[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024171254A1 - Thermoacoustic device - Google Patents

Thermoacoustic device Download PDF

Info

Publication number
WO2024171254A1
WO2024171254A1 PCT/JP2023/004781 JP2023004781W WO2024171254A1 WO 2024171254 A1 WO2024171254 A1 WO 2024171254A1 JP 2023004781 W JP2023004781 W JP 2023004781W WO 2024171254 A1 WO2024171254 A1 WO 2024171254A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
piping
heat exchanger
insulating member
Prior art date
Application number
PCT/JP2023/004781
Other languages
French (fr)
Japanese (ja)
Inventor
典之 深谷
Original Assignee
中央精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央精機株式会社 filed Critical 中央精機株式会社
Priority to PCT/JP2023/004781 priority Critical patent/WO2024171254A1/en
Publication of WO2024171254A1 publication Critical patent/WO2024171254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00

Definitions

  • thermoacoustic devices relate to thermoacoustic devices.
  • thermoacoustic engine comprises a pipe filled with a working gas that propagates sound waves, and a prime mover (energy converter) built into the pipe.
  • the energy converter comprises a heat accumulator, and a heater and cooler (heat exchanger) disposed at both ends of the heat accumulator.
  • Such an energy converter can be used, for example, as a thermoacoustic engine that converts thermal energy into acoustic energy (sound waves) by self-excited vibration of the working gas due to a temperature gradient generated between both ends of the heat accumulator.
  • thermoacoustic device In the above configuration, if the temperature of the piping becomes close to or higher than the heat resistance temperature of the insulating material, there is a concern that the insulating material may be damaged by heat, causing the working gas to leak, reducing the operating efficiency of the thermoacoustic device.
  • thermoacoustic device comprises an energy converter including a heat accumulator having one side and another side and having a plurality of through passages penetrating from the one side to the other side, a first heat exchanger arranged opposite the one side of the heat accumulator and having a first flow path through which a first fluid can flow, and a second heat exchanger arranged opposite the other side of the heat accumulator and having a second flow path through which a second fluid having a lower temperature than the first fluid can flow, a pipe in which the energy converter is housed and in which a working gas can be sealed, and a heat exchanger arranged in the pipe.
  • the piping includes a first piping section in which the energy converter is housed and which has one end located on the first heat exchanger side and the other end located on the second heat exchanger side, a second piping section connected to the one end of the first piping section, and an insulating member interposed between the first piping section and the second piping section and having a lower thermal conductivity than the first piping section and the second piping section, and the third flow path is attached to the second piping section.
  • the piping can be cooled by the third fluid, and the insulating member can also be cooled through the piping. This prevents the insulating member from being damaged by heat, causing the working gas to leak out of the piping and reducing the operating efficiency of the thermoacoustic device.
  • the first piping section and the second piping section may be made of metal, and the insulating member may be made of resin.
  • the above configuration (1) can be suitably applied to a combination in which the first piping section and the second piping section are made of metal and the insulating member is made of resin.
  • thermoacoustic device described in (1) or (2) above may further include a connecting flow path that connects the second flow path and the third flow path.
  • the second fluid that has passed through the second flow path can be supplied to the third flow path via the connecting flow path.
  • the second fluid doubles as the third fluid. This eliminates the need to provide a separate pump or the like for circulating the third fluid through the third flow path, simplifying the configuration of the thermoacoustic device.
  • the distance between the third flow path and the insulating member may be shorter than the distance between the insulating member and the first heat exchanger.
  • the third fluid can efficiently cool the insulating member, suppressing damage to the insulating member.
  • the third flow path may be arranged on the outer periphery of the second piping section.
  • the third flow path is easier to handle and the configuration of the thermoacoustic device can be simplified compared to a configuration in which the third flow path is arranged inside the second piping.
  • thermoacoustic device disclosed in this specification can suppress a decrease in the operating efficiency of the thermoacoustic device.
  • FIG. 1 is a perspective view showing a thermoacoustic device according to a first embodiment, with a part cut away;
  • FIG. 2 is a cross-sectional view of the thermoacoustic device of the first embodiment taken along line II-II in FIG.
  • FIG. 3 is a partially enlarged cross-sectional view showing the inside of a circle R in FIG.
  • FIG. 1 is a perspective view of a heat storage device according to a first embodiment;
  • FIG. 2 is a diagram illustrating a shape of a first heat transfer tube provided in a first heat exchanger in the first embodiment;
  • FIG. 2 is a diagram illustrating a shape of a second heat transfer tube provided in a second heat exchanger in the first embodiment;
  • FIG. 13 is a schematic diagram showing the configuration of a circulation pipe for supplying cooling water to a water jacket in the second embodiment.
  • thermoacoustic device 10 of this embodiment is a cooling device for maintaining the temperature of an object at a temperature lower than room temperature by utilizing acoustic energy.
  • thermoacoustic device 10 includes a pipe 20, a prime mover 30 (an example of an energy converter) and a cooler 40 disposed inside the pipe 20, a heat insulating member 80 disposed midway through the pipe 20, a water jacket 90 (an example of a third flow path) for cooling the pipe 20, and a connection pipe 92 (an example of a connection flow path) connecting the second heat exchanger 70A and the water jacket 90.
  • the prime mover 30 includes a heat accumulator 50A, a first heat exchanger 60A, and a second heat exchanger 70A.
  • the piping 20 includes a plurality of main pipes 21, a plurality of (two in this embodiment) diffuser pipes 22, and a plurality of (two in this embodiment) containment pipes 23A and 23B.
  • the main pipe 21, the diffuser pipe 22, and the containment pipes 23A and 23B are made of metal.
  • the motor 30 is housed inside one of the containment pipes 23A (an example of a first piping section), and the cooling machine 40 is housed inside the other containment pipe 23B.
  • the main pipe 21, the diffuser pipe 22, and the containment pipes 23A and 23B form a loop-shaped pipe P1.
  • the pipe P1 can be filled with a working gas.
  • the working gas there is no particular limitation on the working gas as long as it is a gas that can transmit sound waves, but an inert gas such as helium, argon, or a mixture of helium and argon, or air is preferably used.
  • the multiple main pipes 21 connect between the two containing pipes 23A and 23B, between the containing pipe 23A and the expansion pipe 22, between the containing pipe 23B and the expansion pipe 22, and between the two expansion pipes 22.
  • Each main pipe 21 has openings at both ends and is a pipe with a constant inner diameter.
  • the multiple main pipes 21 include a first main pipe 21A (an example of a second piping section) that is connected to the housing pipe 23A that houses the prime mover 30.
  • the first main pipe 21A has a flange 211 at one end that is connected to the housing pipe 23A.
  • the flange 211 is an annular portion that extends outward from the opening edge at one end of the first main pipe 21A.
  • the flange 211 has a seal groove 212 and multiple bolt insertion holes 213.
  • the seal groove 212 is an annular groove that is arranged on one surface of the flange 211 that faces the housing pipe 23A.
  • An annular seal ring S is arranged inside the seal groove 212.
  • the bolt insertion hole 213 is a through hole through which a bolt B can be inserted.
  • the expansion pipe 22 is a pipe that has openings at both ends and the inside diameter of the central portion between the two ends is larger than that of the main pipe 21.
  • the accommodating pipe 23A is a pipe whose inner diameter in the central portion between both ends is larger than that of the main pipe 21. More specifically, the accommodating pipe 23A is a pipe having openings at both ends, and is equipped with two first straight pipe sections 232, two tapered sections 233, a second straight pipe section 234, and a flange 235.
  • the flange 235 is an annular portion extending outward from the opening edge at one end 231A of the receiving pipe 23A, and has an outer diameter approximately equal to that of the flange 211 of the first main pipe 21A.
  • the flange 235 has a seal groove 236 and a plurality of bolt insertion holes 237.
  • the seal groove 236 is an annular groove arranged on one surface of the flange 235 facing the first main pipe 21A.
  • An annular seal ring S is arranged inside the seal groove 236.
  • the seal ring S is made of rubber, for example.
  • the bolt insertion hole 237 is a through hole through which a bolt B can be inserted, and is arranged in a position aligned with the bolt insertion hole 213 of the flange 211.
  • the configuration of the storage pipe 23B is the same as that of the storage pipe 23A except for the details, so a description will be omitted.
  • the heat insulating member 80 is a member sandwiched between the flange 235 of the accommodation pipe 23A and the flange 211 of the first main pipe 21A, and has an annular shape with a through hole 81 in the center.
  • the outer diameter of the heat insulating member 80 is equal to or slightly smaller than the outer diameters of the flanges 211, 235, and the inner diameter is approximately equal to the inner diameters of the first main pipe 21A and the first straight pipe section 232.
  • the heat insulating member 80 has a plurality of bolt insertion holes 82.
  • the bolt insertion holes 82 are through holes through which the bolts B can be inserted, and are arranged at positions aligned with the bolt insertion holes 213, 237 of the flanges 211, 235.
  • the heat insulating member 80 is made of resin and has a lower thermal conductivity than the metal containing pipe 23A and the first main pipe 21A.
  • a super engineering plastic that functions for a long period of time in a high temperature environment of 150°C or higher can be preferably used as the resin that constitutes the heat insulating member 80.
  • PEEK polyether ether ketone
  • PTFE polytetrafluoroethylene
  • PAI polyamideimide
  • PEI polyetherimide
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • Bolts B are inserted into the bolt holes 213, 82, and 237, and nuts N are screwed onto the tips of the bolts B, fastening the two flanges 211 and 235 and the insulating member 80 together.
  • Seal rings S seal the gaps between the insulating member 80 and the two flanges 211 and 235, respectively, preventing the working gas from leaking to the outside.
  • the prime mover 30 is a device for converting thermal energy into acoustic energy (sound waves), and is disposed inside the second straight pipe section 234 provided in the accommodation pipe 23A. As shown in Fig. 1 and Fig. 2, the prime mover 30 includes a heat accumulator 50A, a first heat exchanger 60A, and a second heat exchanger 70A. The first heat exchanger 60A, the heat accumulator 50A, and the second heat exchanger 70A are disposed in this order from one end 231A to the other end 231B.
  • the heat accumulator 50A is a thick disk having one surface 50F1 (the surface on the right side in FIG. 2) and the other surface 50F2 (the surface on the left side in FIG. 2).
  • the heat accumulator 50A is disposed in a position perpendicular to the axial direction of the accommodation pipe 23A (the left-right direction in FIG. 2) with the one surface 50F1 facing the one end 231A and the other surface 50F2 facing the other end 231B.
  • the heat storage device 50A includes a laminate 52 in which multiple circular metal meshes 51 are stacked in a compressed state, and a fixing body 53 fixed to the outer circumferential surface of the laminate 52.
  • the metal mesh 51 is a mesh-like member in which multiple metal thin wires are woven.
  • the multiple metal meshes 51 have approximately the same outer shape and are stacked with the positions of their outer edges aligned.
  • the laminate 52 is formed by connecting the meshes (gaps between the thin wires) of the multiple metal meshes 51, and has a large number of fine through passages P2 that penetrate from one surface 50F1 to the other surface 50F2 of the laminate 52.
  • the fixing body 53 is fixed to the outer circumferential surface of the laminate 52 and plays a role in holding the outer edges of the multiple metal meshes 51 so that they do not separate from each other.
  • the fixing body 53 keeps the multiple metal meshes 51 in a more compressed state than when they are simply stacked without their outer edges being fixed.
  • First heat exchanger 60A, second heat exchanger 70A As shown in FIG. 2, the first heat exchanger 60A is disposed adjacent to one surface 50F1 of the heat storage unit 50A.
  • a known heat exchanger including a first heat transfer tube 61 (an example of a first flow path) and fins disposed around the first heat transfer tube 61 can be used as the first heat exchanger 60A.
  • a high-temperature heat transfer medium (an example of a first fluid) can flow inside the first heat transfer tube 61, and heat exchange is performed between the working gas near the first heat exchanger 60A and the heat transfer medium.
  • heat transfer oil warmed by exhaust heat from a factory can be used as the heat transfer medium.
  • the temperature of the heat transfer oil is, for example, about 200-400°C.
  • the second heat exchanger 70A is disposed adjacent to the other surface 50F2 of the heat storage unit 50A, as shown in FIG. 2.
  • a known heat exchanger including a second heat transfer tube 71 (an example of a second flow path) and fins disposed around the second heat transfer tube 71, as shown in FIG. 6, can be used as the second heat exchanger 70A.
  • a refrigerant (an example of a second fluid) that is lower in temperature than the heat medium flowing inside the first heat transfer tube 61 can flow inside the second heat transfer tube 71, and the working gas near the second heat exchanger 70A has a temperature lower than that of the heat medium.
  • water at room temperature is used as the refrigerant supplied to the second heat transfer tube 71.
  • the cooling machine 40 is a heat pump that generates a temperature gradient by inputting acoustic energy generated by the prime mover 30 and maintains the temperature of the object at a temperature lower than room temperature, and is disposed inside the other housing pipe 23B as shown in FIG. 1.
  • the cooling machine 40 includes a heat accumulator 50B and a first heat exchanger 60B and a second heat exchanger 70B disposed on both sides of the heat accumulator 50B.
  • the heat accumulator 50B and the heat exchangers 60B and 70B provided in the cooling machine 40 have the same configuration as the heat accumulator 50A and the heat exchangers 60A and 70A provided in the prime mover 30.
  • a medium at a constant temperature (water at room temperature in this embodiment) can flow inside the heat transfer tube provided in the first heat exchanger 60B, and the working gas near the first heat exchanger 60B becomes about room temperature.
  • the heat transfer tubes of the second heat exchanger 70B are connected to a heat exchanger provided in an external cooling facility, and a refrigerant can circulate inside the heat transfer tubes.
  • the water jacket 90 is disposed on the outer periphery of the first main pipe 21A and is a member for cooling the first main pipe 21A. As shown in Figs. 1 and 2, the water jacket 90 is an annular member having an inner diameter substantially equal to the outer diameter of the first main pipe 21A and has a flow groove 91. The flow groove 91 is disposed on the inner periphery of the water jacket 90 and is a groove through which a refrigerant (third fluid) for cooling the first main pipe 21A can flow.
  • the water jacket 90 is made of, for example, metal and is joined to the outer periphery of the first main pipe 21A by welding.
  • the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A.
  • the "distance D1 between the water jacket 90 and the insulating member 80" is the distance between the surface of the water jacket 90 facing the insulating member 80 and the surface of the insulating member 80 facing the water jacket 90
  • the "distance D2 between the insulating member 80 and the first heat exchanger 60A" is the distance between the surface of the insulating member 80 facing the first heat exchanger 60A and the surface of the first heat exchanger 60A facing the insulating member 80.
  • connection pipe 92 is a pipe that connects the second heat transfer pipe 71 and the water jacket 90 and allows a refrigerant to flow through.
  • the connection pipe 92 allows the refrigerant that has passed through the second heat transfer pipe 71 to be supplied to the water jacket 90.
  • the connection pipe 92 allows the refrigerant for generating a temperature gradient between both ends of the heat accumulator 50A to also serve as the refrigerant for cooling the first main pipe 21A.
  • thermoacoustic device 10 When the thermoacoustic device 10 is operated, a heat medium is passed through the first heat transfer tube 61. Then, heat exchange occurs between the working gas in the vicinity of the one surface 50F1 of the heat accumulator 50A and the heat medium. As a result, the temperature of the working gas in the vicinity of the one surface 50F1 of the heat accumulator 50A is adjusted to approach the temperature of the heat medium. In addition, water at room temperature as a refrigerant is passed through the second heat transfer tube 71. Then, heat exchange occurs between the working gas in the vicinity of the other surface 50F2 of the heat accumulator 50A and the water at room temperature. As a result, the temperature of the working gas in the vicinity of the other surface 50F2 of the heat accumulator 50A is adjusted to approach room temperature.
  • the action of the heat exchangers 60A and 70A creates a temperature gradient between the first surface 50F1 and the second surface 50F2 of the heat storage device 50A.
  • the working gas inside the passage P2 becomes unstable and starts to vibrate. This vibration generates acoustic energy (sound waves).
  • the generated acoustic energy is output from the first surface 50F1 of the heat storage device 50A (the surface where the first heat exchanger 60A is arranged), transmitted through the working gas sealed inside the pipe P1, and reaches the cooling device 40 (see the arrow in Figure 1).
  • a temperature gradient is generated between one side facing the first heat exchanger 60B and the other side facing the second heat exchanger 70B. Since room temperature water flows through the first heat exchanger 60B arranged on the input side of the acoustic energy in the cooling device 40, the temperature of the working gas near the second heat exchanger 70B in the heat storage device 50B is adjusted to a temperature lower than room temperature by the amount of the generated temperature gradient. Heat exchange occurs between this working gas, which is lower than room temperature, and the refrigerant, and the cooled refrigerant is supplied to an external cooling facility to cool the target object.
  • a heat insulating member 80 is arranged between the storage pipe 23A and the first main pipe 21A connected to this storage pipe 23A. The heat insulating member 80 prevents the heat transferred to the storage pipe 23A from being transferred to the first main pipe 21A beyond, thereby preventing a decrease in the efficiency of conversion from thermal energy to acoustic energy.
  • the refrigerant that has passed through the second heat transfer tube 71 is supplied to the water jacket 90 via the connecting pipe 92, so that the first main pipe 21A is cooled by this refrigerant, and the insulating member 80 that is in contact with the first main pipe 21A is also cooled.
  • thermoacoustic device 10 also includes a connection pipe 92, and the refrigerant that has passed through the second heat transfer tube 71 is supplied to the water jacket 90 via the connection pipe 92.
  • This configuration eliminates the need to provide a separate pump or the like for circulating the refrigerant through the water jacket 90, simplifying the configuration of the thermoacoustic device 10.
  • the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A. Because the distance D1 between the water jacket 90 and the insulating member 80 is relatively short, the insulating member 80 is efficiently cooled by the refrigerant passing through the inside of the water jacket 90, and damage to the insulating member 80 is efficiently suppressed. Furthermore, because the distance D2 between the insulating member 80 and the first heat exchanger 60A is relatively long, the influence of the cooling by the refrigerant passing through the inside of the water jacket 90 is suppressed from extending to the periphery of the first heat exchanger 60A. This prevents the temperature gradient between both ends of the heat storage device 50A from becoming smaller, and suppresses a decrease in energy conversion efficiency.
  • the water jacket 90 is disposed on the outer periphery of the first main pipe 21A. With this configuration, the water jacket 90 can be easily handled, and the configuration of the thermoacoustic device 10 can be simplified.
  • the thermoacoustic device 10 of this embodiment includes the heat accumulator 50A having one surface 50F1 and the other surface 50F2 and having a plurality of through passages P2 penetrating from the one surface 50F1 to the other surface 50F2, the first heat exchanger 60A arranged opposite to the one surface 50F1 of the heat accumulator 50A and including a first heat transfer tube 61 through which a heat medium can flow, and the second heat exchanger 70A arranged opposite to the other surface 50F2 of the heat accumulator 50A and including a second heat transfer tube 71 through which a refrigerant having a lower temperature than the heat medium can flow, the prime mover 30, the piping 20 in which the prime mover 30 is accommodated and in which a working gas can be sealed, and the piping 20 and a water jacket 90 through which a refrigerant for cooling the piping 20 can flow, the piping 20 accommodates a prime mover 30 inside and comprises a accommodating piping 23A having one end
  • the first main pipe 21A can be cooled by the refrigerant, and the insulating member 80 can also be cooled via the first main pipe 21A. This prevents the insulating member 80 from being damaged by heat, causing the working gas to leak from the piping 20, and thus reducing the operating efficiency of the thermoacoustic device 10.
  • the receiving pipe 23A and the first main pipe 21A are made of metal, and the insulating member 80 is made of resin. In such a combination, the above configuration can be suitably applied.
  • thermoacoustic device 10 further includes a connection pipe 92 that connects the second heat transfer tube 71 and the water jacket 90.
  • the refrigerant that has passed through the second heat transfer tube 71 can be supplied to the water jacket 90 via the connecting pipe 92.
  • the refrigerant circulating through the second heat transfer tube 71 also serves as the refrigerant circulating through the water jacket 90. This eliminates the need to provide a separate pump or the like for circulating the refrigerant through the water jacket 90, simplifying the configuration of the thermoacoustic device 10.
  • the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A.
  • the heat insulating member 80 can be efficiently cooled by the refrigerant flowing through the water jacket 90, and damage to the heat insulating member 80 can be suppressed.
  • a decrease in the operating efficiency of the thermoacoustic device 10 caused by the influence of cooling by the refrigerant on the prime mover 30 can be suppressed.
  • the water jacket 90 is also arranged on the outer periphery of the first main pipe 21A. With this configuration, compared to a configuration in which the third flow path is arranged inside the second piping section, the water jacket 90 is easier to handle, and the configuration of the thermoacoustic device 10 can be simplified.
  • thermoacoustic device 100 of embodiment 2 differs from embodiment 1 in that it does not have a connecting flow path connecting the second heat transfer tube 71 and the water jacket 90, but has an independent circulation piping 101 that supplies refrigerant to the water jacket 90.
  • the circulation pipe 101 is connected to the water jacket 90 and is used to supply refrigerant to the water jacket 90. As shown in FIG. 7, the water jacket 90 and the circulation pipe 101 form a looped pipe line, and a refrigerant (third fluid) for cooling the first main pipe 21A, which is different from the refrigerant flowing through the second heat transfer pipe 71, can flow through this pipe line.
  • a cooling device 102 for cooling the refrigerant that has been heated by heat transfer from the first main pipe 21A, and a pump P for transporting the refrigerant are provided midway through the circulation pipe 101.
  • the first main pipe 21A can be cooled by the refrigerant, and the insulating member 80 can also be cooled via the first main pipe 21A. This prevents the insulating member 80 from being damaged by heat, causing the working gas to leak from the piping 20, and thus reducing the operating efficiency of the thermoacoustic device 100.
  • thermoacoustic device 10 was a cooling device, but the thermoacoustic device does not have to be a cooling device.
  • the thermoacoustic device may be a heating device equipped with a heat pump for heating instead of the cooling machine 40, or may be a power generation device equipped with a generator that converts sound waves output from a prime mover into electric power.
  • the piping 20 is loop-shaped.
  • the piping may include, for example, a branch piping that branches off from the loop piping.
  • the thermoacoustic device 10 includes one prime mover 30. However, the thermoacoustic device may include a plurality of prime movers.
  • the thermoacoustic device 10 includes two expanding tubes 22. However, the number of expanding tubes may be one or three or more. The thermoacoustic device may not include an expanding tube.
  • the pipe 20 is made of metal. However, for example, only the first pipe portion and the second pipe portion of the pipe may be made of metal.
  • the accommodating pipe 23A and the first main pipe 21A were made of metal, and the insulating member 80 was made of resin.
  • the combination of the first piping section and the second piping section with the insulating member may be any combination in which the insulating member has lower thermal conductivity than the first piping section and the second piping section.
  • the containing pipe 23A was a pipe whose inner diameter in the central portion between both ends was larger than that of the main pipe 21.
  • the shape of the first pipe section may be arbitrary, and for example, it may be a pipe having an inner diameter approximately equal to that of the second pipe section over its entire length.
  • the first main pipe 21A is circular, but the shape of the second piping section does not have to be circular and may be, for example, a polygonal tubular shape.
  • the shapes of the first piping section and the heat insulating member may be any shapes that fit the second piping section.
  • the water jacket 90 is disposed on the outer periphery of the first main pipe 21A.
  • the third flow passage may be disposed inside the second piping.
  • the water jacket 90 was welded to the first main pipe 21A, but the shape of the third flow path is arbitrary, and for example, it may be a pipe wrapped around the second piping section.
  • the refrigerant discharged from the water jacket 90 may be cooled and reused as the second fluid and the third fluid, may be reused for a purpose other than as a refrigerant for the thermoacoustic device 10, or may be discarded.
  • the water jacket 90 and the circulation pipe 101 form a looped pipe through which the refrigerant circulates, but the pipe for supplying the third fluid to the third flow path does not have to be looped.
  • the refrigerant discharged from the water jacket 90 may be reused for a purpose other than the refrigerant for the thermoacoustic device 10, or may be discarded.
  • the first fluid is thermal oil
  • the second fluid and the third fluid are water.
  • any medium can be used as the first fluid, the second fluid, and the third fluid.
  • Thermoacoustic device 20 Piping 21A: First main pipe (second piping section) 23A: Housing pipe (first piping section) 30: Prime mover (energy converter) 50A: Heat storage device 50F1: One side 50F2: Other side 60A: First heat exchanger 61: First heat transfer tube (first flow path) 70A: Second heat exchanger 71: Second heat transfer tube (second flow path) 80: Insulation member 90: Water jacket (third flow path) 92: Connection pipe (connection flow path) 231A: One end 231B: Other end P2: Through passage

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A thermoacoustic device 10 comprises: a prime mover 30 that includes a heat accumulator 50A, a first heat exchanger 60A that is provided with a first heat transfer tube 61 in which a heating medium can flow, and a second heat exchanger 70A that is provided with a second heat transfer tube 71 in which a coolant can flow; piping 20 in which the prime mover 30 is accommodated in the inside, and in which a working gas can be filled; and a water jacket 90 that is attached to the piping 20 and in which a coolant for cooling the piping 20 can flow. The piping 20 is provided with accommodation piping 23A in which the prime mover 30 is accommodated in the inside and which has one end 231A located on the first heat exchanger 60A side and the other end 231B located on the second heat exchanger 70A side, first main piping 21A that is connected to the one end 231A of the accommodation piping 23A, and a heat-insulating member 80 that is interposed between the accommodation piping 23A and the first main piping 21A and that has lower heat conductivity than the accommodation piping 23A and the first main piping 21A, the water jacket 90 being attached to the first main piping 21A.

Description

熱音響装置Thermoacoustic Device
 本明細書に開示される技術は、熱音響装置に関する。 The technology disclosed in this specification relates to thermoacoustic devices.
 熱音響機関(熱音響装置)は、音波を伝播する作動気体が封入された配管と、この配管に組み込まれた原動機(エネルギー変換器)とを備える。エネルギー変換器は、蓄熱器と、蓄熱器の両端にそれぞれ配される加熱器および冷却器(熱交換器)と、を備える。このようなエネルギー変換器は、例えば、蓄熱器の両端間に発生する温度勾配に起因して作動気体が自励振動することで熱エネルギーを音響エネルギー(音波)に変換する熱音響エンジンとして利用することができる。 A thermoacoustic engine (thermoacoustic device) comprises a pipe filled with a working gas that propagates sound waves, and a prime mover (energy converter) built into the pipe. The energy converter comprises a heat accumulator, and a heater and cooler (heat exchanger) disposed at both ends of the heat accumulator. Such an energy converter can be used, for example, as a thermoacoustic engine that converts thermal energy into acoustic energy (sound waves) by self-excited vibration of the working gas due to a temperature gradient generated between both ends of the heat accumulator.
 一般に、蓄熱器の両端間の温度勾配が大きいほど、熱エネルギーから音響エネルギーへの変換効率が向上する。しかし、熱交換器と配管との間の熱の移動によって、蓄熱器の両端間の温度勾配が小さくなり、エネルギー変換効率が低下する場合があった。この問題を解決するために、互いに接続される2つの配管の間に断熱部材を介在させる構成が提案されている(特許文献1参照)。 In general, the greater the temperature gradient between both ends of the heat storage unit, the greater the efficiency of conversion from thermal energy to acoustic energy. However, there are cases where the transfer of heat between the heat exchanger and the piping reduces the temperature gradient between both ends of the heat storage unit, resulting in a decrease in energy conversion efficiency. To solve this problem, a configuration has been proposed in which an insulating member is interposed between two pipes that are connected to each other (see Patent Document 1).
特開2017-3136号公報JP 2017-3136 A
 上記の構成では、配管の温度が、断熱部材の耐熱温度に近いか、それよりも高温となる場合には、断熱部材が熱により損傷し、作動気体が漏れてしまうことによって、熱音響装置の作動効率が低下することが懸念される。 In the above configuration, if the temperature of the piping becomes close to or higher than the heat resistance temperature of the insulating material, there is a concern that the insulating material may be damaged by heat, causing the working gas to leak, reducing the operating efficiency of the thermoacoustic device.
(1)本明細書によって開示される熱音響装置は、一面と他面とを有し、前記一面から前記他面まで貫通する複数の貫通路を有する蓄熱器と、前記蓄熱器の前記一面に対向して配置され、第1の流体が流通可能な第1の流路を備える第1の熱交換器と、前記蓄熱器の前記他面に対向して配置され、前記第1の流体よりも低温である第2の流体が流通可能な第2の流路を備える第2の熱交換器と、を備えるエネルギー変換器と、内部に前記エネルギー変換器が収容されるとともに作動気体を封入可能な配管と、前記配管に取り付けられ、前記配管を冷却するための第3の流体が流通可能な第3の流路と、を備え、前記配管が、内部に前記エネルギー変換器が収容され、前記第1の熱交換器側に位置する一端と、前記第2の熱交換器側に位置する他端と、を有する第1の配管部と、前記第1の配管部の前記一端に接続される第2の配管部と、前記第1の配管部と前記第2の配管部との間に介在し、前記第1の配管部および前記第2の配管部よりも熱伝導率の低い断熱部材と、を備え、前記第3の流路が前記第2の配管部に取り付けられている。 (1) The thermoacoustic device disclosed in this specification comprises an energy converter including a heat accumulator having one side and another side and having a plurality of through passages penetrating from the one side to the other side, a first heat exchanger arranged opposite the one side of the heat accumulator and having a first flow path through which a first fluid can flow, and a second heat exchanger arranged opposite the other side of the heat accumulator and having a second flow path through which a second fluid having a lower temperature than the first fluid can flow, a pipe in which the energy converter is housed and in which a working gas can be sealed, and a heat exchanger arranged in the pipe. and a third flow path through which a third fluid for cooling the piping can flow, the piping includes a first piping section in which the energy converter is housed and which has one end located on the first heat exchanger side and the other end located on the second heat exchanger side, a second piping section connected to the one end of the first piping section, and an insulating member interposed between the first piping section and the second piping section and having a lower thermal conductivity than the first piping section and the second piping section, and the third flow path is attached to the second piping section.
 上記の構成によれば、第3の流体によって配管を冷却することができ、配管を介して断熱部材も冷却することができる。これにより、熱によって断熱部材が損傷することにより作動気体が配管から漏れ出てしまい、熱音響装置の作動効率が低下することを抑制できる。 With the above configuration, the piping can be cooled by the third fluid, and the insulating member can also be cooled through the piping. This prevents the insulating member from being damaged by heat, causing the working gas to leak out of the piping and reducing the operating efficiency of the thermoacoustic device.
(2)上記(1)に記載の熱音響装置において、前記第1の配管部および前記第2の配管部が金属製であり、前記断熱部材が樹脂製であっても構わない。 (2) In the thermoacoustic device described in (1) above, the first piping section and the second piping section may be made of metal, and the insulating member may be made of resin.
 第1の配管部および第2の配管部が金属製であり、断熱部材が樹脂である組み合わせにおいて、上記(1)の構成を好適に適用できる。 The above configuration (1) can be suitably applied to a combination in which the first piping section and the second piping section are made of metal and the insulating member is made of resin.
(3)上記(1)または(2)に記載の熱音響装置が、前記第2の流路と前記第3の流路とを接続する接続流路をさらに備えていても構わない。 (3) The thermoacoustic device described in (1) or (2) above may further include a connecting flow path that connects the second flow path and the third flow path.
 このような構成によれば、第2の流路を通過した第2の流体を、接続流路を介して第3の流路に供給することができる。つまり、第2の流体が第3の流体を兼ねる。これにより、第3の流路に第3の流体を流通させるためのポンプ等を別途用意する必要がなくなり、熱音響装置の構成を簡素化することができる。 With this configuration, the second fluid that has passed through the second flow path can be supplied to the third flow path via the connecting flow path. In other words, the second fluid doubles as the third fluid. This eliminates the need to provide a separate pump or the like for circulating the third fluid through the third flow path, simplifying the configuration of the thermoacoustic device.
(4)上記(1)から(3)のいずれか1つに記載の熱音響装置において、前記第3の流路と前記断熱部材との距離が、前記断熱部材と前記第1の熱交換器の距離よりも短くなっていても構わない。 (4) In the thermoacoustic device described in any one of (1) to (3) above, the distance between the third flow path and the insulating member may be shorter than the distance between the insulating member and the first heat exchanger.
 このような構成によれば、第3の流体によって断熱部材を効率的に冷却でき、断熱部材の損傷を抑制できる。また、第3の流体による冷却の影響がエネルギー変換器に及ぶことによる熱音響装置の作動効率の低下を抑制できる。 With this configuration, the third fluid can efficiently cool the insulating member, suppressing damage to the insulating member. In addition, it is possible to suppress a decrease in the operating efficiency of the thermoacoustic device caused by the effect of cooling by the third fluid on the energy converter.
(5)上記(1)から(4)のいずれか1つに記載の熱音響装置において、前記第3の流路が、前記第2の配管部の外周に配されていても構わない。 (5) In the thermoacoustic device described in any one of (1) to (4) above, the third flow path may be arranged on the outer periphery of the second piping section.
 このような構成によれば、第3の流路が第2の配管の内部に配される構成と比較して、第3の流路の取り回しが容易であり、熱音響装置の構成を簡素化できる。 With this configuration, the third flow path is easier to handle and the configuration of the thermoacoustic device can be simplified compared to a configuration in which the third flow path is arranged inside the second piping.
 本明細書によって開示される熱音響装置によれば、熱音響装置の作動効率の低下を抑制できる。 The thermoacoustic device disclosed in this specification can suppress a decrease in the operating efficiency of the thermoacoustic device.
実施形態1の熱音響装置を一部破断して示す斜視図FIG. 1 is a perspective view showing a thermoacoustic device according to a first embodiment, with a part cut away; 実施形態1の熱音響装置を図1のII‐II線で示す位置で切断して示す断面図FIG. 2 is a cross-sectional view of the thermoacoustic device of the first embodiment taken along line II-II in FIG. 図2の円R内を拡大して示す部分拡大断面図FIG. 3 is a partially enlarged cross-sectional view showing the inside of a circle R in FIG. 実施形態1の蓄熱器の斜視図FIG. 1 is a perspective view of a heat storage device according to a first embodiment; 実施形態1における第1の熱交換器に備えられる第1の伝熱管の形状を模式的に示す図FIG. 2 is a diagram illustrating a shape of a first heat transfer tube provided in a first heat exchanger in the first embodiment; 実施形態1における第2の熱交換器に備えられる第2の伝熱管の形状を模式的に示す図FIG. 2 is a diagram illustrating a shape of a second heat transfer tube provided in a second heat exchanger in the first embodiment; 実施形態2においてウォータージャケットに冷却水を供給する循環配管の構成を模式的に示す図FIG. 13 is a schematic diagram showing the configuration of a circulation pipe for supplying cooling water to a water jacket in the second embodiment.
 本明細書によって開示される技術の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Specific examples of the technology disclosed in this specification are described below with reference to the drawings. Note that the present invention is not limited to these examples, but is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
<実施形態1>
 実施形態1を、図1から図6を参照しつつ説明する。本実施形態の熱音響装置10は、音響エネルギーを利用して、対象物の温度を常温より低い温度に維持するための冷却装置である。
<Embodiment 1>
A first embodiment will be described with reference to Fig. 1 to Fig. 6. A thermoacoustic device 10 of this embodiment is a cooling device for maintaining the temperature of an object at a temperature lower than room temperature by utilizing acoustic energy.
(熱音響装置10の全体構成)
 熱音響装置10は、配管20と、配管20の内部に配される原動機30(エネルギー変換器の一例)および冷却機40と、配管20の途中に配される断熱部材80と、配管20を冷却するためのウォータージャケット90(第3の流路の一例)と、第2の熱交換器70Aとウォータージャケット90とを接続する接続配管92(接続流路の一例)と、を備える。原動機30は、蓄熱器50Aと、第1の熱交換器60Aと、第2の熱交換器70Aと、を備える。
(Overall configuration of thermoacoustic device 10)
The thermoacoustic device 10 includes a pipe 20, a prime mover 30 (an example of an energy converter) and a cooler 40 disposed inside the pipe 20, a heat insulating member 80 disposed midway through the pipe 20, a water jacket 90 (an example of a third flow path) for cooling the pipe 20, and a connection pipe 92 (an example of a connection flow path) connecting the second heat exchanger 70A and the water jacket 90. The prime mover 30 includes a heat accumulator 50A, a first heat exchanger 60A, and a second heat exchanger 70A.
(配管20)
 配管20は、図1に示すように、複数の主管21と、複数(本実施形態では2つ)の拡大管22と、複数(本実施形態では2つ)の収容配管23A、23Bと、を備える。本実施形態では、主管21、拡大管22、および収容配管23A、23Bは金属製である。一方の収容配管23A(第1の配管部の一例)の内部には原動機30が収容され、他方の収容配管23Bの内部には冷却機40が収容される。主管21と拡大管22と収容配管23A、23Bとによって、ループ状の管路P1が構成されている。管路P1は、内部に作動気体を封入可能となっている。作動気体は、音波を伝達できる気体であれば特に制限はないが、ヘリウム、アルゴン、もしくはヘリウムとアルゴンとの混合気体からなる不活性気体、または空気が好ましく使用される。
(Pipe 20)
As shown in FIG. 1, the piping 20 includes a plurality of main pipes 21, a plurality of (two in this embodiment) diffuser pipes 22, and a plurality of (two in this embodiment) containment pipes 23A and 23B. In this embodiment, the main pipe 21, the diffuser pipe 22, and the containment pipes 23A and 23B are made of metal. The motor 30 is housed inside one of the containment pipes 23A (an example of a first piping section), and the cooling machine 40 is housed inside the other containment pipe 23B. The main pipe 21, the diffuser pipe 22, and the containment pipes 23A and 23B form a loop-shaped pipe P1. The pipe P1 can be filled with a working gas. There is no particular limitation on the working gas as long as it is a gas that can transmit sound waves, but an inert gas such as helium, argon, or a mixture of helium and argon, or air is preferably used.
 複数の主管21は、図1に示すように、2つの収容配管23A、23Bの間、収容配管23Aと拡大管22との間、収容配管23Bと拡大管22との間、2つの拡大管22の間を、それぞれ接続している。各主管21は、両端に開口部を有し、一定の内径を有する管である。 As shown in FIG. 1, the multiple main pipes 21 connect between the two containing pipes 23A and 23B, between the containing pipe 23A and the expansion pipe 22, between the containing pipe 23B and the expansion pipe 22, and between the two expansion pipes 22. Each main pipe 21 has openings at both ends and is a pipe with a constant inner diameter.
 複数の主管21は、原動機30を収容する収容配管23Aに接続される第1主管21A(第2の配管部の一例)を含む。第1主管21Aは、図2および図3に示すように、収容配管23Aに接続される一端に、フランジ211を有している。フランジ211は、第1主管21Aの一端における開口縁から外側に向かって延びる円環状の部位である。フランジ211は、シール溝212と、複数のボルト挿通孔213と、を有している。シール溝212は、フランジ211において収容配管23Aの方を向く一面に配される環状の溝である。シール溝212の内部には、環状のシールリングSが配されている。ボルト挿通孔213は、ボルトBを挿通可能な貫通孔である。 The multiple main pipes 21 include a first main pipe 21A (an example of a second piping section) that is connected to the housing pipe 23A that houses the prime mover 30. As shown in Figures 2 and 3, the first main pipe 21A has a flange 211 at one end that is connected to the housing pipe 23A. The flange 211 is an annular portion that extends outward from the opening edge at one end of the first main pipe 21A. The flange 211 has a seal groove 212 and multiple bolt insertion holes 213. The seal groove 212 is an annular groove that is arranged on one surface of the flange 211 that faces the housing pipe 23A. An annular seal ring S is arranged inside the seal groove 212. The bolt insertion hole 213 is a through hole through which a bolt B can be inserted.
 拡大管22は、図1に示すように、両端に開口部を有し、両端間の中央部分の内径が主管21よりも大きくなっている管である。 As shown in FIG. 1, the expansion pipe 22 is a pipe that has openings at both ends and the inside diameter of the central portion between the two ends is larger than that of the main pipe 21.
 収容配管23Aは、図1および図2に示すように、両端間の中央部分の内径が主管21よりも大きくなっている管である。より具体的には、収容配管23Aは、両端に開口部を有する管であって、2つの第1直管部232と、2つのテーパ部233と、第2直管部234と、フランジ235と、を備えている。 As shown in Figures 1 and 2, the accommodating pipe 23A is a pipe whose inner diameter in the central portion between both ends is larger than that of the main pipe 21. More specifically, the accommodating pipe 23A is a pipe having openings at both ends, and is equipped with two first straight pipe sections 232, two tapered sections 233, a second straight pipe section 234, and a flange 235.
 2つの第1直管部232は、収容配管23Aの一端231Aおよび他端231Bにそれぞれ配される2つの短い直管状の部位であって、主管21と略等しい外径および内径を有している。第2直管部234は、2つの第1直管部232間の中央に位置し、第1直管部232よりも大きな内径を有する短い直管状の部位である。2つのテーパ部233は、一方の第1直管部232と第2直管部234との間、および、他方の第1直管部232と第2直管部234との間とをそれぞれ接続し、第2直管部234から第1直管部232に向かって縮径する部位である。 The two first straight pipe sections 232 are two short straight pipe sections arranged at one end 231A and the other end 231B of the containing pipe 23A, respectively, and have approximately the same outer diameter and inner diameter as the main pipe 21. The second straight pipe section 234 is located in the center between the two first straight pipe sections 232, and is a short straight pipe section having a larger inner diameter than the first straight pipe section 232. The two tapered sections 233 connect between the first straight pipe section 232 and the second straight pipe section 234 on one side, and between the first straight pipe section 232 and the second straight pipe section 234 on the other side, respectively, and are sections whose diameter narrows from the second straight pipe section 234 toward the first straight pipe section 232.
 フランジ235は、図2および図3に示すように、収容配管23Aの一端231Aにおける開口縁から外側に向かって延びる円環状の部位であって、第1主管21Aが備えるフランジ211と略等しい外径を有している。フランジ235は、シール溝236と、複数のボルト挿通孔237と、を有している。シール溝236は、フランジ235において第1主管21Aの方を向く一面に配される円環状の溝である。シール溝236の内部には、円環状のシールリングSが配されている。シールリングSは、例えばゴム製である。ボルト挿通孔237は、ボルトBを挿通可能な貫通孔であって、フランジ211のボルト挿通孔213と整合する位置に配されている。 As shown in Figures 2 and 3, the flange 235 is an annular portion extending outward from the opening edge at one end 231A of the receiving pipe 23A, and has an outer diameter approximately equal to that of the flange 211 of the first main pipe 21A. The flange 235 has a seal groove 236 and a plurality of bolt insertion holes 237. The seal groove 236 is an annular groove arranged on one surface of the flange 235 facing the first main pipe 21A. An annular seal ring S is arranged inside the seal groove 236. The seal ring S is made of rubber, for example. The bolt insertion hole 237 is a through hole through which a bolt B can be inserted, and is arranged in a position aligned with the bolt insertion hole 213 of the flange 211.
 収容配管23Bの構成は、細部を除き収容配管23Aと同様であるので、説明を省略する。 The configuration of the storage pipe 23B is the same as that of the storage pipe 23A except for the details, so a description will be omitted.
(断熱部材80)
 断熱部材80は、図2および図3に示すように、収容配管23Aのフランジ235と第1主管21Aのフランジ211に挟まれて配される部材であって、中央に貫通孔81を有する円環状をなしている。断熱部材80の外径はフランジ211、235の外径と等しいかやや小さく、内径は第1主管21Aおよび第1直管部232の内径と略等しい。断熱部材80は、複数のボルト挿通孔82を有している。ボルト挿通孔82は、ボルトBを挿通可能な貫通孔であって、フランジ211、235のボルト挿通孔213、237と整合する位置に配されている。
(Thermal insulation member 80)
2 and 3, the heat insulating member 80 is a member sandwiched between the flange 235 of the accommodation pipe 23A and the flange 211 of the first main pipe 21A, and has an annular shape with a through hole 81 in the center. The outer diameter of the heat insulating member 80 is equal to or slightly smaller than the outer diameters of the flanges 211, 235, and the inner diameter is approximately equal to the inner diameters of the first main pipe 21A and the first straight pipe section 232. The heat insulating member 80 has a plurality of bolt insertion holes 82. The bolt insertion holes 82 are through holes through which the bolts B can be inserted, and are arranged at positions aligned with the bolt insertion holes 213, 237 of the flanges 211, 235.
 断熱部材80は、樹脂製であって、金属製である収容配管23Aおよび第1主管21Aよりも熱伝導率が小さい。断熱部材80を構成する樹脂としては、例えば150℃以上の高温環境下で長期間機能を発揮するスーパーエンジニアリングプラスチックを好適に使用できる。スーパーエンジニアリングプラスチックとしては、例えば連続使用温度(長時間(40000時間)処理した後に強度が50%以上保持される上限温度)が約200-250℃であるPEEK(ポリエーテルエーテルケトン)、連続使用温度が約260℃であるPTFE(ポリテトラフルオロエチレン)を好ましく使用でき、その他に、PAI(ポリアミドイミド)、PEI(ポリエーテルイミド)、PES(ポリエーテルサルフォン)、PPS(ポリフェニレンサルファイド)等を例示できる。 The heat insulating member 80 is made of resin and has a lower thermal conductivity than the metal containing pipe 23A and the first main pipe 21A. For example, a super engineering plastic that functions for a long period of time in a high temperature environment of 150°C or higher can be preferably used as the resin that constitutes the heat insulating member 80. For example, PEEK (polyether ether ketone) with a continuous use temperature (upper limit temperature at which 50% or more of the strength is maintained after a long period of treatment (40,000 hours)) of approximately 200-250°C and PTFE (polytetrafluoroethylene) with a continuous use temperature of approximately 260°C can be preferably used as the super engineering plastic. Other examples include PAI (polyamideimide), PEI (polyetherimide), PES (polyethersulfone), and PPS (polyphenylene sulfide).
 ボルトBがボルト挿通孔213、82、237に挿通され、ボルトBの先端部にナットNがねじ付けられることにより、2つのフランジ211、235と断熱部材80とが一体に締結されている。シールリングSにより、断熱部材80と2つのフランジ211、235との隙間がそれぞれシールされており、作動気体が外部に漏れることが防がれている。 Bolts B are inserted into the bolt holes 213, 82, and 237, and nuts N are screwed onto the tips of the bolts B, fastening the two flanges 211 and 235 and the insulating member 80 together. Seal rings S seal the gaps between the insulating member 80 and the two flanges 211 and 235, respectively, preventing the working gas from leaking to the outside.
(原動機30)
 原動機30は、熱エネルギーを音響エネルギー(音波)に変換するための装置であって、収容配管23Aに備えられる第2直管部234の内部に配されている。原動機30は、図1および図2に示すように、蓄熱器50Aと、第1の熱交換器60Aと、第2の熱交換器70Aと、を備えている。第1の熱交換器60Aと、蓄熱器50Aと、第2の熱交換器70Aとが、一端231Aから他端231Bに向かって、この順に並んで配されている。
(Prime mover 30)
The prime mover 30 is a device for converting thermal energy into acoustic energy (sound waves), and is disposed inside the second straight pipe section 234 provided in the accommodation pipe 23A. As shown in Fig. 1 and Fig. 2, the prime mover 30 includes a heat accumulator 50A, a first heat exchanger 60A, and a second heat exchanger 70A. The first heat exchanger 60A, the heat accumulator 50A, and the second heat exchanger 70A are disposed in this order from one end 231A to the other end 231B.
(蓄熱器50A)
 蓄熱器50Aは、一面50F1(図2の右側の面)と他面50F2(図2の左側の面)を有する、厚みのある円板状をなしている。蓄熱器50Aは、一面50F1が一端231Aの方を向き、他面50F2が他端231Bの方を向くようにして、収容配管23Aの軸方向(図2の左右方向)に対して垂直な姿勢で配置されている。
(Heat storage unit 50A)
The heat accumulator 50A is a thick disk having one surface 50F1 (the surface on the right side in FIG. 2) and the other surface 50F2 (the surface on the left side in FIG. 2). The heat accumulator 50A is disposed in a position perpendicular to the axial direction of the accommodation pipe 23A (the left-right direction in FIG. 2) with the one surface 50F1 facing the one end 231A and the other surface 50F2 facing the other end 231B.
 蓄熱器50Aは、図4に示すように、複数枚の円形の金属メッシュ51が圧縮状態で重ねられた積層体52と、積層体52の外周面に固定された固定体53と、を備える。金属メッシュ51は、複数の金属細線が編み込まれた網目状の部材である。複数の金属メッシュ51は、互いに略等しい外形を有しており、外周縁の位置を揃えて重ねられている。積層体52は、複数枚の金属メッシュ51が有する網目(細線と細線との隙間)が連なることによって形成され、積層体52の一面50F1から他面50F2まで貫通する多数の細かな貫通路P2を有している。固定体53は、積層体52の外周面に固定されており、複数枚の金属メッシュ51の外周縁を、互いに離間しないように保持する役割を果たしている。固定体53によって、複数枚の金属メッシュ51は、外周縁が固定されず単に重ねられた状態よりも圧縮された状態に保たれている。 As shown in FIG. 4, the heat storage device 50A includes a laminate 52 in which multiple circular metal meshes 51 are stacked in a compressed state, and a fixing body 53 fixed to the outer circumferential surface of the laminate 52. The metal mesh 51 is a mesh-like member in which multiple metal thin wires are woven. The multiple metal meshes 51 have approximately the same outer shape and are stacked with the positions of their outer edges aligned. The laminate 52 is formed by connecting the meshes (gaps between the thin wires) of the multiple metal meshes 51, and has a large number of fine through passages P2 that penetrate from one surface 50F1 to the other surface 50F2 of the laminate 52. The fixing body 53 is fixed to the outer circumferential surface of the laminate 52 and plays a role in holding the outer edges of the multiple metal meshes 51 so that they do not separate from each other. The fixing body 53 keeps the multiple metal meshes 51 in a more compressed state than when they are simply stacked without their outer edges being fixed.
(第1の熱交換器60A、第2の熱交換器70A)
 第1の熱交換器60Aは、図2に示すように、蓄熱器50Aの一面50F1に隣り合って配されている。第1の熱交換器60Aとしては、図5に示すように、第1の伝熱管61(第1の流路の一例)と、第1の伝熱管61の周囲に配されたフィンと、を備える公知の熱交換器を使用することができる。第1の伝熱管61の内部には高温の熱媒(第1の流体の一例)が流通可能となっており、第1の熱交換器60Aの近傍の作動気体と熱媒との間で熱交換が行われる。熱媒としては、例えば工場からの排熱によって温められた熱媒油を使用することができる。熱媒油の温度は、例えば約200-400℃である。
(First heat exchanger 60A, second heat exchanger 70A)
As shown in FIG. 2, the first heat exchanger 60A is disposed adjacent to one surface 50F1 of the heat storage unit 50A. As shown in FIG. 5, a known heat exchanger including a first heat transfer tube 61 (an example of a first flow path) and fins disposed around the first heat transfer tube 61 can be used as the first heat exchanger 60A. A high-temperature heat transfer medium (an example of a first fluid) can flow inside the first heat transfer tube 61, and heat exchange is performed between the working gas near the first heat exchanger 60A and the heat transfer medium. For example, heat transfer oil warmed by exhaust heat from a factory can be used as the heat transfer medium. The temperature of the heat transfer oil is, for example, about 200-400°C.
 第2の熱交換器70Aは、図2に示すように、蓄熱器50Aの他面50F2に隣り合って配されている。第2の熱交換器70Aとしては、図6に示すように、第2の伝熱管71(第2の流路の一例)と、第2の伝熱管71の周囲に配されたフィンとを備える公知の熱交換器を使用することができる。第2の伝熱管71の内部には、第1の伝熱管61の内部を流通する熱媒よりも低温の冷媒(第2の流体の一例)が流通可能となっており、第2の熱交換器70Aの近傍の作動気体が、熱媒の温度よりも低い温度になる。本実施形態では、第2の伝熱管71に供給される冷媒として、常温の水が使用される。 The second heat exchanger 70A is disposed adjacent to the other surface 50F2 of the heat storage unit 50A, as shown in FIG. 2. As the second heat exchanger 70A, a known heat exchanger including a second heat transfer tube 71 (an example of a second flow path) and fins disposed around the second heat transfer tube 71, as shown in FIG. 6, can be used. A refrigerant (an example of a second fluid) that is lower in temperature than the heat medium flowing inside the first heat transfer tube 61 can flow inside the second heat transfer tube 71, and the working gas near the second heat exchanger 70A has a temperature lower than that of the heat medium. In this embodiment, water at room temperature is used as the refrigerant supplied to the second heat transfer tube 71.
(冷却機40)
 冷却機40は、原動機30によって生成された音響エネルギーが入力されることによって温度勾配を発生させ、対象物の温度を常温より低い温度に維持するヒートポンプであって、図1に示すように、他方の収容配管23Bの内部に配されている。冷却機40は、蓄熱器50Bと、蓄熱器50Bの両側にそれぞれ配される第1の熱交換器60Bおよび第2の熱交換器70Bと、を備えている。冷却機40に備えられる蓄熱器50B、および熱交換器60B、70Bは、原動機30に備えられる蓄熱器50A、および熱交換器60A、70Aと同様の構成を備えている。第1の熱交換器60Bに備えられる伝熱管の内部には一定温度の媒体(本実施形態では常温の水)が流通可能となっており、第1の熱交換器60Bの近傍の作動気体が、常温程度の温度になる。第2の熱交換器70Bに備えられる伝熱管は外部の冷却設備に備えられる熱交換器に接続され、この伝熱管の内部に冷媒が循環可能となっている。
(Cooling machine 40)
The cooling machine 40 is a heat pump that generates a temperature gradient by inputting acoustic energy generated by the prime mover 30 and maintains the temperature of the object at a temperature lower than room temperature, and is disposed inside the other housing pipe 23B as shown in FIG. 1. The cooling machine 40 includes a heat accumulator 50B and a first heat exchanger 60B and a second heat exchanger 70B disposed on both sides of the heat accumulator 50B. The heat accumulator 50B and the heat exchangers 60B and 70B provided in the cooling machine 40 have the same configuration as the heat accumulator 50A and the heat exchangers 60A and 70A provided in the prime mover 30. A medium at a constant temperature (water at room temperature in this embodiment) can flow inside the heat transfer tube provided in the first heat exchanger 60B, and the working gas near the first heat exchanger 60B becomes about room temperature. The heat transfer tubes of the second heat exchanger 70B are connected to a heat exchanger provided in an external cooling facility, and a refrigerant can circulate inside the heat transfer tubes.
(ウォータージャケット90)
 ウォータージャケット90は、第1主管21Aの外周に配され、第1主管21Aを冷却するための部材である。ウォータージャケット90は、図1および図2に示すように、第1主管21Aの外径と略等しい内径を有する円環状の部材であって、流通溝91を有している。流通溝91は、ウォータージャケット90の内周面に配され、第1主管21Aを冷却するための冷媒(第3の流体)が内部を流通可能な溝である。ウォータージャケット90は、例えば金属製であって、溶接によって第1主管21Aの外周面に接合されている。
(Water jacket 90)
The water jacket 90 is disposed on the outer periphery of the first main pipe 21A and is a member for cooling the first main pipe 21A. As shown in Figs. 1 and 2, the water jacket 90 is an annular member having an inner diameter substantially equal to the outer diameter of the first main pipe 21A and has a flow groove 91. The flow groove 91 is disposed on the inner periphery of the water jacket 90 and is a groove through which a refrigerant (third fluid) for cooling the first main pipe 21A can flow. The water jacket 90 is made of, for example, metal and is joined to the outer periphery of the first main pipe 21A by welding.
 図2に示すように、ウォータージャケット90と断熱部材80との距離D1は、断熱部材80と第1の熱交換器60Aとの距離D2よりも短くなっている。本実施形態において、「ウォータージャケット90と断熱部材80との距離D1」は、ウォータージャケット90において断熱部材80の方を向く表面と、断熱部材80においてウォータージャケット90の方を向く表面との距離であり、「断熱部材80と第1の熱交換器60Aの距離D2」は、断熱部材80において第1の熱交換器60Aの方を向く表面と、第1の熱交換器60Aにおいて断熱部材80の方を向く表面との距離である。 As shown in FIG. 2, the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A. In this embodiment, the "distance D1 between the water jacket 90 and the insulating member 80" is the distance between the surface of the water jacket 90 facing the insulating member 80 and the surface of the insulating member 80 facing the water jacket 90, and the "distance D2 between the insulating member 80 and the first heat exchanger 60A" is the distance between the surface of the insulating member 80 facing the first heat exchanger 60A and the surface of the first heat exchanger 60A facing the insulating member 80.
(接続配管92)
 接続配管92は、第2の伝熱管71とウォータージャケット90とを接続し、冷媒が流通可能な配管である。接続配管92によって、第2の伝熱管71を通過後の冷媒がウォータージャケット90に供給されるようにすることができる。つまり、接続配管92によって、蓄熱器50Aの両端間に温度勾配を発生させるための冷媒が、第1主管21Aを冷却するための冷媒を兼ねるようにすることができる。
(Connection pipe 92)
The connection pipe 92 is a pipe that connects the second heat transfer pipe 71 and the water jacket 90 and allows a refrigerant to flow through. The connection pipe 92 allows the refrigerant that has passed through the second heat transfer pipe 71 to be supplied to the water jacket 90. In other words, the connection pipe 92 allows the refrigerant for generating a temperature gradient between both ends of the heat accumulator 50A to also serve as the refrigerant for cooling the first main pipe 21A.
(熱音響装置10の動作)
 熱音響装置10を作動させる際には、第1の伝熱管61に熱媒が流される。すると、蓄熱器50Aにおいて一面50F1の近傍にある作動気体と熱媒との間で熱交換が行われる。これにより、蓄熱器50Aにおいて一面50F1の近傍にある作動気体の温度は、熱媒の温度に近づくように調整される。また、第2の伝熱管71に冷媒としての常温の水が流される。すると、蓄熱器50Aにおいて他面50F2の近傍にある作動気体と常温の水との間で熱交換が行われる。これにより、蓄熱器50Aにおいて他面50F2の近傍にある作動気体の温度は、常温に近づくように調整される。
(Operation of the thermoacoustic device 10)
When the thermoacoustic device 10 is operated, a heat medium is passed through the first heat transfer tube 61. Then, heat exchange occurs between the working gas in the vicinity of the one surface 50F1 of the heat accumulator 50A and the heat medium. As a result, the temperature of the working gas in the vicinity of the one surface 50F1 of the heat accumulator 50A is adjusted to approach the temperature of the heat medium. In addition, water at room temperature as a refrigerant is passed through the second heat transfer tube 71. Then, heat exchange occurs between the working gas in the vicinity of the other surface 50F2 of the heat accumulator 50A and the water at room temperature. As a result, the temperature of the working gas in the vicinity of the other surface 50F2 of the heat accumulator 50A is adjusted to approach room temperature.
 このような熱交換器60A、70Aの作用により、蓄熱器50Aの一面50F1と他面50F2との間に温度勾配が生じる。すると、貫通路P2の内部の作動気体が不安定となり、振動を開始する。この振動によって音響エネルギー(音波)が生成される。生成された音響エネルギーは、蓄熱器50Aの一面50F1(第1の熱交換器60Aが配される面)から出力されて、管路P1の内部に封入された作動気体を介して伝達され、冷却機40に到達する(図1中の矢印参照)。 The action of the heat exchangers 60A and 70A creates a temperature gradient between the first surface 50F1 and the second surface 50F2 of the heat storage device 50A. As a result, the working gas inside the passage P2 becomes unstable and starts to vibrate. This vibration generates acoustic energy (sound waves). The generated acoustic energy is output from the first surface 50F1 of the heat storage device 50A (the surface where the first heat exchanger 60A is arranged), transmitted through the working gas sealed inside the pipe P1, and reaches the cooling device 40 (see the arrow in Figure 1).
 冷却機40に備えられる蓄熱器50Bに、作動気体によって伝達された音響エネルギーが入力されると、第1の熱交換器60Bに面する一面と、第2の熱交換器70Bに面する他面との間に温度勾配が生じる。冷却機40において音響エネルギーの入力側に配される第1の熱交換器60Bには常温の水が流されているので、蓄熱器50Bにおいて第2の熱交換器70Bの近傍にある作動気体の温度は、生じた温度勾配の分だけ、常温よりも低い温度に調整される。この常温より低い作動気体と冷媒との間で熱交換が行われ、低温となった冷媒が外部の冷却設備に供給され、対象物が冷やされる。 When acoustic energy transmitted by the working gas is input to the heat storage device 50B provided in the cooling device 40, a temperature gradient is generated between one side facing the first heat exchanger 60B and the other side facing the second heat exchanger 70B. Since room temperature water flows through the first heat exchanger 60B arranged on the input side of the acoustic energy in the cooling device 40, the temperature of the working gas near the second heat exchanger 70B in the heat storage device 50B is adjusted to a temperature lower than room temperature by the amount of the generated temperature gradient. Heat exchange occurs between this working gas, which is lower than room temperature, and the refrigerant, and the cooled refrigerant is supplied to an external cooling facility to cool the target object.
 ここで、第1の伝熱管61を通過する熱媒からの熱が収容配管23Aに伝わり、さらに第1主管21Aやその先の配管20に移動すると、蓄熱器50Aの両端間の温度差が小さくなり、原動機30による熱エネルギーから音響エネルギーへの変換効率が低下する場合がある。これを回避するために、収容配管23Aと、この収容配管23Aと接続される第1主管21Aとの間に、断熱部材80が配されている。断熱部材80によって、収容配管23Aに伝わった熱が、その先の第1主管21Aに伝わることが抑制され、熱エネルギーから音響エネルギーへの変換効率の低下が抑制される。 Here, if heat from the heat medium passing through the first heat transfer tube 61 is transferred to the storage pipe 23A and then moves to the first main pipe 21A and the pipe 20 beyond, the temperature difference between both ends of the heat accumulator 50A becomes small, and the efficiency of conversion from thermal energy to acoustic energy by the prime mover 30 may decrease. To avoid this, a heat insulating member 80 is arranged between the storage pipe 23A and the first main pipe 21A connected to this storage pipe 23A. The heat insulating member 80 prevents the heat transferred to the storage pipe 23A from being transferred to the first main pipe 21A beyond, thereby preventing a decrease in the efficiency of conversion from thermal energy to acoustic energy.
 しかし、収容配管23Aは、熱媒からの熱が伝わることにより、熱媒の温度に近い高温になることがある。このため、例えば、収容配管23Aの温度が、断熱部材80を構成する樹脂の耐熱温度に近い温度、あるいはそれを超える温度となる場合には、この収容配管23Aに接している断熱部材80が熱により損傷することが懸念される。断熱部材80が損傷すると、作動気体が配管20の外部に漏れてしまい、熱音響装置10の作動効率が低下するおそれがある。 However, as heat from the heat medium is transferred to the containing pipe 23A, the temperature of the containing pipe 23A can reach a high temperature close to that of the heat medium. For this reason, for example, if the temperature of the containing pipe 23A reaches a temperature close to or exceeds the heat resistance temperature of the resin that constitutes the insulating member 80, there is a concern that the insulating member 80 in contact with the containing pipe 23A may be damaged by heat. If the insulating member 80 is damaged, the working gas may leak outside the pipe 20, and the operating efficiency of the thermoacoustic device 10 may decrease.
 本実施形態では、第2の伝熱管71を通過した冷媒が、接続配管92を介してウォータージャケット90に供給されるから、この冷媒によって第1主管21Aが冷却され、第1主管21Aに接している断熱部材80も冷却される。これにより、断熱部材80が損傷して作動気体が配管20から漏れ出ることを抑制でき、熱音響装置10の作動効率の低下を抑制できる。 In this embodiment, the refrigerant that has passed through the second heat transfer tube 71 is supplied to the water jacket 90 via the connecting pipe 92, so that the first main pipe 21A is cooled by this refrigerant, and the insulating member 80 that is in contact with the first main pipe 21A is also cooled. This makes it possible to prevent the insulating member 80 from being damaged and causing the working gas to leak from the pipe 20, and to prevent a decrease in the operating efficiency of the thermoacoustic device 10.
 また、熱音響装置10が接続配管92を備え、第2の伝熱管71を通過した冷媒が、接続配管92を介してウォータージャケット90に供給されるようになっている。このような構成によれば、ウォータージャケット90に冷媒を流通させるためのポンプ等を別途用意する必要がなくなり、熱音響装置10の構成を簡素化することができる。 The thermoacoustic device 10 also includes a connection pipe 92, and the refrigerant that has passed through the second heat transfer tube 71 is supplied to the water jacket 90 via the connection pipe 92. This configuration eliminates the need to provide a separate pump or the like for circulating the refrigerant through the water jacket 90, simplifying the configuration of the thermoacoustic device 10.
 また、ウォータージャケット90と断熱部材80との距離D1が、断熱部材80と第1の熱交換器60Aとの距離D2よりも短くなっている。ウォータージャケット90と断熱部材80との距離D1が相対的に短いことにより、ウォータージャケット90の内部を通過する冷媒によって断熱部材80が効率的に冷却され、断熱部材80の損傷が効率的に抑制される。また、断熱部材80と第1の熱交換器60Aとの距離D2が相対的に長いことにより、ウォータージャケット90の内部を通過する冷媒による冷却の影響が第1の熱交換器60Aの周囲に及ぶことが抑制される。これにより、蓄熱器50Aの両端間の温度勾配が小さくなることが抑制され、エネルギー変換効率の低下が抑制される。 Furthermore, the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A. Because the distance D1 between the water jacket 90 and the insulating member 80 is relatively short, the insulating member 80 is efficiently cooled by the refrigerant passing through the inside of the water jacket 90, and damage to the insulating member 80 is efficiently suppressed. Furthermore, because the distance D2 between the insulating member 80 and the first heat exchanger 60A is relatively long, the influence of the cooling by the refrigerant passing through the inside of the water jacket 90 is suppressed from extending to the periphery of the first heat exchanger 60A. This prevents the temperature gradient between both ends of the heat storage device 50A from becoming smaller, and suppresses a decrease in energy conversion efficiency.
 また、ウォータージャケット90が第1主管21Aの外周に配されている。このような構成によれば、ウォータージャケット90の取り回しが容易であり、熱音響装置10の構成を簡素化できる。 In addition, the water jacket 90 is disposed on the outer periphery of the first main pipe 21A. With this configuration, the water jacket 90 can be easily handled, and the configuration of the thermoacoustic device 10 can be simplified.
(作用効果)
 以上のように本実施形態の熱音響装置10は、一面50F1と他面50F2とを有し、一面50F1から他面50F2まで貫通する複数の貫通路P2を有する蓄熱器50Aと、蓄熱器50Aの一面50F1に対向して配置され、熱媒が流通可能な第1の伝熱管61を備える第1の熱交換器60Aと、蓄熱器50Aの他面50F2に対向して配置され、熱媒よりも低温である冷媒が流通可能な第2の第2の伝熱管71を備える第2の熱交換器70Aと、を備える原動機30と、内部に原動機30が収容されるとともに作動気体を封入可能な配管20と、配管20に取り付けられ、配管20を冷却するための冷媒が流通可能なウォータージャケット90と、を備え、配管20が、内部に原動機30が収容され、第1の熱交換器60A側に位置する一端231Aと、第2の熱交換器70A側に位置する他端231Bと、を有する収容配管23Aと、収容配管23Aの一端231Aに接続される第1主管21Aと、収容配管23Aと第1主管21Aとの間に介在し、収容配管23Aと第1主管21Aよりも熱伝導率の低い断熱部材80と、を備え、ウォータージャケット90が第1主管21Aに取り付けられている。
(Action and Effect)
As described above, the thermoacoustic device 10 of this embodiment includes the heat accumulator 50A having one surface 50F1 and the other surface 50F2 and having a plurality of through passages P2 penetrating from the one surface 50F1 to the other surface 50F2, the first heat exchanger 60A arranged opposite to the one surface 50F1 of the heat accumulator 50A and including a first heat transfer tube 61 through which a heat medium can flow, and the second heat exchanger 70A arranged opposite to the other surface 50F2 of the heat accumulator 50A and including a second heat transfer tube 71 through which a refrigerant having a lower temperature than the heat medium can flow, the prime mover 30, the piping 20 in which the prime mover 30 is accommodated and in which a working gas can be sealed, and the piping 20 and a water jacket 90 through which a refrigerant for cooling the piping 20 can flow, the piping 20 accommodates a prime mover 30 inside and comprises a accommodating piping 23A having one end 231A located on the first heat exchanger 60A side and the other end 231B located on the second heat exchanger 70A side, a first main pipe 21A connected to the one end 231A of the accommodating piping 23A, and an insulating member 80 interposed between the accommodating piping 23A and the first main pipe 21A and having a lower thermal conductivity than the accommodating piping 23A and the first main pipe 21A, and the water jacket 90 is attached to the first main pipe 21A.
 上記の構成によれば、冷媒によって第1主管21Aを冷却することができ、第1主管21Aを介して断熱部材80も冷却することができる。これにより、熱によって断熱部材80が損傷することにより作動気体が配管20から漏れ出てしまい、熱音響装置10の作動効率が低下すること抑制できる。 With the above configuration, the first main pipe 21A can be cooled by the refrigerant, and the insulating member 80 can also be cooled via the first main pipe 21A. This prevents the insulating member 80 from being damaged by heat, causing the working gas to leak from the piping 20, and thus reducing the operating efficiency of the thermoacoustic device 10.
 また、収容配管23Aおよび第1主管21Aが金属製であり、断熱部材80が樹脂製である。このような組み合わせにおいて、上記構成を好適に適用できる。 Furthermore, the receiving pipe 23A and the first main pipe 21A are made of metal, and the insulating member 80 is made of resin. In such a combination, the above configuration can be suitably applied.
 また、熱音響装置10が、第2の伝熱管71とウォータージャケット90とを接続する接続配管92をさらに備える。 The thermoacoustic device 10 further includes a connection pipe 92 that connects the second heat transfer tube 71 and the water jacket 90.
 このような構成によれば、第2の伝熱管71を通過した冷媒を、接続配管92を介してウォータージャケット90に供給することができる。つまり、第2の伝熱管71内を流通する冷媒が、ウォータージャケット90内を流通する冷媒を兼ねる。これにより、ウォータージャケット90に冷媒を流通させるためのポンプ等を別途用意する必要がなくなり、熱音響装置10の構成を簡素化することができる。 With this configuration, the refrigerant that has passed through the second heat transfer tube 71 can be supplied to the water jacket 90 via the connecting pipe 92. In other words, the refrigerant circulating through the second heat transfer tube 71 also serves as the refrigerant circulating through the water jacket 90. This eliminates the need to provide a separate pump or the like for circulating the refrigerant through the water jacket 90, simplifying the configuration of the thermoacoustic device 10.
 また、ウォータージャケット90と断熱部材80との距離D1が、断熱部材80と第1の熱交換器60Aの距離D2よりも短い。 Furthermore, the distance D1 between the water jacket 90 and the insulating member 80 is shorter than the distance D2 between the insulating member 80 and the first heat exchanger 60A.
 このような構成によれば、ウォータージャケット90内を流通する冷媒によって断熱部材80を効率的に冷却でき、断熱部材80の損傷を抑制できる。また、冷媒による冷却の影響が原動機30に及ぶことによる熱音響装置10の作動効率の低下を抑制できる。 With this configuration, the heat insulating member 80 can be efficiently cooled by the refrigerant flowing through the water jacket 90, and damage to the heat insulating member 80 can be suppressed. In addition, a decrease in the operating efficiency of the thermoacoustic device 10 caused by the influence of cooling by the refrigerant on the prime mover 30 can be suppressed.
 また、ウォータージャケット90が、第1主管21Aの外周に配される。このような構成によれば、第3の流路が第2の配管部の内部に配される構成と比較して、ウォータージャケット90の取り回しが容易であり、熱音響装置10の構成を簡素化できる。 The water jacket 90 is also arranged on the outer periphery of the first main pipe 21A. With this configuration, compared to a configuration in which the third flow path is arranged inside the second piping section, the water jacket 90 is easier to handle, and the configuration of the thermoacoustic device 10 can be simplified.
<実施形態2>
 実施形態2の熱音響装置100は、第2の伝熱管71とウォータージャケット90とを接続する接続流路を備えておらず、ウォータージャケット90に冷媒を供給する独立した循環配管101を備えている点で、実施形態1と異なる。
<Embodiment 2>
The thermoacoustic device 100 of embodiment 2 differs from embodiment 1 in that it does not have a connecting flow path connecting the second heat transfer tube 71 and the water jacket 90, but has an independent circulation piping 101 that supplies refrigerant to the water jacket 90.
 循環配管101は、ウォータージャケット90に接続され、ウォータージャケット90に冷媒を供給するための配管である。図7に示すように、ウォータージャケット90と循環配管101とによって、ループ状の管路が構成されており、この管路の内部には、第1主管21Aを冷却するための冷媒(第3の流体)であって、第2の伝熱管71の内部を流通する冷媒とは異なる冷媒が流通可能となっている。循環配管101の途中には、第1主管21Aから熱が伝わることによって温まった冷媒を冷やすための冷却装置102と、冷媒を輸送するためのポンプPと、が配されている。 The circulation pipe 101 is connected to the water jacket 90 and is used to supply refrigerant to the water jacket 90. As shown in FIG. 7, the water jacket 90 and the circulation pipe 101 form a looped pipe line, and a refrigerant (third fluid) for cooling the first main pipe 21A, which is different from the refrigerant flowing through the second heat transfer pipe 71, can flow through this pipe line. A cooling device 102 for cooling the refrigerant that has been heated by heat transfer from the first main pipe 21A, and a pump P for transporting the refrigerant are provided midway through the circulation pipe 101.
 その他の構成は実施形態1と同様であるので、実施形態1と同一の構成には同一の符号を付して説明を省略する。 The rest of the configuration is the same as in embodiment 1, so the same components as in embodiment 1 are given the same reference numerals and the description is omitted.
 本実施形態によっても、実施形態1と同様に、冷媒によって第1主管21Aを冷却することができ、第1主管21Aを介して断熱部材80も冷却することができる。これにより、熱によって断熱部材80が損傷することにより作動気体が配管20から漏れ出てしまい、熱音響装置100の作動効率が低下すること抑制できる。 In this embodiment, as in the first embodiment, the first main pipe 21A can be cooled by the refrigerant, and the insulating member 80 can also be cooled via the first main pipe 21A. This prevents the insulating member 80 from being damaged by heat, causing the working gas to leak from the piping 20, and thus reducing the operating efficiency of the thermoacoustic device 100.
<他の実施形態>
(1)上記実施形態では、熱音響装置10が冷却装置であったが、熱音響装置は冷却装置でなくてもよく、例えば、冷却機40に代えて加熱用のヒートポンプを備える加熱装置であってもよく、原動機から出力された音波を電力に変換する発電機を備える発電装置であっても構わない。
(2)上記実施形態では、配管20がループ状であったが、配管は、例えば、ループ状の配管から分岐する分岐配管を備えていても構わない。
(3)上記実施形態では、熱音響装置10が1つの原動機30を備えていたが、熱音響装置が複数の原動機を備えていても構わない。
(4)上記実施形態では、熱音響装置10が2つの拡大管22を備えていたが、拡大管は1つまたは3つ以上であってもよく、熱音響装置が拡大管を備えていなくても構わない。
(5)上記実施形態では、配管20が金属製であったが、例えば配管のうち第1の配管部と第2の配管部のみが金属製であっても構わない。
(6)上記実施形態では、収容配管23Aと第1主管21Aとが金属製であり、断熱部材80が樹脂製であったが、第1の配管部および第2の配管部と断熱部材との組み合わせは、断熱部材が第1の配管部および第2の配管部よりも熱伝導性の低い組み合わせであればよい。
(7)上記実施形態では、収容配管23Aが、両端間の中央部分の内径が主管21よりも大きくなっている管であったが、第1の配管部の形状は任意であり、例えば、全長にわたって第2の配管部と略等しい内径を有する管であっても構わない。
(8)上記実施形態では、第1主管21Aが円管状であったが、第2の配管部の形状は円管状でなくてもよく、例えば多角形の管状であっても構わない。また、第1の配管部および断熱部材の形状も、第2の配管部に適合する形状であればよい。
(9)上記実施形態では、ウォータージャケット90が第1主管21Aの外周に配されていたが、第3の流路が第2の配管の内部に配されていても構わない。
(10)上記実施形態では、ウォータージャケット90が第1主管21Aに溶接されていたが、第3の流路の形態は任意であり、例えば、第2の配管部の周囲に巻き付けられたパイプであっても構わない。
(11)実施形態1において、ウォータージャケット90から排出された冷媒は、冷却されて第2の流体および第3の流体として再利用されてもよく、熱音響装置10用の冷媒とは異なる用途で再利用されてもよく、廃棄されても構わない。
(12)実施形態2においては、ウォータージャケット90と循環配管101とがループ状の管路を構成し、内部を冷媒が循環していたが、第3の流路に第3の流体を供給するための配管がループ状となっていなくても構わない。この場合、ウォータージャケット90から排出された冷媒は、熱音響装置10用の冷媒とは異なる用途で再利用されてもよく、廃棄されても構わない。
(13)上記実施形態では、第1の流体が熱媒油であり、第2の流体および第3の流体が水であったが、第1の流体、第2の流体、および第3の流体としては、任意の媒体を使用可能である。
<Other embodiments>
(1) In the above embodiment, the thermoacoustic device 10 was a cooling device, but the thermoacoustic device does not have to be a cooling device. For example, the thermoacoustic device may be a heating device equipped with a heat pump for heating instead of the cooling machine 40, or may be a power generation device equipped with a generator that converts sound waves output from a prime mover into electric power.
(2) In the above embodiment, the piping 20 is loop-shaped. However, the piping may include, for example, a branch piping that branches off from the loop piping.
(3) In the above embodiment, the thermoacoustic device 10 includes one prime mover 30. However, the thermoacoustic device may include a plurality of prime movers.
(4) In the above embodiment, the thermoacoustic device 10 includes two expanding tubes 22. However, the number of expanding tubes may be one or three or more. The thermoacoustic device may not include an expanding tube.
(5) In the above embodiment, the pipe 20 is made of metal. However, for example, only the first pipe portion and the second pipe portion of the pipe may be made of metal.
(6) In the above embodiment, the accommodating pipe 23A and the first main pipe 21A were made of metal, and the insulating member 80 was made of resin. However, the combination of the first piping section and the second piping section with the insulating member may be any combination in which the insulating member has lower thermal conductivity than the first piping section and the second piping section.
(7) In the above embodiment, the containing pipe 23A was a pipe whose inner diameter in the central portion between both ends was larger than that of the main pipe 21. However, the shape of the first pipe section may be arbitrary, and for example, it may be a pipe having an inner diameter approximately equal to that of the second pipe section over its entire length.
(8) In the above embodiment, the first main pipe 21A is circular, but the shape of the second piping section does not have to be circular and may be, for example, a polygonal tubular shape. In addition, the shapes of the first piping section and the heat insulating member may be any shapes that fit the second piping section.
(9) In the above embodiment, the water jacket 90 is disposed on the outer periphery of the first main pipe 21A. However, the third flow passage may be disposed inside the second piping.
(10) In the above embodiment, the water jacket 90 was welded to the first main pipe 21A, but the shape of the third flow path is arbitrary, and for example, it may be a pipe wrapped around the second piping section.
(11) In embodiment 1, the refrigerant discharged from the water jacket 90 may be cooled and reused as the second fluid and the third fluid, may be reused for a purpose other than as a refrigerant for the thermoacoustic device 10, or may be discarded.
(12) In the second embodiment, the water jacket 90 and the circulation pipe 101 form a looped pipe through which the refrigerant circulates, but the pipe for supplying the third fluid to the third flow path does not have to be looped. In this case, the refrigerant discharged from the water jacket 90 may be reused for a purpose other than the refrigerant for the thermoacoustic device 10, or may be discarded.
(13) In the above embodiment, the first fluid is thermal oil, and the second fluid and the third fluid are water. However, any medium can be used as the first fluid, the second fluid, and the third fluid.
10:熱音響装置 20:配管 21A:第1主管(第2の配管部) 23A:収容配管(第1の配管部) 30:原動機(エネルギー変換器) 50A:蓄熱器 50F1:一面 50F2:他面 60A:第1の熱交換器 61:第1の伝熱管(第1の流路) 70A: 第2の熱交換器 71:第2の伝熱管(第2の流路) 80:断熱部材 90:ウォータージャケット(第3の流路) 92:接続配管(接続流路) 231A:一端 231B:他端 P2:貫通路 10: Thermoacoustic device 20: Piping 21A: First main pipe (second piping section) 23A: Housing pipe (first piping section) 30: Prime mover (energy converter) 50A: Heat storage device 50F1: One side 50F2: Other side 60A: First heat exchanger 61: First heat transfer tube (first flow path) 70A: Second heat exchanger 71: Second heat transfer tube (second flow path) 80: Insulation member 90: Water jacket (third flow path) 92: Connection pipe (connection flow path) 231A: One end 231B: Other end P2: Through passage

Claims (5)

  1.  一面と他面とを有し、前記一面から前記他面まで貫通する複数の貫通路を有する蓄熱器と、
     前記蓄熱器の前記一面に対向して配置され、第1の流体が流通可能な第1の流路を備える第1の熱交換器と、
     前記蓄熱器の前記他面に対向して配置され、前記第1の流体よりも低温である第2の流体が流通可能な第2の流路を備える第2の熱交換器と、
     を備えるエネルギー変換器と、
     内部に前記エネルギー変換器が収容されるとともに作動気体を封入可能な配管と、
     前記配管に取り付けられ、前記配管を冷却するための第3の流体が流通可能な第3の流路と、
     を備え、
     前記配管が、
      内部に前記エネルギー変換器が収容され、前記第1の熱交換器側に位置する一端と、前記第2の熱交換器側に位置する他端と、を有する第1の配管部と、
      前記第1の配管部の前記一端に接続される第2の配管部と、
      前記第1の配管部と前記第2の配管部との間に介在し、前記第1の配管部および前記第2の配管部よりも熱伝導率の低い断熱部材と、
     を備え、
     前記第3の流路が前記第2の配管部に取り付けられている、
     熱音響装置。
    A heat accumulator having one surface and another surface and a plurality of through passages penetrating from the one surface to the other surface;
    a first heat exchanger disposed opposite the one surface of the heat accumulator and including a first flow path through which a first fluid can flow;
    a second heat exchanger disposed opposite the other surface of the heat accumulator and including a second flow path through which a second fluid having a lower temperature than the first fluid can flow;
    an energy converter comprising:
    A pipe that houses the energy converter therein and can seal a working gas therein;
    a third flow path attached to the pipe and through which a third fluid for cooling the pipe can flow;
    Equipped with
    The piping,
    a first piping section in which the energy converter is housed and which has one end located on the first heat exchanger side and the other end located on the second heat exchanger side;
    a second piping section connected to the one end of the first piping section;
    a heat insulating member interposed between the first piping section and the second piping section and having a lower thermal conductivity than the first piping section and the second piping section;
    Equipped with
    The third flow path is attached to the second piping portion.
    Thermoacoustic device.
  2.  前記第1の配管部および前記第2の配管部が金属製であり、
     前記断熱部材が樹脂製である、
     請求項1に記載の熱音響装置。
    the first piping section and the second piping section are made of metal,
    The heat insulating member is made of resin.
    10. The thermoacoustic device of claim 1.
  3.  前記第2の流路と前記第3の流路とを接続する接続流路をさらに備える、
     請求項1または請求項2に記載の熱音響装置。
    Further comprising a connection flow path connecting the second flow path and the third flow path.
    A thermoacoustic device according to claim 1 or 2.
  4.  前記第3の流路と前記断熱部材との距離が、前記断熱部材と前記第1の熱交換器との距離よりも短い、
     請求項1から請求項3のいずれか1項に記載の熱音響装置。
    A distance between the third flow path and the heat insulating member is shorter than a distance between the heat insulating member and the first heat exchanger.
    A thermoacoustic device according to any one of claims 1 to 3.
  5.  前記第3の流路が、前記第2の配管部の外周に配される、
     請求項1から請求項4のいずれか1項に記載の熱音響装置。
    The third flow path is disposed on an outer periphery of the second piping portion.
    A thermoacoustic device according to any one of claims 1 to 4.
PCT/JP2023/004781 2023-02-13 2023-02-13 Thermoacoustic device WO2024171254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004781 WO2024171254A1 (en) 2023-02-13 2023-02-13 Thermoacoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004781 WO2024171254A1 (en) 2023-02-13 2023-02-13 Thermoacoustic device

Publications (1)

Publication Number Publication Date
WO2024171254A1 true WO2024171254A1 (en) 2024-08-22

Family

ID=92420909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004781 WO2024171254A1 (en) 2023-02-13 2023-02-13 Thermoacoustic device

Country Status (1)

Country Link
WO (1) WO2024171254A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183767A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Vaporization facility
JP2017003136A (en) * 2015-06-05 2017-01-05 日本特殊陶業株式会社 Thermoacoustic engine
JP3216536U (en) * 2018-02-12 2018-06-07 株式会社九電工 Thermoacoustic engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183767A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Vaporization facility
JP2017003136A (en) * 2015-06-05 2017-01-05 日本特殊陶業株式会社 Thermoacoustic engine
JP3216536U (en) * 2018-02-12 2018-06-07 株式会社九電工 Thermoacoustic engine

Similar Documents

Publication Publication Date Title
US7404296B2 (en) Cooling device
JP2006145200A (en) Heat storage unit, and method of using heat storage unit to heat fluid
CN107702366B (en) Thermoacoustic cooling device
JP7209574B2 (en) Nuclear power generation system and reactor unit
US20170237318A1 (en) Device And Method For Cooling An Energy Conversion Apparatus Having A Rotor And At Least One Turbine
CN102468696B (en) For the welding manifold of stator casing portion section
JP7032987B2 (en) Thermoacoustic device
JP2011208911A (en) Thermoacoustic engine
WO2024171254A1 (en) Thermoacoustic device
JP3216536U (en) Thermoacoustic engine
WO2018066250A1 (en) Energy conversion device
JP6495097B2 (en) Thermoacoustic power generation system
JP7032915B2 (en) Nuclear plant and sleeve cooling mechanism
JP2022044205A (en) Thermoacoustic device
JP7424060B2 (en) thermoacoustic device
JP6846940B2 (en) Steam generator
US12061049B2 (en) Modular thermoacoustic energy converter
JP2015200422A (en) Stack for thermoacoustic device and thermoacoustic device
WO2023181608A1 (en) Heat-sound converter
WO2024127515A1 (en) Thermal accumulator production method and thermal accumulator
JP2022180057A (en) thermoacoustic engine
KR20170052874A (en) Apparatus for freezing pipe rapidly
CN118947141A (en) Thermo-acoustic converter
Hamood et al. Design of two-stage thermoacoustic stirling engine coupled with push-pull linear alternator for waste heat recovery
EP2599187B1 (en) Cooling assembly for wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922595

Country of ref document: EP

Kind code of ref document: A1