KR20200019459A - Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same - Google Patents
Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same Download PDFInfo
- Publication number
- KR20200019459A KR20200019459A KR1020180095007A KR20180095007A KR20200019459A KR 20200019459 A KR20200019459 A KR 20200019459A KR 1020180095007 A KR1020180095007 A KR 1020180095007A KR 20180095007 A KR20180095007 A KR 20180095007A KR 20200019459 A KR20200019459 A KR 20200019459A
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- less
- entropy
- alloy
- high entropy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/78—Combined heat-treatments not provided for above
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 쌍정 및 상변태 변형유기 소성특성을 나타내는 고엔트로피 강에 관한 것으로, 더욱 자세하게는 쌍정 및 상변태에 의한 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시켜 강도와 연성을 동시에 증가시킴으로써 기계적 특성이 더욱 향상된 고엔트로피 강 및 그 제조방법에 관한 것이다. The present invention relates to a high-entropy steel exhibiting twin and phase transformation organic plastic properties, and more particularly, twin boundary or phase boundary due to twin and phase transformation interferes with dislocation movement, thereby increasing the work hardening rate and simultaneously increasing strength and ductility. The present invention relates to a high entropy steel and a method of manufacturing the same, which further improve mechanical properties.
산업 기술수준의 비약적 발전에 따라, 각종 소재에 대한 요구 특성이 단일 금속으로는 해결할 수 없는 복합 기능성 요구에 부응하고자 최근에 새로운 합금 시스템으로 고엔트로피 합금(High Entropy Alloy)으로 지칭된 새로운 종류의 물질들이 제안, 개발되고 있다. With the rapid development of industrial technology, a new class of materials, recently referred to as high entropy alloys as a new alloy system, in order to meet the complex functional requirements that cannot be solved with a single metal. Are being proposed and developed.
상기 고엔트로피 합금이란 금속간화합물 형성을 통해 자유에너지 감소에 의한 화합물의 형성보다는 여러 원소의 혼합에 의해 배열 엔트로피(Configuration Etropy)의 증가가 커서 전체 자유에너지를 감소시켜, 다성분 합금원소들 간의 금속간화합물이나 비정질 합금을 형성하는 것이 아니라, 여러 합금원소가 혼합된 고용체가 형성되는 합금을 의미한다.The high entropy alloy is an increase in configuration entropy due to the mixing of various elements rather than the formation of a compound due to the reduction of free energy through the formation of intermetallic compounds, thereby reducing the total free energy, thereby reducing the metal between the multicomponent alloy elements. It does not form an intermetallic compound or an amorphous alloy, but refers to an alloy in which a solid solution in which various alloying elements are mixed is formed.
상기 고엔트로피 합금은 비특허문헌 1을 통해 알려지게 되었다. 상기 비특허문헌 1에서, 비정질 합금 또는 복잡한 금속간화합물이 형성될 것으로 예상하고 제조한 다원소 합금 Fe20Cr20Mn20Ni20Co20이 예상과 달리 결정질의 FCC(Face Centered Cubic) 고용체로 형성되어 흥미를 불러 일으킨 합금이다. 상기 고 엔트로피 합금은 기존의 합금이 60~90 중량%의 주 합금원소에 다른 합금원소가 첨가되는 것에 비해, 4 내지 5 원계 이상의 합금원소가 비슷한 비율로 혼합됨에도 단상을 이루는 특이한 특성을 가지며, 이는 혼합에 의한 배열 엔트로피가 큰 합금계에서 발견된다. The high entropy alloy has been known through Non-Patent Document 1. In Non-Patent Document 1, a multi-element alloy Fe 20 Cr 20 Mn 20 Ni 20 Co 20 produced in anticipation of the formation of an amorphous alloy or a complex intermetallic compound is formed of a crystalline FCC (Face Centered Cubic) solid solution, which is unexpected. It is an alloy that has become interesting. The high entropy alloy has a peculiar characteristic of forming a single phase even though the existing alloy is mixed with a similar ratio of 4 to 5 or more elemental alloy elements, compared to other alloy elements added to 60 to 90 wt% of the main alloy element. Array entropy by mixing is found in large alloy systems.
고엔트로피 합금과 관련된 선행기술로서 특허문헌 1과 특허믄헌 2가 있다. 상기 특허문헌 1은 다종 금속성분으로 V, Nb, Ta, Mo, Ti 등의 각 원소를 ±15 atomic% 이하의 편차로 포함되는 5종 이상의 금속 성분을 함유하며, 첨가된 모든 원소가 주 원소로서 작용하는 합금 시스템으로 면심입방 및/또는 체심입방 구조의 단상 고용체로 구성되는 고경도(hardness) 및 고탄성(modulus)을 구현하는 고 엔트로피 합금을 개시하고 있다. 그러나, 위와 같은 특허문헌 1은 고가의 무거운 합금원소들이 여러 종류 첨가되고, 첨가된 합금원소들 사이의 용융점 차이로 인한 제조공정의 어려움이 있다.As a prior art related to high entropy alloys, there is Patent Document 1 and Patent 믄 heon. The patent document 1 is a multi-metal component and contains five or more metal components containing each element such as V, Nb, Ta, Mo, Ti at a variation of ± 15 atomic% or less, and all added elements are the main elements. High-entropy alloys are disclosed that achieve high hardness and modulus, which consist of single-phase solid solutions of face-centered cubic and / or body-centered cubic structures as a working alloy system. However, Patent Document 1 as described above has a variety of expensive heavy alloy elements are added, there is a difficulty in the manufacturing process due to the melting point difference between the added alloy elements.
한편, 특허문헌 2는 세라믹 상(대표적으로 텅스텐 카바이드)과 다중 성분 고 엔트로 합금 분말을 분말 야금공정을 통해 제조된 고경도를 구현하는 고 엔트로피 합금에 관한 것으로서, 면심입방 및/또는 체심입방 구조의 단상 고용체로 구성되어 우수한 기계적 특성을 구현하는 기술이다. 그러나 상기 특허문헌 2는 세라믹계 물질을 사용하여 합금을 제조하는 경우에는 고온의 공정이 필요하기 때문에 제조가 어렵다는 문제가 있다.On the other hand, Patent Document 2 relates to a high entropy alloy that implements a high hardness produced by the powder metallurgy process of the ceramic phase (typically tungsten carbide) and multi-component high entro alloy powder, the face-centered cubic and / or body-centered cubic structure It is composed of single-phase solid solution of the technology to realize the excellent mechanical properties. However, the said patent document 2 has a problem that manufacture is difficult because a high temperature process is needed when manufacturing an alloy using a ceramic material.
상기 특허문헌 1과 특허문헌 2와 같이, 금속이나 세라믹 합금원소들을 이용하는 고엔트로피 합금은 우수한 기계적 물성을 갖기 때문에 금속 분야 신소재로 주목을 받고 있다. 최근에는 고온 기계적 특성과 저온 기계적 특성 등 극한 환경 물성에서도 우수한 특성을 나타내는 것으로 알려지면서 다양한 연구가 계속되고 있다. 그런데 대부분의 연구가 고엔트로피 합금을 형성하기 쉬운 동일 분율(Equiatomic)로 구성된 고엔트로피 합금을 제조하여 기계적 특성 및 물리적 특성을 평가하는 수준에 머물고 있기 때문에, 고엔트로피 합금을 기반으로 보다 향상된 기계적 특성을 얻기 위한 합금 개발에 대한 연구가 미비한 실정이다.As in Patent Documents 1 and 2, high-entropy alloys using metal or ceramic alloy elements are attracting attention as new materials in the metal field because they have excellent mechanical properties. Recently, various studies have been continued as it is known to exhibit excellent properties even in extreme environmental properties such as high temperature mechanical properties and low temperature mechanical properties. However, since most of the research has been made to evaluate the mechanical and physical properties of the high-entropy alloy composed of the same fraction (Equiatomic) easy to form a high entropy alloy, the improved mechanical properties based on the high entropy alloy Research on the development of alloys to obtain is insufficient.
또한 이러한 엔트로피의 증가에 의한 구조 및 기계적 특성의 변화를 기존 비철 재료 및 철강 재료에 적용하는 경우 새로운 특성이 유도되거나 기존 특성이 더욱 향상될 가능성이 큼에도 불구하고, 기존 합금계에 고엔트로피 개념을 적용하여 특성을 개선하는 연구 및 발명이 이루어지지 않고 있는 상황이다.In addition, if the change of structural and mechanical properties due to the increase of entropy is applied to existing nonferrous and steel materials, it is highly likely that new properties will be induced or the existing properties will be improved. There is no research and invention to improve the characteristics by applying.
본 발명의 일측면은 고엔트로피 합금의 configurational entropy에 의한 고용체 기지 형성 개념을 철강재료에 도입하여, 다양한 합금원소의 종류와 함량을 엔트로피가 증가하는 방향으로 설계함으로써 엔트로피의 증가에 의한 취성 금속간화합물의 형성을 억제하여 가공성 및 가공경화 성능이 우수한 고엔트로피 강 및 그 제조방법을 제공함을 목적으로 한다. One aspect of the present invention is a brittle intermetallic compound by increasing entropy by introducing a solid solution matrix formation concept by the configurational entropy of a high entropy alloy to steel materials, by designing the type and content of various alloy elements in the direction of increasing entropy It is an object of the present invention to provide a high-entropy steel and a method for producing the same, which are excellent in workability and work hardening performance by suppressing the formation of.
구체적으로, 쌍정 및 상변태에 의한 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시켜 강도와 연성을 동시에 증가시킴으로써 기계적 특성이 더욱 향상된 고엔트로피 강 및 그 제조방법을 제공함을 목적으로 한다. Specifically, the twin boundary or phase boundary caused by twin and phase transformation interferes with dislocation movement, thereby increasing the work hardening speed and simultaneously increasing the strength and ductility. do.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다. In addition, the subject of this invention is not limited to the content mentioned above. The problem of the present invention will be understood from the general contents of the present specification, those skilled in the art will have no difficulty in understanding the additional problem of the present invention.
상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,
원자%로, Fe: 35% 초과 80% 이하와, 잔부 Ni: 5% 초과 35% 이하, Mn: 5% 초과 35% 이하, Co: 5% 초과 35% 이하 및 Cr: 5% 초과 35% 이하 중 선택된 3종 이상의 합금원소로 구성하되, 상기 각각의 합금 원소의 함량은 Fe의 함량을 초과하지 않는 가공성 및 가공경화 성능이 우수한 고엔트로피 강(steel)에 관한 것이다. In atomic%, Fe: greater than 35% and less than 80%, balance Ni: greater than 5% and less than 35%, Mn: greater than 5% and less than 35%, Co: greater than 5% and less than 35% and Cr: greater than 5% and less than 35% Consisting of three or more selected alloying elements, the content of each of the alloying elements relates to high entropy steel (steel) excellent in workability and work hardening performance does not exceed the content of Fe.
상기 고엔트로피 강은, 원자%로, C: 0.01~5.0%, N: 0.01~5.0%, B: 0.01~5.0%, Si: 0.01~10%, Cu: 0.01~10%, V: 0.01~10% 및 Al: 0.01~10% 중 1종 이상을 추가로 포함할 수 있다. The high entropy steel is in atomic%, C: 0.01 to 5.0%, N: 0.01 to 5.0%, B: 0.01 to 5.0%, Si: 0.01 to 10%, Cu: 0.01 to 10%, V: 0.01 to 10 % And Al: 0.01 to 10% may further include one or more.
상기 고엔트로피 강은 적층결함에너지가 40 mJ/m2이하, 원자 크기 차이× 합금 조성 % 값이 0.05 이상인 것이 바람직하다. The high entropy steel preferably has a lamination defect energy of 40 mJ / m 2 or less and an atomic size difference x alloy composition% value of 0.05 or more.
또한 본 발명은,In addition, the present invention,
상기와 같은 조성 성분을 갖는 금속 재료를 준비하는 공정; Preparing a metal material having a composition component as described above;
상기 준비된 금속 재료를 용융 합금으로 제조하는 공정; Manufacturing the prepared metal material into a molten alloy;
상기 제조된 합금을 850~1250℃의 온도범위에 균질화 열처리한 후, 상온으로 냉각하는 공정; 및 A step of homogenizing heat treatment of the prepared alloy at a temperature range of 850 to 1250 ° C., followed by cooling to room temperature; And
상기 냉각된 합금을 가공한 후, 350~850℃의 온도범위로 0.5~72시간 동안 유지하는 2차 열처리하는 공정;을 포함하는 가공성 및 가공경화 성능이 우수한 고엔트로피 강(steel) 제조방법에 관한 것이다. After processing the cooled alloy, the second heat treatment to maintain for 0.5 to 72 hours in a temperature range of 350 ~ 850 ℃; High processability and manufacturing process comprising high entropy steel (steel) excellent will be.
상기 금속 재료를 주조, 아크 용해, 분말 야금법, 용사주조법, 용사코팅법, 분사코팅법 및 3D-printing 법 중 선택된 하나의 방법을 이용하여 용융 합금으로 제조할 수 있다. The metal material may be manufactured into a molten alloy by using one of a casting, arc melting, powder metallurgy, spray casting, spray coating, spray coating, and 3D-printing methods.
상기 가공은 단조, 압출, 압연 및 인발 중 어느 하나의 방법일 수 있다. The processing can be any one of forging, extrusion, rolling and drawing.
상술한 바와 같은 구성의 본 발명에 의하면, 기존 기술과는 달리 적층결함에너지가 낮은 소재는 물론 적층결함에너지가 높은 경우에도 쌍정 유기 소성변형과 가공경화, 그리고 상변태 유기 가공 경화 거동을 유도하여, 동일 분율의 고엔트로피 합금에 비하여 기계적 특성 및 경제성이 우수한 고엔트로피 강을 제공할 수 있다.According to the present invention having the above-described configuration, in contrast to the existing technology, even in the case of low stacking defect energy and high stacking defect energy, twin organic plastic deformation and work hardening, and phase transformation organic work hardening behavior are induced. It is possible to provide high entropy steels with superior mechanical properties and economics as compared to fractional high entropy alloys.
또한, 본 발명의 고엔트로피 강은 기계적 특성이 크게 향상되어, 저온에서 우수한 인성과 고강도가 요구되는 해양플랜트, 극한환경 구조 소재로 응용될 수 있다. 그리고 원자 크기 차이 × 합금 조성% 값을 증가시키면 합금 원소들이 전위와 반응하여 전위 이동 억제 또는 부분 쌍정 전위의 확장을 유도하여 변형 쌍정을 유발시시키므로 적층결함에너지가 낮은 소재는 물론 적층결함에너지가 높은 경우에도 쌍정 유기 소성변형 및 가공경화 거동을 나타낼 수 있다. 이에 따라, 상변태 유기 가공 경화를 통한 높은 기계적 특성 때문에 원자력 압력 용기, 피복관, 화력 발전용 터빈 블레이드 등의 고온 소재 등으로 응용될 수 있어 고 엔트로피 합금의 보다 다양한 활용이 가능하다는 장점이 있다.In addition, the high entropy steel of the present invention is greatly improved mechanical properties, it can be applied to offshore plants, extreme environmental structural materials that require excellent toughness and high strength at low temperatures. Increasing the atomic size difference × alloy composition% value causes alloying elements to react with dislocations to induce dislocation transfer or to induce expansion of partial twin dislocations, causing deformation twins, resulting in low lamination energy and high lamination defect energy. Even in the case of twin organic plastic deformation and work hardening behavior can be exhibited. Accordingly, the high mechanical properties through phase transformation organic work hardening can be applied to high temperature materials such as nuclear pressure vessels, cladding tubes, turbine blades for thermal power generation, etc.
도 1은 본 발명의 고엔트로피 강의 적층결함에너지와 합금조성의 영향에 의한 쌍정 유기 합금설계 개념도를 나타낸 그림이다.
도 2는 본 발명의 제조방법의 개략적인 순서를 나타내는 공정순서도이다.
도 3은 본 발명의 실시예 중 발명예 1의 미세조직을 관찰한 사진이다.
도 4은 본 발명의 실시예 중 발명예 6의 미세조직을 관찰한 사진으로, (a)는 인장시험 시 변형율이 20%일때, (b)는 변형율이 40%일때의 미세조직을 나타낸다.
도 5는 본 발명의 실시예 중 발명예 1의 시편에 대한 XRD 분석 그래프로서, (a)는 연신 가공 전, (b)는 연신 가공 후 XRD 분석 그래프이다.1 is a diagram showing a schematic diagram of twin organic alloy design due to the effect of the stacking defect energy and alloy composition of the high-entropy steel of the present invention.
2 is a process flowchart showing a schematic procedure of the manufacturing method of the present invention.
Figure 3 is a photograph observing the microstructure of the invention example 1 of the embodiment of the present invention.
Figure 4 is a photograph observing the microstructure of Example 6 of the present invention, (a) when the strain is 20% strain in the tensile test, (b) shows the microstructure when the strain is 40%.
5 is an XRD analysis graph of the specimen of Inventive Example 1 in Examples of the present invention, (a) before the stretching process, and (b) is an XRD analysis graph after the stretching process.
본 발명의 발명자들은 최근 자원 한계에 따른 원자재의 가격 상승, 온실가스 관련 등 엄격해지는 환경문제 등의 문제점들을 해결하기 위하여 고강도와 고연성의 기계적 특성을 나타내는 새로운 소재개발에 대한 연구를 행하였다. 그 결과 고엔트로피 합금의 개념을 철강재료에 도입하여, 다양한 합금원소의 종류와 함량을 엔트로피가 증가하는 방향으로 설계함으로써 엔트로피의 증가에 의한 취성 금속간화합물의 형성을 억제하여 가공성 및 가공경화 성능이 우수한 고엔트로피 Steel을 제공하 수 잇음을 확인하고 본 발명을 제시하는 것이다. 즉, 본 발명은 쌍정 및 상변태에 의한 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시켜 일반 고엔트로피 합금에 비하여 우수한 강도와 연성을 구현할 수 있는 고엔트로피 강을 제공함을 특징으로 한다. The inventors of the present invention have recently conducted research on the development of new materials exhibiting high strength and high ductility mechanical properties in order to solve problems such as rising raw material prices due to resource limitations and stricter environmental problems such as greenhouse gas. As a result, the concept of high entropy alloy is introduced to steel materials, and various alloy elements are designed in the direction of increasing entropy, thereby suppressing the formation of brittle intermetallic compounds by increasing entropy, thereby improving workability and work hardening performance. It is to confirm that it can provide an excellent high entropy steel and to present the present invention. That is, the present invention provides a high-entropy steel that can realize excellent strength and ductility compared to general high-entropy alloys by increasing the speed of work hardening by preventing the displacement of twin or phase boundaries caused by twin and phase transformation. do.
따라서 본 발명은 원자%로, Fe: 35% 초과 80% 이하와, 잔부 Ni: 5% 초과 35% 이하, Mn: 5% 초과 35% 이하, Co: 5% 초과 35% 이하 및 Cr: 5% 초과 35% 이하 중 선택된 3종 이상의 합금원소로 구성하되, 상기 각각의 합금 원소의 함량은 Fe의 함량을 초과하지 않는 가공성 및 가공경화 성능이 우수한 고엔트로피 강에 관한 것이다. Therefore, the present invention is in atomic%, Fe: more than 35% and 80% or less, balance Ni: more than 5% and 35% or less, Mn: more than 5% and 35% or less, Co: more than 5% and 35% or less and Cr: 5% Consists of three or more alloying elements selected from more than 35%, the content of each alloy element relates to a high entropy steel excellent in workability and work hardening performance does not exceed the content of Fe.
이하, 본 발명의 고엔트로피 강(steel)을 상세히 설명한다. 먼저, 본 발명의 고엔트로피 강의 조성 및 그 함량 제한사유를 상세히 설명한다.Hereinafter, the high entropy steel of the present invention will be described in detail. First, the composition of the high entropy steel of the present invention and the reason for limiting the content thereof will be described in detail.
본 발명의 고엔트로피 강은, 원자%로, Fe: 35% 초과 80% 이하와, 잔부 Ni: 5% 초과 35% 이하, Mn: 5% 초과 35% 이하, Co: 5% 초과 35% 이하 및 Cr: 5% 초과 35% 이하 중 선택된 3종 이상의 합금원소를 포함하여 이루어지되, 상기 각각의 합금 원소는 Fe의 함량을 초과하지 않는다. The high entropy steel of the present invention is, in atomic%, Fe: more than 35% up to 80%, balance Ni: more than 5% up to 35%, Mn: more than 5% up to 35%, Co: more than 5% up to 35% and Cr: It comprises three or more alloying elements selected from more than 5% and less than 35%, each of the alloying elements does not exceed the content of Fe.
상기 Fe, Ni. Mn, Co 및 Cr은 고엔트로피 합금을 구성하는 원소로서, 4주기 천이원소 그룹이며, 원자반경의 차이 등이 작아 고용체 등을 이루기 적합한 원소이다. 상기 Mn와 Ni는 면심입방(FCC) 고용체를 촉진하는 원소이며, Co는 조직의 미세화, Cr은 내식성을 향상시킨다. Fe, Ni. Mn, Co, and Cr are elements constituting a high entropy alloy, and are a four-cycle transition element group, and are suitable for forming a solid solution with a small difference in atomic radius. The Mn and Ni are elements for promoting a face-centered cubic (FCC) solid solution, Co is finer structure, Cr is improved corrosion resistance.
상기 원소 중 Fe 함량이 35% 초과 80% 이하인 이유는 가능한 한 엔트로피를 극대화시키되, 기지가 강(Steel)의 특성을 갖도록 Fe의 성분이 다른 각각의 구성원소보다 높게 하기 위함이다. The reason why the Fe content in the element is more than 35% and less than 80% is to maximize entropy as much as possible, but to make the component of Fe higher than each other element so that the matrix has the characteristics of steel.
Ni 함량이 5% 초과 35% 이하인 이유는 엔트로피를 극대화시키되, 기지가 FCC의 특성을 갖도록 하기 위함이며, Mn 함량이 5% 초과 35% 이하인 이유는 엔트로피를 극대화시키되, 기지의 적층결함에너지를 낮추고 FCC의 특성을 을 갖도록 하기 위함이며, Co 함량이 5% 초과 35% 이하인 이유는 엔트로피를 극대화시키되, 조직의 미세화 및 상변태 유기를 최적화하기 위함이며, Cr 함량이 5% 초과 35% 이하인 이유는 엔트로피를 극대화시키되, 내식성을 최적화하기 위함이다.The Ni content is more than 5% and less than 35% to maximize entropy, but the base has the characteristics of FCC. The Mn content is more than 5% and less than 35% is maximized entropy, but lowers the stack defect energy of the matrix. The purpose of the FCC is to have the characteristics of the Co content of more than 5% and less than 35% to maximize entropy, but to optimize the microstructure and phase transformation organic tissue, and the Cr content is more than 5% and less than 35% To maximize the corrosion resistance.
상술한 바와 같이, 본 발명의 고엔트로피 강은 Co, Cr, Fe, Mn, Ni의 5종 합금 원소를 선택하여 포함하는 기존 고엔트로피 합금과는 달리, Fe을 필수적으로 함유하고 잔여 4종의 원소들 중 3종 이상을 포함하되, Fe의 함량이 첨가된 다른 구성원소 함량보다 크도록 이루어져 있다. 따라서 원자 크기 차이×합금 조성% 값을 증가시키면 합금 원소들이 전위와 반응하여 전위이동 억제 또는 부분 쌍정전위의 확장을 유도하여 변형쌍정을 유발시시키므로, 적층결함에너지가 낮은 소재는 물론 적층결함에너지가 높은 경우에도 쌍정 유기 소성변형 및 가공경화 거동을 나타낼 수 있다. As described above, the high-entropy steel of the present invention, unlike the existing high-entropy alloy that includes a selection of five alloy elements of Co, Cr, Fe, Mn, Ni, essentially contains Fe and remaining four elements Including three or more of these, it is made so that the content of Fe is greater than the content of other added elements. Therefore, increasing the atomic size difference x alloy composition% value causes alloying elements to react with dislocations to induce dislocation movement or to induce expansion of partial twin potentials, resulting in strain twins. Even in the high case, it can show twin organic plastic deformation and work hardening behavior.
또환 본 발명의 고엔트로피 강은, 원자%로, C: 0.01~5.0%, N: 0.01~5.0%, B: 0.01~5.0%, Si: 0.01~10%, Cu: 0.01~10%, V: 0.01~10% 및 Al: 0.01~10% 중 1종 이상을 추가로 포함할 수 있다. In addition, the high entropy steel of the present invention is atomic%, C: 0.01 to 5.0%, N: 0.01 to 5.0%, B: 0.01 to 5.0%, Si: 0.01 to 10%, Cu: 0.01 to 10%, V: 0.01 to 10% and Al: 0.01 to 10% may further include one or more.
상기 C, N 및 B는 침입형 원소로서, 그리고 Si, Cu, V, Al은 치환형원소로서 전위 또는 쌍정부분전위와 반응하여 쌍정 및 상변태을 유도하여 twin boundary 나 phase boundary가 전위의 이동을 방해하여 소재의 가공경화 속도를 증가시킨다. C, N, and B are invasive elements, and Si, Cu, V, and Al are substituted elements to react with dislocations or twin partial potentials to induce twin and phase transformations. Increase the work hardening rate of the material.
본 발명에서 상기 C, N 과 B의 함량을 각각 0.01~5%로 제한하는 것은, 이들 원소들의 함량이 0.01% 미만으로 너무 적은 경우에는 전위와의 반응응력이 너무 작고, 5%을 초과하는 경우에는 격자뒤틀림이 심하고 고용한도를 벗어나 기지를 취화시키며, 전위와의 반응 효율성이 감소하기 때문이다.In the present invention, the content of C, N and B is limited to 0.01 to 5%, respectively, when the content of these elements is less than 0.01%, when the reaction stress with the potential is too small and exceeds 5%. This is because the lattice warpage is severe and embrittles the base beyond the solid solution limit, reducing the efficiency of reaction with dislocations.
상기 Si, Cu, V 및 Al은 고엔트로피 강의 기지를 이루는 주원소인 Fe, Cr, Ni, Mn 및 Co와 원자 반경의 차이가 크고, 원자가 등의 차이가 커서, 전위에 segregation 된다. 따라서 전위의 이동 및 부분전위의 결합을 방해하여 쌍정 및 상변태을 유도하며, 이에 따라 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시킨다. The Si, Cu, V, and Al have a large difference in atomic radius from Fe, Cr, Ni, Mn, and Co, which are the main elements forming a high entropy steel, and have a large difference in valence and segregation at a potential. As a result, twinning and phase transformation are induced by interfering with dislocation movement and partial dislocation coupling. Accordingly, twin boundary or phase boundary impedes movement of dislocation to increase work hardening speed.
본 발명에서 상기 Si, Cu, V 및 Al 의 함량을 각각 0.01~10%로 하는 것은 0.01% 미만에서는 전위와의 segregation 및 반응 효과가 너무 작은 반면, 10%를 초과하게 되면, 5%을 초과하는 경우에는 격자뒤틀림이 심하고 고용한도를 벗어나 기지를 취화시키며, 전위와의 반응 효율성이 감소하기 때문이다.In the present invention, the content of Si, Cu, V and Al of 0.01 to 10%, respectively, is less than 0.01% segregation and reaction effect with the potential is too small, when it exceeds 10%, if more than 5% In this case, the lattice distortion is severe and embrittles the base beyond the solid solution limit, and the efficiency of reaction with dislocations decreases.
상술한 바와 같이, 본 발명의 고엔트로피 강은 Fe 35% 초과 80% 이하, 그리고 Ni, Mn, Co, Cr 중 1종 이상을 포함하는 성분을 기본 성분계로 하고, 여기에, 강도 또는 가공성 증진을 위하여 C, N, B, Si, Cu, V 및 Al 중 선택된 1종 이상의 첨가원소을 포함할 수 있다. 이들 첨가 원소들은 전위에 segregation 되어 완전 전위 또는 쌍정 부분전위의 이동을 방해/억제하여 변형쌍정을 유도하며, 적층결함에너지(Stacking fault energy, SFE)가 낮은 경우 뿐만 아니라 첨가원소의 atomic size misfit가 큰 경우에도 변형쌍정이 활성화 되어 가공경화 및 쌍정 유기 소성변형 거동이 효과적으로 일어날 수 있다. As described above, the high-entropy steel of the present invention is based on a component containing more than 35% of Fe and 80% or less, and at least one of Ni, Mn, Co, and Cr. In order to include one or more additive elements selected from C, N, B, Si, Cu, V and Al. These additive elements are segregated to potentials to hinder / suppress the movement of full potentials or twin partial potentials to induce strain twins, and not only when the stacking fault energy (SFE) is low but also the atomic size misfit of the additional elements is large. Even in this case, the deformation twin is activated, so that work hardening and twin organic plastic deformation behavior can effectively occur.
이하, 본 발명 고엔트로피 강의 가공경화 및 이에 따른 강도 및 연성증가 기구를 설명한다. Hereinafter, the work hardening of the high entropy steel of the present invention and the resulting strength and ductility increase mechanism will be described.
도 1은 본 발명인 고엔트로피 강의 적층결함에너지와 합금조성의 영향에 의한 쌍정유기 합금설계 개념도를 나타낸 것이다.FIG. 1 shows a schematic diagram of a twinned organic alloy design by the influence of the stacking defect energy and the alloy composition of the high entropy steel of the present invention.
도 1에서 보는 바와 같이 높은 적층결함에너지 영역에서는 Wavy 슬립을 나타내며, 원자크기 차이×합금 조성% 값이 증가함에 따라 합금 원소들이 전위와 반응하여 전위 이동 억제 또는 부분 쌍정전위의 확장을 유도하여 변형 쌍정을 유발시시키므로 적층결함에너지가 낮은 소재는 물론 적층결함에너지가 높은 경우에도 Wavy 슬립 영역에서 Planar 슬립 영역 및 TWIP 영역으로 변화하게 된다. 이와 같이 적층결함에너지가 낮아진 고엔트로피 합금은 쌍정 및 상변태에 의한 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시켜, 고엔트로피 합금에 비하여 우수한 강도와 연성을 나타낼 수 있다. As shown in FIG. 1, the high stacking defect energy region shows Wavy slip, and as the atomic size difference x alloy composition% value increases, alloying elements react with the potential to induce dislocation shift or induce expansion of partial twin potentials. In this case, the material with low lamination defect energy and high lamination defect energy are changed from the Wavy slip region to the planar slip region and the TWIP region. As described above, the high entropy alloy having low lamination defect energy may increase the work hardening rate by preventing the transition of twin or phase boundary due to twin and phase transformation, thereby exhibiting superior strength and ductility than the high entropy alloy.
본 발명에서 바람직하게는, 적층결함에너지가 40 mJ/m2이하, 원자 크기 차이× 합금 조성 % 값이 0.05 이상일때 전술한 바와 같은 가공경화 기구를 통하여 우수한 강도와 연성을 나타내는 고엔트로피강을 제공할 수 있다. Preferably, in the present invention, when the lamination defect energy is 40 mJ / m 2 or less, atomic size difference x alloy composition% value is 0.05 or more, it provides a high entropy steel exhibiting excellent strength and ductility through the work hardening mechanism as described above can do.
다음으로, 본 발명의 고엔트로피 강의 제조방법에 대해 상세히 설명한다. Next, the manufacturing method of the high entropy steel of this invention is demonstrated in detail.
본 발명의 고엔트로피 강 제조방법은, 상기와 같은 조성 성분을 갖는 금속 재료를 준비하는 공정; 상기 준비된 금속 재료를 용융 합금으로 제조하는 공정; 상기 제조된 합금을 850~1250℃의 온도범위에 균질화 열처리한 후, 상온으로 냉각하는 공정; 및 상기 냉각된 합금을 가공한 후, 350~850℃의 온도범위로 0.5~72시간 동안 유지하는 2차 열처리하는 공정;을 포함한다.The high entropy steel manufacturing method of this invention is a process of preparing the metal material which has a composition component as mentioned above; Manufacturing the prepared metal material into a molten alloy; A step of homogenizing heat treatment of the prepared alloy at a temperature range of 850 to 1250 ° C., followed by cooling to room temperature; And after the cooled alloy is processed, a secondary heat treatment for maintaining 0.5 to 72 hours in a temperature range of 350 to 850 ° C.
도 2는 본 발명의 제조방법의 개략적인 순서를 나타내는 공정순서도이다. 2 is a process flowchart showing a schematic procedure of the manufacturing method of the present invention.
도 2에 나타난 바와 같이, 본 발명에서는 먼저, 원자%로, Fe: 35% 초과 80% 이하와, 잔부 Ni: 5% 초과 35% 이하, Mn: 5% 초과 35% 이하, Co: 5% 초과 35% 이하 및 Cr: 5% 초과 35% 이하 중 선택된 3종 이상의 합금원소로 구성하되, 상기 각각의 합금 원소의 함량은 Fe의 함량을 초과하지 않는 금속 재료를 준비한다.As shown in FIG. 2, in the present invention, in atomic%, Fe: more than 35% and 80% or less, balance Ni: more than 5% and 35% or less, Mn: more than 5% and 35% or less, Co: more than 5% A metal material comprising at least three alloy elements selected from 35% or less and Cr: more than 5% and 35% or less, wherein the content of each alloying element does not exceed the content of Fe is prepared.
본 발명에서는 상기 금속 재료는 원자%로, C: 0.01~5.0%, N: 0.01~5.0%, B: 0.01~5.0%, Si: 0.01~10%, Cu: 0.01~10%, V: 0.01~10% 및 Al: 0.01~10% 중 1종 이상을 추가로 포함할 수 있다. In the present invention, the metal material is atomic%, C: 0.01 to 5.0%, N: 0.01 to 5.0%, B: 0.01 to 5.0%, Si: 0.01 to 10%, Cu: 0.01 to 10%, V: 0.01 to 10% and Al: It may further comprise one or more of 0.01 to 10%.
상기 용융과정은 제조된 금속 재료를 합금화하기 위한 것으로서, 본 발명에서는 그 방법에 대해 특별히 한정하지 않으며, 본 발명이 속하는 기술분야에 통상 행해지는 방법에 의한다. 예를 들어, 주조, 아크 용해, 분말 야금법, 용사주조법, 용사코팅법, 분사코팅법, 3D-printing 법 등을 통해서 상기 합금으로 제조한다. The melting process is for alloying the produced metal material, the present invention is not particularly limited to the method, it is based on the method usually carried out in the technical field to which the present invention belongs. For example, the alloy may be manufactured by casting, arc melting, powder metallurgy, spray casting, spray coating, spray coating, 3D-printing, or the like.
다음으로, 상기 제조된 합금을 균질화 열처리한다. 고엔트로피 강은 다양한 원소가 혼합되어 있으므로, 충분한 확산을 유도하기 위해서 균질화 열처리를 행한다. 상기 균질화 열처리는 850~1250℃의 온도범위에서 1~48시간 유지하는 것이 바람직하다.Next, the prepared alloy is subjected to homogenization heat treatment. Since the high entropy steel is mixed with various elements, a homogenization heat treatment is performed to induce sufficient diffusion. The homogenization heat treatment is preferably maintained for 1 to 48 hours in the temperature range of 850 ~ 1250 ℃.
이어, 상기 균질화 열처리된 합금을 상온으로 냉각된다. 본 발명에서는 상기 냉각 방식에 특별히 한정하기 않으므로, 수냉, 유냉, 공냉 등의 다양한 방식을 이용할 수 있다. 상기 냉각 과정을 통해 미세조직에서 기지조직에 고용되지 않는 일부 금속성분들이 균일하게 분포될 수 있다. Subsequently, the homogenized heat-treated alloy is cooled to room temperature. In this invention, since it does not specifically limit to the said cooling system, Various systems, such as water cooling, oil cooling, and air cooling, can be used. Through the cooling process, some metal components not dissolved in the matrix structure in the microstructure may be uniformly distributed.
그리고 본 발명에서는 상기 냉각된 합금을 가공한다, 본 발명에서는 이러한 가공방법으로 단조, 압출, 압연, 인발 등의 방법을 이용할 수 있다. 이러한 가공으로 냉각된 합금 소재 내부에 다양한 변형 결함들이 도입될 수 있다.In the present invention, the cooled alloy is processed. In the present invention, methods such as forging, extrusion, rolling, drawing and the like can be used as such processing methods. This processing can introduce various deformation defects into the cooled alloy material.
후속하여, 본 발명은 상기 냉각된 합금을 350~850℃의 온도범위로 0.5~72 시간 동안 유지하는 2차 열처리를 행한다. 이러한 2차 열처리 공정은 쌍정, 상변태에 의한 다양한 형상의 상변태 석출물들을 기지에 골고루 석출시키기 위한 공정으로서, 단상의 고용체 기지조직에 쌍정, 상변태에 의한 다양한 형상의 상변태 석출물이 동시에 존재하는 미세조직을 제조할 수 있다. Subsequently, the present invention performs a secondary heat treatment for maintaining the cooled alloy for 0.5 to 72 hours in the temperature range of 350 ~ 850 ℃. This secondary heat treatment process is a process for uniformly depositing phase transformation precipitates of various shapes due to twin and phase transformation at the base, and manufacturing a microstructure in which phase transformation precipitates of various shapes due to twin and phase transformation are simultaneously present in the solid phase matrix structure of the single phase. can do.
이어, 본 발명에서 상기 2차 열처리된 강 합금을 상온으로 냉각하며, 이때 수냉, 유냉, 공냉, 노냉 등의 다양한 냉각방식을 이용할 수 있다. Subsequently, in the present invention, the secondary heat treated steel alloy is cooled to room temperature, and various cooling methods such as water cooling, oil cooling, air cooling, and furnace cooling may be used.
이하, 실시예를 통하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
먼저, 하기 표 1과 같이 비교예 1 내지 2, 발명예 1 내지 14의 고엔트로피 강을 제조하였다.First, high entropy steels of Comparative Examples 1 and 2 and Inventive Examples 1 to 14 were prepared as shown in Table 1 below.
구체적으로, 하기 표 1의 조성(원자%)을 갖는 금속 재료를 준비하고, 이를 진공 분위기에서 아크 용해(Arc Melting)하여 합금을 제조하였다. 이후, 1050℃에서 24시간 균질화 열처리를 수행한 후 상온으로 냉각하였다. 이어, 냉각된 합금을 압연 가공 후 850℃에서 10분간 2차 열처리를 행하여 결정립미세화를 촉진한후, 상온으로 냉각하여 최종 고엔트로피 강을 제조하였다. Specifically, a metal material having a composition (atomic%) shown in Table 1 below was prepared, and an alloy was prepared by arc melting in a vacuum atmosphere. Thereafter, the homogenization heat treatment was performed at 1050 ° C. for 24 hours, and then cooled to room temperature. Subsequently, the cooled alloy was subjected to secondary heat treatment at 850 ° C. for 10 minutes after rolling to promote grain refinement, and then cooled to room temperature to produce a final high entropy steel.
한편, 상기와 같이 제조된 고엔트로피 강에 대해서는 1mm 두께의 판재 만들어, 인장시험을 수행하여 그 기계적 물성을 평가하여 그 결과를 하기 표 1에 나타내었다. 그리고 원자 크기 차이×합금 조성 %값, 적층결함에너지를 측정하여 이를 표 1에 또한 나타내었다. On the other hand, for the high entropy steel produced as described above made a plate of 1mm thickness, performing a tensile test to evaluate the mechanical properties of the results are shown in Table 1 below. Atomic size difference x alloy composition% value and lamination defect energy were measured and are also shown in Table 1.
(mJ/m2)Stacking fault energy
(mJ / m 2 )
(MPa)The tensile strength
(MPa)
(MPa)Yield strength
(MPa)
(%)Elongation
(%)
상기 표 1에 나타난 바와 같이, 본 발명의 조성을 만족하고, 단상의 고용체 기지조직에 쌍정, 상변태에 의한 다양한 형상의 상변태 석출물이 동시에 존재하는 발명예 1 내지 14의 경우에는 비교예에 비해 우수한 강도와 연성을 균형있게 확보할 수 있는 것을 확인할 수 있다. 구체적으로, 비교예 1 내지 2과 비교하여, 본 발명예의 고엔트로피 강은 단상의 고용체 기지조직에 변형시 기지 내에 쌍정 및 상변태에 의한 twin boundary 나 phase boundary가 전위의 이동을 방해하여 가공경화 속도를 증가시켜, 기존 고엔트로피 합금에 비하여 우수한 강도와 연성을 확보할 수 있음을 확인할 수 있다.As shown in Table 1, in the case of the invention examples 1 to 14 satisfying the composition of the present invention, the phase transformation precipitates of various shapes due to twins, phase transformation in the solid-phase matrix structure of the single phase is superior to the comparative example and It can be seen that the ductility can be balanced. Specifically, compared with Comparative Examples 1 and 2, the high entropy steel of the present invention showed that the twin boundary or phase boundary caused by twin and phase transformations in the matrix prevents the movement of dislocations due to deformation of the solid solution matrix of the single phase. By increasing, it can be confirmed that excellent strength and ductility compared to the existing high entropy alloy can be secured.
한편 도 3은 본 발명의 실시예 중 발명예 1의 미세조직을 관찰한 사진이다. 도 3에 나타난 바와 같이, 기지 내에 변형쌍정이 형성되어 있음을 확인할 수 있다.On the other hand, Figure 3 is a photograph observing the microstructure of the invention example 1 of the embodiment of the present invention. As shown in Figure 3, it can be seen that the deformation twin is formed in the matrix.
또한 도 4은 본 발명의 실시예 중 발명예 6의 미세조직을 관찰한 사진으로, (a)는 인장시험시 변형율이 20%일때, (b)는 변형율이 40%일때의 미세조직을 나타낸다. 도 4로 알 수 있는 바와 같이, 변형 유기 상변태에 의한 제2상을 확인할 수 있으며, 변형량이 증가할수록 제2상도 증가하고 있음을 알 수 있다. In addition, Figure 4 is a photograph observing the microstructure of Example 6 of the present invention, (a) when the strain is 20% strain in the tensile test, (b) shows the microstructure when the strain is 40%. As can be seen in Figure 4, it can be seen that the second phase due to the modified organic phase transformation, the second phase also increases as the amount of deformation increases.
도 5는 본 발명의 실시예 중 발명예 1의 시편에 대한 XRD 분석 그래프로서, (a)는 연신 가공 전, (b)는 연신 가공 후 XRD 분석 그래프이다. 상기 도 5에 나타난 바와 같이, 발명예 1은 연신 가공 전에는 단상의 면심입방구조의 기지조직을 가지나, 연신 가공 후에는 XRD 데이터 상에서 BCC와 HCP 피크가 관찰됨으로서, 상변태에 의한 제2상이 존재하는 것을 확인할 수 있다. 5 is an XRD analysis graph of the specimen of Inventive Example 1 in Examples of the present invention, (a) before the stretching process, and (b) is an XRD analysis graph after the stretching process. As shown in FIG. 5, Inventive Example 1 had a matrix of single-phase face-centered cubic structure before stretching, but after the stretching, BCC and HCP peaks were observed on XRD data, indicating that a second phase due to phase transformation existed. You can check.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to the preferred embodiment of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course it is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents thereof.
Claims (7)
In atomic%, Fe: greater than 35% and less than 80%, balance Ni: greater than 5% and less than 35%, Mn: greater than 5% and less than 35%, Co: greater than 5% and less than 35% and Cr: greater than 5% and less than 35% Consists of three or more selected alloying elements, the content of each alloying element does not exceed the content of Fe, high entropy steel with excellent workability and work hardening performance.
The method of claim 1, wherein the high entropy steel is in atomic%, C: 0.01 ~ 5.0%, N: 0.01 ~ 5.0%, B: 0.01 ~ 5.0%, Si: 0.01 ~ 10%, Cu: 0.01 ~ 10% , V: 0.01 to 10% and Al: 0.01 to 10% of the high entropy steel excellent in workability and work hardening performance further comprising.
The high entropy steel of claim 1, wherein the high entropy steel has a lamination defect energy of 40 mJ / m 2 or less and an atomic size difference x alloy composition% value of 0.05 or more.
상기 준비된 금속 재료를 용융 합금으로 제조하는 공정;
상기 제조된 합금을 850~1250℃의 온도범위에 균질화 열처리한 후, 상온으로 냉각하는 공정; 및
상기 냉각된 합금을 가공한 후, 350~850℃의 온도범위로 0.5~72 시간 동안 유지하는 2차 열처리하는 공정;을 포함하는 가공성 및 가공경화 성능이 우수한 고엔트로피 강 제조방법.
In atomic%, Fe: greater than 35% and less than 80%, balance Ni: greater than 5% and less than 35%, Mn: greater than 5% and less than 35%, Co: greater than 5% and less than 35% and Cr: greater than 5% and less than 35% Comprising three or more selected alloying elements, wherein the content of each alloying element is prepared so as not to exceed the content of Fe prepared metal material;
Manufacturing the prepared metal material into a molten alloy;
A step of homogenizing heat treatment of the prepared alloy at a temperature range of 850 to 1250 ° C., followed by cooling to room temperature; And
After processing the cooled alloy, the secondary heat treatment for maintaining for 0.5 to 72 hours in a temperature range of 350 ~ 850 ℃; high processability and manufacturing process excellent high-entropy steel.
The method of claim 4, wherein the high-entropy steel is in atomic%, C: 0.01 to 5.0%, N: 0.01 to 5.0%, B: 0.01 to 5.0%, Si: 0.01 to 10%, Cu: 0.01 to 10% , V: 0.01 to 10% and Al: 0.01 to 10% of the high-entropy steel manufacturing method excellent in workability and work hardening performance, characterized in that it further comprises.
The method of claim 4, wherein the metal material is made of a molten alloy by using one of the following methods: casting, arc melting, powder metallurgy, spray casting, spray coating, spray coating and 3D-printing method. High entropy steel manufacturing method with excellent workability and work hardening performance.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180095007A KR102236938B1 (en) | 2018-08-14 | 2018-08-14 | Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same |
US16/507,474 US20200056272A1 (en) | 2018-08-14 | 2019-07-10 | Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180095007A KR102236938B1 (en) | 2018-08-14 | 2018-08-14 | Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200019459A true KR20200019459A (en) | 2020-02-24 |
KR102236938B1 KR102236938B1 (en) | 2021-04-08 |
Family
ID=69523798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180095007A KR102236938B1 (en) | 2018-08-14 | 2018-08-14 | Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US20200056272A1 (en) |
KR (1) | KR102236938B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220000279A (en) * | 2020-06-25 | 2022-01-03 | 포항공과대학교 산학협력단 | Medium entropy alloy and manufacturing method thereof |
CN112658221B (en) * | 2020-12-04 | 2022-05-06 | 西安交通大学 | Continuous casting method of high-entropy alloy |
CN114774662A (en) * | 2022-05-12 | 2022-07-22 | 重庆骏诚机械有限公司 | Heat treating a case with placing |
CN116479341A (en) * | 2023-04-20 | 2023-07-25 | 兰州理工大学 | Medium-entropy alloy with antibacterial property, preparation method and application thereof |
WO2024172330A1 (en) * | 2023-02-13 | 2024-08-22 | 부산대학교 산학협력단 | Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110257686B (en) * | 2019-07-10 | 2021-05-18 | 江苏理工学院 | FeCuNiCoVAlB high-entropy alloy material and preparation method thereof |
US11353117B1 (en) | 2020-01-17 | 2022-06-07 | Vulcan Industrial Holdings, LLC | Valve seat insert system and method |
WO2021168507A1 (en) | 2020-02-24 | 2021-09-02 | Kevin Laws | Iron alloys |
CN111763904B (en) * | 2020-06-17 | 2022-11-04 | 北京工业大学 | High-entropy alloy powder, high-resistance coating, and preparation method and application thereof |
CN113817969B (en) * | 2020-06-19 | 2022-09-27 | 香港大学 | High-strength super-corrosion-resistant non-magnetic stainless steel and preparation method thereof |
CN111850544A (en) * | 2020-06-22 | 2020-10-30 | 昆明理工大学 | High-entropy alloy coating and preparation method thereof |
US11421679B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing assembly with threaded sleeve for interaction with an installation tool |
US12049889B2 (en) | 2020-06-30 | 2024-07-30 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US11421680B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
CN112662930A (en) * | 2020-07-21 | 2021-04-16 | 台州市黄岩海川模塑有限公司 | High-entropy die steel material and preparation method thereof |
CN111893357B (en) * | 2020-08-06 | 2021-07-16 | 天津工业大学 | Self-supporting three-dimensional nano hierarchical pore high-entropy alloy electrolytic water material and preparation method thereof |
US11384756B1 (en) | 2020-08-19 | 2022-07-12 | Vulcan Industrial Holdings, LLC | Composite valve seat system and method |
USD986928S1 (en) | 2020-08-21 | 2023-05-23 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD980876S1 (en) | 2020-08-21 | 2023-03-14 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD997992S1 (en) | 2020-08-21 | 2023-09-05 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
CN112795797B (en) * | 2020-12-28 | 2021-09-14 | 中南大学 | Method for preparing high-strength and high-toughness aluminum-based high-entropy alloy composite strip |
CN112853347A (en) * | 2021-01-12 | 2021-05-28 | 安徽工业大学 | Method for preventing Cr and Al-containing high-entropy alloy coating from being oxidized by adding Si |
US12055221B2 (en) | 2021-01-14 | 2024-08-06 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US11391374B1 (en) | 2021-01-14 | 2022-07-19 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
CN112941397A (en) * | 2021-03-09 | 2021-06-11 | 贵州航天新力科技有限公司 | Light medium-entropy alloy with excellent high-temperature mechanical properties and processing technology thereof |
CN113337784B (en) * | 2021-05-12 | 2023-02-21 | 深圳市亚稳科技投资有限公司 | High-entropy material for preparing sports equipment and preparation method thereof |
BR112023021728A2 (en) * | 2021-06-09 | 2023-12-26 | Halliburton Energy Services Inc | FUNCTIONALLY GRADED VARIABLE ENTROPY ALLOYS WITH RESISTANCE TO HYDROGEN-INDUCED CRACKING |
US11549165B2 (en) | 2021-06-09 | 2023-01-10 | Halliburton Energy Services, Inc. | Functionally graded variable entropy alloys with resistance to hydrogen induced cracking |
CN113981292A (en) * | 2021-10-28 | 2022-01-28 | 西北工业大学 | High-entropy alloy with excellent strong plasticity and preparation method thereof |
KR20230067933A (en) | 2021-11-10 | 2023-05-17 | 공주대학교 산학협력단 | Heat-resisting high entropy alloy for the excellent plasticity and method of manufacturing the same |
CN114525508B (en) * | 2022-02-22 | 2023-05-12 | 江苏理工学院 | Method for preparing high-entropy alloy cladding layer by ultrasonic stamping and composite electric arc |
CN114657435A (en) * | 2022-02-28 | 2022-06-24 | 东南大学 | Industrial pure single-phase high-entropy alloy and preparation method thereof |
CN114606457B (en) * | 2022-03-15 | 2024-01-26 | 江苏科技大学 | High-entropy alloy oxide coating and preparation method thereof |
CN114622120B (en) * | 2022-03-24 | 2023-03-10 | 东北大学 | TRIP-assisted AlFeMnCoCr three-phase heterogeneous high-entropy alloy and preparation method thereof |
US11434900B1 (en) * | 2022-04-25 | 2022-09-06 | Vulcan Industrial Holdings, LLC | Spring controlling valve |
CN115011890A (en) * | 2022-05-05 | 2022-09-06 | 北京科技大学 | Method for improving high-temperature strength-elongation product of high-entropy alloy by precipitated phase |
US11920684B1 (en) | 2022-05-17 | 2024-03-05 | Vulcan Industrial Holdings, LLC | Mechanically or hybrid mounted valve seat |
CN114959425B (en) * | 2022-06-21 | 2023-06-13 | 昆明理工大学 | Precipitation strengthening steel based on high-entropy boride and preparation method thereof |
CN114892063B (en) * | 2022-07-14 | 2022-11-15 | 有研工程技术研究院有限公司 | Dispersion strengthening high-strength high-temperature high-entropy alloy and preparation method thereof |
CN115449692B (en) * | 2022-10-14 | 2023-06-23 | 长沙理工大学 | High-damping high-entropy steel plate with TWIP effect and preparation method thereof |
CN115572882B (en) * | 2022-10-19 | 2023-09-01 | 大连理工大学 | Anti-radiation low-activation high-entropy alloy, and preparation method and application thereof |
CN115821144B (en) * | 2022-12-12 | 2024-05-17 | 华南理工大学 | High-strength and high-toughness low-cost casting FEMNNICRAL alloy with precipitation-strengthening heterogeneous lamellar structure and preparation method thereof |
CN115976314B (en) * | 2022-12-30 | 2024-08-06 | 安徽工业大学 | Method for preparing medium-entropy austenitic heat-resistant steel |
CN116043126B (en) * | 2023-01-09 | 2024-06-18 | 鞍钢股份有限公司 | High-strength high-toughness high-entropy steel and manufacturing method thereof |
CN116162843A (en) * | 2023-03-02 | 2023-05-26 | 陕西理工大学 | Room-temperature superplastic high-entropy alloy and preparation method thereof |
CN118422031A (en) * | 2024-05-29 | 2024-08-02 | 华中科技大学 | Multicomponent alloy and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090074604A1 (en) | 2007-09-19 | 2009-03-19 | Industrial Technology Research Institute | Ultra-hard composite material and method for manufacturing the same |
US20130108502A1 (en) | 2011-10-27 | 2013-05-02 | Ut-Battelle, Llc | Multi-Component Solid Solution Alloys having High Mixing Entropy |
KR20180041407A (en) * | 2016-10-14 | 2018-04-24 | 서울대학교산학협력단 | Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same |
-
2018
- 2018-08-14 KR KR1020180095007A patent/KR102236938B1/en active IP Right Grant
-
2019
- 2019-07-10 US US16/507,474 patent/US20200056272A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090074604A1 (en) | 2007-09-19 | 2009-03-19 | Industrial Technology Research Institute | Ultra-hard composite material and method for manufacturing the same |
US20130108502A1 (en) | 2011-10-27 | 2013-05-02 | Ut-Battelle, Llc | Multi-Component Solid Solution Alloys having High Mixing Entropy |
KR20180041407A (en) * | 2016-10-14 | 2018-04-24 | 서울대학교산학협력단 | Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same |
Non-Patent Citations (2)
Title |
---|
Matreial Science and Engineering A, Volumes 375-377, July 2004, page 213-218. |
Matreial Science and Engineering A, Volumes 711, January 2018, page 492-497. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220000279A (en) * | 2020-06-25 | 2022-01-03 | 포항공과대학교 산학협력단 | Medium entropy alloy and manufacturing method thereof |
CN112658221B (en) * | 2020-12-04 | 2022-05-06 | 西安交通大学 | Continuous casting method of high-entropy alloy |
CN114774662A (en) * | 2022-05-12 | 2022-07-22 | 重庆骏诚机械有限公司 | Heat treating a case with placing |
CN114774662B (en) * | 2022-05-12 | 2024-03-26 | 重庆骏诚机械有限公司 | Placing box for heat treatment piece |
WO2024172330A1 (en) * | 2023-02-13 | 2024-08-22 | 부산대학교 산학협력단 | Cr-fe-co-based high-entropy alloy with shape memory characteristic and prediction method for composition range of the alloy |
CN116479341A (en) * | 2023-04-20 | 2023-07-25 | 兰州理工大学 | Medium-entropy alloy with antibacterial property, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
US20200056272A1 (en) | 2020-02-20 |
KR102236938B1 (en) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102236938B1 (en) | Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same | |
KR102301075B1 (en) | Co-Ni-Cr-Fe HIGH ENTROPY ALLOY AND METHOD FOR MANUFACTURING THE SAME | |
KR101813008B1 (en) | Precipitation hardening high entropy alloy and method for manufacturing the same | |
KR20200040970A (en) | Precipitation strengthenend high entropy steel and method for manufacturing the same | |
KR102070059B1 (en) | High entropy alloys with intermetallic compound precipitates for strengthening and method for manufacturing the same | |
KR101871590B1 (en) | Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same | |
US10364487B2 (en) | High entropy alloy having TWIP/TRIP property and manufacturing method for the same | |
KR101744102B1 (en) | High entropy alloy having complex microstructure and method for manufacturing the same | |
KR101939512B1 (en) | Austenitic stainless steel sheet | |
KR101783242B1 (en) | High entropy alloy having interstitial solid solution hardening and method for manufacturing the same | |
KR101748836B1 (en) | High entropy alloy having twip/trip property and manufacturing method for the same | |
CN115011858B (en) | High-strength high-plasticity CoCrNiAlTi multi-principal-element alloy and preparation method thereof | |
KR101910938B1 (en) | Cr Filament Reinforced CrMnFeNiCu High Entropy Alloy And Method for Manufacturing The Same | |
JP2004323937A (en) | Austenitic stainless steel | |
JP6229180B1 (en) | Metastable austenitic stainless steel strip or steel plate and method for producing the same | |
KR101913029B1 (en) | Stress sensing deformation mechanism tunable alloy and manufacturing method thereof | |
CN105849302A (en) | Steel for low-temperature service having excellent surface processing quality | |
KR101963020B1 (en) | CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF | |
CN112281083A (en) | High-strength heat-resistant alloy steel having high thermal expansion characteristics and method for manufacturing same | |
KR20190109008A (en) | Self-healable trip superalloys and manufacturing method for the same | |
KR20230022317A (en) | High entropy alloy having an in-situ hierarchical structure and method for manufacturing the same | |
KR102286610B1 (en) | High entropy alloy having nanoscale compositionally modulated layered structure and method for manufacturing the same | |
JP5636532B2 (en) | Oxide dispersion strengthened steel and manufacturing method thereof | |
CN115233113A (en) | Stainless steel alloy containing tantalum element, stainless steel product and preparation method thereof | |
CN114990408B (en) | NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |