[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024034228A1 - 通信装置、及び、通信方法 - Google Patents

通信装置、及び、通信方法 Download PDF

Info

Publication number
WO2024034228A1
WO2024034228A1 PCT/JP2023/019504 JP2023019504W WO2024034228A1 WO 2024034228 A1 WO2024034228 A1 WO 2024034228A1 JP 2023019504 W JP2023019504 W JP 2023019504W WO 2024034228 A1 WO2024034228 A1 WO 2024034228A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
pscch
resource
subchannel
Prior art date
Application number
PCT/JP2023/019504
Other languages
English (en)
French (fr)
Inventor
綾子 堀内
秀俊 鈴木
ヤン カン
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024034228A1 publication Critical patent/WO2024034228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to a communication device and a communication method.
  • 5G 5th Generation mobile communication systems
  • Non-limiting embodiments of the present disclosure contribute to providing a communication device and a communication method that can improve communication resource usage efficiency in an unlicensed band.
  • a communication device includes a control circuit that allocates a signal to a resource allocation unit made up of interlaces of consecutive numbers in terminal-to-terminal communication in an unlicensed band, and a transmission circuit that transmits the signal. , is provided.
  • Diagram showing an example of interlace allocation Block diagram showing a partial configuration example of a base station Block diagram showing an example of the configuration of part of a terminal Diagram showing an example of placement of PSCCH (physical sidelink control channel)
  • Diagram showing an example of channel arrangement within a slot Diagram of an exemplary architecture of a 3GPP NR system Schematic diagram showing functional separation between NG-RAN and
  • 3GPP The 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • NR New Radio
  • 3GPP has previously considered supporting V2X (vehicle to X) in the LTE system.
  • Supporting V2X has also been considered in NR, which can use a wider band than LTE (for example, see Non-Patent Document 1).
  • V2X vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-vehicle networks
  • V2V, V2I, and V2P signals can be directly sent and received between terminals using a link called a side link or PC5, without going through a network with a base station (for example, a network via a base station).
  • a base station for example, a network via a base station.
  • V2N communication is assumed to occur via a link called Uu between a base station and a terminal.
  • a base station may be called a gNB in NR, or an eNB in LTE.
  • the terminal may be referred to as UE (User Equipment).
  • the NR sidelink supports unicast, group cast, and broadcast in transmission and reception.
  • Unicast assumes one-to-one transmission from a transmitting terminal (also called a Tx UE, source UE, or source terminal) to a receiving terminal (also called an Rx UE, destination UE, or destination terminal).
  • group casting transmission is assumed from a transmitting terminal to one or more receiving terminals included in a certain group.
  • broadcasting transmission from a transmitting terminal without specifying a receiving terminal is assumed.
  • SCI Segment control information
  • SCI is divided into 1st-stage SCI and 2nd-stage SCI.
  • the 1st-stage SCI is placed on the PSCCH (physical SL control channel).
  • the 2nd-stage SCI is placed in at least part of a PSSCH (physical SL shared channel) that transmits and receives data.
  • PSSCH physical SL shared channel
  • - PSCCH physical SL control channel
  • 1st-stage SCI Segmentlink control information
  • -PSSCH physical SL shared channel
  • Data signals and 2nd-stage SCI are arranged on PSSCH.
  • -PSFCH physical SL feedback channel: A feedback signal for the PSSCH is allocated to the PSFCH.
  • the feedback signal indicates, for example, an ACK (Acknowledgement) indicating that the PSSCH was successfully received or a NACK (Negative Acknowledgement) indicating that the PSSCH was not successfully received.
  • the feedback signal is applicable when the PSSCH is unicast and group cast.
  • PSFCH may be transmitted as Inter-UE coordination when a collision is detected.
  • -PSBCH physical SL broadcast channel
  • a broadcast signal is placed on the PSBCH.
  • SBCH is transmitted together with a synchronization signal.
  • the synchronization signal is, for example, a sidelink primary synchronization signal (S-PSS) and/or a sidelink secondly synchronization signal (S-SSS).
  • S-PSS sidelink primary synchronization signal
  • S-SSS sidelink secondly synchronization signal
  • the SBCH transmitted together with the synchronization signal is also called S-SSB (sidelink synchronization signal block).
  • PSCCH may refer to a resource defined as a PSCCH, or may refer to information (or a signal) allocated to a resource defined as a PSCCH.
  • Channels other than PSCCH may also be abbreviated in the same way as PSCCH.
  • FIG. 1 is a diagram showing an example of the arrangement of PSCCH, PSSCH, and PSFCH within a slot.
  • the horizontal axis in FIG. 1 represents the time axis, and the vertical axis represents the frequency axis in PRB (physical resource block) units.
  • FIG. 1 shows two examples, FIG. 1(a) and FIG. 1(b).
  • the PSFCH may be arranged as shown in FIG. 1(a). Alternatively, as shown in FIG. 1(b), PSFCH may not be arranged depending on the settings. If PSFCH is not allocated, the PSSCH area may be increased.
  • the number of symbols of sidelink signals within a slot may be variable depending on settings. Further, the arrangement of the 2nd-stage SCI can be changed by the arrangement of a DMRS (demodulation reference signal) of the PSSCH, which is not shown.
  • the 1st-stage SCI is allocated starting from the lowest frequency resource among the frequency resources to which PSSCHs are allocated. A copy of the first symbol of the PSCCH and PSSCH is placed in the symbol before the first symbol of the PSCCH and PSSCH for AGC (Auto Gain Control). Furthermore, as shown in FIG. 1(a), a copy of the PSFCH is also placed before the PSFCH symbol for AGC.
  • a guard period for example, a guard period or , also called gaps
  • a guard period for switching between transmission and reception is arranged in an interval after the final symbol of the PSSCH.
  • the guard period may correspond to an interval in which no signals are transmitted or received.
  • Mode 1 the base station determines (schedules) the resources to be used by the terminal on the side link and instructs the terminal of the scheduling results.
  • Mode 2 the terminal determines (or selects) a resource to be used for sidelinks from resources in a predetermined resource pool.
  • Mode 1 is a state in which the base station and the terminal are connected, and is intended for use in an environment where the terminal communicating via sidelink can receive instructions from the base station.
  • terminals can transmit on sidelink without instructions from the base station, so terminals under different operators and/or terminals that exist outside the coverage of the base station can communicate on sidelink. can.
  • the resources used for sidelinks are set by, for example, SL BWP (Band width part) and resource pool.
  • SL BWP specifies the frequency band that can be used for sidelinks, and is set separately from downlink BWP (DL BWP) and uplink BWP (UL BWP), which are set between the base station and the terminal (Uu).
  • DL BWP downlink BWP
  • UL BWP uplink BWP
  • the frequency bands of SL BWP may overlap with UL BWP.
  • a resource pool is a resource within the SL BWP, and resources in the frequency direction and time direction are specified by the resource pool. For example, multiple resource pools may be set for one terminal. Frequency resources within the resource pool are divided into units called "subchannels," and resource allocation can be set for each subchannel.
  • a subchannel includes a plurality of PRBs, and PSSCH can be allocated in units of subchannels that are a collection of PRBs.
  • NR-U NR-Unlicensed
  • Wifi registered trademark
  • LTE-based LAA Licensed Assisted Access
  • communication devices for example, NR-U base stations or terminals
  • LBT Listen Before Talk
  • a communication device After performing LBT and confirming that no other devices are transmitting signals nearby, a communication device is set with a channel occupancy time (COT).
  • COT channel occupancy time
  • communication devices can transmit and receive signals using DL (downlink) resources and UL (uplink) resources.
  • LBT Load Based Equipment
  • a communication device acquires COT, it implements Type 1 channel access (for example, also called category 4 LBT or Type 1 LBT). Also, outside of the beginning of the COT, the communication device can perform Type 2 channel access (for example, also referred to as Type 2 LBT) and can start transmitting after performing it.
  • Type 1 channel access for example, also called category 4 LBT or Type 1 LBT.
  • Type 2 LBT Type 2 channel access
  • a communication device e.g., a base station or terminal
  • starts transmission after performing LBT it means that the communication device (for example, a base station or terminal) "starts transmission after performing LBT” means that the communication device performs LBT and another device transmits a signal nearby. This corresponds to starting the transmission after confirming that it has not been sent.
  • Table 1 shows examples of LBT sensing intervals and applied intervals for acquiring transmission rights in DL in LBE.
  • Type 2A if the interval between two temporally consecutive resources is 25 ⁇ s, the terminal performs LBT within 25 ⁇ s. A terminal can start transmitting if it does not confirm the transmission of other devices in LBT.
  • Type 2B if the interval between two temporally consecutive resources is 16 ⁇ s, the terminal performs LBT within 16 ⁇ s. A terminal can start transmitting if it does not confirm the transmission of other devices.
  • Type 2C if the interval between two temporally consecutive resources is less than 16 ⁇ s, the terminal can start transmitting without LBT.
  • DRS Data Reference signal
  • the second operation method is FBE (Frame Based Equipment).
  • FBE assumes that other devices such as Wifi are not installed in the same space, fixes the frame period, and performs LBT at the beginning of the frame to obtain COT.
  • COT can only be obtained from the beginning of the fixed frame period.
  • FBE stipulates that a non-transmission period (idle period) of 5% or more be provided for each frame interval.
  • the terminal performs LBT and starts transmitting if it does not confirm the transmission of other devices.
  • the terminal performs LBT, detects signals of other devices, and does not start transmitting if it confirms the transmission of other devices.
  • a case where a signal from another device is detected is also called "busy (or channel busy)," "unavailable,” or "LBT failure.”
  • the terminal In the case of LBT failure, the terminal cannot acquire the transmission right for the allocated resource or the selected resource and cannot start transmission even in the side link.
  • FIG. 2 is a diagram showing an example of channel arrangement within each slot in the case of LBT failure.
  • FIG. 2(a) shows an example in which another device starts transmitting in a slot before the slot in which the terminal was scheduled to transmit (the slot in which the resource was reserved).
  • FIG. 2(b) shows an example where another device starts transmitting in the symbol immediately before the slot in which the terminal was scheduled to transmit.
  • the terminal performs LBT before the slot scheduled for transmission, resulting in LBT failure, and therefore cannot start transmitting sidelink signals.
  • Figure 2(b) even if a terminal uses consecutive slots and attempts to transmit by implementing LBT Type 2 for transmission within the COT, the right to transmit may be acquired by another device. there is a possibility.
  • OCB Occupied Channel Bandwidth
  • NCB Nominal Channel Bandwidth
  • the regulation of OCB is that OCB satisfies 80% or more of NCB, but the present disclosure is not limited to this.
  • the OCB regulation that the OCB satisfies 80% or more of the NCB is an example of a bandwidth restriction regarding frequency bands.
  • FIG. 3 is a diagram illustrating an example of regulations regarding the frequency of signals in unlicensed bands.
  • OCB 80% in FIG. 3 indicates that the OCB is 80% or more of the frequency band of the NCB.
  • OCB 80% indicates that OCB is 80% or more of the frequency band of NCB.
  • the unlicensed band signal may be transmitted using 80% or more of the NCB frequency band continuously, as shown in Figure 3(a), or may be transmitted by dividing it, as shown in Figure 3(b).
  • the plurality of resources may be arranged such that the width at both ends on the frequency axis is 80% or more of the frequency band of the NCB.
  • NR-U and LAA interlace allocation is introduced in order to satisfy the OCB regulations in this frequency domain.
  • the NCB is set to an RB set (Resource Block set) of 20MHz. Note that the NCB setting is not limited to 20MHz.
  • Table 2 shows an example of the relationship between SCS (subcarrier spacing) and interlace.
  • FIG. 4 is a diagram showing an example of interlace allocation.
  • M indicates the number of interlaces
  • N indicates the number of PRBs (Physical Resource Blocks) constituting one interlace.
  • FIG. 4 shows an example of interlace allocation when the SCS is 30kHz.
  • M indicates the number of interlaces
  • N indicates the number of PRBs (Physical Resource Blocks) constituting one interlace.
  • FIG. 4 shows an example of interlace allocation when the SCS is 30kHz.
  • one interlace consists of 10 or 11 PRBs (N PRBs).
  • interlace allocation will also be applied to sidelink communications in unlicensed bands.
  • sidelink communication in an unlicensed band there is room for consideration regarding how to set subchannels and interlace mapping, which are the units for allocating PSSCH.
  • a communication system includes a base station 100 and a terminal 200.
  • FIG. 5 is a block diagram showing a partial configuration example of the base station 100.
  • a control unit controls communication between terminal 200 and base station 100 via a link called Uu.
  • the communication unit transmits a signal via a link called Uu under the control of the control unit.
  • the control unit may perform control regarding sidelink communication between multiple terminals (for example, determining resources in Mode 1).
  • FIG. 6 is a block diagram illustrating a partial configuration example of the terminal 200 (for example, corresponding to a communication device).
  • a control unit e.g., corresponding to a control circuit
  • the communication unit (for example, corresponding to a transmitting circuit) transmits a signal.
  • the communication unit (e.g., corresponding to a receiving circuit) of the terminal 200 is capable of transmitting signals that are allocated in resource allocation units (e.g., subchannels) consisting of interlaces of consecutive numbers in inter-terminal communication in an unlicensed band.
  • a control unit demodulates the signal.
  • the transmission signal may be, for example, a side link signal or a signal different from the side link signal.
  • a subchannel which is a PSSCH resource allocation unit, is composed of interlaces of consecutive interlace numbers (for example, adjacent interlaces in the frequency domain).
  • the PSSCH is allocated to interlaces that are continuous in the frequency domain among a plurality of interlaces due to the configuration of subchannels by interlaces with consecutive interlace numbers. It is possible to reduce the number of points of contact with the resources allocated to a terminal, and the influence of IBE (or the influence of interference with other terminals) can be reduced.
  • Table 3 shows an example of interlace settings that constitute a subchannel.
  • the example in Table 3 shows examples of subchannel settings when the SCS is 15kHz, 30kHz, and 60kHz. Further, Table 3 shows examples of subchannel settings when the number of subchannels per RB set (for example, 20MHz) is 1, 2, 3, 4, 5, and 10. Note that the SCS and the number of subchannels are not limited to the examples shown in Table 3.
  • 10 interlaces for example, interlaces #0 to #9
  • one subchannel is configured by all interlaces in each SCS.
  • interlaces #0 to #4 the number of interlaces cannot be equally distributed (equally divided) to each subchannel, so for example, five interlaces are divided into three with consecutive interlace numbers (for example, interlaces #0 to # 2)
  • the channel may be divided into two (for example, interlaces #3 and #4), and one subchannel may be configured by each of the divided interlaces.
  • each divided interlace may constitute one subchannel.
  • interlace #0, #1 two (for example, interlaces #2, #3) and one (for example, interlace #4), and one subchannel may be configured by each of the divided interlaces.
  • the number of interlaces in the RB set is M and the number of subchannels configured in the resource pool is C
  • the number of interlaces that make up each subchannel can be divided into M/C if it can be divided equally. If it cannot be divided equally, there are floor(M/C) and floor(M/C)+1.
  • Floor() is a function (floor function) that truncates the fraction below the decimal point.
  • the subchannel size is set smaller, and when large data such as large video transmissions are transmitted, the subchannel size is set smaller. (For example, when the amount of data is more than a threshold value) is transmitted, the subchannel size may be set larger.
  • the number of subchannels corresponds to the number of times the terminal 200 performing sidelink communication detects the PSCCH in a single time period. For example, the fewer the number of subchannels, the fewer times the terminal 200 detects PSCCHs (for example, the number of blind decoding (BD)).
  • BD blind decoding
  • the number of interlaces forming each of the plurality of subchannels included in the RB set may be different.
  • the number of interlaces may be 2 or 1 depending on the subchannel. This makes it possible to arrange PSCCH/PSSCH even if the interlace number and subchannel number are not in a multiple relationship.
  • an intra-cell guard band is set for each 20 MHz RB set (for example, at the boundary of the RB set). Whether or not to set the intra-cell guard band may be notified to the terminal 200 by upper layer signaling called (pre-)configured for each resource pool or each terminal, or may be determined in advance by configuration. .
  • the terminal 200 When the intra-cell guard band is set, the terminal 200 confirms that the channel is not used by LBT for a certain 20MHz bandwidth, and sets RB in the 20MHz bandwidth adjacent to the 20MHz bandwidth. Even if the LBT confirms that the channel will be used, it can start transmitting in the 20MHz bandwidth where the channel is not in use.
  • the terminal 200 can perform LBT for each 20 MHz RB set and start transmission on a channel for which it has been confirmed by LBT that the channel is not in use.
  • the terminal 200 can start transmission when it is confirmed that the channel is not used by LBT in all RB sets in the SL BWP.
  • the terminal 200 when an intra-cell guard band is configured, if consecutive RB sets (or adjacent RB sets) are assigned to the terminal 200, the terminal 200 will There is a possibility that PSSCH can be transmitted. For example, if LBT is OK in two adjacent RB sets, the terminal 200 may perform PSSCH transmission in the intra-cell guard band between the two RB sets.
  • whether or not to allocate PSSCH to the intra-cell guard band between RB sets may be (re-)configured for each resource pool. May be indicated by PSCCH.
  • the terminal 200 specifies the number of RB sets allocated by the signal in the PSCCH. Therefore, in the terminal 200, before receiving the PSCCH, it is unclear whether or not adjacent RB sets are allocated. Therefore, for example, the PSCCH does not need to be placed in the intra-cell guard band.
  • inter-cell guard band there is also a guard band called an inter-cell guard band that is placed at the edge of the SL-BWP or resource pool. PSCCH and PSSCH do not need to be placed in the inter-cell guard band either. This makes it possible to suppress the influence of out-of-band radiation on other cells.
  • PSCCH/PSSCH an example of arrangement of PSCCH and PSSCH when interlace mapping is set for PSCCH and/or PSSCH (hereinafter also referred to as "PSCCH/PSSCH") will be described.
  • the terminal 200 assigns the PSCCH to a PRB different from the PRB to which the PSCCH is allocated among the plurality of PRBs in the same symbol.
  • PSSCH may be assigned.
  • the transmission power per PRB may be set to be the same for PSCCH and PSSCH.
  • the size of the PSSCH may be (pre-)configured for each resource pool.
  • the size of the PSSCH may be specified by, for example, the number of PRBs or the interlace number.
  • the PSSCH size is (pre-)configured for each resource pool.
  • the size of the PSSCH may be set to be selectable from among 10, 12, 15, and 20 PRBs, similar to the license band.
  • the PSCCH is arranged in order from the PRB with the lowest PRB number among the subchannels to which the PSSCH is allocated. For example, terminal 200 allocates the PSCCH included in the transmission signal to a PRB with a lower PRB number among a plurality of PRBs forming a subchannel.
  • FIG. 7 is a diagram showing an example of channel arrangement according to setting example 3A.
  • subchannel #0 includes interlaces #0 and #1
  • subchannel #1 includes interlaces #2 and #3
  • subchannel #2 includes interlace #4.
  • the source terminal 200 selects subchannel #0 (interlace #0, #1) and transmits the PSSCH.
  • the PSCCH may be allocated to a PRB with a lower PRB number (or lower frequency) among the plurality of PRBs that configure subchannel #0.
  • the higher the PRB number the more difficult it is to arrange a PSCCH, and only the PSSCH is arranged.
  • the source terminal 200 selects subchannel #2 (interlace #4) and transmits the PSSCH.
  • the PSCCH may be allocated to a PRB with a lower PRB number (or lower frequency) among the PRBs configuring subchannel #2.
  • the number of PRBs (or the number of interlaces) included in subchannel #2 is smaller than subchannel #0. Therefore, in FIG. 7(b), PSCCHs are allocated and transmitted in a wider frequency band than when subchannel #0 is allocated (for example, FIG. 7(a)). For example, if the number of PRBs in a subchannel is the same as the number of PRBs to which a PSCCH is allocated, the PSCCH is transmitted in all PRBs in the subchannel.
  • the source terminal 200 cannot transmit all PSCCHs.
  • a restriction may be set such that the number of PRBs to which a PSCCH is allocated is not set to be greater than the number of PRBs in a subchannel, and the source terminal 200 may transmit some PSCCHs. You don't have to.
  • the source terminal 200 selects subchannels #1 and #2 to transmit the PSSCH.
  • the PSCCH may be placed in the lower numbered subchannel #1 of subchannels #1 and #2.
  • the PSCCH may be allocated to a PRB with a lower PRB number among the PRBs configuring subchannel #1. As shown in FIG. 7(c), among the PRBs configuring subchannel #1, the higher the PRB number, the more difficult it is for PSCCHs to be allocated, and only PSSCHs are allocated.
  • PSCCH is not allocated to subchannel #2 in the source terminal 200, but as shown in FIG. 7(b), there is a possibility that PSCCH transmission will be performed in subchannel #2. Therefore, another terminal (for example, destination terminal 200) may attempt to receive the PSCCH on each of subchannel #0, subchannel #1, and subchannel #2.
  • the source terminal 200 uses PRBs in subchannel #n+1 in addition to the PRBs in subchannel #n.
  • PSCCH may also be transmitted.
  • the PSCCH may be allocated to a PRB with a lower PRB number among the PRBs configuring subchannel #n+1.
  • the size of the PSCCH can be determined without depending on the number of PRBs included in a subchannel and the number of PRBs included in an interlace.
  • destination terminal 200 can specify the arrangement of PSCCHs based on the number of PRBs to which PSSCHs are allocated, even if the number of PRBs included in each subchannel is different.
  • the PSSCH size is (pre-)configured for each resource pool.
  • the size of the PSSCH may be set to be selectable from among 10, 12, 15, and 20 PRBs, similar to the license band.
  • PSCCHs are arranged in order from the lowest PRB number among the PRBs included in the interlace with the lowest interlace number among the interlaces included in the subchannel to which the PSSCH is allocated.
  • terminal 200 allocates the PSCCH included in the transmission signal to a PRB with a lower PRB number included in an interlace with a lower interlace number among a plurality of PRBs forming a subchannel.
  • FIG. 8 is a diagram showing an example of channel arrangement according to setting example 3B.
  • subchannel #0 includes interlaces #0, #1, and #2
  • subchannel #1 includes interlaces #3 and #4.
  • the source terminal 200 selects subchannel #0 (interlace #0, #1, #2) and transmits the PSSCH.
  • the PSCCH is arranged in interlace #0 with the lower interlace number among interlaces #0, #1, and #2 that configure subchannel #0.
  • the PSCCH is allocated to a PRB with a lower PRB number (or lower frequency) among the plurality of PRBs included in interlace #0.
  • the PSCCH may be allocated to interlace #1 in addition to interlace #0, as shown in FIG. 8(a). At this time, the PSCCH is allocated to a PRB with a lower PRB number (or lower frequency) among the plurality of PRBs included in interlace #1.
  • the source terminal 200 selects subchannel #1 (interlace #3, #4) and transmits the PSSCH.
  • the PSCCH is arranged in interlace #3, which is the lower interlace number among interlaces #3 and #4 that constitute subchannel #1.
  • the PSCCH is allocated to a PRB with a lower PRB number (or lower frequency) among the plurality of PRBs included in interlace #3.
  • the PSCCH may be allocated to interlace #4 in addition to interlace #3, as shown in FIG. 8(b). At this time, the PSCCH is allocated to a PRB with a lower PRB number (or lower frequency) among the plurality of PRBs included in interlace #4.
  • the size of the PSCCH can be determined without depending on the number of PRBs included in a subchannel and the number of PRBs included in an interlace. For example, even if the number of PRBs included in each subchannel is different, the destination terminal 200 can specify the arrangement of the PSCCH based on the interlace to which the PSSCH is allocated and the number of PRBs.
  • the PSCCH is first arranged in one interlace within the subchannel, so the PSCCH is transmitted in a distributed manner in the frequency direction, resulting in a high frequency diversity effect.
  • the PSSCH size is (pre-)configured for each resource pool.
  • the size of the PSSCH may be set to be selectable from among 10, 12, 15, and 20 PRBs, similar to the license band.
  • the size of the PSCCH is (pre-)configured as the number of interlaces (for example, a specified number) for each resource pool.
  • the PSCCH is arranged in order from the lowest PRB number among the PRBs included in the predetermined number of interlaces with the lowest interlace number among the interlaces included in the subchannel to which the PSSCH is allocated.
  • terminal 200 allocates the PSCCH included in the transmission signal to a PRB with a lower PRB number in a prescribed number of interlaces with lower interlace numbers among a plurality of interlaces included in the subchannel.
  • the size of the PSCCH may be two or more interlaces.
  • FIG. 9 is a diagram showing an example of channel arrangement according to setting example 3C.
  • subchannel #0 includes interlaces #0 and #1
  • subchannel #1 includes interlaces #2 and #3
  • subchannel #2 includes interlace #4.
  • the source terminal 200 selects subchannel #0 (interlace #0, #1) and transmits the PSSCH.
  • the PSCCH has a lower PRB number (or lower frequency) among multiple PRBs that constitute one interlace #0 with a lower interlace number among interlaces #0 and #1 included in subchannel #0. will be placed in the PRB.
  • the number of PRBs to which PSCCH is allocated may be adjusted to the smaller number of PRBs (e.g., minimum value) among the number of PRBs included in each interlace. good.
  • PSCCH size may be set to the number of PRBs included in the other interlaces.
  • the number of PRBs included in interlace #0 is greater than the number of PRBs included in each of the other interlaces #1 to #4, so the PSCCH size is It may be set according to the number. Therefore, as shown in FIG. 9(a), among the PRBs included in interlace #0, no PSCCH is arranged in a higher PRB (or higher frequency) PRB.
  • the source terminal 200 selects subchannel #2 (interlace #4) and transmits the PSSCH.
  • the PSCCH is allocated to the PRB with the lower PRB number of interlace #4 included in subchannel #2.
  • PSCCH is arranged in all PRBs included in interlace #4.
  • the source terminal 200 selects subchannel #1 (interlace #2, #3) and subchannel #2 (interlace #4) to transmit the PSSCH.
  • the PSCCH is allocated to the lower numbered subchannel #1 among subchannels #1 and #2.
  • the PSCCH is a PRB with a lower PRB number (or a lower frequency ) is placed in the PRB.
  • PSCCH is arranged in all PRBs included in interlace #2.
  • PSCCH is not allocated to subchannel #2 in the source terminal 200, but as shown in FIG. 9(b), there is a possibility that PSCCH transmission will be performed in subchannel #2. Therefore, another terminal (for example, destination terminal 200) may attempt to receive the PSCCH on each of subchannel #0, subchannel #1, and subchannel #2.
  • PSCCH is arranged in units of interlaces, so even if the number of interlaces in subchannels differs between subchannels, the arrangement relationship between PSCCH and interlaces in each subchannel is the same, and the destination terminal 200 This makes it easier to receive PSCCH.
  • the PSCCH is allocated to one interlace with a lower interlace number among the interlaces included in the subchannel to which the PSSCH is allocated. Ru.
  • mapping (arrangement) from VRB (Virtual resource block) to PRB is performed.
  • FIG. 10 is a diagram showing an example of mapping from VRB to PRB.
  • each of subchannels #0 to #2 may include four consecutive VRBs.
  • PSCCHs may be arranged in consecutive VRBs, for example.
  • the PSCCH is arranged in two consecutive low-numbered VRBs among each subchannel #0 to #2.
  • VRB may follow at least one of the sidelink subchannel configuration in the licensed band and the configuration of continuous allocation in the frequency direction without using interlace mapping in the unlicensed band.
  • interleaving rules or interlacing rules may be pre-configured in the resource pool.
  • subchannels may be allocated to partially consecutive PRBs and non-consecutive PRBs.
  • FIG. 11 is a block diagram showing a configuration example of terminal 200 according to this embodiment.
  • Terminal 200 shown in FIG. 11 includes a receiving section 201, an LBT carrier sense section 202, a signal separating section 203, a demodulating section 204, an error correction decoding section 205, a control signal receiving section 206, and an error correction encoding section. 207, a modulation section 208, a control signal generation section 209, a signal allocation section 210, and a transmission section 211.
  • LBT carrier sense section 202 LBT carrier sense section 202, signal separation section 203, demodulation section 204, error correction decoding section 205, control signal reception section 206, error correction encoding section 207, modulation section 208, control signal generation section 209, signal allocation section 210
  • At least one of the above may be included in the control section shown in FIG.
  • at least one of the receiving section 201 and the transmitting section 211 may be included in the communication section shown in FIG.
  • the terminal 200 may be a transmitting terminal (or a source terminal) that transmits a sidelink signal, or a receiving terminal (or a destination terminal) that receives a sidelink signal.
  • the receiving unit 201 receives a received signal via an antenna, and performs receiving processing such as down-conversion on the received signal.
  • the received signal may be, for example, a sidelink signal including PSSCH/PSCCH.
  • the side link signal may include PSFCH.
  • the received signal received by the receiving unit 201 may include a non-transmission period, or may include a signal different from the sidelink signal (for example, a downlink signal from the base station 100).
  • Receiving section 201 outputs the received signal after receiving processing to LBT carrier sense section 202 and signal separation section 203.
  • the LBT carrier sense section 202 performs carrier sense (or called LBT) based on the received signal input from the reception section 201.
  • the LBT carrier sense unit 202 may determine whether the channel state is "busy” (or LBT failure) or "idle” (or LBT OK) based on the received signal. In other words, the LBT carrier sense section 202 may determine whether the channel is usable based on the received signal input from the receiving section 201.
  • LBT carrier sense section 202 outputs information indicating the determined channel state to transmitter 211.
  • the signal separation section 203 outputs the received data signal from among the received signals input from the receiving section 201 to the demodulating section 204.
  • the received data signal is placed on the PSSCH, for example.
  • the signal separation unit 203 separates the 1st stage SCI placed in the PSCCH and the 2nd stage SCI placed in a part of the PSSCH from the received signal input from the receiving unit 201, and controls the separated information.
  • the signal is output to the signal receiving section 206.
  • the demodulation section 204 performs demodulation processing on the received data signal input from the signal separation section 203.
  • Demodulation section 204 outputs a demodulated signal obtained by performing demodulation processing to error correction decoding section 205.
  • the error correction decoding section 205 decodes the demodulated signal input from the demodulation section 204 and outputs it as received data.
  • the control signal receiving unit 206 identifies (or grasps) resource allocation information including reserved resources based on the 1st stage SCI included in the signal input from the signal separating unit 203. Control signal receiving section 206 outputs resource allocation information to signal allocation section 210, for example, so as to avoid duplication with other resources. Further, for example, the control signal receiving unit 206 identifies (or understands) the transmission ID and the reception ID based on the 2nd stage SCI included in the signal input from the signal separation unit 203. For example, the control signal receiving unit 206 determines whether or not there is resource allocation addressed to the terminal 200 based on the specified transmission ID or reception ID, and if there is resource allocation addressed to the terminal 200, separates the received signal. The signal separation unit 203 is instructed to do so.
  • the error correction encoding section 207 inputs the data signal, performs error correction encoding on the data signal, and outputs the error correction encoded data signal to the modulation section 208.
  • Modulation section 208 modulates the signal input from error correction encoding section 207 and outputs the modulated signal to signal allocation section 210.
  • the control signal generation unit 209 generates 1st stage SCI and 2nd stage SCI signals based on control information (not shown).
  • the control signal generation unit 209 outputs the 1st stage SCI and 2nd stage SCI signals to the signal allocation unit 210.
  • the signal allocation unit 210 allocates the modulated signal input from the modulation unit 208 to resources. At this time, the signal allocation section 210 may allocate the signal to the resource while also considering the signal input from the control signal generation section 209. For example, the signal allocation unit 210 may determine the placement of the PSCCH that transmits the 1st stage SCI based on the size of the PSCCH set for each resource pool. After the signal allocation section 210 performs resource allocation, it outputs the transmission signal to the transmission section 211.
  • the transmitting unit 211 When the sensing result obtained from the LBT carrier sense unit 202 indicates the Idle state, the transmitting unit 211 performs transmission processing such as up-conversion on the transmission signal input from the signal allocation unit 210, and performs transmission processing. The subsequent transmission signal is transmitted via the antenna.
  • terminal 200 allocates PSCCH/PSSCH to subchannels made up of interlaces of consecutive numbers in sidelink communication in an unlicensed band, and transmits PSCCH/PSSCH.
  • terminal 200 can appropriately set subchannels and interlace mapping in sidelink communication in the unlicensed band.
  • the influence of interference between terminal 200 and other terminals can be reduced by allocation in units of subchannels made up of interlaces of consecutive numbers. Therefore, according to this embodiment, it is possible to improve the utilization efficiency of resources for sidelink communication in an unlicensed band.
  • a subchannel is composed of an interlace of consecutive interlace numbers; however, the subchannel is not limited to this, and a subchannel may be composed of an interlace of non-consecutive interlace numbers. Often, it may be composed of interlaces of both consecutive and non-consecutive interlace numbers.
  • the PSCCH is arranged in order from the lowest PRB number, the lowest interlace number, and the lowest subchannel number, but the present invention is not limited to this. and at least one of the subchannels may be arranged in order from a high number (for example, a high frequency), or may be arranged in order from a set order number.
  • the sidelink PSCCH can only be placed at the beginning of the slot.
  • an Additional PSCCH starting point referred to as an Additional PSCCH starting point.
  • additional starting points is not limited to one within a slot, and a plurality of additional starting points may be set (or arranged) within one slot.
  • the source terminal 200 performs LBT at an additional starting point in the middle of slot N+2, as shown in FIG. 12, and confirms that the channel is not being used by another system or device. , if the transmission right is acquired, the PSCCH/PSSCH may be transmitted.
  • PSCCH placement at an additional starting point may be performed in a slot where a pre-reserved resource is placed.
  • additional starting points may not be set in slots where no pre-reserved resources are placed.
  • the length of the PSSCH (for example, symbol length) is determined according to the start position of the PSCCH. For example, when the PSCCH is arranged from the first symbol of a slot (for example, a sidelink slot), the length of the PSSCH may be set to the same length as the slot. Furthermore, when the PSCCH is arranged from the additional starting point within the slot, the length of the PSSCH may be set to the section from the additional starting point of the PSCCH to the end of the slot.
  • the destination terminal 200 may specify that the length of the PSSCH is the same length as the slot. Further, when detecting the PSCCH at the Additional starting point, the destination terminal 200 may specify that the length of the PSSCH is the section from the Additional starting point to the end of the slot. In this way, the destination terminal 200 can identify the length of the PSCCH (PSCCH size) based on the position where the PSCCH is detected within the slot, so information regarding the length of the PSSCH is not notified to the destination terminal 200. good.
  • Case 2 is a case where the source terminal 200 reserves the resource of slot N+1, as shown in FIG. 13.
  • the source terminal 200 when the source terminal 200 confirms that there is no transmission from the beginning of slot N, it performs LBT at an additional starting point in the middle of slot N, and starts from slot N+1. may acquire the right to transmit.
  • the source terminal 200 when the source terminal 200 acquires the transmission right at the additional starting point of slot N, it transmits the PSCCH/PSSCH from the additional starting point of slot N to the reserved resources of slot N+1. It's fine. At this time, the source terminal 200 may arrange the PSCCH in each of the additional starting point of slot N and the first symbol of slot N+1, as shown in FIG. 13.
  • the source terminal 200 acquires the transmission right at an earlier timing than the reserved resources. Therefore, other terminals will not be able to transmit from a timing earlier than the reserved resources, so the possibility that the terminal 200 will be able to transmit the PSCCH/PSSCH using the reserved resources increases. That is, it is possible to reduce the probability that transmission of the PSCCH/PSSCH will be canceled due to the source terminal 200 not being able to acquire the transmission right for the reserved resources.
  • Case 3 is a case where the number of symbols that can transmit PSSCH can be set shorter than the slot length, as shown in FIG.
  • the number of PSSCH transmission symbols can be set to be shorter than the slot length, and for example, multiple PSSCHs/PSCCHs can be arranged in the time resources within one slot.
  • the source terminal 200 performs LBT at either or both of the beginning of slot N and an additional starting point in the middle of slot N, and uses the channel by another system or device to If it is confirmed that the PSCCH/PSSCH is not in use and the transmission right is acquired, the PSCCH/PSSCH may be transmitted.
  • the source terminal 200 may notify the destination terminal 200 of the length of the PSSCH using the PSCCH. For example, if the length of the PSCCH is 14 symbols, the PSSCH is arranged in all symbols within a slot, and if the length of the PSCCH is 7 symbols, the PSCCH is arranged in minislots. Note that the length of the PSCCH is not limited to 14 symbols or 7 symbols, and may be other lengths.
  • the number of times the destination terminal 200 detects the PSCCH within one slot may increase. As described above, since PSCCH detection is performed for each subchannel, the fewer the number of subchannels (for example, when they are limited), the fewer times PSCCH is detected.
  • the number of subchannels set in the resource pool may be determined according to the setting of the Additional starting point. For example, the number of subchannels when an additional starting point is set may be set smaller than the number of subchannels when an additional starting point is not set. Furthermore, for example, the greater the number of starting positions (eg, leading symbols and additional starting points) at which PSCCHs can be placed within a slot, the smaller the number of subchannels that can be set within a slot may be set. In this way, when an additional starting point is set, the number of subchannels set in a resource pool may be limited.
  • the number of subchannels set in a resource pool may be limited.
  • the number of time resources attempting to detect a PSCCH within one slot including the additional starting point is K
  • the number of subchannels that can be configured within the slot is set (for example, limited) to C/K. It's fine.
  • ⁇ Setting example 1B> In setting example 1B, if there are K time resources for attempting to detect a PSCCH in one slot, including the additional starting point, the number of PSCCH detections corresponding to the number of subchannels x the number of time resources is 200 terminals per slot. may be set to a value that does not exceed the number of times that PDCCH transmitted from base station 100 can be received.
  • the number of subchannels (or subchannel size) and the number of additional starting points may be set according to the setting value of the number of times of PSCCH detection.
  • the number of times that the terminal 200 can receive PDCCHs transmitted from the base station 100 per slot may be set, for example, based on the capability or specifications of the terminal 200.
  • ⁇ Setting example 1C> when an additional starting point is set, one subchannel is set in the RB set. Therefore, for example, a 20 MHz band corresponding to RB set is set to one subchannel.
  • a setting is added such that when K or more additional starting points (for example, a threshold value) are set, one subchannel is set in the RB set. may be done.
  • the number of subchannels set when the Additional starting point is set is not limited to one, and may be any other number.
  • ⁇ Setting example 2A> In configuration example 2A, if an additional starting point is configured and there is a possibility of multiple PSSCH transmissions in the time resources within the slot, the PSFCH is not configured (or supported).
  • minislot transmission allows retransmission in short cycles
  • retransmission will be performed based on line quality without waiting for HARQ-ACK feedback via PSFCH.
  • the influence of not setting PSFCH on retransmission control can be reduced.
  • a PSFCH resource for an additional starting point may be configured (prepared).
  • the PSFCH resource for the PSSCH allocated by the PSCCH at the beginning of the slot is, for example, “SL-PSFCH-Config” (for example, in FIG. ), or may be set according to a newly set mapping.
  • PSFCH resources for the PSSCH allocated by the PSCCH placed at the additional starting point may be newly configured.
  • the PSFCH resource for the PSSCH allocated by the PSCCH placed at the Additional starting point is It may be configured separately from the existing configuration as "sl-PSFCH-RB-Set" indicating the location of the PRB resource.
  • sl-PSFCH-RB-Set is, for example, a parameter that indicates the PRB used for transmitting and receiving PSFCH.
  • sl-PSFCH-RB-Set may indicate in bitmap format whether each of a plurality of PRBs is used for PSFCH transmission/reception.
  • at least one of the PRBs represented by sl-PSFCH-RB-Set may include PSFCH resources for PSSCHs allocated by PSCCHs located at Additional starting points.
  • the PSFCH for multiple PSSCHs is not limited to being allocated to multiple resources on the frequency axis, but may be allocated to multiple resources on the time axis.
  • ⁇ Setting example 2C> The PSFCH in license band sidelink communication is placed in the second-to-last symbol of a slot, as shown in FIG. 1(a).
  • a new resource where the PSFCH is arranged on the time axis within the slot may be set.
  • a PSFCH may be placed before a PSCCH placed at an additional starting point.
  • a new PSFCH may be placed before the PSFCH placed in the second-to-last symbol of the slot.
  • ⁇ Setting example 2D> In configuration example 2D, if an additional starting point is set and it is possible to transmit multiple PSSCHs on the time resource within a slot, the PSFCH for the PSSCH allocated by the first PSCCH among the multiple PSSCHs is Rel. Resources may be configured according to the rules regarding PSFCH defined in .16 or a newly defined mapping.
  • PSFCH resources are not allocated to the PSSCH corresponding to the PSCCH allocated to the Additional starting point among the multiple PSSCHs in the slot.
  • the source terminal 200 receives HARQ-ACK feedback for the PSSCH allocated by the first PSCCH, and does not receive HARQ-ACK feedback for the PSSCH allocated by the Additional starting point PSCCH. For example, if HARQ-ACK feedback is required, the source terminal 200 uses the PSCCH at the beginning of the slot, and if HARQ-ACK is not required, it uses the PSCCH at the additional starting point. PSCCH can be used depending on the situation.
  • the PSFCH setting example has been explained above.
  • the terminal 200 by setting an additional starting point within a slot, the terminal 200 increases the number of times a PSCCH can be transmitted (or the number of times a PSCCH can be detected) within a slot.
  • the source terminal 200 can perform LBT at an additional starting point in the middle of the slot, increasing the probability of acquiring the transmission right. can.
  • the source terminal 200 can transmit multiple PSSCHs within a slot, like a mini-slot.
  • terminals that transmit and receive on the side link include terminals that transmit and do not receive, terminals that receive and do not transmit, and terminals that transmit and receive on the side link.
  • settings related to sidelinks when settings related to sidelinks are set in advance, the setting method may be set in advance in the specifications (standards), or may be set in advance in the SIM (Subscriber Identity Module).
  • settings related to sidelinks may be set in an application layer called pre-configured, or configured in an upper layer such as SIB (system information block) and/or other RRC (radio resource control). or may be set using MAC (Medium Access Control).
  • each of the embodiments described above shows an example of sidelink communication
  • the present disclosure is not limited thereto.
  • the present disclosure is applied in communication between a base station and a terminal by replacing PSCCH with PDCCH, replacing PSSCH with PDSCH or PUSCH, replacing PSFCH with PUCCH, and replacing PSBCH with PBCH. You may.
  • each of the embodiments described above may be applied to Mode 2 and not to Mode 1, may be applied to both Mode 1 and Mode 2, or may be applied to Mode 1 and not to Mode 2. good.
  • the operation example applied to Mode 1 and the operation example applied to Mode 2 may be the same or different. For example, there may be an example of an operation that is applied to Mode 2 but not applied to Mode 1.
  • the base station may instruct which of Type 2A, 2B, and 2C to select from Type 2 LBT using a license band.
  • the frequency band of the unlicensed band may differ depending on each country or region.
  • the frequency bands of unlicensed bands include, for example, the 5 GHz band (5150 MHz - 5925 MHz), the 6 GHz band (5925 MHz - 7125 MHz), and 52.6 GHz to 71 GHz.
  • Type 1 LBT and Type 2 LBT may be called by different names in sidelink communication.
  • the SCI format transmitted on the PSCCH may be SCI format 1-A or a newly added SCI format.
  • the destination terminal may refer to multiple terminals in the case of groupcast and broadcast.
  • guard band may be called an intra-cell guard band.
  • the sidelink communication resource allocation illustrated in each of the embodiments described above is an example, and the present disclosure is not limited thereto.
  • the side link communication resources may include signals, channels, non-transmission periods, etc. that are not shown.
  • the widths of the signals shown in each figure in the time direction and frequency direction are not limited to the illustrated examples.
  • the slot size, resource size, channel size, signal size, etc. are not limited to the examples described above.
  • the length of the sidelink signal is adjusted by lengthening the CP length of the sidelink signal using CP extension, but the present disclosure is not limited thereto. Instead of increasing the CP length, the length may be adjusted by adding a known signal.
  • checking the availability of a channel may be replaced with expressions such as sensing (or monitoring) the availability of a channel.
  • the "channel” in this case may be replaced with other terms such as “carrier” or "resource.”
  • the method of notifying control information from the base station 100 to the terminal 200 is not limited to the example described above, and includes system information such as MIB and SIB, RRC control information, MAC control information, and downlink control information (DCI).
  • the information may be notified (or notified, instructed, or set) by at least one of the following, may be set in advance in the terminal 200, or may be predefined in a standard.
  • a base station may be referred to as a gNodeB or gNB.
  • a terminal may also be referred to as a UE.
  • the resource allocation unit in sidelink communication in an unlicensed band may be a unit different from a subchannel, or may have a different name from a subchannel.
  • a time resource unit such as a slot may be replaced by another unit such as a system frame, time slot, minislot, frame, subframe, block, etc.
  • (supplement) Information indicating whether the terminal 200 supports the functions, operations, or processes shown in the embodiments described above is transmitted from the terminal 200 to the base station 100, for example, as capability information or capability parameters of the terminal 200. (or notification).
  • the capability information may include an information element (IE) that individually indicates whether the terminal 200 supports at least one of the functions, operations, or processes shown in the embodiments described above.
  • the capability information may include an information element indicating whether the terminal 200 supports any combination of two or more of the functions, operations, or processes shown in the embodiments described above.
  • the base station 100 may determine (or determine or assume) the functions, operations, or processes that are supported (or not supported) by the terminal 200 that is the source of the capability information.
  • the base station 100 may perform operations, processing, or control according to the determination result based on the capability information.
  • base station 100 may control sidelink communication between terminals 200 based on capability information received from terminals 200.
  • the terminal 200 does not support some of the functions, operations, or processes shown in the embodiments described above does not mean that such some functions, operations, or processes are limited in the terminal 200. It's okay. For example, information or requests regarding such restrictions may be notified to the base station 100.
  • Information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly transmitted to the base station 100 in association with information known in the base station 100 or information transmitted to the base station 100. may be notified.
  • the downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted on a Physical Downlink Control Channel (PDCCH) of the physical layer, It may also be a signal (or information) transmitted in an upper layer Medium Access Control Control Element (MAC CE) or Radio Resource Control (RRC). Further, the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal.
  • PDCCH Physical Downlink Control Channel
  • MAC CE Medium Access Control Element
  • RRC Radio Resource Control
  • the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal.
  • the uplink control signal (or uplink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in the PUCCH of the physical layer, MAC CE or It may also be a signal (or information) transmitted in RRC. Further, the signal (or information) is not limited to being notified by an uplink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal. Further, the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
  • UCI uplink control information
  • SCI 1st stage sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • the base station includes a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), and a Base Transceiver. Station (BTS), base unit, gateway, etc. may be used.
  • TRP Transmission Reception Point
  • RRH Remote Radio Head
  • eNB eNodeB
  • gNB gNodeB
  • BS Base Station
  • BTS Base Transceiver. Station
  • base unit gateway, etc.
  • a terminal may play the role of a base station.
  • a relay device that relays communication between an upper node and a terminal may be used. Alternatively, it may be a roadside device.
  • An embodiment of the present disclosure may be applied to, for example, any of the uplink, downlink, and sidelink.
  • an embodiment of the present disclosure may be used for uplink Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), Physical Random Access Channel (PRACH), downlink Physical Downlink Shared Channel (PDSCH), PDCCH, Physical It may be applied to a Broadcast Channel (PBCH), a sidelink Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Control Channel (PSCCH), or a Physical Sidelink Broadcast Channel (PSBCH).
  • PBCH Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PDCCH, PDSCH, PUSCH, and PUCCH are each an example of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel.
  • PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel.
  • PBCH and PSBCH are examples of broadcast channels
  • PRACH is an example of a random access channel.
  • An embodiment of the present disclosure may be applied to either a data channel or a control channel, for example.
  • the channel in one embodiment of the present disclosure may be replaced with data channels PDSCH, PUSCH, PSSCH, or control channels PDCCH, PUCCH, PBCH, PSCCH, PSBCH.
  • the reference signal is, for example, a signal known by both the base station and the mobile station, and may also be referred to as a Reference Signal (RS) or a pilot signal.
  • the reference signal is Demodulation Reference Signal (DMRS), Channel State Information - Reference Signal (CSI-RS), Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), Cell-specific Reference Signal (CRS), or Sounding Any reference signal (SRS) may be used.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CRS Cell-specific Reference Signal
  • SRS Sounding Any reference signal
  • the unit of time resource is not limited to one or a combination of a slot and a symbol, but includes, for example, a frame, a superframe, a subframe, a slot, a timeslot subslot, a minislot, or a symbol, an orthogonal
  • the time resource unit may be a frequency division multiplexing (OFDM) symbol, a single carrier-frequency division multiplexing access (SC-FDMA) symbol, or another time resource unit.
  • the number of symbols included in one slot is not limited to the number of symbols illustrated in the embodiment described above, and may be any other number of symbols.
  • An embodiment of the present disclosure may be applied to either a licensed band or an unlicensed band.
  • An embodiment of the present disclosure may be applied to communication between a base station and a terminal (Uu link communication), communication between terminals (Sidelink communication), or Vehicle to Everything (V2X) communication. Good too.
  • the channel in one embodiment of the present disclosure may be replaced with any one of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, or PBCH.
  • an embodiment of the present disclosure may be applied to a terrestrial network, a non-terrestrial network (NTN) using a satellite, or a high-altitude pseudosatellite (HAPS). . Further, an embodiment of the present disclosure may be applied to terrestrial networks with large transmission delays compared to symbol lengths and slot lengths, such as networks with large cell sizes and ultra-wideband transmission networks.
  • NTN non-terrestrial network
  • HAPS high-altitude pseudosatellite
  • an antenna port refers to a logical antenna (antenna group) composed of one or more physical antennas.
  • an antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna made up of a plurality of antennas.
  • the antenna port may be defined as the minimum unit by which the weighting of the precoding vector is multiplied.
  • 5G fifth generation mobile phone technology
  • NR new radio access technologies
  • the system architecture as a whole assumes an NG-RAN (Next Generation-Radio Access Network) that includes gNBs.
  • the gNB provides the UE-side termination of the user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols for NG radio access.
  • gNBs are connected to each other by an Xn interface.
  • the gNB also communicates with the NGC (Next Generation Core) through the Next Generation (NG) interface, and more specifically, with the AMF (Access and Mobility Management Function) (e.g., a specific core entity that performs AMF) through the NG-C interface.
  • NGC Next Generation Core
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • NG-U interface a specific core entity that performs UPF
  • the NG-RAN architecture is shown in Figure 18 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack includes a PDCP (Packet Data Convergence Protocol (see TS 38.300, section 6.4)) sublayer that is terminated on the network side in the gNB; It includes the RLC (Radio Link Control (see TS 38.300, Section 6.3)) sublayer and the MAC (Medium Access Control (see TS 38.300, Section 6.2)) sublayer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is defined for NR (see e.g. TS 38.300, section 4.4.2).
  • An overview of Layer 2 functionality is provided in Section 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in Sections 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in Section 7 of TS 38.300.
  • the Medium-Access-Control layer handles logical channel multiplexing and scheduling and scheduling-related functions, including handling various numerologies.
  • the physical layer is responsible for encoding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • physical channels include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and PDSCH (Physical Downlink Shared Channel) as downlink physical channels.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communication (mMTC) with varying requirements in terms of data rate, latency, and coverage. may be included.
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and user-experienced data rates that are around three times the data rates offered by IMT-Advanced.
  • URLLC more stringent requirements are imposed for ultra-low latency (0.5 ms for user plane latency in each of UL and DL) and high reliability (1-10-5 within 1 ms).
  • mMTC preferably offers high connection density (1,000,000 devices/km 2 in urban environments), wide coverage in adverse environments, and extremely long battery life (15 years) for low-cost devices. can be required.
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • CP cyclic prefix
  • TTI time-to-live
  • Subcarrier spacing may be optionally optimized so that similar CP overhead is maintained.
  • the NR may support one or more subcarrier spacing values.
  • resource element may be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM/SC-FDMA symbol.
  • resource grids of subcarriers and OFDM symbols are defined for each uplink and downlink.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • FIG. 19 shows the functional separation between NG-RAN and 5GC.
  • a logical node of NG-RAN is gNB or ng-eNB.
  • 5GC has logical nodes AMF, UPF, and SMF.
  • gNB and ng-eNB host the following main functions: - Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation of resources to UEs (scheduling) in both uplink and downlink, etc. Radio Resource Management functions; - IP header compression, encryption, and integrity protection of data; - AMF selection upon UE attachment if the routing to the AMF cannot be determined from the information provided by the UE; - Routing of user plane data towards the UPF; - Routing of control plane information towards AMF; - connection setup and teardown; - scheduling and sending paging messages; - Scheduling and transmission of system broadcast information (originated by AMF or Operation, Admission, Maintenance (OAM)); - configuration of measurements and measurement reports for mobility and scheduling; - transport level packet marking in the uplink; - Session management; - Support for network slicing; - management of QoS flows and mapping to data radio bearers; - Support for UE in RRC_INACTIVE state; - NAS message
  • Access and Mobility Management Function hosts the following main functions: - Ability to terminate Non-Access Stratum (NAS) signaling; - NAS signaling security; - Access Stratum (AS) security controls; - Core Network (CN) inter-node signaling for mobility between 3GPP access networks; - Reachability of UEs in idle mode (including controlling and performing paging retransmissions); - Management of registration area; - Support for intra-system and inter-system mobility; - Access authentication; - access authorization, including checking roaming privileges; - Mobility management controls (subscription and policies); - Support for network slicing; - Selection of Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - Anchor points for intra-RAT mobility/inter-RAT mobility (if applicable); - External PDU (Protocol Data Unit) session point for interconnection with the data network; - Packet routing and forwarding; - Packet inspection and user plane policy rule enforcement; - Traffic usage reporting; - uplink classifier to support the routing of traffic flows to the data network; - Branching Point to support multi-homed PDU sessions; - QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement); - Verification of uplink traffic (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification trigger functions.
  • - Anchor points for intra-RAT mobility/inter-RAT mobility if applicable
  • External PDU Protocol Data Unit
  • Packet inspection and user plane policy rule enforcement Packet inspection and user plane policy rule enforcement
  • Traffic usage reporting - uplink classifier to support the routing of traffic flows to the data network
  • Session Management Function hosts the following main functions: - Session management; - IP address assignment and management for the UE; - UPF selection and control; - ability to configure traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination; - Control part policy enforcement and QoS; - Downlink data notification.
  • UPF User Plane Function
  • Figure 20 shows some of the interactions between the UE, gNB, and AMF (5GC entity) when the UE transitions from RRC_IDLE to RRC_CONNECTED in the NAS part (see TS 38.300 v15.6.0).
  • RRC is upper layer signaling (protocol) used for UE and gNB configuration.
  • This transition allows the AMF to prepare the UE context data (which includes, for example, the PDU session context, security keys, UE Radio Capabilities, UE Security Capabilities, etc.) and configure the initial context Send it to gNB along with the setup request (INITIAL CONTEXT SETUP REQUEST).
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
  • the gNB sends an RRCReconfiguration message to the UE, and in response to this, the gNB receives RRCReconfigurationComplete from the UE, thereby performing reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). .
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • the steps regarding RRCReconfiguration are omitted since SRB2 and DRB are not set up.
  • the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • the present disclosure provides a control circuit that establishes a Next Generation (NG) connection with a gNodeB during operation, and a control circuit that establishes a Next Generation (NG) connection during operation so that a signaling radio bearer between the gNodeB and User Equipment (UE) is set up.
  • a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
  • RRC Radio Resource Control
  • IE resource allocation configuration information element
  • Figure 21 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) is considering three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first stage of specifications for enhanced mobile-broadband (eMBB) communications has been completed.
  • eMBB enhanced mobile-broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • Standardization for massive machine-type communications is included.
  • Figure 21 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see eg ITU-R M.2083 Figure 2).
  • URLLC use cases have strict performance requirements such as throughput, latency, and availability.
  • the URLLC use case is envisioned as one of the elemental technologies to realize future applications such as wireless control of industrial production or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and traffic safety. ing.
  • Ultra-high reliability of URLLC is supported by identifying technologies that meet the requirements set by TR 38.913.
  • Important requirements for NR URLLC in Release 15 include a target user plane latency of 0.5 ms in the UL (uplink) and 0.5 ms in the DL (downlink).
  • the general URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes when the user plane latency is 1 ms.
  • BLER block error rate
  • Technological enhancements targeted by NR URLLC aim to improve latency and reliability.
  • Technological enhancements to improve latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (of configured grants) uplink, slot-level repetition in data channels, and downlink pre-emption.
  • Preemption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, transmissions that were already authorized are replaced by later transmissions. Preemption is applicable regardless of the specific service type. For example, transmission of service type A (URLLC) may be replaced by transmission of service type B (eMBB, etc.).
  • Technical enhancements for reliability include a dedicated CQI/MCS table for the 1E-5 target BLER.
  • Massive machine type communication (mMTC) use cases are characterized by a very large number of connected devices, typically transmitting relatively small amounts of data that are not sensitive to delay.
  • the device is required to be low cost and have a very long battery life. From an NR perspective, utilizing a very narrow bandwidth portion is one solution that saves power and allows longer battery life from the UE's perspective.
  • NR URLLC radio access control
  • the strict requirements are: high reliability (up to 10-6 level reliability), high availability, packet size up to 256 bytes, time synchronization up to a few microseconds (values can vary depending on the use case).
  • the latency as short as 0.5ms to 1ms (eg, 0.5ms latency in the targeted user plane), it can be 1 ⁇ s or a few ⁇ s).
  • NR URLLC there may be some technological enhancements from the physical layer perspective. These technology enhancements include PDCCH (Physical Downlink Control Channel) enhancements for compact DCI, PDCCH repetition, and increased PDCCH monitoring. Further, the enhancement of UCI (Uplink Control Information) relates to enhanced HARQ (Hybrid Automatic Repeat Request) and enhancement of CSI feedback. There may also be PUSCH enhancements related to minislot level hopping and retransmission/repetition enhancements.
  • minislot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • the 5G QoS (Quality of Service) model is based on QoS flows, including QoS flows that require a guaranteed flow bit rate (GBR: Guaranteed Bit Rate QoS flows), and QoS flows that require a guaranteed flow bit rate. (non-GBR QoS flows). Therefore, at the NAS level, a QoS flow is the most fine-grained QoS partition in a PDU session.
  • a QoS flow is identified within a PDU session by a QoS Flow ID (QFI) carried in an encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • the 5GC establishes one or more PDU sessions.
  • the NG-RAN establishes at least one Data Radio Bearers (DRB), eg, as shown above with reference to FIG. 20. Additionally, additional DRBs for the QoS flow of that PDU session can be configured later (it is up to the NG-RAN to decide when to configure them).
  • DRB Data Radio Bearers
  • the NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas AS level mapping rules in the UE and NG-RAN associate UL QoS flows and DL QoS flows with DRBs.
  • FIG. 22 shows the 5G NR non-roaming reference architecture (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function eg, an external application server hosting 5G services, illustrated in FIG. 21
  • AF Application Function
  • NEF Network Exposure Function
  • Policy control e.g. QoS control
  • Application Functions that are considered trusted by the Operator based on deployment by the Operator may interact directly with the associated Network Function.
  • Application Functions that are not allowed by the operator to directly access Network Functions interact with their associated Network Functions using an externally open framework via the NEF.
  • Figure 22 shows further functional units of the 5G architecture, namely Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF) , Session Management Function (SMF), and Data Network (DN, eg, service provided by an operator, Internet access, or service provided by a third party). All or part of the core network functionality and application services may be deployed and operated in a cloud computing environment.
  • NSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • DN Data Network
  • All or part of the core network functionality and application services may be deployed and operated in a cloud computing environment.
  • the present disclosure determines the QoS requirements for at least one of the URLLC service, the eMMB service, and the mMTC service in order to establish a PDU session including a radio bearer between the gNodeB and the UE according to the QoS requirements.
  • a transmitter for transmitting a request containing the request to at least one of the functions of the 5GC (e.g., NEF, AMF, SMF, PCF, UPF, etc.); and a control circuit for, in operation, servicing using the established PDU session;
  • An application server eg, 5G architecture AF is provided.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process explained in the above embodiment is partially or entirely realized as an LSI, which is an integrated circuit. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of a single chip that includes some or all of the functional blocks.
  • the LSI may include data input and output.
  • LSIs are sometimes called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized using a dedicated circuit, a general-purpose processor, or a dedicated processor. Furthermore, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital or analog processing.
  • the present disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) that have communication capabilities.
  • the communication device may include a wireless transceiver and processing/control circuitry.
  • the wireless transceiver may include a receiving section and a transmitting section, or both as functions.
  • the wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.) ), digital players (e.g.
  • digital audio/video players wearable devices (e.g. wearable cameras, smartwatches, tracking devices), game consoles, digital book readers, telehealth/telemedicine (e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • wearable devices e.g. wearable cameras, smartwatches, tracking devices
  • game consoles digital book readers
  • digital book readers e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication equipment is not limited to portable or movable, but also non-portable or fixed equipment, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "things” that can exist on an Internet of Things (IoT) network.
  • IoT Internet of Things
  • Communication includes data communication using cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication using a combination of these.
  • Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform communication functions of a communication device.
  • Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various equipment described above, without limitation. .
  • a communication device includes a control circuit that allocates a signal to a resource allocation unit made up of interlaces of consecutive numbers in terminal-to-terminal communication in an unlicensed band, and a transmission circuit that transmits the signal. , is provided.
  • the resource allocation unit is a subchannel, and the number of interlaces forming each of the plurality of subchannels is different.
  • the signal includes a control signal and a data signal for which resource allocation is instructed by the control signal, and the signal includes a plurality of resource blocks constituting the resource allocation unit to which the data signal is allocated.
  • the control circuit allocates the data signal to a resource block different from the resource block to which the control signal is allocated among the plurality of resource blocks in the same symbol, and In the resource block, the transmission power per resource block is set to be the same for the control signal and the data signal.
  • control circuit allocates the control signal included in the signal to a resource block with a lower number among the plurality of resource blocks forming the resource allocation unit.
  • the resource allocation unit is a subchannel, and when the signal is allocated to a plurality of the subchannels, the control circuit controls a subchannel with a lower number among the plurality of subchannels.
  • the control signal is placed at .
  • control circuit transmits the control signal included in the signal to a lower numbered resource block included in a lower numbered interlace among the plurality of resource blocks forming the resource allocation unit. Place it in
  • control circuit transmits the control signal included in the signal to a lower numbered resource in a predetermined number of lower numbered interlaces among the plurality of interlaces included in the resource allocation unit. Place it in a block.
  • the resource allocation unit is a subchannel, and when there is one time resource candidate for arranging the control signal included in the signal within a slot, the number of the subchannels that can be set is C. In this case, when the number of time resource candidates in the slot is K, the number of subchannels that can be set is set to C/K.
  • a communication device includes, in terminal-to-terminal communication in an unlicensed band, a receiving circuit that receives a signal allocated in a resource allocation unit consisting of an interlace of consecutive numbers, and a receiving circuit that demodulates the signal.
  • a control circuit in terminal-to-terminal communication in an unlicensed band, a receiving circuit that receives a signal allocated in a resource allocation unit consisting of an interlace of consecutive numbers, and a receiving circuit that demodulates the signal.
  • a communication device allocates a signal to a resource allocation unit composed of an interlace of consecutive numbers in terminal-to-terminal communication in an unlicensed band, and transmits the signal.
  • a communication device receives a signal allocated in a resource allocation unit consisting of an interlace of consecutive numbers in terminal-to-terminal communication in an unlicensed band, and demodulates the signal. do.
  • One aspect of the present disclosure is useful for wireless communication systems.
  • Base station 100 Base station 200 Terminal 201 Receiving section 202 LBT carrier sense section 203 Signal separating section 204 Demodulating section 205 Error correction decoding section 206 Control signal receiving section 207 Error correction encoding section 208 Modulating section 209 Control signal generating section 210 Signal allocation section 211 Transmission Department

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置は、非免許帯での端末通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当てる制御回路と、信号を送信する送信回路と、を具備する。

Description

通信装置、及び、通信方法
 本開示は、通信装置、及び、通信方法に関する。
 第5世代移動通信システム(5G: 5th Generation mobile communication systems)と呼ばれる通信システムの拡張が検討されている。5Gでは、通信トラフィックの増大、接続する端末数の増大、高信頼性、低遅延が必要とされるユースケース毎に、機能を柔軟に提供することが検討されている。
3GPP, TR 38.885 V16.0.0, "Study on NR Vehicle-to-Everything (V2X)" RP-201385, "WID revision: NR sidelink enhancement," LG Electronics, June 29 - July 3, 2020 RP-213678, "New WID on NR sidelink evolution," OPPO, LG Electronics, Dec. 6 - 17, 2021 3GPP, TS 38.331 V17.1.0, "NR; Radio Resource Control (RRC) protocol specification (Release 17)"
 しかしながら、アンライセンスバンドにおける通信のリソースの有効な利用に関しては検討の余地がある。
 本開示の非限定的な実施例では、アンライセンスバンドにおける、通信のリソースの利用効率を向上できる通信装置、及び、通信方法の提供に資する。
 本開示の一実施例に係る通信装置は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当てる制御回路と、前記信号を送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、アンライセンスバンドにおける、通信のリソースの利用効率を向上できる。
 本開示の一態様における更なる利点及び効果は、明細書及び図面から明らかにされる。かかる利点及び/または効果は、いくつかの実施形態並びに明細書及び図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
スロット内のチャネル配置例を示す図 channel busy時のスロット内のチャネル配置例を示す図 アンライセンスバンドの信号の周波数に関する規定の一例を示す図 インターレース割り当ての一例を示す図 基地局の一部の構成例を示すブロック図 端末の一部の構成例を示すブロック図 PSCCH(physical sidelink control channel)の配置例を示す図 PSCCHの配置例を示す図 PSCCHの配置例を示す図 VRB(Virtual Resource Block)及びPRB(Physical Resource Block)の配置例を示す図 端末の構成例を示すブロック図 スロット内のチャネル配置例を示す図 スロット内のチャネル配置例を示す図 スロット内のチャネル配置例を示す図 スロット内のチャネル配置例を示す図 PSFCH(physical sidelink feedback channel)に関するパラメータの設定例を示す図 スロット内のチャネル配置例を示す図 3GPP NRシステムの例示的なアーキテクチャの図 NG-RANと5GCとの間の機能分離を示す概略図 RRC(Radio Resource Control)接続のセットアップ/再設定の手順のシーケンス図 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、及び高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 国際標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)システムの高度化と、New Radio (NR)の両面から、通信システムの高度化を検討している。3GPPでは、LTEシステムにおいてV2X(vehicle to X)をサポートすることが先行して検討された。LTEよりも広帯域を使用できるNRにおいても、V2Xをサポートすることが検討された(例えば、非特許文献1参照)。
 また、V2Xに加え、サイドリンク(SL:Sidelink)を使用する通信のさらなる拡張が検討されている(例えば、非特許文献2参照)。V2Xは、車車間(V2V:Vehicle to Vehicle)、路車間(V2I:Vehicle to Infrastructure)、歩車間(V2P: Vehicle to Pedestrian)、車ネットワーク間(V2N:Vehicle to Network)の通信を想定している。
 V2V、V2I、V2Pでは、基地局とのネットワーク(例えば、基地局を経由したネットワーク)を介さずに、サイドリンクまたはPC5と呼ばれるリンクを使用して、端末間が、直接、信号を送受信できる。V2Nでは、基地局と端末との間のUuとよばれるリンクを介して通信することが想定されている。なお、基地局は、NRではgNBと称されてもよいし、LTEではeNBと称されてもよい。また、端末は、UE(User Equipment)と称されてもよい。
 また、サイドリンク通信のアンライセンスバンド(非免許帯)での活用も検討されている(例えば、非特許文献3参照)。
 [NR Sidelink]
 NRのサイドリンクでは、送受信において、ユニキャスト、グループキャスト、及び、ブロードキャストがサポートされている。ユニキャストでは、送信端末(Tx UE、source UE、又は、送信元端末とも呼ぶ)から受信端末(Rx UE、destination UE、又は、宛先端末とも呼ぶ)への1対1の送信が想定される。グループキャストでは、送信端末から、或るグループに含まれる1以上の受信端末への送信が想定される。ブロードキャストでは、送信端末から、受信端末を特定しない送信が想定される。
 NRのサイドリンクでは、SCI(Sidelink control information)と呼ばれる制御信号が送受信される。SCIは、1st-stage SCIと2nd-stage SCIとに分割される。1st-stage SCIは、PSCCH(physical SL control channel)に配置される。2nd-stage SCIは、データを送受信するPSSCH(physical SL shared channel)の少なくとも一部に配置される。SCIを2分割することによって、1st-stage SCIのビット数及びサイズを小さくすることができる。サイドリンクでは、或る端末(例えば、端末A)が、端末Aと異なる他の端末から送信されたPSCCHを受信し、他の端末のリソースの利用状況を把握してから、端末Aが送信に使用するリソースを決定する機能がある。この機能は、「センシング」とも呼ばれる。
 なお、サイドリンクでは、以下のチャネルにおいて、信号が送受信される。
 -PSCCH (physical SL control channel):PSCCHには、1st-stage SCI(Sidelink control information)が配置される。
 -PSSCH (physical SL shared channel):PSSCHには、データ信号と2nd-stage SCIが配置される。
 -PSFCH (physical SL feedback channel):PSFCHには、PSSCHに対するフィードバック信号が配置される。フィードバック信号は、例えば、PSSCHの受信に成功したことを示すACK(Acknowledgement)またはPSSCHの受信に成功しなかったことを示すNACK(negative Acknowledgement)を示す。フィードバック信号は、PSSCHがユニキャスト及びグループキャストである場合に適用が可能である。また、Release 17(Rel.17)以降では、Inter-UE coordinationとして、衝突を検知した場合に、PSFCHが送信されることもある。
 -PSBCH (physical SL broadcast channel):PSBCHには、ブロードキャスト信号が配置される。SBCHは、同期用の信号と共に送信される。同期用の信号は、例えば、sidelink Primary synchronization signal (S-PSS)及び/又はsidelink secondly synchronization signal (S-SSS)である。同期用の信号と一緒に送信されるSBCHは、合わせてS-SSB(sidelink synchronization signal block)とも呼ばれる。
 なお、サイドリンクにおいて送受信される信号は、「サイドリンク信号」と称されてもよい。また、例えば、「PSCCHに配置された情報(又は信号)の送信」は、以下では、「PSCCHの送信」と略記される場合がある。また、以下の説明において、PSCCHは、PSCCHとして規定されたリソースを指してもよいし、PSCCHとして規定されたリソースに配置された情報(又は信号)を指してもよい。PSCCH以外の他のチャネルにおいても、PSCCHと同様に、略記される場合がある。
 図1は、PSCCH、PSSCH、及び、PSFCHのスロット内の配置例を示す図である。図1の横軸は、時間軸を表し、縦軸はPRB(physical resource block)単位の周波数軸を表す。図1には、図1(a)及び図1(b)の2つの例が示される。
 なお、図1(a)に示すように、PSFCHは、配置されてもよい。あるいは、図1(b)に示すように、PSFCHは、設定により、配置されない場合もある。PSFCHが配置されない場合、PSSCHの領域が増えてよい。
 スロット内のサイドリンク信号のシンボル数は、設定により可変であってよい。また、2nd-stage SCIは、図示していないPSSCHのDMRS(demodulation reference signal)の配置により、配置が変更され得る。1st-stage SCIは、PSSCHを割り当てる周波数リソースの中で、最も低い周波数リソースから配置される。PSCCH及びPSSCHの先頭シンボルの前のシンボルには、AGC(Auto gain control)のためにPSCCH及びPSSCHの先頭シンボルの複製が配置される。また、図1(a)に示すように、PSFCHのシンボルの前にも、AGCのためにPSFCHの複製が配置される。
 また、図1(a)では、PSSCHとPSFCHとの間の区間、及び、PSFCHの最終シンボルよりも後の区間には送受信の切り替えのためのガード区間(例えば、ガードピリオド(guard period)、又は、gapとも呼ばれる)が配置される。図1(b)では、PSSCHの最終シンボルよりも後の区間には、送受信の切り替えのためのguard periodが配置される。guard periodは、信号が送受信されない区間に相当してよい。
 NRのサイドリンク通信には、Mode 1とMode 2と称される2つのモードがある。Mode 1では、基地局が、サイドリンクで端末が使用するリソースを決定(スケジューリングし)、スケジューリング結果を端末に指示する。Mode 2では、端末が、予め定められたリソースプール内のリソースから、サイドリンクで使用するリソースを決定(又は、選択)する。Mode 1は、基地局と端末との間が接続されている状態であり、基地局からの指示をサイドリンクで通信する端末が受信可能な環境下での使用が想定されている。Mode 2は、基地局からの指示がなくても端末がサイドリンクで送信できるので、異なるオペレータの配下の端末、及び/又は、基地局のカバレッジの外に存在する端末を含めてサイドリンクで通信できる。
 サイドリンクに使用されるリソースは、例えば、SL BWP(Band width part)及びリソースプールにより設定される。
 SL BWPは、サイドリンクに使用可能な周波数バンドを指定し、基地局と端末との間(Uu)に設定されるdownlink BWP(DL BWP)及びUplink BWP(UL BWP)とは別途設定される。例えば、SL BWPの周波数バンドは、UL BWPとオーバラップする場合もある。
 リソースプールは、SL BWP内のリソースであり、リソースプールにより、周波数方向及び時間方向のリソースが指定される。例えば、1つの端末に複数のリソースプールが設定されてもよい。リソースプール内の周波数リソースは、「サブチャネル(subchannel)」という単位に分割され、サブチャネル単位でリソースの割り当ての設定が可能である。サブチャネルには、複数のPRBが含まれ、PRBをまとめたサブチャネル単位で、PSSCHの割り当てが可能である。
 [NR-U(NR-Unlicensed)]
 通信の大容量化に伴い、3GPPにおいても、ライセンスバンドに加えてアンライセンスバンド(unlicensed band)の活用が検討されている。アンライセンスバンドを活用するNRは、NR-U(unlicensed)とも呼ばれる。NR-Uでは、Wifi(登録商標)及び/又はLTEをベースとしたLAA(Licensed Assisted Access)などの他の機器との混在において、公平性を保つ動作が追加及び拡張されている。
 アンライセンスバンドでは、通信装置(例えば、NR-Uの基地局又は端末)は、他の機器との公平性を保つため、LBT(Listen Before Talk)を行い、他の機器が近くで信号を送信していないことを確認してから送信を開始する。LBTは、キャリアセンス、又は、センシング等の他の表記に置き換えられてもよい。通信装置には、LBTを行い、他の機器が近くで信号を送信していないことを確認した後、チャネル占有時間であるCOT(Channel Occupancy Time)が設定される。COT内では、通信装置は、DL(downlink)リソース、及び、UL(Uplink)リソースにおいて、信号を送受信できる。
 LBTに関する運用方法は2つ存在する。運用方法の1つ目は、LBE(Load Based Equipment)である。LBEでは、通信装置が、COTを獲得する場合、Type 1 channel access(例えば、category 4 LBT、又は、Type 1 LBTとも呼ばれる)を実施する。また、COTの先頭以外では、通信装置は、Type 2 channel access(例えば、Type 2 LBTとも呼ばれる)を実施でき、実施後に送信を開始できる。
 なお、以下の説明において、通信装置(例えば、基地局又は端末)が「LBTを実施した後に送信を開始する」ことは、通信装置が、LBTを実施し、他の機器が近くで信号を送信していないことを確認した後、送信を開始することに相当する。
 表1は、LBEにおける、DLでの送信権獲得のためのLBTのセンシングインターバル及び、適用される間隔の例を示す。
Figure JPOXMLDOC01-appb-T000001
 Type 2Aでは、時間的に連続する2つのリソースの間隔が、25μsである場合、端末は、25μs内でLBTを実施する。端末は、LBTにおいて他の機器の送信を確認しない場合、送信を開始できる。
 Type 2Bでは、時間的に連続する2つのリソースの間隔が16μsである場合、端末は、16μ内でLBTを実施する。端末は、他の機器の送信を確認しない場合、送信を開始できる。
 Type 2Cでは、時間的に連続する2つのリソースの間隔が、16μs未満である場合、端末は、LBTなしで、送信を開始できる。なお、例外的に、DRS(Discovery reference signal)の送信では、DRSの送信時間が短いことから、Type 1 LBTではなく、Type 2A LBTを実施し、送信を開始することができる。
 運用方法の2つ目は、FBE (Frame Based Equipment)である。FBEは、Wifi等の他の機器が同じ空間に設置されていないことを想定し、フレーム周期を固定し、フレームの先頭でLBTを実施してCOTを獲得する運用である。FBEでは、COTはフレーム間隔(Fixed Frame Period)の先頭からしか獲得できない。また、FBEでは、フレーム間隔毎に5%以上の無送信区間(idle period)を設けることが規定されている。
 以上、NR-Uについて説明した。
 以下の各実施の形態では、アンライセンスバンドにおいてサイドリンク通信を行う例について説明する。アンライセンスバンドを活用するサイドリンク通信は、SL-U(Sidelink unlicensed)とも呼ばれる。
 アンライセンスバンドでは、端末は、LBTを実施し、他の機器の送信を確認しない場合、送信を開始する。その一方で、アンライセンスバンドでは、端末は、LBTを実施し、他の機器の信号を検出し、他の機器の送信を確認した場合、送信を開始しない。他の機器の信号を検出した場合を、「busy(又は、channel busy)」、「使用不可」又は「LBT failure」とも呼ぶ。
 LBT failureの場合、サイドリンクでも、端末は、割り当てられたリソース又は選択したリソースの送信権を獲得できず、送信を開始できない。
 図2は、LBT failureの場合の各スロット内のチャネル配置例を示す図である。
 例えば、図2(a)は、端末が送信を予定していたスロット(リソースを予約したスロット)の前のスロットにおいて、他の機器が送信を開始した場合の例を示す。また、図2(b)は、端末が送信を予定していたスロットの直前のシンボルにおいて、他の機器が送信を開始した場合の例を示す。図2(a)及び図2(b)に示すように、端末は、送信を予定していたスロットの前にLBTを実施し、LBT failureとなるため、サイドリンク信号の送信を開始できない。例えば、図2(b)に示すように、端末が連続するスロットを使用する場合でも、COT内の送信においてLBT Type 2を実施して送信しようとしても、他の機器に送信権を獲得される可能性がある。
 また、アンライセンスバンドでは、Occupied Channel Bandwidth(OCB)がNominal Channel Bandwidth(NCB)の80%から100%を満たすというETSI(ETSI EN 301 893 V2.1.1 (2017-05))の規定がある。OCBがNCBの80%以上を満たすという規定は、以下では、OCBの規定と記載される。このOCBの規定を満たす場合、アンライセンスバンドの信号は、NCBの周波数帯域の80%以上の周波数を使用して送信される。
 なお、以下では、OCBの規定は、OCBがNCBの80%以上を満たすという規定であるが、本開示はこれに限定されない。OCBがNCBの80%以上を満たすというOCBの規定は、周波数帯域に関する帯域幅の制限の一例である。
 図3は、アンライセンスバンドの信号の周波数に関する規定の一例を示す図である。図3の「OCB 80%」は、OCBがNCBの周波数帯域の80%以上であることを示す。なお、以下示す図においても、「OCB 80%」は、OCBがNCBの周波数帯域の80%以上であることを示す。
 アンライセンスバンドの信号は、図3(a)に示すように、NCBの周波数帯域の80%以上を連続で使用して送信されてもよいし、図3(b)に示すように、分割された複数のリソースの周波数軸における両端の幅が、NCBの周波数帯域の80%以上となるように配置されてもよい。
 NR-U及びLAAでは、この周波数領域におけるOCBの規定を満たすため、インターレース割り当てが導入されている。NR-Uのインターレース割り当てでは、NCBは、20MHzのRB set(Resource Block set)に設定される。なお、NCBの設定は、20MHzに限定されない。
 表2は、SCS(subcarrier spacing)とインターレースとの関係の一例を示す。図4は、インターレース割り当ての一例を示す図である。表3のMは、インターレースの数を示し、Nは、1つのインターレースを構成するPRB(Physical Resource Block)の数を示す。図4は、SCSが30kHzの場合のインターレース割り当ての例を示す。NR-Uのインターレース割り当てでは、表2及び図4に示すように、例えば、SCSが30kHzの場合、20MHz帯域は、5つ(M=5)のインターレース(インターレース#0~#4)に分割され、1つのインターレースは、10又は11のPRB数(N PRBs)で構成される。
Figure JPOXMLDOC01-appb-T000002
 アンライセンスバンドにおけるサイドリンク通信でもインターレース割り当てを適用することが想定される。アンライセンスバンドにおけるサイドリンク通信では、PSSCHを割り当てる単位であるサブチャネル及びインターレースマッピングの設定方法については検討の余地がある。
 本開示の非限定的な一実施例では、アンライセンスバンドにおけるサイドリンク通信において、サブチャネル及びインターレースマッピングの設定方法について説明する。
 なお、以下に説明する各実施の形態では、サイドリンク通信を例示的に挙げているが本開示はサイドリンク通信に限定されない。また、以下に説明する各実施の形態は、アンライセンスバンドを例示的に挙げているが本開示はアンライセンスバンドに限定されない。
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、基地局100及び端末200を備える。
 図5は、基地局100の一部の構成例を示すブロック図である。図5に示す基地局100において、制御部は、端末200と基地局100との間のUuとよばれるリンクを介した通信を制御する。通信部は、制御部の制御により、Uuとよばれるリンクを介して信号を送信する。また、制御部は、複数の端末間のサイドリンク通信に関する制御(例えば、Mode 1におけるリソースの決定)を行ってもよい。
 図6は、端末200(例えば、通信装置に対応)の一部の構成例を示すブロック図である。図6に示す端末200において、制御部(例えば、制御回路に対応)は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位(例えば、サブチャネル)に信号を割り当て、通信部(例えば、送信回路に対応)は、信号を送信する。また、端末200は、通信部(例えば、受信回路に対応)は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位(例えば、サブチャネル)で割り当てられる信号を受信し、制御部(例えば、制御回路に対応)は、信号を復調する。なお、送信信号は、例えば、サイドリンク信号であってもよいし、サイドリンク信号と異なる信号であってもよい。
 (実施の形態1)
 本実施の形態では、アンライセンスバンドのサイドリンク通信において、PSSCHのリソース割当単位であるサブチャネルは、連続するインターレース番号のインターレース(例えば、周波数領域において隣接するインターレース)で構成される。
 例えば、複数の端末が周波数多重(FDM:Frequency Division Multiplexing)によって送信を行う場合、IBE(In-band Emission)と呼ばれる帯域内に多重される他の端末の送信からの電波の漏れ込みがある可能性がある。本実施の形態によれば、連続するインターレース番号のインターレースによるサブチャネルの構成により、PSSCHは、複数のインターレースのうち、周波数領域において連続するインターレースに割り当てられるので、端末200に割り当てられるリソースと、他の端末に割り当てられるリソースとの接点を低減でき、IBEの影響(又は、他の端末との干渉の影響)を低減できる。
 以下、本実施の形態に係る動作例について説明する。
 [動作例1]
 動作例1では、リソースプールの設定において、各サブチャネルを構成するインターレース(例えば、インターレース番号)が設定される。
 表3は、サブチャネルを構成するインターレースの設定例を示す。表3の例では、SCSが15kHz、30kHz、60kHzの場合のそれぞれにおけるサブチャネルの設定例を示す。また、表3では、RB set(例えば、20MHz)あたりのサブチャネル数が1、2、3、4、5、10個の場合のそれぞれにおけるサブチャネルの設定例を示す。なお、SCS及びサブチャネル数は、表3に示す例に限定されない。
 例えば、SCS=15kHz及び30kHzでは、NR-Uにおいて使用されるインターレースと同様に設定されてよい。例えば、SCS=15kHzでは、RB set内に10個のインターレース(例えば、インターレース#0~#9)が設定され、SCS=30kHzでは、RB set内に5個のインターレース(例えば、インターレース#0~#4)が設定されてよい。なお、SCS=60kHzに関して、NR-Uでは設定が無いが、例えば、RB set内に3個のインターレース(例えば、インターレース#0~#2)が設定されてよい。
 例えば、20MHzのRB setに対して、サブチャネル数が1個の場合(1 subchannel/20MHz)、各SCSでは、全てのインターレースによって1つのサブチャネルが構成される。
 また、例えば、20MHzのRB setに対して、サブチャネルが2個の場合(2 subchannels/20MHz)、SCS=15kHzでは、10個のインターレースを2分割し、インターレース番号が連続する5個のインターレース(例えば、インターレース#0~#4、及び、インターレース#5~#9)によって1つのサブチャネルが構成される。また、SCS=30kHzでは、各サブチャネルに対してインターレース数を均等に分配(等分割)できないので、例えば、5個のインターレースを、インターレース番号が連続する、3個(例えば、インターレース#0~#2)、2個(例えば、インターレース#3、#4)に2分割し、分割されたインターレースのそれぞれによって1つのサブチャネルが構成されてよい。同様に、SCS=60kHzでは、3個のインターレースを、インターレース番号が連続する2個(例えば、インターレース#0、#1)と、1個(例えば、インターレース#2)とに2分割し、分割されたインターレースのそれぞれによって1つのサブチャネルが構成されてよい。
 同様に、例えば、20MHzのRB setに対して、サブチャネルが3個の場合(3 subchannels/20MHz)、SCS=15kHzでは、各サブチャネルに対してインターレース数を均等に分配できないので、10個のインターレースを、インターレース番号が連続する、4個(例えば、インターレース#0~#3)、3個(例えば、インターレース#4~#6)、3個(例えば、インターレース#7~#9)に3分割し、分割されたインターレースのそれぞれによって1つのサブチャネルが構成されてよい。同様に、SCS=30kHzでは、各サブチャネルに対してインターレース数を均等に分配できないので、5個のインターレースを、インターレース番号が連続する、2個(例えば、インターレース#0、#1)、2個(例えば、インターレース#2、#3)、1個(例えば、インターレース#4)に3分割し、分割されたインターレースのそれぞれによって1つのサブチャネルが構成されてよい。また、SCS=60kHzでは、3個のインターレースを3分割し、1個のインターレースによって1つのサブチャネルが構成される。
 表3において、20MHzのRB setに含まれるサブチャネル数が他の個数の場合(例えば、4個、5個または10個の場合)についても同様に、各サブチャネルに対して、連続するインターレース番号のインターレースが設定される。
 例えば、RB set内のインターレース数をM個とし、リソースプールにおいて設定されるサブチャネル数をC個とする場合、各サブチャネルを構成するインターレース数は、等分割できる場合には、M/C個であり、等分割できない場合には、floor(M/C)個、及び、floor(M/C)+1である。ここでFloor()は、小数点以下を切り捨てる関数(floor関数)である。
Figure JPOXMLDOC01-appb-T000003
 このように、リソースプールにおいて、サブチャネルサイズ(又は、サブチャネル数)を可変に設定できるようすることにより、リソースプール毎の用途に適したサブチャネルサイズの設定が可能となる。
 例えば、センシング情報の通知のように小さいデータ(例えば、データ量が閾値未満のデータ)がより多く送信される場合、サブチャネルサイズをより小さく設定し、大容量の動画の送信のように大きいデータ(例えば、データ量が閾値以上のデータ)が送信される場合、サブチャネルサイズをより大きく設定してもよい。
 また、サブチャネル数は、単一時間においてサイドリンク通信を行う端末200がPSCCHを検出する回数に相当する。例えば、サブチャネル数が少ないほど、端末200におけるPSCCHの検出回数(例えば、blind decoding(BD)数)を低減できる。
 また、表3に示すように、RB setに含まれる複数のサブチャネルのそれぞれを構成するインターレース数は異なってよい。例えば、30kHzのサブチャネル数が3の場合、サブチャネルによって、インターレース数が2個の場合と1個の場合がある。これにより、インターレース番号とサブチャネル番号とが倍数の関係でなくても、PSCCH/PSSCHの配置が可能となる。
 [動作例2]
 アンライセンスバンドでは、20MHzのRB set毎に(例えば、RB setの境界に)、intra-cellガードバンド(intra-cell guard band)が設定されることが想定される。intra-cellガードバンドを設定するか否かは、リソースプール毎又は端末毎に、(pre-)configuredと呼ばれる上位レイヤのシグナリングによって端末200へ通知されてもよく、設定により予め定められてもよい。
 intra-cellガードバンドが設定される場合、端末200は、或る20MHz帯域幅に対して、LBTによってチャネルが使用されていないことを確認し、当該20MHz帯域幅に隣接するRB set 20MHz帯域幅においてLBTによってチャネルが使用されることを確認した場合でも、チャネルが使用されていない20MHz帯域幅において送信を開始できる。
 例えば、SL BWPが100MHzである場合について説明する。例えば、intra-cellガードバンドが設定される場合、端末200は、20MHzのRB set毎にLBTを行い、LBTによりチャネルが使用されていないことを確認したチャネルにおいて送信を開始できる。その一方で、intra-cellガードバンドが設定されない場合、端末200は、SL BWP内の全てのRB setにおいて、LBTによってチャネルが使用されていないことを確認した場合に送信を開始できる。
 例えば、intra-cellガードバンドが設定される場合に、端末200に対して連続するRB set(又は、隣接するRB set)が割り当てられると、intra-cellガードバンドとなるPRBでも、端末200は、PSSCHを送信できる可能性がある。例えば、隣接する2つのRB setにおいて、LBTがOKとなる場合、端末200は、当該2つのRB set間のintra-cellガードバンドにおいてPSSCH送信を行ってもよい。
 なお、端末200が、割り当てられる連続するRB setを使用する場合に、RB set間のintra-cellガードバンドにPSSCHを割り当てるか否かは、リソースプール毎に(re-)configuredされてもよく、PSCCHによって指示されてもよい。
 また、例えば、端末200は、PSCCH内の信号によって割り当てられるRB set数を特定する。そのため、端末200では、PSCCHを受信する前に、隣接するRB setの割り当てが有るか否かは不明である。そこで、例えば、PSCCHは、intra-cellガードバンドに配置されなくてよい。
 なお、inter-cellガードバンド(inter-cell guard band)という、SL-BWP又はリソースプールの端に配置されるガードバンドもある。inter-cellガードバンドには、PSCCH及びPSSCHも配置されなくてよい。これにより、他のセルに与える帯域外輻射の影響を抑制できる。
 [動作例3]
 動作例3では、PSCCH及び/又はPSSCH(以下、「PSCCH/PSSCH」とも表す)にインターレースマッピングを設定した場合のPSCCH及びPSSCHの配置例について説明する。
 PSCCHが、PSSCHに割り当てられたサブチャネルを構成する複数のPRBのうち一部のPRBに割り当てられる場合、端末200は、同一シンボルにおいて、複数のPRBのうち、PSCCHが割り当てられるPRBと異なるPRBにPSSCHを割り当ててよい。このとき、サブチャネルを構成する複数のPRBにおいて、PRBあたりの送信電力は、PSCCHとPSSCHとで同一に設定されてよい。これにより、シンボル間で送信電力の差がなく、Tangent periodと呼ばれるシンボル間の電力調整のための時間が不要となる。
 また、PSSCHのサイズは、リソースプール毎に(pre-)configuredされてよい。PSSCHのサイズは、例えば、PRB数又はインターレース番号によって指定されてよい。
 以下、PSSCH及びPSCCHの設定例について説明する。
 <設定例3A>
 設定例3Aでは、PSSCHのサイズは、リソースプール毎に(pre-)configuredされる。例えば、PSSCHのサイズは、ライセンスバンドと同様に、10、12、15、20PRBの中から選択可能に設定されてよい。
 設定例3Aでは、PSCCHは、PSSCHが割り当てられるサブチャネルのうち、低いPRB番号のPRBから順に配置される。例えば、端末200は、送信信号に含まれるPSCCHを、サブチャネルを構成する複数のPRBのうち、より低いPRB番号のPRBに配置する。
 図7は、設定例3Aに係るチャネルの配置例を示す図である。図7では、一例として、SCS=30kHzの場合を示し、RB setあたり3つのサブチャネルが含まれる(例えば、3分割される)。図7に示す例では、サブチャネル#0にインターレース#0、#1が含まれ、サブチャネル#1にインターレース#2、#3が含まれ、サブチャネル#2にインターレース#4が含まれる。
 図7(a)では、送信元端末200は、サブチャネル#0(インターレース#0、#1)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#0を構成する複数のPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置されてよい。図7(a)に示すように、サブチャネル#0を構成するPRBのうち、高いPRB番号ほど、PSCCHは配置されにくく、PSSCHのみが配置される。
 図7(b)では、送信元端末200は、サブチャネル#2(インターレース#4)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#2を構成するPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置されてよい。
 図7の例では、サブチャネル#2に含まれるPRB数(又は、インターレース数)は、サブチャネル#0よりも少ない。このため、図7(b)では、サブチャネル#0が割り当てられる場合(例えば、図7(a))と比較して、広範囲の周波数帯にPSCCHが配置され、送信される。例えば、サブチャネル内のPRB数と、PSCCHが割り当てられるPRB数とが同一の場合、サブチャネル内の全てのPRBにおいてPSCCHが送信される。
 なお、PSCCHが割り当てられるPRB数がサブチャネル内のPRB数よりも多い場合、送信元端末200は、PSCCHを全て送信できない。この場合、例えば、リソースプールの設定として、PSCCHが割り当てられるPRB数をサブチャネル内のPRB数よりも多く設定しないという制限を設けてもよく、送信元端末200は、一部のPSCCHを送信しなくてもよい。
 図7(c)では、送信元端末200は、サブチャネル#1及び#2を選択してPSSCHを送信する。複数のサブチャネルが選択される場合、PSCCHは、サブチャネル#1及び#2のうち、より低い番号のサブチャネル#1に配置されてよい。また、PSCCHは、サブチャネル#1を構成するPRBのうち、より低いPRB番号のPRBに配置されてよい。図7(c)に示すように、サブチャネル#1を構成するPRBのうち、高いPRB番号ほど、PSCCHは配置されにくく、PSSCHのみが配置される。
 また、図7(c)では、送信元端末200において、サブチャネル#2には、PSCCHは配置されないが、図7(b)に示すように、サブチャネル#2においてPSCCH送信が行われる可能性もあるので、他の端末(例えば、宛先端末200)は、サブチャネル#0、サブチャネル#1、及び、サブチャネル#2のそれぞれにおいてPSCCHの受信を試みてもよい。
 また、例えば、PSCCHが割り当てられるPRB数がサブチャネル#n内のPRB数よりも多い場合、送信元端末200は、サブチャネル#nのPRBに加え、サブチャネル#n+1内のPRBを用いてPSCCHを送信してもよい。この場合、PSCCHは、サブチャネル#n+1を構成するPRBのうち、より低いPRB番号のPRBに配置されてよい。
 設定例3Aによれば、PSCCHのサイズを、サブチャネルに含まれるPRB数、及び、インターレースに含まるPRB数に依らずに決定できるという利点がある。例えば、宛先端末200は、各サブチャネルに含まれるPRB数が異なる場合でも、PSSCHが割り当てられるPRB数に基づいて、PSCCHの配置を特定できる。
 <設定例3B>
 設定例3Bでは、PSSCHのサイズは、リソースプール毎に(pre-)configuredされる。例えば、PSSCHのサイズは、ライセンスバンドと同様に、10、12、15、20PRBの中から選択可能に設定されてよい。
 設定例3Bでは、PSCCHは、PSSCHが割り当てられるサブチャネルに含まれるインターレースのうちの低いインターレース番号のインターレースに含まれるPRBのうちの低いPRB番号から順に配置される。例えば、端末200は、送信信号に含まれるPSCCHを、サブチャネルを構成する複数のPRBのうち、より低いインターレース番号のインターレースに含まれるより低いPRB番号のPRBに配置する。
 図8は、設定例3Bに係るチャネルの配置例を示す図である。図8では、一例として、SCS=30kHzの場合を示し、RB setあたり2つのサブチャネルが含まれる(例えば、2分割される)。図8に示す例では、サブチャネル#0にインターレース#0、#1、#2が含まれ、サブチャネル#1にインターレース#3、#4が含まれる。
 図8(a)では、送信元端末200は、サブチャネル#0(インターレース#0、#1、#2)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#0を構成するインターレース#0、#1、#2のうち、低いインターレース番号のインターレース#0に配置される。また、PSCCHは、インターレース#0に含まれる複数のPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置される。
 なお、PSCCHが割り当てられるPRB数が、インターレース#0に含まれるPRB数より多い場合、図8(a)に示すように、PSCCHは、インターレース#0に加え、インターレース#1に配置されてよい。このとき、PSCCHは、インターレース#1に含まれる複数のPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置される。
 図8(b)では、送信元端末200は、サブチャネル#1(インターレース#3、#4)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#1を構成するインターレース#3、#4のうち、低いインターレース番号であるインターレース#3に配置される。また、PSCCHは、インターレース#3に含まれる複数のPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置される。
 なお、PSCCHが割り当てられるPRB数が、インターレース#3に含まれるPRB数より多い場合、図8(b)に示すように、PSCCHは、インターレース#3に加え、インターレース#4に配置されてよい。このとき、PSCCHは、インターレース#4に含まれる複数のPRBのうち、より低いPRB番号(又は、より低い周波数)のPRBに配置される。
 設定例3Bによれば、設定例3Aと同様、PSCCHのサイズを、サブチャネルに含まれるPRB数、及び、インターレースに含まるPRB数に依らずに決定できるという利点がある。例えば、宛先端末200は、各サブチャネルに含まれるPRB数が異なる場合でも、PSSCHが割り当てられるインターレース及びPRB数に基づいて、PSCCHの配置を特定できる。
 また、設定例3Bでは、設定例3Aと比較して、PSCCHは、まず、サブチャネル内の1つのインターレースに配置されるので、PSCCHは、周波数方向に分散して送信され、周波数ダイバーシティ効果が高いという利点がある。
 <設定例3C>
 設定例3Cでは、PSSCHのサイズは、リソースプール毎に(pre-)configuredされる。例えば、PSSCHのサイズは、ライセンスバンドと同様に、10、12、15、20PRBの中から選択可能に設定されてよい。
 設定例3Cでは、PSCCHのサイズは、リソースプール毎に、インターレース数(例えば、規定数)として(pre-)configuredされる。
 設定例3Cでは、PSCCHは、PSSCHが割り当てられるサブチャネルに含まれるインターレースのうちの低いインターレース番号の規定数のインターレースに含まれるPRBのうちの低いPRB番号から順に配置される。例えば、端末200は、送信信号に含まれるPSCCHを、サブチャネルに含まれる複数のインターレースのうち、より低いインターレース番号の規定数のインターレースにおいて、より低いPRB番号のPRBに配置する。
 以下では、一例として、PSCCHのサイズ(規定数)に、1インターレースが(pre-)configured される場合について説明する。なお、PSCCHのサイズは、2インターレース以上でもよい。
 図9は、設定例3Cに係るチャネルの配置例を示す図である。図9では、一例として、SCS=30kHzの場合を示し、RB setあたり3つのサブチャネルが含まれる(例えば、3分割される)。図9に示す例では、サブチャネル#0にインターレース#0、#1が含まれ、サブチャネル#1にインターレース#2、#3が含まれ、サブチャネル#2にインターレース#4が含まれる。
 図9(a)では、送信元端末200は、サブチャネル#0(インターレース#0、#1)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#0に含まれるインターレース#0、#1のうち、低いインターレース番号の1つのインターレース#0を構成する複数のPRBのうち、より低いPRB番号(又は、低い周波数)のPRBに配置される。
 なお、各インターレースに含まれるPRB数が異なる場合、PSCCHが割り当てられるPRB数(例えば、PSCCHサイズ)は、各インターレースに含まれるPRB数のうちより少ないPRB数(例えば、最小値)に合わせてもよい。例えば、図9(a)において、インターレース#0に含まれるPRB数が他のインターレースに含まれるPRB数よりも多い場合、PSCCHサイズは、他のインターレースに含まるPRB数に設定されてもよい。図9(a)では、インターレース#0に含まれるPRB数は、他のインターレース#1~#4のそれぞれに含まれるPRB数より多いので、PSCCHサイズは、インターレース#1~#4のそれぞれのPRB数に合わせて設定されてよい。このため、図9(a)に示すように、インターレース#0に含まれるPRBのうち、より高いPRB(又は、より高い周波数)のPRBには、PSCCHは配置されていない。
 図9(b)では、送信元端末200は、サブチャネル#2(インターレース#4)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#2に含まれるインターレース#4の低いPRB番号のPRBに配置される。図9(b)の例では、PSCCHは、インターレース#4に含まれる全てのPRBに配置される。
 図9(c)では、送信元端末200は、サブチャネル#1(インターレース#2、#3)及びサブチャネル#2(インターレース#4)を選択してPSSCHを送信する。この場合、PSCCHは、サブチャネル#1、#2のうち、低い番号のサブチャネル#1に配置される。また、PSCCHは、サブチャネル#1に含まれるインターレース#2、#3のうち、低いインターレース番号の1つのインターレ-ス#2を構成する複数のPRBのうち、より低いPRB番号(又は、低い周波数)のPRBに配置される。図9(c)の例では、PSCCHは、インターレース#2に含まれる全てのPRBに配置される。
 また、図9(c)では、送信元端末200において、サブチャネル#2には、PSCCHは配置されないが、図9(b)に示すように、サブチャネル#2においてPSCCH送信が行われる可能性もあるので、他の端末(例えば、宛先端末200)は、サブチャネル#0、サブチャネル#1、及び、サブチャネル#2のそれぞれにおいてPSCCHの受信を試みてもよい。
 設定例3Cによれば、PSCCHはインターレース単位で配置されるので、サブチャネル間においてサブチャネル内のインターレース数が異なる場合でも、各サブチャネルにおけるPSCCHとインターレースとの配置関係が同様となり、宛先端末200におけるPSCCHの受信が容易になる。例えば、図9に示す例では、図9(a)~(c)の何れのケースでも、PSCCHは、PSSCHが割り当てられるサブチャネルに含まれるインターレースのうち、インターレース番号が低い1つのインターレースに配置される。
 <設定例3D>
 設定例3Dでは、VRB(Virtual resource block)からPRBへのマッピング(配置)が行われる。
 図10は、VRBからPRBへのマッピングの例を示す図である。
 VRBでは、例えば、サブチャネル内のRBは連続して配置されてよい。図10の例では、サブチャネル#0~#2のそれぞれには、連続する4個のVRBが含まれてよい。
 また、PSCCHは、例えば、連続するVRBに配置されてよい。図10の例では、PSCCHは、各サブチャネル#0~#2のうち、低い番号の連続する2つのVRBに配置される。
 VRBでは、ライセンスバンドにおけるサイドリンクのサブチャネル構成、及び、アンライセンスバンドでのインターレースマッピングを使用しない周波数方向の連続割り当ての構成の少なくとも一つを踏襲してもよい。VRBからPRBへの配置については、インターリービングのルール、又は、インターレース用のルールが、リソースプールに(pre-)configuredされてよい。
 また、PRBにおいて、サブチャネルは、一部連続するPRB及び非連続するPRBに割り当てられてもよい。
 このようにVRBからPRBへのマッピングにより、PRBの連続配置及び非連続配置(例えば、インターレースと同様の配置)において同一のデザインを使用できる。
 以上、動作例3のPSCCHの設定例について説明した。
 [端末200の構成]
 図11は、本実施の形態に係る端末200の構成例を示すブロック図である。図11に示す端末200は、受信部201と、LBTキャリアセンス部202と、信号分離部203と、復調部204と、誤り訂正復号部205と、制御信号受信部206と、誤り訂正符号化部207と、変調部208と、制御信号生成部209と、信号割当部210と、送信部211と、を有する。
 なお、LBTキャリアセンス部202、信号分離部203、復調部204、誤り訂正復号部205、制御信号受信部206、誤り訂正符号化部207、変調部208、制御信号生成部209、信号割当部210の少なくとも一つは、図6に示す制御部に含まれてよい。また、受信部201及び送信部211の少なくとも一つは、図6に示す通信部に含まれてよい。
 端末200は、サイドリンク通信において、サイドリンク信号を送信する送信端末(又は、送信元端末)でもよく、サイドリンク信号を受信する受信端末(又は、宛先端末)でもよい。
 受信部201は、アンテナを介して、受信信号を受信し、受信信号に対してダウンコンバート等の受信処理を行う。受信信号は、例えば、PSSCH/PSCCHを含むサイドリンク信号でよい。なお、サイドリンク信号には、PSFCHが含まれてもよい。また、受信部201が受信する受信信号には、無送信区間が含まれてもよいし、サイドリンク信号と異なる信号(例えば、基地局100からの下りリンク信号)が含まれてもよい。受信部201は、受信処理後の受信信号をLBTキャリアセンス部202及び信号分離部203へ出力する。
 LBTキャリアセンス部202は、受信部201から入力される受信信号に基づいて、キャリアセンス(又は、LBTと呼ばれる)を行う。LBTキャリアセンス部202は、受信信号に基づいて、チャネル状態が「busy」(又は、LBT failure)又は「idle」(又は、LBT OK)の何れであるかを判定してよい。換言すると、LBTキャリアセンス部202は、受信部201から入力される受信信号に基づいて、チャネルが使用可能であるか否かを判定してよい。LBTキャリアセンス部202は、判定したチャネル状態を示す情報を送信部211へ出力する。
 信号分離部203は、受信部201から入力される受信信号のうち、受信データ信号を復調部204へ出力する。受信データ信号は、例えば、PSSCHに配置される。また、信号分離部203は、受信部201から入力される受信信号から、PSCCHに配置される1st stage SCI、及び、PSSCHの一部に配置される2nd stage SCIを分離し、分離した情報を制御信号受信部206へ出力する。
 復調部204は、信号分離部203から入力される受信データ信号に対して、復調処理を行う。復調部204は、復調処理を行って得られた復調信号を誤り訂正復号部205へ出力する。
 誤り訂正復号部205は、復調部204から入力される復調信号を復号し、受信データとして出力する。
 制御信号受信部206は、信号分離部203から入力される信号に含まれる1st stage SCIに基づいて、予約されているリソースを含むリソースの割り当て情報を特定(又は、把握)する。制御信号受信部206は、例えば、他のリソースとの重複を避けるように、リソース割り当て情報を信号割当部210へ出力する。また、例えば、制御信号受信部206は、信号分離部203から入力される信号に含まれる2nd stage SCIに基づいて、送信ID及び受信IDを特定(又は、把握)する。制御信号受信部206は、例えば、特定した送信ID又は受信IDに基づいて、端末200宛てのリソース割り当てがあるか否かを判断し、端末200宛てのリソース割り当てがある場合、受信信号を分離するように信号分離部203へ指示する。
 誤り訂正符号化部207は、データ信号を入力し、データ信号を誤り訂正符号化し、誤り訂正符号化されたデータ信号を変調部208へ出力する。
 変調部208は、誤り訂正符号化部207から入力される信号を変調し、変調信号を信号割当部210へ出力する。
 制御信号生成部209は、図示しない制御情報に基づいて、1st stage SCI及び2nd stage SCIの信号を生成する。制御信号生成部209は、1st stage SCI及び2nd stage SCIの信号を信号割当部210へ出力する。
 信号割当部210は、変調部208から入力される変調信号をリソースに割り当てる。その際、信号割当部210は、制御信号生成部209から入力される信号も加味して信号をリソースに割り当ててよい。例えば、信号割当部210は、リソースプール毎に設定されるPSCCHのサイズに基づいて、1st stage SCIを送信するPSCCHの配置を決定してよい。信号割当部210は、リソース割り当てを行った後、送信信号を送信部211へ出力する。
 送信部211は、LBTキャリアセンス部202から取得したセンシングの結果がIdle状態であることを示す場合、信号割当部210から入力される送信信号に対してアップコンバート等の送信処理を行い、送信処理後の送信信号を、アンテナを介して、送信する。
 以上、本実施の形態に係る動作例について説明した。
 このように、本実施の形態では、端末200は、アンライセンスバンドでのサイドリンク通信において、連続する番号のインターレースで構成されるサブチャネルにPSCCH/PSSCHを割り当て、PSCCH/PSSCHを送信する。これにより、端末200は、アンライセンスバンドにおけるサイドリンク通信において、サブチャネル及びインターレースマッピングを適切に設定できる。例えば、連続する番号のインターレースで構成されるサブチャネル単位の割り当てにより、端末200と他の端末との干渉の影響を低減できる。よって、本実施の形態によれば、アンライセンスバンドにおけるサイドリンク通信のリソースの利用効率を向上できる。
 なお、本実施の形態では、サブチャネルが、連続するインターレース番号のインターレースによって構成される場合について説明したが、これに限定されず、サブチャネルは、非連続のインターレース番号のインターレースによって構成されてもよく、連続するインターレース番号及び非連続のインターレース番号の双方のインターレースによって構成されてもよい。
 また、本実施の形態では、PSCCHは、低いPRB番号、低いインターレース番号、及び、低いサブチャネル番号から順に配置される場合について説明したが、これに限定されず、PSCCHは、例えば、PRB、インターレース及びサブチャネルの少なくとも一つについて、高い番号(例えば、高い周波数)から順に配置されてもよく、設定された順番の番号から順に配置されてもよい。
 (実施の形態2)
 本実施の形態では、宛先端末200においてPSCCHを検出する時間リソース(例えば、シンボル)をスロット内に複数配置する場合のリソース割り当て方法、及び、送信方法について説明する。
 ライセンスバンドでは、サイドリンクのPSCCHの配置位置は、スロットの先頭のみである。本実施の形態では、例えば、スロットの先頭に加え、スロットの他の位置にPSCCHを配置すること、及び、追加のPSCCH開始位置(Additional PSCCH starting point、又は、Additional starting pointと呼ぶ)の設定を想定する。
 なお、Additional starting pointは、スロット内に1つに限定されず、1スロット内に複数設定(又は、配置)されてもよい。
 Additional starting pointが設定されるケースの例について説明する。
 [ケース1]
 ケース1は、図12に示すように、送信元端末200がLBTを行い、他のシステム又は他の機器によってチャネルが使用されており(busy状態又はLBT failure)、送信権を獲得できずにスロットN+2の先頭からPSCCH/PSSCHを送信できないケースである。
 ケース1では、送信元端末200は、図12に示すように、スロットN+2の途中のAdditional starting pointにおいてLBTを行い、他のシステム又は他の機器によってチャネルが使用されていないことを確認し、送信権を獲得した場合、PSCCH/PSSCHを送信してよい。
 なお、ケース1では、予め予約されたリソースが配置されるスロットにおいて、Additional starting pointでのPSCCHの配置(又は、LBTの実施)が行われてもよい。例えば、予め予約されたリソースが配置されないスロットでは、Additional starting pointが設定されなくてもよい。
 また、ケース1では、PSCCHの開始位置に応じて、PSSCHの長さ(例えば、シンボル長)が決定される。例えば、PSCCHがスロット(例えば、サイドリンクスロット)の先頭シンボルから配置される場合、PSSCHの長さは、スロットと同様の長さに設定されてよい。また、PSCCHがスロット内のAdditional starting pointから配置される場合、PSSCHの長さは、PSCCHのAdditional starting pointからスロットの最後までの区間に設定されてよい。
 例えば、宛先端末200は、PSCCHをスロットの先頭シンボルで検出する場合、PSSCHの長さがスロットと同様の長さであると特定してよい。また、宛先端末200は、PSCCHをAdditional starting pointで検出する場合、PSSCHの長さがAdditional starting pointからスロットの最後までの区間であると特定してよい。このように、宛先端末200は、スロット内のPSCCHを検出する位置に基づいて、PSCCHの長さ(PSCCHサイズ)を特定できるので、PSSCHの長さに関する情報は宛先端末200へ通知されなくてもよい。
 [ケース2]
 ケース2は、図13に示すように、送信元端末200がスロットN+1のリソースを予約しているケースである。
 ケース2では、送信元端末200は、図13に示すように、スロットNの先頭からの送信が無いことを確認すると、スロットNの途中のAdditional starting pointにおいてLBTを行い、スロットN+1のための送信権を獲得してよい。
 例えば、送信元端末200は、スロットNのAdditional starting pointにおいて送信権を獲得した場合、スロットNのAdditional starting pointから、スロットN+1の予約しているリソースに亘って、PSCCH/PSSCHを送信してよい。このとき、送信元端末200は、図13に示すように、スロットNのAdditional starting point、及び、スロットN+1の先頭シンボルのそれぞれにおいてPSCCHを配置してよい。
 これにより、送信元端末200は、予約しているリソースよりも早いタイミングで送信権を獲得する。このため、予約しているリソースよりも早いタイミングから、他の端末は送信を行うことができなくなるので、端末200は、予約しているリソースにおいてPSCCH/PSSCHを送信できる可能性が高くなる。すなわち、送信元端末200において、予約しているリソースにおいて、送信権を獲得できずに、PSCCH/PSSCHの送信が中止になる確率を低減できる。
 [ケース3]
 ケース3は、図14に示すように、PSSCHを送信可能なシンボル数がスロット長よりも短く設定可能なケースである。
 ケース3では、PSSCHの送信シンボル数は、スロット長より短く設定可能であり、例えば、1スロット内の時間リソースに複数のPSSCH/PSCCHを配置可能である。
 例えば、送信元端末200は、図14に示すように、スロットNの先頭、及び、スロットNの途中のAdditional starting pointの何れか又は両方において、LBTを行い、他のシステム又は他の機器によってチャネルが使用されていないことを確認し、送信権を獲得した場合、PSCCH/PSSCHを送信してよい。
 ケース3では、送信元端末200は、PSCCHによってPSSCHの長さを宛先端末200へ通知してよい。例えば、PSCCHの長さが14シンボルであれば、PSSCHはスロット内の全てのシンボルに配置され、PSCCHの長さが7シンボルであれば、PSCCHはミニスロットに配置される。なお、PSCCHの長さは、14シンボル又は7シンボルに限定されず、他の長さでもよい。
 以上、Additional starting pointが設定されるケースの例について説明した。
 これらのケースのように、PSCCHがAdditional starting pointで検出可能である場合、宛先端末200において1スロット内でPSCCHを検出する回数(BD回数)が増加し得る。上述したように、PSCCHの検出は、サブチャネル毎に行われるので、サブチャネル数が少ないほど(例えば、制限されると)、PSCCHの検出回数は低減する。
 そこで、本実施の形態では、Additional starting pointの設定に応じて、リソースプールに設定されるサブチャネル数が決定されてよい。例えば、Additional starting pointが設定される場合のサブチャネル数は、Additional starting pointが設定されない場合のサブチャネル数より少なく設定されてよい。また、例えば、スロット内におけるPSCCHを配置可能な開始位置(例えば、先頭シンボル及びAdditional starting point)の数が多いほど、スロット内に設定可能なサブチャネル数は少なく設定されてよい。このように、Additional starting pointが設定される場合、リソースプールに設定されるサブチャネル数が制限されてもよい。
 次に、本実施の形態に係る端末200の動作例について説明する。
 [動作例1]
 動作例1では、Additional starting pointの設定に応じたサブチャネルの設定例について説明する。
 <設定例1A>
 Additional starting pointを設定(又は、追加)しない場合、スロット内に設定可能なサブチャネル数をC個とする。
 例えば、Additional starting pointを含めて1スロット内においてPSCCHの検出を試みる時間リソース数がK個の場合、スロット内に設定可能なサブチャネルの数は、C/K個に設定(例えば、制限)されてよい。
 例えば、図15(a)に示すように、Additional starting pointが設定されない場合にスロット内に設定可能なサブチャネル数をC=4とする。図15(a)では、宛先端末200は、例えば、スロット内においてC=4個のサブチャネル(例えば、サブチャネル#0~#3)においてPSCCHの検出を試みる(例えば、PSCCHの検出回数:4回)。
 また、図15(b)に示すように、Additional starting pointを含めて1スロット内においてPSCCHの検出を試みる時間リソースがK=2個(例えば、スロットの先頭、及び、1つのAdditional starting point)である場合、スロット内に設定可能なサブチャネル数は、C/K=2個に設定(制限)される。図15(b)では、宛先端末200は、例えば、スロット内において、スロットの先頭、及び、Additional starting pointのそれぞれにおいて、C/K=2個のサブチャネル(例えば、サブチャネル#0、#1)でPSCCHの検出を試みる(例えば、PSCCHの検出回数:4回)。
 設定例1Aによれば、Additional starting pointを含めてPSCCHの検出を試みる時間リソースが複数設定される場合でも、1スロットあたりのPSCCHの検出回数の増加を抑制できる。
 <設定例1B>
 設定例1Bでは、Additional starting pointを含めて1スロット内にPSCCHの検出を試みる時間リソースがK個の場合、サブチャネル数×時間リソース数に相当するPSCCHの検出回数は、1スロットあたりに端末200が基地局100から送信されるPDCCHを受信可能な回数に準拠する回数を超えない値に設定されてよい。
 例えば、PSCCHの検出回数の設定値に応じて、サブチャネル数(又は、サブチャネルサイズ)、及び、Additional starting pointの数が設定されてもよい。
 なお、1スロットあたりに端末200が基地局100から送信されるPDCCHを受信可能な回数は、例えば、端末200のCapability又は仕様によって設定されてよい。
 <設定例1C>
 設定例1Cでは、Additional starting pointが設定される場合、サブチャネルはRB set内に1個設定される。したがって、例えば、RB setに相当する20MHz帯域を1つのサブチャネルに設定する。
 このように、Additional starting pointが設定される場合にサブチャネルサイズをRB setのサイズと同じに設定することにより、PSCCHの検出回数を低減できる。
 なお、設定例1Cの変形例として、Additional starting pointがK個(例えば、閾値)以上設定される場合に、サブチャネルがRB set内に1個設定されるような設定(又は、制限)が追加されてもよい。
 また、設定例1Cにおいて、Additional starting pointが設定される場合に設定されるサブチャネル数は、1個に限定されず、他の数でもよい。
 以上、動作例1について説明した。
 [動作例2]
 動作例2では、上述したケース3のように、スロット内においてミニスロットとも呼ばれる14シンボルよりも短い長さのPSSCHの送信が複数行われる場合のPSFCHの設定例について説明する。例えば、1スロット内の時間リソース上に配置される複数のPSSCHに対するPSFCHの配置は、サイドリンク通信では定められていない。
 <設定例2A>
 設定例2Aでは、Additional starting pointが設定され、スロット内の時間リソースに複数のPSSCH送信の可能性がある場合、PSFCHは設定(又は、サポート)されない。
 これにより、PSFCHとAdditional starting pointに対応するPSSCHとの対応付けは設定されなくてよい。
 また、ミニスロットの送信では、短い周期での再送が可能であるので、PSFCHによるHARQ-ACKのフィードバックを待たずに回線品質に基づいて再送が行われることも想定される。この場合、再送制御に対して、PSFCHが設定されないことが与える影響を低減できる。
 <設定例2B>
 設定例2Bでは、Additional starting point用のPSFCHリソースが設定(用意)されてよい。
 スロット先頭のPSCCHによって割り当てられるPSSCHに対するPSFCHリソースは、例えば、Release 16(Rel.16)において定義されるPSFCHに関するルール(例えば、非特許文献4)の“SL-PSFCH-Config”(例えば、図16)、又は、新たに設定されるマッピングに従って設定されてよい。
 また、Additional starting pointに配置されるPSCCHによって割り当てられるPSSCHに対するPSFCHリソースは、新たに設定されてよい。例えば、Additional starting pointに配置されるPSCCHによって割り当てられるPSSCHに対するPSFCHリソースは、図16に示すように、“SL-PSFCH-Config”内の“sl-PSFCH-RB-Set-r16”のうち、PSFCHのPRBリソースの位置を示す“sl-PSFCH-RB-Set”として既存の設定とは別に設定されてもよい。
 “sl-PSFCH-RB-Set”は、例えば、PSFCHの送受信に使用されるPRBを指示するパラメータである。例えば、“sl-PSFCH-RB-Set”は、ビットマップ形式で複数のPRBのそれぞれがPSFCH送受信に使用されるか否かを示してもよい。例えば、sl-PSFCH-RB-Setによって表されるPRBの少なくとも一つに、Additional starting pointに配置されるPSCCHによって割り当てられるPSSCHに対するPSFCHリソースが含まれてもよい。
 設定例2Bによれば、スロット内に配置される複数のPSSCHに対するPSFCHの周波数多重が可能となる。
 なお、複数のPSSCHに対するPSFCHは、周波数軸上の複数のリソースに割り当てられる場合に限定されず、時間軸上の複数のリソースに割り当てられてもよい。
 <設定例2C>
 ライセンスバンドのサイドリンク通信におけるPSFCHは、図1(a)に示すように、スロットの最後から2番目のシンボルに配置される。
 設定例2Cでは、Additional starting pointが設定される場合、スロット内の時間軸上においてPSFCHが配置されるリソースを新たに設定してもよい。
 例えば、図17(a)に示すように、Additional starting pointに配置されるPSCCHの前にPSFCHが配置されてもよい。または、図17(b)に示すように、スロットの最後から2番目のシンボルに配置されるPSFCHの前に、新たにPSFCHが配置されてもよい。
 <設定例2D>
 設定例2Dでは、Additional starting pointが設定され、スロット内の時間リソース上に複数のPSSCHの送信が可能性である場合、複数のPSSCHのうち、先頭のPSCCHによって割り当てられるPSSCHに対するPSFCHについては、Rel.16において定義されるPSFCHに関するルール、又は、新たに定義されるマッピングに従って、リソースが設定されてよい。
 その一方で、スロット内の複数のPSSCHのうち、Additional starting pointに配置されるPSCCHに対応するPSSCHに対するPSFCHのリソースは配置されない。
 これにより、送信元端末200は、先頭のPSCCHによって割り当てられるPSSCHに対するHARQ-ACKのフィードバックを受信し、Additional starting pointのPSCCHによって割り当てられるPSSCHに対するHARQ-ACKのフィードバックを受信しない。例えば、送信元端末200は、HARQ-ACKのフィードバックが必要な場合、スロットの先頭のPSCCHを使用し、HARQ-ACKが不要な場合は、Additional starting pointのPSCCHを使用するというように、用途に応じてPSCCHを使い分けることができる。
 以上、PSFCHの設定例について説明した。
 以上、本実施の形態に係る動作例について説明した。
 なお、本実施の形態の動作例は、PSSCHが割り当てられるPRBの配置が、連続配置であっても、実施の形態1のようにインターレースマッピングであっても適用できる。
 以上、本実施の形態では、端末200は、スロット内にAdditional starting pointを設定することにより、スロット内においてPSCCHを送信可能な回数(又は、PSCCHを検出可能な回数)が増加する。これにより、例えば、送信元端末200は、スロットの先頭においてLBT結果がbusy(LBT failure)の場合でも、スロットの途中のAdditional starting pointにおいてLBTを行うことができ、送信権を獲得できる確率を増加できる。または、例えば、送信元端末200は、スロット内において、ミニスロットのように、複数のPSSCHを送信することができる。
 よって、本実施の形態によれば、アンライセンスバンドにおけるサイドリンク通信のリソースの利用効率を向上できる。
 以上、各実施の形態について説明した。
 [バリエーション]
 なお、上述した各実施の形態の各動作例は、組み合わせて使用されてもよい。
 また、サイドリンクにおいて送受信を行う端末とは、サイドリンクにおいて、送信を行い受信を行わない端末と、受信を行い送信を行わない端末と、送信と受信とを行う端末と、を含む。
 また、サイドリンクに関する設定が、予め設定される場合、設定方法は、仕様(規格)で予め設定されてもよいし、SIM(Subscriber Identity Module)に予め設定されてもよい。あるいは、サイドリンクに関する設定は、Pre-configuredと呼ばれるアプリケーションレイヤで設定されてもよいし、configuredと呼ばれるSIB(system information block)及び/又はその他のRRC(radio resource control)等の上位レイヤで設定されてもよいし、MAC(Medium Access Control)で設定されてもよい。
 また、上述した各実施の形態は、サイドリンク通信である例を示したが、本開示はこれに限定されない。例えば、上述した各実施の形態において、PSCCHをPDCCHに置き換え、PSSCHをPDSCHまたはPUSCHに置き換え、PSFCHをPUCCHに置き換え、PSBCHをPBCHに置き換えて、基地局―端末間の通信において、本開示を適用してもよい。
 また、上述した各実施の形態は、Mode2に適用され、Mode1に適用されなくてもよいし、Mode1とMode2との両方に適用されてもよいし、Mode1に適用され、Mode2に適用されなくてよい。また、上述した各実施の形態の各動作例の中で、Mode1に適用される動作例と、Mode2に適用される動作例とが同じであってもよいし、異なってもよい。例えば、Mode2に適用され、Mode1に適用されない動作例があってもよい。
 また、上述した各実施の形態をMode1に適用する場合、Type 2 LBTの中でType 2A,2B,2Cのどれを選択するかが、基地局からライセンスバンドで指示されてもよい。
 また、上述した各実施の形態では、アンライセンスバンドでの動作例を示したが、アンライセンスバンドの周波数帯域は、各国によって異なってもよいし、地域毎に異なってもよい。アンライセンスバンドの周波数帯域は、例示的に、5GHz帯(5150 MHz -5925 MHz)、6GHz帯(5925 MHz -7125 MHz)、52.6GHz~71GHzを含む。
 また、SCSに応じて、上記の各実施の形態、又は、各動作例の使用の可否が変更されてもよい。
 また、Type 1 LBT、Type 2 LBTは、サイドリンク通信では、別の名称で呼ばれてもよい。
 PSCCHで送信されるSCI formatは、SCI format 1-Aでもよいし、新たに追加されるSCI formatでもよい。
 また、上記実施の形態は、S-PSS/SSS/PSBCHに適用されてもよい。
 また、上記各実施の形態において、宛先端末は、groupcast及びbroadcastの場合、複数の端末を指す場合もある。
 また、ガードバンドは、intra-cell guard bandと呼ばれてもよい。
 また、上述した各実施の形態において図示したサイドリンク通信のリソースの割り当ては、例示であり、本開示はこれらに限定されない。例えば、サイドリンク通信のリソースにおいて、図示されていない信号、チャネル、無送信区間等が含まれてもよい。また、各図に示した信号の時間方向、及び、周波数方向の幅は、図示した例に限定されない。また、スロットのサイズ、リソースのサイズ、チャネルのサイズ、信号のサイズ等は、上述した例に限定されない。
 また、上述した各実施の形態において、CP extensionによってサイドリンク信号のCP長を長くすることによって、サイドリンク信号の長さを調整する例を示したが、本開示はこれに限定されない。CP長を長くする代わりに、既知の信号を付加することによって長さを調整してもよい。
 また、上述した各実施の形態において、チャネルの空き状況の確認は、チャネルの空き状況のセンシング(又はモニタリング)といった表現に置き換えられてもよい。また、この場合の「チャネル」は、「キャリア」、又は、「リソース」といった他の用語に置き換えられてもよい。
 また、基地局100から端末200への制御情報の通知方法は、上述した例に限定されず、MIB及びSIBといったシステム情報、RRC制御情報、MAC制御情報、下り制御情報(DCI:Downlink Control Information)の少なくとも一つによって通知(又は、報知、指示、設定)されてもよく、端末200に予め設定されてもよく、規格において予め規定されてもよい。
 基地局は、gNodeB又はgNBと称されてよい。また、端末は、UEと称されてもよい。
 アンライセンスバンドでのサイドリンク通信におけるリソース割当単位は、サブチャネルと別の単位でもよく、また、サブチャネルと別の名称でもよい。
 スロットといった時間リソース単位は、システムフレーム、タイムスロット、ミニスロット、フレーム、サブフレーム、ブロック、等の別の単位に置き換えてもよい。
 また、上述した実施の形態における「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 なお、「解釈」、「特定」、「判断」、「判定」、「決定」、「算出」、「把握」、「認識」、「確認」又は「理解」といった用語は、相互に言い換えられてもよい。
 (補足)
 上述した実施の形態に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した実施の形態に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。
 基地局100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局100は、端末200から受信した能力情報に基づいて、端末200間のサイドリンク通信を制御してよい。
 なお、上述した実施の形態に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局100に通知されてもよい。
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局100において既知の情報あるいは基地局100へ送信される情報に関連付けられて暗黙的(implicit)に基地局100に通知されてもよい。
 (制御信号)
 本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
 本開示において、本開示の一実施例に関連する上り制御信号(又は、上り制御情報)は、例えば、物理層のPUCCHにおいて送信される信号(又は、情報)でもよく、上位レイヤのMAC CE又はRRCにおいて送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、上り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。また、上り制御信号は、例えば、uplink control information(UCI)、1st stage sidelink control information(SCI)、又は、2nd stage SCIに置き換えてもよい。
 (基地局)
 本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
 (上りリンク/下りリンク/サイドリンク)
 本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
 なお、PDCCH、PDSCH、PUSCH、及び、PUCCHそれぞれは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、及び、上りリンク制御チャネルの一例である。また、PSCCH、及び、PSSCHは、サイドリンク制御チャネル、及び、サイドリンクデータチャネルの一例である。また、PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。
 (データチャネル/制御チャネル)
 本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
 (参照信号)
 本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
 (時間間隔)
 本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロットサブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing Access(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
 (周波数帯域)
 本開示の一実施例は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
 (通信)
 本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
 また、本開示の一実施例は、地上のネットワーク、衛星又は高度疑似衛星(HAPS:High Altitude Pseudo Satellite)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示の一実施例は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。
 (アンテナポート)
 本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 <5G NRのシステムアーキテクチャ及びプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作及び商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)及び制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図18に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、及びMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、及びMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、及び第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリング及びスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、及び適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、及びカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbps及び上りリンクにおいて10Gbps)及び実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてUL及びDLのそれぞれで0.5ms)及び高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km)、悪環境における広いカバレッジ、及び低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)及び/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tu及びサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジー及び各キャリアについて、サブキャリア及びOFDMシンボルのリソースグリッドが上りリンク及び下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックス及び時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図19は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、及びSMFを有する。
 例えば、gNB及びng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンク及び下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、及び完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップ及び解除;
 - ページングメッセージのスケジューリング及び送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリング及び送信;
 - モビリティ及びスケジューリングのための測定及び測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理及びデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御及び実行を含む);
 - 登録エリアの管理;
 - システム内モビリティ及びシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入及びポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティング及び転送;
 - パケット検査及びユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリング及び下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当及び管理;
 - UPFの選択及び制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制及びQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップ及び再設定の手順>
 図20は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、及びAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UE及びgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)及びData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2及びDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図21は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービス及びアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在及び将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)及び多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図21は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、及び可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、及びミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善及び信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、及び下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、及び電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLC及びmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点及びネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、及び周波数領域、時間領域、及び/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、及び電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲及び0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)及びCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、及び再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、及び、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図20を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UE及び5GCにおけるNASレベルパケットフィルタが、ULパケット及びDLパケットとQoSフローとを関連付けるのに対し、UE及びNG-RANにおけるASレベルマッピングルールは、UL QoSフロー及びDL QoSフローとDRBとを関連付ける。
 図22は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図21に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図22は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、及びData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能及びアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、及びmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る通信装置は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当てる制御回路と、前記信号を送信する送信回路と、を具備する。
 本開示の一実施例において、前記リソース割当単位はサブチャネルであり、複数の前記サブチャネルのそれぞれを構成する前記インターレースの数は異なる。
 本開示の一実施例において、前記信号は、制御信号、及び、前記制御信号によってリソース割り当てが指示されるデータ信号を含み、前記データ信号が割り当てられる前記リソース割当単位を構成する複数のリソースブロックのうち一部に前記制御信号が割り当てられる場合、前記制御回路は、同一シンボルにおいて、前記複数のリソースブロックのうち、前記制御信号が割り当てられるリソースブロックと異なるリソースブロックに前記データ信号を割り当て、前記複数のリソースブロックにおいて、リソースブロックあたりの送信電力を、前記制御信号と前記データ信号とで同一に設定する。
 本開示の一実施例において、前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位を構成する複数のリソースブロックのうち、より低い番号のリソースブロックに配置する。
 本開示の一実施例において、前記リソース割当単位はサブチャネルであり、前記制御回路は、前記信号が複数の前記サブチャネルに割り当てられる場合、前記複数のサブチャネルのうち、より低い番号のサブチャネルに前記制御信号を配置する。
 本開示の一実施例において、前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位を構成する複数のリソースブロックのうち、より低い番号のインターレースに含まれるより低い番号のリソースブロックに配置する。
 本開示の一実施例において、前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位に含まれる複数のインターレースのうち、より低い番号の規定数のインターレースにおいて、より低い番号のリソースブロックに配置する。
 本開示の一実施例において、前記リソース割当単位はサブチャネルであり、スロット内において前記信号に含まれる制御信号を配置する時間リソース候補が1つの場合に設定可能な前記サブチャネルの数がC個の場合、前記スロット内における前記時間リソース候補がK個の場合に設定可能な前記サブチャネルの数は、C/K個に設定される。
 本開示の一実施例に係る通信装置は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位で割り当てられる信号を受信する受信回路と、前記信号を復調する制御回路と、を具備する。
 本開示の一実施例に係る通信方法において、通信装置は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当て、前記信号を送信する。
 本開示の一実施例に係る通信方法において、通信装置は、非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位で割り当てられる信号を受信し、前記信号を復調する。
 2022年8月10日出願の特願2022-128348の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一態様は、無線通信システムに有用である。
 100 基地局
 200 端末
 201 受信部
 202 LBTキャリアセンス部
 203 信号分離部
 204 復調部
 205 誤り訂正復号部
 206 制御信号受信部
 207 誤り訂正符号化部
 208 変調部
 209 制御信号生成部
 210 信号割当部
 211 送信部
 

Claims (11)

  1.  非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当てる制御回路と、
     前記信号を送信する送信回路と、
     を具備する通信装置。
  2.  前記リソース割当単位はサブチャネルであり、
     複数の前記サブチャネルのそれぞれを構成する前記インターレースの数は異なる、
     請求項1に記載の通信装置。
  3.  前記信号は、制御信号、及び、前記制御信号によってリソース割り当てが指示されるデータ信号を含み、
     前記データ信号が割り当てられる前記リソース割当単位を構成する複数のリソースブロックのうち一部に前記制御信号が割り当てられる場合、前記制御回路は、同一シンボルにおいて、前記複数のリソースブロックのうち、前記制御信号が割り当てられるリソースブロックと異なるリソースブロックに前記データ信号を割り当て、前記複数のリソースブロックにおいて、リソースブロックあたりの送信電力を、前記制御信号と前記データ信号とで同一に設定する、
     請求項1に記載の通信装置。
  4.  前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位を構成する複数のリソースブロックのうち、より低い番号のリソースブロックに配置する、
     請求項1に記載の通信装置。
  5.  前記リソース割当単位はサブチャネルであり、
     前記制御回路は、前記信号が複数の前記サブチャネルに割り当てられる場合、前記複数のサブチャネルのうち、より低い番号のサブチャネルに前記制御信号を配置する、
     請求項4に記載の通信装置。
  6.  前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位を構成する複数のリソースブロックのうち、より低い番号のインターレースに含まれるより低い番号のリソースブロックに配置する、
     請求項1に記載の通信装置。
  7.  前記制御回路は、前記信号に含まれる制御信号を、前記リソース割当単位に含まれる複数のインターレースのうち、より低い番号の規定数のインターレースにおいて、より低い番号のリソースブロックに配置する、
     請求項1に記載の通信装置。
  8.  前記リソース割当単位はサブチャネルであり、
     スロット内において前記信号に含まれる制御信号を配置する時間リソース候補が1つの場合に設定可能な前記サブチャネルの数がC個の場合、前記スロット内における前記時間リソース候補がK個の場合に設定可能な前記サブチャネルの数は、C/K個に設定される、
     請求項1に記載の通信装置。
  9.  非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位で割り当てられる信号を受信する受信回路と、
     前記信号を復調する制御回路と、
     を具備する通信装置。
  10.  通信装置は、
     非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位に信号を割り当て、
     前記信号を送信する、
     通信方法。
  11.  通信装置は、
     非免許帯での端末間通信において、連続する番号のインターレースで構成されるリソース割当単位で割り当てられる信号を受信し、
     前記信号を復調する、
     通信方法。
     
PCT/JP2023/019504 2022-08-10 2023-05-25 通信装置、及び、通信方法 WO2024034228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128348 2022-08-10
JP2022128348 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034228A1 true WO2024034228A1 (ja) 2024-02-15

Family

ID=89851298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019504 WO2024034228A1 (ja) 2022-08-10 2023-05-25 通信装置、及び、通信方法

Country Status (1)

Country Link
WO (1) WO2024034228A1 (ja)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Physical Channel Design Framework for Sidelink on FR1 Unlicensed", 3GPP DRAFT; R1-2204248, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153429 *
MODERATOR (HUAWEI): "FL summary#4 for AI 9.4.1.2 SL-U physical channel design framework", 3GPP DRAFT; R1-2205241, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 24 May 2022 (2022-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191878 *
OPPO: "Physical channel designs of NR sidelink in unlicensed channel", 3GPP DRAFT; R1-2203983, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153297 *
PANASONIC: "Physical channel design for sidelink on unlicensed spectrum", 3GPP DRAFT; R1-2203750, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153166 *
QUALCOMM INCORPORATED: "Physical Channel Design for Sidelink on Unlicensed Spectrum", 3GPP DRAFT; R1-2205034, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144140 *

Similar Documents

Publication Publication Date Title
JP7459123B2 (ja) 端末および通信方法
CN114041314A (zh) 用户设备和调度节点
WO2021028420A1 (en) User equipment and scheduling device
US20220256557A1 (en) Communication apparatuses and communication methods for dci for v2x communication apparatuses
JP2024109710A (ja) 端末装置、通信方法及び集積回路
WO2022030040A1 (ja) 端末およびサイドリンク通信制御方法
WO2022014279A1 (ja) 端末、基地局及び通信方法
WO2024034228A1 (ja) 通信装置、及び、通信方法
WO2023204061A1 (ja) 通信装置、及び、通信方法
WO2024034227A1 (ja) 通信装置、及び、通信方法
WO2023204060A1 (ja) 通信装置、及び、通信方法
WO2024171677A1 (ja) 通信装置、通信方法、及び、集積回路
WO2021167527A1 (en) Communication apparatuses and communication methods for utilization of reserved resource
WO2023188913A1 (ja) 基地局、端末及び通信方法
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2024024259A1 (ja) 端末、基地局、及び、通信方法
WO2024171520A1 (ja) 基地局、端末及び通信方法
WO2022209097A1 (ja) 通信装置および通信方法
WO2024219190A1 (ja) 端末、基地局、及び、通信方法
WO2023013192A1 (ja) 端末、基地局及び通信方法
WO2023188912A1 (ja) 基地局、端末及び通信方法
WO2024171521A1 (ja) 基地局、端末及び通信方法
WO2022209044A1 (ja) 通信装置および通信方法
WO2022195952A1 (ja) 端末、基地局及び通信方法
JP7585291B2 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852212

Country of ref document: EP

Kind code of ref document: A1