[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024171520A1 - 基地局、端末及び通信方法 - Google Patents

基地局、端末及び通信方法 Download PDF

Info

Publication number
WO2024171520A1
WO2024171520A1 PCT/JP2023/037876 JP2023037876W WO2024171520A1 WO 2024171520 A1 WO2024171520 A1 WO 2024171520A1 JP 2023037876 W JP2023037876 W JP 2023037876W WO 2024171520 A1 WO2024171520 A1 WO 2024171520A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
base station
resource block
resource allocation
transmission direction
Prior art date
Application number
PCT/JP2023/037876
Other languages
English (en)
French (fr)
Inventor
知也 布目
秀俊 鈴木
綾子 堀内
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024171520A1 publication Critical patent/WO2024171520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This disclosure relates to a base station, a terminal, and a communication method.
  • the 3rd Generation Partnership Project (3GPP) has completed the formulation of the physical layer specifications for Release 17 NR (New Radio access technology) as a functional extension of 5th generation mobile communication systems (5G).
  • 5G 5th generation mobile communication systems
  • NR will support enhanced mobile broadband (eMBB) to meet the requirements of high speed and large capacity, as well as functions that realize ultra-reliable and low latency communication (URLLC) (see, for example, non-patent literature 1-5).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communication
  • 3GPP TS 38.211 V17.4.0 "NR; Physical channels and modulation (Release 17),” December 2022 3GPP TS 38.212 V17.4.0, “NR; Multiplexing and channel coding (Release 17),” December 2022 3GPP TS 38.213 V17.4.0, “NR; Physical layer procedure for control (Release 17),” December 2022 3GPP TS 38.214 V17.4.0, “NR; Physical layer procedures for data (Release 17),” December 2022 3GPP TS 38.331 V17.3.0, “NR; Radio Resource Control (RRC) protocol specification (Release 17)", December 2022
  • RRC Radio Resource Control
  • Non-limiting examples of the present disclosure contribute to providing a base station, a terminal, and a communication method that can appropriately allocate resources in wireless communication.
  • a base station includes a control circuit that varies resource allocation depending on whether a first band corresponding to a first transmission direction is arranged discontinuously in a physical resource block in a method in which a transmission direction is set for each of a plurality of bands obtained by dividing a frequency band, and a transmission circuit that transmits a signal according to the resource allocation.
  • resource allocation in wireless communication can be performed appropriately.
  • Diagram showing an example of the Duplex method A diagram showing an example of subbands and guard bands in subband non-overlapping full duplex (SBFD).
  • Block diagram showing a partial configuration example of a terminal Block diagram showing a configuration example of a base station Block diagram showing an example of a terminal configuration
  • Diagram showing an example of mapping of Virtual Resource Block (VRB) and Physical Resource Block (PRB) A diagram showing an example of VRB and PRB mapping.
  • a diagram showing an example of resource allocation A diagram showing an example of the mapping between Resource Indication Value (RIV) and resource allocation
  • RRC Radio Resource Control
  • Diagram of an example architecture for a 3GPP NR system Schematic diagram showing functional separation between NG-RAN (Next Generation - Radio Access Network) and 5GC (5th Generation Core) Sequence diagram of Radio Resource Control (RRC) connection setup/reconfiguration procedure
  • RRC Radio Resource Control
  • eMBB enhanced Mobile BroadBand
  • mMTC massive Machine Type Communications
  • URLLC Ultra Reliable and Low Latency Communications
  • SBFD Subband non-overlapping full duplex
  • Figure 1 shows an example of the Duplex method.
  • the vertical axis represents frequency
  • the horizontal axis represents time.
  • “U” represents uplink transmission
  • “D” represents downlink transmission.
  • Figure 1(a) shows an example of half duplex Time Division Duplex (TDD).
  • a terminal UE: User Equipment
  • a base station e.g., a gNB
  • the transmission direction e.g., downlink or uplink
  • the transmission direction in a certain time resource may be common between the base station and the terminal.
  • the transmission direction in a certain time resource does not differ between terminals.
  • Figure 1(b) shows an example of SBFD.
  • SBFD a frequency resource (or a frequency band) is divided into multiple bands (e.g., subbands, RB sets, subbands, or sub-BWPs (Bandwidth parts)), and transmission in different directions (e.g., downlink or uplink) is supported for each subband.
  • a terminal transmits and receives either uplink or downlink in a certain time resource, but does not transmit or receive in the other.
  • SBFD a base station can transmit and receive in uplink and downlink simultaneously.
  • a terminal does not use resources in the transmission direction in a certain time resource (e.g., resources shown by dotted lines in Figure 1(b)).
  • a guard band may be placed between the uplink band (UL sub-band: U) and the downlink sub-band (DL sub-band: D).
  • the guard band may be used to reduce interference (CLI: Cross link interference) between different transmission directions (links).
  • the subband configuration will be written as ⁇ X...X ⁇ , where X represents the UL subband (U) or DL subband (D).
  • X represents the UL subband (U) or DL subband (D).
  • the order of notation corresponds to the order in which the subbands are arranged.
  • the subband configuration in Figure 1(b) will be written as ⁇ DUD ⁇ .
  • Resource allocation method One of the resource allocation methods for the data channel is Resource Allocation Type 1 (RA type 1), which is used, for example, to allocate consecutive resources.
  • RA type 1 Resource Allocation Type 1
  • RB start Resource block (RB) number from which resource allocation begins
  • L RB Length of consecutively allocated RBs (e.g., number of RBs)
  • RIV Resource indication value
  • VRB-to-PRB mapping may be applied to resource allocation.
  • VRB-to-PRB mapping is used to map from a virtual resource block (VRB) to a physical resource block (PRB). There may be two mapping methods: Interleaved VRB-to-PRB mapping, where interleaving is applied, and Non-interleaved VRB-to-PRB mapping, where interleaving is not applied.
  • the VRB and PRB may be the same.
  • VRB#n may be mapped to PRB#n (n indicates the RB number).
  • the VRB In Interleaved VRB-to-PRB mapping, the VRB is mapped to the PRB via an interleaver. Therefore, when RA type 1 and Interleaved VRB-to-PRB mapping are used for resource allocation, the VRB will have contiguous allocation, but the PRB may have discontiguous resource allocation.
  • DL subbands can be arranged non-contiguously, for example, as in ⁇ DUD ⁇ .
  • resource allocation for a data channel e.g., PDSCH: Physical Downlink Shared Channel
  • the guard band may be used to reduce the leakage of CLI from adjacent subbands.
  • Figure 2 shows an example of guard bands in a subband arrangement of ⁇ DUD ⁇ .
  • the size of the guard band that is set may vary depending on, for example, the size of the CLI. For example, when the CLI is large, a wide guard band (e.g., a guard band with a large number of RBs) is expected to be set, and when the CLI is small, a narrow guard band (e.g., a guard band with a small number of RBs) may be sufficient.
  • a wide guard band e.g., a guard band with a large number of RBs
  • a narrow guard band e.g., a guard band with a small number of RBs
  • the CLI is not necessarily constant, and so the required guardband size can change dynamically. Therefore, it is expected that resources can be used efficiently by dynamically setting (or changing or adjusting) the guardband size according to the CLI.
  • the following are some examples of methods for dynamically adjusting the guardband size through resource allocation.
  • Adjustment method 1 is a method of not allocating transmission/reception resources to RBs (eg, one or more) adjacent to other subbands in the DL subband or the UL subband.
  • Adjustment method 1 is, for example, a method for widening the size of the guard band, so the size of the guard band that is set (or defined) in advance can be small.
  • Adjustment method 2 is a method of allocating DL resources or UL resources to RBs within the guard band.
  • RBs e.g., one or more in the guard band adjacent to the DL subband are allocated.
  • RBs e.g., one or more in the guard band adjacent to the UL subband are allocated. Since adjustment method 2 is, for example, a method of narrowing the size of the guard band, the size of the guard band that is set (or defined) in advance may be wide.
  • a communication system may include, for example, a base station 100 (e.g., gNB) shown in Fig. 3 and Fig. 5, and a terminal 200 (e.g., UE) shown in Fig. 4 and Fig. 6.
  • a base station 100 e.g., gNB
  • a terminal 200 e.g., UE
  • a plurality of base stations 100 and a plurality of terminals 200 may exist in the communication system.
  • FIG. 3 is a block diagram showing an example configuration of a portion of a base station 100 according to one aspect of the present disclosure.
  • a control unit e.g., corresponding to a control circuit
  • a transmission unit (e.g., corresponding to a transmission circuit) transmits a signal according to the resource allocation.
  • FIG. 4 is a block diagram showing an example of a configuration of a portion of a terminal 200 according to one aspect of the present disclosure.
  • a control unit e.g., corresponding to a control circuit
  • a receiving unit e.g., a receiving circuit receives a signal according to the resource allocation.
  • FIG. 5 is a block diagram showing a configuration example of a base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes a receiving unit 101, a demapping unit 102, a demodulation and decoding unit 103, a scheduling unit 104, a resource control unit 105, a control information holding unit 106, a data and control information generating unit 107, an encoding and modulation unit 108, a mapping unit 109, and a transmitting unit 110.
  • the demapping unit 102 demodulation/decoding unit 103, scheduling unit 104, resource control unit 105, control information storage unit 106, data/control information generation unit 107, coding/modulation unit 108, and mapping unit 109 may be included in the control unit shown in FIG. 3, and the transmission unit 110 may be included in the transmission unit shown in FIG. 3.
  • the receiving unit 101 performs reception processing, such as down-conversion or A/D conversion, on a received signal received via an antenna, and outputs the received signal after reception processing to the demapping unit 102.
  • the receiving unit 101 also measures the amount of interference from the downlink signal to the uplink signal, and outputs information about the measurement result (for example, called DL-UL interference information) to the resource control unit 105.
  • the demapping unit 102 performs resource demapping on the received signal (e.g., an uplink signal) input from the receiving unit 101, and outputs the modulated signal to the demodulation and decoding unit 103.
  • the received signal e.g., an uplink signal
  • the demodulation and decoding unit 103 demodulates and decodes the modulated signal input from the demapping unit 102, and outputs the decoded result to the scheduling unit 104.
  • the demodulation and decoding unit 103 outputs the UL-DL interference information to the resource control unit 105.
  • the scheduling unit 104 may, for example, perform scheduling for the terminals 200.
  • the scheduling unit 104 schedules transmission and reception for each terminal 200 based on, for example, at least one of the decoding results input from the demodulation and decoding unit 103 and the control information input from the control information storage unit 106, and instructs the data and control information generation unit 107 to generate at least one of data and control information.
  • the scheduling unit 104 may also output the scheduling information to the resource control unit 105.
  • the scheduling unit 104 may also output control information related to scheduling for the terminals 200 to the control information storage unit 106.
  • the resource control unit 105 may determine the size of the guard band based on the DL-UL interference information input from the receiving unit 101, the UL-DL interference information input from the demodulation and decoding unit 103, and the scheduling information input from the scheduling unit 104. Also, for example, the resource control unit 105 determines the resources to be used by each terminal 200 for downlink transmission based on, for example, the control information input from the control information holding unit 106, the scheduling information input from the scheduling unit 104, and the determined guard band size, and outputs resource allocation information to the data and control information generating unit 107 and the mapping unit 109.
  • the control information storage unit 106 stores, for example, control information set for each terminal 200.
  • the control information may include, for example, downlink data channel settings for each terminal 200 (for example, information related to SBFD or resource allocation).
  • the control information storage unit 106 may output the stored information to each component of the base station 100 (for example, the scheduling unit 104 and the resource control unit 105) as necessary.
  • the data and control information generating unit 107 generates at least one of data and control information, for example, according to instructions from the scheduling unit 104, and outputs a signal including the generated data or control information to the coding and modulation unit 108.
  • the data and control information generating unit 107 may generate control information for the terminal 200, for example, based on resource allocation information input from the resource control unit 105.
  • the encoding and modulation unit 108 encodes and modulates, for example, the signal (e.g., data, control information) input from the data and control information generation unit 107, and outputs the modulated signal to the transmission unit 110.
  • the signal e.g., data, control information
  • the mapping unit 109 performs resource mapping of the modulated signal input from the coding and modulation unit 108 based on, for example, resource allocation information input from the resource control unit 105, and outputs the transmission signal to the transmission unit 110.
  • the transmitting unit 110 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the mapping unit 109, and transmits the radio signal obtained by the transmission processing from the antenna to the terminal 200.
  • FIG. 6 is a block diagram showing a configuration example of a terminal 200 according to an aspect of the present disclosure.
  • the terminal 200 includes a receiving unit 201, a demapping unit 202, a demodulation and decoding unit 203, a resource determining unit 204, a control unit 205, a control information holding unit 206, a data and control information generating unit 207, an encoding and modulation unit 208, a mapping unit 209, and a transmitting unit 210.
  • the demapping unit 202 demodulation/decoding unit 203, resource determination unit 204, control unit 205, control information storage unit 206, data/control information generation unit 207, coding/modulation unit 208, and mapping unit 209 may be included in the control unit shown in FIG. 4, and the receiving unit 201 may be included in the receiving unit shown in FIG. 4.
  • the receiving unit 201 performs reception processing, such as down-conversion or A/D conversion, on the received signal received via the antenna, and outputs the received signal after reception processing to the demapping unit 202.
  • reception processing such as down-conversion or A/D conversion
  • the demapping unit 202 performs resource demapping on the received signal input from the receiving unit 201 based on, for example, resource allocation information input from the resource determination unit 204, and outputs the modulated signal to the demodulation and decoding unit 203.
  • the demodulation and decoding unit 203 demodulates and decodes the modulated signal input from the demapping unit 202, and outputs the decoded result to the resource determination unit 204 and the control unit 205.
  • the decoded result may include, for example, at least one of upper layer signaling information and downlink control information.
  • the resource determination unit 204 determines the allocated resources based on, for example, the control information input from the control information storage unit 206 or the decoded result of the control information input from the demodulation and decoding unit 203, and outputs the resource allocation information to the demapping unit 202.
  • the control unit 205 may determine whether data or control information is to be transmitted or received, for example, based on the decoding result (e.g., data or control information) input from the demodulation and decoding unit 203 and the control information input from the control information storage unit 206. For example, if the determination result indicates that data or control information is to be transmitted, the control unit 205 may instruct the data and control information generation unit 207 to generate at least one of the data and the control information.
  • the decoding result e.g., data or control information
  • the control unit 205 may instruct the data and control information generation unit 207 to generate at least one of the data and the control information.
  • the control information storage unit 206 stores, for example, control information input from the control unit 205, and outputs the stored information to each component (for example, the resource determination unit 204 and the control unit 205) as necessary.
  • the data and control information generating unit 207 generates data or control information, for example, according to instructions from the control unit 205, and outputs a signal including the generated data or control information to the coding and modulation unit 208.
  • the control information may include, for example, UL-DL interference information measured by the terminal 200 (for example, information regarding the amount of interference from the uplink to the downlink measured by the terminal 200).
  • the encoding and modulation unit 208 for example, encodes and modulates the signal input from the data and control information generation unit 207, and outputs the modulated signal to the mapping unit 209.
  • the mapping unit 209 performs resource mapping on the modulated signal input from the coding and modulation unit 208, and outputs the transmission signal to the transmission unit 210.
  • the transmitter 210 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the mapping unit 209, and transmits the radio signal obtained by the transmission processing from the antenna to the base station 100.
  • FIG. 7 is a sequence diagram showing an example of the operation of the base station 100 and the terminal 200.
  • the base station 100 determines, for example, information regarding SBFD or resource allocation configuration (S101).
  • the base station 100 transmits, for example, upper layer signaling information including the determined configuration information to the terminal 200 (S102).
  • the base station 100 determines, for the terminal 200, the guard band size to be used for the terminal 200's downlink reception or the base station 100's uplink reception, for example, based on the CLI (S103).
  • the base station 100 schedules the transmission of downlink data (e.g., PDSCH) and allocates resources to the terminal 200, for example, based on the set guard band size (S104).
  • downlink data e.g., PDSCH
  • S104 set guard band size
  • Base station 100 transmits a downlink control signal (e.g., PDCCH: Physical Downlink Control Channel) based on, for example, the scheduling result (S105).
  • a downlink control signal e.g., PDCCH: Physical Downlink Control Channel
  • the terminal 200 identifies (or determines, or identifies) the resource allocation (time/frequency resources) for downlink data (e.g., PDSCH) based on the PDCCH transmitted from the base station 100 (S106).
  • the resource allocation time/frequency resources for downlink data (e.g., PDSCH) based on the PDCCH transmitted from the base station 100 (S106).
  • Base station 100 transmits downlink data (e.g., PDSCH) according to the scheduling result, and terminal 200 receives downlink data (e.g., PDSCH) based on the determined resource allocation (S107).
  • downlink data e.g., PDSCH
  • terminal 200 receives downlink data (e.g., PDSCH) based on the determined resource allocation (S107).
  • a resource allocation method in the base station 100 (e.g., the resource control unit 105) will be described.
  • the terminal 200 e.g., the resource determination unit 204) may determine the allocated resources assuming the resource allocation method implemented by the base station 100.
  • the base station 100 applies RA type 1 to PDSCH resource allocation, for example.
  • the base station 100 transmits to the terminal 200 control information including information (e.g., RB start ) on the start position of an RB (e.g., VRB) including at least a DL subband, and the number of RBs (e.g., the number of VRBs, L RB ) consecutive from the start position.
  • Method 1 As a method for performing discontinuous resource allocation to DL subbands using RA type 1, a UL subband and a VRB that does not include a guard band (for example, a VRB that is composed only of RBs in the DL subband) are defined.
  • a guard band for example, a VRB that is composed only of RBs in the DL subband
  • Figure 8 shows an example of a VRB consisting of a UL subband and a DL subband that does not include a guard band.
  • indices are assigned to the RBs (e.g., 18 RBs) that make up the DL subbands (e.g., DL subbands #0 and #1). In other words, in FIG. 8, VRB indices are not assigned to the RBs that make up the UL subbands and guard bands.
  • the VRBs shown in Figure 8 include RBs in the DL subband, but do not include RBs in the UL subband or guard band, so when mapping from VRBs to PRBs, the DL RBs (VRB) are mapped to the DL PRBs.
  • VRBs #0 to #8 are mapped to PRBs #0 to #8 in DL subband #0
  • VRBs #9 to #17 are mapped to PRBs #21 to #29 in DL subband #1.
  • the guard band size is not adjusted.
  • the guard band is expanded by not allocating resources to the DL subband.
  • resources are not allocated to PRBs (e.g., PRB#8 and PRB#21) adjacent to the guard band in the DL subband.
  • PRBs e.g., PRB#8 and PRB#21
  • the base station 100 allocates resources while avoiding VRB#8 and VRB#9 corresponding to PRB#8 and PRB#21.
  • RA type 1 the base station 100 allocates resources to consecutive RBs, making it difficult to allocate resources while avoiding VRB#8 and VRB#9.
  • the order in which the VRB is mapped to the PRB is changed.
  • the base station 100 makes the order in which the multiple DL subbands in the VRB are mapped different from the order in which the multiple DL subbands in the PRB are mapped.
  • the order in which the subbands are arranged on the VRB and the order in which the subbands are arranged on the PRB may be swapped.
  • some VRBs that are contiguous with the first VRB (VRB#0) and belong to the same subband as the first VRB may be mapped to a PRB (e.g., an adjacent PRB) that is contiguous with the last RB of the guard band in the PRB (e.g., the RB on the boundary with the DL subband).
  • some VRBs that are contiguous with the last VRB and belong to the same subband as the last VRB may be mapped to a PRB (e.g., an adjacent PRB) that is contiguous with the last RB of the guard band in the PRB (e.g., the RB on the boundary with the DL subband).
  • Figure 9 shows an example of a VRB that includes DL subbands and has a permuted mapping order.
  • the VRB is mapped to RBs in the order of ⁇ DL subband #1, DL subband #0 ⁇ in the PRB. Therefore, the order in which the subbands are arranged on the VRB ⁇ DL subband #1, DL subband #0 ⁇ is different from the order in which the subbands are arranged on the PRB ⁇ DL subband #0, DL subband #1 ⁇ .
  • RBs located at the ends of a VRB are mapped to PRBs (e.g., PRB#21 and PRB#8) that are adjacent to the guard band in the PRB.
  • PRB#0 which is the start position of the VRB
  • PRB#17 which is the end position of the VRB
  • PRB#21 and PRB#8 which are positions adjacent to the guard band in the PRB, respectively.
  • PRB#8 and PRB#21 are PRBs that are close to the UL subband among the PRBs that make up the DL subband, and therefore tend to be more affected by CLI than the other PRBs that make up the DL subband.
  • the CLI from the UL subband tends to be larger in the RBs located at the edge of the VRB compared to the RBs located in the center of the VRB. This characteristic is effective when using the RBs of the DL subband as guard bands based on CLI when performing continuous resource allocation such as RA type 1.
  • slot#0 and VRB#1 to VRB#22 are assigned as PDSCH resources, and VRB#0 and VRB#17 are not assigned as PDSCH resources.
  • PRB#0 to PRB#7 and PRB#21 to PRB#29 are assigned as PDSCH resources.
  • PRB#8 and PRB#21 corresponding to VRB#0 and VRB#17, respectively are not used by other terminals, these PRBs can be used as substantial guard bands. Therefore, in the example of FIG. 9, in slot#0, a guard band of 4 RBs can be used between DL subband#0 and UL subband, and between DL subband#1 and UL subband.
  • mapping order By changing the mapping order in this way, it is possible to achieve both non-contiguous resource allocation to DL subbands and adjustment of the guard band size.
  • the VRB includes a DL subband and does not include a guard band, but this is not limited thereto, and for example, the VRB may include a DL subband and a guard band.
  • the VRB includes a DL subband and a guard band, but does not include a UL subband.
  • some VRBs that are contiguous with the first VRB (VRB#0) and belong to the same guard band as the first VRB and the DL subband that is contiguous with the guard band may be mapped to a PRB that is contiguous with the last RB of the UL subband in the PRB (e.g., an adjacent PRB) (e.g., an RB on the boundary with the guard band).
  • some VRBs that are contiguous with the last VRB and belong to the same guard band as the last VRB and the DL subband that is contiguous with the guard band may be mapped to a PRB that is contiguous with the last RB of the UL subband in the PRB (e.g., an adjacent PRB) (e.g., an RB on the boundary with the guard band).
  • the guard band can be reduced, for example by allocating DL resources to the RBs of the guard band as in guard band size adjustment method 2.
  • Figure 10 shows an example of a VRB that includes DL subbands and guard bands and has a swapped mapping order.
  • the VRB maps RBs in the order of ⁇ guard band #1, DL subband #1, DL subband #0, guard band #0 ⁇ in the PRB. Therefore, the order in which the DL subbands and guard bands are arranged on the VRB ⁇ guard band #1, DL subband #1, DL subband #0, guard band #0 ⁇ is different from the order in which the DL subbands and guard bands are arranged on the PRB ⁇ DL subband #0, guard band #0, guard band #1, DL subband #1 ⁇ .
  • RBs located at the ends of a VRB are mapped to PRBs (e.g., PRB#18 and PRB#11) that are adjacent to the UL subband in the PRB.
  • PRB#0 which is the start position of the VRB
  • VRB#23 which is the end position of the VRB
  • PRB#18 and PRB#11 are mapped to PRB#18 and PRB#11, respectively, which are positions adjacent to the UL subband in the PRB.
  • PRB#11 and PRB#18 are adjacent to the UL subband, and therefore are more likely to be affected by CLI than other PRBs that make up the DL subband and guard band.
  • the CLI from the UL subband has the characteristic that it is more likely to be large in RBs located at the edge of the VRB than in RBs located in the center of the VRB. This characteristic is useful when allocating continuous resources, such as with RA type 1, and allocating and using resources (e.g., DL resources) to RBs in the guard band based on CLI.
  • slot#0 and VRB#2 to VRB#21 are assigned as PDSCH resources, and VRB#0, VRB#1, VRB#22, and VRB#23 are not assigned as PDSCH resources.
  • PRB#0 to PRB#9 and PRB#20 to PRB#29 are assigned as PDSCH resources.
  • PDSCH resources are assigned to PRB#9 and PRB#20 within the guard band, so the guard band can be considered to be reduced. Therefore, in the example of FIG. 10, in slot#0, 2RBs can be used as guard bands between DL subband#0 and UL subband, and between DL subband#1 and UL subband.
  • mapping order makes it possible to both allocate non-contiguous resources to DL subbands and adjust the guard band size.
  • a VRB may include DL subbands, UL subbands, and guard bands (i.e., all subbands).
  • a VRB includes a DL subband, a guard band, and a UL subband.
  • the UL subband may be located in the first RB of the VRB, or in the last RB.
  • Figure 11 shows an example of a VRB that includes a DL subband, a UL subband, and a guard band, with the mapping order swapped.
  • the VRB is mapped to RBs in the order of ⁇ guard band #1, DL subband #1, DL subband #0, guard band #0, UL subband ⁇ in the PRB. Therefore, the order in which the DL subbands, UL subbands, and guard bands are arranged on the VRB ⁇ guard band #1, DL subband #1, DL subband #0, guard band #0, UL subband ⁇ is different from the order in which the DL subbands, UL subbands, and guard bands are arranged on the PRB ⁇ DL subband #0, guard band #0, UL subband, guard band #1, DL subband #1 ⁇ .
  • VRB#0 which is the start position of the VRB
  • PRB#18 which is the position adjacent to one end of the UL subband in the PRB
  • VRB#29 which is the end position of the VRB
  • PRB#17 which is the aforementioned end of the UL subband in the PRB.
  • the guard band size can be adjusted while realizing discontinuous allocation to DL subbands, just as in the case where a VRB includes DL subbands and guard bands.
  • resources e.g., PDSCH resources
  • PDSCH resources can also be allocated to the RBs of the UL subband when DL transmission and reception are possible on the UL subband.
  • the existing notification method can be reused as RA type 1, so the overhead of downstream control information does not increase.
  • Method 2 when RA type 1 is applied, a case will be described in which the rate matching function is reused as one method for excluding RBs of the UL subband and guard band as PRBs to which resources are allocated.
  • Rate matching is a function that does not assign PDSCH to some resources, for example to avoid interference with other base stations.
  • a rate match pattern (RateMatchPattern) is set in signaling information from base station 100 to terminal 200, and the resources set in the rate match pattern (for example, resource elements (RE) specified by RB numbers and symbol numbers) can be set so as not to be used for transmitting and receiving PDSCH.
  • RE resource elements
  • Rate matching may also be applied to resources other than those specified by the rate match pattern, for example, to RBs on which SSBs (Synchronization Signal (SS)/Physical Broadcast Channel (PBCH) blocks) are transmitted.
  • SSBs Synchronization Signal (SS)/Physical Broadcast Channel (PBCH) blocks
  • this rate matching function is utilized to treat (or explicitly set) the RBs of the UL subband or guard band as resources not used for transmitting and receiving PDSCH.
  • the subband configuration is ⁇ DUD ⁇ and all RBs including the UL subband and guard band are set by RA Type 1
  • the RBs of the DL subband are used for transmitting and receiving PDSCH, and the RBs of the UL subband and guard band are not used for transmitting and receiving PDSCH. Therefore, using RA type 1, it becomes possible to allocate non-contiguous resources to the DL subband.
  • the guard band size adjustment method 2 (a method of allocating DL resources or UL resources within the guard band) is not applied. Therefore, for example, the following rules may be used to determine whether or not to apply rate matching.
  • rule 1 when DL subbands are arranged non-contiguous, the base station 100 determines whether or not to apply rate matching based on the start or end position of resource allocation in the PRB.
  • the base station 100 determines to apply rate matching when the start and end positions of the PDSCH resource allocation (e.g., RA type 1) are included in each of multiple DL subbands that are arranged non-contiguously (e.g., span multiple DL subbands).
  • the start and end positions of the PDSCH resource allocation e.g., RA type 1
  • the start and end positions of the PDSCH resource allocation e.g., RA type 1
  • Case 1 in Figure 12 shows an example of applying Rule 1.
  • the example in Figure 12 shows an example of frequency resource allocation for a subband configuration of ⁇ DUD ⁇ .
  • the resource allocation notification by DCI shown in Figure 12(a) indicates the allocation of PDSCH resources to the entire band spanning two DL subbands.
  • the start position of the resource allocation by DCI shown in Figure 12(a) is included in DL subband #0, and the end position is included in DL subband #1.
  • Figure 12(b) shows an example of an actual PDSCH resource allocation.
  • rate matching is applied, so the actual PDSCH resource allocation does not include the UL subband and guard band. Therefore, the actual PDSCH resource allocation is the PDSCH resource allocation shown in Figure 12(a) minus the resources corresponding to the UL subband and guard band.
  • PDSCH resources can be allocated simultaneously to non-contiguous DL subbands using RA type 1. This allows for more efficient data transmission and reception by allocating more resources when the data size is large.
  • rule 2 when DL subbands are arranged non-contiguous, the base station 100 determines whether or not to apply rate matching based on the start or end position of resource allocation in the PRB.
  • the base station 100 determines not to apply rate matching when the start or end position of the PDSCH resource allocation (e.g., RA type 1) is included in a band different from the DL subband (e.g., the guard band or UL subband).
  • the start or end position of the PDSCH resource allocation e.g., RA type 1
  • the guard band or UL subband e.g., the guard band or UL subband
  • Case 2 in Figure 12 shows an example of applying rule 2.
  • the resource allocation notification by DCI shown in Figure 12(c) indicates that the PDSCH resources start from DL subband #0 and end within guard band #0.
  • FIG. 12 shows an example in which rule 1 is applied.
  • rate matching is applied, so resources within the guard band are not used for the PDSCH. In this case, the guard band size cannot be adjusted.
  • FIG. 12 shows the case where rule 2 is applied.
  • rate matching is not applied, and resources are allocated within the guard band. Therefore, for example, when the CLI is small, the resource utilization efficiency can be improved by allocating the guard band resources to the PDSCH.
  • rule 3 when the frequency domain resource allocation (FDRA) field or the RIV is set to a specific value in the downlink control information (DCI), a semi-statically configured or predefined resource allocation is applied.
  • FDRA frequency domain resource allocation
  • DCI downlink control information
  • how many patterns of RIV values exist depends on the combination of RB start and L RB in RA type 1. Therefore, there may be cases where the maximum combination of RB start and L RB does not exist for the number of bits allocated to RIV. For example, when the number of RBs in BWP is 20, 8 bits are used for RIV, so that 256 patterns can be notified as resource allocation. On the other hand, out of the 256 patterns, there are 210 patterns that can be associated with RIV. Therefore, out of the 256 patterns that can be notified, 46 values of RIV are unused.
  • rule 3 for example, a value represented by multiple bits used to notify an RIV in RA type 1 that is different from the value associated with the combination of RB start and L RB notified by the RIV is associated with an allocation pattern in multiple subbands.
  • FIG. 13 shows an example of resource allocation according to a specific pattern using the RIV value.
  • FIG. 14 shows an example of application of resource allocation according to a specific pattern using the RIV value shown in FIG. 13.
  • "All "1”” is associated with allocation of PDSCH resources to all RBs including the UL subband, as shown in Fig. 14. For example, when rule 1 is applied, PDSCH resources cannot be allocated to the entire band, but in the case of "All "1", PDSCH resources can be allocated to the entire band.
  • "All "1"-1” corresponds to allocation of PDSCH resources to all RBs in the DL subband (two DL subbands #0 and #1 in Fig. 14) and one RB in each guard band (guard bands #0 and #1 in Fig. 14), as shown in Fig. 14.
  • the above description describes an operation in which no resources are allocated to the UL subband and guard band due to rate matching, but the method may be applied to methods other than rate matching.
  • the above method can be applied even to an operation in which the rate matching function is not used and PDSCH resources are not allocated to the UL subband and guard band.
  • the base station 100 may switch between and apply at least two of rules 1 to 3 depending on certain conditions.
  • method 2 can achieve non-contiguous resource allocation and guard band size adjustment even in contiguous resource allocation such as RA type 1, thereby improving resource utilization efficiency.
  • existing instructions for RA type 1 can be reused, so DCI overhead does not increase.
  • method 2 does not require additional VRB to PRB mapping, reducing complexity compared to method 1.
  • the base station 100 and the terminal 200 allocate resources differently depending on whether or not the DL subbands are arranged discontinuously in the PRB.
  • the base station 100 and the terminal 200 may use a different VRB-PRB mapping when the DL subbands are arranged discontinuously compared to when the DL subbands are not arranged discontinuously.
  • the base station 100 and the terminal 200 may determine whether or not to apply rate matching depending on the PDSCH resource allocation when the DL subbands are arranged discontinuously.
  • guard band size such as by expanding or reducing the guard band. This makes it possible, for example, to allocate non-consecutive resources to DL subbands and to appropriately adjust the guard band size according to the CLI, thereby improving resource utilization efficiency.
  • resource allocation in wireless communication can be appropriately controlled.
  • method 1 and method 2 may be applied to uplink data (for example, PUSCH).
  • RA type 1 and VRB-to-PRB mapping can also be used in PUSCH. Therefore, when multiple UL subbands are supported, resource allocation may be difficult as in PDSCH.
  • the method may be applied to PUSCH by replacing PDSCH with PUSCH, exchanging DL subband and UL subband, and exchanging reception and transmission.
  • values such as the number of subbands, the number of DL subbands, the number of UL subbands, the number of guard bands, the number of RBs (the number of VRBs or the number of PRBs), the number of slots, the RIV value, and the number of bits for notifying the RIV are merely examples and are not limited to these.
  • the subband configuration e.g., ⁇ DUD ⁇
  • the number of subbands and the arrangement order of the DL subbands and the UL subbands are not limited to these.
  • (supplement) Information indicating whether terminal 200 supports the functions, operations or processes described in the above-mentioned embodiments may be transmitted (or notified) from terminal 200 to base station 100, for example, as capability information or capability parameters of terminal 200.
  • the capability information may include information elements (IEs) that individually indicate whether the terminal 200 supports at least one of the functions, operations, or processes shown in the above-described embodiments.
  • the capability information may include information elements that indicate whether the terminal 200 supports a combination of any two or more of the functions, operations, or processes shown in the above-described embodiments.
  • the base station 100 may, for example, determine (or decide or assume) the functions, operations, or processing that are supported (or not supported) by the terminal 200 that transmitted the capability information.
  • the base station 100 may perform operations, processing, or control according to the results of the determination based on the capability information.
  • the base station 100 may control resource allocation to the terminal 200 based on the capability information received from the terminal 200.
  • the terminal 200 does not support some of the functions, operations, or processes described in the above-described embodiment may be interpreted as meaning that such some of the functions, operations, or processes are restricted in the terminal 200. For example, information or requests regarding such restrictions may be notified to the base station 100.
  • the information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly notified to the base station 100 in association with information already known at the base station 100 or information transmitted to the base station 100.
  • a downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a Physical Downlink Control Channel (PDCCH) in a physical layer, or a signal (or information) transmitted in a Medium Access Control Control Element (MAC CE) or Radio Resource Control (RRC) in a higher layer.
  • the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal.
  • the uplink control signal (or uplink control information) related to one embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a PUCCH in the physical layer, or a signal (or information) transmitted in a MAC CE or RRC in a higher layer.
  • the signal (or information) is not limited to being notified by an uplink control signal, but may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal.
  • the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
  • UCI uplink control information
  • SCI 1st stage sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • the base station may be a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), a Base Transceiver Station (BTS), a parent device, a gateway, or the like.
  • TRP Transmission Reception Point
  • RRH Remote Radio Head
  • eNB eNodeB
  • gNB gNodeB
  • BS Base Station
  • BTS Base Transceiver Station
  • a terminal may play the role of a base station.
  • a relay device that relays communication between an upper node and a terminal may be used.
  • a roadside unit may be used.
  • An embodiment of the present disclosure may be applied to, for example, any of an uplink, a downlink, and a sidelink.
  • an embodiment of the present disclosure may be applied to a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), a Physical Random Access Channel (PRACH) in the uplink, a Physical Downlink Shared Channel (PDSCH), a PDCCH, a Physical Broadcast Channel (PBCH) in the downlink, or a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Control Channel (PSCCH), or a Physical Sidelink Broadcast Channel (PSBCH) in the sidelink.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PDCCH, PDSCH, PUSCH, and PUCCH are examples of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel, respectively.
  • PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel.
  • PBCH and PSBCH are examples of a broadcast channel, and PRACH is an example of a random access channel.
  • An embodiment of the present disclosure may be applied to, for example, any of a data channel and a control channel.
  • the channel in an embodiment of the present disclosure may be replaced with any of the data channels PDSCH, PUSCH, and PSSCH, or the control channels PDCCH, PUCCH, PBCH, PSCCH, and PSBCH.
  • the reference signal is, for example, a signal known by both the base station and the mobile station, and may be called a Reference Signal (RS) or a pilot signal.
  • the reference signal may be any of a Demodulation Reference Signal (DMRS), a Channel State Information - Reference Signal (CSI-RS), a Tracking Reference Signal (TRS), a Phase Tracking Reference Signal (PTRS), a Cell-specific Reference Signal (CRS), or a Sounding Reference Signal (SRS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CRS Cell-specific Reference Signal
  • SRS Sounding Reference Signal
  • the unit of time resource is not limited to one or a combination of slots and symbols, but may be, for example, a time resource unit such as a frame, a superframe, a subframe, a slot, a time slot, a subslot, a minislot, a symbol, an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a Single Carrier-Frequency Division Multiplexing Access (SC-FDMA) symbol, or another time resource unit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiplexing Access
  • the number of symbols included in one slot is not limited to the number of symbols exemplified in the above embodiment, and may be another number of symbols.
  • An embodiment of the present disclosure may be applied to either a licensed band or an unlicensed band.
  • An embodiment of the present disclosure may be applied to any of communication between a base station and a terminal (Uu link communication), communication between terminals (Sidelink communication), and Vehicle to Everything (V2X) communication.
  • the channel in an embodiment of the present disclosure may be replaced with any of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, and PBCH.
  • an embodiment of the present disclosure may be applied to either a terrestrial network or a non-terrestrial network (NTN: Non-Terrestrial Network) using a satellite or a High Altitude Pseudo Satellite (HAPS: High Altitude Pseudo Satellite).
  • NTN Non-Terrestrial Network
  • HAPS High Altitude Pseudo Satellite
  • an embodiment of the present disclosure may be applied to a terrestrial network in which the transmission delay is large compared to the symbol length or slot length, such as a network with a large cell size or an ultra-wideband transmission network.
  • an antenna port refers to a logical antenna (antenna group) consisting of one or more physical antennas.
  • an antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna consisting of multiple antennas.
  • an antenna port may be defined as the minimum unit by which a terminal station can transmit a reference signal, without specifying how many physical antennas the antenna port is composed of.
  • an antenna port may be defined as the minimum unit by which a weighting of a precoding vector is multiplied.
  • 5G fifth generation of mobile phone technology
  • NR radio access technology
  • the system architecture as a whole assumes an NG-RAN (Next Generation - Radio Access Network) comprising gNBs.
  • the gNBs provide the UE-side termination of the NG radio access user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols.
  • the gNBs are connected to each other via an Xn interface.
  • the gNBs are also connected to the Next Generation Core (NGC) via a Next Generation (NG) interface, more specifically to the Access and Mobility Management Function (AMF) (e.g., a specific core entity performing AMF) via an NG-C interface, and to the User Plane Function (UPF) (e.g., a specific core entity performing UPF) via an NG-U interface.
  • the NG-RAN architecture is shown in Figure 15 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack includes the PDCP (Packet Data Convergence Protocol (see, for example, TS 38.300, section 6.4)) sublayer, the RLC (Radio Link Control (see, for example, TS 38.300, section 6.3)) sublayer, and the MAC (Medium Access Control (see, for example, TS 38.300, section 6.2)) sublayer, which are terminated on the network side at the gNB.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is also defined for NR (see, for example, TS 38.300, section 4.4.2).
  • An overview of Layer 2 functions is given in clause 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in clauses 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in clause 7 of TS 38.300.
  • the Medium-Access-Control layer handles multiplexing of logical channels and scheduling and scheduling-related functions, including handling various numerologies.
  • the physical layer is responsible for coding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for the transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • the physical channels include the PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and the PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), and PBCH (Physical Broadcast Channel) as downlink physical channels.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios may include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communication (mMTC), which have diverse requirements in terms of data rate, latency, and coverage.
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and effective (user-experienced) data rates that are about three times higher than the data rates offered by IMT-Advanced.
  • URLLC stricter requirements are imposed on ultra-low latency (0.5 ms for user plane latency in UL and DL, respectively) and high reliability (1-10 ⁇ 5 within 1 ms).
  • mMTC may require preferably high connection density (1,000,000 devices/km 2 in urban environments), wide coverage in adverse environments, and extremely long battery life (15 years) for low-cost devices.
  • OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • low latency services may preferably require a shorter symbol length (and therefore a larger subcarrier spacing) and/or fewer symbols per scheduling interval (also called TTI) than mMTC services.
  • deployment scenarios with large channel delay spreads may preferably require a longer CP length than scenarios with short delay spreads.
  • Subcarrier spacing may be optimized accordingly to maintain similar CP overhead.
  • NR may support one or more subcarrier spacing values. Correspondingly, subcarrier spacings of 15 kHz, 30 kHz, 60 kHz... are currently considered.
  • a resource grid of subcarriers and OFDM symbols is defined for the uplink and downlink, respectively.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • Figure 16 shows the functional separation between NG-RAN and 5GC.
  • the logical nodes of NG-RAN are gNB or ng-eNB.
  • 5GC has logical nodes AMF, UPF, and SMF.
  • gNBs and ng-eNBs host the following main functions: - Radio Resource Management functions such as Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation (scheduling) of resources to UEs in both uplink and downlink; - IP header compression, encryption and integrity protection of the data; - Selection of an AMF at UE attach time when routing to an AMF cannot be determined from information provided by the UE; - Routing of user plane data towards the UPF; - Routing of control plane information towards the AMF; - Setting up and tearing down connections; - scheduling and transmission of paging messages; Scheduling and transmission of system broadcast information (AMF or Operation, Admission, Maintenance (OAM) origin); - configuration of measurements and measurement reporting for mobility and scheduling; - Transport level packet marking in the uplink; - Session management; - Support for network slicing; - Management of QoS flows and mapping to data radio bearers; - Support for UEs in RRC_INACTIVE state; - NAS
  • the Access and Mobility Management Function hosts the following main functions: – the ability to terminate Non-Access Stratum (NAS) signalling; - NAS signalling security; - Access Stratum (AS) security control; - Core Network (CN) inter-node signaling for mobility between 3GPP access networks; - Reachability to idle mode UEs (including control and execution of paging retransmissions); - Managing the registration area; - Support for intra-system and inter-system mobility; - Access authentication; - Access authorization, including checking roaming privileges; - Mobility management control (subscription and policy); - Support for network slicing; – Selection of Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - anchor point for intra/inter-RAT mobility (if applicable); - external PDU (Protocol Data Unit) Session Points for interconnection with data networks; - Packet routing and forwarding; - Packet inspection and policy rule enforcement for the user plane part; - Traffic usage reporting; - an uplink classifier to support routing of traffic flows to the data network; - Branching Point to support multi-homed PDU sessions; QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement); - Uplink traffic validation (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification triggering.
  • PDU Protocol Data Unit Session Points for interconnection with data networks
  • Packet routing and forwarding Packet inspection and policy rule enforcement for the user plane part
  • Traffic usage reporting - an uplink classifier to support routing of traffic flows to the data network
  • - Branching Point to support multi-homed PDU
  • Session Management Function hosts the following main functions: - Session management; - Allocation and management of IP addresses for UEs; - Selection and control of UPF; - configuration of traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination; - Control policy enforcement and QoS; - Notification of downlink data.
  • Figure 17 shows some of the interactions between the UE, gNB, and AMF (5GC entities) when the UE transitions from RRC_IDLE to RRC_CONNECTED in the NAS portion (see TS 38.300 v15.6.0).
  • RRC is a higher layer signaling (protocol) used for UE and gNB configuration.
  • the AMF prepares UE context data (which includes, for example, PDU session context, security keys, UE Radio Capability, UE Security Capabilities, etc.) and sends it to the gNB with an INITIAL CONTEXT SETUP REQUEST.
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding with a SecurityModeComplete message to the gNB.
  • the gNB then sends an RRCReconfiguration message to the UE, and upon receiving an RRCReconfigurationComplete from the UE, the gNB performs reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). For signaling-only connections, the RRCReconfiguration steps are omitted, since SRB2 and DRB are not set up. Finally, the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • a 5th Generation Core (5GC) entity e.g., AMF, SMF, etc.
  • a control circuit that, during operation, establishes a Next Generation (NG) connection with a gNodeB
  • a transmitter that, during operation, transmits an initial context setup message to the gNodeB via the NG connection such that a signaling radio bearer between the gNodeB and a user equipment (UE) is set up.
  • the gNodeB transmits Radio Resource Control (RRC) signaling including a resource allocation configuration information element (IE) to the UE via the signaling radio bearer.
  • RRC Radio Resource Control
  • IE resource allocation configuration information element
  • Figure 18 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) considers three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first phase of specifications for enhanced mobile-broadband (eMBB) has been completed.
  • Current and future work includes standardization for ultra-reliable and low-latency communications (URLLC) and massive machine-type communications (mMTC), in addition to expanding support for eMBB.
  • Figure 18 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see, for example, ITU-R M.2083 Figure 2).
  • the URLLC use cases have stringent requirements for performance such as throughput, latency, and availability. It is envisioned as one of the enabling technologies for future applications such as wireless control of industrial or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and road safety.
  • URLLC's ultra-high reliability is supported by identifying technologies that meet the requirements set by TR 38.913.
  • key requirements include a target user plane latency of 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink).
  • the overall URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes with a user plane latency of 1 ms.
  • BLER block error rate
  • NR URLLC can be improved in many possible ways.
  • Current room for reliability improvement includes defining a separate CQI table for URLLC, more compact DCI formats, PDCCH repetition, etc.
  • this room can be expanded to achieve ultra-high reliability as NR becomes more stable and more developed (with respect to the key requirements of NR URLLC).
  • Specific use cases for NR URLLC in Release 15 include Augmented Reality/Virtual Reality (AR/VR), e-health, e-safety, and mission-critical applications.
  • AR/VR Augmented Reality/Virtual Reality
  • e-health e-safety
  • mission-critical applications mission-critical applications.
  • the technology enhancements targeted by NR URLLC aim to improve latency and reliability.
  • Technology enhancements for improving latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (configured grant) uplink, slot-level repetition in data channel, and pre-emption in downlink.
  • Pre-emption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, a transmission that was already allowed is preempted by a later transmission. Pre-emption is applicable regardless of the specific service type. For example, a transmission of service type A (URLLC) may be preempted by a transmission of service type B (eMBB, etc.).
  • Technology enhancements for improving reliability include a dedicated CQI/MCS table for a target BLER of 1E-5.
  • the mMTC (massive machine type communication) use case is characterized by a very large number of connected devices transmitting relatively small amounts of data that are typically not sensitive to latency.
  • the devices are required to be low cost and have very long battery life. From an NR perspective, utilizing very narrow bandwidth portions is one solution that saves power from the UE's perspective and allows for long battery life.
  • the scope of reliability improvement in NR is expected to be broader.
  • One of the key requirements for all cases, e.g. for URLLC and mMTC, is high or ultra-high reliability.
  • Several mechanisms can improve reliability from a radio perspective and a network perspective.
  • these areas include compact control channel information, data channel/control channel repetition, and diversity in frequency, time, and/or spatial domains. These areas are generally applicable to reliability improvement regardless of the specific communication scenario.
  • NR URLLC For NR URLLC, further use cases with more stringent requirements are envisaged, such as factory automation, transportation and power distribution, with high reliability (up to 10-6 level of reliability), high availability, packet size up to 256 bytes, time synchronization up to a few ⁇ s (depending on the use case, the value can be 1 ⁇ s or a few ⁇ s depending on the frequency range and low latency of the order of 0.5 ms to 1 ms (e.g. 0.5 ms latency on the targeted user plane).
  • high reliability up to 10-6 level of reliability
  • high availability packet size up to 256 bytes
  • time synchronization up to a few ⁇ s (depending on the use case, the value can be 1 ⁇ s or a few ⁇ s depending on the frequency range and low latency of the order of 0.5 ms to 1 ms (e.g. 0.5 ms latency on the targeted user plane).
  • minislot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • TTI Transmission Time Interval
  • QoS Quality of Service
  • the 5G Quality of Service (QoS) model is based on QoS flows and supports both QoS flows that require a guaranteed flow bit rate (GBR QoS flows) and QoS flows that do not require a guaranteed flow bit rate (non-GBR QoS flows).
  • GRR QoS flows Guarantee flow bit rate
  • non-GBR QoS flows QoS flows that do not require a guaranteed flow bit rate
  • QoS flows are the finest granularity of QoS partitioning in a PDU session.
  • QoS flows are identified within a PDU session by a QoS Flow ID (QFI) carried in the encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • 5GC For each UE, 5GC establishes one or more PDU sessions. For each UE, the NG-RAN establishes at least one Data Radio Bearer (DRB) for the PDU session, e.g. as shown above with reference to Figure 17. Additional DRBs for the QoS flows of that PDU session can be configured later (when it is up to the NG-RAN).
  • DRB Data Radio Bearer
  • the NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • the NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas the AS level mapping rules in the UE and NG-RAN associate UL and DL QoS flows with DRBs.
  • FIG 19 shows the non-roaming reference architecture for 5G NR (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function e.g. an external application server hosting 5G services as illustrated in Figure 18
  • NEF Network Exposure Function
  • PCF Policy Control Function
  • Figure 19 further shows further functional units of the 5G architecture, namely Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF), Session Management Function (SMF), and Data Network (DN, e.g. operator provided services, Internet access, or third party provided services). All or part of the core network functions and application services may be deployed and run in a cloud computing environment.
  • NSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • SMSF Session Management Function
  • DN Data Network
  • All or part of the core network functions and application services may be deployed and run in a cloud computing environment.
  • an application server e.g., an AF in a 5G architecture
  • a transmitter that, in operation, transmits a request including QoS requirements for at least one of a URLLC service, an eMMB service, and an mMTC service to at least one of 5GC functions (e.g., a NEF, an AMF, an SMF, a PCF, an UPF, etc.) to establish a PDU session including a radio bearer between a gNodeB and a UE according to the QoS requirements; and a control circuit that, in operation, performs a service using the established PDU session.
  • 5GC functions e.g., a NEF, an AMF, an SMF, a PCF, an UPF, etc.
  • Each functional block used in the description of the above embodiments may be realized, in part or in whole, as an LSI, which is an integrated circuit, and each process described in the above embodiments may be controlled, in part or in whole, by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip that contains some or all of the functional blocks.
  • the LSI may have data input and output. Depending on the degree of integration, the LSI may be called an IC, system LSI, super LSI, or ultra LSI.
  • the integrated circuit method is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Also, a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI, may be used.
  • FPGA field programmable gate array
  • the present disclosure may be realized as digital processing or analog processing.
  • the present disclosure may be implemented in any type of apparatus, device, or system (collectively referred to as a communications apparatus) having communications capabilities.
  • the communications apparatus may include a radio transceiver and processing/control circuitry.
  • the radio transceiver may include a receiver and a transmitter, or both as functions.
  • the radio transceiver (transmitter and receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator/demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (e.g., cell phones, smartphones, etc.), tablets, personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.), cameras (e.g., digital still/video cameras), digital players (e.g., digital audio/video players, etc.), wearable devices (e.g., wearable cameras, smartwatches, tracking devices, etc.), game consoles, digital book readers, telehealth/telemedicine devices, communication-enabled vehicles or mobile transport (e.g., cars, planes, ships, etc.), and combinations of the above-mentioned devices.
  • telephones e.g., cell phones, smartphones, etc.
  • tablets personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.)
  • cameras e.g., digital still/video cameras
  • digital players e.g., digital audio/video players, etc.
  • wearable devices e.g., wearable cameras, smartwatches, tracking
  • Communication devices are not limited to portable or mobile devices, but also include any type of equipment, device, or system that is non-portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.), vending machines, and any other "things” that may exist on an IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.
  • vending machines and any other “things” that may exist on an IoT (Internet of Things) network.
  • IoT Internet of Things
  • Communications include data communication via cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication via combinations of these.
  • the communication apparatus also includes devices such as controllers and sensors that are connected or coupled to a communication device that performs the communication functions described in this disclosure.
  • a communication device that performs the communication functions described in this disclosure.
  • controllers and sensors that generate control signals and data signals used by the communication device to perform the communication functions of the communication apparatus.
  • communication equipment includes infrastructure facilities, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various non-limiting devices listed above.
  • a base station includes a control circuit that varies resource allocation depending on whether a first band corresponding to a first transmission direction is arranged discontinuously in a physical resource block in a method in which a transmission direction is set for each of a plurality of bands obtained by dividing a frequency band, and a transmission circuit that transmits a signal according to the resource allocation.
  • the transmission circuit transmits control information regarding the resource allocation, including a starting position of a virtual resource block including at least the first band and the number of the virtual resource blocks that are consecutive from the starting position, and when the first bands are arranged non-consecutively, the control circuit makes the order in which the first bands are mapped in the virtual resource block different from the order in which the first bands are mapped in the physical resource block.
  • the virtual resource block includes the first band, does not include a second band corresponding to a second transmission direction different from the first transmission direction, and does not include a guard band between the first band and the second band, and the start position and end position of the virtual resource block are mapped to positions adjacent to the guard band in the physical resource block.
  • the virtual resource block includes the first band and a guard band between the first band and a second band corresponding to a second transmission direction different from the first transmission direction, but does not include the second band, and the start position and end position of the virtual resource block are mapped to positions adjacent to the second band in the physical resource block.
  • the virtual resource block includes the first band, a second band corresponding to a second transmission direction different from the first transmission direction, and a guard band between the first band and the second band, and the start position is mapped to a position adjacent to one end of the second band in the physical resource block, and the end position of the virtual resource block is mapped to the one end of the second band in the physical resource block.
  • the control circuit determines whether or not to apply rate matching based on the start or end position of resource allocation in the physical resource block.
  • control circuit determines to apply the rate match when the start position and the end position are included in each of the first bands.
  • control circuit determines not to apply the rate match if the start position or the end position is included in a band different from the first band.
  • the transmission circuit transmits control information regarding the resource allocation, including a starting position of a virtual resource block including at least the first band and the number of the virtual resource blocks consecutive from the starting position, and among values represented by a plurality of bits used to notify the control information, a value different from a value associated with a combination of the starting position and the number of the virtual resource blocks is associated with an allocation pattern in the plurality of bands.
  • a terminal includes a control circuit that varies resource allocation depending on whether a first band corresponding to a first transmission direction is arranged discontinuously in a physical resource block in a method in which a transmission direction is set for each of a plurality of bands obtained by dividing a frequency band, and a receiving circuit that receives a signal according to the resource allocation.
  • a base station in a method in which a transmission direction is set for each of a plurality of bands obtained by dividing a frequency band, a base station varies resource allocation depending on whether a first band corresponding to a first transmission direction is arranged discontinuously in a physical resource block, and transmits or receives a signal according to the resource allocation.
  • a terminal in a method in which a transmission direction is set for each of a plurality of bands obtained by dividing a frequency band, a terminal varies resource allocation depending on whether a first band corresponding to a first transmission direction is arranged discontinuously in a physical resource block, and receives a signal according to the resource allocation.
  • An embodiment of the present disclosure is useful in wireless communication systems.
  • Base station 101 201 Receiving section 102, 202 Demapping section 103, 203 Demodulation and decoding section 104 Scheduling section 105 Resource control section 106, 206 Control information storage section 107, 207 Data and control information generation section 108, 208 Coding and modulation section 109, 209 Mapping section 110, 210 Transmitting section 200 Terminal 204 Resource determination section 205 Control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、リソース割り当てに従って、信号を送信する送信回路と、を具備する基地局。

Description

基地局、端末及び通信方法
 本開示は、基地局、端末及び通信方法に関する。
 3rd Generation Partnership Project(3GPP)では、第5世代移動通信システム(5G:5th Generation mobile communication systems)の機能拡張として、Release 17 NR(New Radio access technology)の物理レイヤの仕様策定が完了した。NRでは、高速及び大容量といった要求条件に合致すべくモバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)に加え、超高信頼低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)を実現する機能をサポートする(例えば、非特許文献1-5を参照)。
3GPP TS 38.211 V17.4.0, "NR; Physical channels and modulation (Release 17)," December 2022 3GPP TS 38.212 V17.4.0, "NR; Multiplexing and channel coding (Release 17)," December 2022 3GPP TS 38.213 V17.4.0, "NR; Physical layer procedure for control (Release 17)," December 2022 3GPP TS 38.214 V17.4.0, "NR; Physical layer procedures for data (Release 17)," December 2022 3GPP TS 38.331 V17.3.0, "NR; Radio Resource Control (RRC) protocol specification (Release 17)", December 2022
 しかしながら、無線通信におけるリソース割り当て方法については検討の余地がある。
 本開示の非限定的な実施例は、無線通信におけるリソース割り当てを適切に行うことができる基地局、端末及び通信方法の提供に資する。
 本開示の一実施例に係る基地局は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、前記リソース割り当てに従って、信号を送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、無線通信におけるリソース割り当てを適切に行うことができる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Duplex方式の例を示す図 Subband non-overlapping full duplex(SBFD)におけるサブバンド及びガードバンドの一例を示す図 基地局の一部の構成例を示すブロック図 端末の一部の構成例を示すブロック図 基地局の構成例を示すブロック図 端末の構成例を示すブロック図 基地局及び端末の動作例を示すシーケンス図 Virtual Resource Block(VRB)及びPhysical Resource Block(PRB)のマッピング例を示す図 VRB及びPRBのマッピング例を示す図 VRB及びPRBのマッピング例を示す図 VRB及びPRBのマッピング例を示す図 リソース割り当ての一例を示す図 Resource Indication Value(RIV)とリソース割り当てとの対応付けの一例を示す図 リソース割り当ての一例を示す図 3GPP NRシステムの例示的なアーキテクチャの図 NG-RAN(Next Generation - Radio Access Network)と5GC(5th Generation Core)との間の機能分離を示す概略図 Radio Resource Control(RRC)接続のセットアップ/再設定の手順のシーケンス図 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、および高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 [Subband non-overlapping full duplex(SBFD)について]
 Release 18のStudy Itemとして、“Study on evolution of NR duplex operation”が承認された。このStudy Itemの主な議題のひとつとして、subband non-overlapping full duplex(SBFD、又は、Cross Division Duplex(XDD)とも呼ぶ)への対応がある。
 図1は、Duplex方式の例を示す図である。図1において、縦軸は周波数を表し、横軸は時間を表す。また、図1において、「U」は上りリンク(uplink)の送信を示し、「D」は下りリンク(downlink)の送信を示す。
 図1(a)は、half duplexのTime Division Duplex(TDD)の例を示す。図1(a)において、端末(UE:User Equipment)は、基地局(例えば、gNB)に接続している端末である。図1(a)に示すhalf duplexにおいて、或る時間リソースにおける送信方向(例えば、下りリンク又は上りリンク)は、基地局、端末間で共通でよい。例えば、或る時間リソースにおいて送信方向が端末間で異なることはない。
 図1(b)は、SBFDの例を示す。SBFDでは、周波数リソース(又は、周波数帯域)が複数の帯域(例えば、サブバンド、RB set、サブ帯域、サブBWP(Bandwidth part)とも呼ぶ)に分割され、サブバンド単位の異なる方向(例えば、下りリンク又は上りリンク)の送信をサポートする。なお、SBFDでは、端末は、或る時間リソースにおいて上りリンク及び下りリンクの何れか一方の送受信を行い、他方の送受信を行わない。その一方で、SBFDでは、基地局は、上りリンクと下りリンクとを同時に送受信可能である。なお、或る時間リソースにおける送信方向のリソースを端末が使用しないケースがあってもよい(例えば、図1(b)の点線で示すリソース)。
 なお、図1では省略しているが、上りリンクのバンド(ULサブバンド:U)と下りリンクのサブバンド(DLサブバンド:D)との間には、ガードバンドが配置されてよい。ガードバンドは、異なる送信方向(リンク)間の干渉(CLI:Cross link interference)の低減に用いられてよい。
 以降の説明では、サブバンド構成の表記として{X…X}のように表記する。XはULサブバンド(U)又はDLサブバンド(D)を表す。表記する順番はサブバンドの配置の順番に対応する。例えば、図1(b)のサブバンド構成は{DUD}と表記する。
 [リソース割り当て方法について]
 データチャネルのリソース割り当て方法の1つとして、Resource allocation Type 1(RA type 1)がある。RA type 1は、例えば、連続したリソースの割り当てに使用される。
 RA type 1によるリソース割り当ての通知には、例えば、次の2つのパラメーターが使用されてよい。
 RBstart:リソース割り当てを開始するリソースブロック(RB:Resource Block)番号
 LRB:連続して割り振られるRBの長さ(例えば、RB数)
 これらのパラメーターは、例えば、次の式を使用してResource indication value(RIV)という単一の値に結合されてよい。なお、次式において、NBWP sizeは、Bandwidth part(BWP)内の物理リソースブロック(PRB:Physical Resource Block)の数を表す。
Figure JPOXMLDOC01-appb-M000001
 また、リソース割り当てでは、RA type 1に加えて、VRB-to-PRB mappingが適用されてよい。
 VRB-to-PRB mappingは、仮想リソースブロック(VRB:Virtual Resource Block)から物理リソースブロック(PRB)へのマッピングを行う。マッピングの方式として、インターリーブが適用されるマッピング(Interleaved VRB-to-PRB mapping)と、インターリーブが適用されないマッピング(Non-interleaved VRB-to-PRB mapping)とがあってよい。
 Non-interleaved VRB-to-PRB mappingでは、VRBとPRBとは同一でよい。例えば、VRB#nは、PRB#nにマッピングされてよい(nはRB番号を示す)。
 Interleaved VRB-to-PRB mappingでは、VRBはインターリーバーを介してPRBにマッピングされる。そのため、RA type 1及びInterleaved VRB-to-PRB mappingがリソース割り当てに用いられる場合には、VRBでは連続な割り当てとなるが、PRBでは非連続なリソース割り当てになり得る。
 一例として、SBFDにおいて、RA type 1及びVRB-to-PRB mappingが適用されるケースについて説明する。SBFDでは、例えば、{DUD}のようにDLサブバンドが非連続に配置され得る。例えば、DLサブバンドにおいてデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)のリソース割り当てを行う例について説明する。
 RA type 1及びNon-interleaved VRB-to-PRB mappingを使用した場合、連続したPRBのリソース割り当てとなるため、非連続な複数のDLサブバンドに対して同時にリソースを割り当てることが困難となる。
 また、RA type 1及びinterleaved VRB-to-PRB mappingを使用した場合、非連続なPRBにリソースを割り当てることが可能であるが、リソース割り当てされるPRBの位置は、インターリーバーに依存するため、ULサブバンド上にリソースを割り当てないようなVRB位置を選択することは困難となる可能性がある。
 [ガードバンドのサイズについて]
 ガードバンドは、隣接するサブバンドからのCLIの漏れ込みの低減に用いられてよい。
 図2は、{DUD}のサブバンド配置におけるガードバンドの例を示す。設定されるガードバンドのサイズは、例えば、CLIの大きさによって異なり得る。例えば、CLIが大きい場合には広いガードバンド(例えば、RB数の多いガードバンド)の設定が期待され、CLIが小さい場合には狭いガードバンド(例えば、RB数の少ないガードバンド)で十分な可能性がある。
 ここで、例えば、端末間干渉は送受信する端末の組み合わせによって変わり得るため、CLIは一定とは限らないので、必要となるガードバンドサイズ(required guardband size)は動的に変わり得る。そのため、CLIに応じてガードバンドサイズを動的に設定(又は、変更、調整)することにより、リソースを効率的に利用可能であることが想定される。リソース割り当てによりガードバンドのサイズを動的に調整するには、例えば以下の方法がある。
 <ガードバンドサイズの調整方法1>
 調整方法1は、DLサブバンド又はULサブバンドにおいて、他のサブバンドに隣接するRB(例えば、一つでも複数でもよい)に送受信のリソースを割り当てない方法である。
 送受信に用いないRBをガードバンドとして用いることにより、ガードバンドを実質的に広げることができる。調整方法1は、例えば、ガードバンドのサイズを広げる方法であるため、予め設定される(又は、定義される)ガードバンドのサイズは小さくてよい。
 <ガードバンドサイズの調整方法2>
 調整方法2は、ガードバンド内のRBに、DLリソース又はULリソースを割り当てる方法である。
 ガードバンドにDLリソースを割り当てる場合には、DLサブバンドに隣接するガードバンド内のRB(例えば、一つでも複数でもよい)が割り当てられる。また、ガードバンドにULのリソースを割り当てる場合には、ULサブバンドに隣接するガードバンド内のRB(例えば、一つでも複数でもよい)が割り当てられる。調整方法2は、例えば、ガードバンドのサイズを狭める方法であるため、予め設定される(又は、定義される)ガードバンドのサイズは広くてよい。
 以上、ガードバンドのサイズについて説明した。
 本開示の非限定的な一実施例では、SBFDにおけるリソース割り当て方法について説明する。
 [通信システムの概要]
 本開示の一態様に係る通信システムは、例えば、図3及び図5に示す基地局100(例えば、gNB)、及び、図4及び図6に示す端末200(例えば、UE)を備えてよい。基地局100及び端末200は、それぞれ、通信システムにおいて複数台存在してもよい。
 図3は本開示の一態様に係る基地局100の一部の構成例を示すブロック図である。図3に示す基地局100において、制御部(例えば、制御回路に対応)は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式(例えば、SBFD)において、第1送信方向に対応する第1帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる。送信部(例えば、送信回路に対応)は、リソース割り当てに従って、信号を送信する。
 図4は本開示の一態様に係る端末200の一部の構成例を示すブロック図である。図4に示す端末200において、制御部(例えば、制御回路に対応)は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式(例えば、SBFD)において、第1送信方向に対応する第1帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる。受信部(例えば、受信回路)は、リソース割り当てに従って、信号を受信する。
 [基地局の構成]
 図5は、本開示の一態様に係る基地局100の構成例を示すブロック図である。図5において、基地局100は、受信部101と、デマッピング部102と、復調・復号部103と、スケジューリング部104と、リソース制御部105と、制御情報保持部106と、データ・制御情報生成部107と、符号化・変調部108と、マッピング部109と、送信部110と、を有する。
 なお、例えば、デマッピング部102、復調・復号部103、スケジューリング部104、リソース制御部105、制御情報保持部106、データ・制御情報生成部107、符号化・変調部108及びマッピング部109の少なくとも一つは、図3に示す制御部に含まれてよく、送信部110は、図3に示す送信部に含まれてよい。
 受信部101は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号をデマッピング部102へ出力する。また、受信部101は、下りリンク信号から上りリンク信号への干渉量を測定し、測定結果に関する情報(例えば、DL-UL干渉情報と呼ぶ)をリソース制御部105へ出力する。
 デマッピング部102は、受信部101から入力される受信信号(例えば、上りリンク信号)をリソースデマッピングし、変調後信号を復調・復号部103へ出力する。
 復調・復号部103は、例えば、デマッピング部102から入力される変調後信号を復調及び復号し、復号結果をスケジューリング部104へ出力する。また、復調・復号部103は、例えば、復号結果にUL-DL干渉情報(例えば、端末200が測定した上りリンクから下りリンクへの干渉量に関する情報)が含まれる場合、UL-DL干渉情報をリソース制御部105へ出力する。
 スケジューリング部104は、例えば、端末200に対するスケジューリングを行ってよい。スケジューリング部104は、例えば、復調・復号部103から入力される復号結果、及び、制御情報保持部106から入力される制御情報の少なくとも一つに基づいて、各端末200の送受信のスケジューリングを行い、データ・制御情報生成部107に対して、データ及び制御情報の少なくとも一つの生成指示を行う。また、スケジューリング部104は、リソース制御部105に対して、スケジューリング情報を出力してよい。また、スケジューリング部104は、端末200に対するスケジューリングに関する制御情報を制御情報保持部106へ出力してよい。
 リソース制御部105は、受信部101から入力されるDL-UL干渉情報、復調・復号部103から入力されるUL-DL干渉情報、及び、スケジューリング部104から入力されるスケジューリング情報に基づいて、ガードバンドのサイズを決定してよい。また、例えば、リソース制御部105は、例えば、制御情報保持部106から入力される制御情報、スケジューリング部104から入力されるスケジューリング情報、及び、決定したガードバンドサイズに基づいて、各端末200が下りリンク送信に使用するリソースを決定し、リソース割り当て情報をデータ・制御情報生成部107及びマッピング部109に出力する。
 制御情報保持部106は、例えば、各端末200に設定した制御情報を保持する。制御情報には、例えば、各端末200に対する下りリンクデータチャネルの設定(例えば、SBFD又はリソース割り当てに関する情報)が含まれてよい。制御情報保持部106は、例えば、保持した情報を必要に応じて、基地局100の各構成部(例えば、スケジューリング部104及びリソース制御部105)に出力してよい。
 データ・制御情報生成部107は、例えば、スケジューリング部104からの指示に従って、データ及び制御情報の少なくとも一つを生成し、生成したデータ又は制御情報を含む信号を符号化・変調部108に出力する。データ・制御情報生成部107は、例えば、リソース制御部105から入力されるリソース割り当て情報に基づいて、端末200への制御情報を生成してよい。
 符号化・変調部108は、例えば、データ・制御情報生成部107から入力される信号(例えばデータ、制御情報)を符号化及び変調し、変調後信号を送信部110に出力する。
 マッピング部109は、例えば、リソース制御部105から入力されるリソース割り当て情報に基づいて、符号化・変調部108から入力される変調後信号をリソースマッピングし、送信信号を送信部110へ出力する。
 送信部110は、例えば、マッピング部109から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから端末200へ送信する。
 [端末の構成]
 図6は、本開示の一態様に係る端末200の構成例を示すブロック図である。図6において、端末200は、受信部201と、デマッピング部202と、復調・復号部203と、リソース判定部204と、制御部205と、制御情報保持部206と、データ・制御情報生成部207と、符号化・変調部208と、マッピング部209と、送信部210と、を有する。
 なお、例えば、デマッピング部202、復調・復号部203、リソース判定部204、制御部205、制御情報保持部206、データ・制御情報生成部207、符号化・変調部208、及び、マッピング部209の少なくとも一つは、図4に示す制御部に含まれてよく、受信部201は、図4に示す受信部に含まれてよい。
 受信部201は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号をデマッピング部202へ出力する。
 デマッピング部202は、例えば、リソース判定部204から入力されるリソース割り当て情報に基づいて、受信部201から入力される受信信号をリソースデマッピングし、変調後信号を復調・復号部203へ出力する。
 復調・復号部203は、例えば、デマッピング部202から入力される変調後信号を復調及び復号し、復号結果をリソース判定部204及び制御部205へ出力する。復号結果には、例えば、上位レイヤのシグナリング情報、及び、下り制御情報の少なくとも一つが含まれてよい。
 リソース判定部204は、例えば、制御情報保持部206から入力される制御情報、又は、復調・復号部203から入力される制御情報の復号結果に基づいて、割り当てられたリソースの判定を行い、リソース割り当て情報をデマッピング部202に出力する。
 制御部205は、例えば、復調・復号部203から入力される復号結果(例えば、データ又は制御情報)、及び、制御情報保持部206から入力される制御情報に基づいて、データ又は制御情報の送受信の有無を判定してよい。制御部205は、例えば、判定の結果、データ又は制御情報の送信が有る場合、データ・制御情報生成部207に対して、データ及び制御情報の少なくとも一つの生成指示を行ってよい。
 制御情報保持部206は、例えば、制御部205から入力される制御情報を保持し、保持した情報を、必要に応じて、各構成部(例えば、リソース判定部204及び制御部205)に出力する。
 データ・制御情報生成部207は、例えば、制御部205からの指示に従って、データ又は制御情報を生成し、生成したデータ又は制御情報を含む信号を符号化・変調部208に出力する。制御情報には、例えば、端末200が測定したUL-DL干渉情報(例えば、端末200が測定した上りリンクから下りリンクへの干渉量に関する情報)が含まれてよい。
 符号化・変調部208は、例えば、データ・制御情報生成部207から入力される信号を符号化及び変調し、変調後信号をマッピング部209に出力する。
 マッピング部209は、符号化・変調部208から入力される変調後信号をリソースマッピングし、送信信号を送信部210へ出力する。
 送信部210は、例えば、マッピング部209から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから基地局100へ送信する。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200における動作例について説明する。
 図7は基地局100及び端末200の動作例を示すシーケンス図である。
 図7において、基地局100は、例えば、SBFD、又は、リソース割り当ての設定(コンフィグレーション)に関する情報を決定する(S101)。
 基地局100は、例えば、決定した設定情報を含む上位レイヤのシグナリング情報を端末200へ送信する(S102)。
 基地局100は、例えば、端末200に対して、CLIなどに基づいて、端末200の下りリンク受信、又は、基地局100の上りリンク受信に用いるガードバンドサイズを決定する(S103)。
 基地局100は、例えば、設定したガードバンドサイズに基づいて、端末200に対して、下りリンクデータ(例えば、PDSCH)の送信のスケジューリング、及び、リソース割り当てを行う(S104)。
 基地局100は、例えば、スケジューリング結果に基づいて、下りリンク制御信号(例えば、PDCCH:Physical Downlink Control Channel)を送信する(S105)。
 端末200は、例えば、基地局100から送信されるPDCCHに基づいて、下りリンクデータ(例えば、PDSCH)のリソース割り当て(時間・周波数リソース)を特定(又は、判定、識別)する(S106)。
 基地局100は、スケジューリング結果に従って、下りリンクデータ(例えば、PDSCH)を送信し、端末200は、判定したリソース割り当てに基づいて、下りリンクデータ(例えば、PDSCH)を受信する(S107)。
 [リソース割り当て方法]
 基地局100(例えば、リソース制御部105)におけるリソース割り当て方法について説明する。なお、端末200(例えば、リソース判定部204)は、例えば、基地局100が実施するリソース割り当て方法を想定して割り当てられたリソースの判定を行ってよい。
 以下、リソース割り当て方法の例について説明する。
 なお、以下の説明では、一例として、非連続なDLサブバンド構成{DUD}に対するリソース割り当ての例について説明する。また、基地局100は、例えば、PDSCHのリソース割り当てにRA type 1を適用する。この場合、基地局100は、少なくともDLサブバンドを含むRB(例えば、VRB)の開始位置に関する情報(例えば、RBstart)と、開始位置から連続するRB数(例えば、VRB数、LRB)数とを含む制御情報を端末200へ送信する。
 <方法1>
 方法1では、RA type 1を用いてDLサブバンドへの非連続なリソース割り当てを行う方法として、ULサブバンド、及び、ガードバンドを含まないVRB(例えば、DLサブバンドのRBのみから構成されるVRB)を定義する。
 図8は、ULサブバンド及びガードバンドを含まないDLサブバンドから構成されるVRBの例を示す。
 図8に示すVRBには、DLサブバンド(例えば、DLサブバンド#0及び#1)を構成するRB(例えば、18個のRB)に対してインデックスが割り当てられる。すなわち、図8では、ULサブバンド及びガードバンドを構成するRBに対して、VRBのインデックスは割り当てられない。
 図8に示すVRBには、DLサブバンドのRBが含まれ、ULサブバンド及びガードバンドのRBが含まれないので、VRBからPRBへマッピングを行う際、DLのRB(VRB)がDLのPRBにマッピングされる。例えば、図8では、VRB#0~#8は、DLサブバンド#0のPRB#0~#8にマッピングされ、VRB#9~#17は、DLサブバンド#1のPRB#21~#29にマッピングされる。
 このように、DLサブバンドのRBから構成されるVRBを定義することにより、VRB上で連続したRBへのリソース割り当て(例えば、RA type 1)が行われても、PRB上では非連続なリソース割り当てが可能であるため、既存のRA type 1を用いたDLサブバンドへの非連続な割り当てが可能となる。
 ここで、上記方法では、ガードバンドサイズの調整は行われない。例えば、上述したガードバンドサイズの調整方法1のように、DLサブバンドにリソースを割り当てないようにして、ガードバンドの拡張を想定する。一例として、図8において、DLサブバンド内のガードバンドに隣り合うPRB(例えば、PRB#8及びPRB#21)にリソースを割り当てないことを想定する。この場合、DLサブバンド全体にリソースを割り当てるには、基地局100は、PRB#8及びPRB#21に対応するVRB#8及びVRB#9を避けてリソースを割り当てることになる。ただし、RA type 1では、基地局100は、連続するRBへのリソース割り当てを行うため、VRB#8及びVRB#9を避けたリソースの割り当ては困難である。
 よって、上記方法では、DLサブバンドへの非連続のリソース割り当てと、ガードバンドサイズの調整とを両方とも実現することは困難である。
 そこで、方法1では、例えば、VRBからPRBへマッピングする際の順序を変更する。例えば、基地局100は、SBFDにおいてDLサブバンドが非連続に配置される場合、VRBにおける複数のDLサブバンドがマッピングされる順序と、PRBにおける複数のDLサブバンドがマッピングされる順序とを異ならせる。例えば、VRB上でサブバンドを配置する順番と、PRB上でサブバンドを配置する順番とを入れ替えてもよい。
 例えば、最初のVRB(VRB#0)から連続し、かつ、最初のVRBと同じサブバンドに属するいくつかのVRBは、PRBにおけるガードバンドの最後のRB(例えば、DLサブバンドとの境界のRB)から連続したPRB(例えば、隣接するPRB)にマッピングされてよい。また、例えば、最後のVRBから連続し、かつ、最後のVRBと同じサブバンドに属するVRBは、PRBにおけるガードバンドの最後のRB(例えば、DLサブバンドとの境界のRB)から連続したPRB(例えば、隣接するPRB)にマッピングされてよい。
 図9は、DLサブバンドを含み、マッピング順序を入れ替えたVRBの例を示す。
 図9の例では、VRBは、PRBにおける{DLサブバンド#1、DLサブバンド#0}の順でRBがマッピングされる。よって、VRB上でのサブバンドが配置される順番{DLサブバンド#1、DLサブバンド#0}と、PRB上でのサブバンドが配置される順番{DLサブバンド#0、DLサブバンド#1}とは異なる。
 また、図9に示すように、VRBの端に位置するRB(例えば、VRB#0及びVRB#17)は、PRBにおいてガードバンドに隣接するPRB(例えば、PRB#21及びPRB#8)にマッピングされる。例えば、VRBの開始位置であるVRB#0、及び、VRBの終了位置であるVRB#17は、PRBにおけるガードバンドと隣り合う位置であるPRB#21及びPRB#8にそれぞれマッピングされる。
 図9に示すように、PRB#8及びPRB#21は、DLサブバンドを構成するPRBの中でULサブバンドに近いPRBであるため、DLサブバンドを構成する他のPRBと比較してCLIの影響が大きくなりやすい。すなわち、ULサブバンドからのCLIは、VRBの中央に位置するRBと比較して、VRBの端に位置するRBにおいて大きくなりやすい特性がある。この特性は、RA type 1のように連続したリソース割り当てを行う際に、CLIに基づいてDLサブバンドのRBをガードバンドとして使用する際に有効である。
 図9では、VRBにおいて、slot#0、かつ、VRB#1からVRB#22がPDSCHリソースに割り当てられ、VRB#0及びVRB#17がPDSCHリソースに割り当てられていない。この場合、図9に示すように、VRBからPRBにマッピングすると、PRBにおいて、PRB#0からPRB#7、及び、PRB#21からPRB#29がPDSCHリソースに割り当てられる。このとき、図9に示すように、VRB#0及びVRB#17にそれぞれ対応するPRB#8及びPRB#21が他の端末でも利用されない場合、これらのPRBは実質的なガードバンドとして使用可能となる。よって、図9の例では、slot#0では、DLサブバンド#0とULサブバンドとの間、及び、DLサブバンド#1とULサブバンドとの間では、4RBずつのガードバンドとして使用可能となる。
 このようにマッピングの順序を変更することにより、DLサブバンドへの非連続のリソース割り当てと、ガードバンドサイズの調整とを両立できる。
 なお、図9では、VRBにDLサブバンドを含め、ガードバンドを含めない例について説明したが、これに限定されず、例えば、VRBにDLサブバンド及びガードバンドを含めてもよい。
 以下、VRBがDLサブバンド及びガードバンドを含み、ULサブバンドを含まない場合について説明する。
 例えば、最初のVRB(VRB#0)から連続し、かつ、最初のVRBと同じガードバンド及び当該ガードバンドと連続するDLサブバンドのそれぞれに属するいくつかのVRBは、PRBにおけるULサブバンドの最後のRB(例えば、ガードバンドとの境界のRB)から連続したPRB(例えば、隣接するPRB)にマッピングされてよい。また、例えば、最後のVRBから連続し、かつ、最後のVRBと同じガードバンド及び当該ガードバンドと連続するDLサブバンドのそれぞれに属するいくつかのVRBは、PRBにおけるULサブバンドの最後のRB(例えば、ガードバンドとの境界のRB)から連続したPRB(例えば、隣接するPRB)にマッピングされてよい。
 VRBにDLサブバンド及びガードバンドを含めることにより、例えば、ガードバンドサイズの調整方法2のようにガードバンドのRBにDLリソースを割り当てることにより、ガードバンドを縮小できる。
 図10は、DLサブバンド及びガードバンドを含み、マッピング順序を入れ替えたVRBの例を示す。
 図10の例では、VRBは、PRBにおける{ガードバンド#1、DLサブバンド#1、DLサブバンド#0、ガードバンド#0}の順でRBがマッピングされる。よって、VRB上でのDLサブバンド及びガードバンドが配置される順番{ガードバンド#1、DLサブバンド#1、DLサブバンド#0、ガードバンド#0}と、PRB上でのDLサブバンド及びガードバンドが配置される順番{DLサブバンド#0、ガードバンド#0、ガードバンド#1、DLサブバンド#1}とは異なる。
 また、図10に示すように、VRBの端に位置するRB(例えば、VRB#0及びVRB#23)は、PRBにおいてULサブバンドに隣接するPRB(例えば、PRB#18及びPRB#11)にマッピングされる。例えば、VRBの開始位置であるVRB#0、及び、VRBの終了位置であるVRB#23は、PRBにおけるULサブバンドと隣り合う位置であるPRB#18及びPRB#11にそれぞれマッピングされる。
 図10に示すように、PRB#11及びPRB#18は、ULサブバンドに隣接するため、DLサブバンド及びガードバンドを構成する他のPRBと比較してCLIの影響が大きくなりやすい。すなわち、ULサブバンドからのCLIは、VRBの中央に位置するRBと比較して、VRBの端に位置するRBにおいて大きくなりやすい特性がある。この特性は、RA type 1のように連続したリソース割り当てを行う際に、CLIに基づいてガードバンドのRBにリソース(例えば、DLリソース)を割り当てて使用する際に有効である。
 図10では、VRBにおいて、slot#0、かつ、VRB#2からVRB#21がPDSCHリソースに割り当てられ、VRB#0、VRB#1、VRB#22及びVRB#23がPDSCHリソースに割り当てられていない。この場合、図10に示すように、VRBからPRBにマッピングすると、PRBにおいて、PRB#0からPRB#9、及び、PRB#20からPRB#29がPDSCHリソースに割り当てられる。このとき、図10に示すように、ガードバンド内のPRB#9及びPRB#20にはPDSCHリソースが割り当てられるので、ガードバンドが縮小していると見なせる。よって、図10の例では、slot#0では、DLサブバンド#0とULサブバンドとの間、及び、DLサブバンド#1とULサブバンドとの間では、2RBずつのガードバンドとして使用可能となる。
 このようにマッピングの順序を変更することにより、DLサブバンドへの非連続のリソース割り当てと、ガードバンドサイズの調整とを両立できる。
 なお、VRBには、DLサブバンド、ULサブバンド及びガードバンド(すなわち、全てのサブバンド)を含めてもよい。
 以下、VRBがDLサブバンド、ガードバンド及びULサブバンドを含む場合について説明する。ULサブバンドは、VRBの最初のRBに位置してもよく、最後のRBに位置してもよい。
 図11は、DLサブバンド、ULサブバンド及びガードバンドを含み、マッピング順序を入れ替えたVRBの例を示す。
 図11の例では、VRBは、PRBにおける{ガードバンド#1、DLサブバンド#1、DLサブバンド#0、ガードバンド#0、ULサブバンド}の順でRBがマッピングされる。よって、VRB上でのDLサブバンド、ULサブバンド及びガードバンドが配置される順番{ガードバンド#1、DLサブバンド#1、DLサブバンド#0、ガードバンド#0、ULサブバンド}と、PRB上でのDLサブバンド、ULサブバンド及びガードバンドが配置される順番{DLサブバンド#0、ガードバンド#0、ULサブバンド、ガードバンド#1、DLサブバンド#1}とは異なる。
 例えば、VRBの開始位置であるVRB#0は、PRBにおけるULサブバンドの一方の端と隣り合う位置であるPRB#18にマッピングされ、VRBの終了位置であるVRB#29は、PRBにおけるULサブバンドの上記一方の端であるPRB#17にマッピングされる。
 図11に示すように、VRBにULサブバンドが含まれる場合でも、VRBにDLサブバンド及びガードバンドを含める場合と同様に、DLサブバンドへの非連続な割り当てを実現しつつ、ガードバンドサイズを調整できる。また、VRBにULサブバンドも含まれるため、ULサブバンド上でのDL送受信が可能である場合、ULサブバンドのRBにもリソース(例えば、PDSCHリソース)を割り当てることができる。
 このように、方法1では、VRBとPRBとのマッピング順序の入れ替えにより、RA type 1のような連続したリソース割り当てにおいても、非連続なリソース割り当て及びガードバンドサイズの調整の両方を実現し、リソースの利用効率を向上できる。
 また、方法1では、RA type 1として既存の通知方法を再利用できるため、下り制御情報のオーバーヘッドは増加しない。
 <方法2>
 方法2では、RA type 1が適用される場合に、リソース割り当てされるPRBとして、ULサブバンド及びガードバンドのRBを除外する方法の一つとしてレートマッチの機能を再利用する場合について説明する。
 レートマッチは、例えば、他の基地局との干渉を避けるため、一部のリソースにPDSCHを割り当てない機能である。例えば、基地局100から端末200に対して、シグナリング情報にて、レートマッチパターン(RateMatchPattern)が設定され、レートマッチパターンで設定されるリソース(例えば、RB番号、シンボル番号によって指定されるリソースエレメント(RE:Resource Element))は、PDSCHの送受信に使用されないように設定できる。
 レートマッチは、レートマッチパターンによって指定されるリソース以外にも、例えば、SSB(Synchronization Signal(SS)/Physical Broadcast Channel(PBCH) block)が送信されるRBに対して適用されてもよい。
 方法2では、このレートマッチの機能を利用し、例えば、ULサブバンド又はガードバンドのRBをPDSCHの送受信に使用されないリソースとして扱う(もしくは、明示的に設定する)。これにより、例えば、サブバンド構成が{DUD}であり、ULサブバンド及びガードバンドを含む全てのRBがRA Type 1によって設定される場合でも、DLサブバンドのRBがPDSCHの送受信に使用され、ULサブバンド及びガードバンドのRBがPDSCHの送受信に使用されない。よって、RA type 1を使用して、DLサブバンドに非連続なリソース割り当てが可能となる。
 なお、ガードバンドのRBをPDSCHの送受信に使用できないリソースに設定すると、ガードバンドサイズの調整方法2(ガードバンド内にDLリソース又はULリソースを割り当てる方法)が適用されない。そこで、例えば、レートマッチを適用するか否かは、以下のルールを用いて判断されてもよい。
 <ルール1>
 ルール1では、基地局100は、DLサブバンドが非連続に配置される場合、PRBにおけるリソース割り当ての開始位置又は終了位置に基づいて、レートマッチの適用の有無を決定する。
 例えば、下り制御情報(DCI)において、PDSCHのリソース割り当てが複数のDLサブバンドに跨ることが通知される場合、実際のPDSCHのリソースにはULサブバンド及びガードバンドは含まれない(例えば、レートマッチングが適用される)。例えば、基地局100は、PDSCHのリソース割り当て(例えば、RA type 1)の開始位置及び終了位置が非連続に配置される複数のDLサブバンドのそれぞれに含まれる場合(例えば、複数のDLサブバンドに跨る場合)、レートマッチの適用を決定する。
 図12のCase 1は、ルール1を適用した例を示す。図12の例では、{DUD}のサブバンド構成に対する周波数リソース割り当ての例を示す。例えば、図12の(a)に示すDCIによるリソース割り当ての通知は、2つのDLサブバンドに跨る全帯域へのPDSCHリソースの割り当てを示す。すなわち、図12の(a)に示すDCIによるリソース割り当ての開始位置は、DLサブバンド#0に含まれ、終了位置はDLサブバンド#1に含まれる。
 図12の(b)は、実際のPDSCHのリソース割り当ての例を示す。ルール1の適用により、レートマッチが適用されるので、実際のPDSCHのリソース割り当てには、ULサブバンド及びガードバンドは含まれない。よって、図12の(a)に示すPDSCHリソースの割り当てから、ULサブバンド及びガードバンドに対応するリソースを除いたリソースが、実際のPDSCHのリソース割り当てとなる。
 このように、ルール1を適用することにより、RA type 1を用いて、非連続なDLサブバンドに同時にPDSCHのリソースを割り当てることができる。これにより、データのサイズが大きい場合などに、リソースを多く割り当てることにより効率的にデータを送受信できる。
 <ルール2>
 ルール2では、基地局100は、DLサブバンドが非連続に配置される場合、PRBにおけるリソース割り当ての開始位置又は終了位置に基づいて、レートマッチの適用の有無を決定する。
 例えば、下り制御情報(DCI)において、PDSCHのリソース割り当てがガードバンド内又はULサブバンド内で開始又は終了することが通知される場合、実際のPDSCHのリソースには、DCIによって通知された周波数リソースが設定される(例えば、レートマッチは適用されない)。例えば、基地局100は、PDSCHのリソース割り当て(例えば、RA type 1)の開始位置又は終了位置がDLサブバンドと異なる帯域(例えば、ガードバンド又はULサブバンド)に含まれる場合、レートマッチの非適用を決定する。
 図12のCase 2はルール2を適用した例を示す。
 図12の(c)に示すDCIによるリソース割り当ての通知は、PDSCHリソースがDLサブバンド#0から始まり、ガードバンド#0内で終了することを示す。
 図12の(d)は、例として、ルール1が適用される場合を示す。図12の(d)に示すように、ルール1が適用されると、レートマッチが適用されるので、ガードバンド内のリソースはPDSCHに使用されない。この場合、ガードバンドサイズの調整はできない。
 図12の(e)は、ルール2が適用される場合を示す。図12の(e)に示すように、ルール2が適用されると、レートマッチが適用されないので、ガードバンド内にリソースが割り当てられる。このため、例えば、CLIが小さい場合にはガードバンドのリソースをPDSCHに割り当てることにより、リソースの利用効率を向上できる。
 <ルール3>
 ルール3では、下り制御情報(DCI)において、FDRA(Frequency domain resource allocation)フィールド又はRIVが特定の値に設定される場合、半静的に設定又は予め定義されたリソース割り当てが適用される。
 ここで、RIVの値が何パターン存在するかはRA type 1におけるRBstart及びLRBの組み合わせに依存する。そのため、RIVに対して割り当てられるビット数に対して、RBstart及びLRBの組み合わせが最大値まで存在しない場合がある。例えば、BWPのRB数が20の場合、RIVには8ビットが使用されるので、リソース割り当てとして、256パターンの通知が可能となる。その一方で、256パターンのうち、RIVに対応付けられるパターン数は210存在する。そのため、通知可能な256パターンのうち、RIVの46個の値は使用されない。
 そこで、ルール3では、例えば、RA type 1におけるRIVの通知に用いる複数のビットによって表される値のうち、RIVによって通知されるRBstart及びLRBの組み合わせに対応付けられる値と異なる値が、複数のサブバンドにおける割り当てパターンに対応付けられる。
 図13は、RIVの値を用いた特定のパターンによるリソース割り当ての例を示す。また、図14は、図13に示すRIVの値を用いた特定のパターンによるリソース割り当ての適用例を示す。
 図13において、「All “1”」は、RIV値が2N-1(NはRIVのビット長)であることを意図している。例えば、RIVが8ビット(N=8)の場合、「All “1”」は255(つまり、0b111111111)を表す。図13の例では、「All “1”」には、図14に示すように、ULサブバンドを含む全てのRBへのPDSCHリソースの割り当てが対応付けられる。例えば、ルール1が適用されると帯域全体にPDSCHのリソースを割り当てることはできないが、「All “1”」の場合には、帯域全体へのPDSCHのリソース割り当てが可能となる。
 図13において、「All “1”-1」は、RIV値が2N-2(NはRIVのビット長)であることを意図している。例えば、RIVが8ビット(N=8)の場合、「All “1”-1」は254(つまり、0b111111110)を表す。図13の例では、「All “1”-1」には、図14に示すように、DLサブバンド(図14では2つのDLサブバンド#0及び#1)の全てのRB及び各ガードバンド(図14では、ガードバンド#0及び#1)内の1つのRBへのPDSCHリソースの割り当てが対応付けられる。
 また、図13において、「All “1”-2」は、RIV値が2N-3(NはRIVのビット長)であることを意図している。例えば、RIVが8ビット(N=8)の場合、「All “1”-2」は253(つまり、0b111111101)を表す。図13の例では、「All “1”-2」には、図14に示すように、DLサブバンド#0の全てのRB及びガードバンド#0内の2つのRBへのPDSCHリソースの割り当てが対応付けられる。
 このように、特定のパターンによるリソース割り当てを適用することにより、非連続な割り当てとガードバンドの調整とが両方可能となるため、リソースの利用効率を向上できる。また、特定のパターンの設定により、RA type 1では割り当てられない複雑なパターンのリソース割り当ても可能となるため、リソースの利用効率を向上できる。
 以上、ルール1~3について説明した。
 なお、これらのルールは、サブバンド構成{DUDUD}のように、2つ以上のDLサブバンドと2つ以上のガードバンドが割り当てられる場合に適用してもよい。
 また、上記説明では、レートマッチによりULサブバンド及びガードバンドにリソース割り当てが無い動作について説明しているが、レートマッチ以外の方法に対して適用してもよい。例えば、レートマッチの機能は用いず、ULサブバンド及びガードバンドにはPDSCHのリソースを割り当てないという動作であっても上記の方法は適用できる。
 また、基地局100は、ルール1~3の少なくとも2つを、或る条件に応じて切り替えて適用してもよい。
 このように、方法2では、RA type 1のような連続したリソース割り当てにおいても、非連続なリソース割り当てとガードバンドサイズの調整を実現し、リソースの利用効率を向上できる。また、RA type 1の既存の指示を再利用できるため、DCIオーバーヘッドは増加しない。また、方法2では、追加のVRB to PRB mappingが必要ないため、方法1と比較して複雑さを低減できる。
 以上、リソース割り当てに関する方法1及び方法2について説明した。
 このように、本実施の形態では、基地局100及び端末200は、周波数帯域を分割した複数のサブバンドのそれぞれに送信方向が設定されるSBFDにおいて、DLサブバンドがPRBにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる。例えば、基地局100及び端末200は、DLサブバンドが非連続に配置される場合、DLサブバンドが非連続に配置されない場合と、VRB-PRBマッピングを異ならせてもよい。または、基地局100及び端末200は、DLサブバンドが非連続に配置される場合には、PDSCHのリソース割り当てに応じてレートマッチの適用の有無を決定してもよい。
 これにより、例えば、RA type 1による連続したRBのリソース割り当てを適用する場合でも、非連続な複数のDLサブバンドに対して同時にリソースを割り当てることができる。また、例えば、RA type 1を適用する場合でも、ULサブバンド上にリソースを割り当てないようなVRB位置を選択することができる。
 また、例えば、RA type 1のように連続するRBへのリソース割り当てを行う場合でも、ガードバンドの拡張、又は、ガードバンドの縮小といったガードバンドサイズの調整が可能となる。これにより、例えば、DLサブバンドへの非連続のリソース割り当てを行い、また、CLIに応じてガードバンドサイズを適切に調整できるので、リソースの利用効率を向上できる。
 よって、本実施の形態によれば、無線通信におけるリソース割り当てを適切に制御できる。
 (他の実施の形態)
 なお、上記実施の形態では、PDSCHのリソース割り当てに対して方法1及び方法2を適用する場合について説明したが、方法1及び方法2は上りリンクデータ(例えば、PUSCH)に適用してもよい。PUSCHにおいても、RA type 1及びVRB-to-PRB mappingを使用できる。そのため、複数のULサブバンドがサポートされる場合、PDSCHと同様にリソース割り当てが困難になる可能性がある。この場合、方法1又は方法2について、PDSCHをPUSCHに置き換え、DLサブバンドとULサブバンドを入れ替え、受信と送信とを入れ替えることにより、PUSCHに対して方法を適用してもよい。
 また、上記実施の形態では、RA type1を適用する場合について説明したが、連続したリソースを割り当てる方法であれば、RA type 1に限らず本開示の一実施例を適用してもよい。
 また、上記実施の形態では、SBFDを適用する場合について説明したが、周波数帯域を分割した複数の帯域(例えば、サブバンド)において送信方向(例えば、DL又はUL)が設定される方式であれば、SBFDに限らず本開示の一実施例を適用してもよい。
 また、上述した実施の形態において、サブバンド数、DLサブバンド数、ULサブバンド数、ガードバンド数、RB数(VRB数又はPRB数)、スロット数、RIV値、RIVを通知するビット数といった値は一例であって、限定されない。また、上述した実施の形態において用いたサブバンド構成(例えば、{DUD})は一例であって、サブバンド数、DLサブバンド及びULサブバンドの配置順序はこれに限定されない。
 (補足)
 上述した実施の形態に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメーターとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した実施の形態に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。
 基地局100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局100は、端末200から受信した能力情報に基づいて、端末200に対するリソース割り当てを制御してよい。
 なお、上述した実施の形態に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局100に通知されてもよい。
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局100において既知の情報あるいは基地局100へ送信される情報に関連付けられて暗黙的(implicit)に基地局100に通知されてもよい。
 (制御信号)
 本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
 本開示において、本開示の一実施例に関連する上り制御信号(又は、上り制御情報)は、例えば、物理層のPUCCHにおいて送信される信号(又は、情報)でもよく、上位レイヤのMAC CE又はRRCにおいて送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、上り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。また、上り制御信号は、例えば、uplink control information(UCI)、1st stage sidelink control information(SCI)、又は、2nd stage SCIに置き換えてもよい。
 (基地局)
 本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
 (上りリンク/下りリンク/サイドリンク)
 本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
 なお、PDCCH、PDSCH、PUSCH、及び、PUCCHそれぞれは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、及び、上りリンク制御チャネルの一例である。また、PSCCH、及び、PSSCHは、サイドリンク制御チャネル、及び、サイドリンクデータチャネルの一例である。また、PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。
 (データチャネル/制御チャネル)
 本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
 (参照信号)
 本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
 (時間間隔)
 本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロット、サブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing Access(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
 (周波数帯域)
 本開示の一実施例は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
 (通信)
 本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
 また、本開示の一実施例は、地上のネットワーク、衛星又は高度疑似衛星(HAPS:High Altitude Pseudo Satellite)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示の一実施例は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。
 (アンテナポート)
 本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図15に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図16は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップおよび再設定の手順>
 図17は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図18は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図18は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図17を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。
 図19は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図18に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図19は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る基地局は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、前記リソース割り当てに従って、信号を送信する送信回路と、を具備する。
 本開示の一実施例において、前記送信回路は、少なくとも前記第1の帯域を含む仮想リソースブロックの開始位置と、前記開始位置から連続する前記仮想リソースブロックの数とを含む前記リソース割り当てに関する制御情報を送信し、前記制御回路は、複数の前記第1の帯域が非連続に配置される場合、前記仮想リソースブロックにおける前記複数の第1の帯域がマッピングされる順序と、前記物理リソースブロックにおける前記複数の第1の帯域がマッピングされる順序とを異ならせる。
 本開示の一実施例において、前記仮想リソースブロックは、前記第1の帯域を含み、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域、及び、前記第1の帯域と前記第2の帯域との間のガードバンドを含まず、前記開始位置、及び、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記ガードバンドと隣り合う位置にマッピングされる。
 本開示の一実施例において、前記仮想リソースブロックは、前記第1の帯域、及び、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域と前記第1の帯域との間のガードバンドを含み、前記第2の帯域を含まず、前記開始位置、及び、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記第2の帯域と隣り合う位置にマッピングされる。
 本開示の一実施例において、前記仮想リソースブロックは、前記第1の帯域、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域、及び、前記第1の帯域と前記第2の帯域との間のガードバンドを含み、前記開始位置は、前記物理リソースブロックにおける前記第2の帯域の一方の端と隣り合う位置にマッピングされ、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記第2の帯域の前記一方の端にマッピングされる。
 本開示の一実施例において、前記制御回路は、複数の前記第1の帯域が非連続に配置される場合、前記物理リソースブロックにおけるリソース割り当ての開始位置又は終了位置に基づいて、レートマッチの適用の有無を決定する。
 本開示の一実施例において、前記制御回路は、前記開始位置及び前記終了位置が前記複数の第1の帯域のそれぞれに含まれる場合、前記レートマッチの適用を決定する。
 本開示の一実施例において、前記制御回路は、前記開始位置又は前記終了位置が前記第1の帯域と異なる帯域に含まれる場合、前記レートマッチの非適用を決定する。
 本開示の一実施例において、前記送信回路は、少なくとも前記第1の帯域を含む仮想リソースブロックの開始位置と、前記開始位置から連続する前記仮想リソースブロックの数とを含む前記リソース割り当てに関する制御情報を送信し、前記制御情報の通知に用いる複数のビットによって表される値のうち、前記開始位置と前記仮想リソースブロックの数との組み合わせに対応付けられる値と異なる値が、前記複数の帯域における割り当てパターンに対応付けられる。
 本開示の一実施例に係る端末は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、前記リソース割り当てに従って、信号を受信する受信回路と、を具備する。
 本開示の一実施例に係る通信方法において、基地局は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせ、前記リソース割り当てに従って、信号の送信又は受信を行う。
 本開示の一実施例に係る通信方法において、端末は、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせ、前記リソース割り当てに従って、信号を受信する。
 2023年2月15日出願の特願2023-021552の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100 基地局
 101,201 受信部
 102,202 デマッピング部
 103,203 復調・復号部
 104 スケジューリング部
 105 リソース制御部
 106,206 制御情報保持部
 107,207 データ・制御情報生成部
 108,208 符号化・変調部
 109,209 マッピング部
 110,210 送信部
 200 端末
 204 リソース判定部
 205 制御部
 

 

Claims (12)

  1.  周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、
     前記リソース割り当てに従って、信号を送信する送信回路と、
     を具備する基地局。
  2.  前記送信回路は、少なくとも前記第1の帯域を含む仮想リソースブロックの開始位置と、前記開始位置から連続する前記仮想リソースブロックの数とを含む前記リソース割り当てに関する制御情報を送信し、
     前記制御回路は、複数の前記第1の帯域が非連続に配置される場合、前記仮想リソースブロックにおける前記複数の第1の帯域がマッピングされる順序と、前記物理リソースブロックにおける前記複数の第1の帯域がマッピングされる順序とを異ならせる、
     請求項1に記載の基地局。
  3.  前記仮想リソースブロックは、前記第1の帯域を含み、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域、及び、前記第1の帯域と前記第2の帯域との間のガードバンドを含まず、
     前記開始位置、及び、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記ガードバンドと隣り合う位置にマッピングされる、
     請求項2に記載の基地局。
  4.  前記仮想リソースブロックは、前記第1の帯域、及び、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域と前記第1の帯域との間のガードバンドを含み、前記第2の帯域を含まず、
     前記開始位置、及び、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記第2の帯域と隣り合う位置にマッピングされる、
     請求項2に記載の基地局。
  5.  前記仮想リソースブロックは、前記第1の帯域、前記第1の送信方向と異なる第2の送信方向に対応する第2の帯域、及び、前記第1の帯域と前記第2の帯域との間のガードバンドを含み、
     前記開始位置は、前記物理リソースブロックにおける前記第2の帯域の一方の端と隣り合う位置にマッピングされ、前記仮想リソースブロックの終了位置は、前記物理リソースブロックにおける前記第2の帯域の前記一方の端にマッピングされる、
     請求項2に記載の基地局。
  6.  前記制御回路は、複数の前記第1の帯域が非連続に配置される場合、前記物理リソースブロックにおけるリソース割り当ての開始位置又は終了位置に基づいて、レートマッチの適用の有無を決定する、
     請求項1に記載の基地局。
  7.  前記制御回路は、前記開始位置及び前記終了位置が前記複数の第1の帯域のそれぞれに含まれる場合、前記レートマッチの適用を決定する、
     請求項6に記載の基地局。
  8.  前記制御回路は、前記開始位置又は前記終了位置が前記第1の帯域と異なる帯域に含まれる場合、前記レートマッチの非適用を決定する、
     請求項6に記載の基地局。
  9.  前記送信回路は、少なくとも前記第1の帯域を含む仮想リソースブロックの開始位置と、前記開始位置から連続する前記仮想リソースブロックの数とを含む前記リソース割り当てに関する制御情報を送信し、
     前記制御情報の通知に用いる複数のビットによって表される値のうち、前記開始位置と前記仮想リソースブロックの数との組み合わせに対応付けられる値と異なる値が、前記複数の帯域における割り当てパターンに対応付けられる、
     請求項1に記載の基地局。
  10.  周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせる制御回路と、
     前記リソース割り当てに従って、信号を受信する受信回路と、
     を具備する端末。
  11.  基地局は、
     周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせ、
     前記リソース割り当てに従って、信号の送信又は受信を行う、
     通信方法。
  12.  端末は、
     周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式において、第1の送信方向に対応する第1の帯域が物理リソースブロックにおいて非連続に配置されるか否かに応じて、リソース割り当てを異ならせ、
     前記リソース割り当てに従って、信号を受信する、
     通信方法。
PCT/JP2023/037876 2023-02-15 2023-10-19 基地局、端末及び通信方法 WO2024171520A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023021552 2023-02-15
JP2023-021552 2023-02-15

Publications (1)

Publication Number Publication Date
WO2024171520A1 true WO2024171520A1 (ja) 2024-08-22

Family

ID=92421173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037876 WO2024171520A1 (ja) 2023-02-15 2023-10-19 基地局、端末及び通信方法

Country Status (1)

Country Link
WO (1) WO2024171520A1 (ja)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MARTIN BEALE, SONY: "Considerations on Subband Full Duplex TDD Operations", 3GPP DRAFT; R1-2211610; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052222174 *
MIN ZHU, CATT: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2211196; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052221761 *
SHARP: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2209930, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052259403 *
TOMOYA NUNOME, PANASONIC: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2300918; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248061 *
YOUNGSOO YUK, NOKIA, NOKIA SHANGHAI BELL: "On subband non-overlapping full duplex for NR", 3GPP DRAFT; R1-2212284; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052222843 *
YU DING, SPREADTRUM COMMUNICATIONS: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2211233; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052221798 *

Similar Documents

Publication Publication Date Title
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2021161861A1 (ja) 端末及び通信方法
CN115428558A (zh) 移动台、基站、接收方法及发送方法
US20220256557A1 (en) Communication apparatuses and communication methods for dci for v2x communication apparatuses
WO2022014272A1 (ja) 端末、基地局及び通信方法
WO2022208989A1 (ja) 通信装置、及び、通信方法
WO2022014279A1 (ja) 端末、基地局及び通信方法
WO2024171520A1 (ja) 基地局、端末及び通信方法
WO2024219190A1 (ja) 端末、基地局、及び、通信方法
WO2024171521A1 (ja) 基地局、端末及び通信方法
WO2024024259A1 (ja) 端末、基地局、及び、通信方法
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2023188912A1 (ja) 基地局、端末及び通信方法
WO2023100471A1 (ja) 基地局、端末及び通信方法
WO2023181579A1 (ja) 端末、基地局及び通信方法
WO2022239289A1 (ja) 通信装置、及び、通信方法
WO2023013204A1 (ja) 端末、基地局、及び、通信方法
WO2023188913A1 (ja) 基地局、端末及び通信方法
WO2023181557A1 (ja) 端末、基地局及び通信方法
WO2023181556A1 (ja) 端末、基地局及び通信方法
WO2024100924A1 (ja) 端末、基地局、及び、通信方法
WO2024157643A1 (ja) 端末、基地局、及び、通信方法
WO2024232068A1 (ja) 端末、基地局及び通信方法
WO2024034198A1 (ja) 端末、基地局及び通信方法
WO2022195952A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922854

Country of ref document: EP

Kind code of ref document: A1