 at.%, 20≤c≤50 at.%)
  3. 제1항 또는 제2항 중 어느 한 항에 있어서,In either of paragraph 1 or paragraph 2,
    상기 삼원계 합금은 상온에서 FCC 또는 FCC + HCP 또는 FCC + HCP + σ 또는 FCC + HCP + BCC인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금.The above ternary alloy is a Cr-Fe-Co high-entropy alloy having shape memory properties, characterized in that it is FCC or FCC + HCP or FCC + HCP + σ or FCC + HCP + BCC at room temperature.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,In any one of claims 1 to 3,
    상기 삼원계 합금은 상 평형온도(TO)가 200 ~ 1,060K인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금.The above ternary alloy is a Cr-Fe-Co high-entropy alloy having shape memory properties, characterized by a phase equilibrium temperature (T O ) of 200 to 1,060 K.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,In any one of claims 1 to 4,
    상기 삼원계 합금은 자유에너지 변화량[ΔG(hcp-fcc)](300K 기준)이 -2,013 ~ 228 J/mol인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금.The above ternary alloy is a Cr-Fe-Co high-entropy alloy having shape memory properties, characterized by a free energy change amount [ΔG (hcp-fcc) ] (based on 300 K) of -2,013 to 228 J/mol.
  6. 고엔트로피 합금에서 열역학 계산에 의해 적층결함에너지(SFE)가 낮은 합금조성 영역을 예측하는 단계(S1);Step (S1) of predicting an alloy composition region having low stacking fault energy (SFE) in a high-entropy alloy by thermodynamic calculation;
    상기 고엔트로피 합금의 조성 영역에서 고온에서 안정상이 예측되는 고엔트로피 합금의 조성 영역을 선별하는 단계(S2); 및Step (S2) of selecting a composition region of a high-entropy alloy in which a stable phase is predicted at high temperatures from the composition region of the high-entropy alloy; and
    선별한 합금 조성 영역에서 형상기억특성의 발현 여부를 확인하는 단계(S3);Step (S3) for confirming whether shape memory characteristics are expressed in the selected alloy composition region;
    를 포함하는 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법.A method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized by including:
  7. 제6항에 있어서,In Article 6,
    상기 합금조성 영역 예측 단계(S1)는 고엔트로피 합금의 성분 영역에서 γ 오스테나이트상(FCC)과 ε 마르텐사이트상(HCP)의 자유에너지 변화량(ΔG(HCP-FCC))이 0인 상평형 온도 T0를 파악하는 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법.The above alloy composition region prediction step (S1) is a method for predicting the composition region of a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized in that the step of predicting the alloy composition region comprises determining the phase equilibrium temperature T 0 at which the free energy change amount (ΔG (HCP-FCC) ) of the γ austenite phase (FCC) and the ε martensite phase (HCP) in the composition region of the high-entropy alloy is 0.
  8. 제7항에 있어서,In Article 7,
    상기 상평형 온도는 T0 〉0K인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법.A method for predicting the composition range of a Cr-Fe-Co high-entropy alloy having shape memory characteristics, wherein the above-mentioned phase equilibrium temperature is T 0 〉0K.
  9. 제6항에 있어서,In Article 6,
    상기 고엔트로피 합금 조성 영역 선별 단계(S2)에서 고온은 1,473K(1,200℃)인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법.A method for predicting the composition region of a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized in that in the high-entropy alloy composition region selection step (S2), the high temperature is 1,473 K (1,200°C).
  10. 제6항에 있어서,In Article 6,
    상기 고엔트로피 합금 조성 영역 선별 단계(S2)에서 안정상은 FCC 또는 FCC + σ 또는 FCC + BCC인 것을 특징으로 하는 형상기억특성을 갖는 Cr-Fe-Co계 고엔트로피 합금의 조성 영역예측 방법.A method for predicting the composition region of a Cr-Fe-Co high-entropy alloy having shape memory characteristics, characterized in that in the step of selecting the composition region of the high-entropy alloy (S2), the stable phase is FCC or FCC + σ or FCC + BCC.
PCT/KR2024/001165 2023-02-13 2024-01-25 Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy WO2024172330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230018765A KR20240126228A (en) 2023-02-13 2023-02-13 Cr-Fe-Co based high entropy alloys with shape memory effect and method for predicting the composition region of the alloy
KR10-2023-0018765 2023-02-13

Publications (1)

Publication Number Publication Date
WO2024172330A1 true WO2024172330A1 (en) 2024-08-22

Family

ID=92420211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/001165 WO2024172330A1 (en) 2023-02-13 2024-01-25 Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy

Country Status (2)

Country Link
KR (1) KR20240126228A (en)
WO (1) WO2024172330A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110528A (en) * 2017-03-29 2018-10-10 서울대학교산학협력단 CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF
JP2019199626A (en) * 2018-05-14 2019-11-21 国立研究開発法人物質・材料研究機構 Shape-memory alloy, production method thereof, and applications using the same
KR20200019459A (en) * 2018-08-14 2020-02-24 충남대학교산학협력단 Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305109B (en) 2005-11-09 2011-09-28 独立行政法人科学技术振兴机构 Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
KR20220067238A (en) 2020-11-17 2022-05-24 한국재료연구원 High entropy alloy enhanced with l21 particles and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110528A (en) * 2017-03-29 2018-10-10 서울대학교산학협력단 CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF
JP2019199626A (en) * 2018-05-14 2019-11-21 国立研究開発法人物質・材料研究機構 Shape-memory alloy, production method thereof, and applications using the same
KR20200019459A (en) * 2018-08-14 2020-02-24 충남대학교산학협력단 Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN LU, JARLÖV ASKER, SEET HANG LI, NAI MUI LING SHARON, LI YEFEI, ZHOU KUN: "Exploration of V–Cr–Fe–Co–Ni high-entropy alloys with high yield strength: A combination of machine learning and molecular dynamics simulation", COMPUTATIONAL MATERIALS SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 217, 1 January 2023 (2023-01-01), AMSTERDAM, NL , pages 111888, XP093200092, ISSN: 0927-0256, DOI: 10.1016/j.commatsci.2022.111888 *
SINGH S., WANDERKA N., KIEFER K., SIEMENSMEYER K., BANHART J.: "Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties", ULTRAMICROSCOPY, ELSEVIER, AMSTERDAM, NL, vol. 111, no. 6, 1 May 2011 (2011-05-01), NL , pages 619 - 622, XP093200091, ISSN: 0304-3991, DOI: 10.1016/j.ultramic.2010.12.001 *

Also Published As

Publication number Publication date
KR20240126228A (en) 2024-08-20

Similar Documents

Publication Publication Date Title
KR102236938B1 (en) Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same
US9963770B2 (en) Castable high-temperature Ce-modified Al alloys
AU2005205736B2 (en) Ni-Cr-Co alloy for advanced gas turbine engines
Varma et al. Static and cyclic oxidation of Nb-Cr-VW-Ta high entropy alloy in air from 600 to 1400° C
Anton et al. Selecting high-temperature structural intermetallic compounds: the engineering approach
CN111893363B (en) NiCoCr-based medium-entropy alloy with excellent strength and plasticity matching and preparation method thereof
WO2019022283A1 (en) Medium-entropy alloy having excellent cryogenic characteristics
KR101335009B1 (en) Iron-nickel-chromium-silicon alloy
JPS6350440A (en) Nickel-chromium alloy improved in fatique strength
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
WO2019039743A1 (en) V-cr-fe-ni based high-strength high-entropy alloy
CN113930642B (en) High-strength and high-toughness multi-component precision high-resistance alloy and preparation method thereof
CN110468301A (en) A kind of preparation method with near-zero thermal expansion performance bell metal
WO2024172330A1 (en) Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy
CN102822366A (en) Magnesium alloy sheet
WO2019083103A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
CN110983174A (en) Uniaxial zero-expansion composite material with plasticity and preparation method thereof
WO2005111249A2 (en) Novel high-stregth, magnetic, nonostructured alloys
WO2017131260A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
EP0285952B1 (en) Superconductor cable
CN101440465B (en) Zirconium based amorphous alloy and manufacture method thereof
CN112853230A (en) Low-layer-dislocation-energy face-centered cubic structure high-entropy shape memory alloy and preparation method thereof
JP7138915B2 (en) SHAPE MEMORY ALLOY, MANUFACTURING METHOD THEREOF, AND USE USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24757060

Country of ref document: EP

Kind code of ref document: A1