[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024156110A1 - 显示基板、拼接显示模组及显示装置 - Google Patents

显示基板、拼接显示模组及显示装置 Download PDF

Info

Publication number
WO2024156110A1
WO2024156110A1 PCT/CN2023/073671 CN2023073671W WO2024156110A1 WO 2024156110 A1 WO2024156110 A1 WO 2024156110A1 CN 2023073671 W CN2023073671 W CN 2023073671W WO 2024156110 A1 WO2024156110 A1 WO 2024156110A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sublayer
substrate
layer
display
Prior art date
Application number
PCT/CN2023/073671
Other languages
English (en)
French (fr)
Inventor
杨泽洲
金亮亮
赵乐
张庆凯
陈振彰
马若玉
李姣
孙文佳
李金鹏
翟明
孙海威
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/073671 priority Critical patent/WO2024156110A1/zh
Priority to CN202380008113.3A priority patent/CN118743037A/zh
Publication of WO2024156110A1 publication Critical patent/WO2024156110A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present application relates to the field of display technology, and in particular to a display substrate, a spliced display module and a display device.
  • Mini LED sub-millimeter light-emitting diode
  • Micro LED micro Light Emitting Diode Due to its good display effect, high contrast, long life and other advantages, it has a clear trend of use in the display field.
  • the present application provides a display substrate, a spliced display module and a display device.
  • a display substrate comprises:
  • the distance between the surface of the first light regulating layer away from the substrate and the substrate is greater than the distance between the surface of the light emitting unit away from the substrate and the substrate;
  • a second light regulating layer is located on a side of the first light regulating layer away from the substrate, and the orthographic projection of the second light regulating layer on the substrate covers the substrate; and the transmittance of the first light regulating layer is greater than the transmittance of the second light regulating layer.
  • the first light adjustment layer includes a first sublayer, the orthographic projection of the first sublayer on the substrate covers the orthographic projection of each of the light-emitting units on the substrate; the first sublayer includes a light-transmitting material and scattering particles dispersed in the light-transmitting material.
  • the scattering particles include first particles and second particles, and the light transmittance of the first particles is greater than the light transmittance of the second particles.
  • the mass ratio of the first particles in the first sub-layer is in the range of 10% to 20%, and the mass ratio of the second particles in the first sub-layer is in the range of 1% to 5%;
  • the light transmittance of the first sub-layer is in the range of 45% to 70%.
  • the material of the first particles includes at least one of silicon dioxide, polymethyl methacrylate and polystyrene, and the material of the second particles includes at least one of titanium dioxide and zinc oxide; the particle size range of the first particles is 400nm to 600nm, and the particle size range of the second particles is 4 ⁇ m to 6 ⁇ m.
  • the first light adjustment layer further includes a second sublayer located on a side of the first sublayer away from the substrate, the first sublayer covers each of the light emitting units; and the hardness of the second sublayer is greater than that of the first sublayer.
  • the first light adjustment layer further includes a second sublayer located on a side of the first sublayer facing the substrate, and a hardness of the first sublayer is greater than a hardness of the second sublayer.
  • the light transmittance of the first sub-layer is less than the light transmittance of the second sub-layer.
  • a surface of the first sublayer facing the substrate is in direct contact with the light-emitting unit, and a surface of the first sublayer facing away from the substrate is in direct contact with the second light adjustment layer.
  • the adhesion force between the second light adjustment layer and the first light adjustment layer is F1
  • the adhesion force between the first light adjustment layer and the light emitting unit is F2
  • the first light adjustment layer includes a first sublayer and a second sublayer located on a side of the first sublayer away from the substrate; the adhesion between the second light adjustment layer and the second sublayer is F3, the adhesion between the second sublayer and the first sublayer is F4, the adhesion between the first sublayer and the light emitting unit is F5, and F3 ⁇ F4>F5; or,
  • the first light adjustment layer includes a first sublayer and a first sublayer facing the substrate The second sublayer on one side; the adhesion between the second light adjustment layer and the first sublayer is F6, the adhesion between the first sublayer and the second sublayer is F7, the adhesion between the second sublayer and the light emitting unit is F8, F6 ⁇ F7>F8.
  • the thickness of the second light adjustment layer is in the range of 25 ⁇ m to 50 ⁇ m; and/or the transmittance of the second light adjustment layer is in the range of 25% to 40%.
  • the display substrate further comprises a protective layer located on a side of the second light regulating layer away from the substrate.
  • the adhesion force between the protective layer and the second light adjustment layer is F9
  • the adhesion force between the second light adjustment layer and the first light adjustment layer is F1
  • the display substrate further comprises a functional film layer located on a side of the protective layer away from the substrate, and the functional film layer comprises at least one of a hardening coating layer, an anti-fingerprint layer and an anti-glare layer.
  • a spliced display module comprising a plurality of splicing units, and the splicing units comprise the above-mentioned display substrate.
  • a display device is provided, wherein the display device includes the above-mentioned display substrate, or the display device includes the above-mentioned spliced display module.
  • the second light adjustment layer is located on the side of the first light adjustment layer away from the substrate, and the transmittance of the second light adjustment layer is less than the transmittance of the first light adjustment layer.
  • the second light adjustment layer can improve the blackness of the display substrate in a non-display state, which helps to improve the user experience; because the distance from the surface of the first light adjustment layer away from the substrate to the substrate is greater than the distance from the surface of the light-emitting unit away from the substrate to the substrate, it can be avoided that the light-emitting unit squeezes the second light adjustment layer to cause uneven thickness of the second light adjustment layer, thereby improving the uniformity of the thickness of the second light adjustment layer, which helps to improve the consistency of brightness at various locations of the display substrate at a wide viewing angle, thereby improving the user experience.
  • FIG1 is a partial cross-sectional view of a display substrate provided by an exemplary embodiment of the present application.
  • FIG2 is a graph showing the relationship between brightness and position of a display substrate at a large viewing angle for comparison
  • FIG3 is a graph showing the relationship between brightness and position of a display substrate at a large viewing angle provided by an exemplary embodiment of the present application
  • FIG4 is a partial cross-sectional view of a display substrate provided by another exemplary embodiment of the present application.
  • FIG5 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • FIG6 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • FIG7 is a graph showing the relationship between the color deviation value and the viewing angle of the display substrate when three display substrates include different first sub-layers;
  • FIG8 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • FIG9 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • FIG10 is a partial cross-sectional view of a spliced display module provided by an exemplary embodiment of the present application.
  • FIG. 11 is a partial cross-sectional view of a spliced display module provided by another exemplary embodiment of the present application.
  • first, second, third, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the embodiments of the present application provide a display substrate, a spliced display module and a display device.
  • the display substrate, the spliced display module and the display device in the embodiments of the present application are described in detail below in conjunction with the accompanying drawings. In the absence of conflict, the features in the following embodiments can complement or combine with each other.
  • the embodiment of the present application provides a display substrate.
  • the display substrate includes a substrate 10, a light emitting unit group 20 located on the substrate 10, a first light adjustment layer 30 located on the substrate 10, and a second light adjustment layer 40 located on a side of the first light adjustment layer 30 away from the substrate 10.
  • the first light adjustment layer 30 and the light emitting unit group 20 are located on the same side of the substrate 10.
  • the light emitting unit group 20 includes a plurality of light emitting units 21.
  • the distance between the surface of the first light adjusting layer 30 facing away from the substrate 10 and the substrate 10 is greater than the distance between the surface of the light emitting unit 21 facing away from the substrate 10 and the substrate 10.
  • the orthographic projection of the second light adjusting layer 40 on the substrate 10 covers the substrate 10.
  • the light transmittance of the first light adjusting layer 30 is greater than the light transmittance of the second light adjusting layer 40.
  • the second light adjustment layer 40 is located on the side of the first light adjustment layer 30 away from the substrate 10, and the transmittance of the second light adjustment layer 40 is less than the transmittance of the first light adjustment layer 30.
  • the second light adjustment layer 40 can improve the blackness of the display substrate in the non-display state, which helps to improve the user experience; because the distance from the surface of the first light adjustment layer 30 away from the substrate 10 to the substrate 10 is greater than the distance from the surface of the light-emitting unit 21 away from the substrate 10 to the substrate 10, it can be avoided that the light-emitting unit 21 squeezes the second light adjustment layer 40 to cause uneven thickness of the second light adjustment layer 40, thereby improving the uniformity of the thickness of the second light adjustment layer 40, which helps to improve the display
  • the display substrate has a consistent brightness at all locations under a wide viewing angle, thereby improving the user experience.
  • FIG. 2 is a graph showing the relationship between the brightness and position of a display substrate for comparison at a wide viewing angle
  • FIG. 3 is a graph showing the relationship between the brightness and position of a display substrate provided in an embodiment of the present application at a wide viewing angle.
  • the difference between the display substrate for comparison and the display substrate provided in an embodiment of the present application is that the first light adjustment layer is located on the side of the second light adjustment layer away from the substrate, and the second light adjustment layer is in contact with the light-emitting unit.
  • the display substrate for comparison and the display substrate provided in an embodiment of the present application both include a first end and a second end relative to each other, and the horizontal axis in FIG. 2 and FIG.
  • the vertical axis is the brightness. It can be seen from FIG. 2 and FIG. 3 that the brightness of the display substrate for comparison at a wide viewing angle changes regularly, and the brightness of the display substrate provided in an embodiment of the present application at a wide viewing angle changes irregularly, and the brightness consistency of the display substrate at different positions at a wide viewing angle is good.
  • the display substrate further includes a protection layer 50 located on a side of the second light adjustment layer 40 away from the substrate 10 .
  • the protection layer 50 can protect the second light adjustment layer 40 .
  • the light transmittance of the protective layer 50 is greater than that of the first light adjustment layer 30 , and the light emitted by the light emitting unit 21 has less loss when passing through the protective layer 50 .
  • the material of the protective layer 50 includes PET (Polyethylene terephthalate), PC (Polycarbonate), etc. This can make the light transmittance of the protective layer 50 higher and the hardness of the protective layer 50 greater, thereby improving the pressure resistance and anti-collision ability of the display substrate and providing better protection for the underlying film layer and light-emitting elements.
  • the preparation process of the display substrate can be as follows: first, the light-emitting unit 21 is fixed on the substrate 10 to obtain a first intermediate structure; then, a second light adjustment layer 40 and a first light adjustment layer 30 located on the side of the second light adjustment layer 40 away from the protective layer 50 are formed on the protective layer 50 to obtain a second intermediate structure; then, the first intermediate structure and the second intermediate structure are vacuum pressed together, and the first light adjustment layer 30 is in contact with the light-emitting unit 21, so as to obtain the display substrate.
  • the substrate 10 may be a flexible substrate or a rigid substrate.
  • the material of the flexible substrate may include polyimide, polyethylene terephthalate, polycarbonate, organic
  • One or more of the resin materials, the organic resin material may include epoxy resin, triazine, silicone resin or polyimide, etc.
  • the rigid substrate includes any one of a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, etc.; or a semiconductor substrate such as a single crystal semiconductor substrate or a polycrystalline semiconductor substrate with silicon or silicon carbide as a material, a compound semiconductor substrate of silicon germanium, etc., an SOI (Silicon On Insulator; Silicon on Insulator) substrate, etc.
  • the substrate may include a ceramic material such as silicon nitride, AlN or Al2O3, or a metal or a metal compound, or any one of a metal core printed circuit board (MCPCB) or a metal copper clad laminate (MCCL).
  • the substrate 10 may include a substrate substrate and a driving circuit layer formed on the substrate substrate, the driving circuit layer includes a pixel circuit for driving a light-emitting element and an insulating film layer, and the light-emitting element is electrically connected to the pixel circuit.
  • the light emitting unit group 20 includes light emitting units 21 of three light emitting colors, namely, a light emitting unit 21 of red light emitting color, a light emitting unit 21 of green light emitting color, and a light emitting unit 21 of blue light emitting color.
  • the light emitting unit 21 is a Mini LED or a Micro LED
  • the size of the Mini LED is approximately 100 ⁇ m to 500 ⁇ m
  • the size of the Micro LED is less than 100 ⁇ m.
  • the orthographic projection of the first light adjustment layer 30 on the substrate 10 covers the substrate 10. That is, the first light adjustment layer 30 covers the light emitting unit 21 and the gap between adjacent light emitting units 21. This is more conducive to avoiding the extrusion of the second light adjustment layer 40 by the light emitting unit 21, further improving the uniformity of the thickness of the second light effect adjustment layer 40, and more effectively improving the consistency of the brightness of the display substrate at a large viewing angle; and the light emitted by the light emitting unit 21 almost all passes through the first light adjustment layer 30 during the emission process, which also helps to improve the uniformity of the brightness of the display substrate.
  • the surface of the first light adjustment layer 30 facing away from the substrate 10 is flush at all places, which is helpful to improve the thickness uniformity of the second light adjustment layer 40 .
  • the adhesion between the second light adjustment layer 40 and the first light adjustment layer 30 is F1
  • the adhesion between the first light adjustment layer 30 and the light emitting unit 21 is F2, and F1>F2.
  • the first light adjustment layer 30 is During the process of tearing off the line adjustment layer 30 and the second light adjustment layer 40 from the light emitting unit 21, it can be ensured that the first light adjustment layer 30 and the second light adjustment layer 40 are not separated when the first light adjustment layer 30 is separated from the light emitting unit 21, thereby avoiding the situation where the first light adjustment layer 30 and the second light adjustment layer 40 are separated while the first light adjustment layer 30 and the light emitting unit 21 are still adhered together.
  • the first light adjustment layer 30 and the second light adjustment layer 40 can be smoothly torn off from the light emitting unit 21 together, which helps to achieve rework of the light emitting unit 21.
  • the adhesion between the protective layer 50 and the second light adjustment layer 40 is F9, and F9 ⁇ F1.
  • the first light adjustment layer 30 includes a first sublayer 31, the orthographic projection of the first sublayer 31 on the substrate 10 covers the orthographic projection of each of the light-emitting units 21 on the substrate 10; the first sublayer 31 includes a light-transmitting material 311 and scattering particles 312 dispersed in the light-transmitting material 311.
  • the orthographic projection of the first sublayer 31 on the substrate 10 By setting the orthographic projection of the first sublayer 31 on the substrate 10 to cover the orthographic projection of each of the light-emitting units 21 on the substrate 10, the light emitted by the light-emitting unit 21 passes through the first sublayer 31 during the emission process, and the first sublayer 31 can enhance the scattering degree of the light emitted by the light-emitting unit 21, increase the viewing angle of the display substrate; and reduce the color difference of the light between the orthographic viewing angle and the wide viewing angle, thereby improving the user experience.
  • the orthographic projection of the first sublayer 31 on the substrate 10 covers the substrate 10. In this way, the light emitted by the light-emitting unit 21 almost all passes through the first sublayer 31 in the process of being emitted in the direction away from the substrate 10, which is more conducive to increasing the visual effect of the display substrate and reducing the chromatic aberration of light at the normal viewing angle and the wide viewing angle.
  • the scattering particles 312 include first particles 313 and second particles 314, and the light transmittance of the first particles 313 is greater than the light transmittance of the second particles 314.
  • the scattering particles 312 include first particles 313 and the second particles 314 with different light transmittances, compared with the case where the scattering particles 312 are all the second particles 314, the first sublayer The light transmittance of 31 is improved, and the light loss in the emission process of the light-emitting unit 21 is reduced; compared with the case where all the scattering particles 312 are first particles 313, the color difference between macroscopic vision and normal vision can be reduced, which helps to improve the user experience.
  • the second particles 314 are white particles.
  • the material of the second particles includes at least one of titanium dioxide and zinc oxide.
  • the material of the first particle 313 includes at least one of silicon dioxide, polymethyl methacrylate (PMMA) and polystyrene (PS).
  • the mass ratio of the first particles 313 in the first sub-layer 31 is in the range of 10% to 20%, and the mass ratio of the second particles 314 in the first sub-layer is in the range of 1% to 5%. In this way, the color difference between the wide viewing angle and the normal viewing angle can be effectively reduced while ensuring the high light transmittance of the first sub-layer 31.
  • the mass ratio of the first particles 313 in the first sub-layer 31 can be 10%, 12%, 14%, 16%, 17%, 20%, etc.; the mass ratio of the second particles 314 in the first sub-layer 31 can be 1%, 2%, 3%, 4%, 5%, etc.
  • the particle size of the first particles ranges from 4 ⁇ m to 6 ⁇ m
  • the particle size of the second particles ranges from 400 nm to 600 nm.
  • the particle size of the second particles may be 400 nm, 450 nm, 500 nm, 550 nm, 600 nm, etc., and the average particle size of the second particles may be about 500 nm;
  • the particle size of the first particles may be 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, etc., and the average particle size of the first particles may be about 5 ⁇ m.
  • FIG7 is a graph showing the relationship between the color deviation value ⁇ u'v' and the viewing angle of the three display substrates when the display substrates include different first sublayers, wherein curve a is the relationship between the color deviation value and the viewing angle of the display substrate when the scattering particles in the first sublayer are all first particles, curve b is the relationship between the color deviation value and the viewing angle of the display substrate when the scattering particles in the first sublayer include first particles and second particles, and curve c is the relationship between the color deviation value and the viewing angle of the display substrate when the scattering particles in the first sublayer are all second particles.
  • the thickness of the first sublayer is 50 ⁇ m.
  • the color deviation value of the display substrate at a large viewing angle is 0.029
  • the color deviation value of the display substrate at a large viewing angle is 0.029
  • the color deviation value of the large viewing angle of the display substrate is 0.014
  • the scattering particles in the second sub-layer include first particles and second particles, the color deviation value of the large viewing angle of the display substrate is 0.016.
  • the color deviation value of the large viewing angle of the display substrate is the largest, and when all the scattering particles in the first sub-layer are second particles, the color deviation value of the large viewing angle of the display substrate is the smallest; when the scattering particles in the first sub-layer include first particles and second particles, the color deviation value of the large viewing angle of the display substrate is in the middle.
  • the embodiment of the present application has been subjected to simulation tests on the above three different display substrates, and the thickness of the first sublayer in the three display substrates is 50 ⁇ m.
  • the difference between the three display substrates lies in the different scattering particles in the first sublayer.
  • the following results were obtained through simulation tests: when the scattering particles in the first sublayer are all first particles, the transmittance of the display substrate is 135%, when the scattering particles in the first sublayer are all second particles, the transmittance of the display substrate is 100%, and when the scattering particles in the first sublayer include first particles and second particles, the transmittance of the display substrate is 118%.
  • the transmittance of the display substrate is the largest, and when the scattering particles in the first sublayer are all second particles, the transmittance of the display substrate is the smallest; when the scattering particles in the first sublayer include first particles and second particles, the transmittance of the display substrate is in the middle.
  • the scattering particles in the first sublayer of the display substrate include first particles and second particles.
  • the light transmittance of the first sub-layer 31 is in the range of 45% to 70%. In some embodiments, the light transmittance of the first sub-layer 31 is 45%, 50%, 55%, 60%, 65%, 70%, etc.
  • the first light adjustment layer 30 further includes a second sublayer 32 located on the side of the first sublayer 31 away from the substrate 10, and the first sublayer 31 covers each of the light emitting units 21; the hardness of the second sublayer 32 is greater than the hardness of the first sublayer 31. Since the second sublayer 32 is in contact with the second light adjustment layer 40, and the first sublayer 31 is in contact with the light emitting unit 21, by setting the hardness of the second sublayer 32 to be greater than the hardness of the first sublayer 31, the second sublayer 32 can more effectively avoid the light emitting unit 21 from squeezing the second light adjustment layer 40, thereby improving the second light adjustment layer 40.
  • the thickness uniformity of the light adjustment layer 40 when the light-emitting unit 21 needs to be reworked, the film layer located on the side of the light-emitting unit 21 away from the substrate 10 needs to be separated from the light-emitting unit 21. Since the hardness of the first sub-layer 31 is relatively small, the first sub-layer 31 is relatively soft and easier to separate from the light-emitting unit 21, which helps the rework of the light-emitting unit 21.
  • the light transmittance of the first sublayer 31 is less than the light transmittance of the second sublayer 32. In this way, the light transmittance of the first light regulating layer 30 can be improved while ensuring that the first light regulating layer 30 and the light emitting unit 21 are easily separated, which helps to reduce the power consumption of the display substrate while the brightness of the display substrate remains unchanged.
  • the adhesion between the second light adjustment layer 40 and the second sub-layer 32 is F3
  • the adhesion between the second sub-layer 32 and the first sub-layer 31 is F4
  • the adhesion between the first sub-layer 31 and the light-emitting unit 21 is F5, and F3 ⁇ F4>F5.
  • the size range of F3 and F4 may be 22N to 25N, and the size range of F5 may be 15N to 18N.
  • F3 and F4 are both 22N, 23N, 24N, 25N, etc.
  • F5 may be 15N, 16N, 17N, 18N, etc.
  • the second sub-layer 32 is doped with auxiliary particles, which can increase the hardness of the second sub-layer 32 and reduce the creep of the second sub-layer 32.
  • the auxiliary particles are, for example, ultraviolet particles, and the hardness of the second sub-layer 32 increases after being irradiated with ultraviolet light.
  • the creep of the second sub-layer 32 is 1.7 when the auxiliary particles are not doped, and the creep of the first sub-layer is 1.1 after the auxiliary particles are doped.
  • the light-transmitting material of the second sub-layer 32 is a thermosetting material, and the purpose of increasing the hardness of the second sub-layer 32 is achieved by increasing the temperature of the second sub-layer 32.
  • the first light adjustment layer 30 further includes The first sublayer 31 faces the second sublayer 32 on the side of the substrate 10, and the hardness of the first sublayer 31 is greater than the hardness of the second sublayer 32. Since the first sublayer 31 is in contact with the second light adjustment layer 40, and the second sublayer 32 is in contact with the light emitting unit 21, by setting the hardness of the first sublayer 31 to be greater than the hardness of the second sublayer 32, the first sublayer 31 can more effectively avoid the light emitting unit 21 from squeezing the second light adjustment layer 40, thereby improving the thickness uniformity of the second light adjustment layer 40; when the light emitting unit 21 needs to be reworked, the film layer located on the side of the light emitting unit 21 away from the substrate 10 needs to be separated from the light emitting unit 21. Since the hardness of the second sublayer 32 is relatively small, that is, it is relatively soft, it is easier to separate from the light emitting unit 21, which is helpful for the rework of the light emitting
  • the transmittance of the first sublayer 31 is less than the transmittance of the second sublayer 32.
  • Such a configuration can reduce the influence on the transmittance of the first light adjustment layer 30 while ensuring that the first light adjustment layer 30 and the light emitting unit 21 are easy to separate, and help reduce the power consumption of the display substrate while the brightness of the display substrate remains unchanged.
  • the hardness of the first sublayer 31 is greater than that of the second sublayer 32, and the first sublayer 31 is not prone to edge loss when adjacent display substrates collide during the splicing of the display substrates; the second sublayer 32 has a large transmittance, and even if the second sublayer 32 has edge loss during the splicing of the display substrates, the display effect of the display substrate is less affected.
  • the adhesion between the second light adjustment layer 40 and the first sub-layer 31 is F6
  • the adhesion between the first sub-layer 31 and the second sub-layer 32 is F7
  • the adhesion between the second sub-layer 32 and the light emitting unit 21 is F8, and F6 ⁇ F7>F8.
  • the size range of F6 and F7 may be 22N to 25N, and the size range of F8 may be 15N to 18N.
  • F6 and F7 are both 22N, 23N, 24N, 25N, etc.
  • F8 It can be 15N, 16N, 17N, 18N, etc.
  • the first sublayer 31 is doped with auxiliary particles, which can increase the hardness of the first sublayer 31 and reduce the creep of the first sublayer 31.
  • the auxiliary particles are, for example, ultraviolet particles, and the first sublayer 31 becomes harder after being irradiated by ultraviolet light.
  • the light-transmitting material of the first sublayer 31 is a thermosetting material, and the purpose of increasing the hardness of the first sublayer 31 is achieved by increasing the temperature of the first sublayer 31.
  • the surface of the first sublayer 31 facing the substrate 10 is in direct contact with the light-emitting unit 21, and the surface of the first sublayer 31 facing away from the substrate 10 is in direct contact with the second light adjustment layer 40. That is, the first light adjustment layer 30 only includes the first sublayer 31. In this way, there is no other film layer between the light-emitting unit 21 and the first sublayer 31, which can avoid the first sublayer 31 being affected by other film layers, resulting in uneven thickness of the first sublayer 31 located on the top of the light-emitting unit 21. The scattering effect of the first sublayer 31 on each light-emitting unit 21 is more consistent, which helps to improve the display effect of the display substrate.
  • the first sublayer 31 is in direct contact with the light-emitting unit 21, which means that there is no other film layer between the first sublayer 31 and the light-emitting unit 21.
  • some areas of the surface of the first sublayer 31 facing the light-emitting unit 21 are not smooth, resulting in a gap between the first sublayer 31 and the light-emitting unit 21.
  • the adhesion between the second light adjustment layer 40 and the first sub-layer 31 (that is, the first light adjustment layer 30) is F1
  • the adhesion between the first sub-layer 31 (that is, the first light adjustment layer 30) and the light emitting unit 21 is F2
  • the size range of F1 can be 22N ⁇ 25N
  • the size range of F2 can be 15N ⁇ 18N.
  • F1 can be 22N, 23N, 24N, 25N, etc.
  • F2 can be 15N, 16N, 17N, 18N, etc.
  • the thickness of the first light adjustment layer 30 is in the range of 150 ⁇ m to 175 ⁇ m. This arrangement ensures that the surface of the first light adjustment layer 30 facing away from the substrate 10 exceeds the surface of the light emitting unit 21 facing away from the substrate 10, and also prevents the first light adjustment layer 30 from being too thick, which may cause the display to be In some embodiments, the thickness of the first light adjustment layer 30 may be 150 ⁇ m, 155 ⁇ m, 160 ⁇ m, 165 ⁇ m, 170 ⁇ m, 175 ⁇ m, etc.
  • the thickness of the second light adjustment layer 40 is in the range of 25 ⁇ m to 50 ⁇ m.
  • the thickness of the second light adjustment layer 40 is 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, etc.
  • the transmittance of the second light adjustment layer 40 is in the range of 25% to 40%, which can ensure the blackness of the display substrate in the non-display state and avoid the light utilization rate of the display substrate in the display state being too low, which leads to increased power consumption of the display substrate, thus helping to improve the user experience.
  • the second light adjustment layer 40 may include a light-transmitting material and black ions doped in the light-transmitting material, such as carbon black.
  • the second light adjustment layer 40 may include a light-transmitting material and a black dye material doped in the light-transmitting material.
  • the second light adjustment layer 40 is doped with auxiliary particles, which can increase the hardness of the second light adjustment layer 40 and reduce the creep of the second light adjustment layer 40.
  • the auxiliary particles are, for example, ultraviolet particles, and the hardness of the second light adjustment layer 40 increases after being irradiated with ultraviolet light.
  • the light-transmitting material of the second light adjustment layer 40 is a thermosetting material, and the purpose of increasing its hardness is achieved by increasing the temperature of the second light adjustment layer 40. In this way, the hardness of the second light adjustment layer 40 is relatively large, and in the process of splicing multiple display substrates, it can be avoided that the adjacent display substrates collide and cause the edge of the second light adjustment layer 40 to be missing.
  • the display substrate further includes a functional film layer 70 located on the side of the protective layer 50 away from the substrate 10, and the functional film layer 70 includes at least one of a hardening coating, an anti-fingerprint layer, and an anti-glare layer.
  • the hardening coating can increase the hardness of the surface of the display substrate to prevent scratches; the anti-fingerprint film layer can prevent fingerprints from being left on the display surface of the display substrate; the anti-glare layer can reduce glare caused by reflection and other factors.
  • the display substrate includes a functional film layer 70, which is multiplexed as a hardening coating, an anti-fingerprint layer, and an anti-glare layer. As shown in FIG7 , a plurality of protruding structures 71 are formed on the surface of the functional film layer 70 away from the substrate 10.
  • the light-transmitting materials of the first light-adjusting layer 30 and the second light-adjusting layer 40 can both be acrylic colloids.
  • the light-emitting substrate further comprises a driving circuit layer, the driving circuit layer being located between the light-emitting unit and the substrate.
  • the driving circuit layer comprises a plurality of pixel circuits and signal wirings, the pixel circuits and signal wirings being electrically connected to the light-emitting unit.
  • the embodiment of the present application further provides a spliced display module, as shown in FIG. 10 and FIG. 11 , wherein the spliced display module includes a plurality of display substrates 81 described in any of the above embodiments.
  • the splicing display module further includes a plurality of first splicing frames 82, on which the display substrates 81 are fixed, and on each first splicing frame 82, a display substrate 81 is fixed. Adjacent first splicing frames 82 are spliced together.
  • the splicing display module further includes a plurality of first splicing frames 82 and a plurality of second splicing frames 83, and a plurality of first splicing frames 82 are fixed on each second splicing frame 83.
  • the display substrate 81 is fixed on the first splicing frame 82, and a display substrate 81 is fixed on each first splicing frame 82.
  • adjacent first splicing frames 82 are spliced together.
  • Adjacent second splicing frames 83 are spliced together.
  • At least two display modules in the spliced display module share the protective layer, the second light adjustment layer and the first light adjustment layer.
  • each display module fixed on the same first splicing frame 82 in the spliced display module can share the protective layer, the second light adjustment layer and the first light adjustment layer.
  • An embodiment of the present application further provides a display device, which includes the display substrate described in any of the above embodiments.
  • the display device further includes a housing, and the display substrate is embedded in the housing.
  • the display device provided in the embodiments of the present application may be any appropriate display device, including but not limited to mobile phones, tablet computers, televisions, monitors, laptop computers, digital photo frames, navigators, e-books, and any other products or components with display functions.
  • An embodiment of the present application further provides another display device, which includes the splicing display module described in any of the above embodiments.
  • the display device further includes a housing, and the spliced display module is embedded in the housing.
  • the display device provided in the embodiments of the present application may be any appropriate display device, including but not limited to mobile phones, tablet computers, televisions, monitors, laptop computers, digital photo frames, navigators, e-books, and any other products or components with display functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种显示基板、拼接显示模组及显示装置。所述显示基板包括衬底、位于所述衬底上的发光单元组、位于所述衬底上的第一光线调节层及位于所述第一光线调节层背离所述衬底一侧的第二光线调节层。所述发光单元组包括多个发光单元。所述第一光线调节层背离所述衬底的表面到所述衬底的距离大于所述发光单元背离所述衬底的表面到所述衬底的距离。所述第二光线调节层在所述衬底上的正投影覆盖所述衬底;所述第一光线调节层的透光率大于所述第二光线调节层的透光率。所述拼接显示模组包括多个拼接单元,所述拼接单元包括所述显示基板。所述显示装置包括所述显示基板或所述拼接显示模组。

Description

显示基板、拼接显示模组及显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示基板、拼接显示模组及显示装置。
背景技术
次毫米发光二极管(Mini Light Emitting Diode,简称Mini LED)尺寸约为100-300μm。微型发光二极管(Micro Light Emitting Diode,简称Micro LED)尺寸为100μm以下。由于其具有较好的显示效果,同时具有较高的对比度、寿命长等优势,因此在显示领域使用趋势明显。
发明内容
本申请提供了一种显示基板、拼接显示模组及显示装置。
根据本申请实施例的第一方面,提供了一种显示基板。所述显示基板包括:
衬底;
位于所述衬底上的发光单元组,所述发光单元组包括多个发光单元;
位于所述衬底上的第一光线调节层;所述第一光线调节层背离所述衬底的表面到所述衬底的距离大于所述发光单元背离所述衬底的表面到所述衬底的距离;
位于所述第一光线调节层背离所述衬底一侧的第二光线调节层,所述第二光线调节层在所述衬底上的正投影覆盖所述衬底;所述第一光线调节层的透光率大于所述第二光线调节层的透光率。
在一个实施例中,所述第一光线调节层包括第一子层,所述第一子层在所述衬底上的正投影覆盖各所述发光单元在所述衬底上的正投影;所述第一子层包括透光材料及分散在所述透光材料中的散射粒子。
在一个实施例中,所述散射粒子包括第一粒子及第二粒子,所述第一粒子的透光率大于所述第二粒子的透光率。
在一个实施例中,所述第一粒子在所述第一子层中所占的质量比的范围为10%~20%,所述第二粒子在所述第一子层中所占的质量比的范围1%~5%;
和/或,第一子层的透光率范围为45%~70%。
在一个实施例中,所述第一粒子的材料包括二氧化硅、聚甲基丙烯酸甲脂与聚苯乙烯中的至少一种,所述第二粒子的材料包括二氧化钛与氧化锌中的至少一种;所述第一粒子的粒径范围为400nm~600nm,所述第二粒子的粒径范围为4μm~6μm。
在一个实施例中,所述第一光线调节层还包括位于所述第一子层背离所述衬底一侧的第二子层,所述第一子层覆盖各所述发光单元;所述第二子层的硬度大于所述第一子层的硬度。
在一个实施例中,所述第一光线调节层还包括位于所述第一子层朝向所述衬底一侧的第二子层,所述第一子层的硬度大于所述第二子层的硬度。
在一个实施例中,所述第一子层的透光率小于所述第二子层的透光率。
在一个实施例中,所述第一子层朝向所述衬底的表面与所述发光单元直接接触,所述第一子层背离所述衬底的表面与所述第二光线调节层直接接触。
在一个实施例中,所述第二光线调节层与所述第一光线调节层之间的粘附力为F1,所述第一光线调节层与所述发光单元之间的粘附力为F2,F1>F2。
在一个实施例中,所述第一光线调节层包括第一子层及位于所述第一子层背离所述衬底一侧的第二子层;所述第二光线调节层与所述第二子层之间的粘附力为F3,所述第二子层与所述第一子层之间的粘附力为F4,所述第一子层与所述发光单元之间的粘附力为F5,F3≥F4>F5;或者,
所述第一光线调节层包括第一子层及位于所述第一子层朝向所述衬底 一侧的第二子层;所述第二光线调节层与所述第一子层之间的粘附力为F6,所述第一子层与所述第二子层之间的粘附力为F7,所述第二子层与所述发光单元之间的粘附力为F8,F6≥F7>F8。
在一个实施例中,所述第二光线调节层的厚度范围为25μm~50μm;和/或,所述第二光线调节层的透过率范围为25%~40%。
在一个实施例中,所述显示基板还包括位于所述第二光线调节层背离所述衬底一侧的保护层。
在一个实施例中,所述保护层与所述第二光线调节层之间的粘附力为F9,所述第二光线调节层与所述第一光线调节层之间的粘附力为F1,F9≥F1。
在一个实施例中,所述显示基板还包括位于所述保护层背离所述衬底一侧的功能膜层,所述功能膜层包括硬化涂层、防指纹层及防眩光层中的至少一种。
根据本申请实施例的第二方面,提供了一种拼接显示模组,所述拼接显示模组包括多个拼接单元,所述拼接单元包括上述的显示基板。
根据本申请实施例的第三方面,提供了一种显示装置,所述显示装置包括上述的显示基板,或者,所述显示装置包括上述的拼接显示模组。
本申请实施例提供的显示基板、拼接显示模组及显示装置,第二光线调节层位于第一光线调节层背离衬底的一侧,第二光线调节层的透光率小于第一光线调节层的透光率,则第二光线调节层可提升显示基板在未显示状态下的黑度,有助于提升用户的使用体验;由于第一光线调节层背离衬底的表面到衬底的距离大于发光单元背离衬底的表面到衬底的距离,可避免发光单元挤压第二光线调节层而导致第二光线调节层的厚度不均匀,提升第二光线调节层厚度的均匀性,有助于提升显示基板在大视角下各处亮度的一致性,进而提升用户的使用体验。
附图说明
图1是本申请一示例性实施例提供的显示基板的局部剖视图;
图2为作为对比的显示基板在大视角下的亮度与位置的关系曲线图;
图3为本申请一示例性实施例提供的显示基板在大视角下的亮度与位置的关系曲线图;
图4是本申请另一示例性实施例提供的显示基板的局部剖视图;
图5是本申请再一示例性实施例提供的显示基板的局部剖视图;
图6是本申请又一示例性实施例提供的显示基板的局部剖视图;
图7为三种显示基板包括不同的第一子层时显示基板的色偏差值与视角的关系曲线图;
图8是本申请又一示例性实施例提供的显示基板的局部剖视图;
图9是本申请又一示例性实施例提供的显示基板的局部剖视图;
图10是本申请一示例性实施例提供的拼接显示模组的局部剖视图;
图11是本申请另一示例性实施例提供的拼接显示模组的局部剖视图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请实施例提供了一种显示基板、拼接显示模组及显示装置。下面结合附图,对本申请实施例中的显示基板、拼接显示模组及显示装置进行详细说明。在不冲突的情况下,下述的实施例中的特征可以相互补充或相互组合。
本申请实施例提供了一种显示基板。如图1所示,所述显示基板包括衬底10、位于所述衬底10上的发光单元组20、位于所述衬底10上的第一光线调节层30和位于所述第一光线调节层30背离所述衬底10一侧的第二光线调节层40。第一光线调节层30和发光单元组20位于衬底10的同一侧。
所述发光单元组20包括多个发光单元21。所述第一光线调节层30背离所述衬底10的表面到所述衬底10的距离大于所述发光单元21背离所述衬底10的表面到所述衬底10的距离。所述第二光线调节层40在所述衬底10上的正投影覆盖所述衬底10。所述第一光线调节层30的透光率大于所述第二光线调节层40的透光率。
本申请实施例提供的显示基板,第二光线调节层40位于第一光线调节层30背离衬底10的一侧,第二光线调节层40的透光率小于第一光线调节层30的透光率,则第二光线调节层40可提升显示基板在未显示状态下的黑度,有助于提升用户的使用体验;由于第一光线调节层30背离衬底10的表面到衬底10的距离大于发光单元21背离衬底10的表面到衬底10的距离,可避免发光单元21挤压第二光线调节层40而导致第二光线调节层40的厚度不均匀,提升第二光线调节层40厚度的均匀性,有助于提升显 示基板在大视角下各处亮度的一致性,进而提升用户的使用体验。
图2为一种作为对比的显示基板在大视角下的亮度与位置的关系曲线图,图3为本申请实施例提供的显示基板在大视角下的亮度与位置的关系曲线图。其中作为对比的显示基板与本申请实施例提供的显示基板的区别在于,第一光线调节层位于第二光线调节层背离衬底的一侧,第二光线调节层与发光单元接触。作为对比的显示基板及本申请实施例提供的显示基板均包括相对的第一端和第二端,图2与图3中的横坐标为不同位置到第一端的距离与第一端到第二端的距离的比值,纵坐标为亮度。由图2及图3可以看出,作为对比的显示基板在大视角下的亮度呈有规律的变化,本申请实施例提供的显示基板在大视角下的亮度呈无规律的变化,显示基板在大视角下不同位置的亮度一致性较好。
在一个实施例中,所述显示基板还包括位于所述第二光线调节层40背离所述衬底10一侧的保护层50。保护层50可保护第二光线调节层40。
在一个实施例中,所述保护层50的透光率大于第一光线调节层30,发光单元21发射的光线经过保护层50时损失较少。
在一个实施中,所述保护层50的材料包括PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)、PC(Polycarbonate,聚碳酸酯)等。如此可使得保护层50的透光率较高,且可使得保护层50的硬度较大,提升显示基板的抗压能力及防磕碰能力,对下方膜层及发光元件的保护效果更好。
在一个实施例中,所述显示基板的制备过程可如下:首先将发光单元21固定在衬底10上,得到第一中间结构;之后在保护层50上形成第二光线调节层40及位于第二光线调节层40背离保护层50一侧的第一光线调节层30,得到第二中间结构;之后将第一中间结构与第二中间结构进行真空压合,且第一光线调节层30与发光单元21接触,即可得到显示基板。
在一个实施例中,衬底10可以是柔性衬底,也可以是刚性衬底。柔性衬底的材料可以包括聚酰亚胺、聚对苯二甲酸乙二醇酯、聚碳酸酯、有机 树脂材料中的一种或多种,有机树脂材料可以包括环氧树脂、三嗪、硅树脂或聚酰亚胺等。刚性衬底包括诸如玻璃衬底、石英衬底、蓝宝石衬底、陶瓷衬底等中的任一种;或者半导体衬底诸如以硅或碳化硅等为材料的单晶半导体衬底或多晶半导体衬底、硅锗等的化合物半导体衬底、SOI(Silicon On Insulator;绝缘体上硅)衬底等中的任一种。在一些示例实施例中,衬底可以包括诸如氮化硅、AlN或Al2O3的陶瓷材料,或者金属或金属化合物,或者金属芯印刷电路板(MCPCB)或金属覆铜层压板(MCCL)中的任一种。在一些实施例中,所述衬底10可包括衬底基板及形成于衬底基板上的驱动电路层,驱动电路层包括用于驱动发光元件的像素电路及绝缘膜层,发光元件与像素电路电连接。
在一个实施例中,所述发光单元组20包括三种发光颜色的发光单元21,分别为发光颜色为红色的发光单元21、发光颜色为绿色的发光单元21及发光颜色为蓝色的发光单元21。
在一个实施例中,所述发光单元21为Mini LED或Micro LED,Mini LED的尺寸大约为100μm~500μm,Micro LED的尺寸小于100μm。
在一个实施例中,所述第一光线调节层30在衬底10上的正投影覆盖衬底10。也即是,第一光线调节层30覆盖发光单元21及相邻发光单元21之间的间隙。如此更利于避免发光单元21对第二光线调节层40的挤压,进一步提升第二光效调节层40厚度的均匀性,可更有效地提升显示基板在大视角下各处亮度的一致性;并且发光单元21发射的光线在出射的过程中几乎全部通过第一光线调节层30,也有助于提升显示基板亮度的均匀性。
在一个实施例中,所述第一光线调节层30背离衬底10的表面各处齐平。如此更有助于提升第二光线调节层40的厚度均匀性。
在一个实施例中,所述第二光线调节层40与所述第一光线调节层30之间的粘附力为F1,所述第一光线调节层30与所述发光单元21之间的粘附力为F2,F1>F2。发光单元21需要返工时,需将第一光线调节层30与第二光线调节层40从发光单元21上撕下。由于F1>F2,则在将第一光 线调节层30与第二光线调节层40从发光单元21上撕下的过程中,可保证在第一光线调节层30与发光单元21分离时第一光线调节层30与第二光线调节层40不发生分离,避免出现第一光线调节层30与第二光线调节层40发生分离,而第一光线调节层30与发光单元21仍粘附在一起的情况,可顺利将第一光线调节层30与第二光线调节层40一起从发光单元21上撕下,有助于实现发光单元21的返工。
进一步地,所述保护层50与所述第二光线调节层40之间的粘附力为F9,F9≥F1。如此设置,发光单元21需要返工时,在将保护层50、第一光线调节层30与第二光线调节层40从发光单元21上撕下的过程中,可保证保护层50与第二光线调节层40不分离,从而顺利将保护层50、第一光线调节层30与第二光线调节层40一起从发光单元21上撕下。
在一个实施例中,如图4至图6所示,所述第一光线调节层30包括第一子层31,所述第一子层31在所述衬底10上的正投影覆盖各所述发光单元21在所述衬底10上的正投影;所述第一子层31包括透光材料311及分散在所述透光材料311中的散射粒子312。通过设置第一子层31在衬底10上的正投影覆盖各发光单元21在衬底10上的正投影,则发光单元21发射的光线在出射的过程中经过第一子层31,第一子层31可增强发光单元21发射的光线的散射程度,增大显示基板的视角;且可减小正视角与大视角的光线色差,提升用户的使用体验。
在一个实施例中,所述第一子层31在衬底10上的正投影覆盖衬底10。如此设置,发光单元21发射的光线在向背离衬底10的方向出射的过程中几乎全部通过第一子层31,更利于增大显示基板的视觉,减小正视角与大视角的光线色差。
在一个实施例中,如图4至图6所示,所述散射粒子312包括第一粒子313及第二粒子314,所述第一粒子313的透光率大于所述第二粒子314的透光率。通过设置散射粒子包括透光率不同的第一粒子313和第二粒子314,相对于散射粒子312均为第二粒子314的情况下,可使得第一子层 31的透光率提升,减小发光单元21出射过程中的光线损失;相对于散射粒子312均为第一粒子313的情况下,可减小大视觉与正视觉的色差,有助于提升用户的使用体验。
在一个实施例中,所述第二粒子314为白色粒子。所述第二粒子的材料包括二氧化钛与氧化锌中的至少一种。
在一个实施例中,所述第一粒子313的材料包括二氧化硅、聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)与聚苯乙烯(Polystyrene,PS)中的至少一种。
在一个实施例中,所述第一粒子313在所述第一子层31中所占的质量比的范围为10%~20%,所述第二粒子314在所述第一子层中所占的质量比的范围1%~5%。如此设置,可保证第一子层31的透光率较高的前提下,有效减小大视角与正视角的色差。在一些实施例中,所述第一粒子313在所述第一子层31中所占的质量比可为10%、12%、14%、16%、17%、20%等;所述第二粒子314在所述第一子层31中所占的质量比可为1%、2%、3%、4%、5%等。
在一个实施例中,所述第一粒子的粒径范围为4μm~6μm,所述第二粒子的粒径范围为400nm~600nm。在一些实施例中,所述第二粒子的粒径可为400nm、450nm、500nm、550nm、600nm等,第二粒子的平均粒径可约为500nm;第一粒子的粒径可为4μm、4.5μm、5μm、5.5μm、6μm等,第一粒子的平均粒径可约为5μm。
图7为三种显示基板包括不同的第一子层时显示基板的色偏差值△u’v’与视角的关系曲线图,其中曲线a为第一子层中的散射粒子均为第一粒子时显示基板的色偏差值与视角的关系曲线,曲线b为第一子层中的散射粒子包括第一粒子和第二粒子时显示基板的色偏差值与视角的关系曲线,曲线c为第一子层中的散射粒子均为第二粒子时显示基板的色偏差值与视角的关系曲线,第一子层的厚度为50μm。由图7可以看出,第一子层中的散射粒子均为第一粒子时显示基板的大视角的色偏差值为0.029,第二子 层中的散射粒子均为第二粒子时显示基板的大视角的色偏差值为0.014,第二子层中的散射粒子包括第一粒子和第二粒子时显示基板的大视角的色偏差值为0.016。也即是,第一子层中的散射粒子均为第一粒子时显示基板的大视角的色偏差值最大,第一子层中的散射粒子均为第二粒子时显示基板的大视角的色偏差值最小;第一子层中的散射粒子包括第一粒子和第二粒子时显示基板的大视角的色偏差值居中。
本申请实施例对上述三种不同的显示基板进行经过模拟试验,三种显示基板中第一子层的厚度均为50μm。三种显示基板的不同之处在于第一子层中的散射粒子的不同。经过模拟试验得到如下结果:第一子层中的散射粒子均为第一粒子时显示基板的透光率为135%,第一子层中的散射粒子均为第二粒子时显示基板的透光率为100%,第一子层中的散射粒子包括第一粒子和第二粒子时显示基板的透光率为118%。也即是,第一子层中的散射粒子均为第一粒子时显示基板的透光率最大,第一子层中的散射粒子均为第二粒子时显示基板的透光率最小;第一子层中的散射粒子包括第一粒子和第二粒子时显示基板的透光率居中。
结合图7及模拟试验的结果,综合考虑显示基板的透光率和大视角的色偏差值,优选显示基板的第一子层中的散射粒子包括第一粒子和第二粒子。
在一个实施例中,所述第一子层31的透光率范围为45%~70%。在一些实施例中,所述第一子层31的透光率为45%、50%、55%、60%、65%、70%等。
在一个实施例中,如图4所示,所述第一光线调节层30还包括位于所述第一子层31背离所述衬底10一侧的第二子层32,所述第一子层31覆盖各所述发光单元21;所述第二子层32的硬度大于所述第一子层31的硬度。由于第二子层32与第二光线调节层40接触,第一子层31与发光单元21接触,通过设置第二子层32的硬度大于第一子层31的硬度,则第二子层32可更有效地避免发光单元21对第二光线调节层40的挤压,提升第二 光线调节层40的厚度均匀性;当发光单元21需要返工时,需将位于发光单元21背离衬底10一侧的膜层与发光单元21分离,由于第一子层31的硬度较小,则第一子层31比较柔软性,更易于与发光单元21分离,有助于发光单元21的返工。
在该实施例中,所述第一子层31的透光率小于所述第二子层32的透光率。如此设置,可在保证第一光线调节层30与发光单元21易于分离的前提下,提升第一光线调节层30的透光率,在显示基板的亮度不变的前提下有助于减小显示基板的功耗。
在该实施例中,所述第二光线调节层40与所述第二子层32之间的粘附力为F3,所述第二子层32与所述第一子层31之间的粘附力为F4,所述第一子层31与所述发光单元21之间的粘附力为F5,F3≥F4>F5。如此设置,发光单元21要进行返工时,在将第一光线调节层30和第二光线调节层40从发光单元21上撕下的过程中,由于F3≥F4>F5,可在保证第一子层31与发光单元21分离的前提下,避免出现第二光线调节层40与第二子层32发生分离,或者第二子层32与第一子层31发生分离,而第一子层31与发光单元21仍粘附在一起的情况,可顺利将第一光线调节层30与第二光线调节层40一起从发光单元21上撕下,有助于实现发光单元21的返工。在一些实施例中,F3及F4的大小范围可为22N~25N,F5的大小范围可为15N~18N。例如,F3及F4均为22N、23N、24N、25N等,F5可为15N、16N、17N、18N等。
在该实施例中,所述第二子层32中掺杂有辅助粒子,辅助粒子可以增大第二子层32的硬度,减小第二子层32的蠕变量。辅助粒子例如为紫外粒子,所述第二子层32被紫外光照射后硬度变大。在一些实施例中,第二子层32不掺杂辅助粒子时其蠕变量为1.7,第一子层掺杂辅助粒子后蠕变量为1.1。或者,第二子层32的透光材料为热固化材料,通过使第二子层32的温度升高来达到其硬度增大的目的。
在一个实施例中,如图5所示,所述第一光线调节层30还包括位于所 述第一子层31朝向所述衬底10一侧的第二子层32,所述第一子层31的硬度大于所述第二子层32的硬度。由于第一子层31与第二光线调节层40接触,第二子层32与发光单元21接触,通过设置第一子层31的硬度大于第二子层32的硬度,则第一子层31可更有效地避免发光单元21对第二光线调节层40的挤压,提升第二光线调节层40的厚度均匀性;当发光单元21需要返工时,需将位于发光单元21背离衬底10一侧的膜层与发光单元21分离,由于第二子层32的硬度较小,也即是其比较柔软性,更易于与发光单元21分离,有助于发光单元21的返工。
在该实施例中,所述第一子层31的透光率小于所述第二子层32的透光率。如此设置,可在保证第一光线调节层30与发光单元21易于分离的前提下,减小对第一光线调节层30的透光率的影响,在显示基板的亮度不变的前提下有助于减小显示基板的功耗。并且第一子层31的硬度大于第二子层32的硬度,在显示基板进行拼接的过程中相邻显示基板发生磕碰第一子层31也不易于出现边缘缺失的情况;第二子层32的透光率较大,即使在显示基板进行拼接的过程中第二子层32发生边缘缺失的情况,对显示基板的显示效果影响较小。
在该实施例中,所述第二光线调节层40与所述第一子层31之间的粘附力为F6,所述第一子层31与所述第二子层32之间的粘附力为F7,所述第二子层32与所述发光单元21之间的粘附力为F8,F6≥F7>F8。如此设置,发光单元21要进行返工时,在将第一光线调节层30和第二光线调节层40从发光单元21上撕下的过程中,由于F6≥F7>F8,则可在保证第一子层31与发光单元21分离的前提下,避免出现第二光线调节层40与第二子层32发生分离,或者第二子层32与第一子层31发生分离,而第一子层31与发光单元21仍粘附在一起的情况,可顺利将第一光线调节层30与第二光线调节层40一起从发光单元21上撕下,有助于实现发光单元21的返工。在一些实施例中,F6及F7的大小范围可为22N~25N,F8的大小范围可为15N~18N。例如,F6及F7均为22N、23N、24N、25N等,F8 可为15N、16N、17N、18N等。
在该实施例中,所述第一子层31中掺杂有辅助粒子,辅助粒子可以增大第一子层31的硬度,减小第一子层31的蠕变量。辅助粒子例如为紫外粒子,所述第一子层31被紫外光照射后硬度变大。或者,第一子层31的透光材料为热固化材料,通过使第一子层31的温度升高来达到其硬度增大的目的。
在一个实施例中,如图6所示,所述第一子层31朝向所述衬底10的表面与所述发光单元21直接接触,所述第一子层31背离所述衬底10的表面与所述第二光线调节层40直接接触。也即是,第一光线调节层30仅包括第一子层31。如此设置,发光单元21与第一子层31之间无其他膜层,可避免第一子层31受其他膜层的影响而导致第一子层31位于发光单元21顶部的部分厚度不均匀,第一子层31对各发光单元21的散射效果更一致,有助于提升显示基板的显示效果。
在该实施例中,第一子层31与发光单元21直接接触指的是,第一子层31与发光单元21之间无其他的膜层。在实际中,如图8所示,第一中间结构与第二中间结构压合的过程中,第一子层31朝向发光单元21的表面有些区域不太平整,会导致第一子层31与发光单元21之间存在间隙。
在该实施例中,所述第二光线调节层40与所述第一子层31(也即是第一光线调节层30)之间的粘附力为F1,所述第一子层31(也即是第一光线调节层30)与所述发光单元21之间的粘附力为F2,F1>F2。如此可保证在发光单元21需要进行返工时,第二光线调节层40与第一光线调节层30可顺利从发光单元21上一起撕下。在一些实施例中,F1的大小范围可为22N~25N,F2的大小范围可为15N~18N。例如,F1可为22N、23N、24N、25N等,F2可为15N、16N、17N、18N等。
在一个实施例中,所述第一光线调节层30的厚度范围为150μm~175μm。如此设置,可保证第一光线调节层30背离衬底10的表面超出发光单元21背离衬底10的表面,同时也可避免第一光线调节层30的厚度太大导致显 示基板的厚度增大。在一些实施例中,所述第一光线调节层30的厚度可为150μm、155μm、160μm、165μm、170μm、175μm等。
在一个实施例中,所述第二光线调节层40的厚度范围为25μm~50μm。例如第二光线调节层40的厚度例如为25μm、30μm、35μm、40μm、45μm、50μm等。
在一个实施例中,所述第二光线调节层40的透过率范围为25%~40%。如此可保证显示基板在非显示状态下的黑度,也可避免显示基板在显示状态下的光线利用率太低而导致显示基板的功耗增大,有助于提升用户的使用体验。
在一个实施例中,所述第二光线调节层40可包括透光材料及掺杂在透光材料中的黑色离子,黑色离子例如为炭黑。或者所述第二光线调节层40可包括透光材料及掺杂在透光材料中的黑色染剂材料。
在一个实施例中,所述第二光线调节层40中掺杂有辅助粒子,辅助粒子可以增大第二光线调节层40的硬度,减小第二光线调节层40的蠕变量。辅助粒子例如为紫外粒子,所述第二光线调节层40被紫外光照射后硬度变大。或者,第二光线调节层40的透光材料为热固化材料,通过使第二光线调节层40的温度升高来达到其硬度增大的目的。如此第二光线调节层40的硬度较大,在将多个显示基板进行拼接的过程中,可避免相邻显示基板磕碰而导致第二光线调节层40发生边缘缺失的情况。
在一个实施例中,如图9所示,所述显示基板还包括位于所述保护层50背离所述衬底10一侧的功能膜层70,所述功能膜层70包括硬化涂层、防指纹层及防眩光层中的至少一种。硬化涂层可增大显示基板表面的硬度,防止形成划痕;防指纹膜层可防止在显示基板的显示面留下指纹痕迹;防眩光层可减弱因反射等因素产生的眩光。在一些实施例中,所述显示基板包括一个功能膜层70,该功能膜层70复用为硬化涂层、防指纹层及防眩光层。如图7所示,所述功能膜层70背离衬底10的表面形成有多个凸起结构71。
在一个实施例中,所述第一光线调节层30和第二光线调节层40的透光材料均可采用丙烯酸系胶体。
在一个实施例中,所述发光基板还包括驱动电路层,所述驱动电路层位于所述发光单元与衬底之间。所述驱动电路层包括多个像素电路及信号走线,所述像素电路及信号走线与发光单元电连接。
本申请实施例还提供了一种拼接显示模组,如图10及图11所示,所述拼接显示模组包括多个上述任一实施例所述的显示基板81。
在一个实施例中,如图10所示,所述拼接显示模组还包括多个第一拼接框82,显示基板81固定在第一拼接框82上,每一第一拼接框82上固定有一个显示基板81。相邻的第一拼接框82拼接在一起。
在一个实施例中,所述拼接显示模组还包括多个第一拼接框82和多个第二拼接框83,每一第二拼接框83上固定有多个第一拼接框82。显示基板81固定在第一拼接框82上,每一第一拼接框82上固定有一个显示基板81。位于同一第二拼接框83上的多个第一拼接框82中,相邻的第一拼接框82拼接在一起。相邻的第二拼接框83拼接在一起。
在一个实施例中,所述拼接显示模组中至少两个显示模组共用保护层、第二光线调节层和第一光线调节层。例如拼接显示模组中固定在同一个第一拼接框82上的各显示模组可共用保护层、第二光线调节层和第一光线调节层。
本申请实施例还提供了一种显示装置,所述显示装置包括上述任一实施例所述的显示基板。
在一个实施例中,所述显示装置还包括外壳,显示基板嵌设在壳体内。
本申请实施例提供的显示装置可以为任意适当的显示装置,包括但不限于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子书等任何具有显示功能的产品或部件。
本申请实施例还提供了另一种显示装置,所述显示装置包括上述任一实施例所述的拼接显示模组。
在一个实施例中,所述显示装置还包括外壳,拼接显示模组嵌设在壳体内。
本申请实施例提供的显示装置可以为任意适当的显示装置,包括但不限于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子书等任何具有显示功能的产品或部件。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种显示基板,其特征在于,所述显示基板包括:
    衬底;
    位于所述衬底上的发光单元组,所述发光单元组包括多个发光单元;
    位于所述衬底上的第一光线调节层;所述第一光线调节层背离所述衬底的表面到所述衬底的距离大于所述发光单元背离所述衬底的表面到所述衬底的距离;
    位于所述第一光线调节层背离所述衬底一侧的第二光线调节层,所述第二光线调节层在所述衬底上的正投影覆盖所述衬底;所述第一光线调节层的透光率大于所述第二光线调节层的透光率。
  2. 根据权利要求1所述的显示基板,其特征在于,所述第一光线调节层包括第一子层,所述第一子层在所述衬底上的正投影覆盖各所述发光单元在所述衬底上的正投影;所述第一子层包括透光材料及分散在所述透光材料中的散射粒子。
  3. 根据权利要求2所述的显示基板,其特征在于,所述散射粒子包括第一粒子及第二粒子,所述第一粒子的透光率大于所述第二粒子的透光率。
  4. 根据权利要求3所述的显示基板,其特征在于,所述第一粒子在所述第一子层中所占的质量比的范围为10%~20%,所述第二粒子在所述第一子层中所占的质量比的范围1%~5%;
    和/或,第一子层的透光率范围为45%~70%。
  5. 根据权利要求3所述的显示基板,其特征在于,所述第一粒子的材料包括二氧化硅、聚甲基丙烯酸甲脂与聚苯乙烯中的至少一种,所述第二粒子的材料包括二氧化钛与氧化锌中的至少一种;所述第一粒子的粒径范围为400nm~600nm,所述第二粒子的粒径范围为4μm~6μm。
  6. 根据权利要求2所述的显示基板,其特征在于,所述第一光线调节层还包括位于所述第一子层背离所述衬底一侧的第二子层,所述第一子层 覆盖各所述发光单元;所述第二子层的硬度大于所述第一子层的硬度。
  7. 根据权利要求2所述的显示基板,其特征在于,所述第一光线调节层还包括位于所述第一子层朝向所述衬底一侧的第二子层,所述第一子层的硬度大于所述第二子层的硬度。
  8. 根据权利要求6或7所述的显示基板,其特征在于,所述第一子层的透光率小于所述第二子层的透光率。
  9. 根据权利要求2所述的显示基板,其特征在于,所述第一子层朝向所述衬底的表面与所述发光单元直接接触,所述第一子层背离所述衬底的表面与所述第二光线调节层直接接触。
  10. 根据权利要求1所述的显示基板,其特征在于,所述第二光线调节层与所述第一光线调节层之间的粘附力为F1,所述第一光线调节层与所述发光单元之间的粘附力为F2,F1>F2。
  11. 根据权利要求1所述的显示基板,其特征在于,所述第一光线调节层包括第一子层及位于所述第一子层背离所述衬底一侧的第二子层;所述第二光线调节层与所述第二子层之间的粘附力为F3,所述第二子层与所述第一子层之间的粘附力为F4,所述第一子层与所述发光单元之间的粘附力为F5,F3≥F4>F5;或者,
    所述第一光线调节层包括第一子层及位于所述第一子层朝向所述衬底一侧的第二子层;所述第二光线调节层与所述第一子层之间的粘附力为F6,所述第一子层与所述第二子层之间的粘附力为F7,所述第二子层与所述发光单元之间的粘附力为F8,F6≥F7>F8。
  12. 根据权利要求1所述的显示基板,其特征在于,所述第二光线调节层的厚度范围为25μm~50μm;和/或,所述第二光线调节层的透过率范围为25%~40%。
  13. 根据权利要求1所述的显示基板,其特征在于,所述显示基板还包括位于所述第二光线调节层背离所述衬底一侧的保护层。
  14. 根据权利要求13所述的显示基板,其特征在于,所述保护层与所 述第二光线调节层之间的粘附力为F9,所述第二光线调节层与所述第一光线调节层之间的粘附力为F1,F9≥F1。
  15. 根据权利要求13所述的显示基板,其特征在于,所述显示基板还包括位于所述保护层背离所述衬底一侧的功能膜层,所述功能膜层包括硬化涂层、防指纹层及防眩光层中的至少一种。
  16. 一种拼接显示模组,其特征在于,所述拼接显示模组包括多个拼接单元,所述拼接单元包括权利要求1至15任一项所述的显示基板。
  17. 一种显示装置,其特征在于,所述显示装置包括权利要求1至15任一项所述的显示基板,或者,所述显示装置包括权利要求16所述的拼接显示模组。
PCT/CN2023/073671 2023-01-29 2023-01-29 显示基板、拼接显示模组及显示装置 WO2024156110A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/073671 WO2024156110A1 (zh) 2023-01-29 2023-01-29 显示基板、拼接显示模组及显示装置
CN202380008113.3A CN118743037A (zh) 2023-01-29 2023-01-29 显示基板、拼接显示模组及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073671 WO2024156110A1 (zh) 2023-01-29 2023-01-29 显示基板、拼接显示模组及显示装置

Publications (1)

Publication Number Publication Date
WO2024156110A1 true WO2024156110A1 (zh) 2024-08-02

Family

ID=91969867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073671 WO2024156110A1 (zh) 2023-01-29 2023-01-29 显示基板、拼接显示模组及显示装置

Country Status (2)

Country Link
CN (1) CN118743037A (zh)
WO (1) WO2024156110A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096739A (ja) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd 発光装置
CN102461333A (zh) * 2009-06-25 2012-05-16 松下电器产业株式会社 多色发光有机el显示装置及其制造方法
CN102577609A (zh) * 2009-09-09 2012-07-11 松下电器产业株式会社 有机电致发光显示装置
JP2013179197A (ja) * 2012-02-28 2013-09-09 Sharp Corp 発光装置および、その製造方法
US20140203271A1 (en) * 2011-11-02 2014-07-24 Panasonic Corporation Organic light-emitting panel and method for producing same
CN109616468A (zh) * 2017-09-25 2019-04-12 Lg伊诺特有限公司 照明模块
CN113540169A (zh) * 2020-04-20 2021-10-22 三星显示有限公司 显示装置及其制造方法
CN114690482A (zh) * 2020-12-30 2022-07-01 乐金显示有限公司 背光单元及包含该背光单元的显示装置
CN115483355A (zh) * 2022-09-27 2022-12-16 京东方科技集团股份有限公司 一种显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461333A (zh) * 2009-06-25 2012-05-16 松下电器产业株式会社 多色发光有机el显示装置及其制造方法
CN102577609A (zh) * 2009-09-09 2012-07-11 松下电器产业株式会社 有机电致发光显示装置
JP2011096739A (ja) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd 発光装置
US20140203271A1 (en) * 2011-11-02 2014-07-24 Panasonic Corporation Organic light-emitting panel and method for producing same
JP2013179197A (ja) * 2012-02-28 2013-09-09 Sharp Corp 発光装置および、その製造方法
CN109616468A (zh) * 2017-09-25 2019-04-12 Lg伊诺特有限公司 照明模块
CN113540169A (zh) * 2020-04-20 2021-10-22 三星显示有限公司 显示装置及其制造方法
CN114690482A (zh) * 2020-12-30 2022-07-01 乐金显示有限公司 背光单元及包含该背光单元的显示装置
CN115483355A (zh) * 2022-09-27 2022-12-16 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN118743037A (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
US11262608B2 (en) Display device and hand-held electronic device
US9541783B2 (en) Display device
KR101713148B1 (ko) 액정표시장치
KR102642344B1 (ko) 표시 장치
CN106814504B (zh) 光学膜及其制造方法和液晶显示器
KR101742625B1 (ko) 액정표시장치
KR102224083B1 (ko) 표시 장치 및 그 제조 방법
CN110501848A (zh) 液晶显示装置
US10746920B2 (en) Display device having a buffer member between light guide plate and chassis
CN112912948A (zh) 黑色矩阵基板及具备黑色矩阵基板的显示装置
KR20160035132A (ko) 표시 장치
CN108107623A (zh) 显示装置
US10663794B2 (en) Display devices
US9885818B2 (en) Backlight unit including light converting unit and display device having the same
KR101744871B1 (ko) 액정표시장치
WO2024156110A1 (zh) 显示基板、拼接显示模组及显示装置
KR20150025437A (ko) 광원 모듈 및 이를 구비한 백라이트 유닛
KR20190059262A (ko) 표시 장치 및 그 제조 방법
US12120910B2 (en) Display module and mobile terminal
KR20140006498A (ko) 발광 다이오드 패키지와 이를 이용한 표시 장치
WO2020047914A1 (zh) 背光结构
WO2023115484A1 (zh) 显示模组及移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380008113.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918116

Country of ref document: EP

Kind code of ref document: A1