[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024028681A1 - 半導体装置、及び記憶装置 - Google Patents

半導体装置、及び記憶装置 Download PDF

Info

Publication number
WO2024028681A1
WO2024028681A1 PCT/IB2023/057378 IB2023057378W WO2024028681A1 WO 2024028681 A1 WO2024028681 A1 WO 2024028681A1 IB 2023057378 W IB2023057378 W IB 2023057378W WO 2024028681 A1 WO2024028681 A1 WO 2024028681A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductor
oxide
film
transistor
Prior art date
Application number
PCT/IB2023/057378
Other languages
English (en)
French (fr)
Inventor
山崎舜平
方堂涼太
遠藤俊弥
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024028681A1 publication Critical patent/WO2024028681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One embodiment of the present invention relates to a semiconductor device, a memory device, and an electronic device using an oxide semiconductor. Further, one embodiment of the present invention relates to a method for manufacturing the above semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (for example, touch sensors), input/output devices (for example, touch panels), An example of such a driving method or a manufacturing method thereof can be mentioned.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • Semiconductor elements such as transistors, semiconductor circuits, arithmetic devices, and storage devices are examples of semiconductor devices.
  • Display devices liquid crystal display devices, light emitting display devices, etc.
  • projection devices lighting devices, electro-optical devices, power storage devices, storage devices, semiconductor circuits, imaging devices, electronic equipment, and the like may be said to include semiconductor devices.
  • a CPU is an assembly of semiconductor elements, including a semiconductor integrated circuit (at least a transistor and a memory) formed into a chip by processing a semiconductor wafer, and on which electrodes serving as connection terminals are formed.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, such as printed wiring boards, and are used as one of the components of various electronic devices.
  • a technology that constructs a transistor using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, oxide semiconductors are attracting attention as other materials.
  • Patent Document 1 discloses a CPU with low power consumption that takes advantage of the low leakage current of a transistor using an oxide semiconductor.
  • Patent Document 2 discloses a memory device that can retain stored content for a long period of time by applying the characteristic of a transistor using an oxide semiconductor that the leakage current is small.
  • Patent Document 3 discloses a transistor with a fine structure in which a source electrode layer and a drain electrode layer are provided in contact with the upper surface of an oxide semiconductor.
  • An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device that operates at high speed. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device having good electrical characteristics. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device in which the electrical characteristics of transistors have little variation. Alternatively, an object of one embodiment of the present invention is to provide a highly reliable semiconductor device. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with a large on-state current. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with low power consumption.
  • an object of one embodiment of the present invention is to provide a novel semiconductor device.
  • an object of one embodiment of the present invention is to provide a method for manufacturing a semiconductor device with high productivity.
  • Another object of one embodiment of the present invention is to provide a novel method for manufacturing a semiconductor device.
  • an object of one embodiment of the present invention is to provide a storage device with a large storage capacity.
  • an object of one embodiment of the present invention is to provide a storage device that operates at high speed.
  • an object of one embodiment of the present invention is to provide a storage device with low power consumption.
  • an object of one aspect of the present invention is to provide a novel storage device.
  • One embodiment of the present invention includes an oxide over a substrate, a first conductor and a second conductor on the oxide that are spaced apart from each other, and a third conductor in contact with a part of the upper surface of the first conductor.
  • a fourth conductor in contact with a part of the upper surface of the second conductor; a third conductor; and a fourth conductor disposed on the fourth conductor;
  • a first insulator having an opening that overlaps with a region between the conductors; a second conductor disposed within the opening of the first insulator; a second insulator that is in contact with another part of the upper surface of the second insulator, a side surface of the third conductor, and a side surface of the fourth conductor;
  • a third insulator in contact with the side surface of the first conductor, the side surface of the second conductor, and the side surface of the second insulator; and a fifth conductor having a region overlapping with the oxide through the third insulator, and the distance between
  • the first layer is in contact with the first conductor, the second conductor, the third conductor, the fourth conductor, and the first insulator
  • the second layer is in contact with the first conductor, the second conductor, the third conductor, the fourth conductor, and the first insulator. It is preferable that the conductor, the second conductor, the third conductor, the fourth conductor, and the first insulator not be in contact with each other.
  • the first layer preferably includes silicon nitride.
  • the second layer may include silicon oxide.
  • the second layer may include aluminum oxide.
  • the second layer may include hafnium oxide.
  • the first conductor and the second conductor include metal nitride.
  • the first conductor and the second conductor include tantalum nitride.
  • the first conductor and the second conductor include tantalum nitride, and the third conductor and the fourth conductor include tungsten.
  • the difference between the distance between the third conductor and the fourth conductor and the distance between the first conductor and the second conductor is equal to 2 times the film thickness of the second insulator. It is preferable that the two times match or roughly match.
  • the side surface of the opening of the first insulator coincides or approximately coincides with the side surface of the third conductor and the fourth conductor when viewed from above.
  • Another embodiment of the present invention includes the above-described semiconductor device and a capacitor, wherein one electrode of the capacitor is electrically connected to a third conductor of the semiconductor device. It is a device.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device that operates at high speed can be provided.
  • a semiconductor device having good electrical characteristics can be provided.
  • a semiconductor device with less variation in the electrical characteristics of transistors can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with a large on-state current can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a novel semiconductor device can be provided.
  • a method for manufacturing a semiconductor device with high productivity can be provided.
  • a novel method for manufacturing a semiconductor device can be provided.
  • a storage device with a large storage capacity can be provided.
  • a storage device with high operating speed can be provided.
  • a storage device with low power consumption can be provided.
  • a novel storage device can be provided.
  • FIG. 1A is a plan view showing an example of a semiconductor device.
  • FIGS. 1B to 1D are cross-sectional views showing an example of a semiconductor device.
  • 2A and 2B are cross-sectional views showing an example of a semiconductor device.
  • 3A to 3C are cross-sectional views showing an example of a semiconductor device.
  • 4A to 4C are cross-sectional views showing an example of a semiconductor device.
  • 5A and 5B are cross-sectional views showing an example of a semiconductor device.
  • FIG. 6A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 6B to 6D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 7A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • FIG. 7B to 7D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 8A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 8B to 8D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 9A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 9B to 9D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 10A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 10B to 10D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 11A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • FIG. 11B to 11D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 12A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 12B to 12D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 13A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 13B to 13D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 14A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 14B to 14D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 15A to 15C are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • FIG. 16A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 16B to 16D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 17A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 17B to 17D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • FIG. 18 is a block diagram showing an example of a storage device.
  • 19A and 19B are a schematic diagram and a circuit diagram showing an example of a storage device.
  • 20A and 20B are schematic diagrams showing an example of a storage device.
  • FIG. 21 is a circuit diagram showing an example of a storage device.
  • FIG. 22 is a cross-sectional view showing an example of a storage device.
  • FIG. 23 is a cross-sectional view showing an example of a storage device.
  • FIG. 24 is a cross-sectional view showing an example of a storage device.
  • FIG. 25 is a cross-sectional view showing an example of a storage device.
  • FIG. 26 is a cross-sectional view showing an example of a storage device.
  • FIG. 27 is a cross-sectional view showing an example of a storage device.
  • 28A to 28C are circuit diagrams showing an example of a storage device.
  • 29A and 29B are diagrams showing an example of a semiconductor device.
  • 30A and 30B are diagrams showing an example of an electronic component.
  • FIGS. 31C to 31E are diagrams showing an example of a large-sized computer.
  • FIG. 32 is a diagram showing an example of space equipment.
  • FIG. 33 is a diagram illustrating an example of a storage system applicable to a data center.
  • ordinal numbers such as “first” and “second” are used for convenience, and do not limit the number of components or the order of the components (for example, the order of steps or the order of lamination). It's not something you do. Further, the ordinal number attached to a constituent element in a certain part of this specification may not match the ordinal number attached to the constituent element in another part of this specification or in the claims.
  • film and “layer” can be interchanged depending on the situation or circumstances.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer.”
  • conductor can be interchanged with the term “conductive layer” or the term “conductive film” depending on the case or the situation.
  • insulator can be interchanged with the term “insulating layer” or the term “insulating film” depending on the case or the situation.
  • the opening includes, for example, a groove, a slit, etc. Further, a region in which an opening is formed may be referred to as an opening.
  • the sidewall of the insulator at the opening of the insulator is perpendicular or approximately perpendicular to the substrate surface or the surface to be formed; Good too.
  • a tapered shape refers to a shape in which at least a part of the side surface of the structure is inclined with respect to the substrate surface or the surface to be formed.
  • a taper angle a region where the angle between the inclined side surface and the substrate surface or the surface to be formed (hereinafter sometimes referred to as a taper angle) is less than 90°.
  • the side surfaces of the structure and the substrate surface do not necessarily have to be completely flat, and may be substantially planar with minute curvatures or substantially planar with minute irregularities.
  • FIGS. 1 to 1D are a plan view and a cross-sectional view of a semiconductor device (transistor 200).
  • FIG. 1A is a plan view of the semiconductor device.
  • FIGS. 1B to 1D are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • FIG. 1C is a cross-sectional view of a portion indicated by a dashed-dotted line A3-A4 in FIG.
  • FIG. 1A is also a cross-sectional view of the transistor 200 in the channel width direction.
  • FIG. 1D is a cross-sectional view of a portion indicated by a dashed line A5-A6 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel width direction. Note that in the plan view of FIG. 1A, some elements are omitted for clarity. Further, FIGS. 2A to 5B show enlarged cross-sectional views of the transistor 200 in the channel length direction.
  • the transistor 200 includes a conductor 205 (a conductor 205a and a conductor 205b) embedded in an insulator 216, an insulator 221 on the insulator 216 and the conductor 205, and an insulator on the insulator 221. 222, an insulator 224 on the insulator 222, an oxide 230 (oxide 230a and oxide 230b) on the insulator 224, and a conductor 242a (conductor 242a1 and conductor 242a2) on the oxide 230.
  • a conductor 205 a conductor 205a and a conductor 205b
  • a conductor 260 (a conductor 260a and a conductor 260b).
  • An insulator 275 is provided on the insulators 271a and 271b, and an insulator 280 is provided on the insulator 275.
  • Insulator 250 and conductor 260 are arranged inside openings provided in insulator 280 and insulator 275.
  • an insulator 255a and an insulator 255b (hereinafter sometimes referred to collectively as insulators 255) are arranged inside the opening.
  • the insulator 255 is provided between the insulator 250 and the conductor 242a2, the conductor 242b2, the insulator 271a, the insulator 271b, the insulator 275, and the insulator 280.
  • an insulator 282 is provided on the insulator 280 and the conductor 260.
  • an insulator 283 is provided on the insulator 282.
  • an insulator 215 is provided below the insulator 216 and the conductor 205.
  • the oxide 230 has a region that functions as a channel formation region of the transistor 200.
  • the conductor 260 has a region that functions as a first gate electrode (upper gate electrode) of the transistor 200.
  • Insulator 250 has a region that functions as a first gate insulator of transistor 200.
  • the conductor 205 has a region that functions as a second gate electrode (lower gate electrode) of the transistor 200.
  • the insulator 224, the insulator 222, and the insulator 221 each have a region that functions as a second gate insulator of the transistor 200.
  • the conductor 242a has a region that functions as either a source electrode or a drain electrode of the transistor 200.
  • the conductor 242b has a region that functions as the other of the source electrode and the drain electrode of the transistor 200.
  • the conductor 242a has a laminated structure of a conductor 242a1 and a conductor 242a2 on the conductor 242a
  • the conductor 242b has a laminated structure of a conductor 242b1 and a conductor 242b2 on the conductor 242b1.
  • the conductor 242a1 and the conductor 242b1 in contact with the oxide 230b are preferably conductors that are difficult to oxidize, such as metal nitride. This can prevent the conductor 242a and the conductor 242b from being excessively oxidized by oxygen contained in the oxide 230b.
  • the conductor 242a2 and the conductor 242b2 are preferably conductors such as metal layers that have higher conductivity than the conductor 242a1 and the conductor 242b1.
  • the conductor 242a and the conductor 242b can function as highly conductive wiring or electrodes.
  • a semiconductor device can be provided in which the conductor 242a and the conductor 242b, which function as wiring or electrodes, are provided in contact with the upper surface of the oxide 230, which functions as an active layer.
  • the distance L2 between the conductor 242a1 and the conductor 242b1 is smaller than the distance L1 between the conductor 242a2 and the conductor 242b2.
  • the distance L2 refers to the shortest distance between the conductor 242a1 and the conductor 242b1
  • the distance L1 refers to the shortest distance between the conductor 242a2 and the conductor 242b2.
  • the difference between L1 and L2 is equal to or approximately equal to twice the thickness of the insulator 255.
  • the film thickness of the insulator 255 refers to the film thickness of at least a portion of the insulator 255 in the A1-A2 direction.
  • the side surface of the insulator 280 in the opening matches or approximately matches the side surface of the conductor 242a2 and the conductor 242b2.
  • a portion of the conductor 242a1 and the conductor 242b1 are formed to protrude into the opening.
  • a portion of the top surface of the conductor 242a1 is in contact with the conductor 242a2, and a portion of the top surface of the conductor 242b1 is in contact with the conductor 242b2.
  • the insulator 255 contacts another part of the upper surface of the conductor 242a1, another part of the upper surface of the conductor 242b1, the side surface of the conductor 242a2, and the side surface of the conductor 242b2 within the opening. Further, the insulator 250 is in contact with the upper surface of the oxide 230, the side surface of the conductor 242a1, the side surface of the conductor 242b1, and the side surface of the insulator 255.
  • the insulator 255 is etched onto the sidewall of an opening provided in the insulator 280 or the like (here, the sidewall of the opening corresponds to, for example, the side surface of the insulator 280 or the like in the opening) using anisotropic etching. They are in contact with each other and formed into a sidewall shape.
  • the insulator 255 includes an insulator 255a and an insulator 255b.
  • the insulator 255a is formed in contact with the top surface of the conductor 242a1, the top surface of the conductor 242b1, the side surface of the conductor 242a2, and the side surface of the conductor 242b2.
  • the insulator 255b is formed closer to the conductor 260 than the insulator 255a, it does not touch the top surface of the conductor 242a1, the top surface of the conductor 242b1, the side surface of the conductor 242a2, and the side surface of the conductor 242b2.
  • a nitride insulator for the insulator 255a.
  • silicon nitride can be used as the insulator 255a.
  • the insulator 255a has a function of protecting the conductor 242a2 and the conductor 242b2. After the conductor 242a1 and the conductor 242b1 are separated and before the insulator 250 is formed, heat treatment is preferably performed in an atmosphere containing oxygen. At this time, by forming the insulator 255a in contact with the side surface of the conductor 242a2 and the side surface of the conductor 242b2, it is possible to prevent the conductor 242a2 and the conductor 242b2 from being excessively oxidized.
  • an oxide insulator for the insulator 255b.
  • silicon oxide can be used as the insulator 255b.
  • silicon oxide with a low dielectric constant as the insulator 255b, the distance between the conductor 260 and the conductor 242a or 242b can be increased, and parasitic capacitance can be reduced.
  • aluminum oxide or hafnium oxide can be used as the insulator 255b.
  • Aluminum oxide and hafnium oxide have a function of capturing or fixing hydrogen, which becomes an impurity in an oxide semiconductor. Thereby, the electrical characteristics and reliability of a transistor using an oxide semiconductor can be improved.
  • the oxide 230 preferably includes an oxide 230a on the insulator 224 and an oxide 230b on the oxide 230a. By having the oxide 230a below the oxide 230b, diffusion of impurities from a structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230 has a two-layer structure of the oxide 230a and the oxide 230b
  • the structure is not limited thereto.
  • the oxide 230 may have a single layer structure of the oxide 230b, or may have a stacked structure of three or more layers.
  • a channel formation region and a source region and a drain region provided to sandwich the channel formation region in the transistor 200 are formed in the oxide 230b. At least a portion of the channel forming region overlaps with the conductor 260.
  • the source region overlaps the conductor 242a, and the drain region overlaps the conductor 242b. Note that the source region and the drain region can be replaced with each other.
  • the channel forming region has fewer oxygen vacancies or has a lower impurity concentration than the source and drain regions, so it is a high resistance region with a lower carrier concentration. Therefore, the channel forming region can be said to be i-type (intrinsic) or substantially i-type.
  • the source region and the drain region are low resistance regions with a high carrier concentration because they have many oxygen vacancies or a high concentration of impurities such as hydrogen, nitrogen, or metal elements. That is, the source region and the drain region are n-type regions (low resistance regions) that have a higher carrier concentration than the channel forming region.
  • the carrier concentration of the channel forming region is 1 ⁇ 10 18 cm ⁇ 3 or less, less than 1 ⁇ 10 17 cm ⁇ 3 , less than 1 ⁇ 10 16 cm ⁇ 3 , less than 1 ⁇ 10 15 cm ⁇ 3 , or 1 ⁇ 10 14 It is preferably less than cm ⁇ 3 , less than 1 ⁇ 10 13 cm ⁇ 3 , less than 1 ⁇ 10 12 cm ⁇ 3 , less than 1 ⁇ 10 11 cm ⁇ 3 , or less than 1 ⁇ 10 10 cm ⁇ 3 . Further, the lower limit of the carrier concentration in the channel forming region is not particularly limited, but can be set to, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • the impurity concentration in the oxide 230b is lowered to lower the defect level density.
  • the term "high purity intrinsic” or “substantially high purity intrinsic” means that the impurity concentration is low and the defect level density is low.
  • an oxide semiconductor (or metal oxide) with a low carrier concentration is sometimes referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor (or metal oxide).
  • the impurity concentration in the oxide 230b In order to stabilize the electrical characteristics of the transistor 200, it is effective to reduce the impurity concentration in the oxide 230b. Further, in order to reduce the impurity concentration of the oxide 230b, it is preferable to also reduce the impurity concentration in the adjacent film.
  • impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, and silicon. Note that the impurities in the oxide 230b refer to, for example, substances other than the main components that constitute the oxide 230b. For example, an element having a concentration of less than 0.1 atomic % can be considered an impurity.
  • the channel formation region, the source region, and the drain region may each be formed not only with the oxide 230b but also with the oxide 230a.
  • the concentration of metal elements and impurity elements such as hydrogen and nitrogen detected in each region is not limited to a stepwise change from region to region, and may be continuously changed within each region. In other words, the closer the region is to the channel formation region, the lower the concentration of metal elements and impurity elements such as hydrogen and nitrogen may be.
  • oxide 230 oxide 230a and oxide 230b.
  • the band gap of the metal oxide that functions as a semiconductor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the off-state current of the transistor can be reduced.
  • a transistor having a metal oxide in a channel formation region in this way is called an OS transistor. Since the OS transistor has a small off-state current, the power consumption of the semiconductor device can be sufficiently reduced. Further, since the frequency characteristics of the OS transistor are high, the semiconductor device can be operated at high speed.
  • the oxide 230 preferably includes a metal oxide (oxide semiconductor).
  • metal oxides that can be used for the oxide 230 include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide contains at least indium (In) or zinc (Zn).
  • the metal oxide has two or three selected from indium, element M, and zinc.
  • the element M is a metal element or a metalloid element that has a high bonding energy with oxygen, for example, a metal element or a metalloid element that has a higher bonding energy with oxygen than indium.
  • the element M includes aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, and calcium. , strontium, barium, boron, silicon, germanium, and antimony.
  • the element M included in the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and further gallium. preferable. Note that in this specification and the like, metal elements and metalloid elements may be collectively referred to as "metal elements," and the "metal elements" described in this specification and the like may include semimetal elements.
  • the oxide 230 is, for example, indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In- Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as GZO) , aluminum zinc oxide (Al-Zn oxide, also written as AZO), indium aluminum zinc oxide (In-Al-Zn oxide, also written as IAZO), indium tin zinc oxide (In-Sn-Zn oxide) , indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide) Indium gallium aluminum zinc oxide (also referred to as In-Ga-Al-Zn oxide
  • the field effect mobility of the transistor can be increased.
  • the metal oxide may contain one or more metal elements with a large period number instead of or in addition to indium.
  • metal elements with large period numbers include metal elements belonging to the fifth period and metal elements belonging to the sixth period.
  • Specific examples of the metal element include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may contain one or more types of nonmetallic elements.
  • the metal oxide contains a nonmetal element, the field effect mobility of the transistor can be increased in some cases.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. . Therefore, fluctuations in the electrical characteristics of the transistor are suppressed, and reliability can be improved.
  • the electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the oxide 230. Therefore, by varying the composition of the metal oxide depending on the electrical characteristics and reliability required of the transistor, a semiconductor device that has both excellent electrical characteristics and high reliability can be obtained.
  • the oxide 230 has a stacked structure of a plurality of oxide layers having different chemical compositions.
  • the atomic ratio of the element M to the metal element that is the main component is the same as the atomic ratio of the element M to the metal element that is the main component in the metal oxide used for the oxide 230b. It is preferable that it be larger.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230a and the oxide 230b have a common element other than oxygen as a main component, the density of defect levels at the interface between the oxide 230a and the oxide 230b can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 200 can obtain a large on-current and high frequency characteristics.
  • the nearby composition includes a range of ⁇ 30% of the desired atomic ratio.
  • the element M it is preferable to use gallium.
  • a metal oxide that can be used for the oxide 230a may be used as the oxide 230b.
  • the compositions of the metal oxides that can be used for the oxide 230a and the oxide 230b are not limited to the above.
  • a metal oxide composition that can be used for oxide 230a may be applied to oxide 230b.
  • the composition of metal oxides that can be used for oxide 230b may also be applied to oxide 230a.
  • the above atomic ratio is not limited to the atomic ratio of the formed metal oxide, but also the atomic ratio of the sputtering target used for forming the metal oxide film. It may be.
  • the oxide 230b has crystallinity.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • CAAC-OS is a metal oxide that has a highly crystalline and dense structure and has few impurities and defects (for example, oxygen vacancies).
  • heat treatment at a temperature that does not polycrystallize the metal oxide (e.g., 400°C or higher and 600°C or lower) allows CAAC-OS to have a more highly crystalline and dense structure. It can be done. In this way, by further increasing the density of the CAAC-OS, it is possible to further reduce diffusion of impurities or oxygen in the CAAC-OS.
  • CAAC-OS it is difficult to confirm clear grain boundaries, so it can be said that reduction in electron mobility due to grain boundaries is less likely to occur. Therefore, the metal oxide with CAAC-OS has stable physical properties. Therefore, metal oxides with CAAC-OS are resistant to heat and have high reliability.
  • the oxide 230b Furthermore, by using a crystalline oxide such as CAAC-OS as the oxide 230b, it is possible to suppress the extraction of oxygen from the oxide 230b by the source electrode or the drain electrode. As a result, even if heat treatment is performed, extraction of oxygen from the oxide 230b can be reduced, so that the transistor 200 is stable against high temperatures (so-called thermal budget) during the manufacturing process.
  • a crystalline oxide such as CAAC-OS
  • the channel formation region in the oxide semiconductor preferably has a reduced carrier concentration and is i-type (intrinsic) or substantially i-type.
  • the insulator can be converted to an oxide semiconductor. Oxygen can be supplied, and oxygen vacancies and V OH can be reduced.
  • excess oxygen oxygen can be supplied to the source region or the drain region, there is a possibility that the on-state current of the transistor 200 or the field effect mobility of the transistor 200 will decrease.
  • the amount of oxygen supplied to the source region or the drain region varies within the substrate plane, resulting in variations in the characteristics of a semiconductor device including a transistor.
  • the channel formation region has a reduced carrier concentration and is preferably i-type or substantially i-type, whereas the source and drain regions have a high carrier concentration and are n-type. It is preferable. In other words, it is preferable to reduce oxygen vacancies and V OH in the channel formation region of the oxide semiconductor. Further, it is preferable that an excessive amount of oxygen is not supplied to the source region and the drain region, and that the amount of V OH in the source region and the drain region is not excessively reduced. Further, it is preferable to adopt a structure that suppresses a decrease in the conductivity of the conductor 260, the conductor 242a, the conductor 242b, and the like.
  • a semiconductor device in which the hydrogen concentration in the channel formation region is reduced, the oxidation of the conductor 242a, the conductor 242b, and the conductor 260 is suppressed, and the hydrogen concentration in the source region and the drain region is suppressed.
  • the configuration is such that the hydrogen concentration of the hydrogen concentration is suppressed from decreasing.
  • the insulator 250 in contact with the channel formation region in the oxide 230b preferably has a function of capturing or fixing hydrogen. Thereby, the hydrogen concentration in the channel formation region of the oxide 230b can be reduced. Therefore, V O H in the channel formation region can be reduced and the channel formation region can be made into i-type or substantially i-type.
  • the insulator 250 may have a laminated structure of an insulator 250a in contact with the oxide 230, an insulator 250b on the insulator 250a, and an insulator 250c on the insulator 250b.
  • the insulator 250a has a function of capturing or fixing hydrogen.
  • Examples of insulators that have the function of capturing or fixing hydrogen include metal oxides with an amorphous structure.
  • the insulator 250a it is preferable to use, for example, a metal oxide such as magnesium oxide or an oxide containing one or both of aluminum and hafnium.
  • metal oxides having such an amorphous structure oxygen atoms have dangling bonds, and the dangling bonds may capture or fix hydrogen.
  • metal oxides having an amorphous structure have a high ability to capture or fix hydrogen.
  • a high dielectric constant (high-k) material for the insulator 250a.
  • a high-k material is an oxide containing one or both of aluminum and hafnium.
  • an oxide containing one or both of aluminum and hafnium as the insulator 250a, and more preferably an oxide having an amorphous structure and containing one or both of aluminum and hafnium. It is more preferable to use aluminum oxide having an amorphous structure because an amorphous film can be formed relatively easily using the ALD method.
  • an aluminum oxide film is used as the insulator 250a.
  • the insulator 250a is an insulator containing at least oxygen and aluminum.
  • the aluminum oxide has an amorphous structure.
  • the insulator 250a has an amorphous structure.
  • insulator 250b it is preferable to use an insulator that is stable against heat, such as silicon oxide or silicon oxynitride.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitrided oxide refers to a material whose composition contains more nitrogen than oxygen.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. shows.
  • an insulator 250d is provided on an insulator 250b.
  • an insulator that can be used for the insulator 250a can be provided as the insulator 250d.
  • hafnium oxide can be used as the insulator 250d.
  • the insulators are, for example, an insulator 250a, an insulator 250c, an insulator 250d, an insulator 255a, and an insulator 275.
  • a barrier insulator refers to an insulator that has barrier properties.
  • having barrier properties refers to having a property of preventing the permeation of a corresponding substance (also referred to as low permeability).
  • an insulator with barrier properties has a property that a corresponding substance is difficult to diffuse into the insulator.
  • an insulator having barrier properties has a function of capturing or fixing a corresponding substance inside the insulator (also referred to as gettering).
  • barrier insulators against oxygen include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide.
  • oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
  • the insulator 250a, the insulator 250c, the insulator 250d, the insulator 255a, and the insulator 275 each preferably have a single layer structure or a multilayer structure of the above oxygen barrier insulator.
  • the insulator 250a and the insulator 255a have barrier properties against oxygen. It is preferable that the insulator 250a and the insulator 255a are at least less permeable to oxygen than the insulator 280.
  • the insulator 250a has a region in contact with a side surface of the conductor 242a1 and a side surface of the conductor 242b1.
  • the insulator 255a has a region in contact with the top surface of the conductor 242a1, the top surface of the conductor 242b1, the side surface of the conductor 242a2, and the side surface of the conductor 242b2. Further, the insulator 250a is in contact with the side surface of the insulator 255a.
  • the insulator 250a and the insulator 255a have barrier properties against oxygen, the side surfaces of the conductor 242a and the conductor 242b can be prevented from being oxidized and formation of an oxide film on the side surfaces. Thereby, a decrease in the on-current of the transistor 200 or a decrease in field effect mobility can be suppressed.
  • the insulator 250a is provided in contact with the top and side surfaces of the oxide 230b, the side surfaces of the oxide 230a, the side surfaces of the insulator 224, and the top surface of the insulator 222. Since the insulator 250a has barrier properties against oxygen, desorption of oxygen from the channel formation region of the oxide 230b can be suppressed when heat treatment or the like is performed. Therefore, formation of oxygen vacancies in the oxide 230a and the oxide 230b can be reduced.
  • the insulator 250a and the insulator 255a even if the insulator 280 contains an excessive amount of oxygen, it is possible to suppress the oxygen from being excessively supplied to the oxide 230a and the oxide 230b. , an appropriate amount of oxygen can be supplied to the oxide 230a and the oxide 230b. Therefore, excessive oxidation of the source region and the drain region can be prevented, and a decrease in on-current or field-effect mobility of the transistor 200 can be suppressed.
  • an oxide containing one or both of aluminum and hafnium has barrier properties against oxygen, it can be suitably used as the insulator 250a.
  • the insulator 255a is an insulator containing at least nitrogen and silicon as main components. Further, it is preferable that the insulator 255a has barrier properties against hydrogen. This can prevent impurities such as hydrogen contained in the conductors 242a2 and 242b2 from diffusing into the oxide 230b.
  • the insulator 250c has barrier properties against oxygen.
  • the insulator 250c is provided between the channel forming region of the oxide 230 and the conductor 260, and between the insulator 280 and the conductor 260.
  • oxygen contained in the channel formation region of the oxide 230 can be prevented from diffusing into the conductor 260, and oxygen vacancies can be prevented from being formed in the channel formation region of the oxide 230.
  • oxygen contained in the oxide 230 and oxygen contained in the insulator 280 can be prevented from diffusing into the conductor 260 and oxidizing the conductor 260.
  • the insulator 250c is at least less permeable to oxygen than the insulator 280.
  • the insulator 250c is an insulator containing at least nitrogen and silicon.
  • the insulator 250c has barrier properties against hydrogen. This can prevent impurities such as hydrogen contained in the conductor 260 from diffusing into the oxide 230b.
  • the insulator 275 has barrier properties against oxygen.
  • the insulator 275 is provided between the insulator 280 and the conductor 242a and between the insulator 280 and the conductor 242b. With this configuration, it is possible to suppress oxygen contained in the insulator 280 from diffusing into the conductor 242a and the conductor 242b. Therefore, it is possible to suppress the conductor 242a and the conductor 242b from being oxidized by the oxygen contained in the insulator 280, increasing the resistivity, and reducing the on-current.
  • the insulator 275 is preferably at least less permeable to oxygen than the insulator 280. For example, it is preferable to use silicon nitride as the insulator 275. In this case, the insulator 275 is an insulator containing at least nitrogen and silicon.
  • the barrier insulator against hydrogen is, for example, the insulator 275.
  • barrier insulators against hydrogen examples include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
  • oxides such as aluminum oxide, hafnium oxide, and tantalum oxide
  • nitrides such as silicon nitride.
  • the insulator 275 has a single layer structure or a multilayer structure of the hydrogen barrier insulator.
  • the source region and the drain region can be n-type.
  • the channel formation region can be made i-type or substantially i-type, and the source region and drain region can be made n-type, and a semiconductor device with good electrical characteristics can be provided.
  • the semiconductor device is miniaturized or highly integrated, it can have good electrical characteristics.
  • miniaturizing the transistor 200 high frequency characteristics can be improved. Specifically, the cutoff frequency can be improved.
  • the insulators 250a to 250d function as part of the first gate insulator.
  • the insulators 250a to 250d are provided in an opening formed in the insulator 280 together with the insulator 255 and the conductor 260.
  • each of the insulators 250a to 250d be thin.
  • the thickness of each of the insulators 250a to 250d is preferably 0.1 nm or more and 10 nm or less, more preferably 0.1 nm or more and 5.0 nm or less, more preferably 0.5 nm or more and 5.0 nm or less, and 1.0 nm or more.
  • each of the insulators 250a to 250d only needs to have a region with the thickness described above in at least a portion thereof.
  • the films In order to reduce the film thickness of the insulators 250a to 250d as described above, it is preferable to form the films using an atomic layer deposition (ALD) method. Further, in order to provide the insulators 250a to 250d, the insulator 255a, and the insulator 255b in the opening of the insulator 280, etc., it is preferable to form the films using an ALD method.
  • ALD method include a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, and a PEALD method in which a plasma-excited reactant is used. In the PEALD method, by using plasma, it is possible to form a film at a lower temperature, which may be preferable.
  • the ALD method can deposit atoms one layer at a time, it is possible to form extremely thin films, to form structures with high aspect ratios, to form films with few defects such as pinholes, and to improve coverage. It has the advantage of being able to form excellent films and being able to form films at low temperatures. Therefore, the insulator 255 and the insulator 250 are formed with a thin film thickness as described above with good coverage on the side surfaces of the opening formed in the insulator 280 and the side edges of the conductors 242a and 242b. be able to.
  • a film formed by the ALD method may contain more impurities such as carbon than a film formed by other film forming methods.
  • the impurities can be quantified using secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). ger Electron Spectroscopy) It can be done using
  • the present invention is not limited to this. isn't it.
  • the insulator 250 can be configured to include at least one of insulators 250a to 250d. By forming the insulator 250 with one layer, two layers, or three layers among the insulators 250a to 250d, the manufacturing process of the semiconductor device can be simplified and productivity can be improved.
  • the insulator 250 may have a two-layer structure.
  • the insulator 250 has a laminated structure of an insulator 250a and an insulator 250c on the insulator 250a.
  • a high-k material can be used for at least one of the insulator 250a and the insulator 250c. This makes it possible to reduce the equivalent oxide thickness (EOT) while maintaining the thickness of the insulator 250a and the insulator 250c to the extent that leakage current is suppressed.
  • EOT equivalent oxide thickness
  • the semiconductor device preferably has a configuration that suppresses hydrogen from entering the transistor 200 and the like.
  • the semiconductor device described in this embodiment the insulators are, for example, the insulator 283, the insulator 282, the insulator 222, the insulator 221, and the like.
  • the insulator 215 provided under the transistor 200 may have the same structure as one or both of the insulator 282 and the insulator 283.
  • the insulator 215 may have a laminated structure of the insulator 282 and the insulator 283, the insulator 282 may be on the bottom and the insulator 283 on the top, or the insulator 282 may be on the top. , the insulator 283 may be placed at the bottom.
  • One or more of the insulators 283, 282, 222, and 221 allows impurities such as water and hydrogen to diffuse into the transistor 200 or the like from the substrate side or from above the transistor 200 or the like. It is preferable that it functions as a barrier insulator that suppresses this. Therefore, one or more of the insulator 283, the insulator 282, the insulator 222, and the insulator 221 may contain hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO , NO 2 , etc.), copper atoms, and other insulating materials that are difficult to diffuse (the impurities described above are difficult to pass through). Alternatively, it is preferable to use an insulating material in which oxygen (for example, at least one of an oxygen atom and an oxygen molecule) is difficult to diffuse (the oxygen is difficult to permeate).
  • oxygen for example, at least one of an oxygen atom and an oxygen molecule
  • the insulator 283, the insulator 282, the insulator 222, and the insulator 221 each have an insulator having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, and for example, aluminum oxide, Magnesium oxide, hafnium oxide, zirconium oxide, oxide containing aluminum and hafnium (hafnium aluminate), oxide containing hafnium and zirconium (hafnium zirconium oxide), gallium oxide, indium gallium zinc oxide, silicon nitride, or nitride Silicon oxide or the like can be used.
  • the insulator 283 and the insulator 221 are preferably made of silicon nitride, which has a higher hydrogen barrier property. Further, for example, it is preferable to use aluminum oxide or the like as the insulator 282, which has a high ability to capture or fix hydrogen. Further, for example, the insulator 222 is preferably made of hafnium oxide, which is a high dielectric constant (high-k) material that has a high ability to capture or fix hydrogen.
  • high-k high dielectric constant
  • oxygen contained in the insulator 224 and the like can be suppressed from diffusing downward from the transistor 200 and the like.
  • insulators that have the function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, excessive oxygen and hydrogen can be prevented from diffusing into the oxide semiconductor. can be reduced. Thereby, it is possible to improve the electrical characteristics and reliability of the semiconductor device.
  • silicon nitride or the like which has higher hydrogen barrier properties, for the insulator 255a, the insulator 275, and the insulator 250c.
  • aluminum oxide or the like which has a high ability to capture or fix hydrogen, for the insulator 250a.
  • a region of the insulator 275 that does not overlap with the oxide 230 is in contact with the insulator 222, a side end of the insulator 275 is in contact with the insulator 255a, an upper end of the insulator 255a, and the insulator 250a through the insulator It is preferable that the upper end of the body 250c be in contact with the insulator 282.
  • the insulator 280 is separated from the oxide 230 by the insulator 275, and the insulator 280 is separated from the oxide 230 by the insulator 255a and the insulator 221.
  • the conductor 260 is separated from the insulator 250b by the body 250a, the conductor 260 is separated from the insulator 250b by the insulator 250c, and the conductor 242a2 and the conductor 242b2 are separated from the insulator 250b by the insulator 255a and the insulator 250a. .
  • impurities such as water and hydrogen contained in the insulator 280 can be suppressed from diffusing into the oxide 230 and the insulator 250b. Furthermore, impurities such as water and hydrogen contained in the conductor 260 can be suppressed from diffusing into the oxide 230 via the insulator 250b. Further, impurities such as water and hydrogen contained in the conductor 242a2 and the conductor 242b2 can be suppressed from diffusing into the oxide 230 via the insulator 250b.
  • the conductor 205 is arranged to overlap the oxide 230 and the conductor 260.
  • the conductor 205 is preferably embedded in an opening formed in the insulator 216.
  • the conductor 205 is preferably provided extending in the channel width direction, as shown in FIGS. 1A and 1C. With this structure, the conductor 205 functions as a wiring when a plurality of transistors are provided.
  • the conductor 205 preferably includes a conductor 205a and a conductor 205b.
  • the conductor 205a is provided in contact with the bottom and side walls of the opening.
  • the conductor 205b is provided so as to fill the recess of the conductor 205a formed along the opening.
  • the height of the top surface of the conductor 205 matches or approximately matches the height of the top surface of the insulator 216.
  • the conductor 205a has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2 , etc.), and copper atoms.
  • the conductive material has a conductive material having the following properties.
  • the conductor 205a By using a conductive material that has a function of reducing hydrogen diffusion for the conductor 205a, it is possible to prevent impurities such as hydrogen contained in the conductor 205b from diffusing into the oxide 230 via the insulator 216 or the like. It can be prevented. Further, by using a conductive material that has a function of suppressing oxygen diffusion for the conductor 205a, it is possible to suppress the decrease in conductivity due to oxidation of the conductor 205b. Examples of the conductive material having the function of suppressing oxygen diffusion include titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, and ruthenium oxide.
  • the conductor 205a can have a single layer structure or a laminated structure of the above-mentioned conductive materials.
  • the conductor 205a preferably includes titanium nitride.
  • the conductor 205b preferably includes tungsten.
  • the conductor 205 can function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without interlocking with the potential applied to the conductor 260.
  • Vth threshold voltage
  • the electrical resistivity of the conductor 205 is designed in consideration of the potential applied to the conductor 205, and the film thickness of the conductor 205 is set according to the electrical resistivity. Furthermore, the thickness of the insulator 216 is approximately the same as that of the conductor 205. Here, it is preferable that the film thicknesses of the conductor 205 and the insulator 216 be made as thin as the design of the conductor 205 allows. By reducing the thickness of the insulator 216, the absolute amount of impurities such as hydrogen contained in the insulator 216 can be reduced, so that diffusion of the impurities into the oxide 230 can be reduced. .
  • the conductor 205 may have a single layer structure, or a laminated structure of three or more layers. It may be a structure.
  • the conductor 205 has a three-layer stacked structure, in the stacked structure of the conductor 205a and the conductor 205b, a conductor made of the same material as the conductor 205a is further provided on the conductor 205b. It can be done. At this time, the conductor may be formed so that the upper surface of the conductor 205b is lower than the top of the conductor 205a, and fills the recess formed by the conductor 205a and the conductor 205b. .
  • the insulator 224 functions as a second gate insulator together with the insulator 221 and the insulator 222.
  • the insulator 224 in contact with the oxide 230 preferably includes, for example, silicon oxide or silicon oxynitride. Thereby, oxygen can be supplied from the insulator 224 to the oxide 230, and oxygen vacancies can be reduced.
  • the insulator 224 is preferably processed into an island shape.
  • insulators 224 of approximately the same size are provided for one transistor 200.
  • the amount of oxygen supplied from the insulator 224 to the oxide 230 becomes approximately the same. Therefore, variations in the electrical characteristics of the transistor 200 within the plane of the substrate can be suppressed.
  • the invention is not limited to this, and similarly to the insulator 222, the insulator 224 may be configured without patterning.
  • the insulator 224 may have a laminated structure of two or more layers.
  • the structure is not limited to a laminated structure made of the same material, but may be a laminated structure made of different materials.
  • the conductor 242a, the conductor 242b, and the conductor 260 it is preferable to use a conductive material that is difficult to oxidize or a conductive material that has a function of suppressing oxygen diffusion, respectively.
  • the conductive material include a conductive material containing nitrogen and a conductive material containing oxygen. Thereby, it is possible to suppress a decrease in the conductivity of the conductor 242a, the conductor 242b, and the conductor 260.
  • a conductive material containing metal and nitrogen is used as the conductor 242a, the conductor 242b, and the conductor 260, the conductor 242a, the conductor 242b, and the conductor 260 are conductive materials containing at least metal and nitrogen. Becomes a body.
  • the conductors 242a and 242b are shown in a two-layer structure.
  • the conductor 242a is a laminated film of a conductor 242a1 and a conductor 242a2 on the conductor 242a
  • the conductor 242b is a laminated film of a conductor 242b1 and a conductor 242b2 on the conductor 242b1.
  • metal nitrides such as nitrides containing tantalum, nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, and nitrides containing tantalum and aluminum. It is preferable to use a nitride containing titanium, aluminum, or the like. In one aspect of the invention, nitrides containing tantalum are particularly preferred. Further, for example, ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, etc. may be used. These materials are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain conductivity even after absorbing oxygen.
  • hydrogen contained in the oxide 230b or the like may diffuse into the conductor 242a1 or the conductor 242b1.
  • hydrogen contained in the oxide 230b etc. is easily diffused into the conductor 242a1 or the conductor 242b1, and the diffused hydrogen is It may combine with nitrogen contained in the conductor 242a1 or the conductor 242b1. That is, hydrogen contained in the oxide 230b or the like may be absorbed by the conductor 242a1 or the conductor 242b1.
  • the conductor 242a2 and the conductor 242b2 have higher conductivity than the conductor 242a1 and the conductor 242b1.
  • the thickness of the conductor 242a2 and the conductor 242b2 be larger than the thickness of the conductor 242a1 and the conductor 242b1.
  • any conductor that can be used for the conductor 205b may be used. With the above structure, the resistance of the conductor 242a2 and the conductor 242b2 can be reduced. Thereby, it is possible to improve the operating speed of the semiconductor device according to this embodiment.
  • tantalum nitride or titanium nitride can be used as the conductor 242a1 and the conductor 242b1, and tungsten can be used as the conductor 242a2 and the conductor 242b2.
  • a crystalline oxide such as CAAC-OS as the oxide 230b.
  • a metal oxide containing indium, zinc, and one or more selected from gallium, aluminum, and tin By using CAAC-OS, extraction of oxygen from the oxide 230b by the conductor 242a or the conductor 242b can be suppressed. Further, it is possible to suppress a decrease in the conductivity of the conductor 242a and the conductor 242b.
  • the insulator 255 has a laminated structure of an insulator 255a and an insulator 255b on the insulator 255a. It can also be seen as a structure in which the insulator 255b is placed inside the insulator 255a. As shown in FIGS. 1B and 1C, the insulator 255 is disposed in an opening formed in the insulator 280 or the like, and is arranged on the side of the insulator 280, the side of the insulator 275, the side of the insulator 271a, and the insulator.
  • the insulator 255 is formed in contact with the side wall of the opening formed in the insulator 280 or the like. That is, the insulator 255 can also be called a sidewall insulating film. Further, as shown in FIG. 1B, part of the insulator 255 may be formed in contact with the side surface of the oxide 230 and the side surface of the insulator 224.
  • the insulator 255a is an inorganic insulator that is formed in contact with the side surface of the conductor 242a2 and the side surface of the conductor 242b2, and protects the conductor 242a2 and the conductor 242b2.
  • the insulator 255a includes a side surface of the insulator 280, a side surface of the insulator 275, a side surface of the insulator 271a, a side surface of the insulator 271b, a side surface of the conductor 242a2, a side surface of the conductor 242b2, a top surface of the conductor 242a1, and a side surface of the conductor 242b1. , the top surface of the insulator 222 , the side surface of the oxide 230 , and the side surface of the insulator 224 .
  • a protrusion is formed in a portion of the insulator 255a that is in contact with the top surface of the conductor 242a1, the top surface of the conductor 242b1, or the top surface of the insulator 222.
  • the insulator 255a contacts the insulator 250 at the end of the protrusion.
  • the protruding portion of the insulator 255a has a shape that protrudes more toward the center of the opening formed in the insulator 280 or the like than other portions. That is, in a cross-sectional view in the channel length direction, the insulator 255a can be said to have a so-called L-shape.
  • the insulator 255a Since the insulator 255a is exposed to an oxidizing atmosphere, it is preferably an insulator that is not easily oxidized. Further, since the insulator 255a is in contact with the conductor 242a2 and the conductor 242b2, it is preferably an inorganic insulator that does not easily oxidize the conductors 242a2 and 242b2. Therefore, it is preferable to use a nitride insulator as the insulator 255a, which can be used as the insulator 250c having barrier properties against oxygen. For example, silicon nitride can be used as the insulator 255a.
  • the insulator 255b is provided on the protrusion of the insulator 255a.
  • the lower surface of the insulator 255b is in contact with the upper surface of the protrusion of the insulator 255a, and one side surface of the insulator 255b is in contact with the side surface of the insulator 255a.
  • the other side surface of the insulator 255b is formed to match or approximately match the end of the protrusion of the insulator 255a. Further, the other side surface of the insulator 255b is in contact with the insulator 250.
  • the insulator 255b has a side surface of the insulator 280, a side surface of the insulator 275, a side surface of the insulator 271a, a side surface of the insulator 271b, a side surface of the conductor 242a2, a side surface of the conductor 242b2, and a conductor. It does not touch the top surface of the body 242a1, the top surface of the conductor 242b1, the top surface of the insulator 222, the side surface of the oxide 230, and the side surface of the insulator 224.
  • the insulator 255b is preferably an oxide insulator that can be used for the insulator 250b.
  • silicon oxide can be used as the insulator 255b.
  • the insulator 255b preferably has a lower dielectric constant than the insulator 255a. In this way, by making the insulator 255 have a two-layer structure and increasing the film thickness, the distance between the conductor 260 and the conductor 242a or 242b can be increased, and parasitic capacitance can be reduced.
  • an oxide insulator that can be used for the insulator 250a may be used.
  • aluminum oxide or hafnium oxide can be used as the insulator 255b.
  • aluminum oxide and hafnium oxide have the function of capturing or fixing hydrogen.
  • the film thickness of the insulator 255 is preferably 0.5 nm or more and 20 nm or less, more preferably 0.5 nm or more and 10 nm or less, and more preferably 0.5 nm or more and 3 nm or less.
  • the insulator 255 only needs to have a region with the thickness described above at least in part.
  • the insulator 255 is provided in contact with the side wall of the opening formed in the insulator 280 or the like, it is preferable to form a film using an ALD method or the like that provides good coverage. If the film thickness of the insulator 255 is made excessively thick, the time required to form the insulator 255 by the ALD method becomes longer and productivity decreases, so it is preferable that the film thickness of the insulator 255 is within the above range.
  • the film thickness of the insulator 255a is thinner than that of the insulator 255b.
  • the thickness of the insulator 255a is preferably 0.5 nm or more and 10 nm or less, more preferably 1 nm or more and 3 nm or less. Further, it is preferable that the film thickness of the insulator 255b is thinner than that of the insulator 255a.
  • the thickness of the insulator 255b is preferably 5 nm or more and 10 nm or less.
  • the film thickness of the insulator 255a refers to the film thickness in the A1-A2 direction on at least a portion of the insulator 255a
  • the film thickness of the insulator 255b refers to the film thickness in the A1-A2 direction on at least a portion of the insulator 255b. Refers to the film thickness in the A2 direction.
  • the insulator 255a and the insulator 255b each use a single-layer insulating film, but one or both of the insulator 255a and the insulator 255b may have a laminated structure of two or more layers.
  • the insulator 255a and the insulator 255b may be a laminated film in which silicon nitride, hafnium oxide, and silicon oxide are laminated in this order.
  • the insulator 255a and the insulator 255b may be a laminated film in which silicon nitride, aluminum oxide, and silicon oxide are laminated in this order.
  • the insulator 255a and the insulator 255b may be a laminated film in which silicon nitride, silicon oxide, and hafnium oxide are laminated in this order.
  • the insulator 255a and the insulator 255b may be a laminated film in which silicon nitride, silicon oxide, and aluminum oxide are laminated in this order.
  • FIGS. 2A and 2B show a configuration in which the insulator 255a is placed on the outside and the insulator 255b is placed on the inside
  • the present invention is not limited to this. If oxidation of the side surfaces of the conductor 242a2 and the conductor 242b2 can be sufficiently suppressed, for example, as shown in FIG. 3C, a configuration may be adopted in which the insulator 255b is placed on the outside and the insulator 255a is placed on the inside. .
  • the lower surface of the insulator 255a may be in contact with the insulator 255b.
  • the insulator 255 functions as a mask when dividing the conductor 242a1 and the conductor 242b1. Therefore, as shown in FIG. 1B and the like, in a cross-sectional view of the transistor 200, the side edge of the insulator 255 coincides or approximately coincides with the side edge of the conductor 242a1 and the side edge of the conductor 242b1. It is preferable.
  • the stacked layers will be different from each other in the top view. It can be said that at least part of the outlines overlap. For example, this includes a case where the lower part of the side edge of the upper layer contacts the upper part of the side edge of the lower layer.
  • the upper layer and the lower layer include a case where the upper layer and the lower layer are processed using the same mask pattern or partially the same mask pattern. Further, for example, it includes a case where the lower layer is processed using the upper layer as a mask.
  • the contours do not overlap, and part of the upper layer may be located inside the lower layer, or part of the upper layer may be located outside the lower layer, and in this case, the side edges may or may not match. It is said that they roughly match, or that their top surface shapes match or roughly match.
  • the portion of the conductor 242a1 on which the insulator 255 is formed on the upper surface is formed to protrude from the conductor 242a2 toward the conductor 260 side.
  • the portion of the conductor 242b1 on which the insulator 255 is formed is formed to protrude from the conductor 242b2 toward the conductor 260 side.
  • the distance L2 between the conductor 242a1 and the conductor 242b1 is smaller than the distance L1 between the conductor 242a2 and the conductor 242b2.
  • the difference between L1 and L2 is equal to or approximately equal to twice the thickness of the insulator 255.
  • the distance L2 between the conductor 242a1 and the conductor 242b1 is reflected in the channel length of the transistor 200, so it is preferably fine.
  • the distance L2 is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • the distance L2 is more preferably about 2 nm or more and 20 nm or less. With such a configuration, it is possible to further shorten the distance between the source and drain, and to shorten the channel length accordingly.
  • the on-state current of the transistor 200 can be increased, the subthreshold swing value (sometimes referred to as S value) can be reduced, and the frequency characteristics can be improved.
  • the S value refers to the amount of change in gate voltage in a subthreshold region that causes a drain current to change by one order of magnitude with a constant drain voltage.
  • a recessed portion may be formed in a portion of the oxide 230b exposed from the conductor 242a1 and the conductor 242b1.
  • a region sandwiched between the conductor 242a1 and the conductor 242b1 may have a lower height than a region overlapping with the conductor 242a1 and a region overlapping with the conductor 242b1.
  • the side surfaces of the conductor 242a1 and the conductor 242b1 that face each other, and the side surfaces of the conductor 242a2 and the conductor 242b2 that face each other are perpendicular or approximately perpendicular to the top surface of the oxide 230b.
  • the invention is not limited thereto.
  • the mutually opposing side surfaces of the conductor 242a1 and the conductor 242b1, and the mutually opposing side surfaces of the conductor 242a2 and the conductor 242b2 may have a tapered shape.
  • the side surfaces of the insulator 271a, the insulator 271b, the insulator 275, and the insulator 280 may have a tapered shape.
  • the taper angles of the conductors 242a1 and 242b1 may be more acute than the taper angles of the conductors 242a2 and 242b2.
  • the upper portions of the side surfaces of the insulators 255a and 255b may have a tapered shape.
  • a tapered shape that is continuous or substantially continuous with the tapered shape of the side surfaces of the insulators 255a and 255b may be formed also on the upper part of the insulator 280.
  • the upper portions of the insulator 255a, the insulator 255b, and the insulator 280 may have curved surfaces.
  • the insulator 250a may be in contact with the tapered portions of the upper part of the insulator 255a, the upper part of the insulator 255b, and the upper part of the insulator 280. At this time, if the upper portions of the insulator 255 and the insulator 280 have curved surfaces, the insulator 250a can be formed with good coverage.
  • the transistor 200 may have the structure shown in FIGS. 4A to 4C, as shown in FIG. 5A. That is, the oxide 230b has a concave portion in a portion exposed from the conductors 242a1 and 242b1, the side surfaces of the conductors 242a1 and 242b1 and the side surfaces of the conductors 242a2 and 242b2 have a tapered shape, and the insulator 255 has a concave portion. The upper part of the side surface may have a tapered shape.
  • FIGS. 1A to 1C, etc. a structure is shown in which the side surface of the insulator 255b on the conductor 260 side matches or approximately matches the end of the protrusion of the insulator 255a when viewed from above, but the present invention It is not limited to this.
  • the side surface of the insulator 255b on the conductor 260 side may be set back from the end of the protrusion of the insulator 255a.
  • the width of the upper part of the conductor 260 becomes larger than the width of the lower part of the conductor 260. Thereby, the wiring resistance of the conductor 260 can be reduced.
  • the insulator 271a and the insulator 271b are inorganic insulators that function as an etching stopper during processing of the conductor 242a2 and the conductor 242b2, and protect the conductor 242a2 and the conductor 242b2. Further, since the insulator 271a and the insulator 271b are in contact with the conductor 242a2 and the conductor 242b2, it is preferable that the insulator 271a and the insulator 271b are inorganic insulators that do not easily oxidize the conductors 242a and 242b. Therefore, as shown in FIG.
  • the insulator 271a has a stacked structure of an insulator 271a1 and an insulator 271a2 on the insulator 271a
  • the insulator 271b has a stacked structure of an insulator 271b1 and an insulator 271b2 on the insulator 271b1.
  • the insulators 271a1 and 271b1 it is preferable to use a nitride insulator that can be used for the insulator 250c so that the conductors 242a2 and 242b2 are difficult to oxidize.
  • an oxide insulator that can be used for the insulator 250b so that the insulators 271a2 and 271b2 function as etching stoppers.
  • the insulator 271a1 is in contact with the top surface of the conductor 242a2 and a part of the insulator 275
  • the insulator 271b1 is in contact with the top surface of the conductor 242b2 and a part of the insulator 275
  • the insulator 271a2 is in contact with the upper surface of the insulator 271a1 and the lower surface of the insulator 275
  • the insulator 271b2 is in contact with the upper surface of the insulator 271b1 and the lower surface of the insulator 275.
  • silicon nitride can be used as the insulator 271a1 and the insulator 271b1
  • silicon oxide can be used as the insulator 271a2 and the insulator 271b2.
  • the insulator that is the source of the insulator 271a and the insulator 271b functions as a mask for the conductor that is the source of the conductor 242a and the conductor 242b, so the conductors 242a and 242b have a curved surface between the side surface and the top surface. I don't have it.
  • the ends of the conductor 242a and the conductor 242b, where the side surface and the top surface intersect have an angular shape. Since the ends where the side surfaces and the top surfaces of the conductors 242a and 242b intersect are angular, the cross-sectional area of the conductors 242a and 242b becomes larger than when the ends have curved surfaces.
  • the conductor 260 is placed in the opening formed in the insulator 280 and the insulator 275, as shown in FIGS. 1B and 1C.
  • the conductor 260 covers the top surface of the insulator 222, the side surface of the insulator 224, the side surface of the oxide 230a, the side surface of the oxide 230b, and the top surface of the oxide 230b through the insulator 250.
  • the top surface of the conductor 260 is arranged to match or approximately match the height of the top of the insulator 250, the top of the insulator 255, and the top surface of the insulator 280.
  • the side wall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, or may have a tapered shape. By tapering the sidewall, the coverage of the insulator 255, the insulator 250, etc. provided in the opening of the insulator 280 is improved, and defects such as holes can be reduced.
  • the conductor 260 functions as a first gate electrode of the transistor 200.
  • the conductor 260 is preferably provided extending in the channel width direction, as shown in FIGS. 1A and 1C. With this structure, the conductor 260 functions as a wiring when a plurality of transistors are provided.
  • a curved surface may be provided between the side surface of the oxide 230b and the top surface of the oxide 230b in a cross-sectional view of the transistor 200 in the channel width direction, as shown in FIG. 1C. good. That is, the end of the side surface and the end of the top surface may be curved (hereinafter also referred to as round shape).
  • the radius of curvature of the curved surface is larger than 0 nm and smaller than the film thickness of the oxide 230b in the region overlapping with the conductors 242a and 242b, or smaller than half the length of the region not having the curved surface.
  • the radius of curvature of the curved surface is greater than 0 nm and less than 20 nm, preferably greater than or equal to 1 nm and less than or equal to 15 nm, and more preferably greater than or equal to 2 nm and less than or equal to 10 nm.
  • a structure of a transistor in which a channel formation region is electrically surrounded by at least the electric field of the first gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the S-channel structure disclosed in this specification and the like has a structure different from the Fin type structure and the planar type structure.
  • the S-channel structure disclosed in this specification and the like can also be regarded as a type of Fin type structure.
  • a Fin type structure refers to a structure in which a gate electrode is arranged so as to surround at least two or more surfaces (specifically, two, three, or four sides) of a channel.
  • the channel formation region can be electrically surrounded.
  • the S-channel structure is a structure that electrically surrounds the channel formation region, it is substantially equivalent to a GAA (Gate All Around) structure or an LGAA (Lateral Gate All Around) structure. You can say that.
  • the channel formation region formed at or near the interface between the oxide 230 and the gate insulator can be formed in the entire bulk of the oxide 230. I can do it. Therefore, it is possible to improve the current density flowing through the transistor, and thus it is expected that the on-state current of the transistor or the field effect mobility of the transistor will be increased.
  • the insulator 224 is arranged in an island shape. Therefore, as shown in FIG. 1C, at least a portion of the lower surface of the conductor 260 can be provided below the lower surface of the oxide 230b. Accordingly, the conductor 260 can be provided opposite the top surface and side surfaces of the oxide 230b, so that the electric field of the conductor 260 can be applied to the top surface and side surfaces of the oxide 230b.
  • the transistor 200 can have an S-channel structure.
  • the transistor 200 illustrated in FIG. 1C has an S-channel structure
  • the semiconductor device of one embodiment of the present invention is not limited thereto.
  • the transistor structure that can be used in one embodiment of the present invention may be one or more selected from a planar structure, a fin structure, and a GAA structure.
  • the conductor 260 is shown as having a two-layer structure.
  • the conductor 260 preferably includes a conductor 260a and a conductor 260b disposed on the conductor 260a.
  • the conductor 260a is arranged so as to cover the bottom and side surfaces of the conductor 260b.
  • the conductor 260a it is preferable to use a conductive material that has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • a conductive material that has a function of suppressing the diffusion of oxygen for example, at least one of oxygen atoms and oxygen molecules).
  • the conductor 260a has the function of suppressing oxygen diffusion, it is possible to suppress the conductor 260b from being oxidized by oxygen contained in the insulator 280 and the like, and thereby reducing its conductivity.
  • the conductive material having the function of suppressing oxygen diffusion it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like.
  • the conductor 260b can be made of a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 260b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the above conductive material.
  • the conductor 260 is formed in a self-aligned manner so as to fill an opening formed in the insulator 280 or the like.
  • the conductor 260 can be placed overlapping the region between the conductor 242a1 and the conductor 242b1 without alignment.
  • the insulator 216 and the insulator 280 each have a lower dielectric constant than the insulator 222.
  • parasitic capacitance generated between wirings can be reduced.
  • the insulator 216 and the insulator 280 each include silicon oxide, silicon oxynitride, fluorine-doped silicon oxide, carbon-doped silicon oxide, carbon- and nitrogen-doped silicon oxide, and holes. It is preferable to include one or more of silicon oxides.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • materials such as silicon oxide, silicon oxynitride, and silicon oxide having vacancies are preferable because they can easily form a region containing oxygen that is desorbed by heating.
  • the upper surfaces of the insulator 216 and the insulator 280 may each be flattened.
  • the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • the insulator 280 preferably includes an oxide containing silicon, such as silicon oxide or silicon oxynitride.
  • each layer constituting the semiconductor device may have a single layer structure or a laminated structure.
  • a substrate for forming a transistor for example, an insulating substrate, a semiconductor substrate, or a conductive substrate can be used.
  • the insulating substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria-stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include semiconductor substrates made of silicon or germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • a semiconductor substrate having an insulator region inside the semiconductor substrate described above for example, an SOI (Silicon On Insulator) substrate, etc.
  • the conductive substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • the substrate for example, a substrate having a metal nitride, a substrate having a metal oxide, a substrate having a conductor or a semiconductor provided on an insulator substrate, a substrate having a conductor or an insulator provided on a semiconductor substrate, etc.
  • Examples include a substrate and a substrate in which a conductive substrate is provided with a semiconductor or an insulator.
  • these substrates may be provided with one or more types of elements. Examples of the elements provided on the substrate include a capacitive element, a resistive element, a switch element, a light emitting element, and a memory element.
  • insulator examples include oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides having insulating properties.
  • Examples of insulators with a high dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, and silicon and hafnium. Oxynitrides containing silicon and nitrides containing silicon and hafnium are mentioned.
  • Insulators with low dielectric constants include, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and air. Examples include silicon oxide with pores and resin.
  • insulators that have the function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • lanthanum, neodymium, hafnium, and tantalum can be used in a single layer or in a stack.
  • examples of insulators that have the function of suppressing the permeation of impurities such as hydrogen and oxygen include aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and Examples include metal oxides such as hafnium and tantalum oxide, and metal nitrides such as aluminum nitride, silicon nitride oxide, and silicon nitride.
  • the insulator that functions as the gate insulator is preferably an insulator that has a region containing oxygen that is desorbed by heating.
  • the oxide 230 by forming a structure in which silicon oxide or silicon oxynitride having a region containing oxygen that is released by heating is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated for.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the following, an alloy containing the above-mentioned metal elements as a component, an alloy containing a combination of the above-mentioned metal elements, or the like.
  • Examples of conductors include tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and lanthanum and nickel. Examples include oxides containing.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are respectively , a conductive material that is difficult to oxidize, or a material that maintains conductivity even if it absorbs oxygen, so it is preferable.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a conductor with a laminated structure for example, a laminated structure in which a material containing the above-mentioned metal element and a conductive material containing oxygen are combined, a material containing the above-mentioned metal element and a conductive material containing nitrogen, etc. , or a stacked structure that combines a material containing the metal element described above, a conductive material containing oxygen, and a conductive material containing nitrogen may be applied.
  • the conductor that functions as the gate electrode should have a stacked structure that is a combination of a material containing the aforementioned metal element and a conductive material containing oxygen. is preferred. In this case, it is preferable to provide a conductive material containing oxygen on the channel forming region side. By providing a conductive material containing oxygen on the side of the channel formation region, oxygen released from the conductive material is easily supplied to the channel formation region.
  • a conductive material containing oxygen and a metal element contained in the metal oxide in which the channel is formed as the conductor functioning as the gate electrode.
  • a conductive material containing the aforementioned metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • one or more of the added indium tin oxides may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the metal oxide contains at least indium or zinc.
  • aluminum, gallium, yttrium, tin, antimony, etc. are contained.
  • one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be included.
  • the metal oxide is an In-M-Zn oxide containing indium, element M, and zinc.
  • the element M is aluminum, gallium, yttrium, tin, or antimony.
  • Other elements applicable to element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M there are cases where a plurality of the above-mentioned elements may be combined.
  • the element M is preferably one or more selected from gallium, aluminum, yttrium, and tin.
  • metal oxides containing nitrogen may also be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • In-Ga-Zn oxide will be explained as an example of a metal oxide.
  • the crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite). e), single crystal, and polycrystal (polycrystal), etc.
  • oxide semiconductors may be classified into a different classification from the above.
  • oxide semiconductors are classified into single-crystal oxide semiconductors and other non-single-crystal oxide semiconductors.
  • non-single crystal oxide semiconductors include the above-mentioned CAAC-OS and nc-OS.
  • non-single crystal oxide semiconductors include polycrystalline oxide semiconductors, pseudo-amorphous oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that has a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the surface on which the CAAC-OS film is formed, or the normal direction to the surface of the CAAC-OS film.
  • a crystal region is a region having periodicity in atomic arrangement. Note that if the atomic arrangement is regarded as a lattice arrangement, a crystal region is also a region with a uniform lattice arrangement.
  • the CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and this region may have distortion.
  • CAAC-OS is an oxide semiconductor that has c-axis orientation and no obvious orientation in the a-b plane direction.
  • each of the plurality of crystal regions is composed of one or more minute crystals (crystals with a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the maximum diameter of the crystal region may be about several tens of nanometers.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that in CAAC-OS, reduction in electron mobility due to grain boundaries is less likely to occur. Further, since the crystallinity of an oxide semiconductor may be degraded due to the incorporation of impurities, generation of defects, etc., CAAC-OS can also be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability. Furthermore, CAAC-OS is stable even at high temperatures (so-called thermal budget) during the manufacturing process. Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • the nc-OS has minute crystals.
  • the size of the microcrystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the microcrystal is also referred to as a nanocrystal.
  • no regularity is observed in crystal orientation between different nanocrystals. Therefore, no orientation is observed throughout the film. Therefore, depending on the analysis method, nc-OS may be indistinguishable from a-like OS or an amorphous oxide semiconductor.
  • the a-like OS is an oxide semiconductor having a structure between that of an nc-OS and an amorphous oxide semiconductor.
  • A-like OS has holes or low density areas. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. Further, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, a structure of a material in which elements constituting a metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic or a patch.
  • CAC-OS has a structure in which the material is separated into a first region and a second region, resulting in a mosaic shape, and the first region is distributed throughout the film (hereinafter also referred to as cloud shape). ). That is, CAC-OS is a composite metal oxide having a configuration in which the first region and the second region are mixed.
  • CAC-OS in In-Ga-Zn oxide refers to a material composition containing In, Ga, Zn, and O, in which a region (first region) whose main component is In and a region This refers to a structure in which regions (second regions) whose main component is Ga are mosaic-like, and these regions exist randomly. Therefore, it is presumed that CAC-OS has a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed by sputtering, for example, without heating the substrate. Furthermore, when forming the CAC-OS by sputtering, one or more of an inert gas (typically argon), oxygen gas, and nitrogen gas may be used as the film-forming gas. I can do it. Furthermore, the lower the flow rate ratio of oxygen gas to the total flow rate of film-forming gas during film formation, the more preferable it is. For example, the flow rate ratio of oxygen gas to the total flow rate of film forming gas during film formation is set to 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • an inert gas typically argon
  • oxygen gas oxygen gas
  • nitrogen gas nitrogen gas
  • the first region is a region with higher conductivity than the second region.
  • carriers flow through the first region, thereby exhibiting conductivity as a metal oxide. Therefore, by distributing the first region in a cloud shape in the metal oxide, high field effect mobility ( ⁇ ) can be achieved.
  • the second region is a region with higher insulation than the first region. That is, by distributing the second region in the metal oxide, leakage current can be suppressed.
  • CAC-OS when CAC-OS is used in a transistor, the conductivity caused by the first region and the insulation caused by the second region act complementary to each other, thereby providing a switching function (on/off). functions) can be added to CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the entire material has a semiconductor function.
  • CAC-OS is optimal for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different properties.
  • the oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. You can.
  • a semiconductor material having a band gap (a semiconductor material other than a zero-gap semiconductor) may be used for the semiconductor layer of the transistor.
  • a semiconductor material having a band gap a semiconductor material other than a zero-gap semiconductor
  • a single element semiconductor such as silicon or a compound semiconductor such as gallium arsenide may be used.
  • transition metal chalcogenide that functions as a semiconductor for the semiconductor layer of the transistor.
  • transition metal chalcogenides applicable to the semiconductor layer of a transistor include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ) .
  • tungsten sulfide typically WS 2
  • tungsten selenide typically WSe 2
  • tungsten tellurium typically WTe 2
  • hafnium sulfide typically HfS 2
  • hafnium selenide typically HfSe 2
  • zirconium sulfide typically ZrS 2
  • zirconium selenide typically ZrSe 2
  • the like By applying the above-described transition metal chalcogenide to a semiconductor layer of a transistor, a semiconductor device with a large on-current can be provided.
  • Example of method for manufacturing semiconductor device An example of a method for manufacturing a semiconductor device according to one embodiment of the present invention will be described with reference to FIGS. 6A to 17D. Here, the case of manufacturing the semiconductor device shown in FIGS. 1A to 1D will be described as an example.
  • a in each figure indicates a plan view.
  • B in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A1-A2 in A in each figure, and is also a cross-sectional view in the channel length direction of the transistor 200.
  • C in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A3-A4 in A in each figure, and is also a cross-sectional view in the channel width direction of the transistor 200.
  • D in each figure is a cross-sectional view of a portion indicated by a dashed line A5-A6 in A in each figure, and is also a cross-sectional view in the channel width direction of the transistor 200.
  • 15A to 15C are enlarged cross-sectional views of the transistor 200 in the channel length direction.
  • an insulating material for forming an insulator, a conductive material for forming a conductor, or a semiconductor material for forming a semiconductor is used by sputtering method, chemical vapor deposition (CVD).
  • the film can be formed by appropriately using a method such as a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, or an ALD method.
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • sputtering methods include an RF sputtering method that uses a high frequency power source as a sputtering power source, a DC sputtering method that uses a DC power source, and a pulsed DC sputtering method that changes the voltage applied to the electrode in a pulsed manner.
  • the RF sputtering method is mainly used when forming an insulating film
  • the DC sputtering method is mainly used when forming a metal conductive film.
  • the pulsed DC sputtering method is mainly used when forming a film of a compound such as an oxide, nitride, or carbide by a reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD) method that uses plasma, a thermal CVD (TCVD) method that uses heat, a photo CVD (Photo CVD) method that uses light, etc. Furthermore, depending on the raw material gas used, it can be divided into a metal CVD (MCVD) method and a metal organic CVD (MOCVD) method.
  • PECVD plasma CVD
  • TCVD thermal CVD
  • Photo CVD Photo CVD
  • MCVD metal CVD
  • MOCVD metal organic CVD
  • the plasma CVD method can obtain high-quality films at relatively low temperatures. Further, since the thermal CVD method does not use plasma, it is a film forming method that can reduce plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitors, etc.) included in a semiconductor device may be charged up by receiving charges from plasma. At this time, the accumulated charges may destroy wiring, electrodes, elements, etc. included in the semiconductor device. On the other hand, in the case of a thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of semiconductor devices can be increased. Further, in the thermal CVD method, since plasma damage does not occur during film formation, a film with fewer defects can be obtained.
  • the ALD method a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, a PEALD method in which a plasma-excited reactant is used, etc. can be used.
  • the CVD method and ALD method are different from the sputtering method in which particles emitted from a target or the like are deposited. Therefore, this is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation rate.
  • a film of any composition can be formed by changing the flow rate ratio of source gases.
  • the flow rate ratio of source gases by changing the flow rate ratio of source gases during film formation, it is possible to form a film whose composition changes continuously.
  • the time required for film formation is reduced because it does not require time for transport or pressure adjustment. can do. Therefore, it may be possible to improve the productivity of semiconductor devices.
  • a film of any composition can be formed by simultaneously introducing a plurality of different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles for each precursor.
  • the insulator 215 can be the same insulator as any one of the insulators 224, the insulators 282, and the insulators 283, or a laminated film of a plurality of them.
  • a method for forming the insulator 215 for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method can be used. It is preferable to use a sputtering method that does not require the use of molecules containing hydrogen in the film-forming gas because the hydrogen concentration in the insulator 215 can be reduced.
  • an insulator 216 is formed on the insulator 215.
  • the insulator 216 is preferably formed using a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulator 216 can be reduced.
  • the method for forming the insulator 216 is not limited to the sputtering method, and may be appropriately performed using a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film is formed as the insulator 216 using a sputtering method.
  • the insulator 215 and the insulator 216 be formed continuously without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used. Thereby, the insulator 215 and the insulator 216 can be formed while reducing hydrogen in the film, and furthermore, it is possible to reduce the amount of hydrogen mixed into the film between each film forming process.
  • an opening is formed in the insulator 216 to reach the insulator 215.
  • wet etching may be used to form the openings, it is preferable to use dry etching for fine processing.
  • an insulator for the insulator 215 that functions as an etching stopper film when etching the insulator 216 to form a groove.
  • silicon oxide or silicon oxynitride is used for the insulator 216 that forms the groove
  • silicon nitride, aluminum oxide, hafnium oxide, or the like is preferably used for the insulator 215.
  • the conductive film serving as the conductor 205a desirably includes a conductor having a function of suppressing permeation of oxygen.
  • a conductor having a function of suppressing permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride, etc. can be used. Alternatively, it may be a laminated film of a conductor having a function of suppressing oxygen permeation and tantalum, tungsten, titanium, molybdenum, aluminum, copper, or a molybdenum-tungsten alloy.
  • the conductive film that becomes the conductor 205a can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as a conductive film that becomes the conductor 205a.
  • a metal nitride as the lower layer of the conductor 205b, it is possible to prevent the conductor 205b from being oxidized by the insulator 216 or the like.
  • a metal that easily diffuses such as copper, it is possible to prevent the metal from diffusing out from the conductor 205a.
  • a conductive film that will become the conductor 205b is formed.
  • the conductive film serving as the conductor 205b tantalum, tungsten, titanium, molybdenum, aluminum, copper, molybdenum-tungsten alloy, or the like can be used.
  • the conductive film can be formed using a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed as a conductive film that becomes the conductor 205b.
  • an insulator 221 is formed on the insulator 216 and the conductor 205 (see FIGS. 7A to 7D).
  • the above-mentioned insulator that has barrier properties against oxygen, hydrogen, and water may be used.
  • the insulator 221 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • silicon nitride is formed as the insulator 221 using the PEALD method.
  • an insulator 222 is formed on the insulator 221 (see FIGS. 7A to 7D).
  • an insulator containing an oxide of one or both of aluminum and hafnium it is preferable to form an insulator containing an oxide of one or both of aluminum and hafnium.
  • the insulator containing an oxide of one or both of aluminum and hafnium it is preferable to use, for example, aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate).
  • hafnium zirconium oxide it is preferable to use hafnium zirconium oxide.
  • An insulator containing oxides of one or both of aluminum and hafnium has barrier properties against oxygen, hydrogen, and water.
  • the insulator 222 has barrier properties against hydrogen and water, hydrogen and water contained in the structure provided around the transistor are suppressed from diffusing into the inside of the transistor through the insulator 222, thereby preventing oxidation. The generation of oxygen vacancies in the substance 230 can be suppressed.
  • the insulator 222 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • hafnium oxide is formed as the insulator 222 using an ALD method.
  • an insulating film 224f is formed on the insulator 222 (see FIGS. 7A to 7D).
  • an insulator corresponding to the insulator 224 described above may be used.
  • the insulating film 224f can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • silicon oxide is formed as the insulating film 224f using a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulating film 224f can be reduced. Since the insulating film 224f comes into contact with the oxide 230a in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • heat treatment may be performed before forming the insulating film 224f.
  • the heat treatment may be performed under reduced pressure to continuously form the insulating film 224f without exposure to the atmosphere.
  • moisture and hydrogen adsorbed on the surface of the insulator 222 can be removed, and the moisture concentration and hydrogen concentration in the insulator 222 can be further reduced.
  • the heat treatment can prevent moisture or impurities such as hydrogen from entering from below the insulator 221.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • an oxide film 230af is formed on the insulating film 224f, and an oxide film 230bf is formed on the oxide film 230af (see FIGS. 7A to 7D).
  • a metal oxide corresponding to the oxide 230a may be used
  • the oxide film 230bf a metal oxide corresponding to the oxide 230b may be used. Note that the oxide film 230af and the oxide film 230bf are preferably formed continuously without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide film 230af and the oxide film 230bf, and to prevent the vicinity of the interface between the oxide film 230af and the oxide film 230bf from adhering to the oxide film 230af and the oxide film 230bf. Can be kept clean.
  • the oxide film 230af and the oxide film 230bf can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method, respectively.
  • a sputtering method is used to form the oxide film 230af and the oxide film 230bf.
  • oxygen or a mixed gas of oxygen and a noble gas is used as the sputtering gas.
  • a noble gas By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the oxide film to be formed can be increased.
  • an In-M-Zn oxide target or the like can be used.
  • the proportion of oxygen contained in the sputtering gas is preferably 70% or more, more preferably 80% or more, and even more preferably 100%.
  • the oxide film 230bf when forming the oxide film 230bf by sputtering, if the proportion of oxygen contained in the sputtering gas is more than 30% and less than 100%, preferably more than 70% and less than 100%, oxygen-excess oxidation occurs. A physical semiconductor is formed. A transistor using an oxygen-rich oxide semiconductor in a channel formation region has relatively high reliability. However, one embodiment of the present invention is not limited thereto.
  • an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is set to 1% or more and 30% or less, preferably 5% or more and 20% or less. Ru.
  • a transistor using an oxygen-deficient oxide semiconductor in a channel formation region can achieve relatively high field-effect mobility. Furthermore, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • a film is formed using an oxide target with a numerical ratio].
  • an oxide target with In:Ga:Zn 4:2:4.1 [atomic ratio]
  • the insulating film 224f, the oxide film 230af, and the oxide film 230bf by a sputtering method without exposing them to the atmosphere.
  • the oxide film 230af and the oxide film 230bf are formed by sputtering, but the present invention is not limited to this.
  • the oxide film 230af may be formed by a sputtering method
  • the oxide film 230bf may be formed by an ALD method.
  • either one or both of the oxide 230a and the oxide 230b may have a stacked structure.
  • a laminated film in which metal oxide layers are laminated in this order may be formed.
  • Crystallinity can be improved by forming the oxide film 230af by a sputtering method.
  • part or all of the oxide film 230bf can be crystallized by increasing the crystallinity of the oxide film 230af and then forming the oxide film 230bf on the oxide film 230af. That is, by increasing the crystallinity of the oxide film 230af, it is possible to also improve the crystallinity of the oxide film 230bf.
  • the oxide film 230af is an oxide semiconductor film with a CAAC structure
  • the oxide film 230bf formed over the oxide film 230af can also be an oxide semiconductor film with a CAAC structure.
  • the oxide film 230bf by forming the oxide film 230bf using the ALD method, a thin film can be formed with good controllability. Thereby, the oxide film 230bf can be made as thin as designed. By using the oxide film 230af and the oxide film 230bf, the electrical characteristics and reliability of the transistor 200 can be improved.
  • the heat treatment may be performed within a temperature range in which the oxide films 230af and 230bf do not become polycrystalline.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, or 550°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the oxygen gas content is preferably about 20%.
  • the heat treatment may be performed under reduced pressure.
  • heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the desorbed oxygen.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment is preferably 1 ppb or less, more preferably 0.1 ppb or less, and even more preferably 0.05 ppb or less.
  • the heat treatment is performed at a temperature of 450° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • Such heat treatment containing oxygen gas can reduce impurities such as carbon, water, and hydrogen in the oxide film 230af and the oxide film 230bf.
  • the crystallinity of the oxide film 230bf can be improved and a denser and more precise structure can be obtained.
  • the crystal regions in the oxide films 230af and 230bf can be increased, and in-plane variations in the crystal regions in the oxide films 230af and 230bf can be reduced. Therefore, in-plane variations in the electrical characteristics of the transistor can be reduced.
  • hydrogen in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf moves to the insulator 222 and is absorbed into the insulator 222.
  • hydrogen in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf diffuses into the insulator 222. Therefore, the hydrogen concentration in the insulator 222 increases, but the hydrogen concentrations in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf decrease.
  • the insulator 221 in contact with the lower surface of the insulator 222, it is possible to prevent moisture or impurities such as hydrogen from entering from below the insulator 221 during the heat treatment.
  • the insulating film 224f (later the insulator 224) functions as the second gate insulator of the transistor 200
  • the oxide film 230af and the oxide film 230bf (later the oxide 230a and the oxide 230b) function as the second gate insulator of the transistor 200. Functions as a channel forming region.
  • the transistor 200 formed using the insulating film 224f, the oxide film 230af, and the oxide film 230bf with reduced hydrogen concentration is preferable because it has good reliability.
  • a conductive film 242_1f is formed on the oxide film 230bf, and a conductive film 242_2f is formed on the conductive film 242_1f (see FIGS. 7A to 7D).
  • a conductor corresponding to the conductors 242a1 and 242b1 may be used, and as the conductive film 242_2f, a conductor corresponding to the conductors 242a2 and 242b2 may be used.
  • the conductive film 242_1f is formed in contact with the oxide film 230bf without performing an etching process, so that the upper surface of the oxide film 230bf can be protected by the conductive film 242_1f. This can reduce the diffusion of impurities into the oxide 230 that constitutes the transistor, so that the electrical characteristics and reliability of the semiconductor device can be improved.
  • the conductive film 242_1f and the conductive film 242_2f can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method, respectively.
  • tantalum nitride is formed as the conductive film 242_1f and tungsten is formed as the conductive film 242_2f using a sputtering method.
  • heat treatment may be performed before forming the conductive film 242_1f.
  • the heat treatment may be performed under reduced pressure to continuously form the conductive film 242_1f without exposure to the atmosphere. By performing such treatment, it is possible to remove moisture and hydrogen adsorbed on the surface of the oxide 230b, and further reduce the moisture concentration and hydrogen concentration in the oxide 230a and the oxide 230b.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • an insulating film 271f is formed on the conductive film 242_1f (see FIGS. 7A to 7D).
  • the insulating film 271f can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film 271f it is preferable to use an insulating film having a function of suppressing permeation of oxygen.
  • a laminated film of a silicon nitride film and a silicon oxide film on the silicon nitride film may be formed by sputtering.
  • the insulating film 271f when forming the insulating film 271f as a laminated film, it is preferable to form the film continuously without exposing it to the atmospheric environment. By forming the film without exposing it to the atmosphere, the vicinity of the interface of the laminated film of the insulating film 271f can be kept clean. Further, it is more preferable that the conductive film 242_1f to the insulating film 271f be formed continuously without being exposed to the atmospheric environment.
  • heat treatment may be performed before forming the insulating film 271f.
  • the heat treatment may be performed under reduced pressure to continuously form the insulating film 271f without exposure to the atmosphere. By performing such processing, it is possible to remove moisture and hydrogen adsorbed on the surfaces of the conductive film 242_1f and the conductive film 242_2f, and further reduce the moisture concentration and hydrogen concentration in the conductive film 242_1f and the conductive film 242_2f. can.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • the insulating film 224f, oxide film 230af, oxide film 230bf, conductive film 242_1f, conductive film 242_2f, and insulating film 271f are processed into island shapes, and the insulator 224, oxide 230a, and oxide
  • the object 230b, the conductor 242_1, the conductor 242_2, and the insulator 271 are formed (see FIGS. 8A to 8D).
  • a dry etching method or a wet etching method can be used for the above processing. Processing by dry etching is suitable for microfabrication. Further, the processing of the insulating film 224f, the oxide film 230af, the oxide film 230bf, the conductive film 242_1f, the conductive film 242_2f, and the insulating film 271f may be performed under different conditions.
  • the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271 into an island shape all at once.
  • the side ends of the conductor 242_1 and the side ends of the conductor 242_2 match or approximately match the side ends of the oxide 230a and the oxide 230b.
  • the side edges of the insulator 224 coincide or approximately coincide with the side edges of the oxide 230.
  • the side edge of the insulator 271 coincides with or approximately coincides with the side edge of the conductor 242_2.
  • the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271 are formed so that at least a portion thereof overlaps with the conductor 205. Further, the insulator 222 is exposed in a region where the insulator 222 does not overlap with the insulator 224, the oxide 230a, the oxide 230b, the conductor 242_1, the conductor 242_2, and the insulator 271.
  • the side surfaces of the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271 may have a tapered shape.
  • the taper angles of the side surfaces of the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271 may be, for example, 60° or more and less than 90°.
  • the configuration is not limited to the above, and the side surfaces of the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271 are perpendicular or approximately perpendicular to the upper surface of the insulator 222. You may also do so. With such a configuration, it is possible to reduce the area and increase the density when providing a plurality of transistors.
  • a resist mask is formed by removing or leaving the exposed area using a developer.
  • a conductor, semiconductor, insulator, or the like can be processed into a desired shape.
  • a resist mask can be formed by exposing a resist to light using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure.
  • an electron beam or an ion beam may be used instead of the light described above. Note that when using an electron beam or an ion beam, it may not be necessary to use a mask.
  • resist masks that are no longer needed after processing can be processed by dry etching such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), by wet etching, or by wet etching after dry etching. It can be removed by performing an etching process or by performing a dry etching process after a wet etching process.
  • dry etching such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment)
  • oxygen plasma treatment oxygen plasma
  • wet etching or by wet etching after dry etching. It can be removed by performing an etching process or by performing a dry etching process after a wet etching process.
  • a hard mask made of an insulator or a conductor may be used under the resist mask.
  • an insulating film or a conductive film serving as a hard mask material is formed on the insulating film 271f, a resist mask is formed thereon, and the hard mask material is etched to form a hard mask in a desired shape. can do.
  • Etching of the insulating film 271f etc. may be performed after removing the resist mask, or may be performed with the resist mask remaining. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the oxide film 230bf and the like.
  • the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not necessarily necessary to remove the hard mask.
  • a configuration may be adopted in which an SOC (Spin On Carbon) film and an SOG (Spin On Glass) film are formed between the workpiece and the resist mask.
  • SOC Spin On Carbon
  • SOG Spin On Glass
  • a lithography method can be performed by forming an SOC film, an SOG film, and a resist mask in this order on a workpiece.
  • an etching gas containing halogen can be used, and specifically, an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • C 4 F 6 gas, C 5 F 6 gas, C 4 F 8 gas, CF 4 gas, SF 6 gas, CHF 3 gas, CH 2 F 2 gas, Cl 2 gas, BCl 3 gas, SiCl 4 gas, BBr 3 gas, or the like can be used alone or in combination of two or more gases.
  • oxygen gas, carbon dioxide gas, nitrogen gas, helium gas, argon gas, hydrogen gas, hydrocarbon gas, or the like can be added as appropriate to the above etching gas.
  • a gas that does not contain halogen gas but contains hydrocarbon gas or hydrogen gas may be used as the etching gas.
  • Hydrocarbons used for etching gas include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), ethylene (C 2 H 4 ), propylene (C 3 H 6 ), acetylene (C 2 H 2 ), and propyne (C 3 H 4 ).
  • Etching conditions can be set as appropriate depending on the object to be etched.
  • a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used as the dry etching device.
  • a capacitively coupled plasma etching apparatus having parallel plate electrodes may have a configuration in which a high frequency voltage is applied to one electrode of the parallel plate electrodes.
  • a configuration may be adopted in which a plurality of different high frequency voltages are applied to one electrode of a parallel plate type electrode.
  • a configuration may be adopted in which a high frequency voltage of the same frequency is applied to each of the parallel plate type electrodes.
  • a configuration may be adopted in which high frequency voltages having different frequencies are applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • the dry etching device having a high-density plasma source for example, an inductively coupled plasma (ICP) etching device or the like can be used.
  • ICP inductively coupled plasma
  • the insulator 271 can function as an etching stopper that protects the conductor 242_2.
  • the insulator 271 can function as an etching stopper that protects the conductor 242_2.
  • the insulator 271 can function as an etching stopper that protects the conductor 242_2 during the etching process for removing the hard mask.
  • the insulator 275 can be provided in contact with the side surface of the insulator 224 and the top surface of the insulator 222 in a step described later. That is, the insulator 224 can be separated from the insulator 280 by the insulator 275. With this structure, it is possible to prevent an excessive amount of impurities such as oxygen and hydrogen from entering the oxide 230 from the insulator 280 through the insulator 224.
  • the insulator 224 of approximately the same size is provided for one transistor 200.
  • the amount of oxygen supplied from the insulator 224 to the oxide 230 becomes approximately the same. Therefore, variations in the electrical characteristics of the transistor 200 within the plane of the substrate can be suppressed.
  • the invention is not limited to this, and similarly to the insulator 222, the insulator 224 may be configured without patterning.
  • an insulator 275 is formed to cover the insulator 224, oxide 230a, oxide 230b, conductor 242_1, conductor 242_2, and insulator 271, and then an insulator 280 is formed on the insulator 275. (See FIGS. 9A to 9D). As the insulator 275 and the insulator 280, the above-mentioned insulators may be used.
  • the insulator 275 is preferably in contact with the upper surface of the insulator 222.
  • the insulator 280 it is preferable to form an insulating film that will become the insulator 280 and perform a CMP process on the insulating film to form an insulator with a flat top surface.
  • silicon nitride may be formed on the insulator 280 by, for example, a sputtering method, and the silicon nitride may be subjected to CMP treatment until it reaches the insulator 280.
  • the insulator 275 and the insulator 280 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 275 it is preferable to use an insulator for the insulator 275 that has a function of suppressing oxygen permeation.
  • the insulator 275 it is preferable to form a film of silicon nitride using the PEALD method.
  • the insulator 275 it is preferable to form a film of aluminum oxide using a sputtering method, and to form a film of silicon nitride thereon using a PEALD method.
  • the oxide 230a, the oxide 230b, the conductor 242_1, and the conductor 242_2 can be covered with the insulator 275 that has the function of suppressing oxygen diffusion. This can reduce direct diffusion of oxygen from the insulator 280 and the like into the insulator 224, oxide 230a, oxide 230b, conductor 242_1, and conductor 242_2 in a later process.
  • the insulator 280 it is preferable to form a film of silicon oxide using a sputtering method.
  • the insulator 280 containing excess oxygen can be formed by forming an insulating film that will become the insulator 280 by a sputtering method in an atmosphere containing oxygen. Furthermore, by using a sputtering method that does not require the use of hydrogen-containing molecules in the film-forming gas, the hydrogen concentration in the insulator 280 can be reduced.
  • heat treatment may be performed before forming the insulating film. The heat treatment may be performed under reduced pressure to continuously form the insulating film without exposing it to the atmosphere.
  • the conductor 242_2, the insulator 271, the insulator 275, and the insulator 280 are processed to form an opening that reaches the conductor 242_1 and the insulator 222 (see FIGS. 10A to 10D).
  • the conductor 242_2 is divided to form a conductor 242a2 and a conductor 242b2
  • the insulator 271 is divided to form an insulator 271a and an insulator 271b.
  • An opening reaching the conductor 242_1 is formed in a region where the oxide 230b and the conductor 205 overlap.
  • the width of the opening is L1, which corresponds to the distance L1 between the conductor 242a2 and the conductor 242b2 shown in FIG. 2B. That is, the width of the opening is larger than the distance L2 between the conductor 242a1 and the conductor 242b1 shown in FIG. 2B.
  • the above methods can be used as appropriate.
  • a lithography method using short wavelength light such as EUV light or an electron beam.
  • a lithography method can be performed by forming an SOC film, an SOG film, and a resist mask in this order on the insulator 280.
  • a resist mask having an opening is formed using short wavelength light such as EUV light or an electron beam, and using the resist mask, the SOG film, the SOC film, the insulator 280, the insulator 275, the insulator 271, and process the conductor 242_2.
  • the above processing is preferably performed using a dry etching method. Since the dry etching method allows anisotropic etching, it is suitable for forming an opening having a high aspect ratio and having a width L1 shown in FIG. 2B. Note that the above description can be referred to regarding the conditions of the dry etching method and the dry etching apparatus. Further, the etching treatment of the SOG film, the SOC film, the insulator 280, the insulator 275, the insulator 271, and the conductor 242_2 may be performed under different conditions.
  • CF 4 can be used as an etching gas for etching the SOG film.
  • H 2 and N 2 can be used as etching gases for etching the SOC film.
  • silicon oxide is used for the insulator 280
  • C 4 F 8 , C 4 F 6 , O 2 , and Ar can be used as the etching gas.
  • silicon nitride is used for the insulator 275
  • CH 2 F 2 , O 2 , and Ar can be used as the etching gas.
  • etching can be performed using an ICP etching apparatus using CHF 3 and O 2 as etching gases.
  • the etching process can be performed using an ICP etching apparatus using CF 4 , Cl 2 , and O 2 as etching gases.
  • the conductor 242_2 is etched so as to overlap the opening with the width L1 formed in the insulator 280 or the like, so the distance between the divided conductor 242a2 and the conductor 242b2 is L1. Note that in this etching, when the side surfaces of the conductor 242a2 and the conductor 242b2 are side-etched, recesses may be formed on the side surfaces of the conductor 242a2 and the conductor 242b2.
  • the etching process in this step is stopped at the upper surface of the conductor 242_1.
  • the etching process is performed using an ICP etching apparatus under conditions that the etching rate of the conductor 242_2 (hereinafter referred to as the etching selectivity ratio of the conductor 242_2) is larger than the etching rate of the conductor 242_1. conduct.
  • the bias power applied to the lower electrode of the ICP etching apparatus may be less than 50 W, preferably about 25 W or less.
  • the present invention is not limited thereto, and the bias power applied to the lower electrode of the ICP etching apparatus can be set to 50 W or more.
  • the bias power may be set to 100W, for example.
  • the tungsten of the conductor 242_2 becomes a highly volatile reaction product such as WF 6 or WOCl, resulting in a high etching rate.
  • tantalum nitride on the surface of the conductor 242_1 becomes a reaction product with very low volatility, such as tantalum oxide or tantalum oxynitride, and etching is suppressed. Therefore, it is preferable to increase the flow rate ratio of oxygen gas in the etching gas.
  • the flow rate ratio of oxygen gas in the etching gas may be set to 35% or more.
  • the conductor 242_1 By performing the etching process on the conductor 242_2 under the above conditions, the conductor 242_1 can be divided into the conductor 242a2 and the conductor 242b2 without being excessively etched. Thereby, a semiconductor device having a fine structure can be processed as designed.
  • the SOC film can be removed by performing a dry etching process such as ashing using oxygen plasma, by performing a wet etching process, by performing a wet etching process after a dry etching process, or by performing a dry etching process after a wet etching process. do it.
  • a dry etching process such as ashing using oxygen plasma
  • the processing of the insulator 271 and the conductor 242_2 and the removal of the SOC film can be performed continuously without exposure to the atmosphere.
  • a multi-chamber type etching apparatus may be used to perform the process without exposure to the atmosphere.
  • the conductor 242_2, the insulator 271, the insulator 275, and the insulator 280 can be processed to form an opening with the width L1.
  • an insulating film 255A is formed to cover the insulator 280, the conductor 242_1, and the insulator 222 (see FIGS. 11A to 11D).
  • the insulating film 255A is an insulating film that will become an insulator 255a in a later step, and the above-mentioned nitride insulator can be used.
  • the insulating film 255A can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 255A is formed along the openings formed in the conductor 242a2, the conductor 242b2, the insulator 271, the insulator 275, the insulator 280, etc., it is preferable to have good coverage. Therefore, the insulating film 255A is preferably formed using an ALD method or the like that has good coverage. For example, it is preferable to form silicon nitride as the insulating film 255A using the PEALD method.
  • an insulating film 255B is formed on the insulating film 255A (see FIGS. 11A to 11D).
  • the above-mentioned oxide insulator can be used for the insulating film 255B.
  • the insulating film 255B can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 255B is formed along the openings formed in the conductor 242a2, the conductor 242b2, the insulator 271, the insulator 275, the insulator 280, etc., so that the coverage is low. It is preferable that it is good. Therefore, the insulating film 255B is preferably formed using an ALD method or the like that has good coverage. For example, it is preferable to form silicon oxide as the insulating film 255B using the PEALD method. Further, for example, it is preferable to form hafnium oxide or aluminum oxide as the insulating film 255B using a thermal ALD method.
  • insulating film 255B a plurality of the above oxide insulators may be stacked and used as the insulating film 255B.
  • a stacked film in which silicon oxide is stacked on hafnium oxide or aluminum oxide may be used as the insulating film 255B.
  • a laminated film in which hafnium oxide or aluminum oxide is laminated on silicon oxide may be used as the insulating film 255B.
  • the formation of the insulating film 255A and the formation of the insulating film 255B can be performed continuously without exposure to the atmosphere.
  • a multi-chamber type film forming apparatus may be used to perform the process without exposure to the atmosphere.
  • the insulator 255 includes the side surface of the insulator 280, the side surface of the insulator 275, the side surface of the insulator 271a, the side surface of the insulator 271b, the side surface of the conductor 242a2, the side surface of the conductor 242b2, the top surface of the conductor 242_1, and is formed in contact with the upper surface of the insulator 222. Further, as shown in FIG.
  • a part of the insulator 255 may be formed in contact with the side surface of the insulator 224, the side surface of the oxide 230, the side surface of the conductor 242_1, and the top surface of the insulator 222. .
  • a protrusion is formed in a portion of the insulator 255a that is in contact with the top surface of the conductor 242_1 or the top surface of the insulator 222.
  • the protruding portion of the insulator 255a has a shape that protrudes more toward the center of the opening formed in the insulator 280 or the like than other portions. That is, the insulator 255a has a so-called L-shape when viewed in cross section in the channel length direction.
  • the insulator 255b is formed to be located inside the insulator 255a. As shown in FIGS. 11B and 11C, the lower surface of the insulator 255b is in contact with the upper surface of the protrusion of the insulator 255a, and one side surface of the insulator 255b is in contact with the side surface of the insulator 255a. Further, in a top view, the other side surface of the insulator 255b is formed to match or approximately match the end of the protrusion of the insulator 255a. Furthermore, the insulator 255b does not come into contact with the conductor 242a2, the conductor 242b2, and the conductor 242_1. Therefore, by using an oxide insulator for the insulator 255b, oxidation of the conductor 242a2, the conductor 242b2, and the conductor 242_1 can be suppressed.
  • the insulator 255a and the insulator 255b are formed in an opening with a width L1, so if the distance between the insulator 255b on the A1 side and the insulator 255b on the A2 side is L2, , L2 will be shorter than L1.
  • the distance L2 can also be seen as the distance between the end of the protrusion of the insulator 255a on the A1 side and the end of the protrusion of the insulator 255a on the A2 side.
  • a dry etching method for anisotropic etching of the insulating film 255A and the insulating film 255B.
  • the above description can be referred to regarding the conditions of the dry etching method and the dry etching apparatus.
  • the etching process can be performed using an ICP etching apparatus using CHF 3 and O 2 as etching gases.
  • etching treatment can be performed using an ICP etching apparatus using BCl 3 as an etching gas.
  • a chlorine-based etching gas such as BCl 3 has high etching performance even for In-Ga-Zn oxide used as the oxide 230. Therefore, when etching the insulating film 255B, it is preferable to make the etching selectivity of the insulating film 255B to the insulating film 255A sufficiently large so that the insulating film 255A is not etched.
  • the oxide 230 is covered with the insulating film 255A, so that the oxide 230 can be prevented from being etched by the etching gas for the insulating film 255B.
  • the insulating film 255A may be anisotropically etched.
  • the corner portion may be polished into a tapered shape.
  • the corners can be easily removed by including a gas that is easily ionized, such as argon, in the etching gas, or by applying a bias voltage to the electrode on the substrate side.
  • isotropic etching may be further performed to remove a part of the insulator 255b.
  • the side surface of the insulator 255b on the conductor 260 side can be shaped to be recessed from the end of the protrusion of the insulator 255a.
  • the width of the upper part of the conductor 260 formed in a later step can be made larger than the width of the lower part of the conductor 260. Thereby, the wiring resistance of the conductor 260 can be reduced.
  • the exposed portion of the conductor 242_1 from the insulator 255 is removed using anisotropic etching to form the conductor 242a1 and the conductor 242b1 (see FIGS. 13A to 13D).
  • the conductor 242_1 is processed using the insulator 255 as a mask, and the conductor 242_1 is divided into the conductor 242a1 and the conductor 242b1.
  • the side ends of the conductor 242a1 and the side ends of the conductor 242b1 are aligned with the insulator 255. formed to coincide or approximately coincide with the side edges of.
  • the distance between the conductor 242a1 and the conductor 242b1 is also L2.
  • L2 is shorter than L1, and the difference between L1 and L2 is equal to or approximately equal to twice the thickness of the insulator 255.
  • the distance L2 between the conductor 242a1 and the conductor 242b1 can be 8 nm.
  • a transistor with a channel length of 8 nm or less can be manufactured using a photolithography technique that forms an opening of 28 nm without performing a process such as double patterning.
  • etching method for the anisotropic etching.
  • the above description can be referred to regarding the conditions of the dry etching method and the dry etching apparatus.
  • etching can be performed using an ICP etching apparatus using Cl 2 and Ar as an etching gas.
  • the insulator 255 functions as a mask.
  • the insulator 255 functions as a mask.
  • the number of masks and the number of steps can be reduced. Therefore, a method for manufacturing a semiconductor device with high productivity can be provided.
  • the island-shaped oxide 230 can be exposed to dry etching only when the conductor 242_1 is processed.
  • the upper surface of the island-shaped oxide 230 can be prevented from being exposed to dry etching.
  • damage to the oxide 230b that functions as a channel formation region of the transistor 200 due to dry etching (for example, damage due to ion collision) can be reduced.
  • damage to the oxide 230 can be further reduced by lowering the bias power midway through.
  • a recessed portion may be formed in a portion of the oxide 230 exposed from the conductor 242a1 and the conductor 242b1.
  • the insulator 255 is formed to cover the side surface of the oxide 230 and the side surface of the insulator 224, but the present invention is not limited to this.
  • the insulator 255 may cover a part of the side surface of the oxide 230.
  • the insulator 255 may be formed or disappear near the side surfaces of the oxide 230.
  • an ashing process using oxygen plasma may be performed.
  • impurities generated in the etching process and diffused into the oxide 230 and the like can be removed.
  • the impurities include those resulting from components contained in the workpiece to be etched, and components contained in the gas used for etching. Examples include chlorine, fluorine, tantalum, silicon, and hafnium.
  • the oxide 230 is exposed to an atmosphere containing chlorine gas, so it is preferable to remove the chlorine attached to the oxide 230. .
  • the electrical characteristics and reliability of the transistor can be improved.
  • the insulator 255a may be oxidized.
  • the insulator 255a may contain oxygen.
  • SIMS SIMS or the like
  • a region with a high oxygen concentration is observed in the insulator 255a. Note that the oxidation of the insulator 255a progresses, and at least a portion of the insulator 255a may become silicon oxynitride or silicon nitride oxide after the transistor 200 is formed.
  • the processing of the insulating film 255A, the insulating film 255B, and the conductor 242_1 and the oxygen plasma treatment can be performed continuously without exposing them to the atmosphere.
  • a multi-chamber type etching apparatus may be used to perform the process without exposure to the atmosphere.
  • the oxidation-resistant conductors 242a1 and 242b1 are formed under the conductors 242a2 and 242b2 with good conductivity, and the oxidation-resistant insulation is formed in contact with the side surfaces of the conductors 242a2 and 242b2.
  • a body 255 can be formed.
  • the conductors 242a2 and 242b2 with good conductivity can be used as the source electrode and drain electrode of the transistor 200, so the frequency characteristics of the transistor 200 can be improved and the operating speed of the semiconductor device can be increased. You can improve your performance.
  • a cleaning process may be performed to remove impurities and the like that adhered to the surface of the oxide 230b during the etching process.
  • the cleaning method include wet cleaning using a cleaning liquid (also referred to as wet etching treatment), plasma treatment using plasma, cleaning by heat treatment, etc., and the above cleaning may be performed in an appropriate combination. Note that the groove portion may become deeper due to the cleaning treatment.
  • Wet cleaning may be performed using an aqueous solution prepared by diluting one or more of ammonia water, oxalic acid, phosphoric acid, and hydrofluoric acid with carbonated water or pure water, pure water, carbonated water, or the like.
  • ultrasonic cleaning may be performed using an aqueous solution of these, pure water, or carbonated water.
  • these cleanings may be performed in combination as appropriate.
  • an aqueous solution of hydrofluoric acid diluted with pure water may be referred to as diluted hydrofluoric acid
  • an aqueous solution of ammonia water diluted with pure water may be referred to as diluted ammonia water.
  • concentration, temperature, etc. of the aqueous solution are adjusted as appropriate depending on the impurities to be removed, the configuration of the semiconductor device to be cleaned, etc.
  • the ammonia concentration of the diluted ammonia water is preferably 0.01% or more and 5% or less, more preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid is preferably 0.01 ppm or more and 100 ppm or less, more preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or more and more preferably a frequency of 900 kHz or more for ultrasonic cleaning.
  • a frequency of 200 kHz or more and more preferably a frequency of 900 kHz or more for ultrasonic cleaning.
  • the above-mentioned cleaning process may be performed multiple times, and the cleaning liquid may be changed for each cleaning process.
  • the first cleaning process may be performed using diluted hydrofluoric acid or diluted aqueous ammonia
  • the second cleaning process may be performed using pure water or carbonated water.
  • wet cleaning is performed using diluted ammonia water.
  • impurities attached to the surface of the oxide 230a, the oxide 230b, or the like or diffused inside can be removed. Furthermore, the crystallinity of the oxide 230b can be improved.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, 550°C or lower, or 400°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the heat treatment is preferably performed in an atmosphere containing oxygen, and for example, the treatment is preferably performed at a temperature of 350° C. for 1 hour at a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • oxygen can be supplied to the oxide 230a and the oxide 230b, and oxygen vacancies can be reduced. Further, by performing such heat treatment, the crystallinity of the oxide 230b can be improved. Further, the hydrogen remaining in the oxide 230a and the oxide 230b reacts with the supplied oxygen, so that the hydrogen can be removed as H 2 O (dehydrated). This can suppress hydrogen remaining in the oxides 230a and 230b from recombining with oxygen vacancies and forming V O H. Accordingly, the electrical characteristics of the transistor provided with the oxide 230 can be improved, and reliability can be improved. Further, variations in electrical characteristics of a plurality of transistors formed over the same substrate can be suppressed. Note that the above heat treatment may be performed under reduced pressure. Alternatively, after heat treatment in an oxygen atmosphere, heat treatment may be performed continuously in a nitrogen atmosphere without exposure to the atmosphere.
  • the insulator 255a having an inorganic insulator that is difficult to oxidize is provided in contact with the side surface of the conductor 242a2 and the side surface of the conductor 242b2.
  • the sheet resistance of the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b increases. It may decrease. Additionally, the carrier concentration may increase. Therefore, the resistance of the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b can be reduced in a self-aligned manner.
  • an insulating film 250A that will become the insulator 250 is formed so as to fill the opening formed in the insulator 280 etc. (see FIGS. 14A to 14D).
  • the insulating film 250A is in contact with the insulator 280, the insulator 255, the conductor 242a1, the conductor 242b1, the insulator 222, the insulator 224, the oxide 230a, and the oxide 230b.
  • the insulating film 250A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 250A is preferably formed using an ALD method. Similar to the above-described insulator 250, the insulating film 250A is preferably formed to have a small thickness, and it is necessary to minimize variations in the film thickness.
  • the ALD method is a film forming method in which a precursor and a reactant (such as an oxidizing agent) are introduced alternately, and the film thickness can be adjusted by the number of times this cycle is repeated. Film thickness can be adjusted.
  • the insulating film 250A needs to be formed on the bottom and side surfaces of the opening with good coverage.
  • a layer of atoms can be deposited one layer at a time on the bottom and side surfaces of the opening, so the insulating film 250A can be formed with good coverage over the opening.
  • ozone (O 3 ), oxygen (O 2 ), water (H 2 O), or the like can be used as an oxidizing agent.
  • oxygen (O 2 ), or the like that does not contain hydrogen as an oxidizing agent, hydrogen that diffuses into the oxide 230b can be reduced.
  • the insulator 250 can have a layered structure, as shown in FIG. 2A and the like.
  • 15A to 15C a method for forming an insulating film 250A when the insulator 250 has a three-layer structure of an insulator 250a, an insulator 250b, and an insulator 250c will be described below, similar to FIG. 2A. explain.
  • the insulating film 250A includes an insulating film 250Aa, an insulating film 250Ab over the insulating film 250Aa, and an insulating film 250Ac over the insulating film 250Ab.
  • an insulating film 250Aa that will become the insulator 250a is formed so as to fill the opening formed in the insulator 280, etc., and then an insulating film 250Ab is formed on the insulating film 250Aa.
  • aluminum oxide is formed as the insulating film 250Aa by a thermal ALD method
  • silicon oxide is formed as the insulating film 250Ab by a PEALD method.
  • microwave processing refers to processing using, for example, a device having a power source that generates high-density plasma using microwaves.
  • microwave refers to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less.
  • the microwave processing device that has a power source that generates high-density plasma using microwaves, for example.
  • the frequency of the microwave processing device is preferably 300 MHz or more and 300 GHz or less, more preferably 2.4 GHz or more and 2.5 GHz or less, and can be set to 2.45 GHz, for example.
  • the power of the power source for applying microwaves of the microwave processing device is preferably 1000 W or more and 10000 W or less, and preferably 2000 W or more and 5000 W or less.
  • the microwave processing apparatus may have a power source for applying RF to the substrate side. Furthermore, by applying RF to the substrate side, oxygen ions generated by high-density plasma can be efficiently guided into the oxide 230b.
  • the microwave treatment is preferably performed under reduced pressure, and the pressure is preferably 10 Pa or more and 1000 Pa or less, and more preferably 300 Pa or more and 700 Pa or less.
  • the processing temperature is preferably 750°C or lower, more preferably 500°C or lower, and can be, for example, about 250°C.
  • heat treatment may be performed continuously without exposing to the atmosphere.
  • the temperature of the heat treatment is, for example, preferably 100°C or more and 750°C or less, more preferably 300°C or more and 500°C or less.
  • the microwave treatment can be performed using oxygen gas and argon gas.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than or equal to 100%.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than or equal to 50%.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 10% or more and 40% or less.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 10% or more and 30% or less.
  • oxygen gas is turned into plasma using microwaves or high frequency waves such as RF, and the oxygen plasma is transferred between the conductor 242a and the conductor 242b of the oxide 230b. It can be applied to the area.
  • V OH in the region can be separated into oxygen vacancies and hydrogen, and hydrogen can be removed from the region.
  • an insulating film eg, aluminum oxide, etc.
  • hydrogen generated by microwave processing can be captured or fixed to the insulating film 250Aa.
  • V OH contained in the channel forming region can be reduced.
  • oxygen vacancies and V OH in the channel formation region can be reduced, and the carrier concentration can be lowered.
  • oxygen radicals generated by the oxygen plasma to the oxygen vacancies formed in the channel formation region, it is possible to further reduce the oxygen vacancies in the channel formation region and lower the carrier concentration.
  • the oxygen implanted into the channel forming region has various forms such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also referred to as O radicals; atoms, molecules, or ions with unpaired electrons).
  • oxygen injected into the channel forming region may be in one or more of the above-mentioned forms, and oxygen radicals are particularly preferred.
  • the film quality of the insulator 250 can be improved, reliability of the transistor is improved.
  • the oxide 230b has a region that overlaps with either the conductor 242a or 242b.
  • the region can function as a source region or a drain region.
  • the conductors 242a and 242b preferably function as shielding films against the effects of microwaves, high frequencies such as RF, oxygen plasma, and the like when performing microwave processing in an atmosphere containing oxygen. Therefore, the conductors 242a and 242b preferably have a function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
  • the conductors 242a and 242b shield the effects of microwaves, high frequencies such as RF, oxygen plasma, and the like, these effects do not extend to the region of the oxide 230b that overlaps with any of the conductors 242a and 242b. Thereby, a reduction in V OH and an excessive amount of oxygen supply do not occur in the source region and the drain region due to the microwave treatment, so that a decrease in carrier concentration can be prevented.
  • an insulator 255a having barrier properties against oxygen is provided in contact with the side surfaces of the conductors 242a2 and 242b2. Further, an insulating film 250Aa and an insulating film 250Ab are provided to cover the conductors 242a1, 242b1 and the insulator 255. Thereby, formation of an oxide film on the side surfaces of the conductors 242a and 242b due to microwave treatment can be suppressed.
  • oxygen vacancies and V OH are selectively removed in the channel formation region of the oxide semiconductor, thereby making the channel formation region i-type or substantially i-type. Furthermore, it is possible to suppress supply of excessive oxygen to a region functioning as a source region or a drain region, and maintain the conductivity (state of being a low resistance region) before performing microwave treatment. Thereby, it is possible to suppress variations in the electrical characteristics of the transistor, and to suppress variations in the electrical characteristics of the transistor within the plane of the substrate.
  • thermal energy may be directly transmitted to the oxide 230b due to electromagnetic interaction between the microwave and molecules in the oxide 230b. This thermal energy may heat the oxide 230b.
  • Such heat treatment is sometimes called microwave annealing.
  • microwave annealing By performing microwave treatment in an atmosphere containing oxygen, effects equivalent to oxygen annealing may be obtained.
  • the oxide 230b contains hydrogen, it is possible that this thermal energy is transferred to the hydrogen in the oxide 230b, and thereby activated hydrogen is released from the oxide 230b.
  • the insulating film 250Aa and the insulating film 250Ab by performing microwave treatment to modify the film quality of the insulating film 250Aa and the insulating film 250Ab, diffusion of hydrogen, water, impurities, etc. can be suppressed. Therefore, hydrogen, water, impurities, etc. are diffused into the oxides 230b, 230a, etc. through the insulator 250 through post-processes such as forming a conductive film to become the conductor 260, or post-processes such as heat treatment. can be restrained from doing so. In this way, by improving the film quality of the insulator 250, the reliability of the transistor can be improved.
  • an insulating film 250Ac is formed on the insulating film 250Ab.
  • silicon nitride is formed as the insulating film 250Ac by the PEALD method. In this way, the insulating film 250A including the insulating films 250Aa to 250Ac can be formed.
  • microwave treatment is performed after forming the insulating film 250Ab
  • the present invention is not limited to this. It is also possible to adopt a configuration in which microwave treatment is performed after the insulating film 250Ac is formed. Alternatively, a configuration may be adopted in which microwave treatment is performed before forming the insulating film 250Aa. Further, when microwave treatment is performed before forming the insulating film 250Aa, a configuration may be adopted in which the microwave treatment is performed in the steps shown in FIGS. 11A to 11D. For example, a configuration can be adopted in which microwave treatment is performed after the insulating film 255A is formed. Further, for example, a configuration may be adopted in which microwave treatment is performed after the insulating film 255B is formed.
  • heat treatment may be performed while maintaining the reduced pressure state after microwave treatment.
  • hydrogen in the insulating film, the oxide 230b, and the oxide 230a can be efficiently removed. Further, some of the hydrogen may be gettered to the conductors 242a and 242b.
  • the step of performing the heat treatment may be repeated multiple times while maintaining the reduced pressure state after the microwave treatment. By repeatedly performing the heat treatment, hydrogen in the insulating film, the oxide 230b, and the oxide 230a can be removed more efficiently.
  • the heat treatment temperature is preferably 300°C or more and 500°C or less.
  • the microwave treatment that is, microwave annealing, may also serve as the heat treatment. If the oxide 230b and the like are sufficiently heated by microwave annealing, the heat treatment may not be performed.
  • the insulating film 250Ab may not be formed in the above process.
  • hafnium oxide can be formed into a film by a thermal ALD method as an insulating film serving as the insulator 250d. In this way, the microwave treatment in an atmosphere containing oxygen may be performed multiple times (at least twice or more).
  • a conductive film 260A that will become the conductor 260a and a conductive film 260B that will become the conductor 260b are sequentially formed (see FIGS. 16A to 16D).
  • the conductive film 260A and the conductive film 260B can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, a plating method, or an ALD method.
  • titanium nitride is formed as a conductive film 260A using an ALD method
  • tungsten is formed as a conductive film 260B using a CVD method.
  • the insulating film 250A, the conductive film 260A, and the conductive film 260B are polished by CMP processing until the insulator 280 is exposed. That is, the portions of the insulating film 250A, the conductive film 260A, and the conductive film 260B exposed from the openings are removed. As a result, an insulator 250 and a conductor 260 (a conductor 260a and a conductor 260b) are formed in the opening overlapping the conductor 205 (see FIGS. 17A to 17D).
  • the insulator 250 is provided in the opening in contact with the insulator 255, the conductor 242a1, the conductor 242b1, the oxide 230, the insulator 224, and the insulator 222. Further, the conductor 260 is arranged so as to fill the opening with the insulator 250 interposed therebetween. In this way, transistor 200 is formed.
  • an insulator 282 is formed on the insulator 255, the insulator 250, the conductor 260, and the insulator 280.
  • the insulator 282 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 282 is preferably formed using a sputtering method.
  • the hydrogen concentration in the insulator 282 can be reduced by using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas.
  • the insulator 282 in an oxygen-containing atmosphere using a sputtering method, oxygen can be added to the insulator 280 while forming the film. This allows the insulator 280 to contain excess oxygen. At this time, it is preferable to form the insulator 282 while heating the substrate.
  • the oxygen supplied to the insulator 280 is transferred to the oxide 230b via the insulator 255a, the insulator 255b, and the insulator 250. It can be supplied suitably.
  • aluminum oxide is formed as the insulator 282 by sputtering using an aluminum target in an atmosphere containing oxygen gas.
  • the amount of oxygen injected into the layer below the insulator 282 can be controlled by the magnitude of RF power applied to the substrate by sputtering. For example, as the RF power decreases, the amount of oxygen injected into the layer below the insulator 282 decreases, and even if the thickness of the insulator 282 is thin, the amount of oxygen becomes saturated easily. Further, as the RF power increases, the amount of oxygen injected into the layer below the insulator 282 increases. By reducing the RF power, the amount of oxygen injected into the insulator 280 can be suppressed.
  • the insulator 282 may be formed in a two-layer stacked structure. At this time, for example, the lower layer of the insulator 282 is formed without applying RF power to the substrate, and the upper layer of the insulator 282 is formed by applying RF power to the substrate.
  • the RF frequency is preferably 10 MHz or higher. Typically, it is 13.56 MHz. The higher the RF frequency, the smaller the damage to the substrate can be.
  • heat treatment may be performed before forming the insulator 282.
  • the heat treatment may be performed under reduced pressure to continuously form the insulator 282 without exposure to the atmosphere. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulator 280 can be removed, and the moisture concentration and hydrogen concentration in the insulator 280 can be further reduced.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • an insulator 283 is formed on the insulator 282.
  • the insulator 283 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 283 is preferably formed using a sputtering method. By using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulator 283 can be reduced.
  • silicon nitride is formed as the insulator 283 by using a sputtering method.
  • the insulator 282 and the insulator 283 be formed continuously without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the insulator 282 and the insulator 283, and to clean the vicinity of the interface between the insulator 282 and the insulator 283. can be kept.
  • heat treatment may be performed after forming the insulator 283.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less.
  • the insulator 283 in contact with the upper surface of the insulator 282, it is possible to prevent moisture or impurities such as hydrogen from entering from above the insulator 283 during the heat treatment. Further, by performing the heat treatment, hydrogen contained in the insulator 216, the insulator 224, and the oxide 230 moves to the insulator 222 and is absorbed into the insulator 222. In other words, hydrogen contained in the insulator 216, the insulator 224, and the oxide 230 diffuses into the insulator 222. Therefore, although the hydrogen concentration in insulator 222 increases, the hydrogen concentration in each of insulator 216, insulator 224, and oxide 230 decreases. Note that by providing the insulator 221 in contact with the lower surface of the insulator 222, it is possible to prevent moisture or impurities such as hydrogen from entering from below the insulator 221 during the heat treatment.
  • the semiconductor device shown in FIG. 1 can be manufactured.
  • the conductor on the oxide semiconductor has a two-layer structure, a conductor that is difficult to oxidize is used in the lower layer, and a conductor with high conductivity is used in the upper layer.
  • a conductor that functions as an electrode or wiring is provided in contact with the upper surface of the physical semiconductor.
  • the conductor functions as a source electrode and a drain electrode of the OS transistor.
  • the distance between the conductors in the lower layer of the source electrode and the drain electrode is made shorter than the distance between the conductors in the upper layer of the source electrode and the drain electrode, thereby achieving miniaturization. It is possible to improve the frequency characteristics and operation speed of the device.
  • an insulator functioning as a protective film is provided in contact with the side surface of the conductor in the upper layer of the source electrode and the drain electrode.
  • the semiconductor device includes an OS transistor. Since an OS transistor has a small off-state current, it is possible to realize a semiconductor device or a memory device with low power consumption. Further, since the OS transistor has high frequency characteristics, it is possible to realize a semiconductor device or a memory device with high operating speed. Further, by using an OS transistor, a semiconductor device with good electrical characteristics, a semiconductor device with less variation in the electrical characteristics of transistors, a semiconductor device with a large on-state current, and a highly reliable semiconductor device or memory device can be realized.
  • the carrier concentration in the channel formation region of the oxide semiconductor is 1 ⁇ 10 18 cm ⁇ 3 or less, preferably less than 1 ⁇ 10 17 cm ⁇ 3 , more preferably less than 1 ⁇ 10 16 cm ⁇ 3 , and even more preferably 1 ⁇ It is less than 10 13 cm ⁇ 3 , more preferably less than 1 ⁇ 10 10 cm ⁇ 3 , and more than 1 ⁇ 10 ⁇ 9 cm ⁇ 3 . Note that in the case of lowering the carrier concentration of the oxide semiconductor film, the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • low impurity concentration and low defect level density are referred to as high purity intrinsic or substantially high purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a high-purity intrinsic or a substantially high-purity intrinsic oxide semiconductor.
  • a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor has a low defect level density
  • the trap level density may also be low.
  • charges captured in trap levels of an oxide semiconductor may take a long time to disappear, and may behave as if they were fixed charges. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap level density may have unstable electrical characteristics.
  • the impurity in the oxide semiconductor refers to, for example, a substance other than the main component that constitutes the oxide semiconductor.
  • an element having a concentration of less than 0.1 atomic % can be considered an impurity.
  • V OH oxygen vacancy in an oxide semiconductor
  • the donor concentration in the channel formation region may increase.
  • the threshold voltage may vary. Therefore, if the channel formation region in the oxide semiconductor contains oxygen vacancies, the transistor exhibits normally-on characteristics (a channel exists even when no voltage is applied to the gate electrode, and current flows through the transistor). It's easy to become. Therefore, impurities, oxygen vacancies, and V OH are preferably reduced as much as possible in the channel formation region in the oxide semiconductor.
  • the band gap of the oxide semiconductor is preferably larger than the band gap of silicon (typically 1.1 eV), preferably 2 eV or more, more preferably 2.5 eV or more, and even more preferably 3.0 eV or more. It is.
  • off-state current also referred to as Ioff
  • Ioff off-state current
  • Si transistors As transistors become smaller, a short channel effect (also referred to as SCE) occurs. Therefore, it is difficult to miniaturize Si transistors.
  • SCE short channel effect
  • silicon has a small band gap.
  • an OS transistor uses an oxide semiconductor, which is a semiconductor material with a large band gap, short channel effects can be suppressed. In other words, an OS transistor is a transistor that has no short channel effect or has very little short channel effect.
  • the short channel effect is a deterioration in electrical characteristics that becomes apparent as transistors become smaller (reduction in channel length).
  • Specific examples of short channel effects include a decrease in threshold voltage, an increase in S value, and an increase in leakage current.
  • characteristic length is widely used as an index of resistance to short channel effects.
  • the characteristic length is an index of the bendability of the potential in the channel forming region. The smaller the characteristic length, the more steeply the potential rises, so it can be said to be resistant to short channel effects.
  • the OS transistor is an accumulation type transistor, and the Si transistor is an inversion type transistor. Therefore, compared to a Si transistor, an OS transistor has a smaller characteristic length between the source region and the channel forming region and a smaller characteristic length between the drain region and the channel forming region. Therefore, OS transistors are more resistant to short channel effects than Si transistors. That is, when it is desired to manufacture a transistor with a short channel length, an OS transistor is more suitable than a Si transistor.
  • the carrier concentration of the oxide semiconductor is lowered until the channel formation region becomes i-type or substantially i-type, conduction in the channel formation region decreases due to the conduction-band-lowering (CBL) effect in short-channel transistors. Since the lower end of the conduction band is lowered, the energy difference at the lower end of the conduction band between the source region or the drain region and the channel formation region may be reduced to 0.1 eV or more and 0.2 eV or less.
  • the OS transistor has an n + /n- / n + accumulation type junction-less transistor structure, in which the channel forming region becomes an n - type region and the source and drain regions become n + -type regions, or , n + /n ⁇ /n + storage type non-junction transistor structure.
  • the OS transistor By making the OS transistor have the above structure, it can have good electrical characteristics even if the semiconductor device is miniaturized or highly integrated. For example, even if the gate length of the OS transistor is 20 nm or less, 15 nm or less, 10 nm or less, 7 nm or less, or 6 nm or less, and it is 1 nm or more, 3 nm or more, or 5 nm or more, good electrical characteristics cannot be obtained. can. On the other hand, since a short channel effect occurs in a Si transistor, it may be difficult to set the gate length to 20 nm or less or 15 nm or less. Therefore, the OS transistor can be suitably used as a transistor having a shorter channel length than a Si transistor. Note that the gate length is the length of the gate electrode in the direction in which carriers move inside the channel formation region during transistor operation, and refers to the width of the bottom surface of the gate electrode in a plan view of the transistor.
  • the high frequency characteristics of the transistor can be improved.
  • the cutoff frequency of the transistor can be improved.
  • the cutoff frequency of the transistor can be set to 50 GHz or more, preferably 100 GHz or more, more preferably 150 GHz or more, for example in a room temperature environment.
  • OS transistors have superior effects compared to Si transistors, such as lower off-state current and the ability to manufacture transistors with shorter channel lengths.
  • a configuration example of a memory device using a memory cell having the transistor described in the above embodiment will be described.
  • a configuration example of a memory device will be described in which a layer having stacked memory cells and a layer having a functional circuit having a function of amplifying and outputting a data potential held in the memory cells are provided. .
  • FIG. 18 shows a block diagram of a storage device according to one embodiment of the present invention.
  • a storage device 300 shown in FIG. 18 includes a drive circuit 21 and a memory array 20.
  • the memory array 20 includes a plurality of memory cells 10 and a functional layer 50 having a plurality of functional circuits 51.
  • FIG. 18 shows an example in which the memory array 20 has a plurality of memory cells 10 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more). Further, FIG. 18 shows an example in which a functional circuit 51 is provided for each wiring BL functioning as a bit line, and the functional layer 50 has a plurality of functional circuits 51 provided corresponding to n wirings BL. An example is shown below.
  • the memory cell 10 in the first row and first column is shown as a memory cell 10[1,1] and the memory cell 10 in the mth row and nth column is shown as a memory cell 10[m,n].
  • the memory cell 10 in the mth row and nth column is shown as a memory cell 10[m,n].
  • i line when indicating an arbitrary line, it may be written as i line.
  • column j when indicating an arbitrary column, it may be written as column j. Therefore, i is an integer of 1 or more and m or less, and j is an integer of 1 or more and n or less.
  • the memory cell 10 in the i-th row and j-th column is referred to as a memory cell 10[i,j].
  • the memory array 20 includes m wires WL extending in the row direction, m wires PL extending in the row direction, and n wires BL extending in the column direction.
  • the wiring WL provided in the first (first row) is referred to as wiring WL[1]
  • the wiring WL provided in m-th (m-th row) is referred to as wiring WL[m].
  • the first wiring PL (first row) is designated as wiring PL[1]
  • the mth wiring PL (mth row) is designated as wiring PL[m].
  • the wiring BL provided in the first (first column) is referred to as wiring BL[1]
  • the wiring BL provided in the nth (nth column) is referred to as wiring BL[n].
  • the plurality of memory cells 10 provided in the i-th row are electrically connected to the i-th wiring WL (wiring WL[i]) and the i-th wiring PL (wiring PL[i]).
  • the plurality of memory cells 10 provided in the j-th column are electrically connected to the j-th column wiring BL (wiring BL[j]).
  • DOSRAM (registered trademark) (Dynamic Oxide Semiconductor Random Access Memory) can be applied to the memory array 20.
  • DOSRAM is a RAM having 1T (transistor) 1C (capacitance) type memory cells, and refers to a memory whose access transistor is an OS transistor. The current flowing between the source and drain of the OS transistor in the off state, that is, the leakage current is extremely small.
  • DOSRAM can hold charge corresponding to data held in a capacitive element (capacitor) for a long time by turning off the access transistor (making it non-conductive). Therefore, DOSRAM can reduce the frequency of refresh operations compared to DRAM configured with a transistor (Si transistor) having silicon in a channel formation region. As a result, it is possible to reduce power consumption. Further, since the frequency characteristics of the OS transistor are high, reading and writing of the memory device can be performed at high speed. This makes it possible to provide a storage device with high operating speed.
  • a plurality of memory arrays 20[1] to 20[m] can be stacked and provided.
  • the memory arrays 20[1] to 20[m] included in the memory array 20 in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided, it is possible to improve the memory density of the memory cell 10.
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling on or off (conductive state or non-conductive state) of an access transistor functioning as a switch.
  • the wiring PL has a function as a constant potential line connected to the capacitive element.
  • a wiring CL (not shown) can be separately provided as a wiring having a function of transmitting a backgate potential to the backgate of the OS transistor, which is an access transistor. Further, the wiring PL may also have a function of transmitting the back gate potential.
  • the memory cells 10 each of the memory arrays 20[1] to 20[m] have are connected to the functional circuit 51 via the wiring BL.
  • the wiring BL can be arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided.
  • the length of the wiring between the memory array 20 and the functional circuit 51 can be reduced. It can be made shorter. Therefore, the signal propagation distance between two circuits connected to the bit line can be shortened, and the resistance and parasitic capacitance of the bit line can be significantly reduced, so that power consumption and signal delay can be reduced. Furthermore, it is possible to operate the memory device even if the capacitance of the capacitive element included in the memory cell 10 is reduced.
  • the functional circuit 51 has a function of amplifying the data potential held in the memory cell 10 and outputting it to the sense amplifier 46 included in the drive circuit 21 via a wiring GBL (not shown) to be described later. With this configuration, a slight potential difference in the wiring BL can be amplified when reading data.
  • the wiring GBL can be arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided. By providing the wiring BL and wiring GBL extending from the memory cells 10 of the memory arrays 20 [1] to 20 [m] in the vertical direction of the substrate surface, the wiring between the functional circuit 51 and the sense amplifier 46 can be reduced. The length can be shortened. Therefore, the signal propagation distance between the two circuits connected to the wiring GBL can be shortened, and the resistance and parasitic capacitance of the wiring GBL can be significantly reduced, so that power consumption and signal delay can be reduced.
  • the wiring BL is provided in contact with the semiconductor layer of the transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 10.
  • the wiring BL can be said to be a wiring for electrically connecting each of the sources and drains of the transistors included in the memory cells 10 in each layer of the memory array 20 and the functional circuit 51 in the vertical direction.
  • the memory array 20 can be provided over the drive circuit 21. By overlapping the drive circuit 21 and the memory array 20, the signal propagation distance between the drive circuit 21 and the memory array 20 can be shortened. Therefore, the resistance and parasitic capacitance between the drive circuit 21 and the memory array 20 are reduced, and power consumption and signal delay can be reduced. Furthermore, the storage device 300 can be made smaller.
  • the functional circuit 51 is constructed of OS transistors like the transistors included in the memory cell 10 of the DOSRAM, and can be freely mounted on a circuit using Si transistors in the same way as the memory arrays 20[1] to 20[m]. Since it can be arranged, integration can be easily performed. By configuring the functional circuit 51 to amplify the signal, it is possible to reduce the size of circuits such as the sense amplifier 46, which is a subsequent circuit, so that the storage device 300 can be made smaller.
  • the drive circuit 21 includes a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31.
  • the peripheral circuit 31 includes a peripheral circuit 41, a control circuit 32, and a voltage generation circuit 33.
  • each circuit, each signal, and each voltage can be removed or discarded as necessary. Alternatively, other circuits or other signals may be added.
  • Signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signal PON1 and signal PON2 are power gating control signals. Note that the signal PON1 and the signal PON2 may be generated by the control circuit 32.
  • the control circuit 32 is a logic circuit that has a function of controlling the overall operation of the storage device 300. For example, the control circuit performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 300. Alternatively, the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the control circuit performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 300.
  • the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the voltage generation circuit 33 has a function of generating a negative voltage.
  • the signal WAKE has a function of controlling input of the signal CLK to the voltage generation circuit 33. For example, when an H level signal is applied to the signal WAKE, the signal CLK is input to the voltage generation circuit 33, and the voltage generation circuit 33 generates a negative voltage.
  • the peripheral circuit 41 is a circuit for writing and reading data to and from the memory cell 10. Further, the peripheral circuit 41 is a circuit that outputs various signals for controlling the functional circuit 51.
  • the peripheral circuit 41 includes a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, and an output circuit 48 ( It has an Output Cir.) and a sense amplifier 46 (Sense Amplifier).
  • the row decoder 42 and column decoder 44 have a function of decoding the signal ADDR.
  • the row decoder 42 is a circuit for specifying a row to be accessed
  • the column decoder 44 is a circuit for specifying a column to be accessed.
  • the row driver 43 has a function of selecting the wiring WL specified by the row decoder 42.
  • the column driver 45 has a function of writing data into the memory cell 10, a function of reading data from the memory cell 10, a function of holding the read data, and the like.
  • the input circuit 47 has a function of holding the signal WDA.
  • the data held by the input circuit 47 is output to the column driver 45.
  • the output data of the input circuit 47 is the data (Din) to be written into the memory cell 10.
  • the data (Dout) read from the memory cell 10 by the column driver 45 is output to the output circuit 48.
  • the output circuit 48 has a function of holding Dout. Further, the output circuit 48 has a function of outputting Dout to the outside of the storage device 300.
  • the data output from the output circuit 48 is the signal RDA.
  • the PSW 22 has a function of controlling the supply of VDD to the peripheral circuit 31.
  • the PSW 23 has a function of controlling the supply of VHM to the row driver 43.
  • the high power supply voltage of the storage device 300 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to bring the word line to a high level, and is higher than VDD.
  • the signal PON1 controls the on/off of the PSW22
  • the signal PON2 controls the on/off of the PSW23.
  • the number of power domains to which VDD is supplied in the peripheral circuit 31 is one, but the number may be plural. In this case, a power switch may be provided for each power domain.
  • the memory array 20 having the memory arrays 20[1] to 20[m] (m is an integer of 2 or more) and the functional layer 50 can be provided by overlapping multiple layers of the memory array 20 on the drive circuit 21. By overlapping multiple layers of memory arrays 20, the memory density of the memory cells 10 can be increased.
  • the memory array 20 provided in the first layer is indicated as memory array 20[1]
  • the memory array 20 provided in the second layer is indicated as memory array 20[2]
  • the memory array 20 provided in the fifth layer is indicated as memory array 20[2].
  • the memory array 20 that has been constructed is shown as a memory array 20[5].
  • wiring WL, wiring PL, and wiring CL extending in the X direction and wiring BL extending in the Z direction (direction perpendicular to the surface of the substrate on which the drive circuit is provided) are illustrated. There is. Note that in order to make the drawing easier to read, some of the wiring WL and wiring PL included in each of the memory arrays 20 are omitted.
  • FIG. 19B is a schematic diagram illustrating a configuration example of the functional circuit 51 connected to the wiring BL illustrated in FIG. 19A and the memory cell 10 included in the memory arrays 20[1] to 20[5] connected to the wiring BL. shows. Further, FIG. 19B illustrates a wiring GBL provided between the functional circuit 51 and the drive circuit 21. Note that a configuration in which a plurality of memory cells (memory cells 10) are electrically connected to one wiring BL is also referred to as a "memory string.” Note that in the drawings, the wiring GBL may be illustrated with thick lines to improve visibility.
  • FIG. 19B illustrates an example of the circuit configuration of the memory cell 10 connected to the wiring BL.
  • the memory cell 10 includes a transistor 11 and a capacitor 12.
  • the transistor 11 the capacitive element 12, and each wiring (such as the wiring BL and the wiring WL), for example, the wiring BL[1] and the wiring WL[1] may be referred to as the wiring BL and the wiring WL.
  • transistor 11 corresponds to transistor 200 described in Embodiment 1.
  • one of the source and drain of the transistor 11 is connected to the wiring BL.
  • the other of the source and drain of the transistor 11 is connected to one electrode of the capacitive element 12.
  • the other electrode of the capacitive element 12 is connected to the wiring PL.
  • the gate of the transistor 11 is connected to the wiring WL.
  • the back gate of the transistor 11 is connected to the wiring CL.
  • the wiring PL is a wiring that provides a constant potential to maintain the potential of the capacitive element 12.
  • the wiring CL is a wiring that provides a constant potential for controlling the threshold voltage of the transistor 11.
  • the wiring PL and the wiring CL may be at the same potential. In this case, by connecting two wires, the number of wires connected to the memory cell 10 can be reduced.
  • FIG. 20A shows a schematic diagram of a storage device 300 in which a repeating unit 70 is a functional circuit 51 and memory arrays 20[1] to 20[m]. Although one wiring GBL is shown in FIG. 20A, the wiring GBL may be provided as appropriate depending on the number of functional circuits 51 provided in the functional layer 50.
  • the wiring GBL is provided in contact with the semiconductor layer of the transistor included in the functional circuit 51.
  • the wiring GBL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the functional circuit 51.
  • the wiring GBL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the functional circuit 51.
  • the wiring GBL can be said to be a wiring for electrically connecting one of the source or drain of the transistor included in the functional circuit 51 in the functional layer 50 and the drive circuit 21 in the vertical direction.
  • the repeating unit 70 having the functional circuit 51 and the memory arrays 20[1] to 20[m] may be further stacked.
  • the storage device 300A according to one embodiment of the present invention can have repeating units 70[1] to 70[p] (p is an integer of 2 or more) as illustrated in FIG. 20B.
  • the wiring GBL is connected to the functional layer 50 that the repeating unit 70 has.
  • the wiring GBL may be provided as appropriate depending on the number of functional circuits 51.
  • OS transistors are provided in a stacked manner, and wiring functioning as a bit line is arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided.
  • the wiring extending from the memory array 20 and functioning as a bit line in a direction perpendicular to the substrate surface the length of the wiring between the memory array 20 and the drive circuit 21 can be shortened. Therefore, the parasitic capacitance of the bit line can be significantly reduced.
  • the layer in which the memory array 20 is provided includes a functional layer 50 having a functional circuit 51 having a function of amplifying and outputting the data potential held in the memory cell 10.
  • the present invention is not limited to this.
  • a 3T1C type memory cell may be used in the storage device.
  • the memory cell shown in FIG. 28A includes transistors 11a, 11b, and 11c and a capacitive element 12a.
  • the transistors 11a, 11b, and 11c can have the same configuration as the transistor 11, and the capacitive element 12a can have the same configuration as the capacitive element 12.
  • a RAM having such a configuration may be called a NOSRAM (registered trademark) (Nonvolatile Oxide Semiconductor RAM).
  • one of the source or drain of the transistor 11a is electrically connected to one of the electrodes of the capacitive element 12a and the first gate of the transistor 11b. Further, one of the source and drain of the transistor 11b is electrically connected to one of the source and drain of the transistor 11c.
  • the second gate, and the other electrode of the capacitive element 12a may be provided with appropriate wiring.
  • the structure of the storage device can be modified as appropriate to match these wirings.
  • a 2T1C type memory cell may be used, which does not include the transistor 11c and has only the transistors 11a and 11b and the capacitive element 12a.
  • a configuration may be adopted in which the capacitive element 12a is not provided, as shown in FIG. 28C.
  • a memory cell is constituted by only the transistor 11a and the transistor 11b.
  • a storage device having a stacked memory array has been described above, the present invention is not limited thereto.
  • a memory device having a single-layer memory array can also be formed using the transistors according to the above embodiments.
  • FIG. 21 A configuration example of the functional circuit 51 described in FIGS. 18 to 20 and a configuration example of the sense amplifier 46 included in the memory array 20 and the drive circuit 21 will be described using FIG. 21.
  • the memory cells 10 memory cell 10_A, memory cell 10_B
  • the memory cells 10 memory cell 10_A, memory cell 10_B
  • functional circuits 51 functional circuit 51_A, functional circuit 51_B
  • a drive circuit 21 connected to wiring GBL wiring GBL_A, wiring GBL_B
  • a precharge circuit 71_A, a precharge circuit 71_B, a switch circuit 72_A, a switch circuit 72_B, and a write/read circuit 73 are illustrated.
  • Transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b are illustrated as the functional circuits 51_A and 51_B.
  • the transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b illustrated in FIG. 21 are OS transistors like the transistor 11 included in the memory cell 10.
  • the functional layer 50 having the functional circuit 51 can be provided in a stacked manner similar to the memory arrays 20[1] to 20[m].
  • the wiring BL_A is connected to the gate of the transistor 52_a, and the wiring BL_B is connected to the gate of the transistor 52_b.
  • the wiring GBL_A is connected to one of the sources and drains of the transistors 53_a and 54_a.
  • the wiring GBL_B is connected to one of the sources and drains of the transistors 53_b and 54_b.
  • Wirings GBL_A and GBL_B are provided in the vertical direction similarly to wirings BL_A and BL_B, and are connected to transistors included in the drive circuit 21. As shown in FIG. 21, the selection signal MUX, the control signal WE, or the control signal RE is applied to the gates of the transistors 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b, respectively.
  • Transistors 81_1 to 81_6 and 82_1 to 82_4 that constitute the sense amplifier 46, precharge circuit 71_A, and precharge circuit 71_B shown in FIG. 21 are composed of Si transistors.
  • the switches 83_A to 83_D making up the switch circuit 72_A and the switch circuit 72_B can also be made of Si transistors.
  • One of the sources or drains of the transistors 53_a, 53_b, 54_a, and 54_b is connected to a transistor or a switch forming the precharge circuit 71_A, the precharge circuit 71_B, the sense amplifier 46, and the switch circuit 72_A.
  • the precharge circuit 71_A includes n-channel transistors 81_1 to 81_3.
  • the precharge circuit 71_A sets the wiring BL_A and the wiring BL_B to an intermediate potential between a high power supply potential (VDD) and a low power supply potential (VSS) corresponding to a potential VDD/2 according to a precharge signal applied to a precharge line PCL1. This is a circuit for precharging to potential VPC.
  • the precharge circuit 71_B has n-channel transistors 81_4 to 81_6.
  • the precharge circuit 71_B is a circuit for precharging the wiring GBL_A and the wiring GBL_B to an intermediate potential VPC corresponding to the potential VDD/2 between VDD and VSS in accordance with a precharge signal applied to the precharge line PCL2. be.
  • the sense amplifier 46 includes p-channel transistors 82_1 and 82_2 and n-channel transistors 82_3 and 82_4, which are connected to the wiring VHH or the wiring VLL.
  • the wiring VHH or the wiring VLL is a wiring that has a function of providing VDD or VSS.
  • the transistors 82_1 to 82_4 are transistors forming an inverter loop.
  • the potentials of the wiring GBL_A and the wiring GBL_B can be output to the outside via the switch 83_C, the switch 83_D, and the write/read circuit 73.
  • the wiring BL_A and the wiring BL_B, and the wiring GBL_A and the wiring GBL_B correspond to a bit line pair.
  • writing of a data signal is controlled according to the signal EN_data.
  • the switch circuit 72_A is a circuit for controlling the conduction state between the sense amplifier 46 and the wiring GBL_A and the wiring GBL_B.
  • the switch circuit 72_A is turned on or off under the control of the switching signal CSEL1.
  • the switches 83_A and 83_B are n-channel transistors, they are turned on when the switching signal CSEL1 is at a high level, and turned off when the switching signal CSEL1 is at a low level.
  • the switch circuit 72_B is a circuit for controlling the conduction state between the write/read circuit 73 and the bit line pair connected to the sense amplifier 46.
  • the switch circuit 72_B is turned on or off under the control of the switching signal CSEL2.
  • the switches 83_C and 83_D may be configured in the same manner as the switches 83_A and 83_B.
  • the memory device 300 has a configuration in which the memory cell 10, the functional circuit 51, and the sense amplifier 46 are connected via a wiring BL and a wiring GBL provided in the vertical direction, which are the shortest distances. I can do it.
  • the number of functional layers 50 having transistors forming the functional circuit 51 increases, the load on the wiring BL is reduced, so that writing time can be shortened and data can be read easily.
  • each transistor included in the functional circuits 51_A and 51_B is controlled according to the control signals WE, RE and the selection signal MUX.
  • Each transistor can output the potential of the wiring BL to the drive circuit 21 via the wiring GBL in accordance with the control signal and the selection signal.
  • the functional circuits 51_A and 51_B can function as sense amplifiers made up of OS transistors. With this configuration, it is possible to amplify a slight potential difference in the wiring BL during reading and drive the sense amplifier 46 using a Si transistor.
  • the X direction is parallel to the channel width direction of the illustrated transistor
  • the Y direction is perpendicular to the X direction
  • the Z direction is perpendicular to the X and Y directions.
  • the memory cell 10 includes a transistor 11 and a capacitor 12.
  • An insulator 285 is provided on the transistor 11, and an insulator 284 is provided on the insulator 285.
  • an insulator that can be used for the insulator 216 may be used.
  • the transistor 11 has the same configuration as the transistor 200 shown in the previous embodiment, and the same components are denoted by the same symbols. For details of the transistor 200, the previous embodiments can be referred to.
  • a conductor 240 is provided in contact with one of the source and drain (conductor 242a) of the transistor 11.
  • the conductor 240 is provided extending in the Z direction, and functions as the wiring BL.
  • the capacitive element 12 includes a conductor 153 on a conductor 242b, an insulator 154 on the conductor 153, and a conductor 160 (a conductor 160a and a conductor 160b) on the insulator 154.
  • the conductor 153, the insulator 154, and the conductor 160 each have at least a portion formed in an opening provided in the insulator 271b, the insulator 275, the insulator 280, the insulator 282, the insulator 283, and the insulator 285. is located inside.
  • the ends of each of the conductor 153, the insulator 154, and the conductor 160 are located at least on the insulator 282, and preferably on the insulator 285.
  • the insulator 154 is provided to cover the end of the conductor 153. Thereby, the conductor 153 and the conductor 160 can be electrically insulated.
  • the capacitance of the capacitive element 12 can be increased.
  • the semiconductor device can be miniaturized or highly integrated.
  • the conductor 153 has a region that functions as one electrode (lower electrode) of the capacitive element 12.
  • the insulator 154 has a region that functions as a dielectric of the capacitive element 12.
  • the conductor 160 has a region that functions as the other electrode (upper electrode) of the capacitive element 12.
  • the capacitive element 12 constitutes an MIM (Metal-Insulator-Metal) capacitor.
  • the conductor 242b provided in an overlapping manner on the oxide 230 functions as a wiring electrically connected to the conductor 153 of the capacitive element 12.
  • the conductor 153 and the conductor 160 of the capacitive element 12 can be formed using various conductors that can be used for the conductor 205 or the conductor 260, respectively. It is preferable that the conductor 153 and the conductor 160 are each formed using a film formation method with good coverage, such as an ALD method or a CVD method. For example, titanium nitride or tantalum nitride formed using an ALD method or a CVD method can be used as the conductor 153.
  • the lower surface of the conductor 153 is in contact with the upper surface of the conductor 242b2.
  • the contact resistance between the conductor 153 and the conductor 242b can be reduced.
  • titanium nitride formed using an ALD method or CVD method can be used as the conductor 160a
  • tungsten formed using a CVD method can be used as the conductor 160b. Note that if the adhesion of tungsten to the insulator 154 is sufficiently high, a single layer structure of tungsten formed using a CVD method may be used as the conductor 160.
  • a high dielectric constant (high-k) material (a material with a high relative dielectric constant) for the insulator 154 included in the capacitive element 12.
  • the insulator 154 is preferably formed using a film forming method with good coverage, such as an ALD method or a CVD method.
  • Examples of insulators made of high dielectric constant (high-k) materials include oxides, oxynitrides, nitride oxides, and nitrides containing one or more metal elements selected from aluminum, hafnium, zirconium, and gallium. Things can be mentioned. Further, the oxide, oxynitride, nitride oxide, or nitride may contain silicon. Furthermore, insulators made of the above-mentioned materials can be stacked and used.
  • insulators of high dielectric constant (high-k) materials e.g. aluminum oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, etc. Oxynitrides containing silicon and hafnium, oxides containing silicon and zirconium, oxynitrides containing silicon and zirconium, oxides containing hafnium and zirconium, and oxynitrides containing hafnium and zirconium.
  • the insulator 154 can be made thick enough to suppress leakage current, and the capacitance of the capacitive element 12 can be sufficiently secured.
  • insulators made of the above-mentioned materials in a laminated manner, and a laminated structure of a high dielectric constant (high-k) material and a material having a higher dielectric strength than the high dielectric constant (high-k) material is used.
  • high-k high dielectric constant
  • high-k high dielectric constant
  • the insulator 154 an insulator in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • an insulator in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulator in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulator having a relatively high dielectric strength, such as aluminum oxide the dielectric strength can be improved and electrostatic breakdown of the capacitive element 12 can be suppressed.
  • the capacitance of the capacitive element 12 can be increased.
  • the insulator 271b, the insulator 275, the insulator 282, and the insulator 283 function as barrier insulators, it is preferable to set the film thickness according to the barrier properties required of the semiconductor device.
  • the thickness of the conductor 260 that functions as a gate electrode is determined according to the thickness of the insulator 280, the thickness of the insulator 280 is adjusted to the thickness of the conductor 260 required for the semiconductor device. It is preferable to set the
  • the thickness of the insulator 285 may be set in a range from 50 nm to 250 nm, and the depth of the opening may be set to about 150 nm to 350 nm.
  • the capacitive element 12 can have sufficient capacitance, and in a semiconductor device in which multiple layers of memory cells are stacked, the height of one layer is not excessively high. You can keep it from getting too expensive.
  • a structure may be adopted in which the capacitances of the capacitive elements provided in each memory cell are made different in each of the layers of the plurality of memory cells. In the case of this configuration, for example, the thickness of the insulator 285 provided in each memory cell layer may be made different.
  • the side wall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, and may have a tapered shape. There may be. By tapering the sidewall, the coverage of the conductor 153 and the like provided in the opening of the insulator 285 and the like can be improved, and defects such as cavities can be reduced.
  • the conductor 242a provided overlappingly on the oxide 230 functions as a wiring electrically connected to the conductor 240.
  • the upper surface and side end portions of a conductor 242a are electrically connected to a conductor 240 extending in the Z direction.
  • the upper surface and side end of the conductor 242a2 and the side end of the conductor 242a1 are in contact with the conductor 240.
  • the conductor 240 be in contact with a part of the upper surface and the side end portion of the conductor 242a. Contact resistance between the conductor 240 and the conductor 242a can be reduced by the conductor 240 being in contact with multiple surfaces of the conductor 242a. In particular, as shown in FIG. 22, the contact resistance between the conductor 240 and the conductor 242a is further reduced by the conductor 240 being in contact with a part of the upper surface and the side edge of the highly conductive conductor 242a2. be able to.
  • the conductor 240 is provided in the opening formed in the insulator 216, insulator 221, insulator 222, insulator 275, insulator 280, insulator 282, insulator 283, insulator 285, and insulator 284. ing.
  • the conductor 240 preferably has a laminated structure of a conductor 240a and a conductor 240b.
  • the conductor 240 can have a structure in which a conductor 240a is provided in contact with the inner wall of the opening, and a conductor 240b is further provided inside. That is, compared to the conductor 240b, the conductor 240a has the following characteristics: insulator 216, insulator 221, insulator 222, insulator 275, insulator 280, insulator 282, insulator 283, insulator 285, and 284. Further, the conductor 240a is in contact with the upper surface and side end portions of the conductor 242a.
  • the conductor 240a it is preferable to use a conductive material that has a function of suppressing the permeation of impurities such as water and hydrogen.
  • the conductor 240a can have a single layer structure or a multilayer structure using one or more of tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, and ruthenium oxide, for example. This can prevent impurities such as water and hydrogen from entering the oxide 230 through the conductor 240.
  • the conductor 240 also functions as wiring, it is preferable to use a conductor with high conductivity.
  • a conductor with high conductivity For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used for the conductor 240b.
  • the conductor 240a is a conductor containing titanium and nitrogen
  • the conductor 240b is a conductor containing tungsten.
  • the conductor 240 may have a single layer structure or a laminated structure of three or more layers.
  • an insulator 241 is provided in contact with the side surface of the conductor 240. Specifically, the insulators are in contact with the inner walls of the openings of the insulators 216, 221, 222, 275, 280, 282, 283, 285, and 284. 241 is provided. Furthermore, an insulator 241 is also formed on the side surfaces of the insulator 224, oxide 230, and conductor 242a that are formed to protrude into the opening. Here, at least a portion of the conductor 242a is exposed from the insulator 241 and is in contact with the conductor 240. That is, the conductor 240 is provided so as to fill the inside of the opening with the insulator 241 interposed therebetween.
  • the top of the insulator 241 formed below the conductor 242a is preferably located below the upper surface of the conductor 242a.
  • the conductor 240 can be in contact with at least a portion of the side end portion of the conductor 242a.
  • the insulator 241 formed below the conductor 242a preferably has a region in contact with the side surface of the oxide 230. With this configuration, impurities such as water and hydrogen contained in the insulator 280 and the like can be suppressed from entering the oxide 230 through the conductor 240.
  • the insulator 241 a barrier insulating film that can be used for the insulator 275 or the like may be used.
  • the insulator 241 may be an insulator such as silicon nitride, aluminum oxide, silicon nitride oxide, or the like.
  • impurities such as water and hydrogen contained in the insulator 280 and the like can be suppressed from entering the oxide 230 through the conductor 240.
  • silicon nitride is suitable because it has a high blocking property against hydrogen. Furthermore, absorption of oxygen contained in the insulator 280 into the conductor 240 can be suppressed.
  • FIG. 22 shows a configuration in which the insulator 241 is a single layer, the present invention is not limited to this.
  • the insulator 241 may have a laminated structure of two or more layers.
  • a barrier insulating film against oxygen is used for the first layer in contact with the inner wall of the opening of the insulator 280, etc.
  • a barrier insulating film against hydrogen is used for the second layer inside the first layer.
  • aluminum oxide formed by ALD may be used as the first layer
  • silicon nitride formed by PEALD may be used as the second layer.
  • the side wall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, or may have a tapered shape. good. By tapering the side wall, coverage of the insulator 241 and the like provided in the opening is improved.
  • the storage device 300 includes a drive circuit 21, which is a layer including a transistor 310, a functional layer 50, which is a layer including transistors 52, 53, 54, 55, etc., on the drive circuit 21, and a functional layer 50, which is a layer including transistors 52, 53, 54, 55, etc.
  • Memory arrays 20[1] to 20[m] are shown in FIG. 23). Note that the transistor 52 corresponds to the transistors 52_a and 52_b, the transistor 53 corresponds to the transistors 53_a and 53_b, the transistor 54 corresponds to the transistors 54_a and 54_b, and the transistor 55 corresponds to the transistors 55_a and 55_b. corresponds to
  • FIG. 23 illustrates a transistor 310 included in the drive circuit 21.
  • the transistor 310 is provided over a substrate 311 and includes a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that includes a part of the substrate 311, and a low voltage layer that functions as a source region or a drain region. It has a resistance region 314a and a low resistance region 314b.
  • the transistor 310 may be either a p-channel transistor or an n-channel transistor.
  • the substrate 311 for example, a single crystal silicon substrate can be used.
  • a semiconductor region 313 (a part of the substrate 311) in which a channel is formed has a convex shape.
  • a conductor 316 is provided to cover the side and top surfaces of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be made of a material that adjusts the work function.
  • Such a transistor 310 is also called a FIN type transistor because it utilizes a convex portion of a semiconductor substrate.
  • an insulator may be provided in contact with the upper portion of the convex portion to function as a mask for forming the convex portion.
  • a semiconductor film having a convex shape may be formed by processing an SOI (Silicon on Insulator) substrate.
  • transistor 310 shown in FIG. 23 is an example, and the structure is not limited, and an appropriate transistor can be used depending on the circuit configuration or driving method.
  • a wiring layer including an interlayer film, wiring, plugs, etc. may be provided between each structure. Further, a plurality of wiring layers can be provided depending on the design. Further, in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked and provided as interlayer films. Further, a conductor 328 and the like are embedded in the insulator 320 and the insulator 322. Furthermore, a conductor 330 and the like are embedded in the insulator 324 and the insulator 326. Note that the conductor 328 and the conductor 330 function as a contact plug or a wiring.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape underneath.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like in order to improve flatness.
  • CMP chemical mechanical polishing
  • transistors 52, 53, and 55 included in the functional layer 50 are illustrated.
  • the transistors 52, 53, and 55 have the same configuration as the transistor 11 included in the memory cell 10.
  • the sources and drains of the transistors 52, 53, and 55 are connected in series.
  • An insulator 208 is provided over the transistors 52, 53, and 55, and a conductor 207 is provided in an opening formed in the insulator 208. Further, an insulator 210 is provided on the insulator 208, and a conductor 209 is provided in the opening formed in the insulator 210. Further, an insulator 212 is provided on the insulator 210, and an insulator 214 is provided on the insulator 212. A portion of the conductor 240 provided in the memory array 20[1] is embedded in the openings formed in the insulator 212 and the insulator 214.
  • an insulator that can be used for the insulator 216 can be used.
  • an insulator that can be used for the insulator 283 can be used.
  • an insulator that can be used for the insulator 282 can be used.
  • the lower surface of the conductor 207 is provided in contact with the upper surface of the conductor 260 of the transistor 52. Further, the upper surface of the conductor 207 is provided in contact with the lower surface of the conductor 209. Further, the upper surface of the conductor 209 is provided in contact with the lower surface of the conductor 240 provided in the memory array 20[1]. With such a configuration, the conductor 240 corresponding to the wiring BL and the gate of the transistor 52 can be electrically connected.
  • Each of the memory arrays 20[1] to 20[m] includes a plurality of memory cells 10.
  • the conductor 240 of each memory cell 10 is electrically connected to the conductor 240 in the upper layer and the conductor 240 in the lower layer.
  • adjacent memory cells 10 share a conductor 240. Further, in the adjacent memory cells 10, the configuration on the right side and the configuration on the left side are arranged symmetrically with the conductor 240 as a boundary.
  • a conductor 261 functioning as a second gate electrode can be formed in the same layer.
  • the conductor 160 of the capacitive element 12 in the lower layer and the conductor 261 of the transistor 11 in the upper layer can be formed to be embedded in an opening formed in the same insulator 216.
  • the above structure is obtained by forming the conductor 160 of the capacitive element 12 in the lower layer and the conductor 261 of the transistor 11 in the upper layer by processing one conductive film. At this time, the conductor 160 of the capacitive element 12 in the lower layer has the same material as the conductor 261 of the transistor 11 in the upper layer.
  • the manufacturing process of the memory device according to this embodiment can be reduced.
  • the productivity of the storage device can be improved.
  • a plurality of memory arrays 20[1] to 20[m] can be stacked and provided.
  • the memory arrays 20[1] to 20[m] included in the memory array 20 in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided, it is possible to improve the memory density of the memory cell 10.
  • the memory array 20 can be fabricated using the same manufacturing process repeatedly in the vertical direction.
  • the storage device 300 can reduce the manufacturing cost of the memory array 20.
  • the present invention is not limited to this.
  • a configuration may be adopted in which a stacked structure of the drive circuit 21, the functional layer 50, and the memory array 20 is formed by bonding a plurality of chips together.
  • a memory device may be formed by bonding a chip 60 having a drive circuit 21 and a functional layer 50 and a chip 61 having a memory array 20.
  • the chip 60 has almost the same structure as the drive circuit 21 and functional layer 50 of the memory device shown in FIG.
  • an insulator 346 is provided on top of the functional layer 50, and an insulator 336 is provided on the insulator 346.
  • a conductor 341 is provided within the insulator 336, and a portion of the conductor 225 is provided within the insulator 346.
  • the insulator 346 is an insulator that functions as a barrier insulator, and can suppress diffusion of impurities into the oxide semiconductor of the functional layer 50 and the substrate 311.
  • an inorganic insulating film that can be used for the insulator 283 or the like can be used.
  • a wiring layer 25 is shown between the drive circuit 21 and the functional layer 50.
  • a conductor 228 functioning as a wiring is embedded in an interlayer film.
  • a conductor that functions as a contact plug is also provided in the wiring layer 25. Note that in the wiring layer 25 shown in FIG. 24, only one layer of the conductor 228 is shown, but the present invention is not limited to this, and the conductor functioning as the wiring may be divided into a plurality of layers and laminated. In other words, the wiring layer 25 can be made into a multilayer wiring.
  • a conductor 225, a conductor 226, a conductor 207, and a conductor 227 are embedded in the interlayer film of the functional layer 50.
  • the conductor 226 functions as a wiring
  • the conductor 225, the conductor 207, and the conductor 227 function as a contact plug.
  • the conductor 225, the conductor 226, and the conductor 207 electrically connect the conductor 341 and the gate of the transistor 52.
  • the conductor 226 and the conductor 227 electrically connect one of the source or the drain of the transistor 55 and the conductor 228 of the wiring layer 25 .
  • the chip 61 has a structure in which a memory array 20 shown in FIG. 23 is provided on a substrate 351.
  • An insulator 345 is provided on the back surface of the substrate 351, and an insulator 335 is provided below the insulator 345.
  • a conductor 342 is provided within the insulator 335 .
  • the insulator 345 is an insulator that functions as a barrier insulator, and can suppress diffusion of impurities into the substrate 351.
  • an inorganic insulating film that can be used for the insulator 283 or the like can be used.
  • the substrate 351 a substrate similar to the substrate 311 can be used, and for example, a single crystal silicon substrate can be used.
  • the substrate 351 is provided with a conductor 343 that penetrates the substrate 351 and the insulator 345.
  • the conductor 343 is a TSV (Through Silicon Via) that penetrates the silicon substrate, and its upper end is in contact with the conductor 209 and its lower end is in contact with the conductor 342.
  • the insulator 344 is an insulating layer that functions as a barrier insulator, and can suppress diffusion of impurities into the substrate 351.
  • an inorganic insulating film that can be used for the insulator 241 can be used.
  • the insulator 336 and conductor 341 of the chip 60 and the insulator 335 and conductor 342 of the chip 61 are bonded together on the bonding surface B.
  • a hybrid bond is formed in which the conductor 341 and the conductor 342 are in contact with each other, and the insulator 336 and the insulator 335 are in contact with each other.
  • the main components of the conductor 341 and the conductor 342 are the same metal element. Further, it is preferable that the insulator 336 and the insulator 335 are made of the same component.
  • Cu, Al, Sn, Zn, W, Ag, Pt, Au, or the like can be used for the conductor 341 and the conductor 342.
  • Cu, Al, W, or Au is used because of ease of bonding.
  • a structure may be adopted in which a metal nitride containing the above-described metal element is formed on at least a portion of the conductor 341 and the conductor 342.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, titanium nitride, or the like can be used for the insulator 336 and the insulator 335.
  • the insulator 336 and the insulator 335 may be made of a polymer material such as polyimide.
  • the conductor 341 and the conductor 342 may have a multilayer structure including a plurality of layers, and in that case, the surface layer (bonding surface) may be made of the same metal material.
  • the insulator 336 and the insulator 335 may also have a multilayer structure including a plurality of layers, and in that case, the surface layer (joint surface) may be made of the same insulating material.
  • a surface activation bonding method can be used in which the oxide film and impurity adsorption layer on the surface are removed by sputtering, etc., and the cleaned and activated surfaces are brought into contact and bonded.
  • a diffusion bonding method can be used in which surfaces are bonded together using both temperature and pressure. Since both bonding occurs at the atomic level, it is possible to obtain a bond that is not only electrical but also mechanically superior.
  • a hydrophilic bonding method can be used for bonding the insulators in which surfaces that have been hydrophilically treated with oxygen plasma or the like are brought into contact with each other for temporary bonding, and then main bonding is performed by dehydration through heat treatment. Since the hydrophilic bonding method also causes bonding at the atomic level, it is possible to obtain mechanically excellent bonding.
  • a method can be used in which the surface is cleaned, the surface of the conductor is subjected to oxidation prevention treatment, and then hydrophilic treatment is performed and bonding is performed.
  • the surface of the conductor may be made of an oxidation-resistant metal such as Au and subjected to hydrophilic treatment. Note that bonding methods other than those described above may be used.
  • the memory array 20 of the chip 61 and the functional layer 50 and drive circuit 21 of the chip 60 can be electrically connected.
  • the chip 60 may be provided with the drive circuit 21 including the transistor 310, and the chip 61 may be provided with the memory array 20[1] including the transistor 11.
  • the chip 60 shown in FIG. 25 differs from the chip 60 shown in FIG. 24 in that it does not have the functional layer 50.
  • the wiring layer 25 is provided with an insulator 336, an insulator 346, a conductor 341, a conductor 225, a conductor 226, and a conductor 207.
  • a memory array 20[1] is provided on a substrate 351.
  • An insulator 345, an insulator 335, and a conductor 342 are provided on the back side of the substrate 351.
  • a conductor 343 and an insulator 344 are provided penetrating the substrate 351 and the insulator 345 .
  • the structure near the bonding surface B has the same structure as the memory device shown in FIG. 24. Thereby, the chip 60 and the chip 61 can be bonded together, and the memory array 20 and the drive circuit 21 can be electrically connected.
  • a plurality of memory devices shown in FIG. 23 can be stacked.
  • a chip 61 having a functional layer 50 and a memory array 20 may be stacked on a chip 60 having a structure similar to that of the storage device shown in FIG. 23.
  • an insulator 346, an insulator 336, and a conductor 341 are provided on the memory array 20. Further, wiring and contact plugs are provided to electrically connect the conductor 341, the transistors of the functional layer 50, and the transistors of the drive circuit 21. Although not shown in FIG. 26, a wiring layer may be provided between the drive circuit 21 and the functional layer 50.
  • a chip 61 shown in FIG. 26 has a functional layer 50 provided on a substrate 351.
  • An insulator 345, an insulator 335, and a conductor 342 are provided on the back side of the substrate 351.
  • a conductor 343 and an insulator 344 are provided penetrating the substrate 351 and the insulator 345 . Further, wiring and contact plugs are provided to electrically connect the conductor 343 and the transistor of the functional layer 50.
  • the structure near the bonding surface B has the same structure as the memory device shown in FIG. 24. Thereby, the chip 60 and the chip 61 can be bonded together, and the functional layer 50 of the chip 61 and the functional layer 50 of the chip 60 can be electrically connected to the drive circuit 21.
  • the storage device shown in FIG. 26 has a so-called face-to-back structure in which the upper surface of the chip 60 and the lower surface of the chip 61 are bonded together
  • the present invention is not limited to this.
  • a so-called face-to-face structure may be used in which the top surface of the chip 60 and the top surface of the chip 61 are bonded together.
  • the functional layer 50 is provided on the substrate 351 with the substrate 351 as a reference.
  • An insulator 345, an insulator 335, and a conductor 342 are provided on the memory array 20 side. Further, wiring and contact plugs are provided to electrically connect the conductor 342 and the transistor of the functional layer 50.
  • a plurality of circuits (systems) are mounted on the chip 1200 shown in FIGS. 29A and 29B.
  • SoC system on chip
  • the chip 1200 includes a CPU 1211, a GPU 1212, one or more analog calculation units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • the chip 1200 is provided with bumps (not shown) and is connected to the first surface of the package substrate 1201, as shown in FIG. 29B. Furthermore, a plurality of bumps 1202 are provided on the back surface of the first surface of the package substrate 1201 and are connected to a motherboard 1203.
  • the motherboard 1203 may be provided with storage devices such as a DRAM 1221 and a flash memory 1222.
  • storage devices such as a DRAM 1221 and a flash memory 1222.
  • the DOSRAM described in the previous embodiment can be used as the DRAM 1221. This allows the DRAM 1221 to have lower power consumption, higher speed, and larger capacity.
  • the CPU 1211 has multiple CPU cores. Further, it is preferable that the GPU 1212 has a plurality of GPU cores. Further, the CPU 1211 and the GPU 1212 may each have a memory that temporarily stores data. Alternatively, a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200. The above-mentioned DOSRAM can be used as the memory. Further, the GPU 1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing or product-sum calculation. By providing the image processing circuit using the OS transistor described in the previous embodiment or the product-sum operation circuit in the GPU 1212, it becomes possible to perform image processing or product-sum operation with low power consumption. .
  • the CPU 1211 and the GPU 1212 are provided on the same chip, the wiring between the CPU 1211 and the GPU 1212 can be shortened, and data transfer from the CPU 1211 to the GPU 1212 and between the memory of the CPU 1211 and the GPU 1212 is possible. , and after the calculation by the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog calculation unit 1213 has one or both of an A/D (analog/digital) conversion circuit and a D/A (digital/analog) conversion circuit. Further, the analog calculation section 1213 may be provided with the above product-sum calculation circuit.
  • the memory controller 1214 has a circuit that functions as a controller for the DRAM 1221 and a circuit that functions as an interface for the flash memory 1222.
  • the interface 1215 has an interface circuit with external connection devices such as a display device, speaker, microphone, camera, and controller. Controllers include mice, keyboards, game controllers, and the like. As such an interface, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), etc. can be used.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface High-Definition Multimedia Interface
  • the network circuit 1216 includes a network circuit such as a LAN (Local Area Network). It may also include a circuit for network security.
  • LAN Local Area Network
  • the above circuit (system) can be formed on the chip 1200 using the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, there is no need to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • a package substrate 1201 provided with a chip 1200 having a GPU 1212, a motherboard 1203 provided with a DRAM 1221, and a flash memory 1222 can be called a GPU module 1204.
  • the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Furthermore, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game machines.
  • a product-sum calculation circuit using the GPU 1212 can be used to create deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders, deep Boltzmann machines (DBMs), and deep belief networks ( DBN), the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • DNNs deep neural networks
  • CNNs convolutional neural networks
  • RNNs recurrent neural networks
  • DBMs deep Boltzmann machines
  • DBN deep belief networks
  • FIG. 30A A perspective view of a board (mounted board 704) on which electronic component 700 is mounted is shown in FIG. 30A.
  • An electronic component 700 shown in FIG. 30A includes a semiconductor device 710 within a mold 711. In FIG. 30A, some descriptions are omitted to show the inside of the electronic component 700.
  • the electronic component 700 has a land 712 on the outside of the mold 711. Land 712 is electrically connected to electrode pad 713, and electrode pad 713 is electrically connected to semiconductor device 710 via wire 714.
  • the electronic component 700 is mounted on a printed circuit board 702, for example.
  • a mounting board 704 is completed by combining a plurality of such electronic components and electrically connecting them on the printed circuit board 702.
  • the semiconductor device 710 includes a drive circuit layer 715 and a memory layer 716.
  • the storage layer 716 has a structure in which a plurality of memory cell arrays are stacked.
  • the structure in which the drive circuit layer 715 and the memory layer 716 are stacked can be a monolithic stacked structure.
  • each layer can be connected without using a through electrode technology such as TSV (Through Silicon Via) or a bonding technology such as Cu-Cu direct bonding.
  • connection wiring etc.
  • connection wiring etc.
  • TSV through silicon vias
  • connection pins By increasing the number of connection pins, parallel operation becomes possible, thereby making it possible to improve the memory bandwidth (also referred to as memory bandwidth).
  • the plurality of memory cell arrays included in the storage layer 716 be formed using OS transistors, and the plurality of memory cell arrays be monolithically stacked.
  • OS transistors the plurality of memory cell arrays be monolithically stacked.
  • bandwidth is the amount of data transferred per unit time
  • access latency is the time from access to the start of data exchange.
  • the semiconductor device 710 may be referred to as a die.
  • a die refers to a chip piece obtained by forming a circuit pattern on, for example, a disk-shaped substrate (also referred to as a wafer) and cutting it into dice in the semiconductor chip manufacturing process.
  • semiconductor materials that can be used for the die include silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also referred to as a silicon wafer
  • a silicon die is sometimes referred to as a silicon die.
  • the electronic component 730 is an example of SiP (System in Package) or MCM (Multi Chip Module).
  • an interposer 731 is provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of semiconductor devices 710 are provided on the interposer 731.
  • the semiconductor device 710 is used as a high bandwidth memory (HBM).
  • the semiconductor device 735 is an integrated circuit such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an FPGA (Field Programmable Gate Array). Can be used.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • a ceramic substrate, a plastic substrate, or a glass epoxy substrate can be used as the package substrate 732.
  • the interposer 731 for example, a silicon interposer or a resin interposer can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits with different terminal pitches.
  • the plurality of wirings are provided in a single layer or in multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrodes provided on the package substrate 732.
  • the interposer is sometimes called a "rewiring board” or an "intermediate board.”
  • a through electrode is provided in the interposer 731, and the integrated circuit and the package substrate 732 are electrically connected using the through electrode.
  • TSV can also be used as the through electrode.
  • HBM In HBM, it is necessary to connect many wires to achieve a wide memory bandwidth. For this reason, an interposer mounting an HBM is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer for mounting the HBM.
  • a silicon interposer in SiP, MCM, etc. using a silicon interposer, reliability is less likely to deteriorate due to the difference in expansion coefficient between the integrated circuit and the interposer. Furthermore, since the silicon interposer has a highly flat surface, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is less likely to occur. In particular, it is preferable to use a silicon interposer in a 2.5D package (2.5-dimensional packaging) in which a plurality of integrated circuits are arranged side by side on an interposer.
  • 2.5D package 2.5-dimensional packaging
  • a monolithic stacked structure using OS transistors is suitable. It may also be a composite structure in which a memory cell array stacked using TSVs and a memory cell array stacked monolithically are combined.
  • a heat sink may be provided overlapping the electronic component 730.
  • a heat sink it is preferable that the heights of the integrated circuits provided on the interposer 731 are the same.
  • the heights of the semiconductor device 710 and the semiconductor device 735 are the same.
  • an electrode 733 may be provided on the bottom of the package board 732.
  • FIG. 30B shows an example in which the electrode 733 is formed with a solder ball. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be realized.
  • the electrode 733 may be formed of a conductive pin. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be realized.
  • the electronic component 730 can be mounted on other boards using various mounting methods, not limited to BGA and PGA. Examples of implementation methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), and QFJ (Quad Flat J-lead). package), and QFN (Quad Flat Non-leaded package) can be mentioned.
  • FIG. 31A a perspective view of electronic device 6500 is shown in FIG. 31A.
  • Electronic device 6500 shown in FIG. 31A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, a control device 6509, and the like.
  • the control device 6509 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6502, the control device 6509, and the like.
  • An electronic device 6600 shown in FIG. 31B is an information terminal that can be used as a notebook personal computer.
  • the electronic device 6600 includes a housing 6611, a keyboard 6612, a pointing device 6613, an external connection port 6614, a display portion 6615, a control device 6616, and the like.
  • the control device 6616 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6615, the control device 6616, and the like. Note that it is preferable to use the semiconductor device of one embodiment of the present invention for the above-described control device 6509 and control device 6616 because power consumption can be reduced.
  • FIG. 31C a perspective view of large computer 5600 is shown in FIG. 31C.
  • a plurality of rack-mount computers 5620 are stored in a rack 5610.
  • the large computer 5600 may be called a supercomputer.
  • the computer 5620 can have the configuration shown in the perspective view shown in FIG. 31D.
  • a computer 5620 has a motherboard 5630, and the motherboard 5630 has a plurality of slots 5631 and a plurality of connection terminals.
  • a PC card 5621 is inserted into the slot 5631.
  • the PC card 5621 has a connection terminal 5623, a connection terminal 5624, and a connection terminal 5625, each of which is connected to the motherboard 5630.
  • a PC card 5621 shown in FIG. 31E is an example of a processing board that includes a CPU, a GPU, a storage device, and the like.
  • PC card 5621 has a board 5622.
  • the board 5622 includes a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629.
  • semiconductor devices other than the semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628 are illustrated in FIG. 31E, these semiconductor devices are as described below. Please refer to the description of semiconductor device 5628.
  • connection terminal 5629 has a shape that can be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • Examples of the standard of the connection terminal 5629 include PCIe.
  • connection terminal 5623, the connection terminal 5624, and the connection terminal 5625 can be used as an interface for supplying power, inputting signals, etc. to the PC card 5621, for example. Further, for example, it can be used as an interface for outputting a signal calculated by the PC card 5621.
  • the respective standards of the connection terminal 5623, connection terminal 5624, and connection terminal 5625 include, for example, USB (Universal Serial Bus), SATA (Serial ATA), SCSI (Small Computer System Interface), etc. Can be mentioned.
  • the respective standards include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and by inserting the terminal into a socket (not shown) provided on the board 5622, the semiconductor device 5626 and the board 5622 can be connected. Can be electrically connected.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5627 include an FPGA, a GPU, and a CPU.
  • an electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5628 include a storage device.
  • the electronic component 700 can be used as the semiconductor device 5628.
  • the large computer 5600 can also function as a parallel computer. By using the large-scale computer 5600 as a parallel computer, it is possible to perform large-scale calculations necessary for, for example, artificial intelligence learning and inference.
  • a semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as equipment that processes and stores information.
  • a semiconductor device of one embodiment of the present invention can include an OS transistor.
  • the OS transistor has small variations in electrical characteristics due to radiation irradiation. In other words, since it has high resistance to radiation, it can be suitably used in environments where radiation may be incident. For example, OS transistors can be suitably used when used in outer space.
  • FIG. 32 shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 includes a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807.
  • a planet 6804 is illustrated in outer space.
  • outer space refers to, for example, an altitude of 100 km or more, but outer space described in this specification may include the thermosphere, mesosphere, and stratosphere.
  • the secondary battery 6805 may be provided with a battery management system (also referred to as BMS) or a battery control circuit. It is preferable to use an OS transistor in the battery management system or battery control circuit described above because it has low power consumption and high reliability even in outer space.
  • BMS battery management system
  • OS transistor it is preferable to use an OS transistor in the battery management system or battery control circuit described above because it has low power consumption and high reliability even in outer space.
  • outer space is an environment with more than 100 times higher radiation levels than on the ground.
  • radiation include electromagnetic waves (electromagnetic radiation) represented by X-rays and gamma rays, and particle radiation represented by alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, meson rays, etc. It will be done.
  • the electric power necessary for the operation of the artificial satellite 6800 is generated.
  • the power necessary for satellite 6800 to operate may not be generated.
  • the solar panel is sometimes called a solar cell module.
  • the satellite 6800 can generate signals.
  • the signal is transmitted via antenna 6803 and can be received by, for example, a ground-based receiver or other satellite.
  • the position of the receiver that received the signal can be measured.
  • the artificial satellite 6800 can constitute a satellite positioning system.
  • control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using one or more selected from, for example, a CPU, a GPU, and a storage device.
  • a semiconductor device which is one embodiment of the present invention, is preferably used for the control device 6807.
  • OS transistors Compared to Si transistors, OS transistors have smaller fluctuations in electrical characteristics due to radiation irradiation. In other words, it is highly reliable and can be suitably used even in environments where radiation may be incident.
  • the artificial satellite 6800 can be configured to include a sensor.
  • the artificial satellite 6800 can have a function of detecting sunlight reflected by hitting an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface.
  • the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is illustrated as an example of space equipment, but the present invention is not limited to this.
  • the semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as a spacecraft, a space capsule, and a space probe.
  • OS transistors have superior effects compared to Si transistors, such as being able to realize a wide memory bandwidth and having high radiation resistance.
  • a semiconductor device can be suitably used in, for example, a storage system applied to a data center or the like.
  • Data centers are required to perform long-term data management, including ensuring data immutability.
  • it is necessary to install storage and servers to store huge amounts of data, secure a stable power supply to retain data, or secure cooling equipment required to retain data, etc. in large buildings. ization is required.
  • the semiconductor device of one embodiment of the present invention in a storage system applied to a data center, the power required to hold data can be reduced and the semiconductor device that holds data can be made smaller. Therefore, it is possible to downsize the storage system, downsize the power supply for holding data, and downsize the cooling equipment. Therefore, it is possible to save space in the data center.
  • the semiconductor device of one embodiment of the present invention consumes less power, heat generation from the circuit can be reduced. Therefore, the adverse effect of the heat generation on the circuit itself, peripheral circuits, and module can be reduced. Furthermore, by using the semiconductor device of one embodiment of the present invention, a data center that operates stably even in a high-temperature environment can be realized. Therefore, the reliability of the data center can be improved.
  • FIG. 33 shows a storage system applicable to data centers.
  • the storage system 7000 shown in FIG. 33 has a plurality of servers 7001sb as hosts 7001 (shown as Host Computer). It also includes a plurality of storage devices 7003md as storage 7003 (shown as Storage).
  • a host 7001 and a storage 7003 are shown connected via a storage area network 7004 (SAN: Storage Area Network) and a storage control circuit 7002 (Storage Controller).
  • SAN Storage Area Network
  • Storage Controller Storage Controller
  • the host 7001 corresponds to a computer that accesses data stored in the storage 7003.
  • the hosts 7001 may be connected to each other via a network.
  • the storage 7003 uses flash memory to shorten the data access speed, that is, the time required to store and output data, this time is the same as the time required by DRAM, which can be used as a cache memory in the storage. It is much longer than .
  • a cache memory is usually provided in the storage to shorten data storage and output.
  • the cache memory described above is used in the storage control circuit 7002 and the storage 7003. Data exchanged between the host 7001 and the storage 7003 is stored in the storage control circuit 7002 and the cache memory in the storage 7003, and then output to the host 7001 or the storage 7003.
  • an OS transistor as a transistor for storing data in the cache memory described above and maintaining a potential according to the data, the frequency of refreshing can be reduced and power consumption can be reduced. Further, by using a structure in which memory cell arrays are stacked, it is possible to downsize the storage.
  • the semiconductor device of one embodiment of the present invention by applying the semiconductor device of one embodiment of the present invention to one or more selected from electronic components, electronic devices, large computers, space equipment, and data centers, power consumption can be reduced. There is expected. Therefore, as energy demand is expected to increase due to higher performance or higher integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention will reduce the greenhouse effect typified by carbon dioxide (CO 2 ). It also becomes possible to reduce the amount of gas discharged. Further, since the semiconductor device of one embodiment of the present invention has low power consumption, it is effective as a countermeasure against global warming.
  • CO 2 carbon dioxide
  • ADDR Signal, BL[1]: Wiring, BL[j]: Wiring, BL[n]: Wiring, BL_A: Wiring, BL_B: Wiring, BL: Wiring, BW: Signal, CE: Signal, CLK: Signal, EN_data : Signal, GBL_A: Wiring, GBL_B: Wiring, GBL: Wiring, GW: Signal, MUX: Selection signal, PL[1]: Wiring, PL[i]: Wiring, PL[m]: Wiring, PL: Wiring, RDA : Signal, RE: Control signal, VHH: Wiring, VLL: Wiring, VPC: Intermediate potential, WAKE: Signal, WDA: Signal, WE: Control signal, WL[1]: Wiring, WL[i]: Wiring, WL[ m]: Wiring, WL: Wiring, 10[1,1]: Memory cell, 10[i,j]: Memory cell, 10[m,n]: Memory cell, 10_A: Memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。 酸化物上の、互いに離隔された第1の導電体及び第2の導電体と、第1の導電体の上面の一部に接する第3の導電体と、第2の導電体の上面の一部に接する第4の導電体と、第3の導電体、及び第4の導電体上に配置され、第3の導電体と第4の導電体の間に開口を有する、第1の絶縁体と、第1の絶縁体の開口内に配置され、第1の導電体の上面の他の一部、第2の導電体の上面の他の一部、 第3の導電体の側面、及び第4の導電体の側面に接する、第2の絶縁体と、酸化物の上面、第1の導電体、第2の導電体、及び第2の絶縁体の側面に接する第3の絶縁体と、第3の絶縁体上に配置 される、第5の導電体と、を有し、第1の導電体と第2の導電体の間の距離は、第3の導電体と第4の導電体の間の距離より小さく、第2の絶縁体は、第1の層と、第1の層上の第2の層と、を有し、第1の層は、窒化物絶縁体を有し、第2の層は、酸化物絶縁体を有する。

Description

半導体装置、及び記憶装置
 本発明の一態様は、酸化物半導体を用いた半導体装置、記憶装置、及び電子機器に関する。また、本発明の一態様は、上記半導体装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有するといえる場合がある。
 近年、半導体装置の開発が進められ、LSI、CPU、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSI、CPU、メモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)、画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、特許文献1には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用して、長期にわたり記憶内容を保持できる記憶装置などが、開示されている。
 また、酸化物半導体の上面に接して、ソース電極層とドレイン電極層が設けられた、微細構造のトランジスタが、特許文献3に開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2016−125052号
 本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い半導体装置を提供することを課題の一とする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一とする。または、本発明の一態様は、トランジスタの電気特性のばらつきが少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、信頼性が高い半導体装置を提供することを課題の一とする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、新規の半導体装置を提供することを課題の一とする。または、本発明の一態様は、生産性の高い半導体装置の作製方法を提供することを課題の一とする。また、本発明の一態様は、新規の半導体装置の作製方法を提供することを課題の一とする。
 または、本発明の一態様は、記憶容量が大きい記憶装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い記憶装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない記憶装置を提供することを課題の一とする。または、本発明の一態様は、新規な記憶装置を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、基板上の酸化物と、酸化物上の、互いに離隔された第1の導電体及び第2の導電体と、第1の導電体の上面の一部に接する第3の導電体と、第2の導電体の上面の一部に接する第4の導電体と、第3の導電体、及び第4の導電体上に配置され、第3の導電体と第4の導電体の間の領域と重畳する開口を有する、第1の絶縁体と、第1の絶縁体の開口内に配置され、第1の導電体の上面の他の一部、第2の導電体の上面の他の一部、第3の導電体の側面、及び第4の導電体の側面に接する、第2の絶縁体と、第1の絶縁体の開口内に配置され、酸化物の上面、第1の導電体の側面、第2の導電体の側面、及び第2の絶縁体の側面に接する第3の絶縁体と、第1の絶縁体の開口内において、第3の絶縁体上に配置され、第3の絶縁体を介して、酸化物と重畳する領域を有する、第5の導電体と、を有し、第1の導電体と第2の導電体の間の距離は、第3の導電体と第4の導電体の間の距離より小さく、第2の絶縁体は、第1の層と、第1の層上の第2の層と、を有し、第1の層は、窒化物絶縁体を有し、第2の層は、酸化物絶縁体を有する、半導体装置である。
 上記において、第1の層は、第1の導電体、第2の導電体、第3の導電体、第4の導電体、及び第1の絶縁体に接し、第2の層は、第1の導電体、第2の導電体、第3の導電体、第4の導電体、及び第1の絶縁体に接することがない、ことが好ましい。
 また、上記において、第1の層は、窒化シリコンを有する、ことが好ましい。
 また、上記において、第2の層は、酸化シリコンを有してもよい。
 また、上記において、第2の層は、酸化アルミニウムを有してもよい。
 また、上記において、第2の層は、酸化ハフニウムを有してもよい。
 また、上記において、第1の導電体、及び第2の導電体は、金属窒化物を有する、ことが好ましい。
 また、上記において、第1の導電体、及び第2の導電体は、窒化タンタルを有する、ことが好ましい。
 また、上記において、1の導電体、及び第2の導電体は、窒化タンタルを有し、第3の導電体、及び第4の導電体は、タングステンを有する、ことが好ましい。
 また、上記において、第3の導電体と第4の導電体の間の距離と第1の導電体と第2の導電体の間の距離の差は、第2の絶縁体の膜厚の2倍と一致または概略一致する、ことが好ましい。
 また、上記において、上面視において、第1の絶縁体の開口の側面は、第3の導電体の側面、及び第4の導電体の側面と一致または概略一致する、ことが好ましい。
 また、本発明の他の一態様は、上記の半導体装置と、容量素子と、を有し、容量素子の一方の電極が、半導体装置の第3の導電体と電気的に接続される、記憶装置である。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供できる。または、本発明の一態様により、動作速度が速い半導体装置を提供できる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供できる。または、本発明の一態様により、トランジスタの電気特性のばらつきが少ない半導体装置を提供できる。または、本発明の一態様により、信頼性が高い半導体装置を提供できる。または、本発明の一態様により、オン電流が大きい半導体装置を提供できる。または、本発明の一態様により、消費電力が少ない半導体装置を提供できる。または、本発明の一態様により、新規の半導体装置を提供できる。または、本発明の一態様により、生産性の高い半導体装置の作製方法を提供できる。または、本発明の一態様により、新規の半導体装置の作製方法を提供できる。
 本発明の一態様により、記憶容量が大きい記憶装置を提供できる。または、本発明の一態様により、動作速度が速い記憶装置を提供できる。または、本発明の一態様により、消費電力が少ない記憶装置を提供できる。または、本発明の一態様により、新規な記憶装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、半導体装置の一例を示す平面図である。図1B乃至図1Dは、半導体装置の一例を示す断面図である。
図2A及び図2Bは、半導体装置の一例を示す断面図である。
図3A乃至図3Cは、半導体装置の一例を示す断面図である。
図4A乃至図4Cは、半導体装置の一例を示す断面図である。
図5A及び図5Bは、半導体装置の一例を示す断面図である。
図6Aは、半導体装置の作製方法の一例を示す平面図である。図6B乃至図6Dは、半導体装置の作製方法の一例を示す断面図である。
図7Aは、半導体装置の作製方法の一例を示す平面図である。図7B乃至図7Dは、半導体装置の作製方法の一例を示す断面図である。
図8Aは、半導体装置の作製方法の一例を示す平面図である。図8B乃至図8Dは、半導体装置の作製方法の一例を示す断面図である。
図9Aは、半導体装置の作製方法の一例を示す平面図である。図9B乃至図9Dは、半導体装置の作製方法の一例を示す断面図である。
図10Aは、半導体装置の作製方法の一例を示す平面図である。図10B乃至図10Dは、半導体装置の作製方法の一例を示す断面図である。
図11Aは、半導体装置の作製方法の一例を示す平面図である。図11B乃至図11Dは、半導体装置の作製方法の一例を示す断面図である。
図12Aは、半導体装置の作製方法の一例を示す平面図である。図12B乃至図12Dは、半導体装置の作製方法の一例を示す断面図である。
図13Aは、半導体装置の作製方法の一例を示す平面図である。図13B乃至図13Dは、半導体装置の作製方法の一例を示す断面図である。
図14Aは、半導体装置の作製方法の一例を示す平面図である。図14B乃至図14Dは、半導体装置の作製方法の一例を示す断面図である。
図15A乃至図15Cは、半導体装置の作製方法の一例を示す断面図である。
図16Aは、半導体装置の作製方法の一例を示す平面図である。図16B乃至図16Dは、半導体装置の作製方法の一例を示す断面図である。
図17Aは、半導体装置の作製方法の一例を示す平面図である。図17B乃至図17Dは、半導体装置の作製方法の一例を示す断面図である。
図18は、記憶装置の一例を示すブロック図である。
図19A及び図19Bは、記憶装置の一例を示す模式図及び回路図である。
図20A及び図20Bは、記憶装置の一例を示す模式図である。
図21は、記憶装置の一例を示す回路図である。
図22は、記憶装置の一例を示す断面図である。
図23は、記憶装置の一例を示す断面図である。
図24は、記憶装置の一例を示す断面図である。
図25は、記憶装置の一例を示す断面図である。
図26は、記憶装置の一例を示す断面図である。
図27は、記憶装置の一例を示す断面図である。
図28A乃至図28Cは、記憶装置の一例を示す回路図である。
図29A及び図29Bは半導体装置の一例を示す図である。
図30A及び図30Bは、電子部品の一例を示す図である。
図31A及び図31Bは、電子機器の一例を示す図であり、図31C乃至図31Eは、大型計算機の一例を示す図である。
図32は、宇宙用機器の一例を示す図である。
図33は、データセンターに適用可能なストレージシステムの一例を示す図である。
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。
 なお、本明細書等において、「第1」、「第2」という序数詞は、便宜上用いるものであり、構成要素の数、または、構成要素の順序(例えば、工程順、または積層順)を限定するものではない。また、本明細書のある箇所において構成要素に付す序数詞と、本明細書の他の箇所、または特許請求の範囲において、当該構成要素に付す序数詞と、が一致しない場合がある。
 なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。また、「導電体」という用語は、場合によっては、または、状況に応じて、「導電層」という用語、または「導電膜」という用語に、互いに入れ替えることが可能である。また、「絶縁体」という用語は、場合によっては、または、状況に応じて、「絶縁層」という用語、または「絶縁膜」という用語に、互いに入れ替えることが可能である。
 開口とは、例えば、溝、スリットなども含まれる。また、開口が形成された領域を開口部と記す場合がある。
 また、本実施の形態で用いる図面において、絶縁体の開口部における、絶縁体の側壁が、基板面または被形成面に対して垂直、または概略垂直である場合を示すが、テーパー形状であってもよい。
 なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(以下、テーパー角と呼ぶ場合がある)が90°未満である領域を有すると好ましい。なお、構造の側面及び基板面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
(実施の形態1)
 本実施の形態では、酸化物半導体を有する半導体装置、及び当該半導体装置の作製方法について、図1乃至図17を用いて説明する。
<半導体装置の構成例>
 図1乃至図5を用いて、半導体装置の構成例について説明する。図1A乃至図1Dは、半導体装置(トランジスタ200)の平面図および断面図である。図1Aは、当該半導体装置の平面図である。また、図1B乃至図1Dは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1Dは、図1AにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図1Aの平面図では、図の明瞭化のために一部の要素を省いている。また、図2A乃至図5Bに、トランジスタ200のチャネル長方向の断面拡大図を示す。
 トランジスタ200は、絶縁体216に埋め込まれるように設けられた導電体205(導電体205a及び導電体205b)と、絶縁体216及び導電体205上の絶縁体221と、絶縁体221上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230(酸化物230a及び酸化物230b)と、酸化物230上の、導電体242a(導電体242a1及び導電体242a2)及び導電体242b(導電体242b1及び導電体242b2)と、導電体242a上の絶縁体271aと、導電体242b上の絶縁体271bと、酸化物230上の絶縁体250と、絶縁体250上の導電体260(導電体260a及び導電体260b)と、を有する。
 絶縁体271a、271b上には、絶縁体275が設けられ、絶縁体275上には絶縁体280が設けられている。絶縁体250、及び導電体260は、絶縁体280及び絶縁体275に設けられた開口の内部に配置されている。また、当該開口の内部には、絶縁体255a及び絶縁体255b(以下、まとめて絶縁体255と呼ぶ場合がある。)が配置されている。絶縁体255は、導電体242a2、導電体242b2、絶縁体271a、絶縁体271b、絶縁体275、及び絶縁体280と、絶縁体250の間に設けられている。また、絶縁体280上及び導電体260上に絶縁体282が設けられている。また、絶縁体282上に絶縁体283が設けられている。また、絶縁体216及び導電体205の下に絶縁体215が設けられている。
 酸化物230は、トランジスタ200のチャネル形成領域として機能する領域を有する。また、導電体260は、トランジスタ200の第1のゲート電極(上側のゲート電極)として機能する領域を有する。絶縁体250は、トランジスタ200の第1のゲート絶縁体として機能する領域を有する。また、導電体205は、トランジスタ200の第2のゲート電極(下側のゲート電極)として機能する領域を有する。絶縁体224、絶縁体222、及び絶縁体221は、それぞれ、トランジスタ200の第2のゲート絶縁体として機能する領域を有する。
 導電体242aは、トランジスタ200のソース電極またはドレイン電極の一方として機能する領域を有する。導電体242bは、トランジスタ200のソース電極またはドレイン電極の他方として機能する領域を有する。
 導電体242aは、導電体242a1と、導電体242a1上の導電体242a2の積層構造であり、導電体242bは、導電体242b1と、導電体242b1上の導電体242b2の積層構造である。酸化物230bに接する導電体242a1及び導電体242b1は、金属窒化物などの酸化しにくい導電体であることが好ましい。これにより、酸化物230bに含まれる酸素によって、導電体242a及び導電体242bが過剰に酸化されるのを防ぐことができる。また、導電体242a2及び導電体242b2は、導電体242a1及び導電体242b1より導電性が高い、金属層などの導電体であることが好ましい。これにより、導電体242a及び導電体242bを、導電性が高い配線または電極として機能させることができる。このようにして、活性層として機能する酸化物230の上面に接して、配線または電極として機能する導電体242a及び導電体242bが設けられた、半導体装置を提供することができる。
 図2Bに示すように、トランジスタ200のチャネル長方向の断面視において、導電体242a1と導電体242b1の間の距離L2は、導電体242a2と導電体242b2の間の距離L1より小さい。なお、距離L2は、導電体242a1と導電体242b1の最短距離を指し、距離L1は、導電体242a2と導電体242b2の最短距離を指す。具体的には、L1とL2の差は、絶縁体255の膜厚の2倍と一致または概略一致する。ここで、絶縁体255の膜厚とは、絶縁体255の少なくとも一部における、A1−A2方向の膜厚を指す。このような構成にすることで、ソースとドレインの間の距離をより短くし、それに応じてチャネル長を短くすることが可能になる。よって、トランジスタ200の周波数特性を向上させることができる。このように、半導体装置の微細化を図ることで、動作速度の向上した半導体装置を提供することができる。
 上述の絶縁体280及び絶縁体275に設けられた開口は、導電体242a2と導電体242b2の間の領域と重畳する。上面視において、開口における絶縁体280の側面は、導電体242a2の側面、及び導電体242b2の側面と一致または概略一致する。また、導電体242a1及び導電体242b1の一部は、上記開口内に突出するように形成されている。ここで、導電体242a1の上面の一部が、導電体242a2に接し、導電体242b1の上面の一部が、導電体242b2に接する。よって、絶縁体255は、上記開口内で、導電体242a1の上面の他の一部、導電体242b1の上面の他の一部、導電体242a2の側面、及び導電体242b2の側面に接する。また、絶縁体250は、酸化物230の上面、導電体242a1の側面、導電体242b1の側面、及び絶縁体255の側面に接する。
 絶縁体255は、異方性エッチングを用いて、絶縁体280などに設けられた開口の側壁(ここで、開口の側壁とは、例えば、開口における絶縁体280等の側面に対応する。)に接して、サイドウォール状に形成される。絶縁体255は、絶縁体255aと、絶縁体255bと、を有する。絶縁体255aは、導電体242a1の上面、導電体242b1の上面、導電体242a2の側面、及び導電体242b2の側面に接して形成されている。絶縁体255bは、絶縁体255aより導電体260側に形成されるので、導電体242a1の上面、導電体242b1の上面、導電体242a2の側面、及び導電体242b2の側面に接することはない。
 絶縁体255aは、窒化物絶縁体を用いることが好ましい。絶縁体255aとしては、例えば、窒化シリコンを用いることができる。絶縁体255aは、導電体242a2、及び導電体242b2を保護する機能を有する。導電体242a1と導電体242b1を分断した後で、絶縁体250を成膜する前に、酸素を含む雰囲気で熱処理を行うことが好ましい。このとき、絶縁体255aが、導電体242a2の側面、及び導電体242b2の側面に接して形成されていることで、導電体242a2及び導電体242b2が過剰に酸化されることを防ぐことができる。
 絶縁体255bは、酸化物絶縁体を用いることが好ましい。絶縁体255bとしては、例えば、酸化シリコンを用いることができる。誘電率の低い酸化シリコンを絶縁体255bとして用いることで、導電体260と導電体242aまたは導電体242bとの距離を大きくし、寄生容量を低減させることができる。また、例えば、絶縁体255bとしては、例えば、酸化アルミニウム、または酸化ハフニウムを用いることができる。酸化アルミニウム、及び酸化ハフニウムは、酸化物半導体において不純物となる、水素を捕獲または固着する機能を有する。これにより、酸化物半導体を用いたトランジスタの電気特性及び信頼性向上を図ることができる。
 酸化物230は、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、を有することが好ましい。酸化物230bの下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、本実施の形態では、酸化物230が、酸化物230a及び酸化物230bの2層構造である例を示すが、これに限定されない。酸化物230は、例えば、酸化物230bの単層構造であってもよく、3層以上の積層構造としてもよい。
 酸化物230bには、トランジスタ200における、チャネル形成領域と、チャネル形成領域を挟むように設けられるソース領域及びドレイン領域と、が形成される。チャネル形成領域の少なくとも一部は、導電体260と重なる。ソース領域は導電体242aと重なり、ドレイン領域は導電体242bと重なる。なお、ソース領域とドレイン領域は互いに入れ替えることができる。
 チャネル形成領域は、ソース領域及びドレイン領域よりも、酸素欠損が少ない、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって、チャネル形成領域は、i型(真性)または実質的にi型であるということができる。
 また、ソース領域及びドレイン領域は、酸素欠損が多い、または水素、窒素、金属元素などの不純物濃度が高いため、キャリア濃度が高い低抵抗領域である。すなわち、ソース領域及びドレイン領域は、チャネル形成領域と比較してキャリア濃度が高い、n型の領域(低抵抗領域)である。
 なお、チャネル形成領域のキャリア濃度は、1×1018cm−3以下、1×1017cm−3未満、1×1016cm−3未満、1×1015cm−3未満、1×1014cm−3未満、1×1013cm−3未満、1×1012cm−3未満、1×1011cm−3未満、または、1×1010cm−3未満であることが好ましい。また、チャネル形成領域のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 なお、酸化物230bのキャリア濃度を低くする場合においては、酸化物230b中の不純物濃度を低くし、欠陥準位密度を低くする。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、キャリア濃度の低い酸化物半導体(または金属酸化物)を、高純度真性または実質的に高純度真性な酸化物半導体(または金属酸化物)と呼ぶ場合がある。
 トランジスタ200の電気特性を安定にするためには、酸化物230b中の不純物濃度を低減することが有効である。また、酸化物230bの不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物230b中の不純物とは、例えば、酸化物230bを構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物といえる。
 なお、チャネル形成領域、ソース領域、及び、ドレイン領域は、それぞれ、酸化物230bだけでなく、酸化物230aまで形成されていてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、並びに、水素、及び窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、並びに、水素、及び窒素などの不純物元素の濃度が減少していてもよい。
 酸化物230(酸化物230a及び酸化物230b)には、半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
 半導体として機能する金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。このように、チャネル形成領域に金属酸化物を有するトランジスタをOSトランジスタと呼ぶ。OSトランジスタは、オフ電流が小さいため、半導体装置の消費電力を十分に低減できる。また、OSトランジスタの周波数特性が高いため、半導体装置を高速に動作させることができる。
 酸化物230は、金属酸化物(酸化物半導体)を有することが好ましい。酸化物230に用いることができる金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素又は半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素又は半金属元素である。元素Mとして、具体的には、アルミニウム、ガリウム、錫、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、及びアンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、錫、及びイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。
 酸化物230は、例えば、インジウム亜鉛酸化物(In−Zn酸化物)、インジウム錫酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウム錫酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、GZOとも記す)、アルミニウム亜鉛酸化物(Al−Zn酸化物、AZOとも記す)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、IAZOとも記す)、インジウム錫亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも記す)、インジウムガリウム錫亜鉛酸化物(In−Ga−Sn−Zn酸化物、IGZTOとも記す)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、IGAZOまたはIAGZOとも記す)などを用いることができる。または、シリコンを含むインジウム錫酸化物、ガリウム錫酸化物(Ga−Sn酸化物)、アルミニウム錫酸化物(Al−Sn酸化物)などを用いることができる。
 金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、トランジスタの電界効果移動度を高めることができる。
 なお、金属酸化物は、インジウムに代えて、又は、インジウムに加えて、周期番号が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期番号が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期番号が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、錫、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムは、軽希土類元素と呼ばれる。
 また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されるのを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 前述したように、酸化物230に適用する金属酸化物の組成により、トランジスタの電気特性、及び信頼性が異なる。したがって、トランジスタに求められる電気特性、及び信頼性に応じて金属酸化物の組成を異ならせることにより、優れた電気特性と高い信頼性を両立した半導体装置とすることができる。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。当該構成にすることで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物及び酸素の拡散を抑制できる。
 また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。当該構成することで、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 また、酸化物230a及び酸化物230bが、酸素以外に共通の元素を主成分として有することで、酸化物230a及び酸化物230bの界面における欠陥準位密度を低減できる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 具体的には、酸化物230aとして、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。また、酸化物230として酸化物230bの単層を設ける場合、酸化物230bとして、酸化物230aに用いることができる金属酸化物を適用してもよい。また、酸化物230a、及び酸化物230bに用いることのできる金属酸化物の組成については、上記に限定されない。例えば、酸化物230aに用いることのできる金属酸化物の組成は、酸化物230bに適用してもよい。同様に、酸化物230bに用いることのできる金属酸化物の組成は、酸化物230aに適用してもよい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230bは、結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物及び欠陥(例えば、酸素欠損)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 また、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 また、酸化物230bとしてCAAC−OSなどの結晶性を有する酸化物を用いることで、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるため、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物及び酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、及びVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネル形成領域は、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、及びVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素の量が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。また、当該絶縁体から酸化物半導体に供給する酸素が、ゲート電極、ソース電極、及びドレイン電極などの導電体に拡散すると、当該導電体が酸化してしまい、導電性が損なわれることなどにより、トランジスタの電気特性及び信頼性に悪影響を及ぼす場合がある。
 よって、酸化物半導体中において、チャネル形成領域は、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域及びドレイン領域は、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体のチャネル形成領域の酸素欠損、及びVHを低減することが好ましい。また、ソース領域及びドレイン領域には過剰な量の酸素が供給されないようにすること、及びソース領域及びドレイン領域のVHの量が過剰に低減しないようにすることが好ましい。また、導電体260、導電体242a、及び導電体242bなどの導電率が低下することを抑制する構成にすることが好ましい。例えば、導電体260、導電体242a、及び導電体242bなどの酸化を抑制する構成にすることが好ましい。なお、酸化物半導体中の水素はVHを形成しうるため、VHの量を低減するには、水素濃度を低減する必要がある。
 そこで、本実施の形態では、半導体装置を、チャネル形成領域の水素濃度を低減し、かつ、導電体242a、導電体242b、及び導電体260の酸化を抑制し、かつ、ソース領域及びドレイン領域中の水素濃度が低減することを抑制する構成とする。
 酸化物230bにおけるチャネル形成領域と接する絶縁体250は、水素を捕獲または水素を固着する機能を有することが好ましい。これにより、酸化物230bのチャネル形成領域中の水素濃度を低減できる。よって、チャネル形成領域中のVHを低減し、チャネル形成領域をi型または実質的にi型とすることができる。
 ここで、図2Aに示すように、絶縁体250は、酸化物230に接する絶縁体250aと、絶縁体250a上の絶縁体250bと、絶縁体250b上の絶縁体250cの積層構造とすることが好ましい。この場合、絶縁体250aが水素を捕獲または水素を固着する機能を有することが好ましい。
 水素を捕獲または水素を固着する機能を有する絶縁体として、アモルファス構造を有する金属酸化物が挙げられる。絶縁体250aとして、例えば、酸化マグネシウム、またはアルミニウム及びハフニウムの一方または双方を含む酸化物などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。つまり、アモルファス構造を有する金属酸化物は、水素を捕獲または固着する能力が高いといえる。
 また、絶縁体250aに、高誘電率(high−k)材料を用いることが好ましい。なお、high−k材料の一例として、アルミニウム及びハフニウムの一方または双方を含む酸化物がある。絶縁体250aとしてhigh−k材料を用いることで、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 以上より、絶縁体250aとして、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることが好ましく、アモルファス構造を有し、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることがより好ましい。酸化アルミニウムは、ALD法を用いて、アモルファス化した膜を比較的容易に成膜することができるため、アモルファス構造を有する酸化アルミニウムを用いることがさらに好ましい。本実施の形態では、絶縁体250aとして、酸化アルミニウム膜を用いる。この場合、絶縁体250aは、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。また、当該酸化アルミニウムは、アモルファス構造を有する。この場合、絶縁体250aは、アモルファス構造を有する。
 次に、絶縁体250bは、酸化シリコンまたは酸化窒化シリコンなどの、熱に対し安定な絶縁体を用いることが好ましい。なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 また、図3Bに示すように、絶縁体250bの上に絶縁体250dを設ける構造にしてもよい。この場合、絶縁体250dとしては、絶縁体250aに用いることができる絶縁体を設けることができる。例えば、絶縁体250dとして、酸化ハフニウムを用いることができる。ここで、絶縁体250cと絶縁体250bの間に、絶縁体250dを設けることにより、絶縁体250bなどに含まれる水素を、より効果的に捕獲及び固着させることができる。
 導電体242a、導電体242b、及び導電体260の酸化を抑制するために、導電体242a、導電体242b、及び導電体260それぞれの近傍に酸素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体250a、絶縁体250c、絶縁体250d、絶縁体255a、及び絶縁体275である。
 なお、本明細書等において、バリア絶縁体とは、バリア性を有する絶縁体のことを指す。本明細書等において、バリア性を有するとは、対応する物質の透過を妨げる性質(透過性が低いともいう)を有することを指す。例えば、バリア性を有する絶縁体は、対応する物質が当該絶縁体内部に拡散しにくい性質を有する。また例えば、バリア性を有する絶縁体は、対応する物質を、当該絶縁体内部で捕獲、または固着する(ゲッタリングともいう)機能を有する。
 酸素に対するバリア絶縁体としては、例えば、アルミニウム及びハフニウムの一方または双方を含む酸化物、酸化マグネシウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、及び窒化酸化シリコンが挙げられる。また、アルミニウム及びハフニウムの一方または双方を含む酸化物として、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、並びに、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)が挙げられる。例えば、絶縁体250a、絶縁体250c、絶縁体250d、絶縁体255a、及び絶縁体275はそれぞれ、上記酸素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 絶縁体250a及び絶縁体255aは、酸素に対するバリア性を有することが好ましい。絶縁体250a及び絶縁体255aは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。絶縁体250aは、導電体242a1の側面、及び導電体242b1の側面と接する領域を有する。絶縁体255aは、導電体242a1の上面、導電体242b1の上面、導電体242a2の側面、及び導電体242b2の側面と接する領域を有する。また、絶縁体250aは、絶縁体255aの側面に接する。絶縁体250a及び絶縁体255aが酸素に対するバリア性を有することで、導電体242a及び導電体242bの側面が酸化され、当該側面に酸化膜が形成されることを抑制できる。これにより、トランジスタ200のオン電流の低下、または電界効果移動度の低下を抑制できる。
 また、絶縁体250aは、酸化物230bの上面及び側面、酸化物230aの側面、絶縁体224の側面、及び絶縁体222の上面に接して設けられる。絶縁体250aが酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物230bのチャネル形成領域から酸素が脱離することを抑制できる。よって、酸化物230a及び酸化物230bに酸素欠損が形成されることを低減できる。
 また、絶縁体250a及び絶縁体255aを設けることにより、絶縁体280に過剰な量の酸素が含まれていても、当該酸素が酸化物230a及び酸化物230bに過剰に供給されることを抑制し、適量の酸素を酸化物230a及び酸化物230bに供給することができる。よって、ソース領域及びドレイン領域が過剰に酸化されることを防ぎ、トランジスタ200のオン電流の低下、または電界効果移動度の低下を抑制できる。
 アルミニウム及びハフニウムの一方または双方を含む酸化物は酸素に対するバリア性を有するため、絶縁体250aとして好適に用いることができる。
 また、窒化シリコンが、酸素に対するバリア性を有するため、絶縁体255aとして好適に用いることができる。この場合、絶縁体255aは、少なくとも窒素と、シリコンと、を主成分として有する絶縁体になる。また、絶縁体255aは、水素に対するバリア性を有することが好ましい。これにより、導電体242a2、242b2に含まれる水素などの不純物が、酸化物230bに拡散することを防ぐことができる。
 絶縁体250cが、酸素に対するバリア性を有することが好ましい。絶縁体250cは酸化物230のチャネル形成領域と導電体260との間、及び絶縁体280と導電体260との間に設けられている。当該構成にすることで、酸化物230のチャネル形成領域に含まれる酸素が導電体260へ拡散し、酸化物230のチャネル形成領域に酸素欠損が形成されることを抑制できる。また、酸化物230に含まれる酸素及び絶縁体280に含まれる酸素が導電体260へ拡散し、導電体260が酸化することを抑制できる。絶縁体250cは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体250cとして、窒化シリコン膜を用いることが好ましい。この場合、絶縁体250cは、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 また、絶縁体250cは、水素に対するバリア性を有することが好ましい。これにより、導電体260に含まれる水素などの不純物が、酸化物230bに拡散することを防ぐことができる。
 絶縁体275が、酸素に対するバリア性を有することが好ましい。絶縁体275は、絶縁体280と導電体242aとの間、及び、絶縁体280と導電体242bとの間に設けられている。当該構成にすることで、絶縁体280に含まれる酸素が導電体242a及び導電体242bに拡散することを抑制できる。したがって、絶縁体280に含まれる酸素によって、導電体242a及び導電体242bが酸化されて抵抗率が増大し、オン電流が低減することを抑制できる。絶縁体275は、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体275として、窒化シリコンを用いることが好ましい。この場合、絶縁体275は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 酸化物230におけるソース領域及びドレイン領域の水素濃度が低減することを抑制するために、ソース領域及びドレイン領域それぞれの近傍に水素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該水素に対するバリア絶縁体は、例えば、絶縁体275である。
 水素に対するバリア絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの酸化物、及び窒化シリコンなどの窒化物が挙げられる。例えば、絶縁体275は、上記水素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 上記のような絶縁体275を設けることで、ソース領域及びドレイン領域の水素が外部に拡散するのを低減することができるので、ソース領域及びドレイン領域の水素濃度が低減するのを抑制することができる。したがって、ソース領域及びドレイン領域をn型とすることができる。
 上記構成にすることで、チャネル形成領域をi型または実質的にi型とし、ソース領域及びドレイン領域をn型とすることができ、良好な電気特性を有する半導体装置を提供できる。また、上記構成にすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。また、トランジスタ200を微細化することで高周波特性を向上することができる。具体的には、遮断周波数を向上することができる。
 絶縁体250a乃至絶縁体250dは、第1のゲート絶縁体の一部として機能する。絶縁体250a乃至絶縁体250dは、絶縁体255及び導電体260とともに、絶縁体280に形成された開口に設けられる。トランジスタ200の微細化を図るにあたって、絶縁体250a乃至絶縁体250dの膜厚はそれぞれ薄いことが好ましい。絶縁体250a乃至絶縁体250dの膜厚は、それぞれ、0.1nm以上10nm以下が好ましく、0.1nm以上5.0nm以下がより好ましく、0.5nm以上5.0nm以下がより好ましく、1.0nm以上5.0nm未満がより好ましく、1.0nm以上3.0nm以下がさらに好ましい。なお、絶縁体250a乃至絶縁体250dは、それぞれ、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 絶縁体250a乃至絶縁体250dの膜厚を上記のように薄くするためには、原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜することが好ましい。また、絶縁体280等の開口内に、絶縁体250a乃至絶縁体250d、絶縁体255a、及び絶縁体255bを設けるには、ALD法を用いて成膜することが好ましい。ALD法は、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。
 ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁体255及び絶縁体250を、絶縁体280に形成された開口部の側面、及び導電体242a、242bの側端部などに被覆性良く、上記のような薄い膜厚で成膜することができる。
 なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、またはオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて行うことができる。
 なお、上記において、絶縁体250が、絶縁体250a乃至絶縁体250cの3層構造、または絶縁体250a乃至絶縁体250dの4層構造となる構成について説明したが、本発明はこれに限られるものではない。絶縁体250は、絶縁体250a乃至絶縁体250dのうち、少なくとも一つを有する構成にすることができる。絶縁体250を、絶縁体250a乃至絶縁体250dのうち、1層、2層または3層で構成することで、半導体装置の作製工程を簡略化し、生産性の向上を図ることができる。
 例えば、図3Aに示すように、絶縁体250を2層構造にする構成にしてもよい。この場合、絶縁体250を、絶縁体250aと、絶縁体250a上の絶縁体250cの積層構造にすることが好ましい。絶縁体250a及び絶縁体250cの少なくとも一方にhigh−k材料を用いることができる。これにより、絶縁体250a及び絶縁体250cをリーク電流が抑制される程度の膜厚に維持しながら、等価酸化膜厚(EOT)の薄膜化が可能となる。
 また、本実施の形態では、半導体装置を、上記構成に加えて、水素がトランジスタ200等に混入することを抑制する構成とすることが好ましい。例えば、水素の拡散を抑制する機能を有する絶縁体を、トランジスタ200等の上下の一方または双方を覆うように設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体283、絶縁体282、絶縁体222、及び絶縁体221などである。また、トランジスタ200の下に設ける絶縁体215を、絶縁体282、及び絶縁体283のいずれか一方、または両方と同様の構成にしてもよい。この場合、絶縁体215を、絶縁体282と絶縁体283の積層構造にしてもよく、絶縁体282を下にし、絶縁体283を上にする構成にしてもよいし、絶縁体282を上にし、絶縁体283を下にする構成にしてもよい。
 絶縁体283、絶縁体282、絶縁体222、及び絶縁体221のうち一つまたは複数は、水、水素などの不純物が、基板側から、または、トランジスタ200等の上方からトランジスタ200等に拡散することを抑制するバリア絶縁体として機能することが好ましい。したがって、絶縁体283、絶縁体282、絶縁体222、及び絶縁体221のうち一つまたは複数は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物が拡散しにくい(上記不純物が透過しにくい)絶縁性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)が拡散しにくい(上記酸素が透過しにくい)絶縁性材料を有することが好ましい。
 絶縁体283、絶縁体282、絶縁体222、及び絶縁体221は、それぞれ、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体を有することが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウム及びジルコニウムを含む酸化物(ハフニウムジルコニウム酸化物)、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体283及び絶縁体221は、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体282は、水素を捕獲または水素を固着する能力が高い、酸化アルミニウムなどを用いることが好ましい。また、例えば、絶縁体222は、水素を捕獲または水素を固着する能力が高く、高誘電率(high−k)材料である、酸化ハフニウムなどを用いることが好ましい。
 このような構成にすることで、絶縁体283よりも上側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200等に拡散することを抑制できる。また、絶縁体221よりも下側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200等に拡散することを抑制できる。また、絶縁体280、絶縁体224、及び絶縁体250等に含まれる水素を、絶縁体282または絶縁体222に、捕獲及び固着することができる。また、絶縁体282及び絶縁体283を設けることで、絶縁体280などに含まれる酸素が、トランジスタ200等より上方に拡散することを抑制できる。また、絶縁体222及び絶縁体221を設けることで、絶縁体224などに含まれる酸素が、トランジスタ200等より下方に拡散することを抑制できる。このように、トランジスタ200の上下を、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体で取り囲む構造にすることで、酸化物半導体に過剰な酸素及び水素が拡散するのを低減することができる。これにより、半導体装置の電気特性、及び信頼性の向上を図ることができる。
 さらに、絶縁体255a、絶縁体275、及び絶縁体250cに、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、絶縁体250aに、水素を捕獲または水素を固着する能力が高い、酸化アルミニウムなどを用いることが好ましい。
 ここで、絶縁体275の酸化物230と重畳してない領域が絶縁体222に接し、絶縁体275の側端部が絶縁体255aに接し、絶縁体255aの上端部、及び絶縁体250a乃至絶縁体250cの上端部が絶縁体282に接することが好ましい。上記のような構成にすることで、絶縁体283と絶縁体221に挟まれた領域において、絶縁体280が、絶縁体275によって酸化物230と離隔され、絶縁体280が、絶縁体255a及び絶縁体250aによって絶縁体250bと離隔され、導電体260が、絶縁体250cによって絶縁体250bと離隔され、導電体242a2及び導電体242b2が、絶縁体255a及び絶縁体250aによって絶縁体250bと離隔される。
 これにより、絶縁体280に含まれる水、水素などの不純物が、酸化物230及び絶縁体250bに拡散することを抑制することができる。また、導電体260に含まれる水、水素などの不純物が、絶縁体250bを介して酸化物230に拡散することを抑制することができる。また、導電体242a2及び導電体242b2に含まれる水、水素などの不純物が、絶縁体250bを介して酸化物230に拡散することを抑制することができる。例えば、導電体242a2及び導電体242b2の上面に接して、コンタクトプラグを形成し、当該コンタクトプラグを介して、導電体242a2及び導電体242b2に水、水素などの不純物が拡散しても、水、水素などの不純物が酸化物230に拡散するのを低減することができる。また、絶縁体250a、及び絶縁体250bに含まれる水素を、絶縁体282に、捕獲及び固着することができる。このような構成にすることで、酸化物半導体に水素が拡散するのをさらに低減することができる。これにより、半導体装置の電気特性、及び信頼性の向上を図ることができる。
 トランジスタ200において、導電体205は、酸化物230及び導電体260と重なるように配置する。ここで、導電体205は、絶縁体216に形成された開口部に埋め込まれて設けることが好ましい。また、導電体205は、図1A及び図1Cに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体205は配線として機能する。
 図1B及び図1Cに示すように、導電体205は、導電体205a及び導電体205bを有する事が好ましい。導電体205aは、上記開口部の底面及び側壁に接して設けられる。導電体205bは、上記開口部に沿って形成された導電体205aの凹部を埋め込むように設けられる。ここで、導電体205の上面の高さは、絶縁体216の上面の高さと一致または概略一致する。
 ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を有することが好ましい。
 導電体205aに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体216等を介して、酸化物230に拡散することを防ぐことができる。また、導電体205aに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、及び、酸化ルテニウムが挙げられる。導電体205aは、上記導電性材料の単層構造または積層構造とすることができる。例えば、導電体205aは、窒化チタンを有することが好ましい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを有することが好ましい。
 導電体205は、第2のゲート電極として機能することができる。その場合、導電体205に印加する電位を、導電体260に印加する電位と連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205の電気抵抗率は、上記の導電体205に印加する電位を考慮して設計され、導電体205の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体216の膜厚は、導電体205とほぼ同じになる。ここで、導電体205の設計が許す範囲で導電体205及び絶縁体216の膜厚を薄くすることが好ましい。絶縁体216の膜厚を薄くすることで、絶縁体216中に含まれる水素などの不純物の絶対量を低減することができるため、当該不純物が酸化物230に拡散することを低減することができる。
 なお、上記において、導電体205aと導電体205bの積層構造について示したが、本発明はこれに限られるものではなく、導電体205は、単層構造であってもよく、3層以上の積層構造であってもよい。例えば、導電体205を3層の積層構造にする場合、上記導電体205aと導電体205bの積層構造でさらに、導電体205bの上に、導電体205aと同様の材料を有する導電体を設ける構成にすることができる。このとき、導電体205bの上面が導電体205aの最上部より低くなるようにして、導電体205aと導電体205bで形成された凹部を埋め込むように、上記導電体を形成する構成にしてもよい。
 絶縁体224は、絶縁体221、及び絶縁体222とともに、第2のゲート絶縁体として機能する。
 酸化物230と接する絶縁体224は、例えば、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。これにより、絶縁体224から酸化物230に酸素を供給し、酸素欠損を低減することができる。
 また、絶縁体224は、酸化物230と同様に、島状に加工することが好ましい。これにより、複数のトランジスタ200を設ける場合、1個のトランジスタ200に対して、ほぼ同程度の大きさの絶縁体224が設けられることになる。これにより、各トランジスタ200において、絶縁体224から酸化物230に供給される酸素の量が、同程度になる。よって、基板面内でトランジスタ200の電気特性のばらつきを抑制することができる。ただし、これに限られず、絶縁体222と同様に、絶縁体224をパターン形成しない構成にすることもできる。
 なお、絶縁体224は、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 導電体242a、導電体242b、及び導電体260として、それぞれ、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。当該導電性材料として、例えば、窒素を含む導電性材料、及び酸素を含む導電性材料が挙げられる。これにより、導電体242a、導電体242b、及び導電体260の導電率が低下することを抑制できる。導電体242a、導電体242b、及び導電体260として、金属及び窒素を含む導電性材料を用いる場合、導電体242a、導電体242b、及び導電体260は、少なくとも金属と、窒素と、を有する導電体となる。
 図1Bにおいて、導電体242a、242bを2層構造で示す。導電体242aは、導電体242a1と導電体242a1上の導電体242a2の積層膜であり、導電体242bは、導電体242b1と導電体242b1上の導電体242b2の積層膜である。このとき、酸化物230bに接する層(導電体242a1及び導電体242b1)として、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。これにより、導電体242a、242bの導電率が低下することを抑制できる。また、酸化物230bから酸素が引き抜かれ、過剰な量の酸素欠損が形成されるのを抑制できる。また、酸化物230bに接する層(導電体242a1及び導電体242b1)として、水素を吸い取りやすい(抜き取りやすい)材料を用いると、酸化物230の水素濃度を低減でき、好ましい。
 導電体242a1、242b1としては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242a1または導電体242b1に拡散する場合がある。特に、導電体242a1及び導電体242b1に、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242a1または導電体242b1に拡散しやすく、拡散した水素は、導電体242a1または導電体242b1が有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242a1または導電体242b1に吸い取られる場合がある。
 また、導電体242a2及び導電体242b2は、導電体242a1及び導電体242b1よりも、導電性が高いことが好ましい。例えば、導電体242a2及び導電体242b2の膜厚を、導電体242a1及び導電体242b1の膜厚より大きくすることが好ましい。導電体242a2及び導電体242b2としては、上記導電体205bに用いることが可能な導電体を用いればよい。上記のような構造にすることで、導電体242a2及び導電体242b2の抵抗を低減することができる。これにより、本実施の形態に係る半導体装置の動作速度の向上を図ることができる。
 例えば、導電体242a1及び導電体242b1として、窒化タンタルまたは窒化チタンを用い、導電体242a2及び導電体242b2として、タングステンを用いることができる。
 また、導電体242a、242bの導電率が低下することを抑制するために、酸化物230bとして、CAAC−OSなどの結晶性を有する酸化物を用いることが好ましい。特に、インジウムと、亜鉛と、ガリウム、アルミニウム、及び錫から選ばれる一または複数と、を有する金属酸化物を用いることが好ましい。CAAC−OSを用いることで、導電体242aまたは導電体242bによる、酸化物230bからの酸素の引き抜きを抑制できる。また、導電体242a及び導電体242bの導電率が低下することを抑制できる。
 絶縁体255は、絶縁体255aと、絶縁体255a上の絶縁体255bの積層構造である。絶縁体255aの内側に絶縁体255bが配置された構造とみることもできる。絶縁体255は、図1B及び図1Cに示すように、絶縁体280等に形成された開口の中に配置され、絶縁体280の側面、絶縁体275の側面、絶縁体271aの側面、絶縁体271bの側面、導電体242a2の側面、導電体242b2の側面、導電体242a1の上面、導電体242b1の上面、及び絶縁体222の上面に接する。言い換えると、絶縁体255は、絶縁体280等に形成された開口の側壁に接して形成されている。すなわち、絶縁体255は、サイドウォール絶縁膜ということもできる。また、図1Bに示すように、絶縁体255の一部が、酸化物230の側面、及び絶縁体224の側面に接して形成される場合もある。
 絶縁体255aは、導電体242a2の側面、及び導電体242b2の側面に接して形成されており、導電体242a2、及び導電体242b2を保護する無機絶縁体である。絶縁体255aは、絶縁体280の側面、絶縁体275の側面、絶縁体271aの側面、絶縁体271bの側面、導電体242a2の側面、導電体242b2の側面、導電体242a1の上面、導電体242b1の上面、絶縁体222の上面、酸化物230の側面、及び絶縁体224の側面に接する。
 ここで、図1B及び図1Cに示すように、絶縁体255aの、導電体242a1の上面、導電体242b1の上面、または絶縁体222の上面に接する部分に、突出部が形成される。絶縁体255aは、突出部の端部において、絶縁体250と接する。絶縁体255aの突出部は、他の部分よりも、絶縁体280などに形成される開口の中央部に向かって突出した形状になる。つまり、チャネル長方向の断面視において、絶縁体255aは、所謂L字状の形状を有するともいえる。
 絶縁体255aは、酸化雰囲気に曝されるので、酸化されにくい絶縁体が好ましい。また、絶縁体255aは、導電体242a2及び導電体242b2に接するので、導電体242a2、242b2を酸化させにくい、無機絶縁体であることが好ましい。よって、絶縁体255aは、酸素に対するバリア性を有する絶縁体250cに用いることが可能な、窒化物絶縁体を用いることが好ましい。例えば、絶縁体255aとして、窒化シリコンを用いることができる。
 このような絶縁体255aを用いることで、導電体242a1と導電体242b1を分断した後で、絶縁体250を成膜する前に酸素を含む雰囲気で熱処理を行っても、導電体242a2及び導電体242b2が過剰に酸化されない。
 絶縁体255bは、絶縁体255aの突出部の上に設けられる。絶縁体255bの下面は、絶縁体255aの突出部の上面に接し、絶縁体255bの一方の側面は、絶縁体255aの側面に接する。また、上面視において、絶縁体255bの他方の側面は、絶縁体255aの突出部の端部と一致または概略一致するように形成される。また、絶縁体255bの他方の側面は、絶縁体250に接する。よって、絶縁体255bは、絶縁体255aと異なり、絶縁体280の側面、絶縁体275の側面、絶縁体271aの側面、絶縁体271bの側面、導電体242a2の側面、導電体242b2の側面、導電体242a1の上面、導電体242b1の上面、絶縁体222の上面、酸化物230の側面、及び絶縁体224の側面に接することはない。
 絶縁体255bは、絶縁体250bに用いることができる酸化物絶縁体を用いることが好ましい。例えば、絶縁体255bとして、酸化シリコンを用いることができる。絶縁体255bは、絶縁体255aより誘電率が低いことが好ましい。このように、絶縁体255を2層構造にして膜厚を大きくすることで、導電体260と導電体242aまたは導電体242bとの距離を大きくし、寄生容量を低減させることができる。
 また、絶縁体255bとして、絶縁体250aに用いることができる酸化物絶縁体を用いる構成にしてもよい。例えば、絶縁体255bとして、酸化アルミニウム、または酸化ハフニウムを用いることができる。上述のように、酸化アルミニウム、及び酸化ハフニウムは、水素を捕獲または水素を固着する機能を有する。このような酸化物絶縁体を絶縁体255bに用いることで、絶縁体250、酸化物230bのチャネル形成領域中、及びチャネル形成領域近傍の水素濃度を低減できる。よって、チャネル形成領域中のVHを低減し、チャネル形成領域をi型または実質的にi型とすることができる。
 また、絶縁体255の膜厚は、0.5nm以上20nm以下が好ましく、0.5nm以上10nm以下がより好ましく、0.5nm以上3nm以下がより好ましい。絶縁体255を上記のような膜厚にすることで、導電体242a2及び導電体242b2が過剰に酸化されるのを抑制することができる。なお、絶縁体255は、少なくとも一部において、上記のような膜厚の領域を有していればよい。また、絶縁体255は、絶縁体280等に形成された開口の側壁に接して設けるので、被覆性の良好な、ALD法などを用いて成膜することが好ましい。絶縁体255の膜厚を過剰に厚くすると、ALD法による絶縁体255の成膜時間が長くなり、生産性が低下するため、絶縁体255の膜厚は上記の範囲程度にすることが好ましい。
 ここで、絶縁体255aに窒化シリコンを用いる場合、絶縁体255aの膜厚を過剰に厚くすると、絶縁体255a中に多量のチャージトラップが形成され、トランジスタ200の機能を阻害するおそれがある。よって、絶縁体255aの膜厚は、絶縁体255bよりも薄いことが好ましい。例えば、絶縁体255aの膜厚は、0.5nm以上10nm以下が好ましく、1nm以上3nm以下がより好ましい。また、絶縁体255bの膜厚は、絶縁体255aよりも薄いことが好ましい。例えば、絶縁体255bの膜厚は、5nm以上10nm以下が好ましい。なお、絶縁体255aの膜厚とは、絶縁体255aの少なくとも一部における、A1−A2方向の膜厚を指し、絶縁体255bの膜厚とは、絶縁体255bの少なくとも一部における、A1−A2方向の膜厚を指す。
 また上記において、絶縁体255a及び絶縁体255bについて、それぞれ単層の絶縁膜を用いる例について示したが、絶縁体255a及び絶縁体255bの一方または両方を、2層以上の積層構造にしてもよい。例えば、絶縁体255a及び絶縁体255bを、窒化シリコン、酸化ハフニウム、酸化シリコンの順に積層した積層膜にしてもよい。また、絶縁体255a及び絶縁体255bを、窒化シリコン、酸化アルミニウム、酸化シリコンの順に積層した積層膜にしてもよい。また、絶縁体255a及び絶縁体255bを、窒化シリコン、酸化シリコン、酸化ハフニウムの順に積層した積層膜にしてもよい。また、絶縁体255a及び絶縁体255bを、窒化シリコン、酸化シリコン、酸化アルミニウムの順に積層した積層膜にしてもよい。
 なお、図2A及び図2Bでは、絶縁体255aを外側に配置し、絶縁体255bを内側に配置する構成を示したが、本発明はこれに限られるものではない。導電体242a2及び導電体242b2の側面の酸化を十分に抑制できるならば、例えば、図3Cに示すように、絶縁体255bを外側に配置し、絶縁体255aを内側に配置する構成にしてもよい。ここで、絶縁体255aの下面が絶縁体255bに接する場合がある。
 また、絶縁体255は、導電体242a1と導電体242b1に分断する際に、マスクとして機能する。よって、図1Bなどに示すように、トランジスタ200の断面視において、絶縁体255の側端部は、導電体242a1の側端部、及び導電体242b1の側端部と一致または概略一致していることが好ましい。
 なお、断面視において、側端部が一致している、または概略一致している場合、及び、上面形状が一致または概略一致している場合、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なっているといえる。例えば、上層の側端部の下部が、下層の側端部の上部と接する場合を含む。また、例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。また、例えば、上層をマスクとして、下層が加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層の一部が下層の内側に位置すること、または、上層の一部が下層の外側に位置することもあり、この場合も側端部が一致または概略一致している、または、上面形状が一致または概略一致している、という。
 ここで、導電体242a1において、上面に絶縁体255が形成された部分は、導電体242a2より、導電体260側に突出して形成される。同様に、導電体242b1において、上面に絶縁体255が形成された部分は、導電体242b2より、導電体260側に突出して形成される。図2Bに示すように、トランジスタ200のチャネル長方向の断面視において、導電体242a1と導電体242b1の間の距離L2は、導電体242a2と導電体242b2の間の距離L1より小さい。具体的には、L1とL2の差は、絶縁体255の膜厚の2倍と一致または概略一致する。
 導電体242a1と導電体242b1の間の距離L2は、トランジスタ200のチャネル長に反映されるため、微細であることが好ましい。例えば、距離L2が、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上であることが好ましい。例えば、距離L2は、2nm以上20nm以下程度にすることがより好ましい。このような構成にすることで、ソースとドレインの間の距離をより短くし、それに応じてチャネル長を短くすることが可能になる。よって、トランジスタ200のオン電流を大きくし、サブスレッショルドスイング値(S値と表記することがある)を低減し、周波数特性を向上させることができる。ここで、S値とは、ドレイン電圧一定にてドレイン電流を1桁変化させるサブスレッショルド領域でのゲート電圧の変化量をいう。このように、半導体装置の微細化を図ることで、動作速度の向上した半導体装置を提供することができる。
 なお、図4Aに示すように、酸化物230bの、導電体242a1及び導電体242b1から露出した部分に凹部が形成される場合がある。言い換えると、酸化物230bの上面において、導電体242a1と導電体242b1に挟まれた領域は、導電体242a1と重なる領域、及び導電体242b1と重なる領域より、高さが低くなる場合がある。
 また、図2Aに示すトランジスタ200においては、導電体242a1と導電体242b1の互いに対向する側面、及び導電体242a2と導電体242b2の互いに対向する側面が、酸化物230bの上面に対して垂直または概略垂直であるが、本発明はこれに限られるものではない。例えば、図4Bに示すように、導電体242a1と導電体242b1の互いに対向する側面、及び導電体242a2と導電体242b2の互いに対向する側面がテーパー形状になってもよい。このとき、絶縁体271a、絶縁体271b、絶縁体275、及び絶縁体280の側面がテーパー形状になる場合がある。
 また、導電体242a1、242b1のテーパー角が、導電体242a2、242b2のテーパー角より鋭角になる構成であってもよい。
 また、図4Cに示すように、絶縁体255a及び絶縁体255bの側面の上部がテーパー形状を有する場合がある。また、図4Cに示すように、絶縁体280の上部にも、絶縁体255a及び絶縁体255bの側面のテーパー形状と連続または概略連続する、テーパー形状が形成される場合がある。また、図4Cに示すように、絶縁体255a、絶縁体255b、及び絶縁体280の上部が曲面を有する場合もある。ここで、絶縁体255aの上部、絶縁体255bの上部、及び絶縁体280の上部のテーパー形状の部分に、絶縁体250aが接することがある。このとき、絶縁体255および絶縁体280の上部が曲面を有していると、絶縁体250aを良好な被覆性で形成することができる。
 なお、トランジスタ200は、図5Aに示すように、図4A乃至図4Cに示す構造を有してもよい。つまり、酸化物230bの、導電体242a1、242b1から露出した部分に凹部を有し、導電体242a1、242b1の側面、及び導電体242a2、242b2の側面がテーパー形状を有し、且つ絶縁体255の側面の上部がテーパー形状を有する、場合がある。
 また、図1A乃至図1Cなどでは、上面視において、絶縁体255bの導電体260側の側面が、絶縁体255aの突出部の端部と一致または概略一致する構造について示したが、本発明はこれに限られるものではない。例えば、図5Bに示すように、絶縁体255bの導電体260側の側面が、絶縁体255aの突出部の端部より後退した形状にしてもよい。このような構造にすることで、導電体260の上部の幅が、導電体260の下部の幅より大きくなる。これにより、導電体260の配線抵抗を低減することができる。
 絶縁体271a及び絶縁体271bは、導電体242a2及び導電体242b2の加工時にエッチングストッパとして機能し、導電体242a2及び導電体242b2を保護する無機絶縁体である。また、絶縁体271a及び絶縁体271bは、導電体242a2及び導電体242b2に接するので、導電体242a、242bを酸化させにくい、無機絶縁体であることが好ましい。よって、図2Aに示すように、絶縁体271aを、絶縁体271a1と、絶縁体271a1上の絶縁体271a2の積層構造にし、絶縁体271bを、絶縁体271b1と、絶縁体271b1上の絶縁体271b2の積層構造にすることが好ましい。ここで、絶縁体271a1、271b1は、導電体242a2、242b2を酸化させにくいように、絶縁体250cに用いることができる窒化物絶縁体を用いることが好ましい。また、絶縁体271a2、271b2は、エッチングストッパとして機能するように、絶縁体250bに用いることができる酸化物絶縁体を用いることが好ましい。
 ここで、絶縁体271a1は、導電体242a2の上面及び絶縁体275の一部に接し、絶縁体271b1は、導電体242b2の上面及び絶縁体275の一部に接する。また、絶縁体271a2は、絶縁体271a1の上面及び絶縁体275の下面に接し、絶縁体271b2は、絶縁体271b1の上面及び絶縁体275の下面に接する。例えば、絶縁体271a1及び絶縁体271b1として、窒化シリコンを用い、絶縁体271a2及び絶縁体271b2として、酸化シリコンを用いることができる。
 絶縁体271a及び絶縁体271bの元になる絶縁体は、導電体242a及び導電体242bの元になる導電体のマスクとして機能するので、導電体242a及び242bは側面と上面の間に湾曲面を有さない。これにより、導電体242a及び導電体242bは、側面と上面が交わる端部が角状になる。導電体242a及び242bの側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242a及び242bの断面積が大きくなる。さらに、絶縁体271a1、271b1に、金属を酸化させにくい窒化物絶縁体を用いることで、導電体242a及び242bが過剰に酸化されるのを防ぐことができる。以上により、導電体242a及び242bの抵抗が低減されるので、トランジスタのオン電流を大きくすることができる。
 導電体260は、図1B及び図1Cに示すように、絶縁体280、絶縁体275に形成された開口内に配置される。導電体260は、当該開口内において、絶縁体250を介して、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、及び酸化物230bの上面を覆うように設けられる。また、導電体260の上面は、絶縁体250の最上部、絶縁体255の最上部、及び絶縁体280の上面と高さが一致または概略一致するように配置される。
 なお、導電体260及び絶縁体250が配置された、上記開口において、当該開口の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体280の開口に設けられる、絶縁体255及び絶縁体250などの被覆性が向上し、鬆などの欠陥を低減できる。
 導電体260は、トランジスタ200の第1のゲート電極として機能する。ここで、導電体260は、図1A、及び図1Cに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体260は配線として機能する。
 上記のような構造にする場合、図1Cに示すように、トランジスタ200のチャネル幅方向の断面視において、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(以下、ラウンド状ともいう)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体242a及び242bと重なる領域の酸化物230bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体250、および導電体260の、酸化物230bへの被覆性を高めることができる。
 なお、本明細書等において、少なくとも第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、およびS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 トランジスタ200を、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタ200をS−channel構造、GAA構造、又はLGAA構造とすることで、酸化物230とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、酸化物230のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 本実施の形態では、絶縁体224を島状に設ける構成にする。よって、図1Cに示すように、導電体260の下面の少なくとも一部を、酸化物230bの下面、より下に設けることができる。これにより、酸化物230bの上面及び側面に対向して、導電体260を設けることができるので、導電体260の電界を酸化物230bの上面及び側面に作用させることができる。このように、絶縁体224を島状に設ける構成にすることで、トランジスタ200をS−channel構造にすることができる。
 なお、図1Cに示すトランジスタ200については、S−channel構造のトランジスタを例示したが、本発明の一態様の半導体装置はこれに限定されない。例えば、本発明の一態様に用いることができるトランジスタ構造としては、プレーナ型構造、Fin型構造、およびGAA構造の中から選ばれるいずれか一または複数としてもよい。
 図1Bなどでは、導電体260を2層構造で示す。ここで、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。例えば、導電体260aは、導電体260bの底面及び側面を包むように配置されることが好ましい。このとき、導電体260aとして、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を有することにより、絶縁体280などに含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、位置合わせをしなくても、導電体242a1と導電体242b1との間の領域に重畳して、導電体260を配置することができる。
 絶縁体216、及び絶縁体280は、それぞれ、絶縁体222よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。
 例えば、絶縁体216、及び絶縁体280は、それぞれ、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、及び、空孔を有する酸化シリコンのうち一つまたは複数を有することが好ましい。
 特に、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 また、絶縁体216、及び絶縁体280の上面は、それぞれ、平坦化されていてもよい。
 絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を有することが好ましい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。なお、半導体装置を構成する各層は、単層構造であってもよく、積層構造であってもよい。
<<基板>>
 トランジスタを形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いることができる。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、及び、樹脂基板が挙げられる。また、半導体基板としては、例えば、シリコンまたはゲルマニウムを材料とした半導体基板、及び、炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、もしくは酸化ガリウムからなる化合物半導体基板が挙げられる。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などが挙げられる。導電体基板としては、例えば、黒鉛基板、金属基板、合金基板、及び導電性樹脂基板が挙げられる。また、基板としては、例えば、金属の窒化物を有する基板、金属の酸化物を有する基板、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、及び、導電体基板に半導体または絶縁体が設けられた基板が挙げられる。または、これらの基板に1種または複数種の素子が設けられたものを用いてもよい。基板に設けられる素子としては、例えば、容量素子、抵抗素子、スイッチ素子、発光素子、及び記憶素子が挙げられる。
<<絶縁体>>
 絶縁体としては、例えば、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、及び、金属窒化酸化物が挙げられる。
 例えば、トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 比誘電率の高い絶縁体としては、例えば、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、並びに、シリコン及びハフニウムを有する窒化物が挙げられる。
 比誘電率が低い絶縁体としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、及び、樹脂が挙げられる。
 また、金属酸化物を用いたトランジスタは、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、及びタンタルのうち一つまたは複数を含む絶縁体を、単層で、または積層で用いることができる。具体的には、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体として、例えば、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、及び、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物が挙げられる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。導電体としては、例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物が挙げられる。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物は、それぞれ、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、または、ニッケルシリサイドなどのシリサイドを用いてもよい。
 積層構造の導電体を用いる場合、例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造、または、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造を適用してもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から脱離した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、及び、シリコンを添加したインジウム錫酸化物のうち一つまたは複数を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明の一態様に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫、アンチモンなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素M及び亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、錫、またはアンチモンとする。その他、元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。特に、元素Mは、ガリウム、アルミニウム、イットリウム、及び錫から選ばれた一種または複数種であることが好ましい。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸化窒化物(metal oxynitride)と呼称してもよい。
 以降では、金属酸化物の一例として、In−Ga−Zn酸化物について説明する。
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の最大径は、数十nm程度となる場合がある。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にInを主成分とする領域(第1の領域)と、一部にGaを主成分とする領域(第2の領域)とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いることができる。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<<その他の半導体材料>>
 トランジスタの半導体層には、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体を用いてもよい。
 また、トランジスタの半導体層に、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。トランジスタの半導体層に適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。上述の遷移金属カルコゲナイドを、トランジスタの半導体層に適用することで、オン電流が大きい半導体装置を提供することができる。
<半導体装置の作製方法例>
 図6A乃至図17Dを用いて、本発明の一態様の半導体装置の作製方法例について説明する。ここでは、図1A乃至図1Dに示す半導体装置を作製する場合を例に挙げて説明する。
 各図のAは、平面図を示す。また、各図のBはそれぞれ、各図のAにA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図のCはそれぞれ、各図のAにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図のDはそれぞれ、各図のAにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図のAの平面図では、図の明瞭化のために一部の要素を省いている。また、図15A乃至図15Cは、トランジスタ200のチャネル長方向の断面拡大図である。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法及びALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性と、を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体215を成膜する(図6A乃至図6D参照)。上述の通り、絶縁体215は、絶縁体224、絶縁体282、及び絶縁体283のいずれか一、または複数の積層膜と同様の絶縁体を用いることができる。絶縁体215の成膜方法は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いることができる。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体215中の水素濃度を低減できるので好ましい。
 次に、絶縁体215上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減できる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。本実施の形態では、絶縁体216として、スパッタリング法を用いて酸化シリコンを成膜する。
 絶縁体215、及び絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体215、及び絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減できる。
 次に、絶縁体216に絶縁体215に達する開口を形成する。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体215は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコンまたは酸化窒化シリコンを用いた場合は、絶縁体215は窒化シリコン、酸化アルミニウム、または酸化ハフニウムなどを用いるとよい。
 開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。または、酸素の透過を抑制する機能を有する導電体と、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として窒化チタンを成膜する。このような金属窒化物を導電体205bの下層に用いることにより、絶縁体216などによって、導電体205bが酸化されるのを抑制できる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを防ぐことができる。
 次に、導電体205bとなる導電膜を成膜する。導電体205bとなる導電膜としては、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金などを用いることができる。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、導電体205bとなる導電膜として、タングステンを成膜する。
 次に、CMP処理を行うことで、導電体205aとなる導電膜および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する(図6A乃至図6D参照)。その結果、開口部のみに、導電体205aおよび導電体205bが残存する。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216上及び導電体205上に絶縁体221を成膜する(図7A乃至図7D参照)。
 絶縁体221は、上述の、酸素、水素、及び水に対してバリア性を有する絶縁体を用いればよい。絶縁体221は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁体221として、PEALD法を用いて、窒化シリコンを成膜する。
 次に、絶縁体221上に絶縁体222を成膜する(図7A乃至図7D参照)。
 絶縁体222として、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、または、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)を用いることが好ましい。または、ハフニウムジルコニウム酸化物を用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、及び水に対するバリア性を有する。絶縁体222が、水素及び水に対するバリア性を有することで、トランジスタの周辺に設けられた構造体に含まれる水素、及び水が、絶縁体222を通じてトランジスタの内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制できる。
 絶縁体222は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁体222として、ALD法を用いて、酸化ハフニウムを成膜する。
 次に、絶縁体222上に絶縁膜224fを成膜する(図7A乃至図7D参照)。絶縁膜224fとしては、上記絶縁体224に対応する絶縁体を用いればよい。
 絶縁膜224fは、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁膜224fとして、スパッタリング法を用いて、酸化シリコンを成膜する。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁膜224f中の水素濃度を低減できる。絶縁膜224fは、後の工程で酸化物230aと接するため、このように水素濃度が低減されていることが好適である。
 なお、絶縁膜224fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜224fを成膜してもよい。このような処理を行うことによって、絶縁体222の表面に吸着している水分及び水素を除去し、さらに絶縁体222中の水分濃度及び水素濃度を低減させることができる。ここで、絶縁体222の下面に接して絶縁体221を設けておくことで、当該加熱処理によって、絶縁体221より下方から水分、または水素などの不純物が侵入するのを防ぐことができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁膜224f上に、酸化膜230afを成膜し、酸化膜230af上に、酸化膜230bfを成膜する(図7A乃至図7D参照)。酸化膜230afとしては、上記酸化物230aに対応する金属酸化物を、酸化膜230bfとしては、上記酸化物230bに対応する金属酸化物を、用いればよい。なお、酸化膜230af及び酸化膜230bfは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230af上及び酸化膜230bf上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230afと酸化膜230bfとの界面近傍を清浄に保つことができる。
 酸化膜230af及び酸化膜230bfは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、酸化膜230af及び酸化膜230bfの成膜はスパッタリング法を用いる。
 例えば、酸化膜230af及び酸化膜230bfをスパッタリング法によって成膜する場合は、スパッタリングガスとして、酸素、または、酸素と貴ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、In−M−Zn酸化物ターゲットなどを用いることができる。
 特に、酸化膜230afの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁膜224fに供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上が好ましく、80%以上がより好ましく、100%がさらに好ましい。
 また、酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230afを、スパッタリング法によって、In:Ga:Zn=1:3:2[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230bfを、スパッタリング法によって、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、In:Ga:Zn=4:2:4.1[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:1:2[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、及び原子数比を適宜選択することで、酸化物230a、及び酸化物230bに求める特性に合わせて形成するとよい。
 なお、絶縁膜224f、酸化膜230af、及び酸化膜230bfを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いることが好ましい。これにより、絶縁膜224f、酸化膜230af、及び酸化膜230bfについて、各成膜工程の合間に膜中に水素が混入することを低減できる。
 上述の例では、酸化膜230af及び酸化膜230bfをスパッタリング法で成膜する場合について示したが、本発明はこれに限られるものではない。例えば、酸化膜230afをスパッタリング法で成膜し、酸化膜230bfをALD法で成膜してもよい。ここで、酸化物230aおよび酸化物230bのいずれか一方または両方を積層構造にしてもよい。例えば、酸化膜230afは、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、In:Ga:Zn=1:3:2[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットのいずれかを用いて、スパッタリング法で成膜すればよい。
 また、例えば、酸化膜230bfは、ALD法を用いて、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層、In:Zn=4:1[原子数比]の金属酸化物層、In:Ga:Zn=1:3:4[原子数比]の金属酸化物層の順に積層した積層膜を成膜すればよい。また、例えば、酸化膜230bfは、ALD法を用いて、In:Zn=4:1[原子数比]の金属酸化物層、In:Ga:Zn=1:3:4[原子数比]の金属酸化物層の順に積層した積層膜を成膜すればよい。なお、上記酸化膜230bfにおいて、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層の代わりに、In:Ga:Zn=1:3:2[原子数比]の金属酸化物層、またはIn:Ga:Zn=1:3:4[原子数比]の金属酸化物層を用いてもよい。また、上記酸化膜230bfにおいて、In:Ga:Zn=1:3:4[原子数比]の金属酸化物層の代わりに、In:Ga:Zn=1:3:2[原子数比]の金属酸化物層、またはIn:Ga:Zn=1:1:1[原子数比]の金属酸化物層を用いてもよい。
 酸化膜230afをスパッタリング法で成膜することで結晶性を高めることができる。例えば、酸化膜230afの結晶性を高め、その後酸化膜230af上に、酸化膜230bfを成膜することで、酸化膜230bfの一部または全部を結晶化することができる。すなわち、酸化膜230afの結晶性を高めることで、酸化膜230bfの結晶性も高めることが可能となる。例えば、酸化膜230afが、CAAC構造の酸化物半導体膜の場合、酸化膜230af上に形成する酸化膜230bfもCAAC構造の酸化物半導体とすることができる。
 また、ALD法を用いて酸化膜230bfを成膜することで、薄い膜を制御性良く成膜することができる。これにより、酸化膜230bfを、設計通りの薄い膜厚にすることができる。このような、酸化膜230af及び酸化膜230bfを用いることで、トランジスタ200の電気特性の向上、及び信頼性の向上を図ることができる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230af、及び酸化膜230bfが多結晶化しない温度範囲で行えばよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、または550℃以下であると好ましい。
 なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理を行う場合、酸素ガスを20%程度にすることが好ましい。また、加熱処理は減圧状態で行ってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量は、1ppb以下が好ましく、0.1ppb以下がより好ましく、0.05ppb以下がさらに好ましい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230af、及び酸化膜230bfなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素ガスと酸素ガスの流量比を4:1として、450℃の温度で1時間の処理を行う。このような酸素ガスを含む加熱処理によって、酸化膜230af及び酸化膜230bf中の炭素、水、水素などの不純物を低減できる。このように膜中の不純物を低減することで、酸化膜230bfの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230af及び酸化膜230bf中の結晶領域を増大させ、酸化膜230af及び酸化膜230bf中における、結晶領域の面内ばらつきを低減できる。よって、トランジスタの電気特性の面内ばらつきを低減できる。
 また、加熱処理を行うことで、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中の水素が絶縁体222に移動し、絶縁体222内に吸い取られる。別言すると、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中の水素が絶縁体222に拡散する。従って、絶縁体222の水素濃度は高くなるが、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中のそれぞれの水素濃度は低下する。なお、絶縁体222の下面に接して絶縁体221を設けておくことで、当該加熱処理において、絶縁体221より下方から水分、または水素などの不純物が侵入するのを防ぐことができる。
 特に、絶縁膜224f(後の絶縁体224)は、トランジスタ200の第2のゲート絶縁体として機能し、酸化膜230af及び酸化膜230bf(後の酸化物230a及び酸化物230b)は、トランジスタ200のチャネル形成領域として機能する。水素濃度が低減された絶縁膜224f、酸化膜230af及び酸化膜230bfを用いて形成されたトランジスタ200は、良好な信頼性を有するため好ましい。
 次に、酸化膜230bf上に、導電膜242_1fを成膜し、導電膜242_1f上に、導電膜242_2fを成膜する(図7A乃至図7D参照)。導電膜242_1fとしては、上記導電体242a1、242b1に対応する導電体を用いればよく、導電膜242_2fとしては、上記導電体242a2、242b2に対応する導電体を用いればよい。酸化膜230bfの成膜後に、エッチング工程などを挟まずに、酸化膜230bf上に接して導電膜242_1fを成膜することで、酸化膜230bfの上面を、導電膜242_1fで保護することができる。これにより、トランジスタを構成する酸化物230に不純物が拡散するのを低減することができるので、半導体装置の電気特性及び信頼性の向上を図ることができる。
 導電膜242_1f、及び、導電膜242_2fは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 本実施の形態では、スパッタリング法を用いて、導電膜242_1fとして窒化タンタルを成膜し、導電膜242_2fとしてタングステンを成膜する。なお、導電膜242_1fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電膜242_1fを成膜してもよい。このような処理を行うことによって、酸化物230bの表面に吸着している水分及び水素を除去し、さらに酸化物230a、及び酸化物230b中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、導電膜242_1f上に絶縁膜271fを成膜する(図7A乃至図7D参照)。絶縁膜271fの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。絶縁膜271fは、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁膜271fとして、スパッタリング法によって、窒化シリコン膜と、窒化シリコン膜上の酸化シリコン膜の積層膜を成膜すればよい。
 ここで、絶縁膜271fを積層膜にする場合、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁膜271fの積層膜の界面近傍を清浄に保つことができる。また、導電膜242_1fから絶縁膜271fまで、大気環境にさらさずに連続して成膜すると、より好ましい。
 なお、絶縁膜271fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜271fを成膜してもよい。このような処理を行うことによって、導電膜242_1f及び導電膜242_2fの表面に吸着している水分及び水素を除去し、さらに導電膜242_1f及び導電膜242_2f中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、リソグラフィ法を用いて、絶縁膜224f、酸化膜230af、酸化膜230bf、導電膜242_1f、導電膜242_2f、及び絶縁膜271fを島状に加工して、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271を形成する(図8A乃至図8D参照)。
 上記加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、絶縁膜224f、酸化膜230af、酸化膜230bf、導電膜242_1f、導電膜242_2f、及び絶縁膜271fの加工は、それぞれ異なる条件で行ってもよい。
 ここで、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271を一括で島状に加工することが好ましい。このとき、導電体242_1の側端部、及び導電体242_2の側端部は、酸化物230a及び酸化物230bの側端部と一致または概略一致することが好ましい。さらに、絶縁体224の側端部が、酸化物230の側端部と一致または概略一致することが好ましい。さらに、絶縁体271の側端部は、導電体242_2の側端部と一致または概略一致することが好ましい。このような構成にすることで、本発明の一態様に係る半導体装置の工程数を削減することができる。よって、生産性の良好な半導体装置の作製方法を提供することができる。
 また、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271は、少なくとも一部が導電体205と重なるように形成する。また、絶縁体222が、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271と重畳しない領域において、絶縁体222が露出する。
 図8Bに示すように、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271の側面がテーパー形状になっていてもよい。絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271の側面のテーパー角は、例えば、60°以上90°未満であってもよい。このように側面をテーパー形状にすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減できる。
 また、上記に限られず、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271の側面が、絶縁体222の上面に対し、垂直または概略垂直になる構成にしてもよい。このような構成にすることで、複数のトランジスタを設ける際に、小面積化、高密度化が可能となる。
 なお、リソグラフィ法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで、導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成することができる。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクを用いなくてもよい場合がある。
 なお、加工後に不要になったレジストマスクは、酸素プラズマを用いたアッシング(以下、酸素プラズマ処理と呼ぶ場合がある。)などのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 さらに、レジストマスクの下に絶縁体または導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、絶縁膜271f上にハードマスク材料となる絶縁膜または導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。絶縁膜271fなどのエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。酸化膜230bfなどのエッチング後にハードマスクをエッチングにより除去してもよい。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
 また、被加工物とレジストマスクの間に、SOC(Spin On Carbon)膜、及びSOG(Spin On Glass)膜を成膜する構成にしてもよい。SOC膜及びSOG膜をマスクとして用いることで、レジストマスクとの密着性を向上させ、マスクパターンの耐久性を向上させることができる。例えば、被加工物の上に、SOC膜、SOG膜、レジストマスクの順に成膜してリソグラフィ法を行うことができる。
 ドライエッチング処理用のエッチングガスとしては、ハロゲンを含むエッチングガスを用いることができ、具体的には、フッ素、塩素、及び臭素のうち、一または複数を含むエッチングガスを用いることができる。例えば、エッチングガスとして、Cガス、Cガス、Cガス、CFガス、SFガス、CHFガス、CHガス、Clガス、BClガス、SiClガス、またはBBrガスなどを単独または2以上のガスを混合して用いることができる。また、上記のエッチングガスに酸素ガス、炭酸ガス、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、または炭化水素ガスなどを適宜添加することができる。また、ドライエッチング処理の被処理物によっては、ハロゲンガスを含まず、炭化水素ガスまたは水素ガスを含むガスを、エッチングガスとして用いることができる。エッチングガスに用いる炭化水素としては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)、エチレン(C)、プロピレン(C)、アセチレン(C)、およびプロピン(C)の一または複数を用いることができる。エッチング条件は、エッチングする対象に合わせて適宜設定することができる。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。エッチング装置は、エッチングする対象に合わせて適宜設定することができる。
 また、上記エッチング工程において、絶縁体271を、導電体242_2を保護するエッチングストッパとして機能させることができる。例えば、上記エッチング工程で、絶縁体271上に金属製のハードマスクを形成すると、当該ハードマスクを除去する際に、導電体242_2とのエッチング選択比をとりにくい場合がある。しかしながら、導電体242_2上に絶縁体271を形成しておくことで、ハードマスク除去のエッチング処理において、絶縁体271を、導電体242_2を保護するエッチングストッパとして機能させることができる。これにより、導電体242_2の側面と上面の間に湾曲面が形成されるのを防ぐことができるので、後で形成する導電体242a2および導電体242b2は、側面と上面が交わる端部が角状になる。導電体242_2の側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242_2の断面積が大きくなる。さらに、絶縁体271に、金属を酸化させにくい窒化物絶縁体を用いることで、導電体242_2が過剰に酸化されるのを防ぐことができる。これにより、導電体242a2および導電体242b2の抵抗が低減されるので、トランジスタのオン電流を大きくすることができる。
 また、絶縁体224を島状に加工することで、後述する工程で、絶縁体224の側面および絶縁体222の上面に接して絶縁体275を設けることができる。つまり、絶縁体224を、絶縁体275によって、絶縁体280と離隔することができる。このような構成にすることで、絶縁体280から絶縁体224を介して、過剰な量の酸素、及び水素などの不純物が、酸化物230に混入するのを防ぐことができる。
 また、絶縁体224を、島状に加工することにより、複数のトランジスタ200を設ける場合、1個のトランジスタ200に対して、ほぼ同程度の大きさの絶縁体224が設けられることになる。これにより、各トランジスタ200において、絶縁体224から酸化物230に供給される酸素の量が、同程度になる。よって、基板面内でトランジスタ200の電気特性のばらつきを抑制することができる。ただし、これに限られず、絶縁体222と同様に、絶縁体224をパターン形成しない構成にすることもできる。
 次に、絶縁体224、酸化物230a、酸化物230b、導電体242_1、導電体242_2、及び絶縁体271を覆って、絶縁体275を成膜し、さらに絶縁体275上に絶縁体280を成膜する(図9A乃至図9D参照)。絶縁体275、及び絶縁体280としては、上述の絶縁体を用いればよい。
 ここで、絶縁体275は、絶縁体222の上面に接することが好ましい。
 絶縁体280としては、絶縁体280となる絶縁膜を形成し、当該絶縁膜にCMP処理を行うことで、上面が平坦な絶縁体を形成することが好ましい。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、該窒化シリコンを絶縁体280に達するまで、CMP処理を行ってもよい。
 絶縁体275及び絶縁体280は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁体275には、酸素の透過を抑制する機能を有する絶縁体を用いることが好ましい。例えば、絶縁体275として、PEALD法を用いて窒化シリコンを成膜することが好ましい。または、絶縁体275として、スパッタリング法を用いて、酸化アルミニウムを成膜し、その上にPEALD法を用いて窒化シリコンを成膜することが好ましい。絶縁体275を上記のような構造とすることで、水、水素などの不純物、及び酸素の拡散を抑制する機能の向上を図ることができる。
 このようにして、酸化物230a、酸化物230b、導電体242_1、及び導電体242_2を、酸素の拡散を抑制する機能を有する絶縁体275で覆うことができる。これにより、のちの工程で、絶縁体224、酸化物230a、酸化物230b、導電体242_1、及び導電体242_2に、絶縁体280などから酸素が直接拡散することを低減できる。
 また、絶縁体280として、スパッタリング法を用いて酸化シリコンを成膜することが好ましい。絶縁体280となる絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減できる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分及び水素を除去し、さらに酸化物230a、酸化物230b、及び絶縁体224中の水分濃度及び水素濃度を低減できる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、リソグラフィ法を用いて、導電体242_2、絶縁体271、絶縁体275、及び絶縁体280を加工して、導電体242_1及び絶縁体222に達する開口を形成する(図10A乃至図10D参照)。ここで、導電体242_2が分断されて、導電体242a2及び導電体242b2が形成され、絶縁体271が分断されて、絶縁体271a及び絶縁体271bが形成される。導電体242_1に達する開口は、酸化物230bと導電体205とが重なる領域に形成する。トランジスタ200のチャネル長方向の断面視において、当該開口の幅はL1となり、これは、図2Bに示す導電体242a2と導電体242b2の距離L1と対応する。つまり、当該開口の幅は、図2Bに示す導電体242a1と導電体242b1の距離L2より大きい。
 リソグラフィ法は、上記の方法を適宜用いることができる。上記絶縁体280の開口を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィ法を用いることが好ましい。
 例えば、絶縁体280上に、SOC膜、SOG膜、レジストマスクの順に成膜してリソグラフィ法を行うことができる。EUV光などの短波長の光、または電子ビームを用いて、開口を有するレジストマスクを形成し、当該レジストマスクを用いて、SOG膜、SOC膜、絶縁体280、絶縁体275、絶縁体271、及び導電体242_2を加工する。
 上記加工は、ドライエッチング法を用いて行うことが好ましい。ドライエッチング法は、異方性エッチングが可能なので、アスペクト比が高い、図2Bに示す幅L1の開口を形成するのに好適である。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。また、SOG膜、SOC膜、絶縁体280、絶縁体275、絶縁体271、及び導電体242_2のエッチング処理は、それぞれ異なる条件で行ってもよい。
 例えば、SOG膜のエッチングには、CFをエッチングガスとして用いることができる。また、例えば、SOC膜のエッチングには、HとNをエッチングガスとして用いることができる。また、例えば、絶縁体280に酸化シリコンを用いる場合、CとCとOとArをエッチングガスとして用いることができる。また、例えば、絶縁体275に窒化シリコンを用いる場合、CHとOとArをエッチングガスとして用いることができる。また、例えば、絶縁体271に窒化シリコンと酸化シリコンの積層膜を用いる場合、ICPエッチング装置で、CHFとOをエッチングガスとしてエッチング処理を行うことができる。
 また、例えば、導電体242_2にタングステンを用い、導電体242_1に窒化タンタルを用いる場合、ICPエッチング装置で、CFとClとOをエッチングガスとしてエッチング処理を行うことができる。ここで、導電体242_2は、絶縁体280などに形成された幅L1の開口に重畳してエッチングされるので、分断された導電体242a2と導電体242b2の間の距離はL1になる。なお、当該エッチングにおいて、導電体242a2及び導電体242b2の側面がサイドエッチングされると、導電体242a2及び導電体242b2の側面に凹部が形成される場合がある。
 ここで、後の工程で導電体242a2及び導電体242b2の下に、互いの距離がL2の導電体242a1及び導電体242b1を形成するために、本工程のエッチング処理を導電体242_1の上面でストップする必要がある。よって、本工程では、導電体242_1のエッチングレートに対する、導電体242_2のエッチングレート(以下、導電体242_2のエッチング選択比と呼ぶ。)が大きくなる条件で、ICPエッチング装置を用いて、エッチング処理を行う。
 ICPエッチング装置の下部電極に印加するバイアス電力を低くすることで、イオン入射エネルギーを低減し、導電体242_1のエッチングレートを低減することができる。例えば、ICPエッチング装置の下部電極に印加するバイアス電力を、50W未満、好ましくは25W以下程度にすればよい。ただし、本発明はこれに限られることなく、ICPエッチング装置の下部電極に印加するバイアス電力を、50W以上にすることもできる。当該バイアス電力を大きくすることで、導電体242a2及び導電体242b2の側面に形成される凹部を小さくすることもできる。この場合、例えば当該バイアス電力を100Wにすればよい。
 また、CFとClとOをエッチングガスとして用いることで、導電体242_2のタングステンは、WF、またはWOClなどの揮発性が高い反応生成物となり、エッチングレートが高くなる。一方、導電体242_1の表面の窒化タンタルは、酸化タンタルまたは酸化窒化タンタルなどの非常に揮発性が低い反応生成物となり、エッチングが抑制される。よって、エッチングガス中の酸素ガスの流量比を大きくすることが好ましい。例えば、エッチングガス中の酸素ガスの流量比を35%以上にすればよい。
 以上のような条件で、導電体242_2のエッチング処理を行うことで、導電体242_1を過剰にエッチングせずに、導電体242a2と導電体242b2に分断することができる。これにより、微細構造を有する半導体装置において、設計通りに加工を行うことができる。
 なお、SOC膜は、酸素プラズマを用いたアッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去すればよい。
 また、絶縁体271、及び導電体242_2の加工、及びSOC膜の除去は、大気に曝さず連続して行うことができる。例えば、マルチチャンバー方式のエッチング装置を用いて、大気に曝さず処理を行えばよい。
 以上のようにして、導電体242_2、絶縁体271、絶縁体275、及び絶縁体280を加工して幅L1の開口を形成することができる。
 次に、絶縁体280、導電体242_1、及び絶縁体222を覆って、絶縁膜255Aを成膜する(図11A乃至図11D参照)。絶縁膜255Aは、後の工程で絶縁体255aとなる絶縁膜であり、上述の窒化物絶縁体を用いることができる。絶縁膜255Aは、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁膜255Aは、導電体242a2、導電体242b2、絶縁体271、絶縁体275、及び絶縁体280などに形成された開口に沿って成膜されるため、被覆性が良好であることが好ましい。よって、絶縁膜255Aは、良好な被覆性を有するALD法などを用いて成膜することが好ましい。例えば、絶縁膜255Aとして、PEALD法を用いて窒化シリコンを成膜することが好ましい。
 次に、絶縁膜255A上に、絶縁膜255Bを成膜する(図11A乃至図11D参照)。絶縁膜255Bは、上述の酸化物絶縁体を用いることができる。絶縁膜255Bは、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁膜255Bは、絶縁膜255Aと同様に、導電体242a2、導電体242b2、絶縁体271、絶縁体275、及び絶縁体280などに形成された開口に沿って成膜されるため、被覆性が良好であることが好ましい。よって、絶縁膜255Bは、良好な被覆性を有するALD法などを用いて成膜することが好ましい。例えば、絶縁膜255Bとして、PEALD法を用いて酸化シリコンを成膜することが好ましい。また、例えば、絶縁膜255Bとして、熱ALD法を用いて、酸化ハフニウム、または酸化アルミニウムを成膜することが好ましい。また、絶縁膜255Bとして、上記酸化物絶縁体を複数積層させて用いてもよい。例えば、絶縁膜255Bとして、酸化ハフニウムまたは酸化アルミニウムの上に酸化シリコンを積層した、積層膜を用いてもよい。また、例えば、絶縁膜255Bとして、酸化シリコンの上に、酸化ハフニウムまたは酸化アルミニウムを積層した、積層膜を用いてもよい。
 なお、絶縁膜255Aの成膜、及び絶縁膜255Bの成膜は、大気に曝さず連続して行うことができる。例えば、マルチチャンバー方式の成膜装置を用いて、大気に曝さず処理を行えばよい。
 次に、絶縁膜255A及び絶縁膜255Bの一部を異方性エッチングによって除去し、上記開口の側壁に接する絶縁体255(絶縁体255a及び絶縁体255b)を形成する(図12A乃至図12D参照)。これにより、絶縁体255は、絶縁体280の側面、絶縁体275の側面、絶縁体271aの側面、絶縁体271bの側面、導電体242a2の側面、導電体242b2の側面、導電体242_1の上面、及び絶縁体222の上面に接して形成される。また、図12Cに示すように、絶縁体255の一部が、絶縁体224の側面、酸化物230の側面、導電体242_1の側面、及び絶縁体222の上面に接して形成される場合がある。
 また、図12B及び図12Cに示すように、絶縁体255aの、導電体242_1の上面または絶縁体222の上面に接する部分に、突出部が形成される。絶縁体255aの突出部は、他の部分よりも、絶縁体280などに形成される開口の中央部に向かって突出した形状になる。つまり、絶縁体255aは、チャネル長方向の断面視において、所謂L字状の形状になる。
 絶縁体255bは、絶縁体255aの内側に位置するように形成される。図11B及び図11Cに示すように、絶縁体255bの下面は、絶縁体255aの突出部の上面に接し、絶縁体255bの一方の側面は、絶縁体255aの側面に接する。また、上面視において、絶縁体255bの他方の側面は、絶縁体255aの突出部の端部と一致または概略一致するように形成される。また、絶縁体255bは、導電体242a2、導電体242b2、及び導電体242_1に接することはない。よって、絶縁体255bに酸化物絶縁体を用いることで、導電体242a2、導電体242b2、及び導電体242_1が酸化することを抑制することができる。
 チャネル長方向の断面視において、絶縁体255a及び絶縁体255bは幅L1の開口の中に形成されるので、A1側の絶縁体255bと、A2側の絶縁体255bの間の距離をL2とすると、L2はL1より短くなる。ここで、距離L2は、A1側の絶縁体255aの突出部の端部と、A2側の絶縁体255aの突出部の端部の間の距離とみることもできる。
 絶縁膜255A及び絶縁膜255Bの異方性エッチングには、ドライエッチング法を用いることが好ましい。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。例えば、絶縁膜255Aに窒化シリコンを用い、絶縁膜255Bに酸化シリコンを用いる場合、ICPエッチング装置で、CHFとOをエッチングガスとしてエッチング処理を行うことができる。
 また、例えば、絶縁膜255Bに酸化ハフニウムまたは酸化アルミニウムを用いる場合には、ICPエッチング装置で、BClをエッチングガスとしてエッチング処理を行うことができる。ただし、BClなどの塩素系のエッチングガスは、酸化物230に用いるIn−Ga−Zn酸化物に対しても高いエッチング性能を有する。よって、絶縁膜255Bのエッチングの際には、絶縁膜255Bの絶縁膜255Aに対するエッチング選択比を十分大きくし、絶縁膜255Aがエッチングされないようにすることが好ましい。これにより、絶縁膜255Bのエッチング中は、酸化物230が絶縁膜255Aに覆われているので、絶縁膜255Bのエッチングガスで酸化物230がエッチングされることを防ぐことができる。絶縁膜255Bを絶縁体255bに加工した後で、絶縁膜255Aの異方性エッチングを行えばよい。
 また、絶縁膜255A及び絶縁膜255Bのエッチングにおいて、発生したイオンが絶縁体280、絶縁体255a、及び絶縁体255bの開口の縁の角部に衝突する場合がある。これにより、図4Cなどに示すように、上記角部が研磨されてテーパー形状になる場合がある。例えば、エッチングガスにアルゴンなどのイオン化しやすいガスを含ませる、または基板側の電極にバイアス電圧を印加することで、上記角部が除去されやすくなる。
 なお、絶縁体255a及び絶縁体255bを形成した後で、さらに等方性エッチングを行い、絶縁体255bの一部を除去してもよい。これにより、図5Bに示すように、絶縁体255bの導電体260側の側面が、絶縁体255aの突出部の端部より後退した形状にすることができる。このような構造にすることで、後の工程で形成する導電体260の上部の幅を、導電体260の下部の幅より大きくすることができる。これにより、導電体260の配線抵抗を低減することができる。
 続いて、異方性エッチングを用いて、導電体242_1の絶縁体255から露出した部分を除去して、導電体242a1及び導電体242b1を形成する(図13A乃至図13D参照)。言い換えると、絶縁体255をマスクとして、導電体242_1を加工し、導電体242_1を導電体242a1と導電体242b1に分断する。異方性エッチングを用いて導電体242_1を加工することで、絶縁体255のサイドエッチングを抑制することができる。このように、絶縁体255をマスクとして用いて、導電体242_1を加工することで、トランジスタ200の断面視において、導電体242a1の側端部、及び導電体242b1の側端部が、絶縁体255の側端部と一致または概略一致するように形成される。
 このようにして、チャネル長方向の断面視において、導電体242a1と導電体242b1の距離もL2となる。L2はL1より短くなり、L1とL2の差は、絶縁体255の膜厚の2倍と一致または概略一致する。例えば、絶縁体280の開口の幅L1を28nmとし、絶縁体255の膜厚を10nmとした場合、導電体242a1と導電体242b1の距離L2を8nmにすることができる。言い換えると、28nmの開口を形成するフォトリソグラフィ技術によって、ダブルパターニング等の処理を行わずに、チャネル長が8nm以下のトランジスタを作製することができる。このように、実際に用いたフォトリソグラフィ技術よりも、加工精度の高い線幅の配線を形成することができる。よって、設計が要求する線幅よりも、低い加工精度のフォトリソグラフィ技術を用いることができるので、半導体装置の作製工程を簡略化し、生産コストを低減することができる。
 異方性エッチングには、ドライエッチング法を用いることが好ましい。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。例えば、導電体242_1に窒化タンタルを用いる場合、ICPエッチング装置で、ClとArをエッチングガスとしてエッチング処理を行うことができる。
 上記のように、異方性エッチングを用いて、導電体242_1の上に絶縁体255を形成し、絶縁体255をマスクとして用いて導電体242_1を分断することで、マスクとして機能する絶縁体255を自己整合的に形成することができる。これにより、本実施の形態に示す半導体装置の作製工程において、マスク数、及び工程数の削減を図ることができる。よって、生産性の高い半導体装置の作製方法を提供することができる。
 また、上記の方法を用いることで、島状の酸化物230がドライエッチングに曝される機会を、導電体242_1の加工時のみにすることができる。言い換えると、絶縁体255の形成の際に、島状の酸化物230の上面がドライエッチングに曝されるのを防ぐことができる。これにより、トランジスタ200のチャネル形成領域として機能する酸化物230bが、ドライエッチングによって受けるダメージ(例えば、イオンの衝突による損傷など)を低減することができる。導電体242_1のドライエッチング処理において、途中からバイアス電力を下げることにより、さらに酸化物230のダメージを低減させることができる。ただし、図4Aに示すように、酸化物230の、導電体242a1及び導電体242b1から露出した部分に凹部が形成される場合もある。
 また、図13Cに示すように、導電体242_1が除去されることにより、酸化物230の側面近傍の絶縁体255の上部も除去される。なお、図13Cでは、酸化物230の側面、及び絶縁体224の側面を覆うように、絶縁体255が形成されているが、本発明はこれに限られるものではない。例えば、絶縁膜255A、絶縁膜255B、及び導電体242_1の異方性エッチングの条件、ならびに酸化物230の側面のテーパー形状などによって、絶縁体255が酸化物230の側面の一部を覆うように形成される、または酸化物230の側面近傍において絶縁体255が消失する場合がある。
 なお、導電体242_1の加工後に、酸素プラズマを用いたアッシング処理を行ってもよい。このような酸素プラズマ処理を行うことで、上記エッチング処理で発生し、酸化物230などに拡散した不純物を除去することができる。当該不純物は、上記エッチング処理の被加工物に含まれる成分、及び、エッチングに使用されるガスなどに含まれる成分に起因したものが挙げられる。例えば、塩素、フッ素、タンタル、シリコン、ハフニウムなどが挙げられる。特に、上記エッチング処理に示すように、導電体242_1の加工で塩素ガスを用いると、塩素ガスを含む雰囲気に酸化物230が曝されるので、酸化物230に付着した塩素を除去することが好ましい。このように酸化物230に付着した不純物を除去することで、トランジスタの電気特性、及び信頼性を向上させることができる。
 また、上記酸素プラズマ処理を行うことで、絶縁体255aの少なくとも一部が酸化される場合がある。言い換えると、絶縁体255aに酸素が含まれる場合がある。この場合、絶縁体255aについて、SIMSなどで組成分析を行うことで、絶縁体255a中に酸素濃度が高い領域が観測される。なお、絶縁体255aの酸化が進行し、トランジスタ200の形成後に、絶縁体255aの少なくとも一部が、酸化窒化シリコンまたは窒化酸化シリコンになる場合がある。
 また、絶縁膜255A、絶縁膜255B、及び導電体242_1の加工、及び酸素プラズマ処理は、大気に曝さず連続して行うことができる。例えば、マルチチャンバー方式のエッチング装置を用いて、大気に曝さず処理を行えばよい。
 以上のようにして、導電性が良好な導電体242a2、242b2の下に、耐酸化性の導電体242a1、242b1を形成し、且つ導電体242a2、242b2の側面に接して、耐酸化性の絶縁体255を形成することができる。このような構成にすることで、導電性が良好な導電体242a2、242b2をトランジスタ200のソース電極及びドレイン電極として用いることができるので、トランジスタ200の周波数特性の向上、及び半導体装置の動作速度の向上を図ることができる。
 また、上記エッチング工程で酸化物230b表面に付着した不純物などを除去するために、洗浄処理を行ってもよい。洗浄方法としては、洗浄液など用いたウェット洗浄(ウェットエッチング処理ということもできる)、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、及びフッ化水素酸のうち一つまたは複数を炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、フッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、アンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整する。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下が好ましく、0.1%以上0.5%以下がより好ましい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下が好ましく、0.1ppm以上10ppm以下がより好ましい。
 なお、超音波洗浄には、200kHz以上の周波数を用いることが好ましく、900kHz以上の周波数を用いることがより好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈アンモニア水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230bの結晶性を高めることができる。
 上記エッチング後、または上記洗浄後に加熱処理を行うことが好ましい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、550℃以下、または400℃以下であると好ましい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。当該加熱処理は、酸素を含む雰囲気で行うことが好ましく、例えば、窒素ガスと酸素ガスの流量比を4:1として、350℃の温度で1時間の処理を行うことが好ましい。これにより、酸化物230a及び酸化物230bに酸素を供給して、酸素欠損の低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。さらに、酸化物230a及び酸化物230b中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230a及び酸化物230b中に残存していた水素が酸素欠損に再結合してVHが形成されることを抑制できる。これにより、酸化物230が設けられたトランジスタの電気特性を良好にし、信頼性を向上させることができる。また、同一基板上に複数形成されるトランジスタの電気特性のばらつきを抑制することができる。なお、上記加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 ここで、上述の通り、酸化しにくい無機絶縁体を有する絶縁体255aが、導電体242a2の側面、及び導電体242b2の側面に接して設けられている。これにより、導電体242a2、242b2に、比較的酸化されやすいタングステン膜などが用いられても、上記加熱処理によって、導電体242a2、242b2が過剰に酸化されるのを防ぐことができる。
 なお、酸化物230bに、導電体242a及び導電体242bが接した状態で加熱処理を行う場合、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域は、それぞれシート抵抗が低下することがある。また、キャリア濃度が増加することがある。したがって、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域を、自己整合的に低抵抗化することができる。
 次に、絶縁体280などに形成された開口を埋めるように、絶縁体250となる絶縁膜250Aを成膜する(図14A乃至図14D参照)。ここで、絶縁膜250Aは、絶縁体280、絶縁体255、導電体242a1、導電体242b1、絶縁体222、絶縁体224、酸化物230a、及び酸化物230bに接する。
 絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。例えば、絶縁膜250AはALD法を用いて成膜することが好ましい。上述の絶縁体250と同様に、絶縁膜250Aは薄い膜厚で形成することが好ましく、膜厚のバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(例えば酸化剤など)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。また、絶縁膜250Aは、上記開口の底面及び側面に、被覆性良く成膜される必要がある。ALD法を用いることで、上記開口の底面及び側面において、原子の層を一層ずつ堆積させることができるため、絶縁膜250Aを当該開口に対して良好な被覆性で形成できる。
 また、絶縁膜250AをALD法で成膜する場合、酸化剤として、オゾン(O)、酸素(O)、水(HO)などを用いることができる。水素を含まない、オゾン(O)、酸素(O)などを酸化剤として用いることで、酸化物230bに拡散する水素を低減できる。
 絶縁体250は、図2Aなどで示したように、積層構造にすることができる。以下では、図2Aと同様に、絶縁体250が絶縁体250a、絶縁体250b、絶縁体250cの3層構造である場合の、絶縁膜250Aの成膜方法について、図15A乃至図15Cを用いて説明する。図15A乃至図15Cでは、絶縁膜250Aが、絶縁膜250Aaと、絶縁膜250Aa上の絶縁膜250Abと、絶縁膜250Ab上の絶縁膜250Acと、を有する。
 まず、絶縁体280などに形成された開口を埋めるように、絶縁体250aとなる絶縁膜250Aaを成膜し、さらに絶縁膜250Aaの上に絶縁膜250Abを成膜する。(図15A参照)。本実施の形態では、絶縁膜250Aaとして、酸化アルミニウムを熱ALD法によって成膜し、絶縁膜250Abとして、酸化シリコンをPEALD法によって成膜する。
 次に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい(図15B参照)。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。また、本明細書などにおいて、マイクロ波とは、300MHz以上300GHz以下の周波数を有する電磁波を指すものとする。
 マイクロ波処理では、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。ここで、マイクロ波処理装置の周波数は、300MHz以上300GHz以下が好ましく、2.4GHz以上2.5GHz以下がより好ましく、例えば、2.45GHzにすることができる。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、マイクロ波処理装置のマイクロ波を印加する電源の電力は、1000W以上10000W以下が好ましく、2000W以上5000W以下が好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。
 また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力は、10Pa以上1000Pa以下が好ましく、300Pa以上700Pa以下がより好ましい。また、処理温度は、750℃以下が好ましく、500℃以下がより好ましく、例えば250℃程度とすることができる。また、酸素プラズマ処理を行った後に、大気に曝すことなく、連続して加熱処理を行ってもよい。加熱処理の温度は、例えば、100℃以上750℃以下が好ましく、300℃以上500℃以下がより好ましい。
 また、例えば、上記マイクロ波処理は、酸素ガスとアルゴンガスを用いて行うことができる。ここで、酸素流量比(O/(O+Ar))は、0%より大きく、100%以下とする。好ましくは、酸素流量比(O/(O+Ar))を、0%より大きく、50%以下とする。より好ましくは、酸素流量比(O/(O+Ar))を、10%以上、40%以下とする。さらに好ましくは、酸素流量比(O/(O+Ar))を、10%以上、30%以下とする。このように、酸素を含む雰囲気でマイクロ波処理を行うことで、酸化物230b中のキャリア濃度を低下させることができる。また、マイクロ波処理において、チャンバーに過剰な量の酸素が導入されないようにすることで、酸化物230bでキャリア濃度が過剰に低下することを防ぐことができる。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを酸化物230bの、導電体242aと導電体242bとの間の領域に作用させることができる。プラズマ、マイクロ波などの作用により、当該領域におけるVHを酸素欠損と水素とに分断し、水素を当該領域から除去することができる。ここで、図2Aなどに示す構造にする場合、絶縁膜250Aaとして、水素を捕獲または水素を固着する機能を有する絶縁膜(例えば、酸化アルミニウムなど)を用いることが好ましい。このような構成にすることで、マイクロ波処理により生じた水素を、絶縁膜250Aaに捕獲、または固着させることができる。このようにして、チャネル形成領域に含まれるVHを低減できる。以上により、チャネル形成領域中の酸素欠損、及びVHを低減し、キャリア濃度を低下させることができる。また、チャネル形成領域に形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカルを供給することで、さらに、チャネル形成領域中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 チャネル形成領域中に注入される酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、チャネル形成領域中に注入される酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。また、絶縁体250の膜質を向上させることができるため、トランジスタの信頼性が向上する。
 一方、酸化物230bには、導電体242a、242bのいずれかと重なる領域が存在する。当該領域は、ソース領域またはドレイン領域として機能することができる。ここで、導電体242a、242bは、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、RF等の高周波、酸素プラズマなどの作用に対する遮蔽膜として機能することが好ましい。このため、導電体242a、242bは、300MHz以上300GHz以下、例えば、2.4GHz以上2.5GHz以下の電磁波を遮蔽する機能を有することが好ましい。
 導電体242a、242bは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するため、これらの作用は、酸化物230bの導電体242a、242bのいずれかと重なる領域には及ばない。これにより、マイクロ波処理によって、ソース領域及びドレイン領域で、VHの低減、及び過剰な量の酸素供給が発生しないため、キャリア濃度の低下を防ぐことができる。
 また、導電体242a2、242b2の側面に接して、酸素に対するバリア性を有する、絶縁体255aが設けられている。また、導電体242a1、242b1、及び絶縁体255を覆って、絶縁膜250Aa、及び絶縁膜250Abが設けられている。これにより、マイクロ波処理によって、導電体242a、242bの側面に酸化膜が形成されることを抑制できる。
 以上のようにして、酸化物半導体のチャネル形成領域で選択的に酸素欠損、及びVHを除去して、チャネル形成領域をi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域に過剰な酸素が供給されることを抑制し、マイクロ波処理を行う前の導電性(低抵抗領域である状態)を維持することができる。これにより、トランジスタの電気特性の変動を抑制し、基板面内でトランジスタの電気特性がばらつくことを抑制できる。
 なお、マイクロ波処理では、マイクロ波と酸化物230b中の分子の電磁気的な相互作用により、酸化物230bに直接的に熱エネルギーを伝達する場合がある。この熱エネルギーにより、酸化物230bが加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、酸化物230bに水素が含まれる場合、この熱エネルギーが酸化物230b中の水素に伝わり、これにより活性化した水素が酸化物230bから放出されることが考えられる。
 また、マイクロ波処理を行って絶縁膜250Aa、及び絶縁膜250Abの膜質を改質することで、水素、水、不純物等の拡散を抑制できる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体250を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制できる。このように、絶縁体250の膜質を向上させることで、トランジスタの信頼性を向上させることができる。
 次に、絶縁膜250Abの上に絶縁膜250Acを成膜する。(図15C参照)。本実施の形態では、絶縁膜250Acとして、窒化シリコンをPEALD法によって成膜する。このようにして、絶縁膜250Aa乃至絶縁膜250Acを有する、絶縁膜250Aを形成することができる。
 なお、上記において、絶縁膜250Abを成膜した後にマイクロ波処理を行う例について示したが、本発明はこれに限られるものではない。絶縁膜250Acまで成膜した後で、マイクロ波処理を行う構成にすることもできる。または、絶縁膜250Aaの成膜前にマイクロ波処理を行う構成にすることもできる。また、絶縁膜250Aaの成膜前にマイクロ波処理を行う場合、図11A乃至図11Dに示す工程において、マイクロ波処理を行う構成にしてもよい。例えば、絶縁膜255Aまで成膜した後でマイクロ波処理を行う構成にすることができる。また、例えば、絶縁膜255Bまで成膜した後でマイクロ波処理を行う構成にすることもできる。
 また、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素を効率よく除去できる。また、水素の一部は、導電体242a、242bにゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素をさらに効率よく除去できる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。また、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、酸化物230bなどが十分加熱される場合、該加熱処理を行わなくてもよい。
 なお、図3Aに示すように、絶縁体250を絶縁体250aと絶縁体250cの積層構造にする場合、上記の工程において、絶縁膜250Abの成膜を行わない構成にすればよい。また、図3Bに示すように、絶縁体250を絶縁体250a、絶縁体250b、絶縁体250c、及び絶縁体250dの積層構造にする場合、図15Bのマイクロ波処理の後で、絶縁体250dとなる絶縁膜を成膜し、さらにもう一度マイクロ波処理を行い、絶縁膜250Acを成膜してもよい。ここで、絶縁体250dとなる絶縁膜として、酸化ハフニウムを熱ALD法によって成膜することができる。このように、酸素を含む雰囲気でのマイクロ波処理は、複数回(少なくとも2回以上)の処理としてもよい。
 次に、導電体260aとなる導電膜260Aと、導電体260bとなる導電膜260Bと、を順に成膜する(図16A乃至図16D参照)。導電膜260A、及び、導電膜260Bは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、メッキ法または、ALD法を用いて成膜することができる。本実施の形態では、ALD法を用いて、導電膜260Aとして窒化チタンを成膜し、CVD法を用いて導電膜260Bとしてタングステンを成膜する。
 次に、CMP処理によって、絶縁膜250A、導電膜260A、及び、導電膜260Bを、絶縁体280が露出するまで研磨する。つまり、絶縁膜250A、導電膜260A、及び、導電膜260Bの、上記開口から露出した部分を除去する。これによって、導電体205と重なる開口の中に、絶縁体250、及び導電体260(導電体260a及び導電体260b)を形成する(図17A乃至図17D参照)。
 これにより、絶縁体250は、上記開口内で、絶縁体255、導電体242a1、導電体242b1、酸化物230、絶縁体224、及び絶縁体222に接して設けられる。また、導電体260は、絶縁体250を介して、上記開口を埋め込むように配置される。このようにして、トランジスタ200が形成される。
 次に、絶縁体255上、絶縁体250上、導電体260上、及び絶縁体280上に、絶縁体282を形成する。絶縁体282は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減できる。
 また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加できる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。ここで、上述のように、絶縁体255aの一部が酸化していると、絶縁体280に供給された酸素を、絶縁体255a、絶縁体255b及び絶縁体250を介して、酸化物230bに好適に供給することができる。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、スパッタリング法で酸化アルミニウムを成膜する。スパッタリング法で基板に印加するRF電力の大きさによって、絶縁体282より下層へ注入する酸素量を制御することができる。例えば、RF電力が小さいほど絶縁体282より下層へ注入する酸素量が減り、絶縁体282の膜厚が薄くても当該酸素量は飽和しやすくなる。また、RF電力が大きいほど絶縁体282より下層へ注入する酸素量が増える。RF電力を小さくすることで、絶縁体280へ注入される酸素量を抑制できる。また、絶縁体282を2層の積層構造で成膜してもよい。このとき、例えば、絶縁体282の下層を、基板に印加するRF電力を印加しないで成膜し、絶縁体282の上層を、基板にRF電力を印加して成膜する。
 なお、RFの周波数は、10MHz以上が好ましい。代表的には、13.56MHzである。RFの周波数が高いほど基板へ与えるダメージを小さくすることができる。
 また、絶縁体282の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁体282を成膜してもよい。このような処理を行うことによって、絶縁体280の表面に吸着している水分及び水素を除去し、さらに絶縁体280中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁体282上に、絶縁体283を形成する。絶縁体283は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体283の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体283中の水素濃度を低減できる。本実施の形態では、絶縁体283として、スパッタリング法を用いて、窒化シリコンを成膜する。
 ここで、絶縁体282及び絶縁体283は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁体282及び絶縁体283上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁体282及び絶縁体283との界面近傍を清浄に保つことができる。
 また、絶縁体283の成膜後に、加熱処理を行ってもよい。当該加熱処理の温度は、100℃以上400℃以下が好ましい。加熱処理を行うことで、絶縁体280、絶縁体250、及び酸化物230に含まれる水素が絶縁体282に移動し、絶縁体282内に吸い取られる。別言すると、絶縁体280、絶縁体250、及び酸化物230に含まれる水素が絶縁体282に拡散する。従って、絶縁体282の水素濃度は高くなるが、絶縁体280、絶縁体250、及び酸化物230のそれぞれの水素濃度は低下する。なお、絶縁体282の上面に接して絶縁体283を設けておくことで、当該加熱処理において、絶縁体283より上方から水分、または水素などの不純物が侵入するのを防ぐことができる。また、加熱処理を行うことで、絶縁体216、絶縁体224、及び酸化物230に含まれる水素が絶縁体222に移動し、絶縁体222内に吸い取られる。別言すると、絶縁体216、絶縁体224、及び酸化物230に含まれる水素が絶縁体222に拡散する。従って、絶縁体222の水素濃度は高くなるが、絶縁体216、絶縁体224、及び酸化物230中のそれぞれの水素濃度は低下する。なお、絶縁体222の下面に接して絶縁体221を設けておくことで、当該加熱処理において、絶縁体221より下方から水分、または水素などの不純物が侵入するのを防ぐことができる。
 以上により、図1に示す半導体装置を作製できる。
 本実施の形態に係る半導体装置は、酸化物半導体上の導電体を2層構造にし、下層に酸化しにくい導電体を用い、上層に導電性の高い導電体を用いる構成にすることで、酸化物半導体の上面に接して、電極または配線として機能する導電体が設けられている。当該導電体は、OSトランジスタのソース電極及びドレイン電極として機能する。本実施の形態に係る半導体装置は、ソース電極及びドレイン電極の下層の導電体どうしの距離を、ソース電極及びドレイン電極の上層の導電体どうしの距離より短くし、微細化を図ることで、半導体装置の周波数特性の向上及び動作速度の向上を図ることができる。また、本実施の形態に係る半導体装置は、ソース電極及びドレイン電極の上層の導電体の側面に接して、保護膜として機能する絶縁体を設ける。これにより、ソース電極及びドレイン電極の上層が過剰に酸化されるのを抑制することができる。
 本実施の形態に係る半導体装置は、OSトランジスタを有する。OSトランジスタは、オフ電流が小さいため、消費電力が少ない半導体装置または記憶装置を実現できる。また、OSトランジスタは、周波数特性が高いため、動作速度が速い半導体装置または記憶装置を実現できる。また、OSトランジスタを用いることで、良好な電気特性を有する半導体装置、トランジスタの電気特性のばらつきが少ない半導体装置、オン電流が大きい半導体装置、信頼性が高い半導体装置または記憶装置を実現できる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
 本実施の形態では、先の実施の形態に示すOSトランジスタと、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタともいう)との比較について説明する。
[OSトランジスタ]
 OSトランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1018cm−3以下、好ましくは1×1017cm−3未満、より好ましくは1×1016cm−3未満、さらに好ましくは1×1013cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素等が挙げられる。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
 また、OSトランジスタは、酸化物半導体中のチャネル形成領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、OSトランジスタは、酸化物半導体中の酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。また、チャネル形成領域にVHが形成されると、チャネル形成領域中のドナー濃度が増加する場合がある。チャネル形成領域中のドナー濃度が増加するにつれ、しきい値電圧がばらつくことがある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。
 また、酸化物半導体のバンドギャップは、シリコンのバンドギャップ(代表的には1.1eV)よりも大きいことが好ましく、好ましくは2eV以上、より好ましくは2.5eV以上、さらに好ましくは3.0eV以上である。シリコンよりも、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流(Ioffとも呼称する)を低減することができる。
 また、Siトランジスタでは、トランジスタの微細化が進むにつれて、短チャネル効果(ショートチャネル効果:Short Channel Effect:SCEともいう)が発現する。そのため、Siトランジスタでは、微細化が困難となる。短チャネル効果が発現する要因の一つとして、シリコンのバンドギャップが小さいことが挙げられる。一方、OSトランジスタは、バンドギャップの大きい半導体材料である、酸化物半導体を用いるため、短チャネル効果の抑制を図ることができる。別言すると、OSトランジスタは、短チャネル効果がない、または短チャネル効果が極めて少ないトランジスタである。
 なお、短チャネル効果とは、トランジスタの微細化(チャネル長の縮小)に伴って顕在化する電気特性の劣化である。短チャネル効果の具体例としては、しきい値電圧の低下、S値の増大、漏れ電流の増大などがある。
 また、短チャネル効果に対する耐性の指標として、特性長(Characteristic Length)が広く用いられている。特性長とは、チャネル形成領域のポテンシャルの曲がりやすさの指標である。特性長が小さいほどポテンシャルが急峻に立ち上がるため、短チャネル効果に強いといえる。
 OSトランジスタは蓄積型のトランジスタであり、Siトランジスタは反転型のトランジスタである。したがって、Siトランジスタと比較して、OSトランジスタは、ソース領域−チャネル形成領域間の特性長、及びドレイン領域−チャネル形成領域間の特性長が小さい。したがって、OSトランジスタは、Siトランジスタよりも短チャネル効果に強い。すなわち、チャネル長の短いトランジスタを作製したい場合においては、OSトランジスタは、Siトランジスタよりも好適である。
 チャネル形成領域がi型又は実質的にi型となるまで、酸化物半導体のキャリア濃度を下げた場合においても、短チャネルのトランジスタではConduction−Band−Lowering(CBL)効果により、チャネル形成領域の伝導帯下端が下がるため、ソース領域またはドレイン領域と、チャネル形成領域との間の伝導帯下端のエネルギー差は、0.1eV以上0.2eV以下まで小さくなる可能性がある。これにより、OSトランジスタは、チャネル形成領域がn型の領域となり、ソース領域およびドレイン領域がn型の領域となる、n/n/nの蓄積型junction−lessトランジスタ構造、または、n/n/nの蓄積型non−junctionトランジスタ構造と、捉えることもできる。
 OSトランジスタを、上記の構造とすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。例えば、OSトランジスタのゲート長が、20nm以下、15nm以下、10nm以下、7nm以下、または6nm以下であって、1nm以上、3nm以上、または5nm以上であっても、良好な電気特性を得ることができる。一方で、Siトランジスタは、短チャネル効果が発現するため、20nm以下、または15nm以下のゲート長とすることが困難な場合がある。したがって、OSトランジスタは、Siトランジスタと比較してチャネル長の短いトランジスタに好適に用いることができる。なお、ゲート長とは、トランジスタ動作時にキャリアがチャネル形成領域内部を移動する方向における、ゲート電極の長さであり、トランジスタの平面視における、ゲート電極の底面の幅をいう。
 また、OSトランジスタを微細化することで、トランジスタの高周波特性を向上させることができる。具体的には、トランジスタの遮断周波数を向上させることができる。OSトランジスタのゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、好ましくは100GHz以上、さらに好ましくは150GHz以上とすることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、オフ電流が小さいこと、チャネル長の短いトランジスタの作製が可能なこと、といった優れた効果を有する。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、本発明の一態様のトランジスタを用いた記憶装置について図18乃至図28を用いて説明する。
 本実施の形態では、上記実施の形態で説明したトランジスタを有するメモリセルを用いた記憶装置の構成例について説明する。本実施の形態では、積層されたメモリセルを有する層と、メモリセルに保持したデータ電位を増幅して出力する機能を有する機能回路を有する層が設けられた、記憶装置の構成例について説明する。
[記憶装置の構成例]
 図18に、本発明の一態様の記憶装置のブロック図を示す。
 図18に示す記憶装置300は、駆動回路21と、メモリアレイ20と、を有する。メモリアレイ20は、複数のメモリセル10と、複数の機能回路51を有する機能層50と、を有する。
 図18では、メモリアレイ20がm行n列(m及びnは2以上の整数。)のマトリクス状に配置された複数のメモリセル10を有する例を示している。また、図18では、機能回路51を、ビット線として機能する配線BLごとに設ける例を示しており、機能層50が、n本の配線BLに対応して設けられた複数の機能回路51を有する例を示している。
 図18では、1行1列目のメモリセル10をメモリセル10[1,1]と示し、m行n列目のメモリセル10をメモリセル10[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル10をメモリセル10[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また、メモリアレイ20は、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を備える。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。
 i行目に設けられた複数のメモリセル10は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル10は、j列目の配線BL(配線BL[j])と電気的に接続される。
 メモリアレイ20には、DOSRAM(登録商標)(Dynamic Oxide Semiconductor Random Access Memory)を適用することができる。DOSRAMは、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMであり、アクセストランジスタがOSトランジスタであるメモリのことをいう。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。DOSRAMは、アクセストランジスタをオフ(非導通状態)にすることで、容量素子(キャパシタ)に保持しているデータに応じた電荷を長時間保持することが可能である。そのためDOSRAMは、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)で構成されるDRAMと比較して、リフレッシュ動作の頻度を低減できる。その結果、低消費電力化を図ることができる。また、OSトランジスタの周波数特性は高いため、記憶装置の読み出し、及び書き込みを高速に行うことができる。これにより、動作速度が速い記憶装置を提供することができる。
 図18に示すメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。
 配線BLは、データの書き込み及び読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、容量素子に接続される定電位線としての機能を有する。なお、アクセストランジスタであるOSトランジスタのバックゲートにバックゲート電位を伝える機能を有する配線として、配線CL(図示せず)を別途設けることができる。また、配線PLが、バックゲート電位を伝える機能を兼ねる構成にしてもよい。
 メモリアレイ20[1]乃至20[m]がそれぞれ有するメモリセル10は、配線BLを介して機能回路51に接続される。配線BLは、駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BLを基板表面の垂直方向に設けることで、メモリアレイ20と機能回路51との間の配線の長さを短くできる。そのため、ビット線に接続される2つの回路の間の信号伝搬距離を短くでき、ビット線の抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。またメモリセル10が有する容量素子の容量を小さくしても記憶装置を動作させることが可能となる。
 機能回路51は、メモリセル10に保持したデータ電位を増幅し、後述する配線GBL(図示せず)を介して駆動回路21が有するセンスアンプ46に出力する機能を有する。当該構成にすることで、データ読み出し時に配線BLのわずかな電位差を増幅することができる。配線GBLは、配線BLと同様に駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BL及び配線GBLを基板表面の垂直方向に設けることで、機能回路51とセンスアンプ46との間の配線の長さを短くできる。そのため、配線GBLに接続される2つの回路の間の信号伝搬距離を短くでき、配線GBLの抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。
 なお配線BLは、メモリセル10が有するトランジスタの半導体層に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線BLは、メモリアレイ20の各層におけるメモリセル10が有するトランジスタのソースまたはドレインの一方のそれぞれと、機能回路51と、を垂直方向で電気的に接続するための配線であるといえる。
 メモリアレイ20は、駆動回路21上に重ねて設けることができる。駆動回路21とメモリアレイ20を重ねて設けることで、駆動回路21とメモリアレイ20の間の信号伝搬距離を短くすることができる。よって、駆動回路21とメモリアレイ20の間の抵抗及び寄生容量が低減され、消費電力及び信号遅延の低減が実現できる。また、記憶装置300の小型化が実現できる。
 機能回路51は、DOSRAMのメモリセル10が有するトランジスタと同様にOSトランジスタで構成することで、メモリアレイ20[1]乃至20[m]と同様にしてSiトランジスタを用いた回路上などに自由に配置可能であるため、集積化を容易に行うことができる。機能回路51で信号を増幅する構成とすることで後段の回路であるセンスアンプ46等の回路を小型化できるため、記憶装置300の小型化を図ることができる。
 駆動回路21は、PSW22(パワースイッチ)、PSW23、及び周辺回路31を有する。周辺回路31は、周辺回路41、コントロール回路32(Control Circuit)、及び電圧生成回路33を有する。
 記憶装置300において、各回路、各信号及び各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、及び信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路32で生成してもよい。
 コントロール回路32は、記憶装置300の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GW及び信号BWを論理演算して、記憶装置300の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路32は、この動作モードが実行されるように、周辺回路41の制御信号を生成する。
 電圧生成回路33は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路33への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路33へ入力され、電圧生成回路33は負電圧を生成する。
 周辺回路41は、メモリセル10に対するデータの書き込み及び読み出しを行うための回路である。また周辺回路41は、機能回路51を制御するための各種信号を出力する回路である。周辺回路41は、行デコーダ42(Row Decoder)、列デコーダ44(Column Decoder)、行ドライバ43(Row Driver)、列ドライバ45(Column Driver)、入力回路47(Input Cir.)、出力回路48(Output Cir.)、センスアンプ46(Sense Amplifier)を有する。
 行デコーダ42及び列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線WLを選択する機能を有する。列ドライバ45は、データをメモリセル10に書き込む機能、メモリセル10からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、メモリセル10に書き込むデータ(Din)である。列ドライバ45がメモリセル10から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置300の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。
 PSW22は周辺回路31へのVDDの供給を制御する機能を有する。PSW23は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置300の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW22のオン・オフが制御され、信号PON2によってPSW23のオン・オフが制御される。図18では、周辺回路31において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 メモリアレイ20[1]乃至20[m](mは2以上の整数)及び機能層50を有するメモリアレイ20は、駆動回路21上に複数層のメモリアレイ20を重ねて設けることができる。複数層のメモリアレイ20を重ねて設けることで、メモリセル10のメモリ密度を高めることができる。図19Aに、駆動回路21上に機能層50と、5層(m=5)のメモリアレイ20[1]乃至20[5]と、を重ねて有する記憶装置300の斜視図を示している。
 図19Aでは、1層目に設けられたメモリアレイ20をメモリアレイ20[1]と示し、2層目に設けられたメモリアレイ20をメモリアレイ20[2]と示し、5層目に設けられたメモリアレイ20をメモリアレイ20[5]と示している。また図19Aにおいて、X方向に延びて設けられる配線WL、配線PL及び配線CLと、Z方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BLと、を図示している。なお、図面を見やすくするため、メモリアレイ20それぞれが有する配線WL及び配線PLの記載を一部省略している。
 図19Bに、図19Aで図示した配線BLに接続された機能回路51、及び配線BLに接続されたメモリアレイ20[1]乃至20[5]が有するメモリセル10の構成例を説明する模式図を示す。また図19Bでは、機能回路51と駆動回路21との間に設けられる配線GBLを図示している。なお、1つの配線BLに複数のメモリセル(メモリセル10)が電気的に接続される構成を「メモリストリング」ともいう。なお図面において、配線GBLは、視認性を高めるため、太線で図示する場合がある。
 図19Bでは、配線BLに接続されるメモリセル10の回路構成の一例を図示している。メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11、容量素子12、及び各配線(配線BL、及び配線WLなど)についても、例えば配線BL[1]及び配線WL[1]を配線BL及び配線WLなどのようにいう場合がある。ここで、トランジスタ11は、実施の形態1で示したトランジスタ200と対応する。
 メモリセル10において、トランジスタ11のソースまたはドレインの一方は配線BLに接続される。トランジスタ11のソースまたはドレインの他方は容量素子12の一方の電極に接続される。容量素子12の他方の電極は、配線PLに接続される。トランジスタ11のゲートは配線WLに接続される。トランジスタ11のバックゲートは配線CLに接続される。
 配線PLは、容量素子12の電位を保持するための定電位を与える配線である。配線CLは、トランジスタ11のしきい値電圧を制御するための定電位を与える配線である。配線PLと配線CLは、同じ電位でもよい。この場合、2つの配線を接続することで、メモリセル10に接続される配線数を削減することができる。
 図19Bに図示する配線GBLは、駆動回路21と機能層50との間を電気的に接続するように設けられる。図20Aでは、機能回路51、及びメモリアレイ20[1]乃至20[m]を繰り返し単位70とする記憶装置300の模式図を示している。なお図20Aでは、配線GBLを1本図示しているが、配線GBLは機能層50に設けられる機能回路51の数に応じて適宜設ければよい。
 なお配線GBLは、機能回路51が有するトランジスタの半導体層に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線GBLは、機能層50における機能回路51が有するトランジスタのソースまたはドレインの一方と、駆動回路21と、を垂直方向で電気的に接続するための配線であるといえる。
 また機能回路51、及びメモリアレイ20[1]乃至20[m]を有する繰り返し単位70は、さらに積層する構成としてもよい。本発明の一態様の記憶装置300Aは、図20Bに図示するように繰り返し単位70[1]乃至70[p](pは2以上の整数)とすることができる。配線GBLは繰り返し単位70が有する機能層50に接続される。配線GBLは、機能回路51の数に応じて適宜設ければよい。
 本発明の一形態では、OSトランジスタを積層して設けるとともに、ビット線として機能する配線を、駆動回路21が設けられる基板表面の垂直方向に配置する。メモリアレイ20から延びて設けられるビット線として機能する配線を基板表面の垂直方向に設けることで、メモリアレイ20と駆動回路21との間の配線の長さを短くできる。そのため、ビット線の寄生容量を大幅に削減できる。
 また本発明の一形態は、メモリアレイ20が設けられる層において、メモリセル10に保持したデータ電位を増幅して出力する機能を有する機能回路51を有する機能層50を備えている。当該構成にすることで、データ読み出し時にビット線として機能する配線BLのわずかな電位差を増幅して、駆動回路21が有するセンスアンプ46を駆動することができる。センスアンプ等の回路を小型化できるため、記憶装置300の小型化を図ることができる。またメモリセル10が有する容量素子12の容量を小さくしても動作させることが可能となる。
 なお、上記においては、メモリセル10を1T(トランジスタ)1C(容量)型の構成にする例について示したが、本発明はこれに限られるものではない。例えば、図28Aに示すように、3T1C型のメモリセルを記憶装置に用いてもよい。図28Aに示すメモリセルは、トランジスタ11a、11b、11cと、容量素子12aを有する。ここで、トランジスタ11a、11b、11cは、トランジスタ11と同様の構成にすることができ、容量素子12aは、容量素子12と同様の構成にすることができる。また、このような構成のRAMを、NOSRAM(登録商標)(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
 図28Aに示すように、トランジスタ11aのソースまたはドレインの一方が、容量素子12aの電極の一方、及びトランジスタ11bの第1のゲートと電気的に接続される。また、トランジスタ11bのソース及びドレインの一方が、トランジスタ11cのソース及びドレインの一方と電気的に接続される。なお、トランジスタ11aの第1のゲート、ソース及びドレインの他方、ならびに第2のゲート、トランジスタ11bのソース及びドレインの他方、ならびに第2のゲート、トランジスタ11cの第1のゲート、ソース及びドレインの他方、ならびに第2のゲート、ならびに容量素子12aの電極の他方には、適宜配線を設ければよい。また、これらの配線に合わせて、記憶装置の構造も適宜変形させることができる。
 また、図28Bに示すように、トランジスタ11cを設けずに、トランジスタ11a、11bと容量素子12aだけを有する、2T1C型のメモリセルにしてもよい。
 また、トランジスタ11a、及びトランジスタ11bの寄生容量が十分大きい場合、図28Cに示すように、容量素子12aを設けない構成にしてもよい。この場合、トランジスタ11a及びトランジスタ11bだけでメモリセルが構成される。
 なお、上記において、積層構造のメモリアレイを有する記憶装置について示したが、本発明はこれに限られるものではない。例えば、上記実施の形態に係るトランジスタを用いて、単層のメモリアレイを有する記憶装置を形成することもできる。
[メモリアレイ20及び機能回路51の構成例]
 図21を用いて、図18乃至図20で説明した機能回路51の構成例、及びメモリアレイ20及び駆動回路21が有するセンスアンプ46の構成例について説明する。図21では、異なる配線BL(配線BL_A、配線BL_B)に接続されたメモリセル10(メモリセル10_A、メモリセル10_B)に接続された機能回路51(機能回路51_A、機能回路51_B)に接続される配線GBL(配線GBL_A、配線GBL_B)に接続された駆動回路21を図示している。図21に図示する駆動回路21として、センスアンプ46の他、プリチャージ回路71_A、プリチャージ回路71_B、スイッチ回路72_A、スイッチ回路72_B及び書き込み読み出し回路73を図示している。
 機能回路51_A、51_Bとして、トランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bを図示している。図21に図示するトランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bは、メモリセル10が有するトランジスタ11と同様にOSトランジスタである。機能回路51を有する機能層50は、メモリアレイ20[1]乃至20[m]と同様に積層して設けることができる。
 配線BL_Aは、トランジスタ52_aのゲートに接続され、配線BL_Bはトランジスタ52_bのゲートに接続される。配線GBL_Aは、トランジスタ53_a、54_aのソースまたはドレインの一方が接続される。配線GBL_Bは、トランジスタ53_b、54_bのソースまたはドレインの一方が接続される。配線GBL_A、GBL_Bは、配線BL_A、BL_Bと同様に垂直方向に設けられ、駆動回路21が有するトランジスタに接続される。トランジスタ53_a、53_b、54_a、54_b、55_a、55_bのゲートには、図21に示すように、それぞれ、選択信号MUX、制御信号WE、または制御信号REが与えられる。
 図21に示すセンスアンプ46、プリチャージ回路71_A、及びプリチャージ回路71_Bを構成するトランジスタ81_1乃至81_6、及び82_1乃至82_4は、Siトランジスタで構成される。スイッチ回路72_A及びスイッチ回路72_Bを構成するスイッチ83_A乃至83_DもSiトランジスタで構成することができる。トランジスタ53_a、53_b、54_a、54_bのソースまたはドレインの一方は、プリチャージ回路71_A、プリチャージ回路71_B、センスアンプ46、スイッチ回路72_Aを構成するトランジスタまたはスイッチに接続される。
 プリチャージ回路71_Aは、nチャネル型のトランジスタ81_1乃至81_3を有する。プリチャージ回路71_Aは、プリチャージ線PCL1に与えられるプリチャージ信号に応じて、配線BL_A及び配線BL_Bを高電源電位(VDD)と低電源電位(VSS)の間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 プリチャージ回路71_Bは、nチャネル型のトランジスタ81_4乃至81_6を有する。プリチャージ回路71_Bは、プリチャージ線PCL2に与えられるプリチャージ信号に応じて、配線GBL_A及び配線GBL_BをVDDとVSSの間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 センスアンプ46は、配線VHHまたは配線VLLに接続された、pチャネル型のトランジスタ82_1、82_2及びnチャネル型のトランジスタ82_3、82_4を有する。配線VHHまたは配線VLLは、VDDまたはVSSを与える機能を有する配線である。トランジスタ82_1乃至82_4は、インバータループを構成するトランジスタである。メモリセル10_A、10_Bを選択することでプリチャージされた配線BL_A及び配線BL_Bの電位が変化し、当該変化に応じて配線GBL_A及び配線GBL_Bの電位をVDDまたはVSSとする。配線GBL_A及び配線GBL_Bの電位は、スイッチ83_C及びスイッチ83_D、及び書き込み読み出し回路73を介して外部に出力することができる。配線BL_A及び配線BL_B、並びに配線GBL_A及び配線GBL_Bは、ビット線対に相当する。書き込み読み出し回路73は、信号EN_dataに応じて、データ信号の書き込みが制御される。
 スイッチ回路72_Aは、センスアンプ46と配線GBL_A及び配線GBL_Bとの間の導通状態を制御するための回路である。スイッチ回路72_Aは、切り替え信号CSEL1の制御によってオンまたはオフが切り替えられる。スイッチ83_A及び83_Bが、nチャネルトランジスタの場合、切り替え信号CSEL1がハイレベルでオン、ローレベルでオフとなる。スイッチ回路72_Bは、書き込み読み出し回路73と、センスアンプ46に接続されるビット線対との間の導通状態を制御するための回路である。スイッチ回路72_Bは、切り替え信号CSEL2の制御によってオンまたはオフが切り替えられる。スイッチ83_C及び83_Dは、スイッチ83_A及び83_Bと同様にすればよい。
 図21に示すように記憶装置300は、メモリセル10と、機能回路51と、センスアンプ46と、を最短距離である垂直方向に設けられる配線BL及び配線GBLを介して接続する構成とすることができる。機能回路51を構成するトランジスタを有する機能層50が増えるが、配線BLの負荷が低減されることで、書き込み時間を短縮し、データを読み出しやすくすることができる。
 また図21に示すように機能回路51_A、51_Bが有する各トランジスタは、制御信号WE、RE、及び選択信号MUXに応じて制御される。各トランジスタは、制御信号及び選択信号に応じて、配線GBLを介して配線BLの電位を駆動回路21に出力することができる。機能回路51_A、51_Bは、OSトランジスタで構成されるセンスアンプとして機能させることができる。当該構成にすることで、読み出し時に配線BLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ46を駆動することができる。
<メモリセルの構成例>
 図22を用いて、上記記憶装置に用いられるメモリセル10の構成例について説明する。
 なお、図22において、X方向は、図示するトランジスタのチャネル幅方向と平行であり、Y方向は、X方向に垂直であり、Z方向は、X方向及びY方向に垂直である。
 図22に示すように、メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11の上には、絶縁体285が設けられ、絶縁体285の上には、絶縁体284が設けられている。絶縁体285、及び絶縁体284は、絶縁体216に用いることが可能な絶縁体を用いればよい。なお、トランジスタ11は、先の実施の形態に示すトランジスタ200と同様の構成を有し、同じ構成要素には同符号を付す。トランジスタ200の詳細については、先の実施の形態を参照することができる。また、トランジスタ11のソースまたはドレインの一方(導電体242a)に接して導電体240が設けられる。導電体240は、Z方向に延伸して設けられており、配線BLとして機能する。
 容量素子12は、導電体242b上の導電体153と、導電体153上の絶縁体154と、絶縁体154上の導電体160(導電体160a及び導電体160b)と、を有する。
 導電体153、絶縁体154、及び、導電体160は、それぞれ、少なくとも一部が、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられた開口の内部に配置されている。導電体153、絶縁体154、及び、導電体160のそれぞれの端部は、少なくとも絶縁体282上に位置し、好ましくは絶縁体285上に位置する。絶縁体154は、導電体153の端部を覆うように設けられる。これにより、導電体153と導電体160とを電気的に絶縁させることができる。
 絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。容量素子12の単位面積当たりの静電容量を大きくすることで、半導体装置の微細化または高集積化を図ることができる。
 導電体153は、容量素子12の一方の電極(下部電極)として機能する領域を有する。絶縁体154は、容量素子12の誘電体として機能する領域を有する。導電体160は、容量素子12の他方の電極(上部電極)として機能する領域を有する。容量素子12は、MIM(Metal−Insulator−Metal)容量を構成している。
 また、酸化物230上に重畳して設けられた導電体242bは、容量素子12の導電体153と電気的に接続する配線として機能する。
 容量素子12が有する導電体153及び導電体160は、それぞれ、導電体205、または導電体260に用いることができる各種導電体を用いて形成することができる。導電体153及び導電体160は、それぞれ、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。例えば、導電体153として、ALD法またはCVD法を用いて成膜した窒化チタンまたは窒化タンタルを用いることができる。
 また、導電体153の下面には、導電体242b2の上面が接する。ここで、導電体242b2として、導電性の良好な導電性材料を用いることで、導電体153と導電体242bとの接触抵抗を低減することができる。
 また、導電体160aとして、ALD法またはCVD法を用いて成膜した窒化チタンを用い、導電体160bとして、CVD法を用いて成膜したタングステンを用いることができる。なお、絶縁体154に対するタングステンの密着性が十分高い場合は、導電体160として、CVD法を用いて成膜したタングステンの単層構造を用いてもよい。
 容量素子12が有する絶縁体154には、高誘電率(high−k)材料(高い比誘電率の材料)を用いることが好ましい。絶縁体154は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。
 高誘電率(high−k)材料の絶縁体としては、例えば、アルミニウム、ハフニウム、ジルコニウム、及びガリウムなどから選ばれた金属元素を一種以上含む、酸化物、酸化窒化物、窒化酸化物、及び窒化物が挙げられる。また、上記酸化物、酸化窒化物、窒化酸化物、または窒化物に、シリコンを含有させてもよい。また、上記の材料からなる絶縁体を積層して用いることもできる。
 例えば、高誘電率(high−k)材料の絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、シリコン及びジルコニウムを有する酸化物、シリコン及びジルコニウムを有する酸化窒化物、ハフニウム及びジルコニウムを有する酸化物、並びに、ハフニウム及びジルコニウムを有する酸化窒化物が挙げられる。このようなhigh−k材料を用いることで、リーク電流を抑制できる程度に絶縁体154を厚くし、且つ容量素子12の静電容量を十分確保することができる。
 また、上記の材料からなる絶縁体を積層して用いることが好ましく、高誘電率(high−k)材料と、当該高誘電率(high−k)材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体154として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁体を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁体を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁体を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子12の静電破壊を抑制することができる。
 絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。ここで、絶縁体271b、絶縁体275、絶縁体282、及び絶縁体283はバリア絶縁体として機能するので、半導体装置に求められるバリア性に応じて膜厚を設定することが好ましい。また、絶縁体280の膜厚に応じて、ゲート電極として機能する導電体260の膜厚が決定されるので、絶縁体280の膜厚は、半導体装置に求められる導電体260の膜厚に合わせて設定することが好ましい。
 よって、絶縁体285の膜厚を調節することで、容量素子12の静電容量を設定することが好ましい。例えば、絶縁体285の膜厚を50nm以上250nm以下の範囲で設定し、上記開口の深さを150nm以上350nm以下程度にすればよい。このような範囲で容量素子12を形成することで、容量素子12に十分な静電容量を有せしめ、且つ複数のメモリセルの層を積層する半導体装置において、一つの層の高さが過剰に高くならないようにすることができる。なお、複数のメモリセルの層のそれぞれにおいて、各メモリセルに設けられる容量素子の静電容量を異ならせる構成としてもよい。当該構成の場合、例えば、各メモリセルの層に設けられる絶縁体285の膜厚を異ならせればよい。
 なお、容量素子12が配置された、絶縁体285等に設けられた開口部において、当該開口部の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体285等の開口部に設ける導電体153などの被覆性が向上し、鬆などの欠陥を低減できる。
 また、酸化物230上に重畳して設けられた導電体242aは、導電体240と電気的に接続する配線として機能する。例えば、図22では、導電体242aの上面及び側端部が、Z方向に延在する導電体240と電気的に接続している。特に図22では、導電体242a2の上面及び側端部と、導電体242a1の側端部が、導電体240と接している。
 導電体240が直接、導電体242aの上面、及び側端部の少なくとも一と接することで、別途接続用の電極を設ける必要がないため、メモリアレイの占有面積を低減できる。また、メモリセルの集積度が向上し、記憶装置の記憶容量を増大できる。なお、導電体240は、導電体242aの上面の一部、及び側端部と接することが好ましい。導電体240が導電体242aの複数面と接することで、導電体240と導電体242aの接触抵抗を低減できる。特に、図22に示すように、導電体240が、導電性の高い導電体242a2の上面の一部、及び側端部と接することで、導電体240と導電体242aの接触抵抗をより低減することができる。
 導電体240は、絶縁体216、絶縁体221、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285及び、絶縁体284に形成された開口内に設けられている。
 導電体240は、導電体240aと導電体240bとの積層構造とすることが好ましい。例えば、図22に示すように、導電体240は、導電体240aが上記開口部の内壁に接して設けられ、さらに内側に導電体240bが設けられる構造にすることができる。つまり、導電体240aは、導電体240bに比べて、絶縁体216、絶縁体221、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び、絶縁体284の近傍に配置される。また、導電体240aは、導電体242aの上面及び側端部と接する。
 導電体240aとしては、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。導電体240aは、例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、及び、酸化ルテニウムのうち一つまたは複数を用いた、単層構造または積層構造とすることができる。これにより、水、水素などの不純物が、導電体240を通じて酸化物230に混入することを抑制できる。
 また、導電体240は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体240bには、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。
 例えば、導電体240aとして窒化チタンを用い、導電体240bとしてタングステンを用いることが好ましい。この場合、導電体240aは、チタンと、窒素とを有する導電体となり、導電体240bは、タングステンを有する導電体となる。
 なお、導電体240は、単層構造であってもよく、3層以上の積層構造であってもよい。
 また、図22に示すように、導電体240の側面に接して絶縁体241が設けられることが好ましい。具体的には、絶縁体216、絶縁体221、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び絶縁体284の開口の内壁に接して絶縁体241が設けられる。また、当該開口内に突出して形成される、絶縁体224、酸化物230、及び導電体242aの側面にも絶縁体241が形成される。ここで、導電体242aの少なくとも一部は、絶縁体241から露出しており、導電体240に接している。つまり、導電体240は、絶縁体241を介して、上記開口の内部を埋め込むように設けられる。
 なお、図22に示すように、導電体242aより下に形成される絶縁体241の最上部は、導電体242aの上面よりも下方に位置することが好ましい。当該構成にすることで、導電体240が導電体242aの側端部の少なくとも一部と接することができる。なお、導電体242aより下に形成される絶縁体241は、酸化物230の側面と接する領域を有することが好ましい。当該構成にすることで、絶縁体280等に含まれる水、水素等の不純物が、導電体240を通じて酸化物230に混入するのを抑制できる。
 絶縁体241として、絶縁体275等に用いることができるバリア絶縁膜を用いればよい。例えば、絶縁体241は、窒化シリコン、酸化アルミニウム、窒化酸化シリコン等の絶縁体を用いればよい。当該構成にすることで、絶縁体280等に含まれる水、水素等の不純物が、導電体240を通じて酸化物230に混入するのを抑制できる。特に、窒化シリコンは水素に対するブロッキング性が高いため好適である。また、絶縁体280に含まれる酸素が導電体240に吸収されるのを抑制できる。
 なお、図22では、絶縁体241を単層とする構成について示したが、本発明はこれに限られない。絶縁体241は、2層以上の積層構造としてもよい。
 絶縁体241を2層積層構造にする場合、絶縁体280等の開口の内壁に接する第1の層に酸素に対するバリア絶縁膜を用い、その内側の第2の層に水素に対するバリア絶縁膜を用いればよい。例えば、第1の層として、ALD法で成膜された酸化アルミニウムを用い、第2の層として、PEALD法で成膜された窒化シリコンを用いればよい。当該構成にすることで、導電体240の酸化を抑制し、さらに、導電体240から酸化物230等に水素が混入するのを低減できる。これにより、トランジスタ11の電気特性及び信頼性の向上を図ることができる。
 なお、導電体240、及び絶縁体241が配置された、開口部において、当該開口部の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、当該開口部に設ける絶縁体241などの被覆性が向上する。
<記憶装置300の構成例>
 図23を用いて、上記記憶装置300の構成例について説明する。
 記憶装置300は、トランジスタ310等を有する層である、駆動回路21と、駆動回路21上の、トランジスタ52、53、54、55等を有する層である、機能層50と、機能層50上のメモリアレイ20[1]乃至20[m](図23では、メモリアレイ20[1]、20[2]だけを図示。)と、を有する。なお、トランジスタ52は、上記トランジスタ52_a、52_bに対応し、トランジスタ53は、上記トランジスタ53_a、53_bに対応し、トランジスタ54は、上記トランジスタ54_a、54_bに対応し、トランジスタ55は、上記トランジスタ55_a、55_bに対応する。
 図23では、駆動回路21が有するトランジスタ310を例示している。トランジスタ310は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部を含む半導体領域313、及びソース領域またはドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。トランジスタ310は、pチャネル型のトランジスタ、あるいはnチャネル型のトランジスタのいずれでもよい。基板311としては、例えば単結晶シリコン基板を用いることができる。
 ここで、図23に示すトランジスタ310はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面及び上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ310は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI(Silicon on Insulator)基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図23に示すトランジスタ310は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いることができる。
 各構造体の間には、層間膜、配線、及びプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ310上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。また、絶縁体320及び絶縁体322には導電体328などが埋め込まれている。また、絶縁体324及び絶縁体326には導電体330などが埋め込まれている。なお、導電体328及び導電体330はコンタクトプラグまたは配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 また、図23では、機能層50が有するトランジスタ52、53、55を例示している。トランジスタ52、53、55は、メモリセル10が有するトランジスタ11と同様の構成を有する。トランジスタ52、53、55は、互いのソース及びドレインが直列に接続されている。
 トランジスタ52、53、55上に、絶縁体208が設けられ、絶縁体208に形成された開口に導電体207が設けられる。さらに、絶縁体208上に絶縁体210が設けられ、絶縁体210に形成された開口に導電体209が設けられる。さらに、絶縁体210上に絶縁体212が設けられ、絶縁体212上に絶縁体214が設けられる。絶縁体212及び絶縁体214に形成された開口には、メモリアレイ20[1]に設けられた導電体240の一部が埋め込まれている。ここで、絶縁体208、及び絶縁体210は、絶縁体216に用いることが可能な絶縁体を用いることができる。また、絶縁体212は、絶縁体283に用いることが可能な絶縁体を用いることができる。また、絶縁体214は、絶縁体282に用いることが可能な絶縁体を用いることができる。
 導電体207の下面は、トランジスタ52の導電体260の上面に接して設けられる。また、導電体207の上面は、導電体209の下面に接して設けられる。また、導電体209の上面は、メモリアレイ20[1]に設けられた導電体240の下面に接して設けられる。このような構成にすることで、配線BLに相当する導電体240と、トランジスタ52のゲートを電気的に接続することができる。
 メモリアレイ20[1]乃至20[m]は、それぞれ、複数のメモリセル10を含む。各メモリセル10が有する導電体240は、上の層の導電体240、及び下の層の導電体240と電気的に接続される。
 図23に示すように、隣接するメモリセル10において、導電体240が共有されている。また、隣接するメモリセル10において、導電体240を境に、右側の構成と左側の構成と、が対称に配置される。
 ここで、下の層(例えばメモリアレイ20[1]の層)の容量素子12の上部電極として機能する導電体160と、上の層(例えば、メモリアレイ20[2]の層)のトランジスタ11の第2のゲート電極として機能する導電体261は、同じ層に形成することができる。言い換えると、下の層の容量素子12の導電体160と、上の層のトランジスタ11の導電体261は、同一の絶縁体216に形成された開口に埋め込まれるように形成することができる。下の層の容量素子12の導電体160及び上の層のトランジスタ11の導電体261を、一つの導電膜を加工して形成することで、上記のような構成になる。このとき、下の層の容量素子12の導電体160は、上の層のトランジスタ11の導電体261と同一の材料を有する。
 以上のように、下の層の容量素子12の導電体160と、上の層のトランジスタ11の導電体261を同時に形成することで、本実施の形態に係る記憶装置の作製工程を削減し、当該記憶装置の生産性を向上することができる。
 上述のメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。またメモリアレイ20は、垂直方向に繰り返し同じ製造工程を用いて作製することができる。記憶装置300は、メモリアレイ20の製造コストの低減を図ることができる。
 また、上記においては、基板311上に、駆動回路21、機能層50、及びメモリアレイ20を、順に積層された構造、すなわちモノリシック構造について示したが、本発明はこれに限られるものではない。複数のチップを貼り合わせることで、駆動回路21、機能層50、及びメモリアレイ20の積層構造を形成する構成にしてもよい。
 例えば、図24に示すように、駆動回路21及び機能層50を有するチップ60と、メモリアレイ20を有するチップ61を貼り合わせて、記憶装置を形成してもよい。
 チップ60は、図23に示す記憶装置の駆動回路21及び機能層50とほぼ同様の構造を有する。チップ60では、機能層50の上部に、絶縁体346が設けられ、絶縁体346上に絶縁体336が設けられる。絶縁体336中に導電体341が設けられており、絶縁体346中に導電体225の一部が設けられている。絶縁体346は、バリア絶縁体として機能する絶縁体であり、機能層50の酸化物半導体、及び基板311に不純物が拡散するのを抑制することができる。絶縁体346としては、絶縁体283などに用いることができる無機絶縁膜を用いることができる。
 また、チップ60では、駆動回路21と機能層50の間に配線層25を示している。配線層25では、層間膜中に、配線として機能する導電体228が埋め込まれている。また、配線層25中にコンタクトプラグとして機能する導電体も設けられる。なお、図24に示す配線層25では、導電体228を一層だけ示しているが、これに限られることなく、配線として機能する導電体を複数の層に分けて積層して設ければよい。つまり、配線層25を多層配線にすることができる。
 また、機能層50の層間膜中に、導電体225、導電体226、導電体207、及び導電体227が埋め込まれている。ここで、導電体226は配線として機能し、導電体225、導電体207、及び導電体227は、コンタクトプラグとして機能する。導電体225、導電体226、及び導電体207は、導電体341とトランジスタ52のゲートを電気的に接続する。また、導電体226、及び導電体227は、トランジスタ55のソースまたはドレインの一方と配線層25の導電体228とを電気的に接続する。
 チップ61は、基板351の上に、図23に示すメモリアレイ20を設けた構造である。基板351の裏面には、絶縁体345が設けられ、絶縁体345の下に絶縁体335が設けられている。絶縁体335中に、導電体342が設けられている。ここで、絶縁体345は、バリア絶縁体として機能する絶縁体であり、基板351に不純物が拡散するのを抑制することができる。絶縁体345としては、絶縁体283などに用いることができる無機絶縁膜を用いることができる。また、基板351としては、基板311と同様の基板を用いることができ、例えば単結晶シリコン基板を用いることができる。
 基板351には、基板351及び絶縁体345を貫通する導電体343が設けられる。導電体343は、シリコン基板を貫通するTSV(Through Silicon Via)であり、上端が導電体209に接し、下端が導電体342に接する。ここで、導電体343の側面を覆って絶縁体344を設けることが好ましい。絶縁体344は、バリア絶縁体として機能する絶縁層であり、基板351に不純物が拡散するのを抑制することができる。絶縁体344としては、絶縁体241に用いることができる無機絶縁膜を用いることができる。
 図24に示すように、チップ60の絶縁体336及び導電体341と、チップ61の絶縁体335及び導電体342と、が貼り合わせ面Bで貼り合わせられる。ここで、貼り合わせ面Bにおいて、導電体341と導電体342が接し、絶縁体336と絶縁体335が接する、ハイブリッドボンディングが形成されている。
 ここで、導電体341および導電体342は、主成分が同一の金属元素であることが好ましい。また、絶縁体336および絶縁体335は、同一の成分で構成されていることが好ましい。
 例えば、導電体341及び導電体342には、Cu、Al、Sn、Zn、W、Ag、PtまたはAuなどを用いることができる。接合のしやすさから、好ましくはCu、Al、W、またはAuを用いる。また、導電体341及び導電体342の少なくとも一部に、上述した金属元素を成分とする金属窒化物を形成する構成にしてもよい。
 また、例えば、絶縁体336、及び絶縁体335には、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、窒化チタンなどを用いることができる。また、絶縁体336、及び絶縁体335に、ポリイミドなどのポリマー材料を用いる構成にすることもできる。
 つまり、導電体341および導電体342のそれぞれに、上記に示す同一の金属材料を用いることが好ましい。また、絶縁体336および絶縁体335のそれぞれに、上記に示す同一の絶縁材料を用いることが好ましい。当該構成とすることで、チップ60とチップ61の境を貼り合わせ面Bとする、貼り合わせを行うことができる。
 なお、導電体341および導電体342は複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の金属材料であればよい。また、絶縁体336および絶縁体335も複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の絶縁材料であればよい。
 当該貼り合わせによって、導電体341および導電体342の電気的な接続を得ることができる。また、絶縁体336および絶縁体335の機械的な強度を有する接続を得ることができる。
 導電体同士の接合には、表面の酸化膜および不純物の吸着層などをスパッタリング処理などで除去し、清浄化および活性化した表面同士を接触させて接合する表面活性化接合法を用いることができる。または、温度と圧力を併用して表面同士を接合する拡散接合法などを用いることができる。どちらも原子レベルでの結合が起こるため、電気的だけでなく機械的にも優れた接合を得ることができる。
 また、絶縁体同士の接合には、酸素プラズマ等で親水性処理をした表面同士を接触させて仮接合し、熱処理による脱水で本接合を行う親水性接合法などを用いることができる。親水性接合法も原子レベルでの結合が起こるため、機械的に優れた接合を得ることができる。
 チップ60と、チップ61を貼り合わせる場合、それぞれの接合面には絶縁体と導電体が混在するため、例えば、表面活性化接合法および親水性接合法を組み合わせて行えばよい。
 例えば、表面を清浄化し、導電体の表面に酸化防止処理を行ったのちに親水性処理を行って接合する方法などを用いることができる。また、導電体の表面をAuなどの難酸化性金属とし、親水性処理を行ってもよい。なお、上述した方法以外の接合方法を用いてもよい。
 上記の貼り合わせにより、チップ61が有するメモリアレイ20と、チップ60が有する機能層50及び駆動回路21と、を電気的に接続することができる。
 また、図24に示す記憶装置では、チップ60及びチップ61それぞれにおいて、複数のトランジスタ層をモノリシック構造にする例について示したが、本発明はこれに限られるものではない。図25に示すように、チップ60にトランジスタ310を含む駆動回路21を設け、チップ61にトランジスタ11を含むメモリアレイ20[1]を設ける構成にしてもよい。
 図25に示すチップ60は、機能層50を有していない点で、図24に示すチップ60と異なる。図25に示すチップ60では、配線層25に、絶縁体336、絶縁体346、導電体341、導電体225、導電体226、及び導電体207が設けられている。
 図25に示すチップ61は、基板351の上にメモリアレイ20[1]が設けられている。基板351の裏面側に絶縁体345、絶縁体335、及び導電体342が設けられている。基板351及び絶縁体345を貫通して導電体343及び絶縁体344が設けられている。
 図25に示すチップ60、及びチップ61において、貼り合わせ面B近傍の構造は、図24に示す記憶装置と同様の構造を有する。これにより、チップ60とチップ61を貼り合わせ、メモリアレイ20と駆動回路21を電気的に接続することができる。
 また、上記貼り合わせ技術を用いることで、図23に示す記憶装置を複数個積層させることもできる。
 例えば、図26に示すように、図23に示す記憶装置と同様の構造を有するチップ60の上に、機能層50とメモリアレイ20を有するチップ61を積層して設ける構成にしてもよい。
 図26に示すチップ60は、メモリアレイ20の上に絶縁体346、絶縁体336、及び導電体341が設けられている。また、導電体341と、機能層50のトランジスタ、及び駆動回路21のトランジスタを電気的に接続する、配線、及びコンタクトプラグが設けられている。なお、図26では図示されていないが、駆動回路21と機能層50の間に配線層を設けてもよい。
 図26に示すチップ61は、基板351の上に機能層50が設けられている。基板351の裏面側に絶縁体345、絶縁体335、及び導電体342が設けられている。基板351及び絶縁体345を貫通して導電体343及び絶縁体344が設けられている。また、導電体343と、機能層50のトランジスタを電気的に接続する、配線、及びコンタクトプラグが設けられている。
 図26に示すチップ60、及びチップ61において、貼り合わせ面B近傍の構造は、図24に示す記憶装置と同様の構造を有する。これにより、チップ60とチップ61を貼り合わせ、チップ61の機能層50及び、チップ60の機能層50を、駆動回路21と電気的に接続することができる。
 また、図26に示す記憶装置は、チップ60の上面と、チップ61の下面とを貼り合わせた、所謂Face to Backの構造であったが、本発明はこれに限られるものではない。図27に示すように、チップ60の上面と、チップ61の上面とを貼り合わせた、所謂Face to Faceの構造にしてもよい。
 図27に示すチップ61は、基板351を基準として、基板351の上に機能層50が設けられている。メモリアレイ20側に絶縁体345、絶縁体335、及び導電体342が設けられている。また、導電体342と、機能層50のトランジスタを電気的に接続する、配線、及びコンタクトプラグが設けられている。
 図27に示す記憶装置では、貼り合わせ面Bの近傍にシリコン基板が設けられていないため、TSVとして機能する導電体を設ける必要がない。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様の記憶装置が実装されたチップの一例について、図29を用いて説明する。
 図29A及び図29Bに示すチップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図29Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図29Bに示すように、パッケージ基板1201の第1の面と接続する。また、パッケージ基板1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。これにより、DRAM1221を、低消費電力化、高速化、及び大容量化させることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、及びGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、及びGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したDOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理または積和演算に用いることができる。GPU1212に、先の実施の形態に記載のOSトランジスタを用いた画像処理回路、または、積和演算回路を設けることで、画像処理、または積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、及びGPU1212が同一チップに設けられていることで、CPU1211、及びGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、及びGPU1212が有するメモリ間のデータ転送、及びGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、及びD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、及びフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたパッケージ基板1201、DRAM1221、及びフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行できるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、上記実施の形態で説明した半導体装置を用いることができる、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンター(Data Center:DCとも呼称する)について説明する。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターは、低消費電力化といった高性能化に有効である。
[電子部品]
 電子部品700が実装された基板(実装基板704)の斜視図を、図30Aに示す。図30Aに示す電子部品700は、モールド711内に半導体装置710を有している。図30Aは、電子部品700の内部を示すために、一部の記載を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は半導体装置710とワイヤ714を介して電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、記憶層716と、を有する。なお、記憶層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、記憶層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、および、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、記憶層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくすることが可能であるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、記憶層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシのいずれか一または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、記憶層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図30Bに示す。電子部品730は、SiP(System in Package)又はMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、又は、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、又は樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層又は多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」又は「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を電気的に接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、上述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図30Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[電子機器]
 次に、電子機器6500の斜視図を図31Aに示す。図31Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508、及び制御装置6509などを有する。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。
 図31Bに示す電子機器6600は、ノート型パーソナルコンピュータとして用いることのできる情報端末機である。電子機器6600は、筐体6611、キーボード6612、ポインティングデバイス6613、外部接続ポート6614、表示部6615、制御装置6616などを有する。なお、制御装置6616としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6615、制御装置6616などに適用することができる。なお、本発明の一態様の半導体装置を、上述の制御装置6509、及び制御装置6616に用いることで、消費電力を低減させることができるため好適である。
[大型計算機]
 次に、大型計算機5600の斜視図を図31Cに示す。図31Cに示す大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 計算機5620は、例えば、図31Dに示す斜視図の構成とすることができる。図31Dにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図31Eに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図31Eには、半導体装置5626、半導体装置5627、および半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、および半導体装置5628の説明を参照すればよい。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード5622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品700を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、情報を処理および記憶する機器などの宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含むことができる。当該OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。
 図32には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図32においては、宇宙空間に惑星6804を例示している。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 また、図32には、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。上述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様である半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。データを長期的に管理する場合、膨大なデータを記憶するためのストレージおよびサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図33にデータセンターに適用可能なストレージシステムを示す。図33に示すストレージシステム7000は、ホスト7001(Host Computerと図示)として複数のサーバ7001sbを有する。また、ストレージ7003(Storageと図示)として複数の記憶装置7003mdを有する。ホスト7001とストレージ7003とは、ストレージエリアネットワーク7004(SAN:Storage Area Networkと図示)およびストレージ制御回路7002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト7001は、ストレージ7003に記憶されたデータにアクセスするコンピュータに相当する。ホスト7001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ7003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ7003のアクセススピードの長さの問題を解決するために、通常ストレージ内にキャッシュメモリを設けてデータの記憶及び出力を短くしている。
 上述のキャッシュメモリは、ストレージ制御回路7002およびストレージ7003内に用いられる。ホスト7001とストレージ7003との間でやり取りされるデータは、ストレージ制御回路7002およびストレージ7003内の当該キャッシュメモリに記憶されたのち、ホスト7001またはストレージ7003に出力される。
 上述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることでストレージの小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
ADDR:信号、BL[1]:配線、BL[j]:配線、BL[n]:配線、BL_A:配線、BL_B:配線、BL:配線、BW:信号、CE:信号、CLK:信号、EN_data:信号、GBL_A:配線、GBL_B:配線、GBL:配線、GW:信号、MUX:選択信号、PL[1]:配線、PL[i]:配線、PL[m]:配線、PL:配線、RDA:信号、RE:制御信号、VHH:配線、VLL:配線、VPC:中間電位、WAKE:信号、WDA:信号、WE:制御信号、WL[1]:配線、WL[i]:配線、WL[m]:配線、WL:配線、10[1,1]:メモリセル、10[i,j]:メモリセル、10[m,n]:メモリセル、10_A:メモリセル、10_B:メモリセル、10:メモリセル、11a:トランジスタ、11b:トランジスタ、11c:トランジスタ、11:トランジスタ、12a:容量素子、12:容量素子、20[1]:メモリアレイ、20[2]:メモリアレイ、20[5]:メモリアレイ、20[m]:メモリアレイ、20:メモリアレイ、21:駆動回路、22:PSW、23:PSW、25:配線層、31:周辺回路、32:コントロール回路、33:電圧生成回路、41:周辺回路、42:行デコーダ、43:行ドライバ、44:列デコーダ、45:列ドライバ、46:センスアンプ、47:入力回路、48:出力回路、50:機能層、51_A:機能回路、51_B:機能回路、51:機能回路、52_a:トランジスタ、52_b:トランジスタ、52:トランジスタ、53_a:トランジスタ、53_b:トランジスタ、53:トランジスタ、54_a:トランジスタ、54_b:トランジスタ、54:トランジスタ、55_a:トランジスタ、55_b:トランジスタ、55:トランジスタ、60:チップ、61:チップ、70[1]:繰り返し単位、70:繰り返し単位、71_A:プリチャージ回路、71_B:プリチャージ回路、72_A:スイッチ回路、72_B:スイッチ回路、73:書き込み読み出し回路、81_1:トランジスタ、81_3:トランジスタ、81_4:トランジスタ、81_6:トランジスタ、82_1:トランジスタ、82_2:トランジスタ、82_3:トランジスタ、82_4:トランジスタ、83_A:スイッチ、83_B:スイッチ、83_C:スイッチ、83_D:スイッチ、153:導電体、154:絶縁体、160a:導電体、160b:導電体、160:導電体、200:トランジスタ、205a:導電体、205b:導電体、205:導電体、207:導電体、208:絶縁体、209:導電体、210:絶縁体、212:絶縁体、214:絶縁体、215:絶縁体、216:絶縁体、221:絶縁体、222:絶縁体、224f:絶縁膜、224:絶縁体、225:導電体、226:導電体、227:導電体、228:導電体、230a:酸化物、230af:酸化膜、230b:酸化物、230bf:酸化膜、230:酸化物、240a:導電体、240b:導電体、240:導電体、241:絶縁体、242_1:導電体、242_1f:導電膜、242_2:導電体、242_2f:導電膜、242a:導電体、242b:導電体、250a:絶縁体、250A:絶縁膜、250Aa:絶縁膜、250Ab:絶縁膜、250Ac:絶縁膜、250b:絶縁体、250c:絶縁体、250d:絶縁体、250:絶縁体、255a:絶縁体、255A:絶縁膜、255b:絶縁体、255B:絶縁膜、255:絶縁体、260a:導電体、260A:導電膜、260b:導電体、260B:導電膜、260:導電体、261:導電体、271a:絶縁体、271b:絶縁体、271f:絶縁膜、271:絶縁体、275:絶縁体、280:絶縁体、282:絶縁体、283:絶縁体、284:絶縁体、285:絶縁体、300A:記憶装置、300:記憶装置、310:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、335:絶縁体、336:絶縁体、341:導電体、342:導電体、343:導電体、344:絶縁体、345:絶縁体、346:絶縁体、351:基板、700:電子部品、702:プリント基板、704:実装基板、710:半導体装置、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、715:駆動回路層、716:記憶層、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、1200:チップ、1201:パッケージ基板、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、5600:大型計算機、5610:ラック、5620:計算機、5621:PCカード、5622:ボード、5623:接続端子、5624:接続端子、5625:接続端子、5626:半導体装置、5627:半導体装置、5628:半導体装置、5629:接続端子、5630:マザーボード、5631:スロット、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6509:制御装置、6600:電子機器、6611:筐体、6612:キーボード、6613:ポインティングデバイス、6614:外部接続ポート、6615:表示部、6616:制御装置、6800:人工衛星、6801:機体、6802:ソーラーパネル、6803:アンテナ、6804:惑星、6805:二次電池、6807:制御装置、7000:ストレージシステム、7001sb:サーバ、7001:ホスト、7002:ストレージ制御回路、7003md:記憶装置、7003:ストレージ

Claims (12)

  1.  基板上の酸化物と、
     前記酸化物上の、互いに離隔された第1の導電体及び第2の導電体と、
     前記第1の導電体の上面の一部に接する第3の導電体と、
     前記第2の導電体の上面の一部に接する第4の導電体と、
     前記第3の導電体、及び前記第4の導電体上に配置され、前記第3の導電体と前記第4の導電体の間の領域と重畳する開口を有する、第1の絶縁体と、
     前記第1の絶縁体の開口内に配置され、前記第1の導電体の上面の他の一部、前記第2の導電体の上面の他の一部、前記第3の導電体の側面、及び前記第4の導電体の側面に接する、第2の絶縁体と、
     前記第1の絶縁体の開口内に配置され、前記酸化物の上面、前記第1の導電体の側面、前記第2の導電体の側面、及び前記第2の絶縁体の側面に接する第3の絶縁体と、
     前記第1の絶縁体の開口内において、前記第3の絶縁体上に配置され、前記第3の絶縁体を介して、前記酸化物と重畳する領域を有する、第5の導電体と、を有し、
     前記第1の導電体と前記第2の導電体の間の距離は、前記第3の導電体と前記第4の導電体の間の距離より小さく、
     前記第2の絶縁体は、第1の層と、前記第1の層上の第2の層と、を有し、
     前記第1の層は、窒化物絶縁体を有し、
     前記第2の層は、酸化物絶縁体を有する、
     半導体装置。
  2.  請求項1において、
     前記第1の層は、前記第1の導電体、前記第2の導電体、前記第3の導電体、前記第4の導電体、及び前記第1の絶縁体に接し、
     前記第2の層は、前記第1の導電体、前記第2の導電体、前記第3の導電体、前記第4の導電体、及び前記第1の絶縁体に接することがない、
     半導体装置。
  3.  請求項1において、
     前記第1の層は、窒化シリコンを有する、
     半導体装置。
  4.  請求項3において、
     前記第2の層は、酸化シリコンを有する、
     半導体装置。
  5.  請求項3において、
     前記第2の層は、酸化アルミニウムを有する、
     半導体装置。
  6.  請求項3において、
     前記第2の層は、酸化ハフニウムを有する、
     半導体装置。
  7.  請求項1において、
     前記第1の導電体、及び前記第2の導電体は、金属窒化物を有する、
     半導体装置。
  8.  請求項1において、
     前記第1の導電体、及び前記第2の導電体は、窒化タンタルを有する、
     半導体装置。
  9.  請求項1において、
     前記第1の導電体、及び前記第2の導電体は、窒化タンタルを有し、
     前記第3の導電体、及び前記第4の導電体は、タングステンを有する、
     半導体装置。
  10.  請求項1において、
     前記第3の導電体と前記第4の導電体の間の距離と前記第1の導電体と前記第2の導電体の間の距離の差は、前記第2の絶縁体の膜厚の2倍と一致または概略一致する、
     半導体装置。
  11.  請求項1において、
     上面視において、前記第1の絶縁体の開口の側面は、前記第3の導電体の側面、及び前記第4の導電体の側面と一致または概略一致する、
     半導体装置。
  12.  請求項1乃至請求項11のいずれか一項の半導体装置と、容量素子と、を有し、
     前記容量素子の一方の電極が、前記半導体装置の前記第3の導電体と電気的に接続される、
     記憶装置。
PCT/IB2023/057378 2022-08-02 2023-07-20 半導体装置、及び記憶装置 WO2024028681A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-123080 2022-08-02
JP2022123080 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024028681A1 true WO2024028681A1 (ja) 2024-02-08

Family

ID=89848649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/057378 WO2024028681A1 (ja) 2022-08-02 2023-07-20 半導体装置、及び記憶装置

Country Status (1)

Country Link
WO (1) WO2024028681A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139055A (ja) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 半導体素子、半導体装置及びそれらの作製方法
WO2019166921A1 (ja) * 2018-03-02 2019-09-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2021144666A1 (ja) * 2020-01-16 2021-07-22 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139055A (ja) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 半導体素子、半導体装置及びそれらの作製方法
WO2019166921A1 (ja) * 2018-03-02 2019-09-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2021144666A1 (ja) * 2020-01-16 2021-07-22 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Similar Documents

Publication Publication Date Title
WO2024028681A1 (ja) 半導体装置、及び記憶装置
WO2023237961A1 (ja) 半導体装置、記憶装置、及び半導体装置の作製方法
WO2024047486A1 (ja) 記憶装置
WO2023209486A1 (ja) 半導体装置、及び記憶装置
WO2024069339A1 (ja) 記憶装置
WO2024079586A1 (ja) 半導体装置、及び記憶装置
WO2024095108A1 (ja) 半導体装置、及び記憶装置
JP2024000519A (ja) 半導体装置の作製方法
WO2023199181A1 (ja) 積層体の作製方法、及び半導体装置の作製方法
WO2024052774A1 (ja) 半導体装置の作製方法
WO2023152588A1 (ja) 半導体装置
WO2024057165A1 (ja) 記憶装置
WO2023148571A1 (ja) 半導体装置
WO2023156877A1 (ja) 半導体装置
WO2023180859A1 (ja) 半導体装置及び半導体装置の作製方法
WO2023166374A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2024057166A1 (ja) 半導体装置
JP7586825B2 (ja) 半導体装置
WO2023209484A1 (ja) 半導体装置
WO2024057167A1 (ja) 記憶装置
WO2024047454A1 (ja) 半導体装置および半導体装置の駆動方法
WO2024116037A1 (ja) 半導体装置
WO2024100467A1 (ja) 半導体装置
JP7555906B2 (ja) 半導体装置の作製方法
WO2023144654A1 (ja) 電子装置、電子装置の作製方法、半導体装置、半導体装置の作製方法、記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849584

Country of ref document: EP

Kind code of ref document: A1