WO2024024750A1 - Metal-loaded catalyst, method for producing alcohol and hydrogenation method - Google Patents
Metal-loaded catalyst, method for producing alcohol and hydrogenation method Download PDFInfo
- Publication number
- WO2024024750A1 WO2024024750A1 PCT/JP2023/027069 JP2023027069W WO2024024750A1 WO 2024024750 A1 WO2024024750 A1 WO 2024024750A1 JP 2023027069 W JP2023027069 W JP 2023027069W WO 2024024750 A1 WO2024024750 A1 WO 2024024750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- catalyst
- supported
- carboxylic acid
- mass
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 223
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 139
- 239000002184 metal Substances 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 73
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 82
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052742 iron Inorganic materials 0.000 claims abstract description 39
- 150000001733 carboxylic acid esters Chemical class 0.000 claims abstract description 33
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011651 chromium Substances 0.000 claims abstract description 28
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 28
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 26
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 26
- 239000011733 molybdenum Substances 0.000 claims abstract description 25
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 22
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052718 tin Inorganic materials 0.000 claims abstract description 18
- 230000009467 reduction Effects 0.000 claims description 81
- 229910052739 hydrogen Inorganic materials 0.000 claims description 51
- 239000001257 hydrogen Substances 0.000 claims description 50
- 230000001603 reducing effect Effects 0.000 claims description 49
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 44
- 239000011135 tin Substances 0.000 claims description 17
- 150000001735 carboxylic acids Chemical class 0.000 claims description 13
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 claims description 9
- 125000004185 ester group Chemical group 0.000 claims description 2
- 239000006227 byproduct Substances 0.000 abstract description 26
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 238000006722 reduction reaction Methods 0.000 description 95
- 239000007789 gas Substances 0.000 description 63
- 238000006243 chemical reaction Methods 0.000 description 51
- 238000011282 treatment Methods 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 41
- 230000003647 oxidation Effects 0.000 description 27
- 238000007254 oxidation reaction Methods 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 25
- 239000001301 oxygen Substances 0.000 description 25
- 229910052760 oxygen Inorganic materials 0.000 description 25
- 230000000694 effects Effects 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 239000002904 solvent Substances 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 16
- 230000006641 stabilisation Effects 0.000 description 16
- 238000011105 stabilization Methods 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- -1 diol compound Chemical class 0.000 description 15
- 150000004820 halides Chemical class 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 238000005695 dehalogenation reaction Methods 0.000 description 10
- 150000002736 metal compounds Chemical class 0.000 description 10
- 239000003513 alkali Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 8
- 229910021645 metal ion Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 6
- OSINZLLLLCUKJH-UHFFFAOYSA-N 4-methylcyclohexanemethanol Chemical compound CC1CCC(CO)CC1 OSINZLLLLCUKJH-UHFFFAOYSA-N 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- VSSAZBXXNIABDN-UHFFFAOYSA-N cyclohexylmethanol Chemical compound OCC1CCCCC1 VSSAZBXXNIABDN-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 239000001099 ammonium carbonate Substances 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 229910001510 metal chloride Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 150000004687 hexahydrates Chemical class 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000005078 molybdenum compound Substances 0.000 description 3
- 150000002752 molybdenum compounds Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- WXUAQHNMJWJLTG-UHFFFAOYSA-N 2-methylbutanedioic acid Chemical compound OC(=O)C(C)CC(O)=O WXUAQHNMJWJLTG-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- JBDSSBMEKXHSJF-UHFFFAOYSA-N cyclopentanecarboxylic acid Chemical compound OC(=O)C1CCCC1 JBDSSBMEKXHSJF-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- QFTWTIKOKWPUAM-UHFFFAOYSA-N dipotassium;platinum(2+);tetracyanide Chemical compound [K+].[K+].[Pt+2].N#[C-].N#[C-].N#[C-].N#[C-] QFTWTIKOKWPUAM-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical class [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 229910019614 (NH4)6 Mo7 O24.4H2 O Inorganic materials 0.000 description 1
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 1
- XUFUCDNVOXXQQC-UHFFFAOYSA-L azane;hydroxy-(hydroxy(dioxo)molybdenio)oxy-dioxomolybdenum Chemical compound N.N.O[Mo](=O)(=O)O[Mo](O)(=O)=O XUFUCDNVOXXQQC-UHFFFAOYSA-L 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- LOGBRYZYTBQBTB-UHFFFAOYSA-N butane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(C(O)=O)CC(O)=O LOGBRYZYTBQBTB-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- LJAOOBNHPFKCDR-UHFFFAOYSA-K chromium(3+) trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Cr+3] LJAOOBNHPFKCDR-UHFFFAOYSA-K 0.000 description 1
- UBFMILMLANTYEU-UHFFFAOYSA-H chromium(3+);oxalate Chemical compound [Cr+3].[Cr+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O UBFMILMLANTYEU-UHFFFAOYSA-H 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- MJSNUBOCVAKFIJ-LNTINUHCSA-N chromium;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Cr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MJSNUBOCVAKFIJ-LNTINUHCSA-N 0.000 description 1
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- WTNDADANUZETTI-UHFFFAOYSA-N cyclohexane-1,2,4-tricarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C(C(O)=O)C1 WTNDADANUZETTI-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- ZXDVQYBUEVYUCG-UHFFFAOYSA-N dibutyltin(2+);methanolate Chemical compound CCCC[Sn](OC)(OC)CCCC ZXDVQYBUEVYUCG-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- YLPJWCDYYXQCIP-UHFFFAOYSA-N nitroso nitrate;ruthenium Chemical compound [Ru].[O-][N+](=O)ON=O YLPJWCDYYXQCIP-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BYFKUSIUMUEWCM-UHFFFAOYSA-N platinum;hexahydrate Chemical compound O.O.O.O.O.O.[Pt] BYFKUSIUMUEWCM-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/652—Chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/153—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
- C07C29/156—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
- C07C29/157—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/27—Polyhydroxylic alcohols containing saturated rings
Definitions
- the present invention relates to a supported metal catalyst, and specifically relates to a supported metal catalyst that can hydrogenate carboxylic acids and/or carboxylic esters with high selectivity, a method for producing alcohol using the supported metal catalyst, and a method for hydrogenation.
- Patent Document 3 discloses a catalyst in which iron is further supported on a reduction catalyst.
- a supported catalyst in which nitrates of iron, cobalt, and nickel are added to a reduction catalyst in which ruthenium, platinum, and tin are supported as main component metals, and 1,4-cyclohexanedimethanol is produced. is disclosed.
- the present inventors have discovered that a metal-supported catalyst in which ruthenium, tin, and platinum are supported on a carrier, and in which iron, chromium, and/or molybdenum are further supported, maintains high catalytic activity. , it was found that the yield of by-products could be significantly reduced. Although the details are not clear, iron, chromium, and molybdenum have the effect of selectively suppressing active sites that cleave C-C bonds and C-O bonds, rather than active sites that reduce carbonyls on the catalyst. It has been found that the above effects can be particularly exhibited by a combination of iron and chromium, a combination of iron and molybdenum, and a combination of the three components of iron, chromium, and molybdenum.
- the gist of the invention is as follows.
- the amount of iron supported is 0.01% by mass or more and 4% by mass or less with respect to the total mass of the metal supported catalyst, and the total amount of chromium and/or molybdenum supported is 0.01% by mass or more and 2% by mass. % or less, the metal-supported catalyst according to [1] above.
- a carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst according to any one of [1] to [5] above to reduce the carboxylic acid and/or the carboxylic ester, respectively.
- a method for producing alcohol obtaining the corresponding alcohol.
- a method for hydrogenating carboxylic acids and/or carboxylic esters which comprises contacting the carboxylic acids and/or carboxylic esters with the metal-supported catalyst according to any one of [1] to [5] above.
- a catalyst with a lower by-product yield while maintaining high catalytic activity a method for producing alcohol from a carboxylic acid and/or a carboxylic acid ester using the catalyst, and a method for producing alcohol from a carboxylic acid and/or a carboxylic acid ester, and A method for hydrogenating acids and/or carboxylic esters can be provided.
- the metals (ruthenium, tin, platinum, and other metals such as iron used as necessary) supported on a carrier may be collectively referred to as "metal components.”
- metal components ruthenium, tin, platinum, and other metals such as iron used as necessary
- metal-supported catalysts catalysts in which the metal component is supported on a carrier, catalysts subjected to reduction treatment, and catalysts subjected to oxidation stabilization treatment are collectively referred to as “metal-supported catalysts.”
- a “metal-supported catalyst” that has been subjected to such oxidation stabilization treatment and further supports a metal component is also referred to as a “metal-supported catalyst.”
- the catalyst at a stage before reduction treatment is sometimes referred to as a "metal-supported material”.
- Metal supported catalyst The metal-supported catalyst of the present invention (hereinafter sometimes simply referred to as "the present catalyst") is obtained by reducing a metal-supported material in which the metal component is supported on a carrier, usually with a reducing gas. Moreover, those obtained by oxidizing the reduced metal supported catalyst are also included in the metal supported catalyst of the present invention. Metal-supported catalysts also include catalysts to which a metal component is added after these treatments.
- the metal-supported catalyst of the present invention is a catalyst containing ruthenium, tin, and platinum as essential elements (hereinafter sometimes referred to as a "reduction catalyst"), and the reduction catalyst further contains iron, chromium, and/or platinum. Or it is supported by molybdenum. Specifically, there are embodiments of combinations of iron and chromium, combinations of iron and molybdenum, and combinations of the three components of iron, chromium, and molybdenum. By using a metal-supported catalyst having such a configuration, the yield of by-products accompanied by the cleavage of C--C bonds and C--O bonds can be further suppressed while maintaining the hydrogenation activity.
- 1,4-cyclohexanedimethanol which is a diol compound
- resins such as polyester and polyurethane
- monoalcohols such as cyclohexanemethanol and 4-methylcyclohexanemethanol are used as polymerization terminators. Therefore, contamination must be avoided during resin synthesis, and removal operations are required.
- the purification operation for removing monoalcohol can be simplified or skipped.
- the carrier used in the present invention is not particularly limited as long as it has a large surface area and can support a metal component, such as carbonaceous carriers such as activated carbon and carbon black; alumina, silica, diatomaceous earth, zirconia, titania, Inorganic porous carriers such as hafnia; silicon carbide, gallium nitride, etc. are used.
- carbonaceous supports such as activated carbon, graphite, and graphite, titania, and zirconia are preferable, and carbonaceous supports are more preferable because they have excellent stability and are easy to obtain industrially, and have a high surface area and excellent metal dispersibility.
- Activated carbon is more preferably used since it is easy to increase the reaction activity.
- one type of carrier may be used or two or more types may be used in combination.
- the carrier may be used as it is or may be pretreated into a form suitable for supporting.
- a carbonaceous carrier can be heat-treated with nitric acid before use, as described in JP-A-10-71332.
- the dispersibility of the metal component on the carrier can be improved, and the activity of the resulting catalyst can be improved.
- the shape and size of the carrier used in the present invention are not particularly limited, but when the shape is converted into a sphere, the average primary particle diameter is usually 50 ⁇ m or more and 5 mm or less, preferably 4 mm or less. It is. Note that the particle size is measured by the sieving test method described in the JIS standard JIS Z8815.
- the suitable particle size of the carrier varies depending on the reaction using the present catalyst, it is preferable to adjust it depending on the reaction. Specifically, when the reaction using the present catalyst is a completely mixed reaction, the particle size of the carrier is usually 50 ⁇ m or more, preferably 100 ⁇ m or more, and usually 3 mm or less, preferably 2 mm or less. The smaller the particle size of the carrier, the higher the activity per unit mass of the obtained catalyst, which is preferable, but if the particle size is too small, it may become difficult to separate the reaction liquid and the catalyst.
- the particle diameter of the carrier is at least the above-mentioned lower limit, and it is preferable that it is below the above-mentioned upper limit because separation from the reaction liquid is easy. Note that when the shape of the carrier is not spherical, the volume of the carrier is determined and converted to the diameter of a spherical particle having the same volume.
- the particle size of the carrier is usually 0.5 mm or more and 5 mm or less, preferably 4 mm or less, and more preferably 3 mm or less.
- the particle size of the carrier is usually 0.5 mm or more and 5 mm or less, preferably 4 mm or less, and more preferably 3 mm or less.
- the metal-supported catalyst of the present invention is a catalyst in which ruthenium, tin, and platinum are supported as essential elements on a carrier, and the catalyst further includes iron, chromium, and/or molybdenum (hereinafter referred to as "other metals such as iron"). It is a metal-supported catalyst formed by supporting a metal. By additionally supporting iron, chromium and/or molybdenum, the generation of by-products can be further suppressed. A higher effect of suppressing the production of by-products can be obtained by supporting iron, chromium and/or molybdenum.
- metals may be included as necessary, and preferably, as long as they do not adversely affect reactions such as reduction reactions using this catalyst. It can contain at least one metal selected from metal species such as rhodium, tungsten, rhenium, barium, and boron, and more preferably contains rhenium. Note that the raw materials for each metal component will be described later.
- the amount of metal component supported in the present catalyst is not particularly limited, and is determined for each metal.
- the amount of ruthenium supported is usually 1% by mass or more, preferably 3% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst.
- the amount of tin supported is usually 1% by mass or more, preferably 2% by mass or more, and usually 15% by mass or less, preferably 10% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst.
- the amount of platinum supported is usually 0.5% by mass or more, usually 7% by mass or less, and preferably 5% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Setting the content within these ranges is preferable because the ability as a hydrogenation catalyst increases.
- the supported amounts of iron, chromium and/or molybdenum are each preferably 0.01% by mass or more and 4% by mass or less, more preferably 2% by mass or less. By setting it within this range, the generation of by-products can be significantly reduced. That is, the supported amount of iron is preferably 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or more and 2% by mass or less.
- the preferred range of supported amount of each metal is 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or less. It is at least 2% by mass and not more than 2% by mass.
- the total amount of both supported is preferably within the above range.
- the composition ratio is not particularly limited as long as it is within the above-mentioned range, but for example, 100:1 to 1:100 is used, and more preferably The ratio is 10:1 to 1:10, more preferably 10:1 to 1:5. The same range is also preferred when iron and molybdenum are used together.
- chromium and molybdenum are more expensive than iron, so in this sense it is preferable to use less than iron.
- the total supported amount of other metals such as ruthenium, tin, platinum, and iron based on the total mass of the metal-supported catalyst is not particularly limited, but is usually 5% by mass or more, preferably 8% by mass or more, and more preferably 10% by mass.
- the above amount is usually 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
- the amount of supported metal is a value calculated assuming that all supported metals are metal atoms.
- the size of the metal-supported catalyst after reduction of the present invention is not particularly limited, but is basically the same as the size of the support described above. Note that the amount of supported metal (hereinafter sometimes referred to as "metal”) can be measured, for example, by the following method.
- the catalyst can be powdered and stirred to a uniform state, and if necessary, formed into a disk and analyzed in its solid state by fluorescent X-ray analysis. Alternatively, it can be made into a homogeneous solution after alkali melt decomposition or pressure decomposition using microwaves, and then analyzed by ICP emission spectroscopy (high-frequency inductively coupled plasma emission spectroscopy). Among these, ICP optical emission spectrometry (high frequency inductively coupled plasma optical emission spectrometry) is preferred, since more accurate measurement results can be obtained by forming a homogeneous solution.
- the method for producing a catalyst includes, after the step of supporting the metal component on a carrier (hereinafter referred to as metal supporting step), the step of reducing the obtained metal support with a reducing gas.
- metal supporting step the step of supporting the metal component on a carrier
- reducing the obtained metal support with a reducing gas the step of reducing the obtained metal support with a reducing gas.
- the metal supporting step is a step in which the above-described metal component is supported on the above-described carrier to obtain a metal-supported material.
- the method of supporting the metal component is not particularly limited, and any known method can be used. For supporting, solutions or dispersions of various metal compounds that serve as raw materials for the metal components can be used.
- Metal support method The method of supporting the metal component on the carrier is not particularly limited, but various impregnation methods are usually applicable.
- an adsorption method that utilizes the adsorption power of metal ions to a carrier to adsorb metal ions below the saturated adsorption amount, an equilibrium adsorption method that immerses the carrier in a solution of metal ions that exceeds the saturated adsorption amount and removes the excess solution;
- the pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier and adsorbing all of the metal ions to the carrier.
- the pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier, and adding a solution of metal ions to match the amount of water absorbed by the carrier.
- the incipient wetness method which completes the process in the absence of a solution
- the evaporation dryness method which impregnates a carrier with a solution of metal ions and evaporates the solvent while stirring
- the spraying method which sprays the solution onto the carrier while it is in a dry state.
- the pore filling method, the incipient wetness method, the evaporation to dryness method, and the spraying method are preferred, and the pore filling method, the incipient wetness method, and the evaporation to dryness method are more preferred.
- all the metal solutions to be supported may be prepared and then supported at once, or each metal may be supported separately. Further, in the case of carrying the metal separately, it may be carried separately for each type, or it may be carried separately by a plurality of metal solutions. From the viewpoint of shortening the supporting process, it is preferable to support the entire metal solution at once or to support the metals in divided manner.
- the timing of split-supporting is not particularly limited, and multiple types of metals may be simply supported in several steps, or after the process up to hydrogen reduction is carried out, split-supporting may be carried out, or hydrogen It may be supported in parts on the metal-supported catalyst after reduction.
- the metal compound used for supporting is not particularly limited, and can be appropriately selected depending on the supporting method.
- halides such as chlorides, bromides, and iodides
- mineral acid salts such as nitrates and sulfates
- organic acid salts such as acetates
- metal hydroxides, metal oxides, organometallic compounds, metal complexes, etc. Can be done.
- halides, mineral acid salts, organic acid salts, etc. are preferable, halides and mineral acid salts are more preferable, it is even more preferable to use halides, and among the halides, chlorides such as hydrochloride are particularly preferable. .
- At least one kind of the above-mentioned metal compound is a chloride, and it is more preferable that all of them are chlorides. It is thought that by using a chloride, the metals are complexed in a solution state, and the dispersion state of each metal on the supported carrier becomes uniform, so that the metals are stably supported. In addition, the growth of alloy particles due to other metal components such as ruthenium, tin, platinum, and iron in the resulting catalyst is suppressed, and the activity and selectivity are improved, as well as the stability of the catalyst during the reaction.
- examples of ruthenium include ruthenium chloride, ruthenium nitrosyl nitrate, tris(acetylacetonate)ruthenium, and the like. These ruthenium salts may be used alone or in combination of two or more.
- specific examples include tin compounds such as tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, and dibutyltin dimethoxide. .
- One type of tin compound may be used alone, or two or more types may be used in combination.
- platinum precursor compounds include hexachloroplatinic (IV) acid (hexahydrate, etc.), potassium tetrachloroplatinate (II), hexachloroplatinic (IV) acid. Potassium, potassium tetracyanoplatinate(II), sodium hexachloroplatinate(IV) (hexahydrate), hydrogen hexahydroxyplatinate(IV), potassium tetracyanoplatinate(II) (hydrate), hexachloroplatinate ( IV) Tetrabutylammonium and the like.
- One type of platinum precursor compound may be used alone, or two or more types may be used in combination.
- iron salts As other metal compounds such as iron, specifically, iron salts, chromium compounds, and molybdenum compounds illustrated below can be used.
- the iron salt it is preferable to use one selected from the group consisting of iron chloride, iron nitrate, iron sulfate and iron acetylacetonate.
- chromium compounds include inorganic acid salts such as chromium nitrate, chromium sulfate, and chromium chloride, organic acid salts such as chromium acetate, chromium oxalate, and chromium acetylacetonate, and various types known to be used in the production of chromium oxide catalysts. can be used.
- molybdenum compound a molybdenum compound containing a molybdenum element in an oxidized state is preferable, and examples thereof include molybdenum trioxide, molybdic acid, molybdate salts, and heteropolyacids. Among these, molybdenum trioxide and molybdate are more preferred. Examples of molybdates include ammonium paramolybdate, ammonium dimolybdate, and ammonium tetramolybdate. One type of molybdenum raw material may be used, or two or more types may be used in combination.
- solvent When supporting the metal compound on a carrier, the metal compound can be dissolved or dispersed using various solvents and used in various supporting methods.
- the type of solvent used at this time is not particularly limited as long as it can dissolve or disperse the metal compound and does not adversely affect the subsequent calcination and hydrogen reduction of the metal support, as well as the hydrogenation reaction using the present catalyst.
- Examples include ketone solvents such as acetone, alcohol solvents such as methanol and ethanol, ether solvents such as tetrahydrofuran and ethylene glycol dimethyl ether, and water. These solvents may be used alone or as a mixed solvent.
- a halide more preferably a chloride is used as the metal compound, and since these halides have high solubility, water is preferably used.
- various additives may be added in addition to the solvent. For example, as described in JP-A-10-15388, by adding a carboxylic acid and/or carbonyl compound solution, the dispersibility of each metal component on the carrier can be improved when supported on the carrier. Can be done.
- the metal-supported material in which the metal component is supported on a carrier can be used after being dried, if necessary, and preferably used after being dried. If the metal support is subjected to the subsequent reduction treatment without drying, the reaction activity may be lowered, and especially when the dehalogenation treatment described below is subsequently performed, the metal support is Drying is preferable in that it can suppress salt elution.
- the drying method is not particularly limited as long as it removes the solvent used during support. Usually, it is carried out in the presence or flow of an inert gas.
- the pressure for drying is not particularly limited, but it is usually carried out under normal pressure or reduced pressure conditions.
- the drying temperature is not particularly limited, but is usually 300°C or lower, preferably 250°C or lower, more preferably 200°C or lower, and usually 80°C or higher.
- the metal support can be subjected to a dehalogenation treatment, if necessary, before the reduction step described below.
- a dehalogenation treatment if necessary, before the reduction step described below.
- a halogen compound may be generated in the reduction apparatus in the reduction step described below. This is not a problem at laboratory-scale throughput, but when reducing industrially in large quantities, a large amount of halogen compounds are generated in the reduction equipment, which may require exhaust gas treatment and may cause problems with the equipment. Corrosion may occur. Therefore, it is preferable to carry out dehalogenation treatment before carrying out the reduction step.
- the method for dehalogenation treatment is not particularly limited, but usually the metal support is brought into contact with an alkaline compound in the gas phase or liquid phase to react with the halide in the metal support, followed by gas phase treatment. Or it can be removed by washing.
- the metal support is brought into contact with an alkaline compound in the gas phase or liquid phase to react with the halide in the metal support, followed by gas phase treatment. Or it can be removed by washing.
- the dehalogenation treatment temperature is not particularly limited, but is usually carried out at 10°C or higher, preferably 20°C or higher, and usually 150°C or lower, preferably 100°C or lower, more preferably 80°C or lower. When it is above the lower limit, dehalogenation treatment can be performed efficiently, and when it is below the upper limit, volatilization, thermal decomposition, etc. of the solvent and the alkali compound used in the treatment do not occur.
- the pH of the alkaline aqueous solution is not particularly limited, but is usually 7.5 or higher, preferably 8.0 or higher, and usually 13.0 or lower, preferably 12.5 or lower. It is.
- the pH is below the upper limit, there is no risk of deterioration of the supported metal due to too high pH, and elution of the supported metal is less likely to occur during the cleaning process described below. Further, when the amount is equal to or higher than the lower limit, sufficient dehalogenation is carried out.
- alkali metal carbonate, bicarbonate, ammonia, ammonium carbonate, ammonium bicarbonate, etc. can be used. These may be used alone or in combination of two or more. Among these, weakly basic alkaline compounds are preferred. The use of a weakly basic alkali compound such as ammonia or ammonium salt tends to yield a catalyst with higher activity than the use of a strongly basic alkali compound.
- the amount of the alkali compound used is usually 0.1 to 50 equivalents, preferably 1 to 20 equivalents, and more preferably 1 to 10 equivalents relative to the halogen ions contained in the carrier.
- the alkaline compound is usually used as an aqueous solution, but a water-soluble solvent such as methanol, ethanol, acetone, or even ethylene glycol dimethyl ether, or a mixed solvent of these and water may also be used. It is preferable to use the alkaline aqueous solution in an amount that completely fills the pores of the carrier supporting the metal component of the metal support, that is, an amount equal to or greater than the pore capacity of the carrier.
- the amount of the alkaline aqueous solution to be used is not particularly limited as it depends on the concentration of the alkaline aqueous solution, but is usually 0.8 times or more and 20 times or less, preferably 1 time, the pore volume of the metal carrier used. It is not less than 1 times and not more than 10 times, more preferably not less than 1 time and not more than 5 times.
- the washing temperature is not particularly limited, and is usually carried out at a temperature of 10°C or higher and 100°C or lower, but is preferably 40°C or higher, more preferably 50°C or higher, since cleaning efficiency with hot water is good.
- drying may be further performed if necessary.
- the drying conditions the same conditions as those for drying the metal-supported material described above are used.
- the metal support is subjected to a reduction treatment using a reducing gas to form a metal support catalyst.
- the reducing gas in the present invention is not particularly limited as long as it has reducing properties; for example, hydrogen, methanol, hydrazine, etc. are used, and hydrogen is preferred. That is, the metal-supported catalyst of the present invention is preferably prepared through hydrogen reduction.
- a reduction reaction occurs regardless of the type of reducing gas, resulting in a metal-supported catalyst.
- the amount of reducing gas required for reduction treatment is expressed as "hydrogen absorption amount.”
- the reduction treatment of the metal support may be carried out in one stage or may be carried out in multiple stages.
- the reduction treatment temperature is not particularly limited, and may be a constant temperature or may be varied.
- the temperature is usually 80°C or higher, preferably 100°C or higher, more preferably 150°C or higher, and usually 650°C or lower, preferably 600°C or lower, and more preferably 580°C or lower.
- the temperature is below the upper limit, there is no sintering of the metal component and no adverse effect on the carrier, while when it is above the lower limit, the reduction reaction proceeds sufficiently.
- the reduction treatment may be performed while maintaining a specific temperature within a preferred temperature range for a certain period of time, or may be performed while increasing the temperature within a preferred temperature range for a certain period of time. From the viewpoint of increasing the efficiency of the reaction time, it is preferable to perform the reduction treatment while increasing the temperature over a certain period of time, since the metal support generates heat and the temperature of the reaction system increases due to the reduction treatment. On the other hand, if severe heat generation is involved, it is preferable to maintain the temperature at a constant temperature so that the reaction can be accurately controlled.
- the concentration of the reducing gas during the reduction treatment of the present catalyst is not particularly limited, but may be 100% by volume or diluted with an inert gas.
- the inert gas mentioned here is a gas that does not react with the metal support or the reducing gas, and includes nitrogen, water vapor, etc., and nitrogen is usually used.
- the concentration of the reducing gas when diluted with an inert gas is usually 5% by volume or more, preferably 15% by volume or more, more preferably 30% by volume or more, and even more preferably 50% by volume, based on the total gas components. % or more.
- reduction treatment may be performed by using a low concentration of reducing gas at the initial stage of reduction, and then gradually increasing the concentration of the reducing gas.
- the method for measuring the amount of hydrogen absorbed is not particularly limited, but the usual method is to perform reduction while adjusting the amount of hydrogen supplied per unit time and the heating time per unit time, that is, the Temperature Programmed Reduction method (hereinafter referred to as TPR). It is preferable to do so using the law.
- TPR Temperature Programmed Reduction method
- the hydrogen absorption amount and absorption temperature of the present catalyst can be precisely measured.
- a catalyst to be measured is placed in a container, the temperature of the container is raised while a constant flow of hydrogen is supplied, and the amount of hydrogen at the inlet and outlet of the container is continuously measured.
- the reducing gas may be used while being sealed in the reactor or may be used while being circulated through the reactor, but it is preferable that the reducing gas is circulated through the reactor.
- Water, ammonium chloride, etc. are produced as by-products in the reactor during the reduction process, and these by-products may have an adverse effect on the metal support before the reduction process, the metal support after the reduction process, and the obtained catalyst. Yes, this can be prevented. That is, by circulating the reducing gas, byproducts can be discharged out of the reaction system.
- the amount of reducing gas required for the reduction treatment is not particularly limited as long as the purpose of the present invention is achieved, and it depends on the reduction equipment, the size of the reactor during reduction, and the flow conditions. , can be set as appropriate.
- the amount of hydrogen required for each reduction treatment is 1.5 times or more, preferably 2 times or more, under conditions of high contact efficiency such that hydrogen flows through the catalyst layer, relative to the amount of hydrogen absorbed as determined by the TPR method.
- the flow rate is set to be at least twice as high, more preferably at least 3 times, particularly preferably at least 5 times. When the amount is at least the lower limit, reduction is sufficiently carried out especially when the contact efficiency with hydrogen is sufficient.
- the time required for the reduction treatment varies depending on the amount of metal support to be treated and the equipment used, but is usually 7 minutes or more, preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour.
- the time period is most preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less.
- the degree of reduction of the metal support can be determined by the halogen concentration in the oxidation-stabilized metal support catalyst after the reduction treatment described below.
- the halogen concentration in the metal supported catalyst is not particularly limited, but is usually 0.8% by mass or less, more preferably 0.7% by mass or less, still more preferably 0.5% by mass or less.
- the halogen concentration is lower because elution of the halogen into the reaction solution can be suppressed during the reduction reaction using the present catalyst.
- the lower limit of the halogen concentration is not particularly limited, but is usually 0.005% by mass or more, preferably 0.01% by mass or more.
- the metal support is sufficiently reduced, the elution of halogen into the reaction solution is suppressed to a low level, and the activity of the reduction reaction using the present catalyst is improved. Reaction selectivity is also improved, and catalyst stability is also improved.
- the method for producing the catalyst of the present invention includes a metal supporting step, a dehalogenation step, a washing step, and a reduction step.
- a reducing gas is removed in a fixed bed in the reduction step.
- There are a method of passing the reducing gas through a catalyst a method of passing the reducing gas through a catalyst placed on a tray or a belt, and a method of passing the reducing gas through the fluidized catalyst.
- the specific method of fluidizing is not particularly limited, as long as the metal support to be reduced undergoes a movement that increases the contact surface area with the reducing gas, for example, the metal to be reduced
- There are methods such as rotating a reactor containing a supported material, and methods of incorporating an apparatus configuration in which the metal supported material in the reactor is stirred or moved up and down.
- Specific flow methods include methods using various types of kilns (heating furnaces).
- Specifically preferred manufacturing methods include, for example, modes using a continuous kiln or a batch kiln.
- a continuous kiln is one that can continuously supply a metal support to carry out reduction and continuously discharge the reduced catalyst.
- the production method of the present invention has high fluidity of the metal support and high contact efficiency with the reducing gas. Therefore, a continuous rotary kiln is preferred.
- the operating conditions of the continuous kiln are not particularly limited as long as they satisfy the conditions for the reduction treatment described above, and can be set as appropriate depending on the equipment used. Normally, if a continuous kiln is used, it can be operated to satisfy the above-mentioned reduction processing conditions by controlling the flow rate and temperature of the reducing gas. Since a continuous kiln can continuously supply a metal support and a reducing gas, it is possible to control the method of supplying a metal support into the continuous kiln and the flow rate of the reducing gas.
- the flow rate of the reducing gas in the continuous kiln is not particularly limited, but the amount of hydrogen required for reduction, which is calculated by TPR measurement of the metal support, is the "hydrogen absorption amount A (m 3 / kg)", and the flow rate of the reducing gas in the continuous kiln is
- the hydrogen flow rate is usually at least (1.5 ⁇ A ⁇ B) m 3 /h, preferably (2 ⁇ A ⁇ B) m 3 /h or more, more preferably (5 ⁇ A ⁇ B) m 3 /h or more.
- the upper limit is not particularly limited, but in order to reduce the amount of wasted hydrogen, it is less than (1000 x A x B) m 3 /h, preferably less than (500 x A x B) m 3 /h, more preferably less than (500 x A x B) m 3 /h. (300 ⁇ A ⁇ B) m 3 /h or less.
- the flow direction of the metal support to be subjected to reduction treatment in a continuous kiln and the flow direction of reducing gas such as hydrogen can be adjusted as appropriate depending on the situation of the reduction treatment. It can be carried out either in co-current or counter-current to the flow direction. Above all, the catalyst that has reached the outlet of the continuous kiln can come into contact with high-purity hydrogen, and the flow direction of hydrogen is countercurrent to the flow direction of the metal support (they are opposite to each other). preferable.
- the rotational speed of the continuous rotary kiln is not particularly limited. The higher the rotation speed, the better the contact efficiency between the metal support and hydrogen, but since the catalyst wears out, the rotation speed is usually 0.5 rpm or more and 10 rpm or less, preferably 5 rpm or less.
- a batch type kiln is one in which a predetermined amount of metal support is charged into the kiln in advance, and the temperature is gradually raised to the desired reduction temperature under the flow of reducing gas, allowing reduction to be carried out at a predetermined temperature.
- it refers to fixed-bed heating furnaces that are filled with metal supports for processing, tray-type heating furnaces that are heated on shelves, shuttle kilns in which a firing cart moves in and out of the electric furnace, and batch-type rotary kilns. etc.
- a fixed bed heating furnace or a batch rotary kiln in which the metal support is filled and processed, is preferable, and in order to achieve uniform reduction, it has a device for fluidizing the catalyst.
- a batch rotary kiln is used. Continuous kilns usually operate at a constant flow rate when introducing reducing gas due to equipment constraints, whereas batch kilns have a reaction tank for each batch, so there is no need to raise the temperature. , the flow rate, concentration, etc. of the reducing gas can be changed for each batch.
- the operating conditions of the batch kiln are not particularly limited, and can be set as appropriate depending on the configuration of the apparatus.
- the batch-type rotary kiln that is preferably used in the present invention starts raising the temperature after charging a predetermined amount of metal support in advance, so the heating time to the final reduction temperature can be controlled more precisely than the continuous rotary kiln. It is possible to do so.
- the time for the reduction treatment is not particularly limited, but is usually 1 hour or more, preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less, and more preferably 10 hours or less.
- the concentration, flow rate, etc. of the reducing gas can be appropriately changed for each batch depending on the situation of the reduction process.
- the preferred reducing gas concentration in the operation of a batch rotary kiln is the same as described above.
- the flow rate of the reducing gas is not particularly limited and can be set as appropriate depending on the situation of the reduction reaction, but the amount of hydrogen required until the reduction is completed is calculated by TPR analysis of the unreduced catalyst, and usually the amount of hydrogen required is calculated by TPR analysis of the unreduced catalyst. 5 times or more, preferably 10 times or more, more preferably 20 times or more. Further, it is usually 5000 times or less, preferably 1000 times or less. If it is above the lower limit, hydrogen deficiency will not occur, and if it is below the upper limit, unnecessary reducing gas will not be consumed, which will be economically advantageous.
- the rotation speed of the batch type rotary kiln is not particularly limited, but the faster the rotation speed, the better the contact efficiency with hydrogen, but the wear of the catalyst will occur, so it is usually carried out at 0.5 to 10 rpm, preferably 0.5 to 5 rpm. .
- the oxidation state of the metal-supported catalyst obtained by reducing the metal support is usually controlled. Particularly when producing a large amount of catalyst, it is preferable that the catalyst be stabilized by oxidation.
- the metal-supported catalyst obtained by reduction is in a state in which the metal components are reduced and highly dispersed.
- the method of oxidation stabilization is not particularly limited, but includes a method of adding water to the catalyst, a method of pouring the catalyst into water, a method of oxidation stabilization with a low oxygen concentration gas diluted with an inert gas under circulation, and a method of oxidation stabilization. There are methods such as stabilization with carbon dioxide.
- the method of adding water to the catalyst, the method of pouring the catalyst into water, the method of oxidation stabilization with a gas with a low oxygen concentration, and the method of oxidation stabilization with a gas with a low oxygen concentration are more preferable (hereinafter referred to as (referred to as "slow oxidation method"), and it is particularly preferable to oxidize and stabilize a gas with a low oxygen concentration under circulation.
- the oxygen concentration during oxidation stabilization with a gas with a low oxygen concentration is not particularly limited, but the oxygen concentration at the start of slow oxidation is usually 0.2% by volume or more, preferably 0.5% by volume or more, while 10% by volume.
- the content is preferably 8% by volume or less, more preferably 7% by volume or less.
- it is at least the lower limit the time required for complete oxidation stabilization can be shortened and stabilization is sufficient.
- the catalyst will not reach a high temperature, so there is no risk of deactivation.
- the oxygen concentration during gradual oxidation may be carried out as it was at the start of gradual oxidation, but if the internal temperature of the catalyst becomes high and the catalyst does not deteriorate, the oxygen concentration may be changed gradually after starting gradual oxidation.
- the oxygen concentration may be increased.
- slow oxidation is stable at a low oxygen concentration, it is preferable to control the catalyst temperature so that it does not exceed 130°C.
- the temperature of the catalyst is 130° C. or lower, rapid oxidation does not proceed, so sintering of the catalyst does not proceed, and the strength of the carrier is maintained without decreasing. From the above point of view, it is preferable to control the oxygen concentration and flow rate so that the temperature of the catalyst does not exceed 120°C, and even more preferably does not exceed 110°C.
- Methods for oxidation stabilization using low oxygen concentration gas include passing low oxygen concentration gas through a catalyst in a fixed bed, and passing low oxygen concentration gas through a catalyst that is left stationary on a tray or belt. There is a method in which gas with a low oxygen concentration is passed through a fluidized catalyst. The better the dispersibility of the supported metal on the supported metal catalyst, the more rapid the oxidation stabilization will be, and the more oxygen will be reacted. A method of flowing a gas with a low oxygen concentration through a fluidized catalyst is preferred, and a method of flowing a gas with a low oxygen concentration through a fluidized catalyst is particularly preferred.
- the metal-supported catalyst of the present invention When storing the metal-supported catalyst of the present invention, it is preferable to store it in an atmosphere with an oxygen concentration of 15% by volume or less. By storing in such an atmosphere, if oxidation proceeds slowly even after oxidation stabilization, oxidation can proceed slowly in a closed container.
- the lower limit of the oxygen concentration is not particularly limited, it is usually preferably 0.2% by volume or more in order to promote oxidation.
- the gas-stabilized catalyst is highly hygroscopic, which poses a major problem in non-aqueous reactions, it is preferable to store it in a closed container.
- the catalyst of the present invention is suitable as a catalyst for reduction reactions, and is preferably used, for example, in the hydrogenation of carboxylic acids and/or carboxylic esters.
- it is suitable for an alcohol production method in which a carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst of the present invention and reduced to obtain an alcohol corresponding to each of the carboxylic acid and/or the carboxylic ester. used for.
- the carboxylic acid or carboxylic ester to be subjected to the reduction reaction any industrially easily available carboxylic acid or carboxylic ester can be used.
- carboxylic acids and/or carboxylic acid esters that can be subjected to the reduction reaction using the catalyst of the present invention include acetic acid, butyric acid, lauric acid, oleic acid, linoleic acid, linolenic acid, stearic acid, palmitic acid, etc.
- Aliphatic chain carboxylic acids such as cyclohexanecarboxylic acid, naphthenic acid, cyclopentanecarboxylic acid; oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid , aliphatic polycarboxylic acids such as sebacic acid, cyclohexanedicarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,3,4-cyclohexanetricarboxylic acid, bicyclohexyldicarboxylic acid, decahydronaphthalene dicarboxylic acid; phthalic acid, isophthalic acid Examples include aromatic carboxylic acids such as acid, terephthalic acid, and trimesic acid.
- the carboxylic acid is not particularly limited, but is preferably a chain or cyclic saturated aliphatic carboxylic acid, more preferably a carboxylic acid having 20 or less carbon atoms that does not contain any functional group other than a carboxyl group, and even more preferably is a dicarboxylic acid represented by formula (2), which contains no functional groups other than carboxyl groups, and has 20 or less carbon atoms.
- R 1 may have a substituent and is an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms other than the substituent.
- Particularly preferred are aliphatic or alicyclic polycarboxylic acids having 4 to 14 carbon atoms, or esters thereof, since they have high activity and high selectivity in the reduction reaction.
- 1,4-cyclohexanedicarboxylic acid or an ester thereof is particularly preferable to use 1,4-cyclohexanedicarboxylic acid or an ester thereof as a reactant to produce the corresponding alcohol through a reduction reaction.
- esters of these carboxylic acids When esters of these carboxylic acids are used, lower alcohols such as methanol, ethanol, i-propanol, and n-butanol can be used as the alcohol component. It is also possible to esterify with the same alcohol as the alcohol obtained by reduction. In this case, there is an advantage that it is not necessary to separate the alcohol produced in the subsequent hydrogenation reaction.
- the reduction reaction using the catalyst of the present invention can be carried out without a solvent or in the presence of a solvent, it is usually carried out in the presence of a solvent.
- a solvent usually water, lower alcohols such as methanol and ethanol, alcohols of reaction products, ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether, and hydrocarbons such as hexane and decalin can be used. .
- these solvents can be used alone or in combination of two or more. Particularly when reducing carboxylic acid, it is preferable to use a solvent containing water for reasons such as solubility.
- the amount of the solvent used is not particularly limited, but it is usually about 0.1 to 20 times the mass of the carboxylic acid or carboxylic acid ester used as the raw material, preferably 0.5 to 10 times the mass, more preferably 1 It is preferable to use about 10 to 10 times the amount by mass.
- the reduction reaction using the catalyst of the present invention is usually carried out under pressure of hydrogen gas.
- the reaction is usually carried out at a temperature of 100 to 300°C, preferably 150 to 300°C.
- the reaction pressure is 1 to 30 MPa, preferably 1 to 25 MPa, and more preferably 5 to 25 MPa.
- the reduction reaction using the catalyst of the present invention can be carried out in both liquid phase and gas phase, but it requires huge equipment to vaporize the carboxylic acid/carboxylic acid ester and to carry out the reduction reaction while maintaining the gaseous state. However, it is preferable to carry out the process in a liquid phase since it requires even more energy.
- Also included within the scope of the present invention is a method for hydrogenating carboxylic acids and/or carboxylic esters in which the catalyst of the present invention is brought into contact with the carboxylic acids and/or carboxylic esters.
- ⁇ TPR measurement method 0.1 g of the catalyst was placed in a narrow quartz tube, and 10% H 2 /He was flowed at a rate of 20 ml/min, and the tube was maintained until hydrogen replacement in the system was completed and the H 2 concentration became stable. Thereafter, the temperature was raised to 700° C. at a constant rate for 60 minutes. During that time, the amount of hydrogen at the outlet was continuously measured using a mass spectrometer, and the amount of absorbed hydrogen was calculated.
- reactor In a 200 mL induction stirring autoclave made of Hastelloy C (registered trademark) (hereinafter sometimes referred to as "reactor"), 40 g of water, CHDA (mixture of cis and trans forms: manufactured by Tokyo Chemical Industry Co., Ltd.) ) and 2 g of the catalyst to be evaluated, and after purging the inside of the reactor with hydrogen, the hydrogen partial pressure was set to 1 MPa, and under stirring at 1000 rpm (the rate of hydrogen supply was not limited by the rate of stirring being too slow, and the rate of stirring was too high). The reactor was heated to a predetermined temperature and reaction pressure of 8.5 MPa, and the reaction was started at 240°C.
- Hastelloy C registered trademark
- a catalyst was prepared in accordance with Example 4 of JP-A No. 2001-9277 using a cylindrical activated carbon (R1 EXTRA manufactured by Cabot Norit) carrier having a diameter of 1 mm and a length of 2 to 5 mm. Specifically , ruthenium chloride hydrate ( RuCl 3 . SnCl 2 .2H 2 O) was dissolved in a dilute hydrochloric acid solution, and activated carbon treated with nitric acid was added thereto. The solvent was removed and dried, and the dried catalyst was treated in an ammonium bicarbonate solution, followed by filtration, washing, and drying to prepare a metal support.
- R1 EXTRA manufactured by Cabot Norit
- the obtained metal support was reduced at 500° C. in a hydrogen stream, and then oxidized and stabilized in a diluted oxygen atmosphere to obtain a catalyst.
- a reaction catalyst it will be referred to as a "reduction catalyst.”
- the reaction was carried out with this catalyst.
- Table 1 shows the conversion rate and the yield of by-products. Note that the metal type column in Table 1 displays the compounds used for metal types other than ruthenium, platinum, and tin.
- Fe(III) acetylacetonate (Fe(acac) 3 ) was supported on the reduction catalyst obtained in Comparative Example 1, and the catalyst was prepared so that after reduction, the supported amount of Fe was 0.1% by mass. .
- a predetermined amount of Fe(acac) 3 was dissolved, approximately 10 g of the reduction catalyst obtained in Comparative Example 1 was added, and after stirring, the mixture was left for 1 hour. did. Thereafter, the mixture was evaporated at 80° C. for 1 hour under a reduced pressure of 1 kPa, and then placed in a glass tube, set in an electric furnace, and dried at 150° C.
- Comparative example 4 In Comparative Example 2, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 2, except that Fe(acac) 3 was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
- Comparative example 5 In Comparative Example 3, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 3, except that FeCl 3 .6H 2 O was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
- This catalyst was added to an aqueous 11% by mass ammonium bicarbonate solution corresponding to 1.7 equivalents of the total chlorine amount of the metal chloride used, treated for 1 hour, filtered, washed with 90°C water, and dried in an evaporator. .
- the dried catalyst was transferred to a calcining tube and additionally dried at 150°C under argon gas flow. 2.5 g of the additionally dried catalyst was reduced at 500°C under hydrogen flow, and after cooling, it was stabilized with 6% oxygen/nitrogen.
- a catalyst with 5.5% Ru-2.4%Pt-5.4%Sn-0.47%Fe/activated carbon was prepared by carrying out four components at once (Table 1, it is written as “FeCl 3 all at once”).
- a reaction similar to Comparative Example 1 was carried out using 2 g of this catalyst. The results are shown in Table 1.
- Example 1 FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.2% and the Cr metal content was 0.2 %, and water was used as the solvent.
- a 0.2% Fe-0.2% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
- Example 2 FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.4% and the Cr metal content was 0.1%, and water was used as the solvent.
- a 0.4% Fe-0.1% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
- Example 3 FeCl 3.6H 2 O and (NH 4 ) 6 Mo 7 O 24.4H 2 O were added to the reduction catalyst obtained in Comparative Example 1 so that the Fe metal amount was 0.2% and the Mo metal amount was 0.2%.
- a 0.2% Fe-0.2% Mo supported catalyst was obtained in the same manner as in Comparative Example 2 except that water was used as the solvent.
- a reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
- Example 4 FeCl 3.6H 2 O, ammonium molybdate (VI) tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O) and a 0.4% Fe-0.1% Mo supported catalyst was obtained in the same manner as in Comparative Example 2, except that a 3% HCl aqueous solution was used as the solvent. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
- the present invention by adding a plurality of new specific metals in combination to a conventional reduction catalyst, the yield of by-products is extremely reduced and the yield of the target product is improved.
- the present invention is an extremely useful technology industrially because the extremely low yield of by-products makes it possible to omit or simplify the precise purification process when subsequently used as a polymer raw material. .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
The present invention provides a metal-loaded catalyst which is obtained by loading a carrier with ruthenium, tin and platinum, and which is used for hydrogenation of a carboxylic acid and/or a carboxylic acid ester; and this metal-loaded catalyst is additionally loaded with iron and chromium and/or molybdenum. The present invention also provides: a catalyst which has a further lower by-product yield, while maintaining a high catalytic activity; a method for producing an alcohol from a carboxylic acid and/or a carboxylic acid ester with use of this catalyst; and a hydrogenation method for a carboxylic acid and/or a carboxylic acid ester.
Description
本発明は金属担持触媒に関し、詳細には、高い選択性でカルボン酸及び/又はカルボン酸エステルを水素化し得る金属担持触媒、該金属担持触媒を用いるアルコールの製造方法、及び水素化方法に関する。
The present invention relates to a supported metal catalyst, and specifically relates to a supported metal catalyst that can hydrogenate carboxylic acids and/or carboxylic esters with high selectivity, a method for producing alcohol using the supported metal catalyst, and a method for hydrogenation.
カルボン酸及び/又はカルボン酸エステルを、対応するアルコールへと還元する触媒としては、担体に、ルテニウム、スズ及び白金を担持させ、これを水素等で還元処理した触媒が提案されている(例えば特許文献1、2)。この触媒はカルボン酸及び/又はカルボン酸エステルの水素化において、高い反応活性及び反応選択率を示し、良好な触媒である。
また、特許文献3には、還元触媒にさらに鉄が担持された触媒が開示されている。より詳細には、ルテニウム、白金、スズが主成分金属として担持される還元触媒に、鉄、コバルト、ニッケルの硝酸塩が添加された担持触媒が開示され、1,4-シクロヘキサンジメタノールを製造することが開示されている。 As catalysts for reducing carboxylic acids and/or carboxylic acid esters to the corresponding alcohols, catalysts have been proposed in which ruthenium, tin, and platinum are supported on a carrier and this is reduced with hydrogen or the like (for example, a patent References 1, 2). This catalyst exhibits high reaction activity and reaction selectivity in the hydrogenation of carboxylic acids and/or carboxylic acid esters, and is a good catalyst.
Further, Patent Document 3 discloses a catalyst in which iron is further supported on a reduction catalyst. More specifically, a supported catalyst is disclosed in which nitrates of iron, cobalt, and nickel are added to a reduction catalyst in which ruthenium, platinum, and tin are supported as main component metals, and 1,4-cyclohexanedimethanol is produced. is disclosed.
また、特許文献3には、還元触媒にさらに鉄が担持された触媒が開示されている。より詳細には、ルテニウム、白金、スズが主成分金属として担持される還元触媒に、鉄、コバルト、ニッケルの硝酸塩が添加された担持触媒が開示され、1,4-シクロヘキサンジメタノールを製造することが開示されている。 As catalysts for reducing carboxylic acids and/or carboxylic acid esters to the corresponding alcohols, catalysts have been proposed in which ruthenium, tin, and platinum are supported on a carrier and this is reduced with hydrogen or the like (for example, a patent References 1, 2). This catalyst exhibits high reaction activity and reaction selectivity in the hydrogenation of carboxylic acids and/or carboxylic acid esters, and is a good catalyst.
Further, Patent Document 3 discloses a catalyst in which iron is further supported on a reduction catalyst. More specifically, a supported catalyst is disclosed in which nitrates of iron, cobalt, and nickel are added to a reduction catalyst in which ruthenium, platinum, and tin are supported as main component metals, and 1,4-cyclohexanedimethanol is produced. is disclosed.
従来知られている特許文献1,2に記載の触媒を用いてカルボン酸及び/又はカルボン酸エステルの水素化反応を実施した際に、水素化活性は高いもののC-C結合及びC-O結合の切断を伴う副生物が生成し、目的生成物の収率が低下するとともに、副生物除去のための精密な操作が必要となる場合があった。
特許文献3に開示される触媒は、特許文献1及び2に記載の触媒に比較して、副生物の生成が抑制されているものの、その程度は不十分であり、さらなる改良が望まれていた。
本発明は、上記の状況を鑑み、高い触媒活性は維持したまま、副生物収率がさらに低い触媒の提供を課題とする。 When the hydrogenation reaction of carboxylic acid and/or carboxylic acid ester is carried out using the conventionally known catalysts described in Patent Documents 1 and 2, although the hydrogenation activity is high, C-C bonds and C-O bonds By-products are generated due to the cleavage of the target product, which lowers the yield of the desired product and requires precise operations to remove the by-products.
Although the catalyst disclosed in Patent Document 3 suppresses the production of by-products compared to the catalysts described in Patent Documents 1 and 2, the degree of this is insufficient, and further improvement has been desired. .
In view of the above-mentioned circumstances, the present invention aims to provide a catalyst that maintains high catalytic activity and has a lower yield of by-products.
特許文献3に開示される触媒は、特許文献1及び2に記載の触媒に比較して、副生物の生成が抑制されているものの、その程度は不十分であり、さらなる改良が望まれていた。
本発明は、上記の状況を鑑み、高い触媒活性は維持したまま、副生物収率がさらに低い触媒の提供を課題とする。 When the hydrogenation reaction of carboxylic acid and/or carboxylic acid ester is carried out using the conventionally known catalysts described in Patent Documents 1 and 2, although the hydrogenation activity is high, C-C bonds and C-O bonds By-products are generated due to the cleavage of the target product, which lowers the yield of the desired product and requires precise operations to remove the by-products.
Although the catalyst disclosed in Patent Document 3 suppresses the production of by-products compared to the catalysts described in Patent Documents 1 and 2, the degree of this is insufficient, and further improvement has been desired. .
In view of the above-mentioned circumstances, the present invention aims to provide a catalyst that maintains high catalytic activity and has a lower yield of by-products.
本発明者らは、ルテニウム、スズ及び白金を担体に担持させた金属担持触媒であって、さらに鉄、並びに、クロム及び/又はモリブデンが担持されてなる金属担持触媒が高い触媒活性を維持したまま、副生物の収率を大きく低下させ得ることを見出した。
その詳細は明らかではないが、鉄、クロム及びモリブデンは、触媒上のカルボニルを還元する活性点ではなく、C-C結合及びC-O結合を切断する活性点を選択的に抑制する効果を発現していると推測され、特に鉄とクロムの組み合わせ、鉄とモリブデンの組み合わせ、さらには鉄、クロム、モリブデンの3成分の組み合わせによって、上記効果を顕著に発揮し得ることを見出した。 The present inventors have discovered that a metal-supported catalyst in which ruthenium, tin, and platinum are supported on a carrier, and in which iron, chromium, and/or molybdenum are further supported, maintains high catalytic activity. , it was found that the yield of by-products could be significantly reduced.
Although the details are not clear, iron, chromium, and molybdenum have the effect of selectively suppressing active sites that cleave C-C bonds and C-O bonds, rather than active sites that reduce carbonyls on the catalyst. It has been found that the above effects can be particularly exhibited by a combination of iron and chromium, a combination of iron and molybdenum, and a combination of the three components of iron, chromium, and molybdenum.
その詳細は明らかではないが、鉄、クロム及びモリブデンは、触媒上のカルボニルを還元する活性点ではなく、C-C結合及びC-O結合を切断する活性点を選択的に抑制する効果を発現していると推測され、特に鉄とクロムの組み合わせ、鉄とモリブデンの組み合わせ、さらには鉄、クロム、モリブデンの3成分の組み合わせによって、上記効果を顕著に発揮し得ることを見出した。 The present inventors have discovered that a metal-supported catalyst in which ruthenium, tin, and platinum are supported on a carrier, and in which iron, chromium, and/or molybdenum are further supported, maintains high catalytic activity. , it was found that the yield of by-products could be significantly reduced.
Although the details are not clear, iron, chromium, and molybdenum have the effect of selectively suppressing active sites that cleave C-C bonds and C-O bonds, rather than active sites that reduce carbonyls on the catalyst. It has been found that the above effects can be particularly exhibited by a combination of iron and chromium, a combination of iron and molybdenum, and a combination of the three components of iron, chromium, and molybdenum.
本発明の要旨は以下の通りである。
[1]ルテニウム、スズ及び白金を担体に担持させた、カルボン酸及び/又はカルボン酸エステルの水素化に用いられる金属担持触媒であって、前記金属担持触媒がさらに鉄、並びに、クロム及び/又はモリブデンが担持されてなる、金属担持触媒。
[2]前記金属担持触媒の総質量に対する、前記鉄の担持量が0.01質量%以上4質量%以下、且つ、前記クロム及び/又はモリブデンの合計担持量が0.01質量%以上2質量%以下である、上記[1]に記載の金属担持触媒。
[3]前記担体が炭素質担体である、上記[1]又は[2]に記載の金属担持触媒。
[4]前記金属担持触媒の総質量に対するルテニウム、スズ、白金、鉄、モリブデン及びクロムの合計担持量が5質量%以上である、上記[1]~[3]のいずれかに記載の金属担持触媒。
[5]前記金属担持触媒が水素還元を経て調製される、上記[1]~[4]のいずれかに記載の金属担持触媒。
[6]カルボン酸及び/又はカルボン酸エステルに、上記[1]~[5]のいずれかに記載の金属担持触媒を接触させ還元して、前記カルボン酸及び/又は前記カルボン酸エステルのそれぞれに対応するアルコールを得る、アルコールの製造方法。
[7]カルボン酸及び/又はカルボン酸エステルに、上記[1]~[5]のいずれかに記載の金属担持触媒を接触させる、カルボン酸及び/又はカルボン酸エステルの水素化方法。
[8]前記カルボン酸が1,4-シクロヘキサンジカルボン酸であり、前記カルボン酸エステルが1,4-シクロヘキサンジカルボン酸のエステルである、上記[6]に記載のアルコールの製造方法。 The gist of the invention is as follows.
[1] A metal-supported catalyst used for the hydrogenation of carboxylic acids and/or carboxylic acid esters, in which ruthenium, tin, and platinum are supported on a carrier, wherein the metal-supported catalyst further supports iron, chromium, and/or A metal-supported catalyst that supports molybdenum.
[2] The amount of iron supported is 0.01% by mass or more and 4% by mass or less with respect to the total mass of the metal supported catalyst, and the total amount of chromium and/or molybdenum supported is 0.01% by mass or more and 2% by mass. % or less, the metal-supported catalyst according to [1] above.
[3] The metal-supported catalyst according to [1] or [2] above, wherein the carrier is a carbonaceous carrier.
[4] The supported metal according to any one of [1] to [3] above, wherein the total supported amount of ruthenium, tin, platinum, iron, molybdenum, and chromium based on the total mass of the metal supported catalyst is 5% by mass or more. catalyst.
[5] The metal-supported catalyst according to any one of [1] to [4] above, wherein the metal-supported catalyst is prepared through hydrogen reduction.
[6] A carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst according to any one of [1] to [5] above to reduce the carboxylic acid and/or the carboxylic ester, respectively. A method for producing alcohol, obtaining the corresponding alcohol.
[7] A method for hydrogenating carboxylic acids and/or carboxylic esters, which comprises contacting the carboxylic acids and/or carboxylic esters with the metal-supported catalyst according to any one of [1] to [5] above.
[8] The method for producing alcohol according to [6] above, wherein the carboxylic acid is 1,4-cyclohexanedicarboxylic acid, and the carboxylic acid ester is an ester of 1,4-cyclohexanedicarboxylic acid.
[1]ルテニウム、スズ及び白金を担体に担持させた、カルボン酸及び/又はカルボン酸エステルの水素化に用いられる金属担持触媒であって、前記金属担持触媒がさらに鉄、並びに、クロム及び/又はモリブデンが担持されてなる、金属担持触媒。
[2]前記金属担持触媒の総質量に対する、前記鉄の担持量が0.01質量%以上4質量%以下、且つ、前記クロム及び/又はモリブデンの合計担持量が0.01質量%以上2質量%以下である、上記[1]に記載の金属担持触媒。
[3]前記担体が炭素質担体である、上記[1]又は[2]に記載の金属担持触媒。
[4]前記金属担持触媒の総質量に対するルテニウム、スズ、白金、鉄、モリブデン及びクロムの合計担持量が5質量%以上である、上記[1]~[3]のいずれかに記載の金属担持触媒。
[5]前記金属担持触媒が水素還元を経て調製される、上記[1]~[4]のいずれかに記載の金属担持触媒。
[6]カルボン酸及び/又はカルボン酸エステルに、上記[1]~[5]のいずれかに記載の金属担持触媒を接触させ還元して、前記カルボン酸及び/又は前記カルボン酸エステルのそれぞれに対応するアルコールを得る、アルコールの製造方法。
[7]カルボン酸及び/又はカルボン酸エステルに、上記[1]~[5]のいずれかに記載の金属担持触媒を接触させる、カルボン酸及び/又はカルボン酸エステルの水素化方法。
[8]前記カルボン酸が1,4-シクロヘキサンジカルボン酸であり、前記カルボン酸エステルが1,4-シクロヘキサンジカルボン酸のエステルである、上記[6]に記載のアルコールの製造方法。 The gist of the invention is as follows.
[1] A metal-supported catalyst used for the hydrogenation of carboxylic acids and/or carboxylic acid esters, in which ruthenium, tin, and platinum are supported on a carrier, wherein the metal-supported catalyst further supports iron, chromium, and/or A metal-supported catalyst that supports molybdenum.
[2] The amount of iron supported is 0.01% by mass or more and 4% by mass or less with respect to the total mass of the metal supported catalyst, and the total amount of chromium and/or molybdenum supported is 0.01% by mass or more and 2% by mass. % or less, the metal-supported catalyst according to [1] above.
[3] The metal-supported catalyst according to [1] or [2] above, wherein the carrier is a carbonaceous carrier.
[4] The supported metal according to any one of [1] to [3] above, wherein the total supported amount of ruthenium, tin, platinum, iron, molybdenum, and chromium based on the total mass of the metal supported catalyst is 5% by mass or more. catalyst.
[5] The metal-supported catalyst according to any one of [1] to [4] above, wherein the metal-supported catalyst is prepared through hydrogen reduction.
[6] A carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst according to any one of [1] to [5] above to reduce the carboxylic acid and/or the carboxylic ester, respectively. A method for producing alcohol, obtaining the corresponding alcohol.
[7] A method for hydrogenating carboxylic acids and/or carboxylic esters, which comprises contacting the carboxylic acids and/or carboxylic esters with the metal-supported catalyst according to any one of [1] to [5] above.
[8] The method for producing alcohol according to [6] above, wherein the carboxylic acid is 1,4-cyclohexanedicarboxylic acid, and the carboxylic acid ester is an ester of 1,4-cyclohexanedicarboxylic acid.
本発明によれば、高い触媒活性は維持したまま、副生物収率がさらに低い触媒、及び該触媒を用いた、カルボン酸及び/又はカルボン酸エステルからアルコールを製造するアルコールの製造方法、並びにカルボン酸及び/又はカルボン酸エステルの水素化方法を提供することができる。
According to the present invention, a catalyst with a lower by-product yield while maintaining high catalytic activity, a method for producing alcohol from a carboxylic acid and/or a carboxylic acid ester using the catalyst, and a method for producing alcohol from a carboxylic acid and/or a carboxylic acid ester, and A method for hydrogenating acids and/or carboxylic esters can be provided.
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
なお本願において、担体に担持させて用いる金属(ルテニウム、スズ、白金、その他必要に応じて用いる鉄等の金属)を総称して「金属成分」ということがある。また前記金属成分を担体に担持したもの、これを還元処理したもの、さらに酸化安定化処理したものを総称して「金属担持触媒」と表現する。また、かかる酸化安定化処理を行った「金属担持触媒」にさらに金属成分を担持させたものも「金属担持触媒」と表現する。なお、金属担持触媒において、還元処理する前の段階の触媒を「金属担持物」ということがある。 The embodiments of the present invention will be described in detail below, but the explanation of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is limited to these contents. Rather, it can be implemented with various modifications within the scope of the gist.
In this application, the metals (ruthenium, tin, platinum, and other metals such as iron used as necessary) supported on a carrier may be collectively referred to as "metal components." Further, catalysts in which the metal component is supported on a carrier, catalysts subjected to reduction treatment, and catalysts subjected to oxidation stabilization treatment are collectively referred to as "metal-supported catalysts." Furthermore, a "metal-supported catalyst" that has been subjected to such oxidation stabilization treatment and further supports a metal component is also referred to as a "metal-supported catalyst." In addition, in the metal-supported catalyst, the catalyst at a stage before reduction treatment is sometimes referred to as a "metal-supported material".
なお本願において、担体に担持させて用いる金属(ルテニウム、スズ、白金、その他必要に応じて用いる鉄等の金属)を総称して「金属成分」ということがある。また前記金属成分を担体に担持したもの、これを還元処理したもの、さらに酸化安定化処理したものを総称して「金属担持触媒」と表現する。また、かかる酸化安定化処理を行った「金属担持触媒」にさらに金属成分を担持させたものも「金属担持触媒」と表現する。なお、金属担持触媒において、還元処理する前の段階の触媒を「金属担持物」ということがある。 The embodiments of the present invention will be described in detail below, but the explanation of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is limited to these contents. Rather, it can be implemented with various modifications within the scope of the gist.
In this application, the metals (ruthenium, tin, platinum, and other metals such as iron used as necessary) supported on a carrier may be collectively referred to as "metal components." Further, catalysts in which the metal component is supported on a carrier, catalysts subjected to reduction treatment, and catalysts subjected to oxidation stabilization treatment are collectively referred to as "metal-supported catalysts." Furthermore, a "metal-supported catalyst" that has been subjected to such oxidation stabilization treatment and further supports a metal component is also referred to as a "metal-supported catalyst." In addition, in the metal-supported catalyst, the catalyst at a stage before reduction treatment is sometimes referred to as a "metal-supported material".
[金属担持触媒]
本発明の金属担持触媒(以下、単に「本触媒」ということがある。)は、担体に、前記金属成分を担持させた金属担持物を、通常、還元性気体により、還元処理して得られる。また、該還元処理された金属担持触媒を酸化処理して得られるものも本発明の金属担持触媒に包含される。またこれらの処理を行った後にさらに金属成分を追加したものも金属担持触媒に包含される。 [Metal supported catalyst]
The metal-supported catalyst of the present invention (hereinafter sometimes simply referred to as "the present catalyst") is obtained by reducing a metal-supported material in which the metal component is supported on a carrier, usually with a reducing gas. . Moreover, those obtained by oxidizing the reduced metal supported catalyst are also included in the metal supported catalyst of the present invention. Metal-supported catalysts also include catalysts to which a metal component is added after these treatments.
本発明の金属担持触媒(以下、単に「本触媒」ということがある。)は、担体に、前記金属成分を担持させた金属担持物を、通常、還元性気体により、還元処理して得られる。また、該還元処理された金属担持触媒を酸化処理して得られるものも本発明の金属担持触媒に包含される。またこれらの処理を行った後にさらに金属成分を追加したものも金属担持触媒に包含される。 [Metal supported catalyst]
The metal-supported catalyst of the present invention (hereinafter sometimes simply referred to as "the present catalyst") is obtained by reducing a metal-supported material in which the metal component is supported on a carrier, usually with a reducing gas. . Moreover, those obtained by oxidizing the reduced metal supported catalyst are also included in the metal supported catalyst of the present invention. Metal-supported catalysts also include catalysts to which a metal component is added after these treatments.
本発明の金属担持触媒は、ルテニウムとスズ及び白金を必須元素とした触媒(以下、「還元触媒」と称することがある。)であって、前記還元触媒が、さらに鉄、並びに、クロム及び/又はモリブデンが担持されてなる。具体的には、鉄とクロムの組み合わせ、鉄とモリブデンの組み合わせ、鉄、クロム及びモリブデンの3成分の組み合わせの態様がある。このような構成の金属担持触媒とすることで、水素化活性を維持したまま、C-C結合及びC-O結合の切断を伴う副生物の収率をさらに低く抑えることができる。
例えばカルボン酸として1,4-シクロヘキサンジカルボン酸を水素化すると、目的生成物である1,4-シクロヘキサンジメタノールと共にC-C切断を伴うシクロヘキサンメタノール、C-O切断を伴う4-メチルシクロヘキサンメタノールが副生物として生成し、目的生成物の収率が低下してしまう。これに対し、本発明の触媒を用いることで、副生物の生成を効果的に抑制することができる。
また、ジオール化合物である1,4-シクロヘキサンジメタノールはポリエステル、ポリウレタン等の樹脂原料として使用されることが多いが、その場合、シクロヘキサンメタノール、4-メチルシクロヘキサンメタノール等のモノアルコールは、重合停止剤として働くため、樹脂合成時に混入を避けなければならず除去操作が必要となる。一方、水素化反応での副生物の生成量が少なくなると、モノアルコールを除去する精製操作が簡略化又はスキップできるという利点がある。 The metal-supported catalyst of the present invention is a catalyst containing ruthenium, tin, and platinum as essential elements (hereinafter sometimes referred to as a "reduction catalyst"), and the reduction catalyst further contains iron, chromium, and/or platinum. Or it is supported by molybdenum. Specifically, there are embodiments of combinations of iron and chromium, combinations of iron and molybdenum, and combinations of the three components of iron, chromium, and molybdenum. By using a metal-supported catalyst having such a configuration, the yield of by-products accompanied by the cleavage of C--C bonds and C--O bonds can be further suppressed while maintaining the hydrogenation activity.
For example, when 1,4-cyclohexanedicarboxylic acid is hydrogenated as a carboxylic acid, cyclohexanemethanol with C-C cleavage and 4-methylcyclohexanemethanol with C-O cleavage are produced together with the target product 1,4-cyclohexanedimethanol. It is produced as a by-product, and the yield of the target product decreases. On the other hand, by using the catalyst of the present invention, the generation of by-products can be effectively suppressed.
In addition, 1,4-cyclohexanedimethanol, which is a diol compound, is often used as a raw material for resins such as polyester and polyurethane, but in that case, monoalcohols such as cyclohexanemethanol and 4-methylcyclohexanemethanol are used as polymerization terminators. Therefore, contamination must be avoided during resin synthesis, and removal operations are required. On the other hand, when the amount of by-products produced in the hydrogenation reaction is reduced, there is an advantage that the purification operation for removing monoalcohol can be simplified or skipped.
例えばカルボン酸として1,4-シクロヘキサンジカルボン酸を水素化すると、目的生成物である1,4-シクロヘキサンジメタノールと共にC-C切断を伴うシクロヘキサンメタノール、C-O切断を伴う4-メチルシクロヘキサンメタノールが副生物として生成し、目的生成物の収率が低下してしまう。これに対し、本発明の触媒を用いることで、副生物の生成を効果的に抑制することができる。
また、ジオール化合物である1,4-シクロヘキサンジメタノールはポリエステル、ポリウレタン等の樹脂原料として使用されることが多いが、その場合、シクロヘキサンメタノール、4-メチルシクロヘキサンメタノール等のモノアルコールは、重合停止剤として働くため、樹脂合成時に混入を避けなければならず除去操作が必要となる。一方、水素化反応での副生物の生成量が少なくなると、モノアルコールを除去する精製操作が簡略化又はスキップできるという利点がある。 The metal-supported catalyst of the present invention is a catalyst containing ruthenium, tin, and platinum as essential elements (hereinafter sometimes referred to as a "reduction catalyst"), and the reduction catalyst further contains iron, chromium, and/or platinum. Or it is supported by molybdenum. Specifically, there are embodiments of combinations of iron and chromium, combinations of iron and molybdenum, and combinations of the three components of iron, chromium, and molybdenum. By using a metal-supported catalyst having such a configuration, the yield of by-products accompanied by the cleavage of C--C bonds and C--O bonds can be further suppressed while maintaining the hydrogenation activity.
For example, when 1,4-cyclohexanedicarboxylic acid is hydrogenated as a carboxylic acid, cyclohexanemethanol with C-C cleavage and 4-methylcyclohexanemethanol with C-O cleavage are produced together with the target product 1,4-cyclohexanedimethanol. It is produced as a by-product, and the yield of the target product decreases. On the other hand, by using the catalyst of the present invention, the generation of by-products can be effectively suppressed.
In addition, 1,4-cyclohexanedimethanol, which is a diol compound, is often used as a raw material for resins such as polyester and polyurethane, but in that case, monoalcohols such as cyclohexanemethanol and 4-methylcyclohexanemethanol are used as polymerization terminators. Therefore, contamination must be avoided during resin synthesis, and removal operations are required. On the other hand, when the amount of by-products produced in the hydrogenation reaction is reduced, there is an advantage that the purification operation for removing monoalcohol can be simplified or skipped.
<担体>
本発明において用いられる担体としては、表面積が大きく、金属成分を担持し得るものであれば、特に限定されず、例えば活性炭、カーボンブラック等の炭素質担体;アルミナ、シリカ、珪藻土、ジルコニア、チタニア、ハフニア等の無機多孔質担体;炭化ケイ素、窒化ガリウム等が用いられる。中でも、活性炭、グラファイト、黒鉛等の炭素質担体、チタニア、ジルコニアが好ましく、安定性に優れる点、工業的に入手しやすい点で炭素質担体がより好ましく、高表面積となりメタルの分散性がすぐれ、反応活性を高くしやすい点から活性炭が更に好ましく用いられる。なお担体は、1種類を用いても、2種類以上を併用しても構わない。 <Carrier>
The carrier used in the present invention is not particularly limited as long as it has a large surface area and can support a metal component, such as carbonaceous carriers such as activated carbon and carbon black; alumina, silica, diatomaceous earth, zirconia, titania, Inorganic porous carriers such as hafnia; silicon carbide, gallium nitride, etc. are used. Among these, carbonaceous supports such as activated carbon, graphite, and graphite, titania, and zirconia are preferable, and carbonaceous supports are more preferable because they have excellent stability and are easy to obtain industrially, and have a high surface area and excellent metal dispersibility. Activated carbon is more preferably used since it is easy to increase the reaction activity. Note that one type of carrier may be used or two or more types may be used in combination.
本発明において用いられる担体としては、表面積が大きく、金属成分を担持し得るものであれば、特に限定されず、例えば活性炭、カーボンブラック等の炭素質担体;アルミナ、シリカ、珪藻土、ジルコニア、チタニア、ハフニア等の無機多孔質担体;炭化ケイ素、窒化ガリウム等が用いられる。中でも、活性炭、グラファイト、黒鉛等の炭素質担体、チタニア、ジルコニアが好ましく、安定性に優れる点、工業的に入手しやすい点で炭素質担体がより好ましく、高表面積となりメタルの分散性がすぐれ、反応活性を高くしやすい点から活性炭が更に好ましく用いられる。なお担体は、1種類を用いても、2種類以上を併用しても構わない。 <Carrier>
The carrier used in the present invention is not particularly limited as long as it has a large surface area and can support a metal component, such as carbonaceous carriers such as activated carbon and carbon black; alumina, silica, diatomaceous earth, zirconia, titania, Inorganic porous carriers such as hafnia; silicon carbide, gallium nitride, etc. are used. Among these, carbonaceous supports such as activated carbon, graphite, and graphite, titania, and zirconia are preferable, and carbonaceous supports are more preferable because they have excellent stability and are easy to obtain industrially, and have a high surface area and excellent metal dispersibility. Activated carbon is more preferably used since it is easy to increase the reaction activity. Note that one type of carrier may be used or two or more types may be used in combination.
担体は、そのまま用いても、担持に適した形に前処理して用いてもよい。例えば炭素質担体を用いる場合であれば、特開平10-71332号公報に記載のように、炭素質担体を硝酸で加熱処理してから用いることもできる。前記方法により、担体上での金属成分の分散性を良好にすることができ、得られる触媒の活性が向上する。
本発明において用いられる担体の形状、担体の大きさは特に限定されるものではないが、その形状を球状に換算した場合、平均一次粒子径は通常50μm以上、5mm以下であり、好ましくは4mm以下である。なお粒子径は、JIS規格 JIS Z8815に記載の篩分け試験方法で測定する。 The carrier may be used as it is or may be pretreated into a form suitable for supporting. For example, if a carbonaceous carrier is used, the carbonaceous carrier can be heat-treated with nitric acid before use, as described in JP-A-10-71332. By the method described above, the dispersibility of the metal component on the carrier can be improved, and the activity of the resulting catalyst can be improved.
The shape and size of the carrier used in the present invention are not particularly limited, but when the shape is converted into a sphere, the average primary particle diameter is usually 50 μm or more and 5 mm or less, preferably 4 mm or less. It is. Note that the particle size is measured by the sieving test method described in the JIS standard JIS Z8815.
本発明において用いられる担体の形状、担体の大きさは特に限定されるものではないが、その形状を球状に換算した場合、平均一次粒子径は通常50μm以上、5mm以下であり、好ましくは4mm以下である。なお粒子径は、JIS規格 JIS Z8815に記載の篩分け試験方法で測定する。 The carrier may be used as it is or may be pretreated into a form suitable for supporting. For example, if a carbonaceous carrier is used, the carbonaceous carrier can be heat-treated with nitric acid before use, as described in JP-A-10-71332. By the method described above, the dispersibility of the metal component on the carrier can be improved, and the activity of the resulting catalyst can be improved.
The shape and size of the carrier used in the present invention are not particularly limited, but when the shape is converted into a sphere, the average primary particle diameter is usually 50 μm or more and 5 mm or less, preferably 4 mm or less. It is. Note that the particle size is measured by the sieving test method described in the JIS standard JIS Z8815.
担体の好適な粒子径は、本触媒を用いる反応により異なるため、反応に応じて調整することが好ましい。具体的には、本触媒を使用する反応が、完全混合型反応の場合は、担体の粒子径は、通常50μm以上、好ましくは100μm以上、通常3mm以下、好ましくは2mm以下である。担体の粒子径は、小さいほど得られる触媒の単位質量あたりの活性が高くなる点で好ましいが、小さくなり過ぎると、反応液と触媒の分離が困難になる場合がある。すなわち、担体の粒子径が上記下限値以上であると反応活性の点で好ましく、上記上限値以下であると反応液との分離が容易であり好ましい。
なお、担体の形状が球状でない場合は、その担体の体積を求め、同一の体積の球状粒子の直径として換算するものとする。 Since the suitable particle size of the carrier varies depending on the reaction using the present catalyst, it is preferable to adjust it depending on the reaction. Specifically, when the reaction using the present catalyst is a completely mixed reaction, the particle size of the carrier is usually 50 μm or more, preferably 100 μm or more, and usually 3 mm or less, preferably 2 mm or less. The smaller the particle size of the carrier, the higher the activity per unit mass of the obtained catalyst, which is preferable, but if the particle size is too small, it may become difficult to separate the reaction liquid and the catalyst. That is, it is preferable in terms of reaction activity that the particle diameter of the carrier is at least the above-mentioned lower limit, and it is preferable that it is below the above-mentioned upper limit because separation from the reaction liquid is easy.
Note that when the shape of the carrier is not spherical, the volume of the carrier is determined and converted to the diameter of a spherical particle having the same volume.
なお、担体の形状が球状でない場合は、その担体の体積を求め、同一の体積の球状粒子の直径として換算するものとする。 Since the suitable particle size of the carrier varies depending on the reaction using the present catalyst, it is preferable to adjust it depending on the reaction. Specifically, when the reaction using the present catalyst is a completely mixed reaction, the particle size of the carrier is usually 50 μm or more, preferably 100 μm or more, and usually 3 mm or less, preferably 2 mm or less. The smaller the particle size of the carrier, the higher the activity per unit mass of the obtained catalyst, which is preferable, but if the particle size is too small, it may become difficult to separate the reaction liquid and the catalyst. That is, it is preferable in terms of reaction activity that the particle diameter of the carrier is at least the above-mentioned lower limit, and it is preferable that it is below the above-mentioned upper limit because separation from the reaction liquid is easy.
Note that when the shape of the carrier is not spherical, the volume of the carrier is determined and converted to the diameter of a spherical particle having the same volume.
また、本触媒を使用する反応が固定床反応の場合は、担体の粒子径は、通常0.5mm以上、5mm以下、好ましくは4mm以下、より好ましくは3mm以下である。前記下限値以上であると差圧により運転が困難になることがなく、前記上限値以下であると十分な反応活性が得られる。
Furthermore, when the reaction using the present catalyst is a fixed bed reaction, the particle size of the carrier is usually 0.5 mm or more and 5 mm or less, preferably 4 mm or less, and more preferably 3 mm or less. When it is above the lower limit, operation will not become difficult due to differential pressure, and when it is below the upper limit, sufficient reaction activity can be obtained.
<金属成分>
本発明の金属担持触媒は、ルテニウム、スズ、白金を必須元素として担体に担持させた触媒であって、前記触媒がさらに鉄、並びに、クロム及び/又はモリブデン(以下「鉄等のその他の金属」ということがある。)が担持されてなる金属担持触媒である。鉄と、クロム及び/又はモリブデンとを追加担持することで、副生物の生成をさらに抑制することができる。副生物の生成抑制効果は、鉄と、クロム及び/又はモリブデンとを担持することでより高い効果が得られる。
また、ルテニウム、スズ、白金、鉄、クロム、モリブデン以外に、本触媒を用いた還元反応等の反応に悪影響を及ぼさない限り、必要に応じ、さらにその他の金属を含んでいてもよく、好ましくはロジウム、タングステン、レニウム、バリウム、ホウ素等の金属種から選ばれる少なくとも1種類の金属を含むことができ、より好ましくはレニウムを含むものである。
なお、各金属成分の原料については、後述する。 <Metal component>
The metal-supported catalyst of the present invention is a catalyst in which ruthenium, tin, and platinum are supported as essential elements on a carrier, and the catalyst further includes iron, chromium, and/or molybdenum (hereinafter referred to as "other metals such as iron"). It is a metal-supported catalyst formed by supporting a metal. By additionally supporting iron, chromium and/or molybdenum, the generation of by-products can be further suppressed. A higher effect of suppressing the production of by-products can be obtained by supporting iron, chromium and/or molybdenum.
Furthermore, in addition to ruthenium, tin, platinum, iron, chromium, and molybdenum, other metals may be included as necessary, and preferably, as long as they do not adversely affect reactions such as reduction reactions using this catalyst. It can contain at least one metal selected from metal species such as rhodium, tungsten, rhenium, barium, and boron, and more preferably contains rhenium.
Note that the raw materials for each metal component will be described later.
本発明の金属担持触媒は、ルテニウム、スズ、白金を必須元素として担体に担持させた触媒であって、前記触媒がさらに鉄、並びに、クロム及び/又はモリブデン(以下「鉄等のその他の金属」ということがある。)が担持されてなる金属担持触媒である。鉄と、クロム及び/又はモリブデンとを追加担持することで、副生物の生成をさらに抑制することができる。副生物の生成抑制効果は、鉄と、クロム及び/又はモリブデンとを担持することでより高い効果が得られる。
また、ルテニウム、スズ、白金、鉄、クロム、モリブデン以外に、本触媒を用いた還元反応等の反応に悪影響を及ぼさない限り、必要に応じ、さらにその他の金属を含んでいてもよく、好ましくはロジウム、タングステン、レニウム、バリウム、ホウ素等の金属種から選ばれる少なくとも1種類の金属を含むことができ、より好ましくはレニウムを含むものである。
なお、各金属成分の原料については、後述する。 <Metal component>
The metal-supported catalyst of the present invention is a catalyst in which ruthenium, tin, and platinum are supported as essential elements on a carrier, and the catalyst further includes iron, chromium, and/or molybdenum (hereinafter referred to as "other metals such as iron"). It is a metal-supported catalyst formed by supporting a metal. By additionally supporting iron, chromium and/or molybdenum, the generation of by-products can be further suppressed. A higher effect of suppressing the production of by-products can be obtained by supporting iron, chromium and/or molybdenum.
Furthermore, in addition to ruthenium, tin, platinum, iron, chromium, and molybdenum, other metals may be included as necessary, and preferably, as long as they do not adversely affect reactions such as reduction reactions using this catalyst. It can contain at least one metal selected from metal species such as rhodium, tungsten, rhenium, barium, and boron, and more preferably contains rhenium.
Note that the raw materials for each metal component will be described later.
(金属成分の担持量)
本触媒の金属成分の担持量は、特に限定されるものではなく、金属毎に決定される。ルテニウムの担持量は、金属担持触媒の総質量に対する質量比で、通常1質量%以上、好ましくは3質量%以上、通常10質量%以下、好ましくは8質量%以下である。同様にスズの担持量は、金属担持触媒の総質量に対する質量比で、通常1質量%以上、好ましくは2質量%以上、通常15質量%以下、好ましくは10質量%以下である。また同様に白金の担持量は、金属担持触媒の総質量に対する質量比で、通常0.5質量%以上、通常7質量%以下、好ましくは5質量%以下である。これらの範囲にすることで、水素化触媒としての能力が高まるため好ましい。そして鉄と、クロム及び/又はモリブデンの担持量は好ましくはそれぞれ0.01質量%以上4質量%以下、より好ましくは2質量%以下である。この範囲にすることで、副生物の発生を顕著に低下させることができる。すなわち、鉄の担持量は0.01質量%以上、4質量%以下であることが好ましく、0.01質量%以上2質量%以下であることがさらに好ましい。クロム及び/又はモリブデンの担持量は、どちらか一方が担持される場合は、それぞれの金属の好適な担持量の範囲が0.01質量%以上4質量%以下であり、さらに好ましくは0.01質量%以上2質量%以下である。クロム及びモリブデンの両方が担持される場合は、両方の合計担持量が、上記範囲であることが好ましい。また、鉄とクロムの併用による副生物抑制の効果を十分に得るために、その組成比は前述の範囲であれば特に限定されないが、例えば100:1から1:100が用いられ、より好ましくは10:1から1:10、さらに好ましくは10:1から1:5である。また鉄とモリブデンの併用の場合にも同様の範囲が好ましい。一方コスト面で鉄よりクロムやモリブデンは高価であるため、この意味で鉄よりも少ない方が好ましい。 (Amount of metal component supported)
The amount of metal component supported in the present catalyst is not particularly limited, and is determined for each metal. The amount of ruthenium supported is usually 1% by mass or more, preferably 3% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Similarly, the amount of tin supported is usually 1% by mass or more, preferably 2% by mass or more, and usually 15% by mass or less, preferably 10% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Similarly, the amount of platinum supported is usually 0.5% by mass or more, usually 7% by mass or less, and preferably 5% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Setting the content within these ranges is preferable because the ability as a hydrogenation catalyst increases. The supported amounts of iron, chromium and/or molybdenum are each preferably 0.01% by mass or more and 4% by mass or less, more preferably 2% by mass or less. By setting it within this range, the generation of by-products can be significantly reduced. That is, the supported amount of iron is preferably 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or more and 2% by mass or less. When either one of chromium and/or molybdenum is supported, the preferred range of supported amount of each metal is 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or less. It is at least 2% by mass and not more than 2% by mass. When both chromium and molybdenum are supported, the total amount of both supported is preferably within the above range. In addition, in order to sufficiently obtain the effect of suppressing by-products by using iron and chromium in combination, the composition ratio is not particularly limited as long as it is within the above-mentioned range, but for example, 100:1 to 1:100 is used, and more preferably The ratio is 10:1 to 1:10, more preferably 10:1 to 1:5. The same range is also preferred when iron and molybdenum are used together. On the other hand, in terms of cost, chromium and molybdenum are more expensive than iron, so in this sense it is preferable to use less than iron.
本触媒の金属成分の担持量は、特に限定されるものではなく、金属毎に決定される。ルテニウムの担持量は、金属担持触媒の総質量に対する質量比で、通常1質量%以上、好ましくは3質量%以上、通常10質量%以下、好ましくは8質量%以下である。同様にスズの担持量は、金属担持触媒の総質量に対する質量比で、通常1質量%以上、好ましくは2質量%以上、通常15質量%以下、好ましくは10質量%以下である。また同様に白金の担持量は、金属担持触媒の総質量に対する質量比で、通常0.5質量%以上、通常7質量%以下、好ましくは5質量%以下である。これらの範囲にすることで、水素化触媒としての能力が高まるため好ましい。そして鉄と、クロム及び/又はモリブデンの担持量は好ましくはそれぞれ0.01質量%以上4質量%以下、より好ましくは2質量%以下である。この範囲にすることで、副生物の発生を顕著に低下させることができる。すなわち、鉄の担持量は0.01質量%以上、4質量%以下であることが好ましく、0.01質量%以上2質量%以下であることがさらに好ましい。クロム及び/又はモリブデンの担持量は、どちらか一方が担持される場合は、それぞれの金属の好適な担持量の範囲が0.01質量%以上4質量%以下であり、さらに好ましくは0.01質量%以上2質量%以下である。クロム及びモリブデンの両方が担持される場合は、両方の合計担持量が、上記範囲であることが好ましい。また、鉄とクロムの併用による副生物抑制の効果を十分に得るために、その組成比は前述の範囲であれば特に限定されないが、例えば100:1から1:100が用いられ、より好ましくは10:1から1:10、さらに好ましくは10:1から1:5である。また鉄とモリブデンの併用の場合にも同様の範囲が好ましい。一方コスト面で鉄よりクロムやモリブデンは高価であるため、この意味で鉄よりも少ない方が好ましい。 (Amount of metal component supported)
The amount of metal component supported in the present catalyst is not particularly limited, and is determined for each metal. The amount of ruthenium supported is usually 1% by mass or more, preferably 3% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Similarly, the amount of tin supported is usually 1% by mass or more, preferably 2% by mass or more, and usually 15% by mass or less, preferably 10% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Similarly, the amount of platinum supported is usually 0.5% by mass or more, usually 7% by mass or less, and preferably 5% by mass or less, as a mass ratio to the total mass of the metal-supported catalyst. Setting the content within these ranges is preferable because the ability as a hydrogenation catalyst increases. The supported amounts of iron, chromium and/or molybdenum are each preferably 0.01% by mass or more and 4% by mass or less, more preferably 2% by mass or less. By setting it within this range, the generation of by-products can be significantly reduced. That is, the supported amount of iron is preferably 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or more and 2% by mass or less. When either one of chromium and/or molybdenum is supported, the preferred range of supported amount of each metal is 0.01% by mass or more and 4% by mass or less, and more preferably 0.01% by mass or less. It is at least 2% by mass and not more than 2% by mass. When both chromium and molybdenum are supported, the total amount of both supported is preferably within the above range. In addition, in order to sufficiently obtain the effect of suppressing by-products by using iron and chromium in combination, the composition ratio is not particularly limited as long as it is within the above-mentioned range, but for example, 100:1 to 1:100 is used, and more preferably The ratio is 10:1 to 1:10, more preferably 10:1 to 1:5. The same range is also preferred when iron and molybdenum are used together. On the other hand, in terms of cost, chromium and molybdenum are more expensive than iron, so in this sense it is preferable to use less than iron.
金属担持触媒の総質量に対するルテニウム、スズ、白金および鉄等のその他の金属の合計の担持量は、特に限定されないが、通常5質量%以上、好ましくは8質量%以上、より好ましくは10質量%以上、通常40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。
なお上記金属の担持量は、担持した金属がすべて金属原子であると換算して求めた値である。また、本発明の還元後の金属担持触媒の大きさは特に限定されるものではないが、基本的に上記した担体の大きさと同じである。
なお、担持した金属(以下「メタル」と記載することがある。)の担持量は、例えば以下の方法で測定することができる。触媒を粉化・攪拌して均一な状態とし、必要に応じてディスク化して、蛍光X線分析により固体状態のままで分析することができる。または、アルカリ溶融分解またはマイクロウエーブを用いた加圧分解後に均一溶液とし、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で分析することができる。
このうち好ましくは、均一溶液とすることでより精度の高い測定結果が得られる点から、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)である。 The total supported amount of other metals such as ruthenium, tin, platinum, and iron based on the total mass of the metal-supported catalyst is not particularly limited, but is usually 5% by mass or more, preferably 8% by mass or more, and more preferably 10% by mass. The above amount is usually 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
Note that the amount of supported metal is a value calculated assuming that all supported metals are metal atoms. Further, the size of the metal-supported catalyst after reduction of the present invention is not particularly limited, but is basically the same as the size of the support described above.
Note that the amount of supported metal (hereinafter sometimes referred to as "metal") can be measured, for example, by the following method. The catalyst can be powdered and stirred to a uniform state, and if necessary, formed into a disk and analyzed in its solid state by fluorescent X-ray analysis. Alternatively, it can be made into a homogeneous solution after alkali melt decomposition or pressure decomposition using microwaves, and then analyzed by ICP emission spectroscopy (high-frequency inductively coupled plasma emission spectroscopy).
Among these, ICP optical emission spectrometry (high frequency inductively coupled plasma optical emission spectrometry) is preferred, since more accurate measurement results can be obtained by forming a homogeneous solution.
なお上記金属の担持量は、担持した金属がすべて金属原子であると換算して求めた値である。また、本発明の還元後の金属担持触媒の大きさは特に限定されるものではないが、基本的に上記した担体の大きさと同じである。
なお、担持した金属(以下「メタル」と記載することがある。)の担持量は、例えば以下の方法で測定することができる。触媒を粉化・攪拌して均一な状態とし、必要に応じてディスク化して、蛍光X線分析により固体状態のままで分析することができる。または、アルカリ溶融分解またはマイクロウエーブを用いた加圧分解後に均一溶液とし、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で分析することができる。
このうち好ましくは、均一溶液とすることでより精度の高い測定結果が得られる点から、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)である。 The total supported amount of other metals such as ruthenium, tin, platinum, and iron based on the total mass of the metal-supported catalyst is not particularly limited, but is usually 5% by mass or more, preferably 8% by mass or more, and more preferably 10% by mass. The above amount is usually 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
Note that the amount of supported metal is a value calculated assuming that all supported metals are metal atoms. Further, the size of the metal-supported catalyst after reduction of the present invention is not particularly limited, but is basically the same as the size of the support described above.
Note that the amount of supported metal (hereinafter sometimes referred to as "metal") can be measured, for example, by the following method. The catalyst can be powdered and stirred to a uniform state, and if necessary, formed into a disk and analyzed in its solid state by fluorescent X-ray analysis. Alternatively, it can be made into a homogeneous solution after alkali melt decomposition or pressure decomposition using microwaves, and then analyzed by ICP emission spectroscopy (high-frequency inductively coupled plasma emission spectroscopy).
Among these, ICP optical emission spectrometry (high frequency inductively coupled plasma optical emission spectrometry) is preferred, since more accurate measurement results can be obtained by forming a homogeneous solution.
<触媒の製造方法>
本発明において、触媒の製造方法は、担体に、前記金属成分を担持させる工程(以下、金属担持工程という)の後、得られた金属担持物を還元性気体により還元処理する工程を含む。以下、工程毎に順に述べる。 <Catalyst manufacturing method>
In the present invention, the method for producing a catalyst includes, after the step of supporting the metal component on a carrier (hereinafter referred to as metal supporting step), the step of reducing the obtained metal support with a reducing gas. Each process will be described in order below.
本発明において、触媒の製造方法は、担体に、前記金属成分を担持させる工程(以下、金属担持工程という)の後、得られた金属担持物を還元性気体により還元処理する工程を含む。以下、工程毎に順に述べる。 <Catalyst manufacturing method>
In the present invention, the method for producing a catalyst includes, after the step of supporting the metal component on a carrier (hereinafter referred to as metal supporting step), the step of reducing the obtained metal support with a reducing gas. Each process will be described in order below.
<<金属担持工程>>
金属担持工程は、上記した担体に、上記の金属成分を担持させ、金属担持物を得る工程である。金属成分の担持方法は特に限定されず公知の方法を用いることができる。担持の際には、上記金属成分の原料となる各種金属化合物の溶液又は分散液を用いることができる。 <<Metal support process>>
The metal supporting step is a step in which the above-described metal component is supported on the above-described carrier to obtain a metal-supported material. The method of supporting the metal component is not particularly limited, and any known method can be used. For supporting, solutions or dispersions of various metal compounds that serve as raw materials for the metal components can be used.
金属担持工程は、上記した担体に、上記の金属成分を担持させ、金属担持物を得る工程である。金属成分の担持方法は特に限定されず公知の方法を用いることができる。担持の際には、上記金属成分の原料となる各種金属化合物の溶液又は分散液を用いることができる。 <<Metal support process>>
The metal supporting step is a step in which the above-described metal component is supported on the above-described carrier to obtain a metal-supported material. The method of supporting the metal component is not particularly limited, and any known method can be used. For supporting, solutions or dispersions of various metal compounds that serve as raw materials for the metal components can be used.
(金属担持方法)
担体への金属成分の担持方法は、特に限定されるものではないが、通常各種の含浸法が適用できる。例えば、金属イオンの担体への吸着力を利用して飽和吸着量以下の金属イオンを吸着させる吸着法、飽和吸着量以上の金属イオンの溶液に担体を浸し過剰の溶液を取り除く平衡吸着法、担体の細孔容積と同じ量の金属イオンの溶液を添加して全て担体に吸着させるポアフィリング法、担体の吸水量に見合うまで金属イオンの溶液を加え、担体表面が均一に濡れた状態かつ過剰な溶液が存在しない状態で終了するincipient wetness法、担体に金属イオンの溶液を含浸させ撹拌しながら溶媒を蒸発させる蒸発乾固法、担体を乾燥状態にして溶液を吹き付ける噴霧法などがある。
上記方法のうち、ポアフィリング法、incipient wetness法、蒸発乾固法、噴霧法が好ましく、より好ましくはポアフィリング法、incipient wetness法、蒸発乾固法である。前記の方法により、ルテニウム、スズ、白金さらに鉄等のその他の金属成分を比較的均一に分散した状態で担持させることができる。 (Metal support method)
The method of supporting the metal component on the carrier is not particularly limited, but various impregnation methods are usually applicable. For example, an adsorption method that utilizes the adsorption power of metal ions to a carrier to adsorb metal ions below the saturated adsorption amount, an equilibrium adsorption method that immerses the carrier in a solution of metal ions that exceeds the saturated adsorption amount and removes the excess solution; The pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier and adsorbing all of the metal ions to the carrier.The pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier, and adding a solution of metal ions to match the amount of water absorbed by the carrier. There are the incipient wetness method, which completes the process in the absence of a solution, the evaporation dryness method, which impregnates a carrier with a solution of metal ions and evaporates the solvent while stirring, and the spraying method, which sprays the solution onto the carrier while it is in a dry state.
Among the above methods, the pore filling method, the incipient wetness method, the evaporation to dryness method, and the spraying method are preferred, and the pore filling method, the incipient wetness method, and the evaporation to dryness method are more preferred. By the method described above, ruthenium, tin, platinum, and other metal components such as iron can be supported in a relatively uniformly dispersed state.
担体への金属成分の担持方法は、特に限定されるものではないが、通常各種の含浸法が適用できる。例えば、金属イオンの担体への吸着力を利用して飽和吸着量以下の金属イオンを吸着させる吸着法、飽和吸着量以上の金属イオンの溶液に担体を浸し過剰の溶液を取り除く平衡吸着法、担体の細孔容積と同じ量の金属イオンの溶液を添加して全て担体に吸着させるポアフィリング法、担体の吸水量に見合うまで金属イオンの溶液を加え、担体表面が均一に濡れた状態かつ過剰な溶液が存在しない状態で終了するincipient wetness法、担体に金属イオンの溶液を含浸させ撹拌しながら溶媒を蒸発させる蒸発乾固法、担体を乾燥状態にして溶液を吹き付ける噴霧法などがある。
上記方法のうち、ポアフィリング法、incipient wetness法、蒸発乾固法、噴霧法が好ましく、より好ましくはポアフィリング法、incipient wetness法、蒸発乾固法である。前記の方法により、ルテニウム、スズ、白金さらに鉄等のその他の金属成分を比較的均一に分散した状態で担持させることができる。 (Metal support method)
The method of supporting the metal component on the carrier is not particularly limited, but various impregnation methods are usually applicable. For example, an adsorption method that utilizes the adsorption power of metal ions to a carrier to adsorb metal ions below the saturated adsorption amount, an equilibrium adsorption method that immerses the carrier in a solution of metal ions that exceeds the saturated adsorption amount and removes the excess solution; The pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier and adsorbing all of the metal ions to the carrier.The pore-filling method involves adding a solution of metal ions in an amount equal to the pore volume of the carrier, and adding a solution of metal ions to match the amount of water absorbed by the carrier. There are the incipient wetness method, which completes the process in the absence of a solution, the evaporation dryness method, which impregnates a carrier with a solution of metal ions and evaporates the solvent while stirring, and the spraying method, which sprays the solution onto the carrier while it is in a dry state.
Among the above methods, the pore filling method, the incipient wetness method, the evaporation to dryness method, and the spraying method are preferred, and the pore filling method, the incipient wetness method, and the evaporation to dryness method are more preferred. By the method described above, ruthenium, tin, platinum, and other metal components such as iron can be supported in a relatively uniformly dispersed state.
担持は、担持する全メタル溶液を調製後一括で担持してもよいし、メタルごとに分割担持してもよい。また分割担持する場合は、一種ごとに分割担持してもよいし、複数種のメタル溶液で分割担持してもよい。担持工程を短縮できる点から、全メタル溶液を一括担持するか、複数種のメタルでの分割担持が好ましい。分割担持するタイミングは特に限定されず、単に複数種のメタルを何回かに分けて担持してもよいし、水素還元までの工程の途中まで担持した後に、分割担持してもよいし、水素還元後の金属担持触媒に分割担持してもよい。
For supporting, all the metal solutions to be supported may be prepared and then supported at once, or each metal may be supported separately. Further, in the case of carrying the metal separately, it may be carried separately for each type, or it may be carried separately by a plurality of metal solutions. From the viewpoint of shortening the supporting process, it is preferable to support the entire metal solution at once or to support the metals in divided manner. The timing of split-supporting is not particularly limited, and multiple types of metals may be simply supported in several steps, or after the process up to hydrogen reduction is carried out, split-supporting may be carried out, or hydrogen It may be supported in parts on the metal-supported catalyst after reduction.
(金属化合物)
担持に用いる金属化合物としては、特に限定されるものではなく、担持方法により適宜選択することができる。例えば塩化物、臭化物、ヨウ化物等のハロゲン化物;硝酸塩、硫酸塩などの鉱酸塩;酢酸塩等の有機酸塩;金属水酸化物、金属酸化物、有機金属化合物、金属錯体等を用いることができる。この中では、ハロゲン化物、鉱酸塩、有機酸塩等が好ましく、ハロゲン化物、鉱酸塩がより好ましく、ハロゲン化物を用いるのが更に好ましく、ハロゲン化物のうち特に塩酸塩等の塩化物が好ましい。また上記金属化合物の少なくとも1種が塩化物であることが好ましく、そのすべてが塩化物であることがより好ましい。塩化物を用いることにより、溶液状態で金属が錯化し、担持した担体上での各金属の分散状態が均一になるものと考えられ、安定的に担持される。また得られる触媒中のルテニウム、スズ、白金さらに鉄等のその他の金属成分による合金粒子の成長が抑制され、活性、選択性が向上するとともに、反応中の触媒の安定性が向上する。 (metal compound)
The metal compound used for supporting is not particularly limited, and can be appropriately selected depending on the supporting method. For example, halides such as chlorides, bromides, and iodides; mineral acid salts such as nitrates and sulfates; organic acid salts such as acetates; metal hydroxides, metal oxides, organometallic compounds, metal complexes, etc. Can be done. Among these, halides, mineral acid salts, organic acid salts, etc. are preferable, halides and mineral acid salts are more preferable, it is even more preferable to use halides, and among the halides, chlorides such as hydrochloride are particularly preferable. . Further, it is preferable that at least one kind of the above-mentioned metal compound is a chloride, and it is more preferable that all of them are chlorides. It is thought that by using a chloride, the metals are complexed in a solution state, and the dispersion state of each metal on the supported carrier becomes uniform, so that the metals are stably supported. In addition, the growth of alloy particles due to other metal components such as ruthenium, tin, platinum, and iron in the resulting catalyst is suppressed, and the activity and selectivity are improved, as well as the stability of the catalyst during the reaction.
担持に用いる金属化合物としては、特に限定されるものではなく、担持方法により適宜選択することができる。例えば塩化物、臭化物、ヨウ化物等のハロゲン化物;硝酸塩、硫酸塩などの鉱酸塩;酢酸塩等の有機酸塩;金属水酸化物、金属酸化物、有機金属化合物、金属錯体等を用いることができる。この中では、ハロゲン化物、鉱酸塩、有機酸塩等が好ましく、ハロゲン化物、鉱酸塩がより好ましく、ハロゲン化物を用いるのが更に好ましく、ハロゲン化物のうち特に塩酸塩等の塩化物が好ましい。また上記金属化合物の少なくとも1種が塩化物であることが好ましく、そのすべてが塩化物であることがより好ましい。塩化物を用いることにより、溶液状態で金属が錯化し、担持した担体上での各金属の分散状態が均一になるものと考えられ、安定的に担持される。また得られる触媒中のルテニウム、スズ、白金さらに鉄等のその他の金属成分による合金粒子の成長が抑制され、活性、選択性が向上するとともに、反応中の触媒の安定性が向上する。 (metal compound)
The metal compound used for supporting is not particularly limited, and can be appropriately selected depending on the supporting method. For example, halides such as chlorides, bromides, and iodides; mineral acid salts such as nitrates and sulfates; organic acid salts such as acetates; metal hydroxides, metal oxides, organometallic compounds, metal complexes, etc. Can be done. Among these, halides, mineral acid salts, organic acid salts, etc. are preferable, halides and mineral acid salts are more preferable, it is even more preferable to use halides, and among the halides, chlorides such as hydrochloride are particularly preferable. . Further, it is preferable that at least one kind of the above-mentioned metal compound is a chloride, and it is more preferable that all of them are chlorides. It is thought that by using a chloride, the metals are complexed in a solution state, and the dispersion state of each metal on the supported carrier becomes uniform, so that the metals are stably supported. In addition, the growth of alloy particles due to other metal components such as ruthenium, tin, platinum, and iron in the resulting catalyst is suppressed, and the activity and selectivity are improved, as well as the stability of the catalyst during the reaction.
より具体的には、ルテニウムの場合は、塩化ルテニウム、硝酸ルテニウムニトロシル、トリス(アセチルアセトナート)ルテニウム等が挙げられる。これらのルテニウム塩は、1種を単独で用いてもよく、2種以上を併用してもよい。
スズの場合は、具体的には、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド等のスズ化合物が挙げられる。スズ化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
白金の場合は、白金前駆体化合物が用いられ、白金前駆体化合物としては、ヘキサクロリド白金(IV)酸(六水和物等)、テトラクロロ白金(II)酸カリウム、ヘキサクロロ白金(IV)酸カリウム、テトラシアノ白金(II)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム(六水和物)、ヘキサヒドロキシ白金(IV)酸水素、テトラシアノ白金(II)酸カリウム(水和物)、ヘキサクロロ白金酸(IV)テトラブチルアンモニウム等が挙げられる。白金前駆体化合物は1種を単独で用いてもよく、2種以上を併用してもよい。 More specifically, examples of ruthenium include ruthenium chloride, ruthenium nitrosyl nitrate, tris(acetylacetonate)ruthenium, and the like. These ruthenium salts may be used alone or in combination of two or more.
In the case of tin, specific examples include tin compounds such as tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, and dibutyltin dimethoxide. . One type of tin compound may be used alone, or two or more types may be used in combination.
In the case of platinum, a platinum precursor compound is used, and platinum precursor compounds include hexachloroplatinic (IV) acid (hexahydrate, etc.), potassium tetrachloroplatinate (II), hexachloroplatinic (IV) acid. Potassium, potassium tetracyanoplatinate(II), sodium hexachloroplatinate(IV) (hexahydrate), hydrogen hexahydroxyplatinate(IV), potassium tetracyanoplatinate(II) (hydrate), hexachloroplatinate ( IV) Tetrabutylammonium and the like. One type of platinum precursor compound may be used alone, or two or more types may be used in combination.
スズの場合は、具体的には、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド等のスズ化合物が挙げられる。スズ化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
白金の場合は、白金前駆体化合物が用いられ、白金前駆体化合物としては、ヘキサクロリド白金(IV)酸(六水和物等)、テトラクロロ白金(II)酸カリウム、ヘキサクロロ白金(IV)酸カリウム、テトラシアノ白金(II)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム(六水和物)、ヘキサヒドロキシ白金(IV)酸水素、テトラシアノ白金(II)酸カリウム(水和物)、ヘキサクロロ白金酸(IV)テトラブチルアンモニウム等が挙げられる。白金前駆体化合物は1種を単独で用いてもよく、2種以上を併用してもよい。 More specifically, examples of ruthenium include ruthenium chloride, ruthenium nitrosyl nitrate, tris(acetylacetonate)ruthenium, and the like. These ruthenium salts may be used alone or in combination of two or more.
In the case of tin, specific examples include tin compounds such as tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, and dibutyltin dimethoxide. . One type of tin compound may be used alone, or two or more types may be used in combination.
In the case of platinum, a platinum precursor compound is used, and platinum precursor compounds include hexachloroplatinic (IV) acid (hexahydrate, etc.), potassium tetrachloroplatinate (II), hexachloroplatinic (IV) acid. Potassium, potassium tetracyanoplatinate(II), sodium hexachloroplatinate(IV) (hexahydrate), hydrogen hexahydroxyplatinate(IV), potassium tetracyanoplatinate(II) (hydrate), hexachloroplatinate ( IV) Tetrabutylammonium and the like. One type of platinum precursor compound may be used alone, or two or more types may be used in combination.
鉄等のその他の金属化合物として、具体的には、以下に例示される鉄塩、クロム化合物、モリブデン化合物を使用することができる。
鉄塩としては、塩化鉄、硝酸鉄、硫酸鉄及び鉄アセチルアセトナートよりなる群から選ばれたものを使用するのが好ましい。
クロム化合物としては、硝酸クロム、硫酸クロム、塩化クロム等の無機酸塩や酢酸クロム、シュウ酸クロム、クロムアセチルアセトナート等の有機酸塩、酸化クロム触媒の製造に用いることが知られている種々のものを用いることができる。
モリブデン化合物としては、酸化状態のモリブデン元素を含むモリブデン化合物が好ましく、例えば、三酸化モリブデン、モリブデン酸、モリブデン酸塩、ヘテロポリ酸等を挙げることができる。中でも三酸化モリブデン、モリブデン酸塩がより好ましい。モリブデン酸塩としては例えばパラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム等がある。モリブデン原料は、1種を用いてもよく、2種以上を併用してもよい。 As other metal compounds such as iron, specifically, iron salts, chromium compounds, and molybdenum compounds illustrated below can be used.
As the iron salt, it is preferable to use one selected from the group consisting of iron chloride, iron nitrate, iron sulfate and iron acetylacetonate.
Examples of chromium compounds include inorganic acid salts such as chromium nitrate, chromium sulfate, and chromium chloride, organic acid salts such as chromium acetate, chromium oxalate, and chromium acetylacetonate, and various types known to be used in the production of chromium oxide catalysts. can be used.
As the molybdenum compound, a molybdenum compound containing a molybdenum element in an oxidized state is preferable, and examples thereof include molybdenum trioxide, molybdic acid, molybdate salts, and heteropolyacids. Among these, molybdenum trioxide and molybdate are more preferred. Examples of molybdates include ammonium paramolybdate, ammonium dimolybdate, and ammonium tetramolybdate. One type of molybdenum raw material may be used, or two or more types may be used in combination.
鉄塩としては、塩化鉄、硝酸鉄、硫酸鉄及び鉄アセチルアセトナートよりなる群から選ばれたものを使用するのが好ましい。
クロム化合物としては、硝酸クロム、硫酸クロム、塩化クロム等の無機酸塩や酢酸クロム、シュウ酸クロム、クロムアセチルアセトナート等の有機酸塩、酸化クロム触媒の製造に用いることが知られている種々のものを用いることができる。
モリブデン化合物としては、酸化状態のモリブデン元素を含むモリブデン化合物が好ましく、例えば、三酸化モリブデン、モリブデン酸、モリブデン酸塩、ヘテロポリ酸等を挙げることができる。中でも三酸化モリブデン、モリブデン酸塩がより好ましい。モリブデン酸塩としては例えばパラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム等がある。モリブデン原料は、1種を用いてもよく、2種以上を併用してもよい。 As other metal compounds such as iron, specifically, iron salts, chromium compounds, and molybdenum compounds illustrated below can be used.
As the iron salt, it is preferable to use one selected from the group consisting of iron chloride, iron nitrate, iron sulfate and iron acetylacetonate.
Examples of chromium compounds include inorganic acid salts such as chromium nitrate, chromium sulfate, and chromium chloride, organic acid salts such as chromium acetate, chromium oxalate, and chromium acetylacetonate, and various types known to be used in the production of chromium oxide catalysts. can be used.
As the molybdenum compound, a molybdenum compound containing a molybdenum element in an oxidized state is preferable, and examples thereof include molybdenum trioxide, molybdic acid, molybdate salts, and heteropolyacids. Among these, molybdenum trioxide and molybdate are more preferred. Examples of molybdates include ammonium paramolybdate, ammonium dimolybdate, and ammonium tetramolybdate. One type of molybdenum raw material may be used, or two or more types may be used in combination.
(溶媒)
前記金属化合物を担体に担持する際、各種溶媒を用いて金属化合物を溶解、又は分散して、各種担持方法に用いることができる。このとき用いる溶媒の種類は、金属化合物を溶解または分散することができ、後に実施する金属担持物の焼成及び水素還元、さらには本願触媒を用いた水素化反応に悪影響を及ぼさなければ特に限定されるものではなく、例えばアセトン等のケトン溶媒、メタノール、エタノール等のアルコール溶媒、テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル溶媒、水等が挙げられる。これらの溶媒は単独で用いても、混合溶媒として用いてもよい。本発明では、上述のように、前記金属化合物として、好ましくはハロゲン化物、より好ましくは塩化物が用いられるが、これらハロゲン化物の溶解度が高いため、好ましくは水が用いられる。
また、金属化合物を溶解又は分散する際、溶媒以外に、各種の添加剤を加えてもよい。例えば、特開平10-15388号公報に記載のように、カルボン酸及び/又はカルボニル化合物溶液を添加することで、担体に担持させた際、担体上での各金属成分の分散性を改良することができる。 (solvent)
When supporting the metal compound on a carrier, the metal compound can be dissolved or dispersed using various solvents and used in various supporting methods. The type of solvent used at this time is not particularly limited as long as it can dissolve or disperse the metal compound and does not adversely affect the subsequent calcination and hydrogen reduction of the metal support, as well as the hydrogenation reaction using the present catalyst. Examples include ketone solvents such as acetone, alcohol solvents such as methanol and ethanol, ether solvents such as tetrahydrofuran and ethylene glycol dimethyl ether, and water. These solvents may be used alone or as a mixed solvent. In the present invention, as described above, a halide, more preferably a chloride is used as the metal compound, and since these halides have high solubility, water is preferably used.
Moreover, when dissolving or dispersing the metal compound, various additives may be added in addition to the solvent. For example, as described in JP-A-10-15388, by adding a carboxylic acid and/or carbonyl compound solution, the dispersibility of each metal component on the carrier can be improved when supported on the carrier. Can be done.
前記金属化合物を担体に担持する際、各種溶媒を用いて金属化合物を溶解、又は分散して、各種担持方法に用いることができる。このとき用いる溶媒の種類は、金属化合物を溶解または分散することができ、後に実施する金属担持物の焼成及び水素還元、さらには本願触媒を用いた水素化反応に悪影響を及ぼさなければ特に限定されるものではなく、例えばアセトン等のケトン溶媒、メタノール、エタノール等のアルコール溶媒、テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル溶媒、水等が挙げられる。これらの溶媒は単独で用いても、混合溶媒として用いてもよい。本発明では、上述のように、前記金属化合物として、好ましくはハロゲン化物、より好ましくは塩化物が用いられるが、これらハロゲン化物の溶解度が高いため、好ましくは水が用いられる。
また、金属化合物を溶解又は分散する際、溶媒以外に、各種の添加剤を加えてもよい。例えば、特開平10-15388号公報に記載のように、カルボン酸及び/又はカルボニル化合物溶液を添加することで、担体に担持させた際、担体上での各金属成分の分散性を改良することができる。 (solvent)
When supporting the metal compound on a carrier, the metal compound can be dissolved or dispersed using various solvents and used in various supporting methods. The type of solvent used at this time is not particularly limited as long as it can dissolve or disperse the metal compound and does not adversely affect the subsequent calcination and hydrogen reduction of the metal support, as well as the hydrogenation reaction using the present catalyst. Examples include ketone solvents such as acetone, alcohol solvents such as methanol and ethanol, ether solvents such as tetrahydrofuran and ethylene glycol dimethyl ether, and water. These solvents may be used alone or as a mixed solvent. In the present invention, as described above, a halide, more preferably a chloride is used as the metal compound, and since these halides have high solubility, water is preferably used.
Moreover, when dissolving or dispersing the metal compound, various additives may be added in addition to the solvent. For example, as described in JP-A-10-15388, by adding a carboxylic acid and/or carbonyl compound solution, the dispersibility of each metal component on the carrier can be improved when supported on the carrier. Can be done.
<金属担持物>
前記金属成分を担体に担持した金属担持物は、必要に応じ、乾燥して用いることができ、乾燥して用いることが好ましい。金属担持物を未乾燥で後続する還元処理を実施した場合、反応活性が低くなる場合があり、特に、引き続き後述する脱ハロゲン処理を実施する場合、脱ハロゲン処理に通常用いるアルカリ存在下での金属塩の溶出を抑制することができる点で、乾燥することが好ましい。
乾燥方法は、担持時に使用した溶媒等が除去されればよく、特に限定はされない。通常は不活性ガス存在下または流通下で行なわれる。
乾燥する圧力は、特に限定はされないが、通常、常圧下、または減圧条件下で行なう。
乾燥する温度は、特に限定はされないが、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、通常80℃以上で実施する。 <Metal support>
The metal-supported material in which the metal component is supported on a carrier can be used after being dried, if necessary, and preferably used after being dried. If the metal support is subjected to the subsequent reduction treatment without drying, the reaction activity may be lowered, and especially when the dehalogenation treatment described below is subsequently performed, the metal support is Drying is preferable in that it can suppress salt elution.
The drying method is not particularly limited as long as it removes the solvent used during support. Usually, it is carried out in the presence or flow of an inert gas.
The pressure for drying is not particularly limited, but it is usually carried out under normal pressure or reduced pressure conditions.
The drying temperature is not particularly limited, but is usually 300°C or lower, preferably 250°C or lower, more preferably 200°C or lower, and usually 80°C or higher.
前記金属成分を担体に担持した金属担持物は、必要に応じ、乾燥して用いることができ、乾燥して用いることが好ましい。金属担持物を未乾燥で後続する還元処理を実施した場合、反応活性が低くなる場合があり、特に、引き続き後述する脱ハロゲン処理を実施する場合、脱ハロゲン処理に通常用いるアルカリ存在下での金属塩の溶出を抑制することができる点で、乾燥することが好ましい。
乾燥方法は、担持時に使用した溶媒等が除去されればよく、特に限定はされない。通常は不活性ガス存在下または流通下で行なわれる。
乾燥する圧力は、特に限定はされないが、通常、常圧下、または減圧条件下で行なう。
乾燥する温度は、特に限定はされないが、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、通常80℃以上で実施する。 <Metal support>
The metal-supported material in which the metal component is supported on a carrier can be used after being dried, if necessary, and preferably used after being dried. If the metal support is subjected to the subsequent reduction treatment without drying, the reaction activity may be lowered, and especially when the dehalogenation treatment described below is subsequently performed, the metal support is Drying is preferable in that it can suppress salt elution.
The drying method is not particularly limited as long as it removes the solvent used during support. Usually, it is carried out in the presence or flow of an inert gas.
The pressure for drying is not particularly limited, but it is usually carried out under normal pressure or reduced pressure conditions.
The drying temperature is not particularly limited, but is usually 300°C or lower, preferably 250°C or lower, more preferably 200°C or lower, and usually 80°C or higher.
<脱ハロゲン処理及び洗浄>
前記金属担持物は、後述する還元工程の前に、必要に応じて脱ハロゲン処理を行なうことができる。前述の金属担持工程の際に、特に金属成分の原料として、塩化物等のハロゲン化物を用いた場合、後述する還元工程において、ハロゲン化合物が還元装置内で発生することがある。実験室スケールの処理量では問題とならないが、工業的に大量に還元処理をする場合、大量のハロゲン化合物が還元装置内で発生し、排気ガスの処理が必要になる場合があると共に、装置の腐食がおこる場合がある。そのため還元工程を実施する前には、脱ハロゲン処理をすることが好ましい。
脱ハロゲン処理の方法としては、特に限定されないが、通常は、前記金属担持物を、気相又は液相でアルカリ性化合物と接触させ、金属担持物中のハロゲン化物を反応させた後、気相処理又は洗浄にて除去することができる。中でも、操作の容易性、金属担持物からのハロゲン化物除去の効率の良さから、液相でアルカリ性化合物と接触させて処理し、その後洗浄により除去することが好ましい。具体的にはアルカリ性水溶液と接触させた後、水洗することがより好ましい。 <Dehalogenation treatment and cleaning>
The metal support can be subjected to a dehalogenation treatment, if necessary, before the reduction step described below. Particularly when a halide such as a chloride is used as a raw material for a metal component during the metal supporting step described above, a halogen compound may be generated in the reduction apparatus in the reduction step described below. This is not a problem at laboratory-scale throughput, but when reducing industrially in large quantities, a large amount of halogen compounds are generated in the reduction equipment, which may require exhaust gas treatment and may cause problems with the equipment. Corrosion may occur. Therefore, it is preferable to carry out dehalogenation treatment before carrying out the reduction step.
The method for dehalogenation treatment is not particularly limited, but usually the metal support is brought into contact with an alkaline compound in the gas phase or liquid phase to react with the halide in the metal support, followed by gas phase treatment. Or it can be removed by washing. Among these, from the viewpoint of ease of operation and high efficiency of removing halides from the metal support, it is preferable to treat the halides by bringing them into contact with an alkaline compound in a liquid phase, and then remove them by washing. Specifically, it is more preferable to wash with water after contacting with an alkaline aqueous solution.
前記金属担持物は、後述する還元工程の前に、必要に応じて脱ハロゲン処理を行なうことができる。前述の金属担持工程の際に、特に金属成分の原料として、塩化物等のハロゲン化物を用いた場合、後述する還元工程において、ハロゲン化合物が還元装置内で発生することがある。実験室スケールの処理量では問題とならないが、工業的に大量に還元処理をする場合、大量のハロゲン化合物が還元装置内で発生し、排気ガスの処理が必要になる場合があると共に、装置の腐食がおこる場合がある。そのため還元工程を実施する前には、脱ハロゲン処理をすることが好ましい。
脱ハロゲン処理の方法としては、特に限定されないが、通常は、前記金属担持物を、気相又は液相でアルカリ性化合物と接触させ、金属担持物中のハロゲン化物を反応させた後、気相処理又は洗浄にて除去することができる。中でも、操作の容易性、金属担持物からのハロゲン化物除去の効率の良さから、液相でアルカリ性化合物と接触させて処理し、その後洗浄により除去することが好ましい。具体的にはアルカリ性水溶液と接触させた後、水洗することがより好ましい。 <Dehalogenation treatment and cleaning>
The metal support can be subjected to a dehalogenation treatment, if necessary, before the reduction step described below. Particularly when a halide such as a chloride is used as a raw material for a metal component during the metal supporting step described above, a halogen compound may be generated in the reduction apparatus in the reduction step described below. This is not a problem at laboratory-scale throughput, but when reducing industrially in large quantities, a large amount of halogen compounds are generated in the reduction equipment, which may require exhaust gas treatment and may cause problems with the equipment. Corrosion may occur. Therefore, it is preferable to carry out dehalogenation treatment before carrying out the reduction step.
The method for dehalogenation treatment is not particularly limited, but usually the metal support is brought into contact with an alkaline compound in the gas phase or liquid phase to react with the halide in the metal support, followed by gas phase treatment. Or it can be removed by washing. Among these, from the viewpoint of ease of operation and high efficiency of removing halides from the metal support, it is preferable to treat the halides by bringing them into contact with an alkaline compound in a liquid phase, and then remove them by washing. Specifically, it is more preferable to wash with water after contacting with an alkaline aqueous solution.
脱ハロゲン処理温度は、特に限定されるものではないが、通常10℃以上、好ましくは20℃以上、通常150℃以下、好ましくは100℃以下、より好ましくは80℃以下で行う。前記下限値以上であると、脱ハロゲン処理を効率的に行うことができ、また、前記上限値以下であると、溶媒、処理に用いるアルカリ化合物の揮散、熱分解等が生じない。
The dehalogenation treatment temperature is not particularly limited, but is usually carried out at 10°C or higher, preferably 20°C or higher, and usually 150°C or lower, preferably 100°C or lower, more preferably 80°C or lower. When it is above the lower limit, dehalogenation treatment can be performed efficiently, and when it is below the upper limit, volatilization, thermal decomposition, etc. of the solvent and the alkali compound used in the treatment do not occur.
脱ハロゲン処理にアルカリ性水溶液を使用する場合、アルカリ性水溶液のpHは、特に限定はされないが、通常pHは7.5以上、好ましくは8.0以上、通常13.0以下、好ましくは12.5以下である。前記上限値以下であるとpHが高すぎることによる、担持金属の変質の恐れがなく、後述する洗浄過程で担持金属の溶出が起こりにくい。また前記下限値以上であると、十分な脱ハロゲンが行なわれる。
When using an alkaline aqueous solution for dehalogenation treatment, the pH of the alkaline aqueous solution is not particularly limited, but is usually 7.5 or higher, preferably 8.0 or higher, and usually 13.0 or lower, preferably 12.5 or lower. It is. When the pH is below the upper limit, there is no risk of deterioration of the supported metal due to too high pH, and elution of the supported metal is less likely to occur during the cleaning process described below. Further, when the amount is equal to or higher than the lower limit, sufficient dehalogenation is carried out.
アルカリ化合物の種類としては、たとえば,アルカリ金属の炭酸塩、重炭酸塩、アンモニア又は炭酸アンモニウム、重炭酸アンモニウム等を用いることができる。これらは、単独で用いても2種以上を混合して用いてもよい。なかでも弱塩基性のアルカリ化合物が好ましい。アンモニアやアンモニウム塩などの弱塩基性のアルカリ化合物を用いた方が、強塩基性のアルカリ化合物を用いるよりも活性の高い触媒が得られる傾向がある。
As the type of alkali compound, for example, alkali metal carbonate, bicarbonate, ammonia, ammonium carbonate, ammonium bicarbonate, etc. can be used. These may be used alone or in combination of two or more. Among these, weakly basic alkaline compounds are preferred. The use of a weakly basic alkali compound such as ammonia or ammonium salt tends to yield a catalyst with higher activity than the use of a strongly basic alkali compound.
アルカリ化合物の量としては、担体に含有されているハロゲンイオンに対して通常は0.1~50当量、好ましくは1~20当量、さらに好ましくは1~10当量用いる。アルカリ化合物は、通常水溶液として用いるが、メタノール、エタノール、アセトン、更にはエチレングリコールジメチルエーテル等の水溶性の溶媒や、さらにはこれらと水との混合溶媒を用いてもよい。アルカリ性水溶液は、金属担持物の金属成分を担持している担体の細孔を完全に充填する量、すなわち担体の細孔容量以上用いるのが好ましい。アルカリ性水溶液の使用量は、アルカリ性水溶液の濃度にも依存するため、特に限定はされないが、通常、用いる金属担時物の担体の細孔容量の0.8倍以上20倍以下、好ましくは1倍以上10倍以下、更に好ましくは1倍以上5倍以下である。
The amount of the alkali compound used is usually 0.1 to 50 equivalents, preferably 1 to 20 equivalents, and more preferably 1 to 10 equivalents relative to the halogen ions contained in the carrier. The alkaline compound is usually used as an aqueous solution, but a water-soluble solvent such as methanol, ethanol, acetone, or even ethylene glycol dimethyl ether, or a mixed solvent of these and water may also be used. It is preferable to use the alkaline aqueous solution in an amount that completely fills the pores of the carrier supporting the metal component of the metal support, that is, an amount equal to or greater than the pore capacity of the carrier. The amount of the alkaline aqueous solution to be used is not particularly limited as it depends on the concentration of the alkaline aqueous solution, but is usually 0.8 times or more and 20 times or less, preferably 1 time, the pore volume of the metal carrier used. It is not less than 1 times and not more than 10 times, more preferably not less than 1 time and not more than 5 times.
アルカリ化合物による処理を経た金属担持物は、過剰のアルカリ化合物や生成したハロゲン化物を洗浄除去することが好ましい。洗浄には、過剰のアルカリ化合物、生成したハロゲン化物を溶解する溶液であれば使用可能であるが、その中でも水が好ましい。その場合、洗浄温度は特に限定されず、通常10℃以上、100℃以下で洗浄を実施するが、温水での洗浄効率が良いことから好ましくは40℃以上、より好ましくは50℃以上である。
前記アルカリ処理後、または前記洗浄後に、必要に応じ、さらに乾燥を行ってもよい。乾燥条件としては、上記の金属担持物の乾燥と同様の条件が用いられる。 It is preferable to wash and remove excess alkali compounds and generated halides from the metal support that has been treated with an alkali compound. For cleaning, any solution that dissolves excess alkaline compounds and generated halides can be used, but water is preferred among these. In that case, the washing temperature is not particularly limited, and is usually carried out at a temperature of 10°C or higher and 100°C or lower, but is preferably 40°C or higher, more preferably 50°C or higher, since cleaning efficiency with hot water is good.
After the alkali treatment or the washing, drying may be further performed if necessary. As the drying conditions, the same conditions as those for drying the metal-supported material described above are used.
前記アルカリ処理後、または前記洗浄後に、必要に応じ、さらに乾燥を行ってもよい。乾燥条件としては、上記の金属担持物の乾燥と同様の条件が用いられる。 It is preferable to wash and remove excess alkali compounds and generated halides from the metal support that has been treated with an alkali compound. For cleaning, any solution that dissolves excess alkaline compounds and generated halides can be used, but water is preferred among these. In that case, the washing temperature is not particularly limited, and is usually carried out at a temperature of 10°C or higher and 100°C or lower, but is preferably 40°C or higher, more preferably 50°C or higher, since cleaning efficiency with hot water is good.
After the alkali treatment or the washing, drying may be further performed if necessary. As the drying conditions, the same conditions as those for drying the metal-supported material described above are used.
<還元処理及び還元性気体>
前記金属担持物は、還元性気体により、還元処理を行ない、金属担持触媒とすることが好ましい。本願発明における還元性気体とは、還元性を有するものであれば特に限定されるものではなく、例えば、水素、メタノール、ヒドラジン等が用いられ、好ましくは水素である。つまり本発明の金属担持触媒は、水素還元を経て調製されたものであることが好ましい。
なお、本発明における還元処理では、還元性気体の種類によらず還元反応が起こり、金属担持触媒となる。還元処理に必要な還元性気体の量は、「水素吸収量」として表現する。
本発明においては、特に限定はされないが、金属担持物の還元処理を一段で実施してもよいし、多段階で還元処理を実施してもよい。 <Reduction treatment and reducing gas>
It is preferable that the metal support is subjected to a reduction treatment using a reducing gas to form a metal support catalyst. The reducing gas in the present invention is not particularly limited as long as it has reducing properties; for example, hydrogen, methanol, hydrazine, etc. are used, and hydrogen is preferred. That is, the metal-supported catalyst of the present invention is preferably prepared through hydrogen reduction.
In addition, in the reduction treatment in the present invention, a reduction reaction occurs regardless of the type of reducing gas, resulting in a metal-supported catalyst. The amount of reducing gas required for reduction treatment is expressed as "hydrogen absorption amount."
In the present invention, although not particularly limited, the reduction treatment of the metal support may be carried out in one stage or may be carried out in multiple stages.
前記金属担持物は、還元性気体により、還元処理を行ない、金属担持触媒とすることが好ましい。本願発明における還元性気体とは、還元性を有するものであれば特に限定されるものではなく、例えば、水素、メタノール、ヒドラジン等が用いられ、好ましくは水素である。つまり本発明の金属担持触媒は、水素還元を経て調製されたものであることが好ましい。
なお、本発明における還元処理では、還元性気体の種類によらず還元反応が起こり、金属担持触媒となる。還元処理に必要な還元性気体の量は、「水素吸収量」として表現する。
本発明においては、特に限定はされないが、金属担持物の還元処理を一段で実施してもよいし、多段階で還元処理を実施してもよい。 <Reduction treatment and reducing gas>
It is preferable that the metal support is subjected to a reduction treatment using a reducing gas to form a metal support catalyst. The reducing gas in the present invention is not particularly limited as long as it has reducing properties; for example, hydrogen, methanol, hydrazine, etc. are used, and hydrogen is preferred. That is, the metal-supported catalyst of the present invention is preferably prepared through hydrogen reduction.
In addition, in the reduction treatment in the present invention, a reduction reaction occurs regardless of the type of reducing gas, resulting in a metal-supported catalyst. The amount of reducing gas required for reduction treatment is expressed as "hydrogen absorption amount."
In the present invention, although not particularly limited, the reduction treatment of the metal support may be carried out in one stage or may be carried out in multiple stages.
(還元処理温度)
本発明の金属担持触媒の製造時においては、処理温度域を制御して還元処理を実施することが好ましい。
還元処理温度は、特に限定されるものではなく、一定温度であっても、変化させてもよい。通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、通常650℃以下、好ましくは600℃以下、より好ましくは580℃以下である。前記上限温度以下であると、金属成分のシンタリングや、担体への悪影響がなく、一方、前記下限値以上であると、還元反応が十分に進む。
還元処理は、具体的には、好ましい温度範囲の特定の温度に一定時間保持した状態で行なってもよいし、好ましい温度範囲を一定時間昇温しながら行なってもよい。反応時間の効率化の観点では、還元処理によって、金属担持物が発熱を伴い、反応系の温度が上昇するため、一定の時間で昇温しながら還元処理を行なうことが好ましい。一方、激しい発熱を伴う場合には、反応の制御を正確に行なえるように一定の温度で保持する方法が好ましい。 (Reduction treatment temperature)
When manufacturing the metal-supported catalyst of the present invention, it is preferable to control the treatment temperature range and carry out the reduction treatment.
The reduction treatment temperature is not particularly limited, and may be a constant temperature or may be varied. The temperature is usually 80°C or higher, preferably 100°C or higher, more preferably 150°C or higher, and usually 650°C or lower, preferably 600°C or lower, and more preferably 580°C or lower. When the temperature is below the upper limit, there is no sintering of the metal component and no adverse effect on the carrier, while when it is above the lower limit, the reduction reaction proceeds sufficiently.
Specifically, the reduction treatment may be performed while maintaining a specific temperature within a preferred temperature range for a certain period of time, or may be performed while increasing the temperature within a preferred temperature range for a certain period of time. From the viewpoint of increasing the efficiency of the reaction time, it is preferable to perform the reduction treatment while increasing the temperature over a certain period of time, since the metal support generates heat and the temperature of the reaction system increases due to the reduction treatment. On the other hand, if severe heat generation is involved, it is preferable to maintain the temperature at a constant temperature so that the reaction can be accurately controlled.
本発明の金属担持触媒の製造時においては、処理温度域を制御して還元処理を実施することが好ましい。
還元処理温度は、特に限定されるものではなく、一定温度であっても、変化させてもよい。通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、通常650℃以下、好ましくは600℃以下、より好ましくは580℃以下である。前記上限温度以下であると、金属成分のシンタリングや、担体への悪影響がなく、一方、前記下限値以上であると、還元反応が十分に進む。
還元処理は、具体的には、好ましい温度範囲の特定の温度に一定時間保持した状態で行なってもよいし、好ましい温度範囲を一定時間昇温しながら行なってもよい。反応時間の効率化の観点では、還元処理によって、金属担持物が発熱を伴い、反応系の温度が上昇するため、一定の時間で昇温しながら還元処理を行なうことが好ましい。一方、激しい発熱を伴う場合には、反応の制御を正確に行なえるように一定の温度で保持する方法が好ましい。 (Reduction treatment temperature)
When manufacturing the metal-supported catalyst of the present invention, it is preferable to control the treatment temperature range and carry out the reduction treatment.
The reduction treatment temperature is not particularly limited, and may be a constant temperature or may be varied. The temperature is usually 80°C or higher, preferably 100°C or higher, more preferably 150°C or higher, and usually 650°C or lower, preferably 600°C or lower, and more preferably 580°C or lower. When the temperature is below the upper limit, there is no sintering of the metal component and no adverse effect on the carrier, while when it is above the lower limit, the reduction reaction proceeds sufficiently.
Specifically, the reduction treatment may be performed while maintaining a specific temperature within a preferred temperature range for a certain period of time, or may be performed while increasing the temperature within a preferred temperature range for a certain period of time. From the viewpoint of increasing the efficiency of the reaction time, it is preferable to perform the reduction treatment while increasing the temperature over a certain period of time, since the metal support generates heat and the temperature of the reaction system increases due to the reduction treatment. On the other hand, if severe heat generation is involved, it is preferable to maintain the temperature at a constant temperature so that the reaction can be accurately controlled.
(還元性気体濃度)
本触媒の還元処理時の還元性気体の濃度は、特に限定されるものではないが、100体積%の還元性気体であっても、不活性ガスで希釈されていてもよい。ここで言う不活性ガスとは金属担持物、又は還元性気体と反応しないガスであり、窒素、水蒸気等が挙げられ、通常窒素が用いられる。不活性ガスで希釈された際の還元性気体の濃度は、全気体成分に対し、通常5体積%以上、好ましくは15体積%以上、より好ましくは30体積%以上であり、更に好ましくは50体積%以上である。また還元初期に低濃度の還元性気体を使用して、その後徐々に還元性気体の濃度を上げて還元処理してもよい。 (reducing gas concentration)
The concentration of the reducing gas during the reduction treatment of the present catalyst is not particularly limited, but may be 100% by volume or diluted with an inert gas. The inert gas mentioned here is a gas that does not react with the metal support or the reducing gas, and includes nitrogen, water vapor, etc., and nitrogen is usually used. The concentration of the reducing gas when diluted with an inert gas is usually 5% by volume or more, preferably 15% by volume or more, more preferably 30% by volume or more, and even more preferably 50% by volume, based on the total gas components. % or more. Alternatively, reduction treatment may be performed by using a low concentration of reducing gas at the initial stage of reduction, and then gradually increasing the concentration of the reducing gas.
本触媒の還元処理時の還元性気体の濃度は、特に限定されるものではないが、100体積%の還元性気体であっても、不活性ガスで希釈されていてもよい。ここで言う不活性ガスとは金属担持物、又は還元性気体と反応しないガスであり、窒素、水蒸気等が挙げられ、通常窒素が用いられる。不活性ガスで希釈された際の還元性気体の濃度は、全気体成分に対し、通常5体積%以上、好ましくは15体積%以上、より好ましくは30体積%以上であり、更に好ましくは50体積%以上である。また還元初期に低濃度の還元性気体を使用して、その後徐々に還元性気体の濃度を上げて還元処理してもよい。 (reducing gas concentration)
The concentration of the reducing gas during the reduction treatment of the present catalyst is not particularly limited, but may be 100% by volume or diluted with an inert gas. The inert gas mentioned here is a gas that does not react with the metal support or the reducing gas, and includes nitrogen, water vapor, etc., and nitrogen is usually used. The concentration of the reducing gas when diluted with an inert gas is usually 5% by volume or more, preferably 15% by volume or more, more preferably 30% by volume or more, and even more preferably 50% by volume, based on the total gas components. % or more. Alternatively, reduction treatment may be performed by using a low concentration of reducing gas at the initial stage of reduction, and then gradually increasing the concentration of the reducing gas.
(流量)
還元性気体の流量を決めるためには触媒の還元時の水素吸収量をあらかじめ把握しておくことが好ましい。水素吸収量の測定方法は特に限定されないが、通常は単位時間当たりの水素供給量を調整し、かつ単位時間当たりの昇温時間を調整しながら還元を行う方法、すなわちTemperature Programmed Reduction法(以下TPR法という)で行なうことが好ましい。この方法を用いることで本触媒の水素吸収量と、吸収温度を精密に測定することができる。
TPR法は、容器内に測定対象の触媒を置き、一定流量の水素を流しながら容器を昇温し、前記容器の入口と出口の水素量を連続的に測定する。このような方法により、金属担持触媒の還元時の水素吸収量を把握することができる。具体的には実施例に記載した方法で測定することができる。 (flow rate)
In order to determine the flow rate of the reducing gas, it is preferable to know in advance the amount of hydrogen absorbed by the catalyst during reduction. The method for measuring the amount of hydrogen absorbed is not particularly limited, but the usual method is to perform reduction while adjusting the amount of hydrogen supplied per unit time and the heating time per unit time, that is, the Temperature Programmed Reduction method (hereinafter referred to as TPR). It is preferable to do so using the law. By using this method, the hydrogen absorption amount and absorption temperature of the present catalyst can be precisely measured.
In the TPR method, a catalyst to be measured is placed in a container, the temperature of the container is raised while a constant flow of hydrogen is supplied, and the amount of hydrogen at the inlet and outlet of the container is continuously measured. By such a method, it is possible to grasp the amount of hydrogen absorbed during reduction of the metal-supported catalyst. Specifically, it can be measured by the method described in Examples.
還元性気体の流量を決めるためには触媒の還元時の水素吸収量をあらかじめ把握しておくことが好ましい。水素吸収量の測定方法は特に限定されないが、通常は単位時間当たりの水素供給量を調整し、かつ単位時間当たりの昇温時間を調整しながら還元を行う方法、すなわちTemperature Programmed Reduction法(以下TPR法という)で行なうことが好ましい。この方法を用いることで本触媒の水素吸収量と、吸収温度を精密に測定することができる。
TPR法は、容器内に測定対象の触媒を置き、一定流量の水素を流しながら容器を昇温し、前記容器の入口と出口の水素量を連続的に測定する。このような方法により、金属担持触媒の還元時の水素吸収量を把握することができる。具体的には実施例に記載した方法で測定することができる。 (flow rate)
In order to determine the flow rate of the reducing gas, it is preferable to know in advance the amount of hydrogen absorbed by the catalyst during reduction. The method for measuring the amount of hydrogen absorbed is not particularly limited, but the usual method is to perform reduction while adjusting the amount of hydrogen supplied per unit time and the heating time per unit time, that is, the Temperature Programmed Reduction method (hereinafter referred to as TPR). It is preferable to do so using the law. By using this method, the hydrogen absorption amount and absorption temperature of the present catalyst can be precisely measured.
In the TPR method, a catalyst to be measured is placed in a container, the temperature of the container is raised while a constant flow of hydrogen is supplied, and the amount of hydrogen at the inlet and outlet of the container is continuously measured. By such a method, it is possible to grasp the amount of hydrogen absorbed during reduction of the metal-supported catalyst. Specifically, it can be measured by the method described in Examples.
本触媒の還元処理時、還元性気体は、反応器中に密閉して用いてもよいし、反応器中を流通させて用いてもよいが、反応器中を流通していることが好ましい。還元処理により反応器中に、水や塩化アンモニウム等が副生し、これら副生物が、還元処理前の金属担持物、還元処理された金属担持物、得られた触媒への悪影響を及ぼす場合があり、これを防止することができる。すなわち、還元性気体を流通させることで、副生物を反応系外に排出することができる。
During the reduction treatment of the present catalyst, the reducing gas may be used while being sealed in the reactor or may be used while being circulated through the reactor, but it is preferable that the reducing gas is circulated through the reactor. Water, ammonium chloride, etc. are produced as by-products in the reactor during the reduction process, and these by-products may have an adverse effect on the metal support before the reduction process, the metal support after the reduction process, and the obtained catalyst. Yes, this can be prevented. That is, by circulating the reducing gas, byproducts can be discharged out of the reaction system.
還元処理に必要とされる還元性気体の量は、本発明の目的を達成する限りにおいて特に限定されるものではなく、還元する装置や、還元時の反応器の大きさや流動させる条件に応じて、適宜設定することができる。通常は、前記TPR法で求めた水素吸収量に対して、水素が触媒層を流通するような接触効率が高い条件で、各還元処理で必要な水素量の1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上、特に好ましくは5倍以上の流量とする。前記下限値以上であると、特に水素との接触効率が十分である場合は還元が十分に行なわれる。上限は特に制限はないが、排気ガスの処理の問題がなく、還元性気体による金属担持物又は製造された触媒の飛散がなく、さらには余分な還元性気体の浪費を避けるとの観点から、通常500倍以下、好ましくは200倍以下とする。
The amount of reducing gas required for the reduction treatment is not particularly limited as long as the purpose of the present invention is achieved, and it depends on the reduction equipment, the size of the reactor during reduction, and the flow conditions. , can be set as appropriate. Normally, the amount of hydrogen required for each reduction treatment is 1.5 times or more, preferably 2 times or more, under conditions of high contact efficiency such that hydrogen flows through the catalyst layer, relative to the amount of hydrogen absorbed as determined by the TPR method. The flow rate is set to be at least twice as high, more preferably at least 3 times, particularly preferably at least 5 times. When the amount is at least the lower limit, reduction is sufficiently carried out especially when the contact efficiency with hydrogen is sufficient. There is no particular upper limit, but from the viewpoints of no problem with exhaust gas treatment, no scattering of metal supports or manufactured catalysts by reducing gases, and furthermore, avoidance of waste of excess reducing gases, It is usually 500 times or less, preferably 200 times or less.
(還元処理時間)
還元処理に必要とされる時間は、処理する金属担持物等の量や、使用する装置等によって異なるが、通常7分以上、好ましくは15分以上、より好ましく30分以上、更に好ましくは1時間以上、最も好ましくは2時間以上であり、通常40時間以下、好ましくは30時間以下である。
前記金属担持物の還元の程度は、後述する還元処理後の酸化安定化した金属担持触媒中のハロゲン濃度により判断することができる。前記金属担持触媒中のハロゲン濃度は、特に限定されないが、通常0.8質量%以下、より好ましくは0.7質量%以下、さらに好ましくは0.5質量%以下である。当該ハロゲン濃度は低い方が、本触媒を用いた還元反応の際に、反応液中へのハロゲンの溶出が抑えられるため好ましい。ハロゲン濃度の下限は特に限定されないが、通常0.005質量%以上、好ましくは0.01質量%以上である。前記範囲内にハロゲン濃度がある場合、金属担持物の還元処理が十分に行われ、反応液中へのハロゲンの溶出が低く抑えられると共に、本触媒を用いた還元反応の活性が向上し、かつ反応選択性も向上し、さらに触媒の安定性も向上する。 (Reduction processing time)
The time required for the reduction treatment varies depending on the amount of metal support to be treated and the equipment used, but is usually 7 minutes or more, preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour. The time period is most preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less.
The degree of reduction of the metal support can be determined by the halogen concentration in the oxidation-stabilized metal support catalyst after the reduction treatment described below. The halogen concentration in the metal supported catalyst is not particularly limited, but is usually 0.8% by mass or less, more preferably 0.7% by mass or less, still more preferably 0.5% by mass or less. It is preferable that the halogen concentration is lower because elution of the halogen into the reaction solution can be suppressed during the reduction reaction using the present catalyst. The lower limit of the halogen concentration is not particularly limited, but is usually 0.005% by mass or more, preferably 0.01% by mass or more. When the halogen concentration is within the above range, the metal support is sufficiently reduced, the elution of halogen into the reaction solution is suppressed to a low level, and the activity of the reduction reaction using the present catalyst is improved. Reaction selectivity is also improved, and catalyst stability is also improved.
還元処理に必要とされる時間は、処理する金属担持物等の量や、使用する装置等によって異なるが、通常7分以上、好ましくは15分以上、より好ましく30分以上、更に好ましくは1時間以上、最も好ましくは2時間以上であり、通常40時間以下、好ましくは30時間以下である。
前記金属担持物の還元の程度は、後述する還元処理後の酸化安定化した金属担持触媒中のハロゲン濃度により判断することができる。前記金属担持触媒中のハロゲン濃度は、特に限定されないが、通常0.8質量%以下、より好ましくは0.7質量%以下、さらに好ましくは0.5質量%以下である。当該ハロゲン濃度は低い方が、本触媒を用いた還元反応の際に、反応液中へのハロゲンの溶出が抑えられるため好ましい。ハロゲン濃度の下限は特に限定されないが、通常0.005質量%以上、好ましくは0.01質量%以上である。前記範囲内にハロゲン濃度がある場合、金属担持物の還元処理が十分に行われ、反応液中へのハロゲンの溶出が低く抑えられると共に、本触媒を用いた還元反応の活性が向上し、かつ反応選択性も向上し、さらに触媒の安定性も向上する。 (Reduction processing time)
The time required for the reduction treatment varies depending on the amount of metal support to be treated and the equipment used, but is usually 7 minutes or more, preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour. The time period is most preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less.
The degree of reduction of the metal support can be determined by the halogen concentration in the oxidation-stabilized metal support catalyst after the reduction treatment described below. The halogen concentration in the metal supported catalyst is not particularly limited, but is usually 0.8% by mass or less, more preferably 0.7% by mass or less, still more preferably 0.5% by mass or less. It is preferable that the halogen concentration is lower because elution of the halogen into the reaction solution can be suppressed during the reduction reaction using the present catalyst. The lower limit of the halogen concentration is not particularly limited, but is usually 0.005% by mass or more, preferably 0.01% by mass or more. When the halogen concentration is within the above range, the metal support is sufficiently reduced, the elution of halogen into the reaction solution is suppressed to a low level, and the activity of the reduction reaction using the present catalyst is improved. Reaction selectivity is also improved, and catalyst stability is also improved.
<好ましい製造方法の態様>
本発明の触媒の製造方法は、上述の通り、金属担持工程、脱ハロゲン工程、洗浄工程、還元工程を経るが、好ましい製造方法の態様として、還元工程において、固定床で、還元性のガスを触媒に通過させる方法、トレイ、またはベルト上に静置している触媒に還元性のガスを流通させる方法、流動した触媒中に還元性のガスを流通させる方法がある。これらのうち、還元処理における金属担持物を流動させながら還元処理をさせることが好ましい。流動させながら還元処理をすることにより、還元処理時の金属担持物と、還元性気体の接触する表面積が増えるため、還元処理の効率が向上する。 <Aspects of preferred manufacturing method>
As mentioned above, the method for producing the catalyst of the present invention includes a metal supporting step, a dehalogenation step, a washing step, and a reduction step. In a preferred embodiment of the production method, a reducing gas is removed in a fixed bed in the reduction step. There are a method of passing the reducing gas through a catalyst, a method of passing the reducing gas through a catalyst placed on a tray or a belt, and a method of passing the reducing gas through the fluidized catalyst. Among these, it is preferable to carry out the reduction treatment while fluidizing the metal support in the reduction treatment. By performing the reduction treatment while flowing, the surface area in which the metal support and the reducing gas come into contact during the reduction treatment increases, so that the efficiency of the reduction treatment is improved.
本発明の触媒の製造方法は、上述の通り、金属担持工程、脱ハロゲン工程、洗浄工程、還元工程を経るが、好ましい製造方法の態様として、還元工程において、固定床で、還元性のガスを触媒に通過させる方法、トレイ、またはベルト上に静置している触媒に還元性のガスを流通させる方法、流動した触媒中に還元性のガスを流通させる方法がある。これらのうち、還元処理における金属担持物を流動させながら還元処理をさせることが好ましい。流動させながら還元処理をすることにより、還元処理時の金属担持物と、還元性気体の接触する表面積が増えるため、還元処理の効率が向上する。 <Aspects of preferred manufacturing method>
As mentioned above, the method for producing the catalyst of the present invention includes a metal supporting step, a dehalogenation step, a washing step, and a reduction step. In a preferred embodiment of the production method, a reducing gas is removed in a fixed bed in the reduction step. There are a method of passing the reducing gas through a catalyst, a method of passing the reducing gas through a catalyst placed on a tray or a belt, and a method of passing the reducing gas through the fluidized catalyst. Among these, it is preferable to carry out the reduction treatment while fluidizing the metal support in the reduction treatment. By performing the reduction treatment while flowing, the surface area in which the metal support and the reducing gas come into contact during the reduction treatment increases, so that the efficiency of the reduction treatment is improved.
具体的に流動させる方法としては、特に限定されるものではなく、還元処理する金属担持物等が、還元性気体との接触表面積が増えるような動きを伴っていればよく、例えば還元処理する金属担持物等の入った反応器を回転させる方法や、反応器中の金属担持物等が攪拌されたり、上下動をするような装置構成を組み込むといった方法がある。
具体的な流動方法としては、各種のキルン(加熱炉)を用いて処理する方法が挙げられる。
具体的に好ましい製造方法としては、例えば連続式キルンや、バッチ式キルンを用いる態様が挙げられる。 The specific method of fluidizing is not particularly limited, as long as the metal support to be reduced undergoes a movement that increases the contact surface area with the reducing gas, for example, the metal to be reduced There are methods such as rotating a reactor containing a supported material, and methods of incorporating an apparatus configuration in which the metal supported material in the reactor is stirred or moved up and down.
Specific flow methods include methods using various types of kilns (heating furnaces).
Specifically preferred manufacturing methods include, for example, modes using a continuous kiln or a batch kiln.
具体的な流動方法としては、各種のキルン(加熱炉)を用いて処理する方法が挙げられる。
具体的に好ましい製造方法としては、例えば連続式キルンや、バッチ式キルンを用いる態様が挙げられる。 The specific method of fluidizing is not particularly limited, as long as the metal support to be reduced undergoes a movement that increases the contact surface area with the reducing gas, for example, the metal to be reduced There are methods such as rotating a reactor containing a supported material, and methods of incorporating an apparatus configuration in which the metal supported material in the reactor is stirred or moved up and down.
Specific flow methods include methods using various types of kilns (heating furnaces).
Specifically preferred manufacturing methods include, for example, modes using a continuous kiln or a batch kiln.
(連続式キルン)
連続式キルンとしては、連続的に金属担持物を供給して還元を実施し、連続的に還元された触媒を排出できるものをいう。具体的には連続式ロータリーキルン、ローラーハースキルン、ベルトキルン、トンネルキルン等があるが、なかでも本発明の製造方法においては、金属担持物の流動性が高く、還元性気体との接触効率が高くなることから連続式ロータリーキルンが好ましい。 (continuous kiln)
A continuous kiln is one that can continuously supply a metal support to carry out reduction and continuously discharge the reduced catalyst. Specifically, there are continuous rotary kilns, roller hearth kilns, belt kilns, tunnel kilns, etc. Among them, the production method of the present invention has high fluidity of the metal support and high contact efficiency with the reducing gas. Therefore, a continuous rotary kiln is preferred.
連続式キルンとしては、連続的に金属担持物を供給して還元を実施し、連続的に還元された触媒を排出できるものをいう。具体的には連続式ロータリーキルン、ローラーハースキルン、ベルトキルン、トンネルキルン等があるが、なかでも本発明の製造方法においては、金属担持物の流動性が高く、還元性気体との接触効率が高くなることから連続式ロータリーキルンが好ましい。 (continuous kiln)
A continuous kiln is one that can continuously supply a metal support to carry out reduction and continuously discharge the reduced catalyst. Specifically, there are continuous rotary kilns, roller hearth kilns, belt kilns, tunnel kilns, etc. Among them, the production method of the present invention has high fluidity of the metal support and high contact efficiency with the reducing gas. Therefore, a continuous rotary kiln is preferred.
連続式キルンの運転条件については、前記した還元処理の条件を満たせば特に限定されるものではなく、使用する装置に応じ適宜設定することができる。通常は、連続式キルン中であれば、その還元性気体の流量や温度管理により、前記の還元処理条件を満たすように運転することができる。
連続式キルンは、連続的に金属担持物や還元性気体を供給できることから、連続式キルン内への金属担持物の供給方法や、還元性気体の流量をコントロールすることができる。 The operating conditions of the continuous kiln are not particularly limited as long as they satisfy the conditions for the reduction treatment described above, and can be set as appropriate depending on the equipment used. Normally, if a continuous kiln is used, it can be operated to satisfy the above-mentioned reduction processing conditions by controlling the flow rate and temperature of the reducing gas.
Since a continuous kiln can continuously supply a metal support and a reducing gas, it is possible to control the method of supplying a metal support into the continuous kiln and the flow rate of the reducing gas.
連続式キルンは、連続的に金属担持物や還元性気体を供給できることから、連続式キルン内への金属担持物の供給方法や、還元性気体の流量をコントロールすることができる。 The operating conditions of the continuous kiln are not particularly limited as long as they satisfy the conditions for the reduction treatment described above, and can be set as appropriate depending on the equipment used. Normally, if a continuous kiln is used, it can be operated to satisfy the above-mentioned reduction processing conditions by controlling the flow rate and temperature of the reducing gas.
Since a continuous kiln can continuously supply a metal support and a reducing gas, it is possible to control the method of supplying a metal support into the continuous kiln and the flow rate of the reducing gas.
連続式キルンにおける還元性気体の流量は、特に限定はされないが、金属担持物のTPR測定により算出される、還元に必要な水素量を「水素吸収量A(m3/kg)」とし、連続式キルンに投入される金属担持物の投入量をB(kg/h)としたとき、通常、水素流量は(1.5×A×B)m3/h以上であり、好ましくは(2×A×B)m3/h以上、より好ましくは(5×A×B)m3/h以上である。水素流量が前記下限値以上であると、触媒が吸収する十分な水素量が確保され、得られる触媒の性能が高く維持される。上限は特に制限されるものではないが、無駄な水素量を低減するため(1000×A×B)m3/h以下、好ましくは(500×A×B)m3/h以下、より好ましくは(300×A×B)m3/h以下である。
The flow rate of the reducing gas in the continuous kiln is not particularly limited, but the amount of hydrogen required for reduction, which is calculated by TPR measurement of the metal support, is the "hydrogen absorption amount A (m 3 / kg)", and the flow rate of the reducing gas in the continuous kiln is When the amount of metal support introduced into the kiln is B (kg/h), the hydrogen flow rate is usually at least (1.5×A×B) m 3 /h, preferably (2× A×B) m 3 /h or more, more preferably (5×A×B) m 3 /h or more. When the hydrogen flow rate is at least the lower limit, a sufficient amount of hydrogen is absorbed by the catalyst, and the performance of the resulting catalyst is maintained at a high level. The upper limit is not particularly limited, but in order to reduce the amount of wasted hydrogen, it is less than (1000 x A x B) m 3 /h, preferably less than (500 x A x B) m 3 /h, more preferably less than (500 x A x B) m 3 /h. (300×A×B) m 3 /h or less.
連続式キルンにおける還元処理を施す金属担持物の流動方向と、水素等の還元性気体の流通方向は、還元処理の状況により適宜調整可能であり、還元性気体の流通方向が、金属担持物の流動方向に対して併流、向流どちらでも実施可能である。中でも連続式キルンの出口に到達した触媒が、高純度の水素と接触できる点で、水素の流通方向が、金属担持物の流動方向に対して向流である(互いに対向方向である)ことが好ましい。
The flow direction of the metal support to be subjected to reduction treatment in a continuous kiln and the flow direction of reducing gas such as hydrogen can be adjusted as appropriate depending on the situation of the reduction treatment. It can be carried out either in co-current or counter-current to the flow direction. Above all, the catalyst that has reached the outlet of the continuous kiln can come into contact with high-purity hydrogen, and the flow direction of hydrogen is countercurrent to the flow direction of the metal support (they are opposite to each other). preferable.
連続式ロータリーキルンの回転速度は、特に限定されるものではない。回転速度が早ければ金属担持物と水素との接触効率が良くなるが、触媒の摩耗が起きることから、通常は0.5rpm以上、10rpm以下、好ましくは5rpm以下である。
The rotational speed of the continuous rotary kiln is not particularly limited. The higher the rotation speed, the better the contact efficiency between the metal support and hydrogen, but since the catalyst wears out, the rotation speed is usually 0.5 rpm or more and 10 rpm or less, preferably 5 rpm or less.
(バッチ式キルン)
バッチ式キルンとは、あらかじめ所定量の金属担持物をキルン内に仕込んでおき、還元性気体の流通下、目的の還元温度まで順次温度を上げていき所定温度で還元を実施することができるものをいい、具体的には、金属担持物を充填して処理する固定床式加熱炉、棚に乗せて加熱する棚段式加熱炉、焼成用台車が電気炉に出入りするシャトルキルン、バッチ式ロータリーキルン等が挙げられる。
金属担持物の還元性気体との接触効率から考えると、金属担持物を充填して処理する固定床式加熱炉、バッチ式ロータリーキルンが好ましく、均一に還元する上で、触媒を流動させる装置を有するバッチ式ロータリーキルンを用いて行なうことが好ましい。
連続式キルンが、装置上の制約から、通常、還元性気体を導入する際には流量一定で運転するのに対し、バッチ式キルンは、各バッチ毎に反応槽が存在するため、昇温方法、還元性気体の流量、濃度等を各バッチ毎に変えることができる。 (Batch type kiln)
A batch type kiln is one in which a predetermined amount of metal support is charged into the kiln in advance, and the temperature is gradually raised to the desired reduction temperature under the flow of reducing gas, allowing reduction to be carried out at a predetermined temperature. Specifically, it refers to fixed-bed heating furnaces that are filled with metal supports for processing, tray-type heating furnaces that are heated on shelves, shuttle kilns in which a firing cart moves in and out of the electric furnace, and batch-type rotary kilns. etc.
Considering the efficiency of contacting the metal support with the reducing gas, a fixed bed heating furnace or a batch rotary kiln, in which the metal support is filled and processed, is preferable, and in order to achieve uniform reduction, it has a device for fluidizing the catalyst. Preferably, a batch rotary kiln is used.
Continuous kilns usually operate at a constant flow rate when introducing reducing gas due to equipment constraints, whereas batch kilns have a reaction tank for each batch, so there is no need to raise the temperature. , the flow rate, concentration, etc. of the reducing gas can be changed for each batch.
バッチ式キルンとは、あらかじめ所定量の金属担持物をキルン内に仕込んでおき、還元性気体の流通下、目的の還元温度まで順次温度を上げていき所定温度で還元を実施することができるものをいい、具体的には、金属担持物を充填して処理する固定床式加熱炉、棚に乗せて加熱する棚段式加熱炉、焼成用台車が電気炉に出入りするシャトルキルン、バッチ式ロータリーキルン等が挙げられる。
金属担持物の還元性気体との接触効率から考えると、金属担持物を充填して処理する固定床式加熱炉、バッチ式ロータリーキルンが好ましく、均一に還元する上で、触媒を流動させる装置を有するバッチ式ロータリーキルンを用いて行なうことが好ましい。
連続式キルンが、装置上の制約から、通常、還元性気体を導入する際には流量一定で運転するのに対し、バッチ式キルンは、各バッチ毎に反応槽が存在するため、昇温方法、還元性気体の流量、濃度等を各バッチ毎に変えることができる。 (Batch type kiln)
A batch type kiln is one in which a predetermined amount of metal support is charged into the kiln in advance, and the temperature is gradually raised to the desired reduction temperature under the flow of reducing gas, allowing reduction to be carried out at a predetermined temperature. Specifically, it refers to fixed-bed heating furnaces that are filled with metal supports for processing, tray-type heating furnaces that are heated on shelves, shuttle kilns in which a firing cart moves in and out of the electric furnace, and batch-type rotary kilns. etc.
Considering the efficiency of contacting the metal support with the reducing gas, a fixed bed heating furnace or a batch rotary kiln, in which the metal support is filled and processed, is preferable, and in order to achieve uniform reduction, it has a device for fluidizing the catalyst. Preferably, a batch rotary kiln is used.
Continuous kilns usually operate at a constant flow rate when introducing reducing gas due to equipment constraints, whereas batch kilns have a reaction tank for each batch, so there is no need to raise the temperature. , the flow rate, concentration, etc. of the reducing gas can be changed for each batch.
(バッチ式キルンの運転条件)
バッチ式キルンの運転条件については、特に限定されるものではなく、装置の構成等に応じ適宜設定することができる。
本発明で好適に使用されるバッチ式ロータリーキルンは、あらかじめ所定量の金属担持物を仕込んだ後に昇温を開始することから、最終的な還元温度までの昇温時間を連続式ロータリーキルンより詳細にコントロールすることが可能である。
還元処理の時間は特に限定はされないが、通常1時間以上、好ましくは2時間以上であり、通常40時間以下、好ましくは30時間以下、より好ましくは10時間以下である。前記下限よりも短すぎると、急激な水素吸収が起きた場合、大量の金属担持物を一度に還元しているため、激しい発熱と共に、膨大な水素吸収が起きて触媒のシンタリングが進行すると共に、安定操作が困難になる場合がある。また、前記下限以上であると還元時間が確保され、還元が十分となり、触媒としての十分な反応活性、選択性が得られる。
一方、還元処理の時間が前記上限以下であると、触媒の生産性が確保でき、水素のロスもなく、工業的に有利である。 (Operating conditions for batch kiln)
The operating conditions of the batch kiln are not particularly limited, and can be set as appropriate depending on the configuration of the apparatus.
The batch-type rotary kiln that is preferably used in the present invention starts raising the temperature after charging a predetermined amount of metal support in advance, so the heating time to the final reduction temperature can be controlled more precisely than the continuous rotary kiln. It is possible to do so.
The time for the reduction treatment is not particularly limited, but is usually 1 hour or more, preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less, and more preferably 10 hours or less. If it is too short than the above lower limit, if rapid hydrogen absorption occurs, a large amount of metal support is reduced at once, so intense heat generation and enormous hydrogen absorption occur, causing sintering of the catalyst and progressing. , stable operation may become difficult. Moreover, when it is more than the said lower limit, reduction time will be ensured, reduction will be sufficient, and sufficient reaction activity and selectivity as a catalyst will be obtained.
On the other hand, when the reduction treatment time is below the above-mentioned upper limit, the productivity of the catalyst can be ensured and there is no loss of hydrogen, which is industrially advantageous.
バッチ式キルンの運転条件については、特に限定されるものではなく、装置の構成等に応じ適宜設定することができる。
本発明で好適に使用されるバッチ式ロータリーキルンは、あらかじめ所定量の金属担持物を仕込んだ後に昇温を開始することから、最終的な還元温度までの昇温時間を連続式ロータリーキルンより詳細にコントロールすることが可能である。
還元処理の時間は特に限定はされないが、通常1時間以上、好ましくは2時間以上であり、通常40時間以下、好ましくは30時間以下、より好ましくは10時間以下である。前記下限よりも短すぎると、急激な水素吸収が起きた場合、大量の金属担持物を一度に還元しているため、激しい発熱と共に、膨大な水素吸収が起きて触媒のシンタリングが進行すると共に、安定操作が困難になる場合がある。また、前記下限以上であると還元時間が確保され、還元が十分となり、触媒としての十分な反応活性、選択性が得られる。
一方、還元処理の時間が前記上限以下であると、触媒の生産性が確保でき、水素のロスもなく、工業的に有利である。 (Operating conditions for batch kiln)
The operating conditions of the batch kiln are not particularly limited, and can be set as appropriate depending on the configuration of the apparatus.
The batch-type rotary kiln that is preferably used in the present invention starts raising the temperature after charging a predetermined amount of metal support in advance, so the heating time to the final reduction temperature can be controlled more precisely than the continuous rotary kiln. It is possible to do so.
The time for the reduction treatment is not particularly limited, but is usually 1 hour or more, preferably 2 hours or more, and usually 40 hours or less, preferably 30 hours or less, and more preferably 10 hours or less. If it is too short than the above lower limit, if rapid hydrogen absorption occurs, a large amount of metal support is reduced at once, so intense heat generation and enormous hydrogen absorption occur, causing sintering of the catalyst and progressing. , stable operation may become difficult. Moreover, when it is more than the said lower limit, reduction time will be ensured, reduction will be sufficient, and sufficient reaction activity and selectivity as a catalyst will be obtained.
On the other hand, when the reduction treatment time is below the above-mentioned upper limit, the productivity of the catalyst can be ensured and there is no loss of hydrogen, which is industrially advantageous.
バッチ式ロータリーキルンを用いた場合、還元性気体の濃度、流量等をバッチ毎に適宜、還元処理の状況に応じて変えることができる。
バッチ式ロータリーキルンの運転における好ましい還元性気体の濃度は、上記記載と同様である。 When a batch type rotary kiln is used, the concentration, flow rate, etc. of the reducing gas can be appropriately changed for each batch depending on the situation of the reduction process.
The preferred reducing gas concentration in the operation of a batch rotary kiln is the same as described above.
バッチ式ロータリーキルンの運転における好ましい還元性気体の濃度は、上記記載と同様である。 When a batch type rotary kiln is used, the concentration, flow rate, etc. of the reducing gas can be appropriately changed for each batch depending on the situation of the reduction process.
The preferred reducing gas concentration in the operation of a batch rotary kiln is the same as described above.
還元性気体の流量は、特に限定されず、還元反応の状況に応じ適宜設定することができるが、還元終了までの必要な水素量を未還元触媒のTPR分析により算出し、通常その必要水素量の5倍以上、好ましくは10倍以上、より好ましくは20倍以上を使用する。また通常5000倍以下、好ましくは1000倍以下とする。前記下限値以上であれば、水素欠乏が起こることがなく、前記上限値以下であれば、余計な還元性気体を消費することがなく、経済的に有利になる。
バッチ式ロータリーキルンの回転速度は、特に限定されないが、早ければ水素との接触効率が良くなるが、触媒の摩耗が起きることから、通常0.5~10rpm、好ましくは0.5~5rpmで実施する。 The flow rate of the reducing gas is not particularly limited and can be set as appropriate depending on the situation of the reduction reaction, but the amount of hydrogen required until the reduction is completed is calculated by TPR analysis of the unreduced catalyst, and usually the amount of hydrogen required is calculated by TPR analysis of the unreduced catalyst. 5 times or more, preferably 10 times or more, more preferably 20 times or more. Further, it is usually 5000 times or less, preferably 1000 times or less. If it is above the lower limit, hydrogen deficiency will not occur, and if it is below the upper limit, unnecessary reducing gas will not be consumed, which will be economically advantageous.
The rotation speed of the batch type rotary kiln is not particularly limited, but the faster the rotation speed, the better the contact efficiency with hydrogen, but the wear of the catalyst will occur, so it is usually carried out at 0.5 to 10 rpm, preferably 0.5 to 5 rpm. .
バッチ式ロータリーキルンの回転速度は、特に限定されないが、早ければ水素との接触効率が良くなるが、触媒の摩耗が起きることから、通常0.5~10rpm、好ましくは0.5~5rpmで実施する。 The flow rate of the reducing gas is not particularly limited and can be set as appropriate depending on the situation of the reduction reaction, but the amount of hydrogen required until the reduction is completed is calculated by TPR analysis of the unreduced catalyst, and usually the amount of hydrogen required is calculated by TPR analysis of the unreduced catalyst. 5 times or more, preferably 10 times or more, more preferably 20 times or more. Further, it is usually 5000 times or less, preferably 1000 times or less. If it is above the lower limit, hydrogen deficiency will not occur, and if it is below the upper limit, unnecessary reducing gas will not be consumed, which will be economically advantageous.
The rotation speed of the batch type rotary kiln is not particularly limited, but the faster the rotation speed, the better the contact efficiency with hydrogen, but the wear of the catalyst will occur, so it is usually carried out at 0.5 to 10 rpm, preferably 0.5 to 5 rpm. .
(触媒の酸化安定化)
本発明の金属担持触媒の製造においては、前記金属担持物を還元して得られた金属担持触媒に対し、通常、酸化状態の制御を行なう。特に触媒を大量に製造する場合は、触媒の酸化安定化が行われることが好ましい。還元して得られた金属担持物触媒は、金属成分が還元されて高分散化された状態である。酸化安定化を行うことにより、そのまま空気中に取り出すのに比べ、急激な発熱により金属のシンタリングが起きる可能性を低減し、発火(可燃性担体であれば自身の発火、さらに周りの可燃物の発火)の可能性も減らすことができるため好ましい。コントロールされた条件で安定化することで、高分散性を維持し、その後の水素化反応で高活性を発現することができる。
前記酸化安定化の方法は、特に限定されないが、触媒に水を添加する方法または触媒を水に投入する方法、流通下、不活性ガスで希釈された低酸素濃度のガスで酸化安定化する方法、二酸化炭素で安定化する方法等がある。これらのうち、触媒に水を添加する方法または触媒を水に投入する方法、低酸素濃度のガスで酸化安定化する方法が好ましく、より好ましくは低酸素濃度のガスで酸化安定化する方法(以下、「徐酸化法」という。)であり、さらに低酸素濃度のガスを流通下で酸化安定化することが特に好ましい。 (Oxidation stabilization of catalyst)
In the production of the metal-supported catalyst of the present invention, the oxidation state of the metal-supported catalyst obtained by reducing the metal support is usually controlled. Particularly when producing a large amount of catalyst, it is preferable that the catalyst be stabilized by oxidation. The metal-supported catalyst obtained by reduction is in a state in which the metal components are reduced and highly dispersed. By performing oxidation stabilization, compared to taking it out into the air as it is, the possibility of metal sintering due to sudden heat generation is reduced, and ignition (if it is a combustible carrier, it will ignite itself, and it will also cause the surrounding combustibles to ignite). This is preferable because it can also reduce the possibility of ignition. By stabilizing it under controlled conditions, it is possible to maintain high dispersibility and exhibit high activity in the subsequent hydrogenation reaction.
The method of oxidation stabilization is not particularly limited, but includes a method of adding water to the catalyst, a method of pouring the catalyst into water, a method of oxidation stabilization with a low oxygen concentration gas diluted with an inert gas under circulation, and a method of oxidation stabilization. There are methods such as stabilization with carbon dioxide. Among these, the method of adding water to the catalyst, the method of pouring the catalyst into water, the method of oxidation stabilization with a gas with a low oxygen concentration, and the method of oxidation stabilization with a gas with a low oxygen concentration are more preferable (hereinafter referred to as (referred to as "slow oxidation method"), and it is particularly preferable to oxidize and stabilize a gas with a low oxygen concentration under circulation.
本発明の金属担持触媒の製造においては、前記金属担持物を還元して得られた金属担持触媒に対し、通常、酸化状態の制御を行なう。特に触媒を大量に製造する場合は、触媒の酸化安定化が行われることが好ましい。還元して得られた金属担持物触媒は、金属成分が還元されて高分散化された状態である。酸化安定化を行うことにより、そのまま空気中に取り出すのに比べ、急激な発熱により金属のシンタリングが起きる可能性を低減し、発火(可燃性担体であれば自身の発火、さらに周りの可燃物の発火)の可能性も減らすことができるため好ましい。コントロールされた条件で安定化することで、高分散性を維持し、その後の水素化反応で高活性を発現することができる。
前記酸化安定化の方法は、特に限定されないが、触媒に水を添加する方法または触媒を水に投入する方法、流通下、不活性ガスで希釈された低酸素濃度のガスで酸化安定化する方法、二酸化炭素で安定化する方法等がある。これらのうち、触媒に水を添加する方法または触媒を水に投入する方法、低酸素濃度のガスで酸化安定化する方法が好ましく、より好ましくは低酸素濃度のガスで酸化安定化する方法(以下、「徐酸化法」という。)であり、さらに低酸素濃度のガスを流通下で酸化安定化することが特に好ましい。 (Oxidation stabilization of catalyst)
In the production of the metal-supported catalyst of the present invention, the oxidation state of the metal-supported catalyst obtained by reducing the metal support is usually controlled. Particularly when producing a large amount of catalyst, it is preferable that the catalyst be stabilized by oxidation. The metal-supported catalyst obtained by reduction is in a state in which the metal components are reduced and highly dispersed. By performing oxidation stabilization, compared to taking it out into the air as it is, the possibility of metal sintering due to sudden heat generation is reduced, and ignition (if it is a combustible carrier, it will ignite itself, and it will also cause the surrounding combustibles to ignite). This is preferable because it can also reduce the possibility of ignition. By stabilizing it under controlled conditions, it is possible to maintain high dispersibility and exhibit high activity in the subsequent hydrogenation reaction.
The method of oxidation stabilization is not particularly limited, but includes a method of adding water to the catalyst, a method of pouring the catalyst into water, a method of oxidation stabilization with a low oxygen concentration gas diluted with an inert gas under circulation, and a method of oxidation stabilization. There are methods such as stabilization with carbon dioxide. Among these, the method of adding water to the catalyst, the method of pouring the catalyst into water, the method of oxidation stabilization with a gas with a low oxygen concentration, and the method of oxidation stabilization with a gas with a low oxygen concentration are more preferable (hereinafter referred to as (referred to as "slow oxidation method"), and it is particularly preferable to oxidize and stabilize a gas with a low oxygen concentration under circulation.
低酸素濃度のガスで酸化安定化するときの酸素濃度は、特に限定されないが、徐酸化開始時の酸素濃度として通常0.2体積%以上、好ましくは0.5体積%以上、一方10体積%以下、好ましくは8体積%以下、さらに好ましくは7体積%以下とする。前記下限値以上であると、完全に酸化安定化するための時間を短縮することができ、かつ安定化が十分となる。一方、前記上限値以下であると、触媒が高温とならないため失活の恐れがない。なお、低酸素濃度のガスを作るためには、空気を不活性ガスで希釈するのが好ましく、さらに不活性ガスとしては窒素が好ましい。
The oxygen concentration during oxidation stabilization with a gas with a low oxygen concentration is not particularly limited, but the oxygen concentration at the start of slow oxidation is usually 0.2% by volume or more, preferably 0.5% by volume or more, while 10% by volume. The content is preferably 8% by volume or less, more preferably 7% by volume or less. When it is at least the lower limit, the time required for complete oxidation stabilization can be shortened and stabilization is sufficient. On the other hand, if it is below the upper limit, the catalyst will not reach a high temperature, so there is no risk of deactivation. Note that in order to create a gas with a low oxygen concentration, it is preferable to dilute air with an inert gas, and nitrogen is more preferable as the inert gas.
徐酸化時の酸素濃度は、徐酸化開始時の酸素濃度のままで実施してもよいが、触媒内温が高温となり、触媒の変質が起きないのであれば、徐酸化を開始後、徐々に酸素濃度を上げていってもよい。
低酸素濃度での徐酸化安定時は、触媒の温度が130℃を超えないように制御することが好ましい。触媒の温度が130℃以下であると、急激な酸化が進行しないことから、触媒のシンタリングが進行することがなく、担体の強度が低下することなく、維持される。以上の観点から、触媒の温度は、より好ましくは120℃を超えないように、さらに好ましくは110℃を超えないように酸素濃度、流量をコントロールすることが好ましい。 The oxygen concentration during gradual oxidation may be carried out as it was at the start of gradual oxidation, but if the internal temperature of the catalyst becomes high and the catalyst does not deteriorate, the oxygen concentration may be changed gradually after starting gradual oxidation. The oxygen concentration may be increased.
When slow oxidation is stable at a low oxygen concentration, it is preferable to control the catalyst temperature so that it does not exceed 130°C. When the temperature of the catalyst is 130° C. or lower, rapid oxidation does not proceed, so sintering of the catalyst does not proceed, and the strength of the carrier is maintained without decreasing. From the above point of view, it is preferable to control the oxygen concentration and flow rate so that the temperature of the catalyst does not exceed 120°C, and even more preferably does not exceed 110°C.
低酸素濃度での徐酸化安定時は、触媒の温度が130℃を超えないように制御することが好ましい。触媒の温度が130℃以下であると、急激な酸化が進行しないことから、触媒のシンタリングが進行することがなく、担体の強度が低下することなく、維持される。以上の観点から、触媒の温度は、より好ましくは120℃を超えないように、さらに好ましくは110℃を超えないように酸素濃度、流量をコントロールすることが好ましい。 The oxygen concentration during gradual oxidation may be carried out as it was at the start of gradual oxidation, but if the internal temperature of the catalyst becomes high and the catalyst does not deteriorate, the oxygen concentration may be changed gradually after starting gradual oxidation. The oxygen concentration may be increased.
When slow oxidation is stable at a low oxygen concentration, it is preferable to control the catalyst temperature so that it does not exceed 130°C. When the temperature of the catalyst is 130° C. or lower, rapid oxidation does not proceed, so sintering of the catalyst does not proceed, and the strength of the carrier is maintained without decreasing. From the above point of view, it is preferable to control the oxygen concentration and flow rate so that the temperature of the catalyst does not exceed 120°C, and even more preferably does not exceed 110°C.
低酸素濃度のガスで酸化安定化する方法としては、固定床で低酸素濃度のガスを触媒に通過させる方法、トレイ、またはベルト上に静置している触媒に低酸素濃度ガスを流通させる方法、流動した触媒中に低酸素濃度のガスを流通させる方法がある。
金属担持触媒上の担持金属の分散性が良好であるほど酸化安定化が急激に進行し、かつ多量の酸素が反応するので、上記方法のうち、固定床で低酸素濃度のガスを触媒に通過させる方法、流動した触媒中に低酸素濃度のガスを流通させる方法が好ましく、さらに流動した触媒中に低酸素濃度のガスを流通させる方法が特に好ましい。 Methods for oxidation stabilization using low oxygen concentration gas include passing low oxygen concentration gas through a catalyst in a fixed bed, and passing low oxygen concentration gas through a catalyst that is left stationary on a tray or belt. There is a method in which gas with a low oxygen concentration is passed through a fluidized catalyst.
The better the dispersibility of the supported metal on the supported metal catalyst, the more rapid the oxidation stabilization will be, and the more oxygen will be reacted. A method of flowing a gas with a low oxygen concentration through a fluidized catalyst is preferred, and a method of flowing a gas with a low oxygen concentration through a fluidized catalyst is particularly preferred.
金属担持触媒上の担持金属の分散性が良好であるほど酸化安定化が急激に進行し、かつ多量の酸素が反応するので、上記方法のうち、固定床で低酸素濃度のガスを触媒に通過させる方法、流動した触媒中に低酸素濃度のガスを流通させる方法が好ましく、さらに流動した触媒中に低酸素濃度のガスを流通させる方法が特に好ましい。 Methods for oxidation stabilization using low oxygen concentration gas include passing low oxygen concentration gas through a catalyst in a fixed bed, and passing low oxygen concentration gas through a catalyst that is left stationary on a tray or belt. There is a method in which gas with a low oxygen concentration is passed through a fluidized catalyst.
The better the dispersibility of the supported metal on the supported metal catalyst, the more rapid the oxidation stabilization will be, and the more oxygen will be reacted. A method of flowing a gas with a low oxygen concentration through a fluidized catalyst is preferred, and a method of flowing a gas with a low oxygen concentration through a fluidized catalyst is particularly preferred.
(触媒の保存方法)
本発明の金属担持触媒を保存する際は、酸素濃度15体積%以下の雰囲気下で保存することが好ましい。このような雰囲気下で保存することで、酸化安定化を経ても酸化が緩やかに進行する場合、密閉容器内で緩やかに酸化を進行させることができる。酸素濃度の下限は特に限定はされないが、通常酸化を進行させるために0.2体積%以上であることが好ましい。
また、ガスで安定化した触媒は非常に吸湿性が高く、非水系の反応では大きな問題となることから、密閉容器内で保存することが好ましい。 (How to store catalyst)
When storing the metal-supported catalyst of the present invention, it is preferable to store it in an atmosphere with an oxygen concentration of 15% by volume or less. By storing in such an atmosphere, if oxidation proceeds slowly even after oxidation stabilization, oxidation can proceed slowly in a closed container. Although the lower limit of the oxygen concentration is not particularly limited, it is usually preferably 0.2% by volume or more in order to promote oxidation.
In addition, since the gas-stabilized catalyst is highly hygroscopic, which poses a major problem in non-aqueous reactions, it is preferable to store it in a closed container.
本発明の金属担持触媒を保存する際は、酸素濃度15体積%以下の雰囲気下で保存することが好ましい。このような雰囲気下で保存することで、酸化安定化を経ても酸化が緩やかに進行する場合、密閉容器内で緩やかに酸化を進行させることができる。酸素濃度の下限は特に限定はされないが、通常酸化を進行させるために0.2体積%以上であることが好ましい。
また、ガスで安定化した触媒は非常に吸湿性が高く、非水系の反応では大きな問題となることから、密閉容器内で保存することが好ましい。 (How to store catalyst)
When storing the metal-supported catalyst of the present invention, it is preferable to store it in an atmosphere with an oxygen concentration of 15% by volume or less. By storing in such an atmosphere, if oxidation proceeds slowly even after oxidation stabilization, oxidation can proceed slowly in a closed container. Although the lower limit of the oxygen concentration is not particularly limited, it is usually preferably 0.2% by volume or more in order to promote oxidation.
In addition, since the gas-stabilized catalyst is highly hygroscopic, which poses a major problem in non-aqueous reactions, it is preferable to store it in a closed container.
<用途>
本発明の触媒は、還元反応用の触媒として好適であり、例えば、カルボン酸及び/又はカルボン酸エステルの水素化に好適に用いられる。つまり、カルボン酸及び/又はカルボン酸エステルに、本発明の金属担持触媒を接触させ還元して、前記カルボン酸及び/又は前記カルボン酸エステルのそれぞれに対応するアルコールを得る、アルコールの製造方法に好適に用いられる。還元反応の対象とするカルボン酸又はカルボン酸エステルとしては、工業的に容易に入手しうる任意のものを用いることができる。
本発明の触媒を用いる還元反応に供することのできるカルボン酸及び/又はカルボン酸エステルのカルボン酸を例示すると、酢酸、酪酸、ラウリン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、パルミチン酸等の脂肪族鎖状カルボン酸類;シクロヘキサンカルボン酸、ナフテン酸、シクロペンタンカルボン酸等の脂肪族環状カルボン酸類;シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、1,2,4-ブタントリカルボン酸、1,3,4-シクロヘキサントリカルボン酸、ビシクロヘキシルジカルボン酸、デカヒドロナフタレンジカルボン酸等の脂肪族ポリカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、トリメシン酸等の芳香族カルボン酸類が挙げられる。 <Application>
The catalyst of the present invention is suitable as a catalyst for reduction reactions, and is preferably used, for example, in the hydrogenation of carboxylic acids and/or carboxylic esters. In other words, it is suitable for an alcohol production method in which a carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst of the present invention and reduced to obtain an alcohol corresponding to each of the carboxylic acid and/or the carboxylic ester. used for. As the carboxylic acid or carboxylic ester to be subjected to the reduction reaction, any industrially easily available carboxylic acid or carboxylic ester can be used.
Examples of carboxylic acids and/or carboxylic acid esters that can be subjected to the reduction reaction using the catalyst of the present invention include acetic acid, butyric acid, lauric acid, oleic acid, linoleic acid, linolenic acid, stearic acid, palmitic acid, etc. Aliphatic chain carboxylic acids such as cyclohexanecarboxylic acid, naphthenic acid, cyclopentanecarboxylic acid; oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid , aliphatic polycarboxylic acids such as sebacic acid, cyclohexanedicarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,3,4-cyclohexanetricarboxylic acid, bicyclohexyldicarboxylic acid, decahydronaphthalene dicarboxylic acid; phthalic acid, isophthalic acid Examples include aromatic carboxylic acids such as acid, terephthalic acid, and trimesic acid.
本発明の触媒は、還元反応用の触媒として好適であり、例えば、カルボン酸及び/又はカルボン酸エステルの水素化に好適に用いられる。つまり、カルボン酸及び/又はカルボン酸エステルに、本発明の金属担持触媒を接触させ還元して、前記カルボン酸及び/又は前記カルボン酸エステルのそれぞれに対応するアルコールを得る、アルコールの製造方法に好適に用いられる。還元反応の対象とするカルボン酸又はカルボン酸エステルとしては、工業的に容易に入手しうる任意のものを用いることができる。
本発明の触媒を用いる還元反応に供することのできるカルボン酸及び/又はカルボン酸エステルのカルボン酸を例示すると、酢酸、酪酸、ラウリン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、パルミチン酸等の脂肪族鎖状カルボン酸類;シクロヘキサンカルボン酸、ナフテン酸、シクロペンタンカルボン酸等の脂肪族環状カルボン酸類;シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、1,2,4-ブタントリカルボン酸、1,3,4-シクロヘキサントリカルボン酸、ビシクロヘキシルジカルボン酸、デカヒドロナフタレンジカルボン酸等の脂肪族ポリカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、トリメシン酸等の芳香族カルボン酸類が挙げられる。 <Application>
The catalyst of the present invention is suitable as a catalyst for reduction reactions, and is preferably used, for example, in the hydrogenation of carboxylic acids and/or carboxylic esters. In other words, it is suitable for an alcohol production method in which a carboxylic acid and/or a carboxylic ester is brought into contact with the metal-supported catalyst of the present invention and reduced to obtain an alcohol corresponding to each of the carboxylic acid and/or the carboxylic ester. used for. As the carboxylic acid or carboxylic ester to be subjected to the reduction reaction, any industrially easily available carboxylic acid or carboxylic ester can be used.
Examples of carboxylic acids and/or carboxylic acid esters that can be subjected to the reduction reaction using the catalyst of the present invention include acetic acid, butyric acid, lauric acid, oleic acid, linoleic acid, linolenic acid, stearic acid, palmitic acid, etc. Aliphatic chain carboxylic acids such as cyclohexanecarboxylic acid, naphthenic acid, cyclopentanecarboxylic acid; oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid , aliphatic polycarboxylic acids such as sebacic acid, cyclohexanedicarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,3,4-cyclohexanetricarboxylic acid, bicyclohexyldicarboxylic acid, decahydronaphthalene dicarboxylic acid; phthalic acid, isophthalic acid Examples include aromatic carboxylic acids such as acid, terephthalic acid, and trimesic acid.
カルボン酸としては特に限定はされないが、好ましくは鎖状または環状の飽和脂肪族カルボン酸であり、より好ましくはカルボキシル基以外の官能基を含まない炭素数が20以下のカルボン酸であり、さらに好ましくは、カルボキシル基以外の官能基を含まない炭素数20以下で、式(2)で表されるジカルボン酸である。
HOOC-R1-COOH (2)
(式中R1は置換基を有していてもよく、置換基以外の炭素数が1~20である脂肪族もしくは脂環式の炭化水素基である。)
特に好ましくは、炭素数4から炭素数14の脂肪族もしくは脂環式のポリカルボン酸、またはそのエステルが、還元反応における、活性が高く、かつ選択率が高いことから好適である。
本発明では、特に1,4-シクロヘキサンジカルボン酸又はそのエステルをリアクタントとして用い、還元反応により対応するアルコールを生成することが好ましい。すなわち、1,4-シクロヘキサンジカルボン酸又は1,4-シクロヘキサンジカルボン酸のエステル(ジエステル)を原料として、これに本発明の触媒を接触させ還元する、アルコールの製造方法が好ましい。 The carboxylic acid is not particularly limited, but is preferably a chain or cyclic saturated aliphatic carboxylic acid, more preferably a carboxylic acid having 20 or less carbon atoms that does not contain any functional group other than a carboxyl group, and even more preferably is a dicarboxylic acid represented by formula (2), which contains no functional groups other than carboxyl groups, and has 20 or less carbon atoms.
HOOC-R 1 -COOH (2)
(In the formula, R 1 may have a substituent and is an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms other than the substituent.)
Particularly preferred are aliphatic or alicyclic polycarboxylic acids having 4 to 14 carbon atoms, or esters thereof, since they have high activity and high selectivity in the reduction reaction.
In the present invention, it is particularly preferable to use 1,4-cyclohexanedicarboxylic acid or an ester thereof as a reactant to produce the corresponding alcohol through a reduction reaction. That is, it is preferable to use a method for producing alcohol in which 1,4-cyclohexanedicarboxylic acid or an ester (diester) of 1,4-cyclohexanedicarboxylic acid is used as a raw material, and this is brought into contact with the catalyst of the present invention and reduced.
HOOC-R1-COOH (2)
(式中R1は置換基を有していてもよく、置換基以外の炭素数が1~20である脂肪族もしくは脂環式の炭化水素基である。)
特に好ましくは、炭素数4から炭素数14の脂肪族もしくは脂環式のポリカルボン酸、またはそのエステルが、還元反応における、活性が高く、かつ選択率が高いことから好適である。
本発明では、特に1,4-シクロヘキサンジカルボン酸又はそのエステルをリアクタントとして用い、還元反応により対応するアルコールを生成することが好ましい。すなわち、1,4-シクロヘキサンジカルボン酸又は1,4-シクロヘキサンジカルボン酸のエステル(ジエステル)を原料として、これに本発明の触媒を接触させ還元する、アルコールの製造方法が好ましい。 The carboxylic acid is not particularly limited, but is preferably a chain or cyclic saturated aliphatic carboxylic acid, more preferably a carboxylic acid having 20 or less carbon atoms that does not contain any functional group other than a carboxyl group, and even more preferably is a dicarboxylic acid represented by formula (2), which contains no functional groups other than carboxyl groups, and has 20 or less carbon atoms.
HOOC-R 1 -COOH (2)
(In the formula, R 1 may have a substituent and is an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms other than the substituent.)
Particularly preferred are aliphatic or alicyclic polycarboxylic acids having 4 to 14 carbon atoms, or esters thereof, since they have high activity and high selectivity in the reduction reaction.
In the present invention, it is particularly preferable to use 1,4-cyclohexanedicarboxylic acid or an ester thereof as a reactant to produce the corresponding alcohol through a reduction reaction. That is, it is preferable to use a method for producing alcohol in which 1,4-cyclohexanedicarboxylic acid or an ester (diester) of 1,4-cyclohexanedicarboxylic acid is used as a raw material, and this is brought into contact with the catalyst of the present invention and reduced.
またこれらカルボン酸のエステルを用いる場合にはそのアルコール成分としてメタノール、エタノール、i-プロパノール、n-ブタノール等の低級アルコールが挙げられる。
また還元されて得られるアルコールと同じアルコールでエステル化することもできる。この場合には、後の水素化反応で生成するアルコールの分離が不要となる利点がある。 When esters of these carboxylic acids are used, lower alcohols such as methanol, ethanol, i-propanol, and n-butanol can be used as the alcohol component.
It is also possible to esterify with the same alcohol as the alcohol obtained by reduction. In this case, there is an advantage that it is not necessary to separate the alcohol produced in the subsequent hydrogenation reaction.
また還元されて得られるアルコールと同じアルコールでエステル化することもできる。この場合には、後の水素化反応で生成するアルコールの分離が不要となる利点がある。 When esters of these carboxylic acids are used, lower alcohols such as methanol, ethanol, i-propanol, and n-butanol can be used as the alcohol component.
It is also possible to esterify with the same alcohol as the alcohol obtained by reduction. In this case, there is an advantage that it is not necessary to separate the alcohol produced in the subsequent hydrogenation reaction.
本発明の触媒を用いた還元反応は無溶媒で行なっても、溶媒の存在下で行なうこともできるが、通常は溶媒の存在下で行われる。
溶媒としては、通常、水、メタノールやエタノールなどの低級アルコール類、反応生成物のアルコール類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類、ヘキサン、デカリンなどの炭化水素類などの溶媒を使用できる。これらの溶媒は単独で用いても、2種類以上を混合して用いることもできる。
特にカルボン酸を還元する際には、溶解性等の理由から水を含む溶媒を用いるのが好ましい。
溶媒の使用量は特に限定されないが、通常原料となるカルボン酸又はカルボン酸エステルに対して0.1~20質量倍量程度であり、好ましくは0.5~10質量倍量、より好ましくは1~10質量倍量程度用いるのが好ましい。 Although the reduction reaction using the catalyst of the present invention can be carried out without a solvent or in the presence of a solvent, it is usually carried out in the presence of a solvent.
As a solvent, usually water, lower alcohols such as methanol and ethanol, alcohols of reaction products, ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether, and hydrocarbons such as hexane and decalin can be used. . These solvents can be used alone or in combination of two or more.
Particularly when reducing carboxylic acid, it is preferable to use a solvent containing water for reasons such as solubility.
The amount of the solvent used is not particularly limited, but it is usually about 0.1 to 20 times the mass of the carboxylic acid or carboxylic acid ester used as the raw material, preferably 0.5 to 10 times the mass, more preferably 1 It is preferable to use about 10 to 10 times the amount by mass.
溶媒としては、通常、水、メタノールやエタノールなどの低級アルコール類、反応生成物のアルコール類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類、ヘキサン、デカリンなどの炭化水素類などの溶媒を使用できる。これらの溶媒は単独で用いても、2種類以上を混合して用いることもできる。
特にカルボン酸を還元する際には、溶解性等の理由から水を含む溶媒を用いるのが好ましい。
溶媒の使用量は特に限定されないが、通常原料となるカルボン酸又はカルボン酸エステルに対して0.1~20質量倍量程度であり、好ましくは0.5~10質量倍量、より好ましくは1~10質量倍量程度用いるのが好ましい。 Although the reduction reaction using the catalyst of the present invention can be carried out without a solvent or in the presence of a solvent, it is usually carried out in the presence of a solvent.
As a solvent, usually water, lower alcohols such as methanol and ethanol, alcohols of reaction products, ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether, and hydrocarbons such as hexane and decalin can be used. . These solvents can be used alone or in combination of two or more.
Particularly when reducing carboxylic acid, it is preferable to use a solvent containing water for reasons such as solubility.
The amount of the solvent used is not particularly limited, but it is usually about 0.1 to 20 times the mass of the carboxylic acid or carboxylic acid ester used as the raw material, preferably 0.5 to 10 times the mass, more preferably 1 It is preferable to use about 10 to 10 times the amount by mass.
本発明の触媒を用いた還元反応は、通常、水素ガス加圧下で行われる。反応は通常100~300℃で行われるが、150~300℃で行うのが好ましい。反応圧力は1~30MPaであるが1~25MPaが好ましく、5~25MPaが更に好ましい。
本発明の触媒を用いた還元反応は、液相、気相共に実施できるが、カルボン酸/カルボン酸エステルを気化させること、さらに気体状態を維持させながら還元反応を実施することは設備が巨大になること、さらに大きなエネルギーが必要になることから液相で実施することが好ましい。 The reduction reaction using the catalyst of the present invention is usually carried out under pressure of hydrogen gas. The reaction is usually carried out at a temperature of 100 to 300°C, preferably 150 to 300°C. The reaction pressure is 1 to 30 MPa, preferably 1 to 25 MPa, and more preferably 5 to 25 MPa.
The reduction reaction using the catalyst of the present invention can be carried out in both liquid phase and gas phase, but it requires huge equipment to vaporize the carboxylic acid/carboxylic acid ester and to carry out the reduction reaction while maintaining the gaseous state. However, it is preferable to carry out the process in a liquid phase since it requires even more energy.
本発明の触媒を用いた還元反応は、液相、気相共に実施できるが、カルボン酸/カルボン酸エステルを気化させること、さらに気体状態を維持させながら還元反応を実施することは設備が巨大になること、さらに大きなエネルギーが必要になることから液相で実施することが好ましい。 The reduction reaction using the catalyst of the present invention is usually carried out under pressure of hydrogen gas. The reaction is usually carried out at a temperature of 100 to 300°C, preferably 150 to 300°C. The reaction pressure is 1 to 30 MPa, preferably 1 to 25 MPa, and more preferably 5 to 25 MPa.
The reduction reaction using the catalyst of the present invention can be carried out in both liquid phase and gas phase, but it requires huge equipment to vaporize the carboxylic acid/carboxylic acid ester and to carry out the reduction reaction while maintaining the gaseous state. However, it is preferable to carry out the process in a liquid phase since it requires even more energy.
また、カルボン酸及び/又はカルボン酸エステルに、本発明の触媒を接触させる、カルボン酸及び/又はカルボン酸エステルの水素化方法も本願発明の範囲に含まれる。
Also included within the scope of the present invention is a method for hydrogenating carboxylic acids and/or carboxylic esters in which the catalyst of the present invention is brought into contact with the carboxylic acids and/or carboxylic esters.
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.
<TPR測定方法>
触媒0.1gを細型石英管に入れ、10%H2/Heを20ml/minで流し、系内の水素置換が終了し、H2濃度が安定するまで保持した。その後、60分間で700℃まで一定速度で昇温した。その間出口水素量を連続的に質量分析計で測定し吸収水素量を計算した。 <TPR measurement method>
0.1 g of the catalyst was placed in a narrow quartz tube, and 10% H 2 /He was flowed at a rate of 20 ml/min, and the tube was maintained until hydrogen replacement in the system was completed and the H 2 concentration became stable. Thereafter, the temperature was raised to 700° C. at a constant rate for 60 minutes. During that time, the amount of hydrogen at the outlet was continuously measured using a mass spectrometer, and the amount of absorbed hydrogen was calculated.
触媒0.1gを細型石英管に入れ、10%H2/Heを20ml/minで流し、系内の水素置換が終了し、H2濃度が安定するまで保持した。その後、60分間で700℃まで一定速度で昇温した。その間出口水素量を連続的に質量分析計で測定し吸収水素量を計算した。 <TPR measurement method>
0.1 g of the catalyst was placed in a narrow quartz tube, and 10% H 2 /He was flowed at a rate of 20 ml/min, and the tube was maintained until hydrogen replacement in the system was completed and the H 2 concentration became stable. Thereafter, the temperature was raised to 700° C. at a constant rate for 60 minutes. During that time, the amount of hydrogen at the outlet was continuously measured using a mass spectrometer, and the amount of absorbed hydrogen was calculated.
<触媒の反応活性確認方法>
本発明で得られた触媒の反応活性、選択性は、1,4-シクロヘキサンジカルボン酸(CHDA)の水素化反応による、1,4-シクロヘキサンジメタノール(CHDM)の生成反応を用いて確認した。
ハステロイC(登録商標)製200mLの誘導撹拌式オートクレーブ(以下、「反応器」と記載することがある。)内に、水40g、CHDA(シス体、トランス体の混合物:東京化成工業株式会社製)10g、評価する触媒2gを仕込み、前記反応器内を水素置換した後、水素分圧1MPaとし、1000rpmでの撹拌下(攪拌数が遅すぎることによる水素供給律速とならず、攪拌数が高すぎて触媒の割れが発生しない攪拌数とする)、前記反応器を加熱し、所定温度で反応圧8.5MPaとし、240℃で反応を開始した。前記反応器内には水素蓄圧器から連続的に水素を供給し、240℃、8.5MPa一定で3時間の反応を実施した。反応終了後、目視にて触媒の割れの有無を確認した。この時触媒の割れが発生した反応は、見かけの反応速度が高くなり、選択率も正確に比較できなくなるため除外した。
得られた反応液をNaOHで中和滴定することでカルボキシル基の転化率を求め、ガスクロマトグラフを用いて生成物の分析を実施した。主生成物は、目的物であるCHDMであり、主な副生物はシクロヘキサンメタノール(CHM)、4-メチルシクロヘキサンメタノール(MCHM)の2種類であった。前記2種類の副生物以外は、ほぼ全量がCHDMであったため、触媒性能は、カルボキシル基の転化率、及び副生物収率で比較した。 <How to check reaction activity of catalyst>
The reaction activity and selectivity of the catalyst obtained in the present invention were confirmed using a hydrogenation reaction of 1,4-cyclohexanedicarboxylic acid (CHDA) to produce 1,4-cyclohexanedimethanol (CHDM).
In a 200 mL induction stirring autoclave made of Hastelloy C (registered trademark) (hereinafter sometimes referred to as "reactor"), 40 g of water, CHDA (mixture of cis and trans forms: manufactured by Tokyo Chemical Industry Co., Ltd.) ) and 2 g of the catalyst to be evaluated, and after purging the inside of the reactor with hydrogen, the hydrogen partial pressure was set to 1 MPa, and under stirring at 1000 rpm (the rate of hydrogen supply was not limited by the rate of stirring being too slow, and the rate of stirring was too high). The reactor was heated to a predetermined temperature and reaction pressure of 8.5 MPa, and the reaction was started at 240°C. Hydrogen was continuously supplied into the reactor from a hydrogen pressure accumulator, and the reaction was carried out at 240° C. and a constant pressure of 8.5 MPa for 3 hours. After the reaction was completed, the presence or absence of cracks in the catalyst was visually confirmed. Reactions in which cracking of the catalyst occurred at this time were excluded because the apparent reaction rate would be high and the selectivity could not be accurately compared.
The resulting reaction solution was subjected to neutralization titration with NaOH to determine the conversion rate of carboxyl groups, and the product was analyzed using a gas chromatograph. The main product was the target product CHDM, and the two main by-products were cyclohexane methanol (CHM) and 4-methylcyclohexane methanol (MCHM). Since almost the entire amount was CHDM except for the two types of by-products mentioned above, the catalyst performance was compared based on the conversion rate of carboxyl groups and the yield of by-products.
本発明で得られた触媒の反応活性、選択性は、1,4-シクロヘキサンジカルボン酸(CHDA)の水素化反応による、1,4-シクロヘキサンジメタノール(CHDM)の生成反応を用いて確認した。
ハステロイC(登録商標)製200mLの誘導撹拌式オートクレーブ(以下、「反応器」と記載することがある。)内に、水40g、CHDA(シス体、トランス体の混合物:東京化成工業株式会社製)10g、評価する触媒2gを仕込み、前記反応器内を水素置換した後、水素分圧1MPaとし、1000rpmでの撹拌下(攪拌数が遅すぎることによる水素供給律速とならず、攪拌数が高すぎて触媒の割れが発生しない攪拌数とする)、前記反応器を加熱し、所定温度で反応圧8.5MPaとし、240℃で反応を開始した。前記反応器内には水素蓄圧器から連続的に水素を供給し、240℃、8.5MPa一定で3時間の反応を実施した。反応終了後、目視にて触媒の割れの有無を確認した。この時触媒の割れが発生した反応は、見かけの反応速度が高くなり、選択率も正確に比較できなくなるため除外した。
得られた反応液をNaOHで中和滴定することでカルボキシル基の転化率を求め、ガスクロマトグラフを用いて生成物の分析を実施した。主生成物は、目的物であるCHDMであり、主な副生物はシクロヘキサンメタノール(CHM)、4-メチルシクロヘキサンメタノール(MCHM)の2種類であった。前記2種類の副生物以外は、ほぼ全量がCHDMであったため、触媒性能は、カルボキシル基の転化率、及び副生物収率で比較した。 <How to check reaction activity of catalyst>
The reaction activity and selectivity of the catalyst obtained in the present invention were confirmed using a hydrogenation reaction of 1,4-cyclohexanedicarboxylic acid (CHDA) to produce 1,4-cyclohexanedimethanol (CHDM).
In a 200 mL induction stirring autoclave made of Hastelloy C (registered trademark) (hereinafter sometimes referred to as "reactor"), 40 g of water, CHDA (mixture of cis and trans forms: manufactured by Tokyo Chemical Industry Co., Ltd.) ) and 2 g of the catalyst to be evaluated, and after purging the inside of the reactor with hydrogen, the hydrogen partial pressure was set to 1 MPa, and under stirring at 1000 rpm (the rate of hydrogen supply was not limited by the rate of stirring being too slow, and the rate of stirring was too high). The reactor was heated to a predetermined temperature and reaction pressure of 8.5 MPa, and the reaction was started at 240°C. Hydrogen was continuously supplied into the reactor from a hydrogen pressure accumulator, and the reaction was carried out at 240° C. and a constant pressure of 8.5 MPa for 3 hours. After the reaction was completed, the presence or absence of cracks in the catalyst was visually confirmed. Reactions in which cracking of the catalyst occurred at this time were excluded because the apparent reaction rate would be high and the selectivity could not be accurately compared.
The resulting reaction solution was subjected to neutralization titration with NaOH to determine the conversion rate of carboxyl groups, and the product was analyzed using a gas chromatograph. The main product was the target product CHDM, and the two main by-products were cyclohexane methanol (CHM) and 4-methylcyclohexane methanol (MCHM). Since almost the entire amount was CHDM except for the two types of by-products mentioned above, the catalyst performance was compared based on the conversion rate of carboxyl groups and the yield of by-products.
(比較例1)
担体として径が1mm、長さが2~5mmの円柱状活性炭(Cabot Norit社製 R1 EXTRA)担体を用い、特開2001-9277号公報の実施例4に準じた方法で触媒を調製した。具体的には、塩化ルテニウム水和物(RuCl3・xH2O)、ヘキサクロリド白金(IV)酸(六水和物等)(H2PtCl6・6H2O)、塩化スズ(II)(SnCl2・2H2O)を希塩酸溶液に溶解し、そこに硝酸処理した活性炭を投入した。そこから溶媒を除去して乾燥し、乾燥した触媒を重炭酸アンモニウム溶液に投入して処理した後、ろ過、洗浄、乾燥を経て金属担持物を調製した。金属担持物の調製方法の中で、金属塩化物の溶解水は、使用する活性炭1gにつき1.1mlの0.3%希塩酸を用いた。金属塩化物の仕込み量は、仕込み量全量が担持され、水素還元し、酸化安定化した場合に、担持触媒中の金属含有量が、Ru5.5質量%、Pt2.4質量%、Sn6.4質量%となる量とした(以下メタルの担持量は全て質量%を示す)。また、使用する重炭酸アンモニウムは、金属塩化物の塩素に対して1.7倍モル量を11質量%水溶液として用い、洗浄は90℃の水を用いた。
得られた金属担持物を水素気流下500℃で還元し、その後希釈酸素雰囲気下で酸化安定化し、触媒とした。以下、「還元触媒」と記載する。
この触媒で反応を実施した。転化率と、副生物の収率を表1に示す。
なお、表1中のメタル種の欄は、ルテニウム、白金、スズ以外のメタル種について、使用した化合物を表示している。 (Comparative example 1)
A catalyst was prepared in accordance with Example 4 of JP-A No. 2001-9277 using a cylindrical activated carbon (R1 EXTRA manufactured by Cabot Norit) carrier having a diameter of 1 mm and a length of 2 to 5 mm. Specifically , ruthenium chloride hydrate ( RuCl 3 . SnCl 2 .2H 2 O) was dissolved in a dilute hydrochloric acid solution, and activated carbon treated with nitric acid was added thereto. The solvent was removed and dried, and the dried catalyst was treated in an ammonium bicarbonate solution, followed by filtration, washing, and drying to prepare a metal support. In the method for preparing the metal support, 1.1 ml of 0.3% dilute hydrochloric acid was used for each gram of activated carbon used as water for dissolving the metal chloride. The amount of metal chloride charged is such that when the entire amount is supported, hydrogen reduced, and stabilized by oxidation, the metal content in the supported catalyst is 5.5% by mass of Ru, 2.4% by mass of Pt, and 6.4% by mass of Sn. The amount was determined to be mass % (hereinafter, all supported amounts of metals are expressed in mass %). Further, the ammonium bicarbonate used was used as a 11% by mass aqueous solution in a molar amount 1.7 times that of chlorine in the metal chloride, and water at 90° C. was used for washing.
The obtained metal support was reduced at 500° C. in a hydrogen stream, and then oxidized and stabilized in a diluted oxygen atmosphere to obtain a catalyst. Hereinafter, it will be referred to as a "reduction catalyst."
The reaction was carried out with this catalyst. Table 1 shows the conversion rate and the yield of by-products.
Note that the metal type column in Table 1 displays the compounds used for metal types other than ruthenium, platinum, and tin.
担体として径が1mm、長さが2~5mmの円柱状活性炭(Cabot Norit社製 R1 EXTRA)担体を用い、特開2001-9277号公報の実施例4に準じた方法で触媒を調製した。具体的には、塩化ルテニウム水和物(RuCl3・xH2O)、ヘキサクロリド白金(IV)酸(六水和物等)(H2PtCl6・6H2O)、塩化スズ(II)(SnCl2・2H2O)を希塩酸溶液に溶解し、そこに硝酸処理した活性炭を投入した。そこから溶媒を除去して乾燥し、乾燥した触媒を重炭酸アンモニウム溶液に投入して処理した後、ろ過、洗浄、乾燥を経て金属担持物を調製した。金属担持物の調製方法の中で、金属塩化物の溶解水は、使用する活性炭1gにつき1.1mlの0.3%希塩酸を用いた。金属塩化物の仕込み量は、仕込み量全量が担持され、水素還元し、酸化安定化した場合に、担持触媒中の金属含有量が、Ru5.5質量%、Pt2.4質量%、Sn6.4質量%となる量とした(以下メタルの担持量は全て質量%を示す)。また、使用する重炭酸アンモニウムは、金属塩化物の塩素に対して1.7倍モル量を11質量%水溶液として用い、洗浄は90℃の水を用いた。
得られた金属担持物を水素気流下500℃で還元し、その後希釈酸素雰囲気下で酸化安定化し、触媒とした。以下、「還元触媒」と記載する。
この触媒で反応を実施した。転化率と、副生物の収率を表1に示す。
なお、表1中のメタル種の欄は、ルテニウム、白金、スズ以外のメタル種について、使用した化合物を表示している。 (Comparative example 1)
A catalyst was prepared in accordance with Example 4 of JP-A No. 2001-9277 using a cylindrical activated carbon (R1 EXTRA manufactured by Cabot Norit) carrier having a diameter of 1 mm and a length of 2 to 5 mm. Specifically , ruthenium chloride hydrate ( RuCl 3 . SnCl 2 .2H 2 O) was dissolved in a dilute hydrochloric acid solution, and activated carbon treated with nitric acid was added thereto. The solvent was removed and dried, and the dried catalyst was treated in an ammonium bicarbonate solution, followed by filtration, washing, and drying to prepare a metal support. In the method for preparing the metal support, 1.1 ml of 0.3% dilute hydrochloric acid was used for each gram of activated carbon used as water for dissolving the metal chloride. The amount of metal chloride charged is such that when the entire amount is supported, hydrogen reduced, and stabilized by oxidation, the metal content in the supported catalyst is 5.5% by mass of Ru, 2.4% by mass of Pt, and 6.4% by mass of Sn. The amount was determined to be mass % (hereinafter, all supported amounts of metals are expressed in mass %). Further, the ammonium bicarbonate used was used as a 11% by mass aqueous solution in a molar amount 1.7 times that of chlorine in the metal chloride, and water at 90° C. was used for washing.
The obtained metal support was reduced at 500° C. in a hydrogen stream, and then oxidized and stabilized in a diluted oxygen atmosphere to obtain a catalyst. Hereinafter, it will be referred to as a "reduction catalyst."
The reaction was carried out with this catalyst. Table 1 shows the conversion rate and the yield of by-products.
Note that the metal type column in Table 1 displays the compounds used for metal types other than ruthenium, platinum, and tin.
(比較例2)
比較例1で得られた還元触媒に、Fe(III)アセチルアセトナート(Fe(acac)3)を担持し、還元後、Feが0.1質量%の担持量となるように触媒を調製した。具体的には、還元触媒1gあたり0.86mlのテトラヒドロフラン溶媒を用い、所定量のFe(acac)3を溶解し、比較例1で得られた還元触媒約10gを加え、攪拌後、1時間放置した。その後、1kPaの減圧下、80℃で1時間エバポレートした後、ガラス管に仕込み、電気炉にセットし、アルゴン5L/時間での流通下、150℃で2時間乾燥した。
乾燥した触媒2.5gを再度ガラス管に仕込み、電気炉にセットし、水素5L/時間での流通下、500℃で2時間還元処理を実施した。その後、アルゴン流通下冷却し、室温下6体積%酸素/窒素の流通下で安定化を実施し、0.1%Fe担持触媒を得た。
この触媒を用い(触媒量は調製に用いた還元触媒の量が2gになる量を用いた)、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 2)
Fe(III) acetylacetonate (Fe(acac) 3 ) was supported on the reduction catalyst obtained in Comparative Example 1, and the catalyst was prepared so that after reduction, the supported amount of Fe was 0.1% by mass. . Specifically, using 0.86 ml of tetrahydrofuran solvent per 1 g of reduction catalyst, a predetermined amount of Fe(acac) 3 was dissolved, approximately 10 g of the reduction catalyst obtained in Comparative Example 1 was added, and after stirring, the mixture was left for 1 hour. did. Thereafter, the mixture was evaporated at 80° C. for 1 hour under a reduced pressure of 1 kPa, and then placed in a glass tube, set in an electric furnace, and dried at 150° C. for 2 hours while flowing argon at 5 L/hour.
2.5 g of the dried catalyst was again charged into the glass tube, set in an electric furnace, and reduced at 500° C. for 2 hours while flowing hydrogen at 5 L/hour. Thereafter, it was cooled under argon flow, and stabilized under flow of 6 volume % oxygen/nitrogen at room temperature to obtain a 0.1% Fe-supported catalyst.
Using this catalyst (the amount of catalyst was such that the amount of reduction catalyst used in the preparation was 2 g), the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例1で得られた還元触媒に、Fe(III)アセチルアセトナート(Fe(acac)3)を担持し、還元後、Feが0.1質量%の担持量となるように触媒を調製した。具体的には、還元触媒1gあたり0.86mlのテトラヒドロフラン溶媒を用い、所定量のFe(acac)3を溶解し、比較例1で得られた還元触媒約10gを加え、攪拌後、1時間放置した。その後、1kPaの減圧下、80℃で1時間エバポレートした後、ガラス管に仕込み、電気炉にセットし、アルゴン5L/時間での流通下、150℃で2時間乾燥した。
乾燥した触媒2.5gを再度ガラス管に仕込み、電気炉にセットし、水素5L/時間での流通下、500℃で2時間還元処理を実施した。その後、アルゴン流通下冷却し、室温下6体積%酸素/窒素の流通下で安定化を実施し、0.1%Fe担持触媒を得た。
この触媒を用い(触媒量は調製に用いた還元触媒の量が2gになる量を用いた)、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 2)
Fe(III) acetylacetonate (Fe(acac) 3 ) was supported on the reduction catalyst obtained in Comparative Example 1, and the catalyst was prepared so that after reduction, the supported amount of Fe was 0.1% by mass. . Specifically, using 0.86 ml of tetrahydrofuran solvent per 1 g of reduction catalyst, a predetermined amount of Fe(acac) 3 was dissolved, approximately 10 g of the reduction catalyst obtained in Comparative Example 1 was added, and after stirring, the mixture was left for 1 hour. did. Thereafter, the mixture was evaporated at 80° C. for 1 hour under a reduced pressure of 1 kPa, and then placed in a glass tube, set in an electric furnace, and dried at 150° C. for 2 hours while flowing argon at 5 L/hour.
2.5 g of the dried catalyst was again charged into the glass tube, set in an electric furnace, and reduced at 500° C. for 2 hours while flowing hydrogen at 5 L/hour. Thereafter, it was cooled under argon flow, and stabilized under flow of 6 volume % oxygen/nitrogen at room temperature to obtain a 0.1% Fe-supported catalyst.
Using this catalyst (the amount of catalyst was such that the amount of reduction catalyst used in the preparation was 2 g), the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(比較例3)
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、塩化鉄(III)6水和物(FeCl3・6H2O)を用い、溶媒として水を用いた以外は実施例1と同様の方法でFe金属として0.2質量%になるようにFe担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 3)
Except in Comparative Example 2, iron (III) chloride hexahydrate (FeCl 3 .6H 2 O) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ) and water was used as the solvent. An Fe-supported catalyst was obtained in the same manner as in Example 1 so that the amount of Fe metal was 0.2% by mass. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、塩化鉄(III)6水和物(FeCl3・6H2O)を用い、溶媒として水を用いた以外は実施例1と同様の方法でFe金属として0.2質量%になるようにFe担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 3)
Except in Comparative Example 2, iron (III) chloride hexahydrate (FeCl 3 .6H 2 O) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ) and water was used as the solvent. An Fe-supported catalyst was obtained in the same manner as in Example 1 so that the amount of Fe metal was 0.2% by mass. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(比較例4)
比較例2において、Fe金属として0.5質量%となるようにFe(acac)3を用いた以外は比較例2と同様の方法で0.5%Fe担持触媒を得た。この触媒を用い比較例1同様の反応を実施した。結果を表1に示す。 (Comparative example 4)
In Comparative Example 2, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 2, except that Fe(acac) 3 was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
比較例2において、Fe金属として0.5質量%となるようにFe(acac)3を用いた以外は比較例2と同様の方法で0.5%Fe担持触媒を得た。この触媒を用い比較例1同様の反応を実施した。結果を表1に示す。 (Comparative example 4)
In Comparative Example 2, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 2, except that Fe(acac) 3 was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
(比較例5)
比較例3において、Fe金属として0.5質量%になるようにFeCl3・6H2Oを用いた以外は、比較例3と同様な方法で0.5%Fe担持触媒を得た。この触媒を用い比較例1と同様な反応を実施した。結果を表1に示す。 (Comparative example 5)
In Comparative Example 3, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 3, except that FeCl 3 .6H 2 O was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
比較例3において、Fe金属として0.5質量%になるようにFeCl3・6H2Oを用いた以外は、比較例3と同様な方法で0.5%Fe担持触媒を得た。この触媒を用い比較例1と同様な反応を実施した。結果を表1に示す。 (Comparative example 5)
In Comparative Example 3, a 0.5% Fe-supported catalyst was obtained in the same manner as in Comparative Example 3, except that FeCl 3 .6H 2 O was used so that the amount of Fe metal was 0.5% by mass. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
(参考例1)
比較例3において、塩化鉄(III)6水和物(FeCl3・6H2O)に代えて、塩化クロム(III)6水和物(CrCl3・6H2O)を用いた以外は比較例3と同様な方法で0.2%質量Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Reference example 1)
Comparative Example 3 except that chromium (III) chloride hexahydrate (CrCl 3 .6H 2 O) was used instead of iron chloride (III) hexahydrate (FeCl 3 .6H 2 O). A 0.2% mass Cr-supported catalyst was obtained in the same manner as in Example 3. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例3において、塩化鉄(III)6水和物(FeCl3・6H2O)に代えて、塩化クロム(III)6水和物(CrCl3・6H2O)を用いた以外は比較例3と同様な方法で0.2%質量Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Reference example 1)
Comparative Example 3 except that chromium (III) chloride hexahydrate (CrCl 3 .6H 2 O) was used instead of iron chloride (III) hexahydrate (FeCl 3 .6H 2 O). A 0.2% mass Cr-supported catalyst was obtained in the same manner as in Example 3. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(参考例2)
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、Cr(III)アセチルアセトナート(Cr(acac)3)を用いた以外は、比較例2と同様な方法で0.5%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Reference example 2)
The same method as Comparative Example 2 except that in Comparative Example 2, Cr(III) acetylacetonate (Cr(acac) 3 ) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ). A 0.5% Cr-supported catalyst was obtained. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、Cr(III)アセチルアセトナート(Cr(acac)3)を用いた以外は、比較例2と同様な方法で0.5%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Reference example 2)
The same method as Comparative Example 2 except that in Comparative Example 2, Cr(III) acetylacetonate (Cr(acac) 3 ) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ). A 0.5% Cr-supported catalyst was obtained. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(比較例6)
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、パラモリブデン酸アンモニウム(モリブデン(VI)酸アンモニウム四水和物((NH4)6Mo7O24・4H2O))を用い、溶媒として水を用いた以外は比較例2と同様な方法で0.5%Mo担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 6)
In Comparative Example 2, ammonium paramolybdate (ammonium molybdate (VI) tetrahydrate ((NH 4 ) 6 Mo 7 O 24.4H ) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ). A 0.5% Mo-supported catalyst was obtained in the same manner as in Comparative Example 2, except that 2 O)) was used and water was used as the solvent. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例2において、Fe(III)アセチルアセトナート(Fe(acac)3)に代えて、パラモリブデン酸アンモニウム(モリブデン(VI)酸アンモニウム四水和物((NH4)6Mo7O24・4H2O))を用い、溶媒として水を用いた以外は比較例2と同様な方法で0.5%Mo担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 6)
In Comparative Example 2, ammonium paramolybdate (ammonium molybdate (VI) tetrahydrate ((NH 4 ) 6 Mo 7 O 24.4H ) was used instead of Fe(III) acetylacetonate (Fe(acac) 3 ). A 0.5% Mo-supported catalyst was obtained in the same manner as in Comparative Example 2, except that 2 O)) was used and water was used as the solvent. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(比較例7)
RuCl3・xH2O(Ru含量41.9%)1.131g、H2PtCl6・6H2O 0.547g、SnCl2・2H2O 0.883g、FeCl3・6H2O 1.196gを0.3%塩酸溶液に溶解した。この溶液に比較例1と同様の硝酸処理済みの活性炭7.41gを投入し、十分に攪拌後、3時間放置した。3時間後エバポレーターで乾燥し、その後焼成管に移し、アルゴンガス流通下、150℃で2時間の乾燥を実施した。この触媒を、使用した金属塩化物の全塩素量の1.7当量に相当する重炭酸アンモニウム11質量%水溶液に加え、1時間処理後ろ過し、90℃の水で洗浄し、エバポレーターで乾燥した。乾燥した触媒を焼成管に移してアルゴンガス流通下150℃で追加乾燥を実施した、追加乾燥した触媒2.5gを水素流通下500℃で還元し、冷却後6%酸素/窒素で安定化を実施して、4成分一括で担持した、5.5%Ru-2.4%Pt-5.4%Sn-0.47%Fe/活性炭(仕込みベースでの計算値)触媒を調製した(表1中では「FeCl3一括」と記載する。)。この触媒2gを用い比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 7)
RuCl 3.xH 2 O (Ru content 41.9%) 1.131 g, H 2 PtCl 6.6H 2 O 0.547 g, SnCl 2.2H 2 O 0.883 g, FeCl 3.6H 2 O 1.196 g. Dissolved in 0.3% hydrochloric acid solution. 7.41 g of activated carbon treated with nitric acid as in Comparative Example 1 was added to this solution, and after thorough stirring, it was left to stand for 3 hours. After 3 hours, it was dried in an evaporator, then transferred to a firing tube, and dried for 2 hours at 150°C under argon gas flow. This catalyst was added to an aqueous 11% by mass ammonium bicarbonate solution corresponding to 1.7 equivalents of the total chlorine amount of the metal chloride used, treated for 1 hour, filtered, washed with 90°C water, and dried in an evaporator. . The dried catalyst was transferred to a calcining tube and additionally dried at 150°C under argon gas flow. 2.5 g of the additionally dried catalyst was reduced at 500°C under hydrogen flow, and after cooling, it was stabilized with 6% oxygen/nitrogen. A catalyst with 5.5% Ru-2.4%Pt-5.4%Sn-0.47%Fe/activated carbon (calculated value on a charging basis) was prepared by carrying out four components at once (Table 1, it is written as “FeCl 3 all at once”). A reaction similar to Comparative Example 1 was carried out using 2 g of this catalyst. The results are shown in Table 1.
RuCl3・xH2O(Ru含量41.9%)1.131g、H2PtCl6・6H2O 0.547g、SnCl2・2H2O 0.883g、FeCl3・6H2O 1.196gを0.3%塩酸溶液に溶解した。この溶液に比較例1と同様の硝酸処理済みの活性炭7.41gを投入し、十分に攪拌後、3時間放置した。3時間後エバポレーターで乾燥し、その後焼成管に移し、アルゴンガス流通下、150℃で2時間の乾燥を実施した。この触媒を、使用した金属塩化物の全塩素量の1.7当量に相当する重炭酸アンモニウム11質量%水溶液に加え、1時間処理後ろ過し、90℃の水で洗浄し、エバポレーターで乾燥した。乾燥した触媒を焼成管に移してアルゴンガス流通下150℃で追加乾燥を実施した、追加乾燥した触媒2.5gを水素流通下500℃で還元し、冷却後6%酸素/窒素で安定化を実施して、4成分一括で担持した、5.5%Ru-2.4%Pt-5.4%Sn-0.47%Fe/活性炭(仕込みベースでの計算値)触媒を調製した(表1中では「FeCl3一括」と記載する。)。この触媒2gを用い比較例1と同様の反応を実施した。結果を表1に示す。 (Comparative example 7)
RuCl 3.xH 2 O (Ru content 41.9%) 1.131 g, H 2 PtCl 6.6H 2 O 0.547 g, SnCl 2.2H 2 O 0.883 g, FeCl 3.6H 2 O 1.196 g. Dissolved in 0.3% hydrochloric acid solution. 7.41 g of activated carbon treated with nitric acid as in Comparative Example 1 was added to this solution, and after thorough stirring, it was left to stand for 3 hours. After 3 hours, it was dried in an evaporator, then transferred to a firing tube, and dried for 2 hours at 150°C under argon gas flow. This catalyst was added to an aqueous 11% by mass ammonium bicarbonate solution corresponding to 1.7 equivalents of the total chlorine amount of the metal chloride used, treated for 1 hour, filtered, washed with 90°C water, and dried in an evaporator. . The dried catalyst was transferred to a calcining tube and additionally dried at 150°C under argon gas flow. 2.5 g of the additionally dried catalyst was reduced at 500°C under hydrogen flow, and after cooling, it was stabilized with 6% oxygen/nitrogen. A catalyst with 5.5% Ru-2.4%Pt-5.4%Sn-0.47%Fe/activated carbon (calculated value on a charging basis) was prepared by carrying out four components at once (Table 1, it is written as “FeCl 3 all at once”). A reaction similar to Comparative Example 1 was carried out using 2 g of this catalyst. The results are shown in Table 1.
(実施例1)
比較例1で得られた還元触媒にFe金属として0.2%、Cr金属として0.2%となるようにFeCl3・6H2O、CrCl3・6H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.2%Fe-0.2%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 1)
FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.2% and the Cr metal content was 0.2 %, and water was used as the solvent. A 0.2% Fe-0.2% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例1で得られた還元触媒にFe金属として0.2%、Cr金属として0.2%となるようにFeCl3・6H2O、CrCl3・6H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.2%Fe-0.2%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 1)
FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.2% and the Cr metal content was 0.2 %, and water was used as the solvent. A 0.2% Fe-0.2% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(実施例2)
比較例1で得られた還元触媒にFe金属として0.4%、Cr金属として0.1%となるようにFeCl3・6H2O、CrCl3・6H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.4%Fe-0.1%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 2)
FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.4% and the Cr metal content was 0.1%, and water was used as the solvent. A 0.4% Fe-0.1% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例1で得られた還元触媒にFe金属として0.4%、Cr金属として0.1%となるようにFeCl3・6H2O、CrCl3・6H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.4%Fe-0.1%Cr担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 2)
FeCl 3 .6H 2 O and CrCl 3 .6H 2 O were used in the reduction catalyst obtained in Comparative Example 1 so that the Fe metal content was 0.4% and the Cr metal content was 0.1%, and water was used as the solvent. A 0.4% Fe-0.1% Cr supported catalyst was obtained in the same manner as in Comparative Example 2 except that Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
(実施例3)
比較例1で得られた還元触媒にFe金属として0.2%、Mo金属として0.2%となるようにFeCl3・6H2O、(NH4)6Mo7O24・4H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.2%Fe-0.2%Mo担持触媒を得た。この触媒を用い比較例1と同様の反応を実施した。結果を表1に示す。 (Example 3)
FeCl 3.6H 2 O and (NH 4 ) 6 Mo 7 O 24.4H 2 O were added to the reduction catalyst obtained in Comparative Example 1 so that the Fe metal amount was 0.2% and the Mo metal amount was 0.2%. A 0.2% Fe-0.2% Mo supported catalyst was obtained in the same manner as in Comparative Example 2 except that water was used as the solvent. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
比較例1で得られた還元触媒にFe金属として0.2%、Mo金属として0.2%となるようにFeCl3・6H2O、(NH4)6Mo7O24・4H2Oを用い、溶媒として水を用いた以外は比較例2と同様な方法で0.2%Fe-0.2%Mo担持触媒を得た。この触媒を用い比較例1と同様の反応を実施した。結果を表1に示す。 (Example 3)
FeCl 3.6H 2 O and (NH 4 ) 6 Mo 7 O 24.4H 2 O were added to the reduction catalyst obtained in Comparative Example 1 so that the Fe metal amount was 0.2% and the Mo metal amount was 0.2%. A 0.2% Fe-0.2% Mo supported catalyst was obtained in the same manner as in Comparative Example 2 except that water was used as the solvent. A reaction similar to Comparative Example 1 was carried out using this catalyst. The results are shown in Table 1.
(実施例4)
比較例1で得られた還元触媒にFe金属として0.4%、Mo金属として0.1%となるようにFeCl3・6H2O、モリブデン(VI)酸アンモニウム四水和物((NH4)6Mo7O24・4H2O)を用い、溶媒として3%HCl水溶液を用いた以外は比較例2と同様な方法で0.4%Fe-0.1%Mo担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 4)
FeCl 3.6H 2 O, ammonium molybdate (VI) tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ·4H 2 O) and a 0.4% Fe-0.1% Mo supported catalyst was obtained in the same manner as in Comparative Example 2, except that a 3% HCl aqueous solution was used as the solvent. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
比較例1で得られた還元触媒にFe金属として0.4%、Mo金属として0.1%となるようにFeCl3・6H2O、モリブデン(VI)酸アンモニウム四水和物((NH4)6Mo7O24・4H2O)を用い、溶媒として3%HCl水溶液を用いた以外は比較例2と同様な方法で0.4%Fe-0.1%Mo担持触媒を得た。この触媒を用い、比較例1と同様の反応を実施した。結果を表1に示す。 (Example 4)
FeCl 3.6H 2 O, ammonium molybdate (VI) tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ·4H 2 O) and a 0.4% Fe-0.1% Mo supported catalyst was obtained in the same manner as in Comparative Example 2, except that a 3% HCl aqueous solution was used as the solvent. Using this catalyst, the same reaction as in Comparative Example 1 was carried out. The results are shown in Table 1.
表1から明らかなように、Fe及びCrを担持した本発明の触媒、Fe及びMoを担持した本発明の触媒によれば、高転化率を維持したまま、主な副生物であるシクロヘキサンメタノール(CHM)、4-メチルシクロヘキサンメタノール(MCHM)の収率を低くすることができる。これに対し、鉄のみを担持した比較例2~5、モリブデンのみを担持した比較例6は、鉄等を修飾しない未修飾の触媒に比較した場合には、ある程度の効果は認められるが、本発明の触媒に比較すると劣ることがわかる。
以上のように、本発明の触媒は、高転化率が維持され、かつ副生物収率が未添加に比較して60%以下にまで抑制され、優れた効果を示すことがわかる。 As is clear from Table 1, according to the catalyst of the present invention supporting Fe and Cr and the catalyst of the present invention supporting Fe and Mo, the main by-product cyclohexane methanol ( CHM), and the yield of 4-methylcyclohexanemethanol (MCHM) can be lowered. On the other hand, in Comparative Examples 2 to 5, in which only iron was supported, and Comparative Example 6, in which only molybdenum was supported, some effects were observed when compared with unmodified catalysts that did not modify iron, etc. It can be seen that the catalyst is inferior when compared to the catalyst of the invention.
As described above, it can be seen that the catalyst of the present invention maintains a high conversion rate and suppresses the yield of by-products to 60% or less compared to when no catalyst is added, showing excellent effects.
以上のように、本発明の触媒は、高転化率が維持され、かつ副生物収率が未添加に比較して60%以下にまで抑制され、優れた効果を示すことがわかる。 As is clear from Table 1, according to the catalyst of the present invention supporting Fe and Cr and the catalyst of the present invention supporting Fe and Mo, the main by-product cyclohexane methanol ( CHM), and the yield of 4-methylcyclohexanemethanol (MCHM) can be lowered. On the other hand, in Comparative Examples 2 to 5, in which only iron was supported, and Comparative Example 6, in which only molybdenum was supported, some effects were observed when compared with unmodified catalysts that did not modify iron, etc. It can be seen that the catalyst is inferior when compared to the catalyst of the invention.
As described above, it can be seen that the catalyst of the present invention maintains a high conversion rate and suppresses the yield of by-products to 60% or less compared to when no catalyst is added, showing excellent effects.
本発明により、従来の還元触媒に対して、新たな特定のメタルを複数組み合わせて添加することで、副生物収率が極端に低下し、目的物収率が向上する。副生物収率が極端に低下することで、その後ポリマー原料として使用する場合、精密な精製工程を省略または簡略化することが可能となることから、本発明は工業的に極めて有用な技術である。
According to the present invention, by adding a plurality of new specific metals in combination to a conventional reduction catalyst, the yield of by-products is extremely reduced and the yield of the target product is improved. The present invention is an extremely useful technology industrially because the extremely low yield of by-products makes it possible to omit or simplify the precise purification process when subsequently used as a polymer raw material. .
Claims (8)
- ルテニウム、スズ及び白金を担体に担持させた、カルボン酸及び/又はカルボン酸エステルの水素化に用いられる金属担持触媒であって、前記金属担持触媒がさらに鉄、並びに、クロム及び/又はモリブデンが担持されてなる、金属担持触媒。 A metal-supported catalyst used for the hydrogenation of carboxylic acids and/or carboxylic acid esters, in which ruthenium, tin, and platinum are supported on a carrier, wherein the metal-supported catalyst further supports iron, and chromium and/or molybdenum. metal-supported catalyst.
- 前記金属担持触媒の総質量に対する、前記鉄の担持量が0.01質量%以上4質量%以下、且つ、前記クロム及び/又はモリブデンの合計担持量が0.01質量%以上2質量%以下である、請求項1に記載の金属担持触媒。 The amount of iron supported is 0.01% by mass or more and 4% by mass or less, and the total amount of chromium and/or molybdenum supported is 0.01% by mass or more and 2% by mass or less with respect to the total mass of the metal supported catalyst. The metal-supported catalyst according to claim 1.
- 前記担体が炭素質担体である、請求項1又は2に記載の金属担持触媒。 The metal-supported catalyst according to claim 1 or 2, wherein the support is a carbonaceous support.
- 前記金属担持触媒の総質量に対するルテニウム、スズ、白金、鉄、モリブデン及びクロムの合計担持量が5質量%以上である、請求項1又は2に記載の金属担持触媒。 The metal-supported catalyst according to claim 1 or 2, wherein the total supported amount of ruthenium, tin, platinum, iron, molybdenum, and chromium based on the total mass of the metal-supported catalyst is 5% by mass or more.
- 前記金属担持触媒が水素還元を経て調製される、請求項1又は2に記載の金属担持触媒。 The metal-supported catalyst according to claim 1 or 2, wherein the metal-supported catalyst is prepared through hydrogen reduction.
- カルボン酸及び/又はカルボン酸エステルに、請求項1又は2に記載の金属担持触媒を接触させ還元して、前記カルボン酸及び/又は前記カルボン酸エステルのそれぞれに対応するアルコールを得る、アルコールの製造方法。 Production of alcohol by contacting a carboxylic acid and/or a carboxylic acid ester with the metal-supported catalyst according to claim 1 or 2 and reducing the carboxylic acid and/or a carboxylic acid ester to obtain an alcohol corresponding to each of the carboxylic acid and/or the carboxylic acid ester. Method.
- カルボン酸及び/又はカルボン酸エステルに、請求項1又は2に記載の金属担持触媒を接触させる、カルボン酸及び/又はカルボン酸エステルの水素化方法。 A method for hydrogenating a carboxylic acid and/or a carboxylic acid ester, which comprises bringing the metal-supported catalyst according to claim 1 or 2 into contact with the carboxylic acid and/or the carboxylic acid ester.
- 前記カルボン酸が1,4-シクロヘキサンジカルボン酸であり、前記カルボン酸エステルが1,4-シクロヘキサンジカルボン酸のエステルである、請求項6に記載のアルコールの製造方法。 The method for producing alcohol according to claim 6, wherein the carboxylic acid is 1,4-cyclohexanedicarboxylic acid, and the carboxylic acid ester is an ester of 1,4-cyclohexanedicarboxylic acid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022117914 | 2022-07-25 | ||
JP2022-117914 | 2022-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024024750A1 true WO2024024750A1 (en) | 2024-02-01 |
Family
ID=89706626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027069 WO2024024750A1 (en) | 2022-07-25 | 2023-07-24 | Metal-loaded catalyst, method for producing alcohol and hydrogenation method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024024750A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006511431A (en) * | 2002-12-20 | 2006-04-06 | 本田技研工業株式会社 | Catalyst composition for hydrogen generation containing platinum-ruthenium |
JP2012514034A (en) * | 2008-12-31 | 2012-06-21 | セラニーズ・インターナショナル・コーポレーション | An integrated method for producing vinyl acetate from acetic acid via acetaldehyde |
CN104722321A (en) * | 2015-03-06 | 2015-06-24 | 中国海洋石油总公司 | Catalyst for preparing 1,4-cyclohexanedimethanol and preparation method of catalyst |
CN104874406A (en) * | 2015-05-22 | 2015-09-02 | 南京红宝丽股份有限公司 | Hydrogenolysis catalyst and preparation method thereof |
US20190168190A1 (en) * | 2017-12-01 | 2019-06-06 | Energy, United States Department Of | Solid catalysts for producing alcohols and methods of making the same |
-
2023
- 2023-07-24 WO PCT/JP2023/027069 patent/WO2024024750A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006511431A (en) * | 2002-12-20 | 2006-04-06 | 本田技研工業株式会社 | Catalyst composition for hydrogen generation containing platinum-ruthenium |
JP2012514034A (en) * | 2008-12-31 | 2012-06-21 | セラニーズ・インターナショナル・コーポレーション | An integrated method for producing vinyl acetate from acetic acid via acetaldehyde |
CN104722321A (en) * | 2015-03-06 | 2015-06-24 | 中国海洋石油总公司 | Catalyst for preparing 1,4-cyclohexanedimethanol and preparation method of catalyst |
CN104874406A (en) * | 2015-05-22 | 2015-09-02 | 南京红宝丽股份有限公司 | Hydrogenolysis catalyst and preparation method thereof |
US20190168190A1 (en) * | 2017-12-01 | 2019-06-06 | Energy, United States Department Of | Solid catalysts for producing alcohols and methods of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3427822B1 (en) | Catalyst for preparing 2,5-furancarboxylic acid and method for preparing 2,5-furancarboxylic acid using catalyst | |
JP2007530257A (en) | Catalyst composition for selective conversion of alkane to unsaturated carboxylic acid, process for its preparation and process for its use | |
TWI438031B (en) | Mixture of catalyst | |
CN107626304B (en) | Supported noble metal catalyst and preparation and application thereof | |
JP7416140B2 (en) | Hydrogenation catalyst for carbonyl compounds and method for producing alcohol | |
JP7052831B2 (en) | Metal-supported catalyst, method for producing and storing metal-supported catalyst, and method for producing alcohol. | |
JP5543150B2 (en) | Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same | |
CN108435171B (en) | Preparation method of bimetallic Pt-Bi catalyst and method for preparing DHA (docosahexaenoic acid) by selectively catalyzing and oxidizing glycerol | |
JP4142645B2 (en) | Method for producing catalyst for partial oxidation reaction containing composite metal oxide | |
WO2024024750A1 (en) | Metal-loaded catalyst, method for producing alcohol and hydrogenation method | |
CN108137464B (en) | Method for producing acrylic acid | |
JP5392806B2 (en) | Method for producing oxide catalyst | |
JP2007216081A (en) | Manufacturing method for oxide catalyst | |
CN113813952A (en) | Preparation and application methods of chlorine-modified cubic cerium oxide nanocrystalline catalyst | |
JP4812034B2 (en) | Method for producing methacrylic acid production catalyst, methacrylic acid production catalyst, and methacrylic acid production method | |
CN107321357B (en) | Preparation method and application of acetic acid hydrogenation catalyst | |
CN114829002A (en) | Shaped catalyst for hydrogen chloride oxidation reaction process and preparation method thereof | |
TWI852018B (en) | Catalyst, method for producing catalyst, and method for producing unsaturated carboxylic acid and/or unsaturated carboxylic acid ester | |
JP2017225955A (en) | MANUFACTURING METHOD OF MgO CARRYING CATALYST | |
JP4050904B2 (en) | Method for producing oxidation or ammoxidation catalyst | |
EP4361134A1 (en) | Dicarboxyl acid aromatic heterocyclic compound and method for preparing same | |
JP5078222B2 (en) | Composite oxide catalyst | |
EP4360755A1 (en) | Catalyst for making dicarboxyl acid aromatic heterocyclic compound, and method for preparing dicarboxyl acid aromatic heterocyclic compound | |
CN117920219A (en) | Catalyst for methane synthesis and method for producing same | |
CN114829009A (en) | Method for activating catalytically active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23846480 Country of ref document: EP Kind code of ref document: A1 |