[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024004712A1 - Optical element manufacturing method and optical element - Google Patents

Optical element manufacturing method and optical element Download PDF

Info

Publication number
WO2024004712A1
WO2024004712A1 PCT/JP2023/022408 JP2023022408W WO2024004712A1 WO 2024004712 A1 WO2024004712 A1 WO 2024004712A1 JP 2023022408 W JP2023022408 W JP 2023022408W WO 2024004712 A1 WO2024004712 A1 WO 2024004712A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
optical element
glass substrate
resist layer
diffraction pattern
Prior art date
Application number
PCT/JP2023/022408
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 藤田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023084037A external-priority patent/JP2024003763A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024004712A1 publication Critical patent/WO2024004712A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to a method for manufacturing an optical element and an optical element.
  • AR/MR glasses are glasses-type wearable devices that allow you to see a digital virtual image superimposed on top of a real image. For this reason, applications are progressing in a variety of fields, including traffic guidance, work support, educational settings, and medical settings.
  • the light guide plate includes, for example, a substrate made of glass or resin, and a diffraction grating (diffraction pattern) formed on the substrate.
  • the diffraction pattern can be formed, for example, by applying a resin onto a substrate and pressing a mold having a periodic structure onto the resin (Patent Document 1).
  • the refractive index of substrates has been increasing in recent years, and the difference in refractive index between the substrate and the diffraction pattern is becoming larger. Such a refractive index difference causes scattering loss at the interface, which may lead to a decrease in image brightness and image quality.
  • Patent Document 2 a diffraction grating in which metal nanoparticles are contained in a resin has been studied.
  • Patent Document 2 a diffraction grating in which metal nanoparticles are contained in a resin.
  • an object of the present invention is to provide a method for manufacturing an optical element and an optical element that have high moldability and can easily suppress the influence of scattering loss.
  • the method for manufacturing an optical element according to aspect 1 is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers. .
  • the method for manufacturing an optical element according to Aspect 2 includes the steps of forming a lower resist layer on the glass substrate, forming an upper resist layer on the lower resist layer, and forming a first resist pattern on the upper resist layer in Aspect 1. a first etching step of forming a second resist pattern on the lower resist layer using the first resist pattern; and a second etching step of forming a diffraction pattern on the glass substrate using the second resist pattern. is preferred.
  • the ratio Rt2/Rr2b of the etching rate Rr2b of the lower resist layer in the second etching step and the thickness Rt2 of the lower resist layer is 1 to 40 min. is preferred.
  • the method for manufacturing an optical element according to Aspect 5 includes the steps of forming a lower resist layer on the glass substrate, forming an upper resist layer on the lower resist layer, and forming a first resist pattern on the upper resist layer in Aspect 1.
  • the method preferably includes a first etching step of forming a second resist pattern in the lower resist layer using the first resist pattern.
  • the etching rate of the upper resist layer in the first etching step is set to Rr1
  • the etching rate of the lower resist layer in the first etching step is set to Rr1.
  • the etching rate is Rr2a, it is preferable that Rr1>Rr2a.
  • the lower resist layer may be made of a metal-based resist or a metal oxide-based resist
  • the upper resist layer may be made of a resin-based resist. preferable.
  • the optical element is a light guide plate.
  • the optical element of aspect 9 is an optical element made of a glass substrate having a diffraction pattern, the glass substrate has a refractive index of 2 or more, and the diffraction pattern is formed directly on the glass substrate. .
  • the optical element of aspect 10 is an optical element comprising a glass substrate and a diffraction pattern disposed on the glass substrate, wherein the glass substrate has a refractive index of 2 or more, and the refractive index difference ⁇ nd between the glass substrate and the diffraction pattern is is 0.2 or less.
  • the Abbe number difference ⁇ d between the glass substrate and the diffraction pattern is 21 or less.
  • a/b is preferably larger than 1.
  • Ra1/Ra2 is greater than 1, where Ra1 is the surface roughness of the concave portion of the diffraction pattern, and Ra2 is the surface roughness of the convex portion of the diffraction pattern. It is preferable.
  • r is the radius of curvature of the convex portion of the diffraction pattern, it is preferable that r is 3 nm to 200 nm.
  • the glass substrate contains 0% to 12% of SiO 2 , 0% to 10% of B 2 O 3 , and 0% to BaO in mass %. 13%, ZnO 0% to 5%, ZrO 2 2% to 10%, La 2 O 3 15% to 45%, Gd 2 O 3 0% to 15%, Nb 2 O 5 0% to 15%, WO 3 It is preferable to contain 0% to 10%, TiO 2 13% to 50%, and Y 2 O 3 0.1% to 10%.
  • the diffraction pattern is preferably made of a metal oxide material.
  • the optical element of Aspect 17 is preferably used as a light guide plate in any one of Aspects 9 to 16.
  • FIG. 1 is a schematic cross-sectional view of an optical member according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view enlarging a part of the diffraction pattern.
  • FIG. 3 is a schematic cross-sectional view of an optical member according to a second embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view of an optical member according to a third embodiment of the present invention.
  • FIGS. 5(a) to 5(d) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention.
  • FIGS. 6(e) to 6(g) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention.
  • the method for manufacturing an optical element of the present invention is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers.
  • the optical element of the present invention is an optical element comprising a glass substrate having a diffraction pattern, the glass substrate has a refractive index of 2 or more, and the diffraction pattern is formed directly on the glass substrate. shall be.
  • the optical element of the present invention is an optical element comprising a glass substrate and a diffraction pattern arranged on the glass substrate, wherein the glass substrate has a refractive index of 2 or more, and the refractive index of the glass substrate and the diffraction pattern is 2 or more. It is characterized in that the difference ⁇ nd is 0.2 or less.
  • FIG. 1 is a schematic cross-sectional view of an optical member according to a first embodiment of the present invention.
  • the optical element 10 consists of a glass substrate 3 having a diffraction pattern 31.
  • the diffraction pattern 31 is directly formed on the glass substrate 3.
  • the glass substrate 3 and the diffraction pattern 31 are made of the same glass having a refractive index of 2 or more. Further, no interface is formed between the glass substrate 3 and the diffraction pattern 31. That is, since there is no difference in refractive index between the glass substrate 3 and the diffraction pattern 31, no scattering loss occurs.
  • the diffraction pattern 31 is a concavo-convex pattern that repeats a predetermined concavo-convex structure.
  • the diffraction pattern 31 may be formed over the entire main surface of the glass substrate 3, or may be formed on a part of the main surface of the glass substrate 3, depending on the purpose. Further, a plurality of diffraction patterns 31 may be formed on the main surface of the glass substrate 3 like an optical element according to a second embodiment described later.
  • FIG. 2 is a schematic cross-sectional view enlarging a part of the diffraction pattern.
  • the uneven structure of the diffraction pattern 31 preferably has a trapezoidal cross-sectional shape.
  • a/b is 1 from the viewpoint of suppressing damage to the diffraction pattern.
  • a/b is preferably smaller than 2. More specifically, a/b is preferably 1.90 or less, 1.50 or less, 1.30 or less, particularly 1.20 or less.
  • the cross-sectional shape of the uneven structure is not limited to a trapezoidal shape, and any uneven structure that functions as a diffraction grating can be selected, such as a rectangular shape, a sawtooth shape, and a sine wave shape.
  • a/b may be 1 or more.
  • the width a at the bottom of the convex portion of the diffraction pattern 31 is preferably 100 nm to 1000 nm. More specifically, the lower limit of the width a is preferably 100 nm or more, 150 nm or more, 200 nm or more, especially 210 nm or more, and the upper limit of the width a is preferably 1000 nm or less, 800 nm or less, especially 700 nm or less. Furthermore, the width b at 2/3 height from the bottom of the convex portion is preferably 100 nm to 1000 nm.
  • the lower limit of the width b is preferably 100 nm or more, 140 nm or more, 190 nm or more, especially 200 nm or more, and the upper limit of the width b is preferably 1000 nm or less, 990 nm or less, 790 nm or less, particularly preferably 690 nm or less. .
  • the height H of the convex portions of the diffraction pattern 31 (that is, the depth of the concave portions of the diffraction pattern 31) is preferably 100 nm to 1000 nm. More specifically, the lower limit of the height H is preferably 100 nm or more, 150 nm or more, 200 nm or more, especially 250 nm or more, and the upper limit of the height H is 1000 nm or less, 900 nm or less, 800 nm or less, 700 nm or less, especially 600 nm or less. It is preferable that When the diffraction pattern 31 has the above height H, it becomes easier to obtain desired optical characteristics.
  • the pitch P of the diffraction pattern 31 is preferably 200 nm to 2000 nm. More specifically, the lower limit of pitch P is preferably 200 nm or more, 250 nm or more, especially 300 nm or more, and the upper limit of pitch P is 2000 nm or less, 1500 nm or less, 1000 nm or less, 900 nm or less, 800 nm or less, 700 nm or less, 600 nm or less In particular, it is preferably 500 nm or less. When the diffraction pattern 31 has the pitch P, it becomes easier to obtain desired optical characteristics.
  • the ratio P/H between the pitch P of the diffraction pattern 31 and the height H of the convex portion is preferably 0.2 to 20. More specifically, the lower limit of P/H is preferably 0.2 or more, 0.5 or more, especially 0.7 or more, and the upper limit of P/H is 20 or less, 10 or less, 5 or less, especially 2 or less. It is preferable that When the diffraction pattern 31 satisfies the ratio, it becomes easier to obtain desired optical characteristics.
  • the ratio Ra1/Ra2 of the two is larger than 1, where the surface roughness in the concave portion is Ra1 and the surface roughness in the convex portion is Ra2. More specifically, the lower limit of Ra1/Ra2 is preferably greater than 1, 1.01 or more, 1.05 or more, particularly 1.08 or more. A concavo-convex structure having this shape is likely to be easily formed. In addition, in order to obtain desired optical characteristics, the upper limit of Ra1/Ra2 is preferably 3 or less, 2.5 or less, particularly 2.4 or less.
  • Ra1 is 0.05 nm to 1 nm. More specifically, the lower limit of Ra1 is preferably 0.05 nm or more, especially 0.1 nm or more, and the upper limit of Ra1 is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, especially 0. It is preferably 15 nm or less. Further, Ra2 is preferably 0.05 nm to 1 nm. More specifically, the lower limit of Ra2 is preferably 0.05 nm or more, particularly 0.06 nm or more, and the upper limit of Ra2 is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, 0.15 nm. In particular, it is preferably 0.12 nm or less.
  • the uneven structure of the diffraction pattern 31 preferably has a radius of curvature of 3 nm to 200 nm, where r is the radius of curvature at the convex portion. More specifically, the lower limit of r is preferably 3 nm or more, 4 nm or more, especially 5 nm or more, and the upper limit of r is preferably 200 nm or less, 150 nm or less, especially 130 nm or less.
  • the concavo-convex structure having this shape tends to improve optical properties.
  • the refractive index (nd) of the glass used for the glass substrate 3 is 2 or more, 2.01 or more, 2.02 or more, 2.04 or more, 2.05 or more, 2.06 or more, 2.07 or more, 2.09. Above, it is preferably 2.10 or more, particularly 2.12 or more. If the refractive index is too low, the light guide plate of wearable image display devices such as projector glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, virtual image display devices, etc. When used as a camera, the viewing angle tends to become narrower. On the other hand, if the refractive index is too high, defects such as devitrification and striae are likely to occur, so the upper limit of the refractive index nd is preferably 2.5 or less, particularly 2.4 or less.
  • the density of the glass used for the glass substrate 3 is preferably 7.0 g/cm 3 or less, particularly 6.5 g/cm 3 or less. If the density is too high, the weight of the wearable device using the glass substrate 3 will increase, which will increase discomfort when the device is worn. On the other hand, if the density is too low, other properties such as optical properties tend to deteriorate, so the lower limit of density is 4 g/cm 3 or more, 4.5 g/cm 3 or more, 5.0 g/cm 3 or more, especially 5 It is preferable that it is .1 g/cm 3 or more.
  • the internal transmittance of the glass used for the glass substrate 3 at a wavelength of 450 nm is preferably 70% or more, 75% or more, 80% or more, particularly 85% or more. In this way, when a light guide plate using the glass is used in a wearable image display device, the brightness of the image seen by the user can be easily increased.
  • the upper limit of the internal transmittance is not particularly limited, but may be, for example, 99% or less, or 98% or less. Note that the above internal transmittance is a value measured using a 10 mm thick sample.
  • the thickness of the glass substrate 3 is preferably 1 mm or less, 0.8 mm or less, 0.6 mm or less, particularly 0.5 mm or less. If the thickness of the glass substrate 3 is too large, the weight of the wearable image display device will increase, which will increase discomfort when the device is worn. On the other hand, if the thickness of the glass substrate 3 is too small, the mechanical strength tends to decrease, so the lower limits of the thickness are 0.01 mm or more, 0.02 mm or more, 0.03 mm or more, 0.04 mm or more, and 0.02 mm or more. It is preferably 0.05 mm or more, 0.1 mm or more, 0.2 mm or more, particularly 0.3 mm or more.
  • TTV Total Thickness Variation
  • the difference between the maximum and minimum distances between the first main surface and the second main surface of the glass substrate 3 is 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, especially 1.5 ⁇ m or less. It is preferable. By setting TTV to the above value, it becomes easier to reduce blurring and deviation of the obtained image.
  • the lower limit of TTV is preferably 0.01 ⁇ m or more, and preferably 0.1 ⁇ m or more.
  • the surface roughness Ra of the glass substrate 3 is preferably 0.05 nm to 1 nm in order to obtain desired optical characteristics. More specifically, the lower limit of the surface roughness is preferably 0.05 nm or more, and the upper limit of the surface roughness is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, particularly 0.15 nm or less. It is preferable that
  • the shape of the glass substrate 3 is preferably a plate shape, for example, a polygon such as a circle, an ellipse, or a rectangle in plan view.
  • the major axis of the glass substrate 3 (diameter if circular) is preferably 100 mm or more, 120 mm or more, 150 mm or more, 160 mm or more, 170 mm or more, 180 mm or more, 190 mm or more, particularly 200 mm or more. If the long axis of the glass substrate 3 is too small, it will be difficult to use it for applications such as wearable image display devices. Additionally, mass production tends to be poor.
  • the upper limit of the major axis of the glass substrate 3 is not particularly limited, it is realistically 1000 mm or less.
  • the melting temperature of the glass used for the glass substrate 3 is preferably 1400°C or lower, 1350°C or lower, 1300°C or lower, particularly 1280°C or lower. If the melting temperature is too high, components of the melting container (Pt, Rh, etc.) tend to dissolve into the glass melt, and the light transmittance of the resulting glass substrate 3 tends to decrease. On the other hand, when the melting temperature becomes low, bubbles and foreign substances (for example, foreign substances derived from undissolved substances) tend to be generated more easily. Therefore, in order to reduce bubbles and foreign matter in the glass, the melting temperature is preferably 1200°C or higher, particularly 1250°C or higher.
  • the optical element 10 and the optical element 30 are wearables selected from projector-equipped glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices. It can be suitably used for image display devices. It is particularly preferable that the optical element 10 and the optical element 30 be used as a light guide plate. In other words, it is preferable that the optical element 10 and the optical element 30 are light guide plates.
  • the light guide plate is used in a glasses lens portion of a wearable image display device, and plays the role of guiding light emitted from an image display element included in the wearable image display device and emitting it toward the user's eyes.
  • a plurality of optical elements 10 and 30 may be stacked and used as a laminate.
  • the optical element 10 is used as a light guide plate of a wearable image display device, it is possible to guide an image for each wavelength, and a clear image can be obtained.
  • the number of laminated sheets is preferably 6 or less, 5 or less, 4 or less, 3 or less, particularly 2 or less.
  • the glass used for the glass substrate 3 preferably contains at least one component selected from SiO 2 , B 2 O 3 , La 2 O 3 and Nb 2 O 5 .
  • a glass containing 0% to 20% of SiO 2 , 0% to 25% of B 2 O 3 , 10% to 60% of La 2 O 3 , and 0% to 30% of Nb 2 O 5 in mass % may be used. is preferred.
  • SiO 2 is a glass skeleton component and is a component that improves vitrification stability and chemical durability. However, if the content is too large, the melting temperature will become extremely high. When the melting temperature becomes high, transition metal components such as Nb and Ti are reduced, absorption occurs in the visible region, and the internal transmittance tends to decrease. Furthermore, the refractive index tends to decrease.
  • the lower limit of the content of SiO2 is preferably 0% or more, 1% or more, 3% or more, 5% or more, 5.5% or more, especially 6% or more, and the upper limit is 20% or less, 15% or less, It is preferably 12% or less, 11% or less, 10% or less, 9.5% or less, particularly 9% or less.
  • B 2 O 3 is a component that contributes to the stability of vitrification.
  • the lower limit of the content of B 2 O 3 is preferably 0% or more, 0.1% or more, 0.2% or more, 0.5% or more, 1% or more, 2% or more, particularly 3% or more
  • the upper limit is preferably 25% or less, 20% or less, 19% or less, 15% or less, 10% or less, 8% or less, 7% or less, 6% or less, and particularly preferably 5% or less. If the content of B 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of B 2 O 3 is too large, the refractive index tends to decrease.
  • B 2 O 3 /SiO 2 is 0 or more, 0.02 or more, 0.04 or more, 0.05 or more, 0.1 or more, 0.3 or more, especially 0.4 or more. It is preferably 3 or less, 2 or less, 1.5 or less, 1.2 or less, 1 or less, 0.8 or less, 0.6 or less, particularly preferably 0.5 or less.
  • x/y means the value obtained by dividing the content of x by the content of y.
  • the content of Si 4+ +B 3+ in terms of cation% is 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, especially 11 % or more.
  • the upper limit of the content of Si 4+ +B 3+ is not particularly limited, but if it is too large, the refractive index tends to decrease and the melting temperature increases. It is preferably 20% or less, 19% or less, 15% or less, particularly 14% or less.
  • the lower limit of the BaO content is preferably 0% or more, 0.1% or more, 0.3% or more, especially 1% or more, and the upper limit is 13% or less, 9% or less, 8% or less, 5% or more. % or less, particularly preferably 3% or less.
  • the content of BaO is preferably 1% or less, particularly 0.5% or less, and most preferably not contained.
  • the ZnO is a component that promotes solubility (solubility of raw materials).
  • the lower limit of the ZnO content is preferably 0% or more, 0.1% or more, 0.3% or more, 0.5% or more, especially 1% or more, and the upper limit is 5% or less, 4% or less. , 3% or less, 2.8% or less, 2.5% or less, particularly preferably 2% or less.
  • the ZrO 2 is a component that increases refractive index and chemical durability. However, if the content is too large, the melting temperature tends to become extremely high. Therefore, the lower limit of the ZrO 2 content is preferably 2% or more, 3% or more, 4% or more, especially 5% or more, and the upper limit is 10% or less, 9.5% or less, 9% or less, especially 8 % or less.
  • La 2 O 3 is a component that significantly increases the refractive index and also improves the stability of vitrification.
  • the lower limit of the content of La 2 O 3 is preferably 10% or more, 15% or more, 25% or more, 30% or more, 31% or more, especially 35% or more, and the upper limit is 60% or less, 45% or less, In particular, it is preferably 43% or less. If the content of La 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of La 2 O 3 is too large, the devitrification resistance tends to decrease, resulting in poor mass productivity.
  • Gd 2 O 3 is a component that increases the refractive index and also improves the stability of vitrification.
  • the lower limit of the content of Gd 2 O 3 is preferably 0% or more, 1% or more, especially 2% or more, and the upper limit is 15% or less, 13% or less, 10% or less, 9% or less, 8% or less, It is preferably 7% or less, particularly 6% or less. If the content of Gd 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of Gd 2 O 3 is too large, the devitrification resistance tends to decrease, resulting in poor mass productivity.
  • Nb 2 O 5 is a component that significantly increases the refractive index of glass. However, if the content is too large, the light transmittance in the visible range tends to decrease. Therefore, the lower limit of the content of Nb 2 O 5 is preferably 0% or more, 1% or more, 3% or more, especially 5% or more, and the upper limit is 30% or less, 15% or less, 12% or less, especially 10% or more. % or less.
  • the lower limit of the content of WO3 is preferably 0% or more, 0.1% or more, especially 1% or more, and the upper limit is 10% or less, 9% or less, 8% or less, 6% or less, 5%. Below, it is preferably 3% or less, less than 3%, 2% or less, particularly less than 2%.
  • the content of WO 3 is preferably 1% or less, particularly 0.5% or less, and most preferably not contained.
  • TiO 2 is a component that significantly increases the refractive index of glass. However, if the content is too large, vitrification tends to be difficult. Furthermore, the light transmittance in the visible range tends to decrease. Therefore, the lower limit of the TiO 2 content is preferably 13% or more, 15% or more, 16% or more, 18% or more, 20% or more, 21% or more, 22% or more, especially 23% or more, and the upper limit is It is preferably 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, particularly 28% or less.
  • the upper limit of the content of TiO 2 + WO 3 (total amount of TiO 2 and WO 3 ) is 60% or less, 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, 28% or less, especially 25% or less % or less, and the lower limit is preferably 15% or more, 18% or more, particularly 20% or more. In this way, it becomes easier to increase the light transmittance in the visible range.
  • Y 2 O 3 is a component that increases the refractive index and chemical durability, but if its content is too large, the melting temperature tends to become extremely high. Additionally, vitrification tends to become unstable. Therefore, the lower limit of the content of Y 2 O 3 is preferably 0.1% or more, 1% or more, 2% or more, 2.5% or more, especially 3% or more, and the upper limit is 10% or less, 7% Below, it is preferably 6% or less, 5% or less, particularly 4% or less.
  • Ga 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and expands the range of vitrification. It also has the effect of increasing the refractive index. However, if the content of Ga 2 O 3 is too large, it becomes difficult to vitrify. Furthermore, raw material costs tend to be high. Therefore, the lower limit of the content of Ga 2 O 3 is preferably 0% or more, 1% or more, especially 2% or more, and the upper limit is 10% or less, 7% or less, 6% or less, 5% or less, especially 4 % or less.
  • MgO, CaO, and SrO are components that stabilize vitrification. If the content is too large, the refractive index tends to decrease. Additionally, the liquidus temperature tends to increase.
  • the content of these components is preferably 5% or less, 2% or less, 1% or less, particularly 0.5% or less.
  • Ta 2 O 5 is a component that increases the refractive index. However, if the content is too large, phase separation and devitrification are likely to occur. Moreover, since Ta 2 O 5 is a rare and expensive component, the raw material batch cost increases as its content increases. In view of the above, the content of Ta 2 O 5 is preferably 5% or less, 3% or less, or 1% or less, and is particularly preferably not contained.
  • Yb 2 O 3 is also a component that increases the refractive index. However, if the content is too large, devitrification and striae are likely to occur. Therefore, the content of Yb 2 O 3 is preferably 10% or less, 8% or less, 5% or less, 3% or less, particularly 1% or less.
  • Y 3+ /(Gd 3+ +Y 3+ +Yb 3+ ) is 0.2 or more, 0.25 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.52 or more, 0.55. As mentioned above, it is preferably 0.6 or more, particularly 0.61 or more. Further, the upper limit is preferably 1.5 or less, 1 or less, 0.9 or less, particularly 0.8 or less. Note that “Y 3+ /(Gd 3+ +Y 3+ +Yb 3+ )” means the value obtained by dividing the content of Y 3+ by the total amount of Gd 3+ , Y 3+ and Yb 3+ .
  • Al 2 O 3 is a component that improves water resistance. However, if the content is too large, devitrification tends to occur. Therefore, the content of Al 2 O 3 is preferably 5% or less, 3% or less, 1% or less, or 0.5% or less, and it is particularly preferably not contained.
  • Li 2 O, Na 2 O, and K 2 O are components that lower the softening point, but if their content is too large, devitrification tends to occur. Therefore, the content of each of these components is preferably 10% or less, each 5% or less, and each 1% or less, and it is particularly preferable that they are not contained. Furthermore, when two or more types of Li 2 O, Na 2 O, and K 2 O are contained, the total amount thereof is preferably 10% or less, 5% or less, or 1% or less, and it is particularly preferable that they are not contained.
  • As components such as As 2 O 3
  • Pb components such as PbO
  • fluorine components such as F 2
  • As components such as As 2 O 3
  • Pb components such as PbO
  • fluorine components such as F 2
  • substantially not containing means intentionally not containing it as a raw material, and does not exclude the inclusion of unavoidable impurities. Objectively, this means that the content of each of the above components is less than 0.1%.
  • Pt, Rh, and Fe 2 O 3 are coloring components, and since the transmittance in the visible range tends to decrease, it is preferable that their content is small.
  • Pt is preferably 10 ppm or less, 9 ppm or less, especially 5 ppm or less
  • Rh is preferably 0.1 ppm or less, particularly 0.01 ppm or less
  • Fe 2 O 3 is 1 ppm or less.
  • it is preferably 0.5 ppm or less.
  • the lower limit of the Pt content is preferably 0.1 ppm or more, particularly 0.5 ppm or more.
  • the glass may contain each of the clarifying agent components Cl, CeO 2 , SO 2 , Sb 2 O 3 or SnO 2 in a proportion of 0.1% or less.
  • FIG. 3 is a schematic cross-sectional view of an optical member according to a second embodiment of the invention.
  • the optical element 20 has diffraction patterns 31 and 32 formed on a portion of the glass substrate 3, respectively.
  • the diffraction patterns 31 and 32 are formed on the same main surface (first main surface).
  • the optical element 20 is a wearable image display selected from projector-equipped glasses, glasses or goggle displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices.
  • the diffraction patterns 31 and 32 do not necessarily need to be provided on the same main surface; for example, the diffraction pattern 31 is provided on the first main surface, and the diffraction pattern 2 is provided on the other main surface opposite to the first main surface. (the second main surface).
  • the surface roughness Ra of the main surface of the glass substrate 3 on which the diffraction patterns 31 and 32 are not formed is preferably 10 nm or less, 5 nm or less, 3 nm or less, particularly 2 nm or less. If the surface roughness Ra of the first main surface and the second main surface of the glass substrate 3 is too large, scattering loss is likely to occur when the light incident on the inside of the glass substrate 3 undergoes repeated total reflection and is guided. It becomes difficult to obtain bright and clear images.
  • the lower limit of the surface roughness Ra of the first main surface and the second main surface of the glass substrate 3 is not particularly limited, it is realistically 0.1 nm or more.
  • the optical element 20 consists of a glass substrate 3 having diffraction patterns 31 and 32.
  • the diffraction patterns 31 and 32 are directly formed on the glass substrate 3.
  • the glass substrate 3 and the diffraction patterns 31 and 32 are made of the same glass having a refractive index of 2 or more. Further, there is no interface between the glass substrate 3 and the diffraction patterns 31 and 32. Therefore, since there is no difference in refractive index between the glass substrate 3 and the diffraction patterns 31 and 32, scattering loss can be reduced.
  • the glass substrate 3 of this embodiment has two diffraction patterns 31 and 32 on its main surface, the number of diffraction patterns is not limited to two.
  • the glass substrate 3 may include three or more diffraction patterns.
  • the preferred configuration of the optical element 10 can be applied as appropriate.
  • FIG. 4 is a schematic cross-sectional view of an optical member according to a third embodiment of the present invention.
  • the optical element 30 includes a glass substrate 3 and a diffraction pattern 33 arranged on the glass substrate 3.
  • the refractive index difference ⁇ nd between the glass substrate 3 and the diffraction pattern 33 is 0.2 or less.
  • the refractive index difference ⁇ nd is 0.2 or less, 0.15 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.06 or less, 0.05 or less, especially 0. It is preferable that it is .03 or less.
  • the lower limit of the refractive index difference ⁇ nd is not particularly limited, but may be, for example, 0.0001 or more, particularly 0.001 or more.
  • the upper limit of the Abbe number difference ⁇ d is preferably 21 or less, 20 or less, 18 or less, 16 or less, 14 or less, 12 or less, 11 or less, 10 or less, 8 or less, particularly 6 or less.
  • the lower limit of the Abbe difference ⁇ d is not particularly limited, but may be, for example, 0.1 or more, particularly 0.5 or more.
  • the diffraction pattern 33 is preferably formed from a lower resist layer in optical element manufacturing method II described below. From the viewpoint of use as a light guide plate, the diffraction pattern 33 is preferably made of a material that exhibits light transparency, and is particularly preferably made of a metal oxide material.
  • the refractive index nd is preferably 1.9 or more, 1.95 or more, especially 2 or more, and preferably 2.6 or less, especially 2.5 or less.
  • the Abbe number ⁇ d is preferably 5 or more, 6 or more, particularly 8 or more, and preferably 40 or less, 39 or less, especially 35 or less.
  • the refractive index nd of HfO 2 is 1.92 and the Abbe number ⁇ d is 23
  • the refractive index nd of TiO 2 is 2.43 and the Abbe number ⁇ d is 9, and the refractive index nd of ZrO 2 is 2.16.
  • the Abbe number ⁇ d is 34
  • the refractive index nd of Nb 2 O 5 is 2.34
  • the Abbe number ⁇ d is 14
  • the refractive index nd of Ta 2 O 5 is 2.13
  • the Abbe number ⁇ d is 26.
  • the refractive index nd of the ITO film is 1.90
  • the Abbe number ⁇ d is 8
  • the refractive index nd of BaTiO 3 is 2.43
  • the Abbe number ⁇ d is 12
  • the refractive index nd of KTaO 3 is 2.24
  • the Abbe number ⁇ d is 17,
  • the refractive index nd of KNbO 3 is 2.18
  • the Abbe number ⁇ d is 18, the refractive index nd of WO 3 is 1.99
  • the Abbe number ⁇ d is 20, and the refractive index of ZnO nd is 2.00
  • Abbe's number ⁇ d is 12.
  • the preferred configurations of the optical element 10 and the optical element 20 can be applied as appropriate.
  • FIGS. 6(e) to 6(g) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention.
  • a method for manufacturing an optical element according to the present invention will be explained in detail using the drawings.
  • the method for manufacturing an optical element of the present invention is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers. .
  • at least two or more resist layers include an upper resist layer 1 and a lower resist layer 2.
  • the method is characterized in that a diffraction pattern 31 is formed on the glass substrate 3 by etching the glass substrate 3 using the upper resist layer 1 and the lower resist layer 2.
  • the etching rate of glass substrates tends to be lower than that of silicon substrates commonly used in semiconductor processes.
  • the etching rate tends to become even smaller. Therefore, for example, in etching using only one layer of resin resist, the resin resist with a large etching rate disappears before the uneven structure is formed on the glass substrate, making it difficult to form a desired diffraction pattern on the glass substrate. This can easily become difficult. Therefore, in the present invention, the glass substrate 3 is etched using two or more resist layers. That is, in the optical element manufacturing method I, the glass substrate 3 is etched using the upper resist layer 1 and the lower resist layer 2.
  • a diffraction pattern 31 having a desired depth can be formed on the glass substrate 3.
  • a second resist pattern 21 is formed on the lower resist layer 2 using the upper resist layer 1.
  • the second resist pattern corresponds to the diffraction pattern. Even with this method, the diffraction pattern 31 having a desired depth can be formed on the glass substrate 3.
  • a lower resist layer 2 is formed on a glass substrate 3 (FIG. 5(a)).
  • the lower resist layer 2 is made of a metal resist.
  • the metal resist any material having a desired etching rate can be used as appropriate, but it is preferable to use, for example, Ni, Cr, Al, Pt, Si, or the like.
  • the material of the lower resist layer 2 is not limited to a metal resist, but may be a resin resist, an inorganic resist, an organic-inorganic hybrid resist, or the like.
  • a metal oxide resist as the inorganic resist.
  • the metal oxide for example, at least one selected from HfO 2 , TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , ITO, BaTiO 3 , KTaO 3 , KNbO 3 , WO 3 or ZnO is used. It is preferable to use ZrO 2 or TiO 2 , and it is particularly preferable to use TiO 2 .
  • the lower resist layer 2 may be a combination of multiple types of metal oxides.
  • the thickness of the lower resist layer 2 can be appropriately set depending on the desired depth of the diffraction pattern 31 and the etching rate of the lower resist layer 2.
  • the thickness of the lower resist layer 2 is preferably 1 nm or more, particularly 10 nm or more.
  • the upper limit is not particularly limited, but may be, for example, 500 nm or less.
  • the upper resist layer 1 is formed on the lower resist layer 2 (FIG. 5(b)).
  • the upper resist layer 1 is preferably made of a resin resist. This makes it easier to make the etching rate Rr2b of the lower resist layer 2 smaller than the etching rate Rr1 of the upper resist layer 1 in the first etching step described later.
  • the resin resist any material having a desired etching rate can be used as appropriate, and for example, commercially available photoresists and electron beam resists can be used as appropriate.
  • the thickness of the upper resist layer 1 can be appropriately set depending on the desired depth of the first resist pattern 11 and the etching rate of the upper resist layer 1.
  • the thickness of the upper resist layer 1 is preferably 1 nm or more, particularly 10 nm or more.
  • the upper limit is not particularly limited, but may be, for example, 1000 nm or less.
  • the thickness of the upper resist layer 1 is preferably greater than the thickness of the lower resist layer 2. In this way, it becomes easier to stably form the second resist pattern 21 having a desired depth in the lower resist layer 2.
  • the lower resist layer 2 is made of a metal resist
  • the upper resist layer 1 is made of a resin resist. In this way, it becomes easier to form the first resist pattern 11 and the second resist pattern 21 with good shape quality, and it becomes easier to stably form the diffraction pattern 31 having a desired depth on the glass substrate 3.
  • a first resist pattern 11 is formed on the upper resist layer 1 (FIG. 5(c)).
  • the first resist pattern 11 can be formed by exposing it to light or an electron beam so as to obtain a desired diffraction pattern, and then performing a development process.
  • a second resist pattern 21 is formed on the lower resist layer 2 using the first resist pattern 11 (first etching step, FIG. 5(d)). Specifically, a first etching process is performed using the first resist pattern 11 as a mask to form a second resist pattern 21 on the lower resist layer 2 .
  • the second resist pattern 21 has a pattern shape corresponding to the first resist pattern 11.
  • wet etching or dry etching is preferably used, and dry etching is particularly preferably used. This makes it easier to obtain a precise second resist pattern 21.
  • a gas suitable for the resist material used can be used as appropriate.
  • the etching rate of the upper resist layer 1 in the first etching step is Rr1 and the etching rate of the lower resist layer 2 is Rr2a, it is preferable that Rr1>Rr2a. That is, it is preferable that Rr1 is larger than Rr2a. This makes it easier to form the second resist pattern 21.
  • the etching rate Rr1 of the upper resist layer 1 is 5 nm/min or more, 10 nm/min or more, 20 nm/min or more, 30 nm/min or more, 40 nm/min or more, 50 nm/min or more, 60 nm/min or more, It is preferably 70 nm/min or more, especially 80 nm/min or more, and preferably 200 nm or less, 150 nm/min or less, 140 nm/min or less, especially 120 nm/min or less.
  • the etching rate Rr2a of the lower resist layer 2 is preferably 5 nm/min or more, 10 nm/min or more, especially 20 nm/min or more, and preferably 100 nm or less, 50 nm/min or less, especially 40 nm/min or less. preferable.
  • the ratio Rr1/Rr2a of the etching rate Rr1 of the upper resist layer 1 to the etching rate Rr2b of the lower resist layer 2 is 1.1 or more, 1.2 or more, 1.5 or more, 1.8 or more , 2 or more, 2.1 or more, particularly 2.3 or more.
  • the upper limit of Rr1/Rr2a is not particularly limited, but is preferably, for example, 5 or less, 4 or less, 3.5 or less, particularly 3.3 or less.
  • the optical member 30 according to the third embodiment of the present invention can be obtained by removing only the upper resist layer 1. That is, in the optical member 30, the lower resist layer 2 having the second resist pattern 21 functions as a diffraction pattern.
  • the upper resist layer 1 can be removed using a suitable solvent. For example, when using a resin resist as the upper resist layer 1, it can be removed using an organic solvent such as acetone.
  • a diffraction pattern 31 is formed using the second resist pattern 21 (second etching step, FIGS. 6(e) to 6(g)). Specifically, a second etching process is performed using the second resist pattern 21 as a mask to form the diffraction pattern 31 on the glass substrate 3.
  • the diffraction pattern 31 has a pattern shape corresponding to the second resist pattern 21.
  • the second etching process can use wet etching or dry etching. In particular, it is preferable to use dry etching. This makes it easier to obtain a precise diffraction pattern 31.
  • a gas suitable for the resist material used can be used as appropriate, and for example, it is preferable to use a Cl2 - based gas, an Ar-based gas, a C4F8 - based gas, or the like.
  • the etching rate of the lower resist layer in the second etching step is Rr2b and the etching rate of the glass substrate is Gr
  • Gr it is preferable that Gr>Rr2b. That is, it is preferable that Gr is larger than Rr2b.
  • the etching rate Rr2b of the lower resist layer 2 is preferably 5 nm/min or more, 10 nm/min or more, particularly preferably 20 nm/min or more, and 100 nm/min or less, 50 nm/min.
  • it is preferably 40 nm/min or less, particularly 35 nm/min or less.
  • the etching rate Gr of the glass substrate 3 is preferably, for example, 30 nm/min or more, 40 nm/min or more, especially 41 nm/min or more, and 100 nm/min or less, 60 nm/min or less, 55 nm/min or less, especially It is preferable that it is 50 nm/min or less.
  • the ratio Rr2b/Gr of the etching rate Rr2b of the lower resist layer 2 to the etching rate Gr of the glass substrate 3 is 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more , particularly preferably 0.45 or more, less than 1, preferably 0.9 or less, particularly preferably 0.8 or less.
  • the second etching process it is preferable that no lower resist layer 2 remains when the desired diffraction pattern 31 is formed (FIG. 6(g)). In this way, it becomes easier to obtain the diffraction pattern 31 with excellent shape quality. Further, there is no need to wash and remove the residue on the lower resist layer 2, and the diffraction pattern 31 is less likely to be contaminated. Note that the diffraction pattern 31 may be cleaned even if the lower resist layer 2 does not remain. Furthermore, if residues of the lower resist layer 2 are present, they can be removed using an appropriate solvent. For example, when using a metal resist as the lower resist layer 2, it can be removed using an etching solution or a chemical polishing solution.
  • the ratio Rt2/Rr2b of the etching rate Rr2b (nm/min) of the lower resist layer 2 to the thickness Rt2 (nm) of the lower resist layer 2 is preferably 1 to 40 min.
  • optical element 10 that has high moldability and can easily suppress the influence of scattering loss.
  • the optical element 10 and the optical element 30 are wearables selected from projector-equipped glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices. It is suitable as an optical element such as a light guide plate or a diffraction grating used in image display equipment.
  • Tables 1 and 2 show Examples 1 to 5, 8, and 9 of the present invention and Comparative Example 7. Moreover, Table 3 shows the composition of the glass substrate.
  • Examples were produced as follows. First, glass having the refractive index shown in Tables 1 and 2 was processed to a predetermined thickness, and the surface was mirror-polished to produce a glass substrate.
  • the refractive index nd, density, and internal transmittance of the glass at a sample thickness of 10 mm and a wavelength of 450 nm were measured.
  • the TTV and surface roughness of the glass substrate were measured.
  • the refractive index nd was measured using KPR-2000 (manufactured by Kalnew). Density was measured by Archimedes method.
  • the internal transmittance was measured using a visible and ultraviolet spectrophotometer V670 (manufactured by JASCO Corporation) at a sample thickness of 10 mm and a wavelength of 450 nm.
  • TTV was measured using a Bow/Warp measuring device SBW-331ML/d manufactured by Kobelco Scientific Research.
  • the surface roughness was measured using AFM Dimension Icon manufactured by Bruker at a scan size of 3 ⁇ m square and a scan speed of 1 Hz.
  • a diffraction pattern was formed on the glass substrate.
  • a lower resist layer was formed on a glass substrate using an electron beam evaporator (EB1200).
  • EB1200 electron beam evaporator
  • Cr was selected for Examples 1 to 6
  • ZrO 2 was selected for Examples 8 and 9.
  • the refractive index of the resist layers of Examples 8 and 9 was measured using an ellipsometer.
  • an upper resist layer was formed on the lower resist layer by spin coating.
  • ZEP520A (1:1 copolymer of ⁇ -chloromethacrylate and ⁇ -methylstyrene (manufactured by Zeon Corporation) was used as the upper resist material. Note that in Comparative Example 7, only the upper resist layer (ZEP520A) was applied without applying the lower resist layer (Cr).
  • the upper resist layer was irradiated with an electron beam using an electron beam drawing device (F7000S-KYT01).
  • the electron beam drawn portion was dissolved and developed using ZED-N50 (n-Amylacetate C 7 H 14 O 2 ) to form a first resist pattern in the upper resist layer.
  • a second resist pattern was formed in the lower resist layer by dry etching using the first resist pattern as a mask (first etching process).
  • a Cl2 - based etching gas was used for the etching process.
  • a magnetic neutral discharge dry etching apparatus (NLD-570) was used as the dry etching apparatus. After the dry etching process, the residue of the upper resist layer was removed with acetone.
  • the shape of the diffraction pattern on the glass substrate was measured after dry etching using the first resist pattern as a mask. Further, in Examples 8 and 9, the second etching process was not performed, and only the first etching process was performed.
  • a diffraction pattern was formed on the glass substrate by dry etching using the second resist pattern as a mask (second etching).
  • C 4 F 8 etching gas was used for the etching process.
  • the residue of the lower resist layer was removed using S-clean (S-24) to obtain an optical element with a diffraction pattern formed on the glass substrate.
  • the shape of the obtained diffraction pattern was measured using AFM. From the cross-sectional line profile image of the optical element, the bottom width of the diffraction pattern (line width a), the width at the 2/3 height position (line width b), the ratio a/b of line width a to line width b, and the height
  • the pitch width P, the pitch-to-height ratio P/H, the surface roughness Ra2 and Ra1 of the convex portion and the concave portion, the surface roughness ratio Ra1/Ra2, and the radius of curvature r of the convex edge were confirmed.
  • the refractive index nd of the diffraction pattern and the refractive index difference ⁇ nd between the glass substrate and the diffraction pattern were also confirmed. Further, the etching rates of the upper resist layer, the lower resist layer, and the glass substrate (Rr1, Rr2a, Rr2b, and Gr, respectively) were determined from the step difference in AFM line profile images before and after etching.
  • Screen image evaluation was performed by visually evaluating the blurring and distortion of the screen image transmitted through the optical element. Specifically, using an optical element with diffraction patterns formed on the entrance and exit sides, an image of a character was made incident through the diffraction pattern on the entrance side, and an image was taken out from the diffraction pattern on the exit side and projected onto a screen. If blurring or distortion occurred at the edges of the projected characters, it was marked as ⁇ , if it was slightly blurred, it was marked as ⁇ , and if it could not be visually confirmed, it was marked as ⁇ .
  • the viewing angle was calculated from the refractive index of the glass and the pitch (nm) of the diffraction pattern using the following formula.
  • ⁇ + means the angle of light entering the light guide plate from the side in which the light travels
  • ⁇ ⁇ means the angle of light entering the light guide plate from the opposite direction to the direction in which the light travels.
  • n Glass and n air are the refractive indexes of glass and air, respectively
  • is the wavelength of incident light
  • P is the pitch of the diffraction pattern.
  • the amount of light before entering the diffraction pattern and the amount of light after exiting were measured using a power meter, and the ratio of the amount of output light when the amount of incident light was taken as 100% was determined.
  • Optical elements manufactured by the optical element manufacturing method of the present invention can be used in glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image displays. It is suitable for optical elements such as light guide plates and diffraction gratings used in wearable image display devices selected from devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are an optical element manufacturing method and an optical element that has high moldability and that can easily suppress the influence of scattering loss. This method is for manufacturing an optical element 10 formed of a glass substrate 3 having a diffraction pattern 31, and involves forming the diffraction pattern 31 on the glass substrate 3 by using at least two resist layers.

Description

光学素子の製造方法及び光学素子Optical element manufacturing method and optical element
 本発明は、光学素子の製造方法及び光学素子に関する。 The present invention relates to a method for manufacturing an optical element and an optical element.
 AR/MRグラスは眼鏡型のウェアラブルデバイスであり、実像に加えてデジタルの虚像を重ね合わせて見ることができる。このため、交通案内や作業支援、教育現場や医療現場など、様々な分野で応用が進んでいる。 AR/MR glasses are glasses-type wearable devices that allow you to see a digital virtual image superimposed on top of a real image. For this reason, applications are progressing in a variety of fields, including traffic guidance, work support, educational settings, and medical settings.
 デバイスにデジタル映像を投影する方法の一つに、導光板等の光学素子を用いて映像を導波させる方法が知られている。導光板は、例えば、ガラスや樹脂からなる基板と、当該基板上に形成された回折格子(回折パターン)とを備える。回折パターンは、例えば、基板上に樹脂を塗布し、当該樹脂に周期構造を有する型を押し当てることにより形成することができる(特許文献1)。 One known method of projecting a digital image onto a device is to guide the image using an optical element such as a light guide plate. The light guide plate includes, for example, a substrate made of glass or resin, and a diffraction grating (diffraction pattern) formed on the substrate. The diffraction pattern can be formed, for example, by applying a resin onto a substrate and pressing a mold having a periodic structure onto the resin (Patent Document 1).
特開2001-235746号公報Japanese Patent Application Publication No. 2001-235746 特表2019-533040号公報Special table 2019-533040 publication
 デジタル映像の視野角を広げるため、近年は基板の屈折率が増加傾向にあり、基板と回折パターンの屈折率差が大きくなりつつある。このような屈折率差は界面での散乱損失を引き起こすため、映像の明るさ低下や画質低下につながる恐れがある。 In order to widen the viewing angle of digital images, the refractive index of substrates has been increasing in recent years, and the difference in refractive index between the substrate and the diffraction pattern is becoming larger. Such a refractive index difference causes scattering loss at the interface, which may lead to a decrease in image brightness and image quality.
 上記問題に対し、例えば、樹脂中に金属ナノ粒子を含有させた回折格子が研究されている(特許文献2)。しかしながら、樹脂の屈折率を向上させるためには金属ナノ粒子を多量に含有させる必要があり、それに伴う成形性や透過率の低下が懸念される。 To solve the above problem, for example, a diffraction grating in which metal nanoparticles are contained in a resin has been studied (Patent Document 2). However, in order to improve the refractive index of the resin, it is necessary to contain a large amount of metal nanoparticles, and there is a concern that the moldability and transmittance will decrease accordingly.
 以上に鑑み、本発明は、成形性が高く散乱損失の影響を抑制しやすい光学素子の製造方法及び光学素子を提供することを目的とする。 In view of the above, an object of the present invention is to provide a method for manufacturing an optical element and an optical element that have high moldability and can easily suppress the influence of scattering loss.
 上記課題を解決する光学素子の製造方法及び光学素子の各態様について説明する。 A method for manufacturing an optical element and various aspects of the optical element that solve the above problems will be described.
 態様1の光学素子の製造方法は、回折パターンを有するガラス基板からなる光学素子の製造方法であって、少なくとも2層以上のレジスト層を用いてガラス基板に回折パターンを形成することを特徴とする。 The method for manufacturing an optical element according to aspect 1 is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers. .
 態様2の光学素子の製造方法は、態様1において、ガラス基板上に下部レジスト層を形成する工程、下部レジスト層上に上部レジスト層を形成する工程、上部レジスト層に第1レジストパターンを形成する工程、第1レジストパターンを用いて下部レジスト層に第2レジストパターンを形成する第1のエッチング工程、第2レジストパターンを用いてガラス基板に回折パターンを形成する第2のエッチング工程、を備えることが好ましい。 The method for manufacturing an optical element according to Aspect 2 includes the steps of forming a lower resist layer on the glass substrate, forming an upper resist layer on the lower resist layer, and forming a first resist pattern on the upper resist layer in Aspect 1. a first etching step of forming a second resist pattern on the lower resist layer using the first resist pattern; and a second etching step of forming a diffraction pattern on the glass substrate using the second resist pattern. is preferred.
 態様3の光学素子の製造方法は、態様2において、第2のエッチング工程における下部レジスト層のエッチングレートをRr2b、第2のエッチング工程におけるガラス基板のエッチングレートをGrとするとき、Gr>Rr2bであることが好ましい。 In the method for manufacturing an optical element according to Aspect 3, in Aspect 2, when the etching rate of the lower resist layer in the second etching step is Rr2b, and the etching rate of the glass substrate in the second etching step is Gr, Gr>Rr2b. It is preferable that there be.
 態様4の光学素子の製造方法は、態様2又は態様3において、第2のエッチング工程における下部レジスト層のエッチングレートRr2bと、下部レジスト層の厚みRt2の比Rt2/Rr2bが1~40minであることが好ましい。 In the method for manufacturing an optical element according to Aspect 4, in Aspect 2 or Aspect 3, the ratio Rt2/Rr2b of the etching rate Rr2b of the lower resist layer in the second etching step and the thickness Rt2 of the lower resist layer is 1 to 40 min. is preferred.
 態様5の光学素子の製造方法は、態様1において、ガラス基板上に下部レジスト層を形成する工程、下部レジスト層上に上部レジスト層を形成する工程、上部レジスト層に第1レジストパターンを形成する工程、第1レジストパターンを用いて下部レジスト層に第2レジストパターンを形成する第1のエッチング工程、を備えることが好ましい。 The method for manufacturing an optical element according to Aspect 5 includes the steps of forming a lower resist layer on the glass substrate, forming an upper resist layer on the lower resist layer, and forming a first resist pattern on the upper resist layer in Aspect 1. The method preferably includes a first etching step of forming a second resist pattern in the lower resist layer using the first resist pattern.
 態様6の光学素子の製造方法は、態様2から態様5のいずれか一つの態様において、さらに、第1のエッチング工程における上部レジスト層のエッチングレートをRr1、第1のエッチング工程における下部レジスト層のエッチングレートをRr2aとするとき、Rr1>Rr2aであることが好ましい。 In the method for manufacturing an optical element according to aspect 6, in any one of aspects 2 to 5, the etching rate of the upper resist layer in the first etching step is set to Rr1, and the etching rate of the lower resist layer in the first etching step is set to Rr1. When the etching rate is Rr2a, it is preferable that Rr1>Rr2a.
 態様7の光学素子の製造方法は、態様2から態様6のいずれか一つの態様において、下部レジスト層が金属系レジスト又は金属酸化物系レジストからなり、上部レジスト層が樹脂系レジストからなることが好ましい。 In the method for manufacturing an optical element according to Aspect 7, in any one of Aspects 2 to 6, the lower resist layer may be made of a metal-based resist or a metal oxide-based resist, and the upper resist layer may be made of a resin-based resist. preferable.
 態様8の光学素子の製造方法は、態様1から態様7のいずれか一つの態様において、光学素子が導光板であることが好ましい。 In the method for manufacturing an optical element according to Aspect 8, in any one of Aspects 1 to 7, it is preferable that the optical element is a light guide plate.
 態様9の光学素子は、回折パターンを有するガラス基板からなる光学素子であって、ガラス基板は、屈折率が2以上であり、回折パターンは、ガラス基板に直接形成されていることを特徴とする。 The optical element of aspect 9 is an optical element made of a glass substrate having a diffraction pattern, the glass substrate has a refractive index of 2 or more, and the diffraction pattern is formed directly on the glass substrate. .
 態様10の光学素子は、ガラス基板と、ガラス基板上に配置された回折パターンを備える光学素子であって、ガラス基板は、屈折率が2以上であり、ガラス基板と回折パターンの屈折率差Δndが0.2以下であることを特徴とする。 The optical element of aspect 10 is an optical element comprising a glass substrate and a diffraction pattern disposed on the glass substrate, wherein the glass substrate has a refractive index of 2 or more, and the refractive index difference Δnd between the glass substrate and the diffraction pattern is is 0.2 or less.
 態様11の光学素子は、態様10において、ガラス基板と回折パターンのアッベ数差Δνdが21以下であることが好ましい。 In the optical element of aspect 11, in aspect 10, it is preferable that the Abbe number difference Δνd between the glass substrate and the diffraction pattern is 21 or less.
 態様12の光学素子は、態様9から態様11のいずれか一つの態様において、回折パターンの凸部の底部における幅をa、凸部の底部から2/3の高さにおける幅をbとするとき、a/bが1より大きいことが好ましい。 In the optical element of aspect 12, in any one of aspects 9 to 11, when the width at the bottom of the convex part of the diffraction pattern is a, and the width at 2/3 height from the bottom of the convex part is b. , a/b is preferably larger than 1.
 態様13の光学素子は、態様9から態様12のいずれか一つの態様において、回折パターンの凹部における表面粗さをRa1、凸部における表面粗さをRa2とするとき、Ra1/Ra2が1より大きいことが好ましい。 In the optical element of Aspect 13, in any one of Aspects 9 to 12, Ra1/Ra2 is greater than 1, where Ra1 is the surface roughness of the concave portion of the diffraction pattern, and Ra2 is the surface roughness of the convex portion of the diffraction pattern. It is preferable.
 態様14の光学素子は、態様9から態様13のいずれか一つの態様において、回折パターンの凸部における曲率半径をrとするとき、rが3nm~200nmであることが好ましい。 In the optical element of Aspect 14, in any one of Aspects 9 to 13, where r is the radius of curvature of the convex portion of the diffraction pattern, it is preferable that r is 3 nm to 200 nm.
 態様15の光学素子は、態様9から態様14のいずれか一つの態様において、ガラス基板が、質量%で、SiO 0%~12%、B 0%~10%、BaO 0%~13%、ZnO 0%~5%、ZrO 2%~10%、La 15%~45%、Gd 0%~15%、Nb 0%~15%、WO 0%~10%、TiO 13%~50%、Y 0.1%~10%を含有することが好ましい。 In the optical element of aspect 15, in any one of aspects 9 to 14, the glass substrate contains 0% to 12% of SiO 2 , 0% to 10% of B 2 O 3 , and 0% to BaO in mass %. 13%, ZnO 0% to 5%, ZrO 2 2% to 10%, La 2 O 3 15% to 45%, Gd 2 O 3 0% to 15%, Nb 2 O 5 0% to 15%, WO 3 It is preferable to contain 0% to 10%, TiO 2 13% to 50%, and Y 2 O 3 0.1% to 10%.
 態様16の光学素子は、態様10から態様15のいずれか一つの態様において、回折パターンが金属酸化物材料からなることが好ましい。 In the optical element of Aspect 16, in any one of Aspects 10 to 15, the diffraction pattern is preferably made of a metal oxide material.
 態様17の光学素子は、態様9から態様16のいずれか一つの態様において、導光板として用いられることが好ましい。 The optical element of Aspect 17 is preferably used as a light guide plate in any one of Aspects 9 to 16.
 本発明によれば、成形性が高く散乱損失の影響を抑制しやすい光学素子の製造方法及び光学素子を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an optical element and an optical element that have high moldability and can easily suppress the influence of scattering loss.
図1は、本発明の第1の実施形態に係る光学部材の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an optical member according to a first embodiment of the present invention. 図2は、回折パターンの一部を拡大した模式的断面図である。FIG. 2 is a schematic cross-sectional view enlarging a part of the diffraction pattern. 図3は、本発明の第2の実施形態に係る光学部材の模式的断面図である。FIG. 3 is a schematic cross-sectional view of an optical member according to a second embodiment of the invention. 図4は、本発明の第3の実施形態に係る光学部材の模式的断面図である。FIG. 4 is a schematic cross-sectional view of an optical member according to a third embodiment of the present invention. 図5(a)~(d)は、本発明の一実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。FIGS. 5(a) to 5(d) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention. 図6(e)~(g)は、本発明の一実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。FIGS. 6(e) to 6(g) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention.
 以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。また、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「質量%」を意味する。 Hereinafter, embodiments of the present invention will be described in detail using the drawings. However, the present invention is not limited to the following embodiments. Furthermore, in the following explanation regarding the content of each component, "%" means "% by mass" unless otherwise specified.
 本発明の光学素子の製造方法は、回折パターンを有するガラス基板からなる光学素子の製造方法であって、少なくとも2層以上のレジスト層を用いてガラス基板に回折パターンを形成することを特徴とする。また、本発明の光学素子は、回折パターンを有するガラス基板からなる光学素子であって、ガラス基板は、屈折率が2以上であり、回折パターンは、ガラス基板に直接形成されていることを特徴とする。さらに、本発明の光学素子は、ガラス基板と、ガラス基板上に配置された回折パターンを備える光学素子であって、ガラス基板は、屈折率が2以上であり、ガラス基板と回折パターンの屈折率差Δndが0.2以下であることを特徴とする。 The method for manufacturing an optical element of the present invention is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers. . Further, the optical element of the present invention is an optical element comprising a glass substrate having a diffraction pattern, the glass substrate has a refractive index of 2 or more, and the diffraction pattern is formed directly on the glass substrate. shall be. Furthermore, the optical element of the present invention is an optical element comprising a glass substrate and a diffraction pattern arranged on the glass substrate, wherein the glass substrate has a refractive index of 2 or more, and the refractive index of the glass substrate and the diffraction pattern is 2 or more. It is characterized in that the difference Δnd is 0.2 or less.
 <光学素子 第1の実施形態>
 図1は、本発明の第1の実施形態に係る光学部材の模式的断面図である。図1に示すように、光学素子10は、回折パターン31を有するガラス基板3からなる。回折パターン31は、ガラス基板3に直接形成されている。言い換えると、ガラス基板3と回折パターン31は、屈折率が2以上の同一のガラスからなる。また、ガラス基板3と回折パターン31の間に界面が形成されない。すなわち、ガラス基板3と回折パターン31間で屈折率差がないため、散乱損失が生じない。
<Optical element first embodiment>
FIG. 1 is a schematic cross-sectional view of an optical member according to a first embodiment of the present invention. As shown in FIG. 1, the optical element 10 consists of a glass substrate 3 having a diffraction pattern 31. As shown in FIG. The diffraction pattern 31 is directly formed on the glass substrate 3. In other words, the glass substrate 3 and the diffraction pattern 31 are made of the same glass having a refractive index of 2 or more. Further, no interface is formed between the glass substrate 3 and the diffraction pattern 31. That is, since there is no difference in refractive index between the glass substrate 3 and the diffraction pattern 31, no scattering loss occurs.
 本実施形態において、回折パターン31は所定の凹凸構造を繰り返す凹凸パターンである。回折パターン31は、目的に応じて、ガラス基板3の主面全体にわたって形成されていてもよいし、ガラス基板3の主面の一部に形成されていてもよい。また、後述する第2の実施形態に係る光学素子のように、回折パターン31は、ガラス基板3の主面に複数形成されてもよい。 In this embodiment, the diffraction pattern 31 is a concavo-convex pattern that repeats a predetermined concavo-convex structure. The diffraction pattern 31 may be formed over the entire main surface of the glass substrate 3, or may be formed on a part of the main surface of the glass substrate 3, depending on the purpose. Further, a plurality of diffraction patterns 31 may be formed on the main surface of the glass substrate 3 like an optical element according to a second embodiment described later.
 図2は、回折パターンの一部を拡大した模式的断面図である。本実施形態において、回折パターン31の凹凸構造は、断面形状が台形状であることが好ましい。このとき、回折パターン31の凸部の底部における幅をa、凸部の底部から2/3の高さにおける幅をbとするとき、回折パターンの破損を抑制する観点から、a/bは1より大きいことが好ましい。また、形成を容易にする観点から、a/bは2より小さいことが好ましい。より詳細には、a/bが1.90以下、1.50以下、1.30以下、特に1.20以下であることが好ましい。なお、凹凸構造の断面形状は台形状に限定されず、矩形状、鋸歯状、正弦波状など、回折格子として機能する任意の凹凸構造を選択することができる。例えば、凹凸構造の断面形状が矩形状であるとき、a/bは1以上であってもよい。 FIG. 2 is a schematic cross-sectional view enlarging a part of the diffraction pattern. In this embodiment, the uneven structure of the diffraction pattern 31 preferably has a trapezoidal cross-sectional shape. At this time, when the width at the bottom of the convex part of the diffraction pattern 31 is a, and the width at 2/3 height from the bottom of the convex part is b, a/b is 1 from the viewpoint of suppressing damage to the diffraction pattern. Preferably larger. Further, from the viewpoint of facilitating formation, a/b is preferably smaller than 2. More specifically, a/b is preferably 1.90 or less, 1.50 or less, 1.30 or less, particularly 1.20 or less. Note that the cross-sectional shape of the uneven structure is not limited to a trapezoidal shape, and any uneven structure that functions as a diffraction grating can be selected, such as a rectangular shape, a sawtooth shape, and a sine wave shape. For example, when the cross-sectional shape of the uneven structure is rectangular, a/b may be 1 or more.
 回折パターン31の凸部の底部における幅a(すなわち、回折パターン31の線幅)は、100nm~1000nmであることが好ましい。より詳細には、幅aの下限は100nm以上、150nm以上、200nm以上、特に210nm以上であることが好ましく、幅aの上限は1000nm以下、800nm以下、特に700nm以下であることが好ましい。また、凸部の底部から2/3の高さにおける幅bは、100nm~1000nmであることが好ましい。より詳細には、幅bの下限は100nm以上、140nm以上、190nm以上、特に200nm以上であることが好ましく、幅bの上限は1000nm以下、990nm以下、790nm以下、特に690nm以下であることが好ましい。 The width a at the bottom of the convex portion of the diffraction pattern 31 (ie, the line width of the diffraction pattern 31) is preferably 100 nm to 1000 nm. More specifically, the lower limit of the width a is preferably 100 nm or more, 150 nm or more, 200 nm or more, especially 210 nm or more, and the upper limit of the width a is preferably 1000 nm or less, 800 nm or less, especially 700 nm or less. Furthermore, the width b at 2/3 height from the bottom of the convex portion is preferably 100 nm to 1000 nm. More specifically, the lower limit of the width b is preferably 100 nm or more, 140 nm or more, 190 nm or more, especially 200 nm or more, and the upper limit of the width b is preferably 1000 nm or less, 990 nm or less, 790 nm or less, particularly preferably 690 nm or less. .
 回折パターン31の凸部の高さH(すなわち、回折パターン31の凹部の深さ)は、100nm~1000nmであることが好ましい。より詳細には、高さHの下限は100nm以上、150nm以上、200nm以上、特に250nm以上であることが好ましく、高さHの上限は1000nm以下、900nm以下、800nm以下、700nm以下、特に600nm以下であることが好ましい。回折パターン31が上記高さHを有することにより、所望の光学特性を得やすくなる。 The height H of the convex portions of the diffraction pattern 31 (that is, the depth of the concave portions of the diffraction pattern 31) is preferably 100 nm to 1000 nm. More specifically, the lower limit of the height H is preferably 100 nm or more, 150 nm or more, 200 nm or more, especially 250 nm or more, and the upper limit of the height H is 1000 nm or less, 900 nm or less, 800 nm or less, 700 nm or less, especially 600 nm or less. It is preferable that When the diffraction pattern 31 has the above height H, it becomes easier to obtain desired optical characteristics.
 回折パターン31のピッチP(すなわち、凹凸構造の周期)は、200nm~2000nmであることが好ましい。より詳細には、ピッチPの下限は200nm以上、250nm以上、特に300nm以上であることが好ましく、ピッチPの上限は2000nm以下、1500nm以下、1000nm以下、900nm以下、800nm以下、700nm以下、600nm以下、特に500nm以下であることが好ましい。回折パターン31が当該ピッチPを有することにより、所望の光学特性を得やすくなる。 The pitch P of the diffraction pattern 31 (ie, the period of the uneven structure) is preferably 200 nm to 2000 nm. More specifically, the lower limit of pitch P is preferably 200 nm or more, 250 nm or more, especially 300 nm or more, and the upper limit of pitch P is 2000 nm or less, 1500 nm or less, 1000 nm or less, 900 nm or less, 800 nm or less, 700 nm or less, 600 nm or less In particular, it is preferably 500 nm or less. When the diffraction pattern 31 has the pitch P, it becomes easier to obtain desired optical characteristics.
 回折パターン31のピッチPと凸部の高さHとの比P/Hは、0.2~20であることが好ましい。より詳細には、P/Hの下限は0.2以上、0.5以上、特に0.7以上であることが好ましく、P/Hの上限は20以下、10以下、5以下、特に2以下であることが好ましい。回折パターン31が当該比を満たすことにより、所望の光学特性を得やすくなる。 The ratio P/H between the pitch P of the diffraction pattern 31 and the height H of the convex portion is preferably 0.2 to 20. More specifically, the lower limit of P/H is preferably 0.2 or more, 0.5 or more, especially 0.7 or more, and the upper limit of P/H is 20 or less, 10 or less, 5 or less, especially 2 or less. It is preferable that When the diffraction pattern 31 satisfies the ratio, it becomes easier to obtain desired optical characteristics.
 回折パターン31の凹凸構造は、凹部における表面粗さをRa1、凸部における表面粗さをRa2とするとき、両者の比Ra1/Ra2が1より大きいことが好ましい。より詳細には、Ra1/Ra2の下限が1超、1.01以上、1.05以上、特に1.08以上であることが好ましい。当該形状を有する凹凸構造は、形成が容易になりやすい。なお、所望の光学特性を得るため、Ra1/Ra2の上限は、3以下、2.5以下、特に2.4以下であることが好ましい。 In the uneven structure of the diffraction pattern 31, it is preferable that the ratio Ra1/Ra2 of the two is larger than 1, where the surface roughness in the concave portion is Ra1 and the surface roughness in the convex portion is Ra2. More specifically, the lower limit of Ra1/Ra2 is preferably greater than 1, 1.01 or more, 1.05 or more, particularly 1.08 or more. A concavo-convex structure having this shape is likely to be easily formed. In addition, in order to obtain desired optical characteristics, the upper limit of Ra1/Ra2 is preferably 3 or less, 2.5 or less, particularly 2.4 or less.
 Ra1は、0.05nm~1nmであることが好ましい。より詳細には、Ra1の下限は0.05nm以上、特に0.1nm以上であることが好ましく、Ra1の上限は1nm以下、0.5nm以下、0.3nm以下、0.2nm以下、特に0.15nm以下であることが好ましい。また、Ra2は0.05nm~1nmであることが好ましい。より詳細には、Ra2の下限は0.05nm以上、特に0.06nm以上であることが好ましく、Ra2の上限は1nm以下、0.5nm以下、0.3nm以下、0.2nm以下、0.15nm、特に0.12nm以下であることが好ましい。 It is preferable that Ra1 is 0.05 nm to 1 nm. More specifically, the lower limit of Ra1 is preferably 0.05 nm or more, especially 0.1 nm or more, and the upper limit of Ra1 is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, especially 0. It is preferably 15 nm or less. Further, Ra2 is preferably 0.05 nm to 1 nm. More specifically, the lower limit of Ra2 is preferably 0.05 nm or more, particularly 0.06 nm or more, and the upper limit of Ra2 is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, 0.15 nm. In particular, it is preferably 0.12 nm or less.
 回折パターン31の凹凸構造は、凸部における曲率半径をrとするとき、rが3nm~200nmであることが好ましい。より詳細には、rの下限は3nm以上、4nm以上、特に5nm以上であることが好ましく、rの上限は200nm以下、150nm以下、特に130nm以下であることが好ましい。当該形状を有する凹凸構造は、光学特性を高めやすくなる。 The uneven structure of the diffraction pattern 31 preferably has a radius of curvature of 3 nm to 200 nm, where r is the radius of curvature at the convex portion. More specifically, the lower limit of r is preferably 3 nm or more, 4 nm or more, especially 5 nm or more, and the upper limit of r is preferably 200 nm or less, 150 nm or less, especially 130 nm or less. The concavo-convex structure having this shape tends to improve optical properties.
 ガラス基板3に用いるガラスの屈折率(nd)は、2以上、2.01以上、2.02以上、2.04以上、2.05以上、2.06以上、2.07以上、2.09以上、2.10以上、特に2.12以上であることが好ましい。屈折率が低すぎると、プロジェクター付きメガネ、眼鏡型又はゴーグル型ディスプレイ、仮想現実(VR)又は拡張現実(AR)、複合現実(MR)表示装置、虚像表示装置等のウェアラブル画像表示機器の導光板として使用した場合に、視野角が狭くなる傾向がある。一方、屈折率が高すぎると、失透や脈理等の欠陥が発生しやすくなるため、屈折率ndの上限は2.5以下、特に2.4以下であることが好ましい。 The refractive index (nd) of the glass used for the glass substrate 3 is 2 or more, 2.01 or more, 2.02 or more, 2.04 or more, 2.05 or more, 2.06 or more, 2.07 or more, 2.09. Above, it is preferably 2.10 or more, particularly 2.12 or more. If the refractive index is too low, the light guide plate of wearable image display devices such as projector glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, virtual image display devices, etc. When used as a camera, the viewing angle tends to become narrower. On the other hand, if the refractive index is too high, defects such as devitrification and striae are likely to occur, so the upper limit of the refractive index nd is preferably 2.5 or less, particularly 2.4 or less.
 ガラス基板3に用いるガラスの密度は、7.0g/cm以下、特に6.5g/cm以下であることが好ましい。密度が高すぎると、ガラス基板3を使用したウェアラブルデバイスの重量が大きくなり、デバイス装着時の不快感が増す。一方、密度が低すぎると光学特性等の他の特性が低下する傾向があるため、密度の下限は4g/cm以上、4.5g/cm以上、5.0g/cm以上、特に5.1g/cm以上であることが好ましい。 The density of the glass used for the glass substrate 3 is preferably 7.0 g/cm 3 or less, particularly 6.5 g/cm 3 or less. If the density is too high, the weight of the wearable device using the glass substrate 3 will increase, which will increase discomfort when the device is worn. On the other hand, if the density is too low, other properties such as optical properties tend to deteriorate, so the lower limit of density is 4 g/cm 3 or more, 4.5 g/cm 3 or more, 5.0 g/cm 3 or more, especially 5 It is preferable that it is .1 g/cm 3 or more.
 ガラス基板3に用いるガラスの波長450nmにおける内部透過率は70%以上、75%以上、80%以上、特に85%以上であることが好ましい。このようにすれば、当該ガラスを用いた導光板をウェアラブル画像表示機器に使用した場合に、使用者が見る像の明るさを高めやすくなる。内部透過率の上限は特に限定されないが、例えば、99%以下、98%以下としてもよい。なお、上記内部透過率は10mm厚の試料を用いて測定した際の値を示す。 The internal transmittance of the glass used for the glass substrate 3 at a wavelength of 450 nm is preferably 70% or more, 75% or more, 80% or more, particularly 85% or more. In this way, when a light guide plate using the glass is used in a wearable image display device, the brightness of the image seen by the user can be easily increased. The upper limit of the internal transmittance is not particularly limited, but may be, for example, 99% or less, or 98% or less. Note that the above internal transmittance is a value measured using a 10 mm thick sample.
 ガラス基板3の板厚は1mm以下、0.8mm以下、0.6mm以下、特に0.5mm以下であることが好ましい。ガラス基板3の板厚が大きすぎると、ウェアラブル画像表示機器の重量が大きくなり、デバイス装着時の不快感が増す。一方、ガラス基板3の板厚が小さすぎると、機械的強度が低下しやすくなるため、板厚の下限は0.01mm以上、0.02mm以上、0.03mm以上、0.04mm以上、0.05mm以上、0.1mm以上、0.2mm以上、特に0.3mm以上であることが好ましい。 The thickness of the glass substrate 3 is preferably 1 mm or less, 0.8 mm or less, 0.6 mm or less, particularly 0.5 mm or less. If the thickness of the glass substrate 3 is too large, the weight of the wearable image display device will increase, which will increase discomfort when the device is worn. On the other hand, if the thickness of the glass substrate 3 is too small, the mechanical strength tends to decrease, so the lower limits of the thickness are 0.01 mm or more, 0.02 mm or more, 0.03 mm or more, 0.04 mm or more, and 0.02 mm or more. It is preferably 0.05 mm or more, 0.1 mm or more, 0.2 mm or more, particularly 0.3 mm or more.
 ガラス基板3の第1の主面及び第2の主面の距離の最大値と最小値の差(TTV=Total Thickness Variation)は、5μm以下、3μm以下、2μm以下、特に1.5μm以下であることが好ましい。TTVを上記値とすることにより、得られる像のにじみやずれを低減しやすくなる。TTVの下限は0.01μm以上、0.1μm以上であることが好ましい。 The difference between the maximum and minimum distances between the first main surface and the second main surface of the glass substrate 3 (TTV=Total Thickness Variation) is 5 μm or less, 3 μm or less, 2 μm or less, especially 1.5 μm or less. It is preferable. By setting TTV to the above value, it becomes easier to reduce blurring and deviation of the obtained image. The lower limit of TTV is preferably 0.01 μm or more, and preferably 0.1 μm or more.
 ガラス基板3の表面粗さRaは、所望の光学特性を得るため0.05nm~1nmであることが好ましい。より詳細には、表面粗さの下限は0.05nm以上であることが好ましく、表面粗さの上限は1nm以下、0.5nm以下、0.3nm以下、0.2nm以下、特に0.15nm以下であることが好ましい。 The surface roughness Ra of the glass substrate 3 is preferably 0.05 nm to 1 nm in order to obtain desired optical characteristics. More specifically, the lower limit of the surface roughness is preferably 0.05 nm or more, and the upper limit of the surface roughness is 1 nm or less, 0.5 nm or less, 0.3 nm or less, 0.2 nm or less, particularly 0.15 nm or less. It is preferable that
 ガラス基板3の形状は、例えば、平面形状が円形、楕円形又は矩形等の多角形等の板状であることが好ましい。この場合、ガラス基板3の長径(円形の場合は直径)は、100mm以上、120mm以上、150mm以上、160mm以上、170mm以上、180mm以上、190mm以上、特に200mm以上であることが好ましい。ガラス基板3の長径が小さすぎると、ウェアラブル画像表示機器等の用途に使用することが困難になる。また量産性に劣る傾向がある。ガラス基板3の長径の上限は特に限定されないが、現実的には1000mm以下である。 The shape of the glass substrate 3 is preferably a plate shape, for example, a polygon such as a circle, an ellipse, or a rectangle in plan view. In this case, the major axis of the glass substrate 3 (diameter if circular) is preferably 100 mm or more, 120 mm or more, 150 mm or more, 160 mm or more, 170 mm or more, 180 mm or more, 190 mm or more, particularly 200 mm or more. If the long axis of the glass substrate 3 is too small, it will be difficult to use it for applications such as wearable image display devices. Additionally, mass production tends to be poor. Although the upper limit of the major axis of the glass substrate 3 is not particularly limited, it is realistically 1000 mm or less.
 ガラス基板3に用いるガラスの溶融温度は1400℃以下、1350℃以下、1300℃以下、特に1280℃以下であることが好ましい。溶融温度が高すぎると、溶融容器の成分(Pt、Rh等)がガラス融液中に溶出しやすくなり、得られるガラス基板3の光透過率が低下する傾向がある。一方、溶融温度が低くなると、泡や異物(例えば未溶解物に由来する異物)が発生しやすくなる傾向がある。よって、ガラス中に泡や異物を低減するためには、溶融温度は1200℃以上、特に1250℃以上であることが好ましい。 The melting temperature of the glass used for the glass substrate 3 is preferably 1400°C or lower, 1350°C or lower, 1300°C or lower, particularly 1280°C or lower. If the melting temperature is too high, components of the melting container (Pt, Rh, etc.) tend to dissolve into the glass melt, and the light transmittance of the resulting glass substrate 3 tends to decrease. On the other hand, when the melting temperature becomes low, bubbles and foreign substances (for example, foreign substances derived from undissolved substances) tend to be generated more easily. Therefore, in order to reduce bubbles and foreign matter in the glass, the melting temperature is preferably 1200°C or higher, particularly 1250°C or higher.
 光学素子10及び光学素子30は、プロジェクター付きメガネ、眼鏡型又はゴーグル型ディスプレイ、仮想現実(VR)又は拡張現実(AR)、複合現実(MR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に好適に用いることができる。光学素子10及び光学素子30は、特に導光板として用いられることが好ましい。言い換えると、光学素子10及び光学素子30は導光板であることが好ましい。当該導光板は、ウェアラブル画像表示機器のメガネレンズ部分に使用され、ウェアラブル画像表示機器が備える画像表示素子から発せられた光を導波して、使用者の瞳に向かって出射する役割を果たす。 The optical element 10 and the optical element 30 are wearables selected from projector-equipped glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices. It can be suitably used for image display devices. It is particularly preferable that the optical element 10 and the optical element 30 be used as a light guide plate. In other words, it is preferable that the optical element 10 and the optical element 30 are light guide plates. The light guide plate is used in a glasses lens portion of a wearable image display device, and plays the role of guiding light emitted from an image display element included in the wearable image display device and emitting it toward the user's eyes.
 光学素子10及び光学素子30は、複数積層させて積層体として使用してもよい。このようにすれば、光学素子10をウェアラブル画像表示機器の導光板として使用した場合に、ある波長ごとに映像を導波させることも可能であり、鮮明な映像を得ることができる。積層枚数は軽量化の観点から6枚以下、5枚以下、4枚以下、3枚以下、特に2枚以下であることが好ましい。 A plurality of optical elements 10 and 30 may be stacked and used as a laminate. In this way, when the optical element 10 is used as a light guide plate of a wearable image display device, it is possible to guide an image for each wavelength, and a clear image can be obtained. From the viewpoint of weight reduction, the number of laminated sheets is preferably 6 or less, 5 or less, 4 or less, 3 or less, particularly 2 or less.
 ガラス基板3に用いるガラスは、SiO、B、La及びNbから選択される少なくとも一種以上の成分を含有することが好ましい。例えば、質量%で、SiO 0%~20%、B 0%~25%、La 10%~60%、Nb 0%~30%を含有するガラスを用いることが好ましい。例えば、質量%で、SiO 0%~12%、B 0%~10%、BaO 0%~13%、ZnO 0%~5%、ZrO 2%~10%、La 15%~45%、Gd 0%~15%、Nb 0%~15%、WO 0%~10%、TiO 13%~50%、Y 0.1%~10%を含有することが好ましい。 The glass used for the glass substrate 3 preferably contains at least one component selected from SiO 2 , B 2 O 3 , La 2 O 3 and Nb 2 O 5 . For example, a glass containing 0% to 20% of SiO 2 , 0% to 25% of B 2 O 3 , 10% to 60% of La 2 O 3 , and 0% to 30% of Nb 2 O 5 in mass % may be used. is preferred. For example, in mass %, SiO 2 0% to 12%, B 2 O 3 0% to 10%, BaO 0% to 13%, ZnO 0% to 5%, ZrO 2 2% to 10%, La 2 O 3 15% to 45%, Gd 2 O 3 0% to 15%, Nb 2 O 5 0% to 15%, WO 3 0% to 10%, TiO 2 13% to 50%, Y 2 O 3 0.1% It is preferable to contain up to 10%.
 ここで、各成分の好ましい含有量について以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「質量%」を意味する。 Here, the preferred content of each component will be explained below. In addition, in the following description regarding the content of each component, "%" means "mass %" unless otherwise specified.
 SiOはガラス骨格成分であり、ガラス化の安定性及び化学耐久性を向上させる成分である。しかし、その含有量が多すぎると、溶融温度が極端に高くなる。溶融温度が高くなると、NbやTi等の遷移金属成分が還元されて可視域に吸収が生じ、内部透過率が低下しやすくなる。また、屈折率が低下する傾向にある。SiOの含有量の下限は0%以上、1%以上、3%以上、5%以上、5.5%以上、特に6%以上であることが好ましく、上限は20%以下、15%以下、12%以下、11%以下、10%以下、9.5%以下、特に9%以下であることが好ましい。 SiO 2 is a glass skeleton component and is a component that improves vitrification stability and chemical durability. However, if the content is too large, the melting temperature will become extremely high. When the melting temperature becomes high, transition metal components such as Nb and Ti are reduced, absorption occurs in the visible region, and the internal transmittance tends to decrease. Furthermore, the refractive index tends to decrease. The lower limit of the content of SiO2 is preferably 0% or more, 1% or more, 3% or more, 5% or more, 5.5% or more, especially 6% or more, and the upper limit is 20% or less, 15% or less, It is preferably 12% or less, 11% or less, 10% or less, 9.5% or less, particularly 9% or less.
 Bはガラス化の安定性に寄与する成分である。特に、屈折率ndが2.00以上と高い場合はガラス化が不安定になる傾向があるが、Bを適量含有させることでガラス化の安定性を高めることができる。Bの含有量の下限は0%以上、0.1%以上、0.2%以上、0.5%以上、1%以上、2%以上、特に3%以上であることが好ましく、上限は25%以下、20%以下、19%以下、15%以下、10%以下、8%以下、7%以下、6%以下、特に5%以下であることが好ましい。Bの含有量が少なすぎると、上記効果を得にくくなる。一方、Bの含有量が多すぎると、屈折率が低下する傾向にある。 B 2 O 3 is a component that contributes to the stability of vitrification. In particular, when the refractive index nd is as high as 2.00 or more, vitrification tends to become unstable, but the stability of vitrification can be improved by containing an appropriate amount of B 2 O 3 . The lower limit of the content of B 2 O 3 is preferably 0% or more, 0.1% or more, 0.2% or more, 0.5% or more, 1% or more, 2% or more, particularly 3% or more, The upper limit is preferably 25% or less, 20% or less, 19% or less, 15% or less, 10% or less, 8% or less, 7% or less, 6% or less, and particularly preferably 5% or less. If the content of B 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of B 2 O 3 is too large, the refractive index tends to decrease.
 なお、ガラス化の安定性を高めて量産性を向上させるためには、SiOとBの割合を適切に調節することが好ましい。具体的には、質量比で、B/SiOが0以上、0.02以上、0.04以上、0.05以上、0.1以上、0.3以上、特に0.4以上であることが好ましく、3以下、2以下、1.5以下、1.2以下、1以下、0.8以下、0.6以下、特に0.5以下であることが好ましい。なお、「x/y」はxの含有量をyの含有量で除した値を意味する。 Note that in order to increase the stability of vitrification and improve mass productivity, it is preferable to appropriately adjust the ratio of SiO 2 and B 2 O 3 . Specifically, in terms of mass ratio, B 2 O 3 /SiO 2 is 0 or more, 0.02 or more, 0.04 or more, 0.05 or more, 0.1 or more, 0.3 or more, especially 0.4 or more. It is preferably 3 or less, 2 or less, 1.5 or less, 1.2 or less, 1 or less, 0.8 or less, 0.6 or less, particularly preferably 0.5 or less. Note that "x/y" means the value obtained by dividing the content of x by the content of y.
 また、ガラス化の安定性を高める観点から、カチオン%で、Si4++B3+の含有量が5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、特に11%以上であることが好ましい。Si4++B3+の含有量の上限は特に限定されないが、多すぎると屈折率の低下や、溶融温度が高くなる傾向があるため、40%以下、35%以下、30%以下、25%以下、20%以下、19%以下、15%以下、特に14%以下であることが好ましい。 In addition, from the viewpoint of increasing the stability of vitrification, the content of Si 4+ +B 3+ in terms of cation% is 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, especially 11 % or more. The upper limit of the content of Si 4+ +B 3+ is not particularly limited, but if it is too large, the refractive index tends to decrease and the melting temperature increases. It is preferably 20% or less, 19% or less, 15% or less, particularly 14% or less.
 BaOはガラス化を安定にする成分である。しかしながら、BaOの含有量が多くなるとガラスの密度が大きくなり、ガラス基板3の重量が大きくなる傾向がある。そのため、特にウェアラブル画像表示機器等の用途に好ましくない。従って、BaOの含有量の下限は0%以上、0.1%以上、0.3%以上、特に1%以上であることが好ましく、上限は13%以下、9%以下、8%以下、5%以下、特に3%以下であることが好ましい。なお、ガラス基板3の軽量化を優先する場合は、BaOの含有量は1%以下、特に0.5%以下であることが好ましく、含有しないことが最も好ましい。 BaO is a component that stabilizes vitrification. However, when the BaO content increases, the density of the glass increases, and the weight of the glass substrate 3 tends to increase. Therefore, it is particularly unfavorable for applications such as wearable image display devices. Therefore, the lower limit of the BaO content is preferably 0% or more, 0.1% or more, 0.3% or more, especially 1% or more, and the upper limit is 13% or less, 9% or less, 8% or less, 5% or more. % or less, particularly preferably 3% or less. In addition, when prioritizing weight reduction of the glass substrate 3, the content of BaO is preferably 1% or less, particularly 0.5% or less, and most preferably not contained.
 ZnOは溶解性(原料の溶解性)を促進させる成分である。しかしながら、その含有量が多すぎると高屈折率特性が得られにくく、また耐失透性や耐酸性が低下する傾向がある。従って、ZnOの含有量の下限は0%以上、0.1%以上、0.3%以上、0.5%以上、特に1%以上であることが好ましく、上限は5%以下、4%以下、3%以下、2.8%以下、2.5%以下、特に2%以下であることが好ましい。 ZnO is a component that promotes solubility (solubility of raw materials). However, if the content is too large, it is difficult to obtain high refractive index characteristics, and devitrification resistance and acid resistance tend to decrease. Therefore, the lower limit of the ZnO content is preferably 0% or more, 0.1% or more, 0.3% or more, 0.5% or more, especially 1% or more, and the upper limit is 5% or less, 4% or less. , 3% or less, 2.8% or less, 2.5% or less, particularly preferably 2% or less.
 ZrOは屈折率や化学的耐久性を高める成分である。しかし、その含有量が多すぎると、溶融温度が極端に高くなる傾向がある。従って、ZrOの含有量の下限は2%以上、3%以上、4%以上、特に5%以上であることが好ましく、上限は10%以下、9.5%以下、9%以下、特に8%以下であることが好ましい。 ZrO 2 is a component that increases refractive index and chemical durability. However, if the content is too large, the melting temperature tends to become extremely high. Therefore, the lower limit of the ZrO 2 content is preferably 2% or more, 3% or more, 4% or more, especially 5% or more, and the upper limit is 10% or less, 9.5% or less, 9% or less, especially 8 % or less.
 Laは屈折率を顕著に高め、またガラス化の安定性を向上させる成分である。Laの含有量の下限は10%以上、15%以上、25%以上、30%以上、31%以上、特に35%以上であることが好ましく、上限は60%以下、45%以下、特に43%以下であることが好ましい。Laの含有量が少なすぎると、上記効果を得にくくなる。一方、Laの含有量が多すぎると、耐失透性が低下して量産性に劣る傾向がある。 La 2 O 3 is a component that significantly increases the refractive index and also improves the stability of vitrification. The lower limit of the content of La 2 O 3 is preferably 10% or more, 15% or more, 25% or more, 30% or more, 31% or more, especially 35% or more, and the upper limit is 60% or less, 45% or less, In particular, it is preferably 43% or less. If the content of La 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of La 2 O 3 is too large, the devitrification resistance tends to decrease, resulting in poor mass productivity.
 Gdは屈折率を高め、またガラス化の安定性を向上させる成分である。Gdの含有量の下限は0%以上、1%以上、特に2%以上であることが好ましく、上限は15%以下、13%以下、10%以下、9%以下、8%以下、7%以下、特に6%以下であることが好ましい。Gdの含有量が少なすぎると、上記効果を得にくくなる。一方、Gdの含有量が多すぎると、耐失透性が低下して量産性に劣る傾向がある。 Gd 2 O 3 is a component that increases the refractive index and also improves the stability of vitrification. The lower limit of the content of Gd 2 O 3 is preferably 0% or more, 1% or more, especially 2% or more, and the upper limit is 15% or less, 13% or less, 10% or less, 9% or less, 8% or less, It is preferably 7% or less, particularly 6% or less. If the content of Gd 2 O 3 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of Gd 2 O 3 is too large, the devitrification resistance tends to decrease, resulting in poor mass productivity.
 Nbはガラスの屈折率を顕著に高める成分である。ただし、その含有量が多すぎると、可視域の光透過率が低下しやすくなる。従って、Nbの含有量の下限は0%以上、1%以上、3%以上、特に5%以上であることが好ましく、上限は30%以下、15%以下、12%以下、特に10%以下であることが好ましい。 Nb 2 O 5 is a component that significantly increases the refractive index of glass. However, if the content is too large, the light transmittance in the visible range tends to decrease. Therefore, the lower limit of the content of Nb 2 O 5 is preferably 0% or more, 1% or more, 3% or more, especially 5% or more, and the upper limit is 30% or less, 15% or less, 12% or less, especially 10% or more. % or less.
 WOは屈折率を高める成分であるが、可視域の光を吸収し光透過率を低下させる傾向がある。そのため、WOの含有量の下限は0%以上、0.1%以上、特に1%以上であることが好ましく、上限は10%以下、9%以下、8%以下、6%以下、5%以下、3%以下、3%未満、2%以下、特に2%未満であることが好ましい。なお、可視域の透過率を高める観点からは、WOの含有量は1%以下、特に0.5%以下であることが好ましく、含有しないことが最も好ましい。 Although WO 3 is a component that increases the refractive index, it tends to absorb light in the visible range and reduce light transmittance. Therefore, the lower limit of the content of WO3 is preferably 0% or more, 0.1% or more, especially 1% or more, and the upper limit is 10% or less, 9% or less, 8% or less, 6% or less, 5%. Below, it is preferably 3% or less, less than 3%, 2% or less, particularly less than 2%. In addition, from the viewpoint of increasing the transmittance in the visible region, the content of WO 3 is preferably 1% or less, particularly 0.5% or less, and most preferably not contained.
 TiOはガラスの屈折率を顕著に高める成分である。ただし、その含有量が多すぎると、ガラス化しづらくなりやすい。また、可視域の光透過率が低下しやすくなる。従って、TiOの含有量の下限は13%以上、15%以上、16%以上、18%以上、20%以上、21%以上、22%以上、特に23%以上であることが好ましく、上限は50%以下、40%以下、35%以下、30%以下、29%以下、特に28%以下であることが好ましい。 TiO 2 is a component that significantly increases the refractive index of glass. However, if the content is too large, vitrification tends to be difficult. Furthermore, the light transmittance in the visible range tends to decrease. Therefore, the lower limit of the TiO 2 content is preferably 13% or more, 15% or more, 16% or more, 18% or more, 20% or more, 21% or more, 22% or more, especially 23% or more, and the upper limit is It is preferably 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, particularly 28% or less.
 TiO+WOの含有量(TiO及びWOの合量)の上限は60%以下、50%以下、40%以下、35%以下、30%以下、29%以下、28%以下、特に25%以下であることが好ましく、下限は15%以上、18%以上、特に20%以上であることが好ましい。このようにすれば、可視域の光透過率を高めやすくなる。 The upper limit of the content of TiO 2 + WO 3 (total amount of TiO 2 and WO 3 ) is 60% or less, 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, 28% or less, especially 25% or less % or less, and the lower limit is preferably 15% or more, 18% or more, particularly 20% or more. In this way, it becomes easier to increase the light transmittance in the visible range.
 Yは屈折率や化学的耐久性を高める成分であるが、その含有量が多すぎると溶融温度が極端に高くなりやすい。また、ガラス化が不安定になる傾向がある。従って、Yの含有量の下限は0.1%以上、1%以上、2%以上、2.5%以上、特に3%以上であることが好ましく、上限は10%以下、7%以下、6%以下、5%以下、特に4%以下であることが好ましい。 Y 2 O 3 is a component that increases the refractive index and chemical durability, but if its content is too large, the melting temperature tends to become extremely high. Additionally, vitrification tends to become unstable. Therefore, the lower limit of the content of Y 2 O 3 is preferably 0.1% or more, 1% or more, 2% or more, 2.5% or more, especially 3% or more, and the upper limit is 10% or less, 7% Below, it is preferably 6% or less, 5% or less, particularly 4% or less.
 Gaは中間酸化物としてガラス骨格を形成し、ガラス化範囲を広げる成分である。また、屈折率を高める効果がある。ただし、Gaの含有量が多すぎると、ガラス化しにくくなる。また原料コストが高くなる傾向がある。従って、Gaの含有量の下限は0%以上、1%以上、特に2%以上であることが好ましく、上限は10%以下、7%以下、6%以下、5%以下、特に4%以下であることが好ましい。 Ga 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and expands the range of vitrification. It also has the effect of increasing the refractive index. However, if the content of Ga 2 O 3 is too large, it becomes difficult to vitrify. Furthermore, raw material costs tend to be high. Therefore, the lower limit of the content of Ga 2 O 3 is preferably 0% or more, 1% or more, especially 2% or more, and the upper limit is 10% or less, 7% or less, 6% or less, 5% or less, especially 4 % or less.
 MgO、CaO及びSrOはガラス化を安定化する成分である。その含有量が多すぎると屈折率が低下しやすい。また、液相温度が上昇する傾向がある。これらの成分の含有量は各々5%以下、2%以下、1%以下、特に0.5%以下であることが好ましい。 MgO, CaO, and SrO are components that stabilize vitrification. If the content is too large, the refractive index tends to decrease. Additionally, the liquidus temperature tends to increase. The content of these components is preferably 5% or less, 2% or less, 1% or less, particularly 0.5% or less.
 Taは屈折率を高める成分である。しかしながら、その含有量が多すぎると、分相や失透が生じやすくなる。また、Taは希少であり高価な成分であるため、その含有量が多くなると、原料バッチコストが高くなる。以上に鑑み、Taの含有量は5%以下、3%以下、1%以下であることが好ましく、含有しないことが特に好ましい。 Ta 2 O 5 is a component that increases the refractive index. However, if the content is too large, phase separation and devitrification are likely to occur. Moreover, since Ta 2 O 5 is a rare and expensive component, the raw material batch cost increases as its content increases. In view of the above, the content of Ta 2 O 5 is preferably 5% or less, 3% or less, or 1% or less, and is particularly preferably not contained.
 Ybも屈折率を高める成分である。ただし、その含有量が多すぎると、失透や脈理が発生しやすくなる。よって、Ybの含有量は10%以下、8%以下、5%以下、3%以下、特に1%以下であることが好ましい。 Yb 2 O 3 is also a component that increases the refractive index. However, if the content is too large, devitrification and striae are likely to occur. Therefore, the content of Yb 2 O 3 is preferably 10% or less, 8% or less, 5% or less, 3% or less, particularly 1% or less.
 ガラスの屈折率及び可視域の光透過率を高め、かつガラス化の安定性を向上させるためには、Y3+とGd3++Y3++Yb3+の割合(カチオン比)を適切に調整することが好ましい。具体的には、Y3+/(Gd3++Y3++Yb3+)は0.2以上、0.25以上、0.3以上、0.4以上、0.5以上、0.52以上、0.55以上、0.6以上、特に0.61以上であることが好ましい。また上限は1.5以下、1以下、0.9以下、特に0.8以下であることが好ましい。なお「Y3+/(Gd3++Y3++Yb3+)」は、Y3+の含有量をGd3+、Y3+及びYb3+の合量で除した値を意味する。 In order to increase the refractive index and light transmittance of the glass in the visible range and improve the stability of vitrification, it is preferable to appropriately adjust the ratio (cation ratio) of Y 3+ and Gd 3+ +Y 3+ +Yb 3+ . Specifically, Y 3+ /(Gd 3+ +Y 3+ +Yb 3+ ) is 0.2 or more, 0.25 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.52 or more, 0.55. As mentioned above, it is preferably 0.6 or more, particularly 0.61 or more. Further, the upper limit is preferably 1.5 or less, 1 or less, 0.9 or less, particularly 0.8 or less. Note that “Y 3+ /(Gd 3+ +Y 3+ +Yb 3+ )” means the value obtained by dividing the content of Y 3+ by the total amount of Gd 3+ , Y 3+ and Yb 3+ .
 Alは耐水性を向上させる成分である。ただし、その含有量が多すぎると失透しやすくなる。従って、Alの含有量は5%以下、3%以下、1%以下、0.5%以下であることが好ましく、含有しないことが特に好ましい。 Al 2 O 3 is a component that improves water resistance. However, if the content is too large, devitrification tends to occur. Therefore, the content of Al 2 O 3 is preferably 5% or less, 3% or less, 1% or less, or 0.5% or less, and it is particularly preferably not contained.
 LiO、NaO、KOは軟化点を低下させる成分であるが、その含有量が多すぎると失透しやすくなる。よって、これらの成分の含有量は各々10%以下、各々5%以下、各々1%以下が好ましく、含有しないことが特に好ましい。また、LiO、NaO、KOを2種以上含有する場合は、その合量は10%以下、5%以下、1%以下が好ましく、含有しないことが特に好ましい。 Li 2 O, Na 2 O, and K 2 O are components that lower the softening point, but if their content is too large, devitrification tends to occur. Therefore, the content of each of these components is preferably 10% or less, each 5% or less, and each 1% or less, and it is particularly preferable that they are not contained. Furthermore, when two or more types of Li 2 O, Na 2 O, and K 2 O are contained, the total amount thereof is preferably 10% or less, 5% or less, or 1% or less, and it is particularly preferable that they are not contained.
 なお、As成分(As等)、Pb成分(PbO等)及びフッ素成分(F等)は環境負荷が大きいため実質的に含有しないことが好ましい。またBi及びTeOは着色成分であり、可視域の透過率が低下しやすくなるため、実質的に含有しないことが好ましい。なお本明細書において「実質的に含有しない」とは、意図的に原料として含有させないことを意味し、不可避的不純物の混入を排除するものではない。客観的には、上記各成分の含有量が0.1%未満であることを意味する。 Note that it is preferable that As components (such as As 2 O 3 ), Pb components (such as PbO), and fluorine components (such as F 2 ) are substantially not included because they have a large environmental load. Moreover, Bi 2 O 3 and TeO 2 are coloring components, and since the transmittance in the visible range tends to decrease, it is preferable that they are not substantially contained. In this specification, "substantially not containing" means intentionally not containing it as a raw material, and does not exclude the inclusion of unavoidable impurities. Objectively, this means that the content of each of the above components is less than 0.1%.
 Pt、Rh及びFeは着色成分であり、可視域の透過率が低下しやすくなるため、その含有量は少ないほうが好ましい。具体的には、Ptについては10ppm以下、9ppm以下、特に5ppm以下であることが好ましく、Rhについては0.1ppm以下、特に0.01ppm以下であることが好ましく、Feについては1ppm以下、特に0.5ppm以下であることが好ましい。なお、着色抑制の観点からはPt含有量は少ないほどよいが、そのためには溶融温度を低くする必要があり、結果として溶解性が低下しやすくなる。そのため、溶解性を考慮すると、Pt含有量の下限値は0.1ppm以上、特に0.5ppm以上であることが好ましい。 Pt, Rh, and Fe 2 O 3 are coloring components, and since the transmittance in the visible range tends to decrease, it is preferable that their content is small. Specifically, Pt is preferably 10 ppm or less, 9 ppm or less, especially 5 ppm or less, Rh is preferably 0.1 ppm or less, particularly 0.01 ppm or less, and Fe 2 O 3 is 1 ppm or less. In particular, it is preferably 0.5 ppm or less. Note that from the viewpoint of suppressing coloration, the lower the Pt content, the better; however, for this purpose, it is necessary to lower the melting temperature, and as a result, the solubility tends to decrease. Therefore, in consideration of solubility, the lower limit of the Pt content is preferably 0.1 ppm or more, particularly 0.5 ppm or more.
 ガラスは、清澄剤成分Cl、CeO、SO、Sb又はSnOを各々0.1%以下の割合で含有していてもよい。 The glass may contain each of the clarifying agent components Cl, CeO 2 , SO 2 , Sb 2 O 3 or SnO 2 in a proportion of 0.1% or less.
 <光学素子 第2の実施形態>
 図3は、本発明の第2の実施形態に係る光学部材の模式的断面図である。図3に示すように、光学素子20は、回折パターン31、32がガラス基板3の一部にそれぞれ形成されている。本実施形態において、回折パターン31、32は同一主面(第1の主面)上に形成されている。本実施形態において、例えば、光を回折パターン31から入射させ、2つの主面間を全反射で導光させ、もう一方の回折パターン32から出射させることができる。そのため、光学素子20は、プロジェクター付きメガネ、眼鏡型又はゴーグル型ディスプレイ、仮想現実(VR)又は拡張現実(AR)、複合現実(MR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に用いられる導光板として特に好適である。なお、回折パターン31、32は同一主面上に必ずしも設けられる必要はなく、例えば、回折パターン31が第1の主面に、回折パターン2が第1の主面に対向するもう一方の主面(第2の主面)に形成されていてもよい。
<Optical element second embodiment>
FIG. 3 is a schematic cross-sectional view of an optical member according to a second embodiment of the invention. As shown in FIG. 3, the optical element 20 has diffraction patterns 31 and 32 formed on a portion of the glass substrate 3, respectively. In this embodiment, the diffraction patterns 31 and 32 are formed on the same main surface (first main surface). In this embodiment, for example, light can be made incident through the diffraction pattern 31, guided between two main surfaces by total reflection, and emitted from the other diffraction pattern 32. Therefore, the optical element 20 is a wearable image display selected from projector-equipped glasses, glasses or goggle displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices. It is particularly suitable as a light guide plate used in equipment. Note that the diffraction patterns 31 and 32 do not necessarily need to be provided on the same main surface; for example, the diffraction pattern 31 is provided on the first main surface, and the diffraction pattern 2 is provided on the other main surface opposite to the first main surface. (the second main surface).
 光学素子20は、ガラス基板3の回折パターン31、32が形成されていない主面の表面粗さRaが、10nm以下、5nm以下、3nm以下、特に2nm以下であることが好ましい。ガラス基板3の第1の主面及び第2の主面の表面粗さRaが大きすぎると、ガラス基板3内部に入射した光が全反射を繰り返して導波する際に散乱損失が生じやすく、明るく鮮明な画像を得にくくなる。ガラス基板3の第1の主面及び第2の主面の表面粗さRaの下限は特に限定されないが、現実的には0.1nm以上である。 In the optical element 20, the surface roughness Ra of the main surface of the glass substrate 3 on which the diffraction patterns 31 and 32 are not formed is preferably 10 nm or less, 5 nm or less, 3 nm or less, particularly 2 nm or less. If the surface roughness Ra of the first main surface and the second main surface of the glass substrate 3 is too large, scattering loss is likely to occur when the light incident on the inside of the glass substrate 3 undergoes repeated total reflection and is guided. It becomes difficult to obtain bright and clear images. Although the lower limit of the surface roughness Ra of the first main surface and the second main surface of the glass substrate 3 is not particularly limited, it is realistically 0.1 nm or more.
 図3に示すように、光学素子20は、回折パターン31、32を有するガラス基板3からなる。回折パターン31、32は、ガラス基板3に直接形成されている。言い換えると、ガラス基板3と回折パターン31、32は、屈折率が2以上の同一のガラスからなる。また、ガラス基板3と回折パターン31、32の間に界面が存在しない。したがって、ガラス基板3と回折パターン31、32間で屈折率差がないため、散乱損失を低減することができる。 As shown in FIG. 3, the optical element 20 consists of a glass substrate 3 having diffraction patterns 31 and 32. The diffraction patterns 31 and 32 are directly formed on the glass substrate 3. In other words, the glass substrate 3 and the diffraction patterns 31 and 32 are made of the same glass having a refractive index of 2 or more. Further, there is no interface between the glass substrate 3 and the diffraction patterns 31 and 32. Therefore, since there is no difference in refractive index between the glass substrate 3 and the diffraction patterns 31 and 32, scattering loss can be reduced.
 本実施形態のガラス基板3は主面上に2つの回折パターン31、32を備えるが、回折パターンの数は2つに限定されない。ガラス基板3は、例えば、3つ以上の回折パターンを備えていてもよい。 Although the glass substrate 3 of this embodiment has two diffraction patterns 31 and 32 on its main surface, the number of diffraction patterns is not limited to two. For example, the glass substrate 3 may include three or more diffraction patterns.
 光学素子20の好ましい構成は、光学素子10における好ましい構成を適宜適用することができる。 As for the preferred configuration of the optical element 20, the preferred configuration of the optical element 10 can be applied as appropriate.
 <光学素子 第3の実施形態>
 図4は、本発明の第3の実施形態に係る光学部材の模式的断面図である。図4に示すように、光学素子30は、ガラス基板3と、ガラス基板3上に配置された回折パターン33を備える。本実施形態において、ガラス基板3と回折パターン33の屈折率差Δndは0.2以下である。
<Optical element third embodiment>
FIG. 4 is a schematic cross-sectional view of an optical member according to a third embodiment of the present invention. As shown in FIG. 4, the optical element 30 includes a glass substrate 3 and a diffraction pattern 33 arranged on the glass substrate 3. In this embodiment, the refractive index difference Δnd between the glass substrate 3 and the diffraction pattern 33 is 0.2 or less.
 本実施形態において、ガラス基板3と回折パターン33の間には界面が存在するが、両者の屈折率差Δndを0.2以下に限定することにより、散乱損失の影響を抑制することができる。より詳細には、屈折率差Δndの上限は、0.2以下、0.15以下、0.1以下、0.09以下、0.08以下、0.06以下、0.05以下、特に0.03以下であることが好ましい。屈折率差Δndの下限は特に限定されないが、例えば、0.0001以上、特に0.001以上としてもよい。 In this embodiment, an interface exists between the glass substrate 3 and the diffraction pattern 33, but by limiting the refractive index difference Δnd between the two to 0.2 or less, the influence of scattering loss can be suppressed. More specifically, the upper limit of the refractive index difference Δnd is 0.2 or less, 0.15 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.06 or less, 0.05 or less, especially 0. It is preferable that it is .03 or less. The lower limit of the refractive index difference Δnd is not particularly limited, but may be, for example, 0.0001 or more, particularly 0.001 or more.
 本実施形態において、ガラス基板3と回折パターン33の間には界面が存在するが、両者のアッベ差Δνdを21以下に限定することにより、散乱損失の影響を抑制することができる。より詳細には、アッベ数差Δνdの上限は、21以下、20以下、18以下、16以下、14以下、12以下、11以下、10以下、8以下、特に6以下であることが好ましい。アッベ差Δνdの下限は特に限定されないが、例えば、0.1以上、特に0.5以上としてもよい。 In this embodiment, an interface exists between the glass substrate 3 and the diffraction pattern 33, but by limiting the Abbe difference Δνd between the two to 21 or less, the influence of scattering loss can be suppressed. More specifically, the upper limit of the Abbe number difference Δνd is preferably 21 or less, 20 or less, 18 or less, 16 or less, 14 or less, 12 or less, 11 or less, 10 or less, 8 or less, particularly 6 or less. The lower limit of the Abbe difference Δνd is not particularly limited, but may be, for example, 0.1 or more, particularly 0.5 or more.
 回折パターン33は、後述する光学素子の製造方法IIにおける下部レジスト層から形成されることが好ましい。導光板として使用する観点から、回折パターン33は光透過性を示す材料からなることが好ましく、特に金属酸化物材料からなることが好ましい。 The diffraction pattern 33 is preferably formed from a lower resist layer in optical element manufacturing method II described below. From the viewpoint of use as a light guide plate, the diffraction pattern 33 is preferably made of a material that exhibits light transparency, and is particularly preferably made of a metal oxide material.
 金属酸化物材料について、屈折率ndは1.9以上、1.95以上、特に2以上であることが好ましく、2.6以下、特に2.5以下であることが好ましい。また、アッベ数νdは5以上、6以上、特に8以上であることが好ましく、40以下、39以下、特に35以下であることが好ましい。例えば、HfOの屈折率ndは1.92、アッベ数νdは23であり、TiOの屈折率ndは2.43、アッベ数νdは9であり、ZrOの屈折率ndは2.16、アッベ数νdは34であり、Nbの屈折率ndは2.34、アッベ数νdは14であり、Taの屈折率ndは2.13、アッベ数νdは26であり、ITO膜の屈折率ndは1.90、アッベ数νdは8であり、BaTiOの屈折率ndは2.43、アッベ数νdは12であり、KTaOの屈折率ndは2.24、アッベ数νdは17であり、KNbOの屈折率ndは2.18、アッベ数νdは18であり、WOの屈折率ndは1.99、アッベ数νdは20であり、ZnOの屈折率ndは2.00、アッベ数νdは12である。 Regarding the metal oxide material, the refractive index nd is preferably 1.9 or more, 1.95 or more, especially 2 or more, and preferably 2.6 or less, especially 2.5 or less. Further, the Abbe number νd is preferably 5 or more, 6 or more, particularly 8 or more, and preferably 40 or less, 39 or less, especially 35 or less. For example, the refractive index nd of HfO 2 is 1.92 and the Abbe number νd is 23, the refractive index nd of TiO 2 is 2.43 and the Abbe number νd is 9, and the refractive index nd of ZrO 2 is 2.16. , the Abbe number νd is 34, the refractive index nd of Nb 2 O 5 is 2.34, and the Abbe number νd is 14, the refractive index nd of Ta 2 O 5 is 2.13, and the Abbe number νd is 26. , the refractive index nd of the ITO film is 1.90, the Abbe number νd is 8, the refractive index nd of BaTiO 3 is 2.43, the Abbe number νd is 12, the refractive index nd of KTaO 3 is 2.24, The Abbe number νd is 17, the refractive index nd of KNbO 3 is 2.18, the Abbe number νd is 18, the refractive index nd of WO 3 is 1.99, the Abbe number νd is 20, and the refractive index of ZnO nd is 2.00, and Abbe's number νd is 12.
 光学素子30の好ましい構成は、光学素子10及び光学素子20における好ましい構成を適宜適用することができる。 As for the preferred configuration of the optical element 30, the preferred configurations of the optical element 10 and the optical element 20 can be applied as appropriate.
 <光学素子の製造方法>
 図5(a)~(d)及び図6(e)~(g)は、本発明の一実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。以下、本発明に係る光学素子の製造方法について、図面を用いて詳細に説明する。
<Method for manufacturing optical elements>
5(a) to 5(d) and FIGS. 6(e) to 6(g) are cross-sectional views for explaining each step of a method for manufacturing an optical element according to an embodiment of the present invention. Hereinafter, a method for manufacturing an optical element according to the present invention will be explained in detail using the drawings.
 本発明の光学素子の製造方法は、回折パターンを有するガラス基板からなる光学素子の製造方法であって、少なくとも2層以上のレジスト層を用いてガラス基板に回折パターンを形成することを特徴とする。詳細には、図5(a)~(d)及び図6(e)~(g)に示すように、少なくとも2層以上のレジスト層として、上部レジスト層1と下部レジスト層2を含む。上部レジスト層1と下部レジスト層2を用いてガラス基板3をエッチングすることにより、ガラス基板3に回折パターン31を形成することを特徴とする。より詳細には、ガラス基板3上に下部レジスト層2を形成する工程、下部レジスト層2上に上部レジスト層1を形成する工程、上部レジスト層1に第1レジストパターン11を形成する工程、第1レジストパターン11を用いて下部レジスト層2に第2レジストパターン21を形成する第1のエッチング工程、第2レジストパターン21を用いてガラス基板3に回折パターン31を形成する第2のエッチング工程、を備えることが好ましい(光学素子の製造方法I)。又は、ガラス基板3上に下部レジスト層2を形成する工程、下部レジスト層2上に上部レジスト層1を形成する工程、上部レジスト層1に第1レジストパターン11を形成する工程、第1レジストパターン11を用いて下部レジスト層2に第2レジストパターン21を形成する第1のエッチング工程、を備えることが好ましい(光学素子の製造方法II)。 The method for manufacturing an optical element of the present invention is a method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, and is characterized in that the diffraction pattern is formed on the glass substrate using at least two or more resist layers. . Specifically, as shown in FIGS. 5A to 5D and FIGS. 6E to 6G, at least two or more resist layers include an upper resist layer 1 and a lower resist layer 2. The method is characterized in that a diffraction pattern 31 is formed on the glass substrate 3 by etching the glass substrate 3 using the upper resist layer 1 and the lower resist layer 2. More specifically, the steps of forming the lower resist layer 2 on the glass substrate 3, forming the upper resist layer 1 on the lower resist layer 2, forming the first resist pattern 11 on the upper resist layer 1, and a first etching step of forming a second resist pattern 21 on the lower resist layer 2 using the first resist pattern 11; a second etching step of forming a diffraction pattern 31 on the glass substrate 3 using the second resist pattern 21; (Optical element manufacturing method I). Alternatively, a step of forming the lower resist layer 2 on the glass substrate 3, a step of forming the upper resist layer 1 on the lower resist layer 2, a step of forming the first resist pattern 11 on the upper resist layer 1, a step of forming the first resist pattern. It is preferable to include a first etching step of forming a second resist pattern 21 on the lower resist layer 2 using a resist film 11 (optical element manufacturing method II).
 ガラス基板のエッチングレートは、半導体プロセスで一般的に使用されるシリコン基板と比べて小さくなりやすい。特に、屈折率が2以上のガラス基板ではエッチングレートがより一層小さくなりやすい。そのため、例えば、樹脂系レジストを1層のみ用いたエッチングでは、ガラス基板に凹凸構造が形成される前にエッチングレートの大きな樹脂系レジストが消失してしまい、ガラス基板に所望の回折パターンを形成することが困難になりやすい。そこで、本発明では、レジスト層を2層以上用いてガラス基板3をエッチングする。すなわち、光学素子の製造方法Iにおいては、上部レジスト層1と下部レジスト層2を用いてガラス基板3をエッチングする。これにより、ガラス基板3上に所望の深さを有する回折パターン31を形成することができる。また、光学素子の製造方法IIにおいては、上部レジスト層1を用いて下部レジスト層2に第2レジストパターン21を形成する。この場合は、第2レジストパターンが回折パターンに該当する。当該方法であっても、ガラス基板3上に所望の深さを有する回折パターン31を形成することができる。 The etching rate of glass substrates tends to be lower than that of silicon substrates commonly used in semiconductor processes. In particular, in the case of a glass substrate having a refractive index of 2 or more, the etching rate tends to become even smaller. Therefore, for example, in etching using only one layer of resin resist, the resin resist with a large etching rate disappears before the uneven structure is formed on the glass substrate, making it difficult to form a desired diffraction pattern on the glass substrate. This can easily become difficult. Therefore, in the present invention, the glass substrate 3 is etched using two or more resist layers. That is, in the optical element manufacturing method I, the glass substrate 3 is etched using the upper resist layer 1 and the lower resist layer 2. Thereby, a diffraction pattern 31 having a desired depth can be formed on the glass substrate 3. Further, in the optical element manufacturing method II, a second resist pattern 21 is formed on the lower resist layer 2 using the upper resist layer 1. In this case, the second resist pattern corresponds to the diffraction pattern. Even with this method, the diffraction pattern 31 having a desired depth can be formed on the glass substrate 3.
 以下、本発明に係る光学素子の製造方法について、工程ごとに詳細に説明する。 Hereinafter, the method for manufacturing an optical element according to the present invention will be explained in detail for each step.
 <ガラス基板上に下部レジスト層を形成する工程>
 はじめに、ガラス基板3上に下部レジスト層2を形成する(図5(a))。下部レジスト層2は金属系レジストからなることが好ましい。このようにすれば、後述する第2のエッチング工程において、ガラス基板3のエッチングレートGrを下部レジスト層2のエッチングレートRr2bよりも大きくしやすくなる。金属系レジストとしては、所望のエッチングレートを有する材料を適宜用いることができるが、例えば、Ni、Cr、Al、Pt、Si、等を用いることが好ましい。
<Step of forming a lower resist layer on the glass substrate>
First, a lower resist layer 2 is formed on a glass substrate 3 (FIG. 5(a)). Preferably, the lower resist layer 2 is made of a metal resist. In this way, it becomes easier to make the etching rate Gr of the glass substrate 3 larger than the etching rate Rr2b of the lower resist layer 2 in the second etching step described later. As the metal resist, any material having a desired etching rate can be used as appropriate, but it is preferable to use, for example, Ni, Cr, Al, Pt, Si, or the like.
 下部レジスト層2の材料は金属系レジストに限定されず、樹脂系レジスト、無機レジスト、有機無機ハイブリッドレジスト等を用いてもよい。例えば、無機レジストとして金属酸化物系レジストを用いることが好ましい。金属酸化物としては、例えば、HfO、TiO、ZrO、Nb、Ta、ITO、BaTiO、KTaO、KNbO、WO又はZnOから選択される少なくとも一種を用いることが好ましく、ZrO又はTiOを用いることがより好ましく、TiOを用いることが特に好ましい。また、下部レジスト層2は複数種の金属酸化物を組み合わせてもよい。 The material of the lower resist layer 2 is not limited to a metal resist, but may be a resin resist, an inorganic resist, an organic-inorganic hybrid resist, or the like. For example, it is preferable to use a metal oxide resist as the inorganic resist. As the metal oxide, for example, at least one selected from HfO 2 , TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , ITO, BaTiO 3 , KTaO 3 , KNbO 3 , WO 3 or ZnO is used. It is preferable to use ZrO 2 or TiO 2 , and it is particularly preferable to use TiO 2 . Further, the lower resist layer 2 may be a combination of multiple types of metal oxides.
 下部レジスト層2の厚みは、回折パターン31の所望深さや、下部レジスト層2のエッチングレートにより適宜設定することができる。例えば、下部レジスト層2の厚みは、1nm以上、特に10nm以上とすることが好ましい。上限は特に限定されないが、例えば、500nm以下としてもよい。 The thickness of the lower resist layer 2 can be appropriately set depending on the desired depth of the diffraction pattern 31 and the etching rate of the lower resist layer 2. For example, the thickness of the lower resist layer 2 is preferably 1 nm or more, particularly 10 nm or more. The upper limit is not particularly limited, but may be, for example, 500 nm or less.
 <下部レジスト層上に上部レジスト層を形成する工程>
 次に、下部レジスト層2上に上部レジスト層1を形成する(図5(b))。本実施形態において、上部レジスト層1は樹脂系レジストからなることが好ましい。このようにすれば、後述する第1のエッチング工程において、下部レジスト層2のエッチングレートRr2bを上部レジスト層1のエッチングレートRr1よりも小さくしやすくなる。樹脂系レジストとしては、所望のエッチングレートを有する材料を適宜用いることができ、例えば、市販されているフォトレジスト、電子線レジストを適宜用いることができる。
<Step of forming an upper resist layer on the lower resist layer>
Next, the upper resist layer 1 is formed on the lower resist layer 2 (FIG. 5(b)). In this embodiment, the upper resist layer 1 is preferably made of a resin resist. This makes it easier to make the etching rate Rr2b of the lower resist layer 2 smaller than the etching rate Rr1 of the upper resist layer 1 in the first etching step described later. As the resin resist, any material having a desired etching rate can be used as appropriate, and for example, commercially available photoresists and electron beam resists can be used as appropriate.
 上部レジスト層1の厚みは、第1レジストパターン11の所望深さや、上部レジスト層1のエッチングレートにより適宜設定することができる。例えば、上部レジスト層1の厚みは、1nm以上、特に10nm以上とすることが好ましい。上限は特に限定されないが、例えば、1000nm以下としてもよい。 The thickness of the upper resist layer 1 can be appropriately set depending on the desired depth of the first resist pattern 11 and the etching rate of the upper resist layer 1. For example, the thickness of the upper resist layer 1 is preferably 1 nm or more, particularly 10 nm or more. The upper limit is not particularly limited, but may be, for example, 1000 nm or less.
 上部レジスト層1の厚みは、下部レジスト層2の厚みよりも大きいことが好ましい。このようにすれば、下部レジスト層2に所望の深さを有する第2レジストパターン21を安定して形成しやすくなる。 The thickness of the upper resist layer 1 is preferably greater than the thickness of the lower resist layer 2. In this way, it becomes easier to stably form the second resist pattern 21 having a desired depth in the lower resist layer 2.
 下部レジスト層2が金属系レジストからなり、上部レジスト層1が樹脂系レジストからなることが好ましい。このようにすれば、形状品位の良い第1レジストパターン11及び第2レジストパターン21を形成しやすくなり、ガラス基板3に所望の深さを有する回折パターン31を安定して形成しやすくなる。 It is preferable that the lower resist layer 2 is made of a metal resist, and the upper resist layer 1 is made of a resin resist. In this way, it becomes easier to form the first resist pattern 11 and the second resist pattern 21 with good shape quality, and it becomes easier to stably form the diffraction pattern 31 having a desired depth on the glass substrate 3.
 <上部レジスト層に第1レジストパターンを形成する工程>
 次に、上部レジスト層1に第1レジストパターン11を形成する(図5(c))。例えば、上部レジスト層1が樹脂系レジストからなる場合、所望の回折パターンになるように、光や電子線を露光し、その後現像処理を行うことにより第1レジストパターン11を形成することができる。
<Step of forming a first resist pattern on the upper resist layer>
Next, a first resist pattern 11 is formed on the upper resist layer 1 (FIG. 5(c)). For example, when the upper resist layer 1 is made of a resin-based resist, the first resist pattern 11 can be formed by exposing it to light or an electron beam so as to obtain a desired diffraction pattern, and then performing a development process.
 <第1のエッチング工程>
 次に、第1レジストパターン11を用いて下部レジスト層2に第2レジストパターン21を形成する(第1のエッチング工程、図5(d))。具体的には、第1レジストパターン11をマスクとして第1エッチング処理を行い、下部レジスト層2に第2レジストパターン21を形成する。第2レジストパターン21は、第1レジストパターン11に対応したパターン形状を有する。
<First etching step>
Next, a second resist pattern 21 is formed on the lower resist layer 2 using the first resist pattern 11 (first etching step, FIG. 5(d)). Specifically, a first etching process is performed using the first resist pattern 11 as a mask to form a second resist pattern 21 on the lower resist layer 2 . The second resist pattern 21 has a pattern shape corresponding to the first resist pattern 11.
 第1のエッチング工程において、ウェットエッチング又はドライエッチングを用いることが好ましく、特にドライエッチングを用いることが好ましい。これにより、精密な第2レジストパターン21を得やすくなる。エッチングガスは使用するレジスト材料に適したガスを適宜使用することができ、例えば、Cl系ガス、Ar系ガス、C系ガス等を用いることが好ましい。 In the first etching step, wet etching or dry etching is preferably used, and dry etching is particularly preferably used. This makes it easier to obtain a precise second resist pattern 21. As the etching gas, a gas suitable for the resist material used can be used as appropriate. For example, it is preferable to use a Cl 2 -based gas, an Ar-based gas, a C 4 F 8 -based gas, or the like.
 第1のエッチング工程における上部レジスト層1のエッチングレートをRr1、下部レジスト層2のエッチングレートをRr2aとするとき、Rr1>Rr2aであることが好ましい。すなわち、Rr1がRr2aよりも大きいことが好ましい。これにより、第2レジストパターン21を形成しやすくなる。より詳細には、上部レジスト層1のエッチングレートRr1は、5nm/min以上、10nm/min以上、20nm/min以上、30nm/min以上、40nm/min以上、50nm/min以上、60nm/min以上、70nm/min以上、特に80nm/min以上であることが好ましく、200nm以下、150nm/min以下、140nm/min以下、特に120nm/min以下であることが好ましい。また、下部レジスト層2のエッチングレートRr2aは、5nm/min以上、10nm/min以上、特に20nm/min以上であることが好ましく、100nm以下、50nm/min以下、特に40nm/min以下であることが好ましい。 When the etching rate of the upper resist layer 1 in the first etching step is Rr1 and the etching rate of the lower resist layer 2 is Rr2a, it is preferable that Rr1>Rr2a. That is, it is preferable that Rr1 is larger than Rr2a. This makes it easier to form the second resist pattern 21. More specifically, the etching rate Rr1 of the upper resist layer 1 is 5 nm/min or more, 10 nm/min or more, 20 nm/min or more, 30 nm/min or more, 40 nm/min or more, 50 nm/min or more, 60 nm/min or more, It is preferably 70 nm/min or more, especially 80 nm/min or more, and preferably 200 nm or less, 150 nm/min or less, 140 nm/min or less, especially 120 nm/min or less. Further, the etching rate Rr2a of the lower resist layer 2 is preferably 5 nm/min or more, 10 nm/min or more, especially 20 nm/min or more, and preferably 100 nm or less, 50 nm/min or less, especially 40 nm/min or less. preferable.
 第1エッチング処理において、上部レジスト層1のエッチングレートRr1と、下部レジスト層2のエッチングレートRr2bとの比Rr1/Rr2aは1.1以上、1.2以上、1.5以上、1.8以上、2以上、2.1以上、特に2.3以上であることが好ましい。当該比を上記値とすることにより、第2レジストパターン21を形成しやすくなる。Rr1/Rr2aの上限は特に限定されないが、例えば、5以下、4以下、3.5以下、特に3.3以下であることが好ましい。 In the first etching process, the ratio Rr1/Rr2a of the etching rate Rr1 of the upper resist layer 1 to the etching rate Rr2b of the lower resist layer 2 is 1.1 or more, 1.2 or more, 1.5 or more, 1.8 or more , 2 or more, 2.1 or more, particularly 2.3 or more. By setting the ratio to the above value, it becomes easier to form the second resist pattern 21. The upper limit of Rr1/Rr2a is not particularly limited, but is preferably, for example, 5 or less, 4 or less, 3.5 or less, particularly 3.3 or less.
 本工程を経た後、上部レジスト層1のみを除去することにより、本発明の第3の実施形態に係る光学部材30を得ることができる。すなわち、光学部材30は、第2レジストパターン21を有する下部レジスト層2が回折パターンとして機能する。上部レジスト層1は適切な溶剤を用いて除去することができる。例えば、上部レジスト層1として樹脂系レジストを用いる場合、アセトン等の有機溶剤を用いて除去することができる。 After this step, the optical member 30 according to the third embodiment of the present invention can be obtained by removing only the upper resist layer 1. That is, in the optical member 30, the lower resist layer 2 having the second resist pattern 21 functions as a diffraction pattern. The upper resist layer 1 can be removed using a suitable solvent. For example, when using a resin resist as the upper resist layer 1, it can be removed using an organic solvent such as acetone.
 <第2のエッチング工程>
 次に、第2レジストパターン21を用いて回折パターン31を形成する(第2のエッチング工程、図6(e)~(g))。具体的には、第2レジストパターン21をマスクとして第2エッチング処理を行い、ガラス基板3に回折パターン31を形成する。回折パターン31は、第2レジストパターン21に対応したパターン形状を有する。
<Second etching process>
Next, a diffraction pattern 31 is formed using the second resist pattern 21 (second etching step, FIGS. 6(e) to 6(g)). Specifically, a second etching process is performed using the second resist pattern 21 as a mask to form the diffraction pattern 31 on the glass substrate 3. The diffraction pattern 31 has a pattern shape corresponding to the second resist pattern 21.
 第2エッチング処理はウェットエッチング又はドライエッチングを用いることができる。特にドライエッチングを用いることが好ましい。これにより、精密な回折パターン31を得やすくなる。エッチングガスは使用するレジスト材料に適したガスを適宜使用することができ、例えば、Cl系ガス、Ar系ガス、C系ガス等を用いることが好ましい。 The second etching process can use wet etching or dry etching. In particular, it is preferable to use dry etching. This makes it easier to obtain a precise diffraction pattern 31. As the etching gas, a gas suitable for the resist material used can be used as appropriate, and for example, it is preferable to use a Cl2 - based gas, an Ar-based gas, a C4F8 - based gas, or the like.
 第2のエッチング工程における下部レジスト層のエッチングレートをRr2b、ガラス基板のエッチングレートをGrとするとき、Gr>Rr2bであることが好ましい。すなわち、GrがRr2bよりも大きいことが好ましい。これにより、ガラス基板3に十分な凹凸構造を形成する前に下部レジスト層2が消失することを防止することができ、ガラス基板3に所望の深さを有する回折パターン31を安定して形成しやすくなる。より詳細には、第2エッチング処理において、下部レジスト層2のエッチングレートRr2bは、5nm/min以上、10nm/min以上、特に20nm/min以上であることが好ましく、100nm/min以下、50nm/min以下、40nm/min以下、特に35nm/min以下であることが好ましい。また、ガラス基板3のエッチングレートGrは、例えば、30nm/min以上、40nm/min以上、特に41nm/min以上であることが好ましく、100nm/min以下、60nm/min以下、55nm/min以下、特に50nm/min以下であることが好ましい。 When the etching rate of the lower resist layer in the second etching step is Rr2b and the etching rate of the glass substrate is Gr, it is preferable that Gr>Rr2b. That is, it is preferable that Gr is larger than Rr2b. Thereby, it is possible to prevent the lower resist layer 2 from disappearing before a sufficient uneven structure is formed on the glass substrate 3, and it is possible to stably form a diffraction pattern 31 having a desired depth on the glass substrate 3. It becomes easier. More specifically, in the second etching process, the etching rate Rr2b of the lower resist layer 2 is preferably 5 nm/min or more, 10 nm/min or more, particularly preferably 20 nm/min or more, and 100 nm/min or less, 50 nm/min. Hereinafter, it is preferably 40 nm/min or less, particularly 35 nm/min or less. Further, the etching rate Gr of the glass substrate 3 is preferably, for example, 30 nm/min or more, 40 nm/min or more, especially 41 nm/min or more, and 100 nm/min or less, 60 nm/min or less, 55 nm/min or less, especially It is preferable that it is 50 nm/min or less.
 第2エッチング処理において、下部レジスト層2のエッチングレートRr2bと、ガラス基板3のエッチングレートGrとの比Rr2b/Grは、0.1以上、0.2以上、0.3以上、0.4以上、特に0.45以上であることが好ましく、1未満、0.9以下、特に0.8以下であることが好ましい。当該比を上記値とすることにより、ガラス基板3に所望の深さを有する回折パターン31を安定して形成しやすくなる。 In the second etching process, the ratio Rr2b/Gr of the etching rate Rr2b of the lower resist layer 2 to the etching rate Gr of the glass substrate 3 is 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more , particularly preferably 0.45 or more, less than 1, preferably 0.9 or less, particularly preferably 0.8 or less. By setting the ratio to the above value, it becomes easier to stably form the diffraction pattern 31 having a desired depth on the glass substrate 3.
 第2エッチング処理において、所望の回折パターン31が形成された際に下部レジスト層2が残留していないことが好ましい(図6(g))。このようにすれば、形状品位に優れた回折パターン31を得やすくなる。また、下部レジスト層2の残渣を洗浄除去する必要がなくなり、回折パターン31が汚染されづらくなる。なお、下部レジスト層2が残留していなくても回折パターン31を洗浄してもよい。また、下部レジスト層2の残渣が存在する場合は、適切な溶剤を用いて除去することができる。例えば、下部レジスト層2として金属系レジストを用いる場合、エッチング液や化学研摩液を用いて除去することができる。 In the second etching process, it is preferable that no lower resist layer 2 remains when the desired diffraction pattern 31 is formed (FIG. 6(g)). In this way, it becomes easier to obtain the diffraction pattern 31 with excellent shape quality. Further, there is no need to wash and remove the residue on the lower resist layer 2, and the diffraction pattern 31 is less likely to be contaminated. Note that the diffraction pattern 31 may be cleaned even if the lower resist layer 2 does not remain. Furthermore, if residues of the lower resist layer 2 are present, they can be removed using an appropriate solvent. For example, when using a metal resist as the lower resist layer 2, it can be removed using an etching solution or a chemical polishing solution.
 第2エッチング処理において、下部レジスト層2のエッチングレートRr2b(nm/min)と、下部レジスト層2の厚みRt2(nm)の比Rt2/Rr2bは、1~40minであることが好ましい。 In the second etching process, the ratio Rt2/Rr2b of the etching rate Rr2b (nm/min) of the lower resist layer 2 to the thickness Rt2 (nm) of the lower resist layer 2 is preferably 1 to 40 min.
 このように、本発明の光学素子の製造方法によれば、成形性が高く散乱損失の影響を抑制しやすい光学素子10を製造することができる。光学素子10及び光学素子30は、プロジェクター付きメガネ、眼鏡型又はゴーグル型ディスプレイ、仮想現実(VR)又は拡張現実(AR)、複合現実(MR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に用いられる導光板や回折格子等の光学素子として好適である。 As described above, according to the method for manufacturing an optical element of the present invention, it is possible to manufacture an optical element 10 that has high moldability and can easily suppress the influence of scattering loss. The optical element 10 and the optical element 30 are wearables selected from projector-equipped glasses, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image display devices. It is suitable as an optical element such as a light guide plate or a diffraction grating used in image display equipment.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to these Examples.
 表1、2は本発明の実施例1~5、8、9及び比較例7を示す。また、表3はガラス基板の組成を示す。 Tables 1 and 2 show Examples 1 to 5, 8, and 9 of the present invention and Comparative Example 7. Moreover, Table 3 shows the composition of the glass substrate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例は以下のように作製した。はじめに、表1、2に示す屈折率を有するガラスを所定の板厚に加工し、表面を鏡面研磨してガラス基板を作製した。 Examples were produced as follows. First, glass having the refractive index shown in Tables 1 and 2 was processed to a predetermined thickness, and the surface was mirror-polished to produce a glass substrate.
 次に、ガラスの屈折率nd、密度、試料厚み10mmt、波長450nmにおける内部透過率を測定した。また、ガラス基板のTTV、表面粗さをそれぞれ測定した。屈折率ndはKPR-2000(Kalnew社製)を用いて測定した。密度はアルキメデス法により測定した。内部透過率は可視紫外分光光度計V670(日本分光社製)を用いて試料厚み10mmt、波長450nmにおける光透過率を測定した。TTVはコベルコ科研社製のBow/Warp測定装置SBW-331ML/dを用いて測定した。表面粗さは、Bruker社製のAFM Dimension Iconを用い、3μm角のスキャンサイズ、1Hzのスキャン速度で測定した。 Next, the refractive index nd, density, and internal transmittance of the glass at a sample thickness of 10 mm and a wavelength of 450 nm were measured. In addition, the TTV and surface roughness of the glass substrate were measured. The refractive index nd was measured using KPR-2000 (manufactured by Kalnew). Density was measured by Archimedes method. The internal transmittance was measured using a visible and ultraviolet spectrophotometer V670 (manufactured by JASCO Corporation) at a sample thickness of 10 mm and a wavelength of 450 nm. TTV was measured using a Bow/Warp measuring device SBW-331ML/d manufactured by Kobelco Scientific Research. The surface roughness was measured using AFM Dimension Icon manufactured by Bruker at a scan size of 3 μm square and a scan speed of 1 Hz.
 次に、ガラス基板上に回折パターンを形成した。はじめに、ガラス基板上に電子線蒸着装置(EB1200)を用いて下部レジスト層を形成した。下部レジスト材料には実施例1~6についてはCrを実施例8、9についてはZrOを選択した。実施例8、9のレジスト層の屈折率はエリプソメーターにより測定した。次に、スピンコート法により下部レジスト層上に上部レジスト層を形成した。上部レジスト材料にはZEP520A(α-chloromethacrylate及びα-methylstyrene(日本ゼオン社製)の1:1コポリマー)を用いた。なお、比較例7については、下部レジスト層(Cr)を塗布せず、上部レジスト層(ZEP520A)のみを塗布した。 Next, a diffraction pattern was formed on the glass substrate. First, a lower resist layer was formed on a glass substrate using an electron beam evaporator (EB1200). As the lower resist material, Cr was selected for Examples 1 to 6, and ZrO 2 was selected for Examples 8 and 9. The refractive index of the resist layers of Examples 8 and 9 was measured using an ellipsometer. Next, an upper resist layer was formed on the lower resist layer by spin coating. ZEP520A (1:1 copolymer of α-chloromethacrylate and α-methylstyrene (manufactured by Zeon Corporation)) was used as the upper resist material. Note that in Comparative Example 7, only the upper resist layer (ZEP520A) was applied without applying the lower resist layer (Cr).
 次に、電子線描画装置(F7000S-KYT01)を用いて上部レジスト層に電子線を照射した。次に、ZED-N50(n-Amyl Acetate C14)を用いて電子線描画部分を溶解・現像し、上部レジスト層に第1レジストパターンを形成した。 Next, the upper resist layer was irradiated with an electron beam using an electron beam drawing device (F7000S-KYT01). Next, the electron beam drawn portion was dissolved and developed using ZED-N50 (n-Amylacetate C 7 H 14 O 2 ) to form a first resist pattern in the upper resist layer.
 次に、第1レジストパターンをマスクとしたドライエッチング処理により、下部レジスト層に第2レジストパターンを形成した(第1エッチング処理)。エッチング処理にはCl系エッチングガスを用いた。ドライエッチング装置には磁気中性放電ドライエッチング装置(NLD-570)を用いた。ドライエッチング処理後、アセトンにより上部レジスト層の残渣を除去した。なお、比較例7は下部レジスト層が存在しないため、第1レジストパターンをマスクとしたドライエッチング処理後にガラス基板上の回折パターン形状を計測した。また、実施例8、9は第2エッチング処理を行わず、第1エッチング処理のみ行った。 Next, a second resist pattern was formed in the lower resist layer by dry etching using the first resist pattern as a mask (first etching process). A Cl2 - based etching gas was used for the etching process. A magnetic neutral discharge dry etching apparatus (NLD-570) was used as the dry etching apparatus. After the dry etching process, the residue of the upper resist layer was removed with acetone. In Comparative Example 7, since there was no lower resist layer, the shape of the diffraction pattern on the glass substrate was measured after dry etching using the first resist pattern as a mask. Further, in Examples 8 and 9, the second etching process was not performed, and only the first etching process was performed.
 次に、実施例1~6において第2レジストパターンをマスクとしたドライエッチング処理により、ガラス基板に回折パターンを形成した(第2エッチング処理)。エッチング処理にはCエッチングガスを用いた。ドライエッチング処理後、エスクリーン(S-24)により下部レジスト層の残渣を除去し、ガラス基板上に回折パターンが形成された光学素子を得た。 Next, in Examples 1 to 6, a diffraction pattern was formed on the glass substrate by dry etching using the second resist pattern as a mask (second etching). C 4 F 8 etching gas was used for the etching process. After the dry etching process, the residue of the lower resist layer was removed using S-clean (S-24) to obtain an optical element with a diffraction pattern formed on the glass substrate.
 得られた回折パターンの形状測定はAFMを用いて行った。光学素子の断面ラインプロファイル像から、回折パターンの底部幅(線幅a)、高さ2/3の位置の幅(線幅b)、線幅aと線幅bの比a/b、高さH、ピッチ幅P、ピッチと高さの比P/H、凸部分及び凹部分の表面粗さRa2及びRa1、表面粗さの比Ra1/Ra2、凸部エッジの曲率半径rを確認した。実施例8、9は回折パターンの屈折率nd及びガラス基板と回折パターンの屈折率差Δndについても確認した。また、上部レジスト層、下部レジスト層、ガラス基板のエッチングレート(それぞれRr1、Rr2a、Rr2b、Gr)は、エッチング前後のAFMラインプロファイル像の段差から求めた。 The shape of the obtained diffraction pattern was measured using AFM. From the cross-sectional line profile image of the optical element, the bottom width of the diffraction pattern (line width a), the width at the 2/3 height position (line width b), the ratio a/b of line width a to line width b, and the height The pitch width P, the pitch-to-height ratio P/H, the surface roughness Ra2 and Ra1 of the convex portion and the concave portion, the surface roughness ratio Ra1/Ra2, and the radius of curvature r of the convex edge were confirmed. In Examples 8 and 9, the refractive index nd of the diffraction pattern and the refractive index difference Δnd between the glass substrate and the diffraction pattern were also confirmed. Further, the etching rates of the upper resist layer, the lower resist layer, and the glass substrate (Rr1, Rr2a, Rr2b, and Gr, respectively) were determined from the step difference in AFM line profile images before and after etching.
 得られた光学素子について、スクリーン像評価、視野角、入射光量を100%としたときの出射光量の割合を求めた。 Regarding the obtained optical element, screen image evaluation, viewing angle, and ratio of output light amount when the incident light amount was set to 100% were determined.
 スクリーン像評価は、光学素子を透過したスクリーン映像のにじみやゆがみを目視で評価した。具体的には、入射側と出射側の回折パターンを形成した光学素子を用いて、入射側の回折パターンから文字の映像を入射させ、出射側の回折パターンから映像を取り出してスクリーンに投影した。投影された文字のエッジ部分に滲みや歪みが生じている場合は×、わずかに生じている場合は△、目視確認できない場合は〇とした。 Screen image evaluation was performed by visually evaluating the blurring and distortion of the screen image transmitted through the optical element. Specifically, using an optical element with diffraction patterns formed on the entrance and exit sides, an image of a character was made incident through the diffraction pattern on the entrance side, and an image was taken out from the diffraction pattern on the exit side and projected onto a screen. If blurring or distortion occurred at the edges of the projected characters, it was marked as ×, if it was slightly blurred, it was marked as △, and if it could not be visually confirmed, it was marked as ○.
 視野角は、ガラスの屈折率及び回折パターンのピッチ(nm)から、下記の式を用いて算出した。ここで、θは導光板中を光が進行する側から入射する光の角度、θは導光板中を光が進行する方向とは逆の方向から入射する光の角度を意味する。また、nGlass、nairはそれぞれガラス及び空気中の屈折率、λは入射光波長、Pは回折パターンのピッチとした。nair=1、λ=530nmとした。 The viewing angle was calculated from the refractive index of the glass and the pitch (nm) of the diffraction pattern using the following formula. Here, θ + means the angle of light entering the light guide plate from the side in which the light travels, and θ means the angle of light entering the light guide plate from the opposite direction to the direction in which the light travels. Furthermore, n Glass and n air are the refractive indexes of glass and air, respectively, λ is the wavelength of incident light, and P is the pitch of the diffraction pattern. n air =1 and λ = 530 nm.
 視野角=θ-θ=arcsin((nGlass-λ/P)/nair)-arcsin((nair-λ/P)/nairViewing angle = θ +- = arcsin ((n Glass - λ/P)/n air ) - arcsin ((n air - λ/P)/n air )
 回折パターンに入射する前の光量と出射後の光量をパワーメータにより測定し、入射光量を100%としたときの出射光量の割合を求めた。 The amount of light before entering the diffraction pattern and the amount of light after exiting were measured using a power meter, and the ratio of the amount of output light when the amount of incident light was taken as 100% was determined.
 表1に示すように、実施例1~6、8、9の光学素子はスクリーン像評価が高く、視野角が大きくなった。また、入射光効率が高くなった。一方、比較例7はレジスト層を1層のみ使用したため、ガラス基板に十分な凹凸形状を形成させることが出来ず、所望の回折パターンを形成することができなかった。このため、像の導波を確認できなかった。 As shown in Table 1, the optical elements of Examples 1 to 6, 8, and 9 had high screen image evaluations and large viewing angles. In addition, the efficiency of incident light has increased. On the other hand, in Comparative Example 7, since only one resist layer was used, it was not possible to form a sufficient uneven shape on the glass substrate, and it was not possible to form a desired diffraction pattern. For this reason, it was not possible to confirm the waveguide of the image.
 本発明の光学素子の製造方法で製造した光学素子は、プロジェクター付きメガネ、眼鏡型又はゴーグル型ディスプレイ、仮想現実(VR)又は拡張現実(AR)、複合現実(MR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に使用される導光板や回折格子などの光学素子として好適である。 Optical elements manufactured by the optical element manufacturing method of the present invention can be used in glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR), mixed reality (MR) display devices, and virtual image displays. It is suitable for optical elements such as light guide plates and diffraction gratings used in wearable image display devices selected from devices.
1  上部レジスト層
2  下部レジスト層
3  ガラス基板
10、20、30  光学素子
11  第1レジストパターン
21   第2レジストパターン
31、32、33  回折パターン
 
1 Upper resist layer 2 Lower resist layer 3 Glass substrate 10, 20, 30 Optical element 11 First resist pattern 21 Second resist pattern 31, 32, 33 Diffraction pattern

Claims (17)

  1.  回折パターンを有するガラス基板からなる光学素子の製造方法であって、
     少なくとも2層以上のレジスト層を用いて前記ガラス基板に回折パターンを形成する、光学素子の製造方法。
    A method for manufacturing an optical element comprising a glass substrate having a diffraction pattern, the method comprising:
    A method for manufacturing an optical element, comprising forming a diffraction pattern on the glass substrate using at least two or more resist layers.
  2.  ガラス基板上に下部レジスト層を形成する工程、
     前記下部レジスト層上に上部レジスト層を形成する工程、
     前記上部レジスト層に第1レジストパターンを形成する工程、
     前記第1レジストパターンを用いて前記下部レジスト層に第2レジストパターンを形成する第1のエッチング工程、
     前記第2レジストパターンを用いて前記ガラス基板に回折パターンを形成する第2のエッチング工程、を備える、請求項1に記載の光学素子の製造方法。
    forming a lower resist layer on the glass substrate;
    forming an upper resist layer on the lower resist layer;
    forming a first resist pattern on the upper resist layer;
    a first etching step of forming a second resist pattern on the lower resist layer using the first resist pattern;
    The method for manufacturing an optical element according to claim 1, comprising a second etching step of forming a diffraction pattern on the glass substrate using the second resist pattern.
  3.  前記第2のエッチング工程における前記下部レジスト層のエッチングレートをRr2b、前記第2のエッチング工程における前記ガラス基板のエッチングレートをGrとするとき、Gr>Rr2bである、請求項2に記載の光学素子の製造方法。 The optical element according to claim 2, wherein Gr>Rr2b, where Rr2b is the etching rate of the lower resist layer in the second etching step, and Gr is the etching rate of the glass substrate in the second etching step. manufacturing method.
  4.  前記第2のエッチング工程における前記下部レジスト層のエッチングレートRr2bと、前記下部レジスト層の厚みRt2の比Rt2/Rr2bが1~40minである、請求項2又は3に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 2 or 3, wherein the ratio Rt2/Rr2b of the etching rate Rr2b of the lower resist layer and the thickness Rt2 of the lower resist layer in the second etching step is 1 to 40 min.
  5.  ガラス基板上に下部レジスト層を形成する工程、
     前記下部レジスト層上に上部レジスト層を形成する工程、
     前記上部レジスト層に第1レジストパターンを形成する工程、
     前記第1レジストパターンを用いて前記下部レジスト層に第2レジストパターンを形成する第1のエッチング工程、を備える、請求項1に記載の光学素子の製造方法。
    forming a lower resist layer on the glass substrate;
    forming an upper resist layer on the lower resist layer;
    forming a first resist pattern on the upper resist layer;
    The method for manufacturing an optical element according to claim 1, comprising a first etching step of forming a second resist pattern on the lower resist layer using the first resist pattern.
  6.  前記第1のエッチング工程における前記上部レジスト層のエッチングレートをRr1、前記第1のエッチング工程における前記下部レジスト層のエッチングレートをRr2aとするとき、Rr1>Rr2aである、請求項2又は5に記載の光学素子の製造方法。 According to claim 2 or 5, when the etching rate of the upper resist layer in the first etching step is Rr1 and the etching rate of the lower resist layer in the first etching step is Rr2a, Rr1>Rr2a. A method for manufacturing an optical element.
  7.  前記下部レジスト層が金属系レジスト又は金属酸化物系レジストからなり、前記上部レジスト層が樹脂系レジストからなる、請求項2又は5に記載の光学素子の製造方法。 6. The method for manufacturing an optical element according to claim 2, wherein the lower resist layer is made of a metal resist or a metal oxide resist, and the upper resist layer is made of a resin resist.
  8.  前記光学素子が導光板である、請求項1、2又は5に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, 2 or 5, wherein the optical element is a light guide plate.
  9.  回折パターンを有するガラス基板からなる光学素子であって、
     前記ガラス基板は、屈折率が2以上であり、
     前記回折パターンは、前記ガラス基板に直接形成されている、光学素子。
    An optical element comprising a glass substrate having a diffraction pattern,
    The glass substrate has a refractive index of 2 or more,
    The optical element, wherein the diffraction pattern is directly formed on the glass substrate.
  10.  ガラス基板と、前記ガラス基板上に配置された回折パターンを備える光学素子であって、
     前記ガラス基板は、屈折率が2以上であり、
     前記ガラス基板と前記回折パターンの屈折率差Δndが0.2以下である、光学素子。
    An optical element comprising a glass substrate and a diffraction pattern disposed on the glass substrate,
    The glass substrate has a refractive index of 2 or more,
    An optical element, wherein a refractive index difference Δnd between the glass substrate and the diffraction pattern is 0.2 or less.
  11.  前記ガラス基板と前記回折パターンのアッベ数差Δνdが21以下である、請求項10に記載の光学素子。 The optical element according to claim 10, wherein an Abbe number difference Δνd between the glass substrate and the diffraction pattern is 21 or less.
  12.  前記回折パターンの凸部の底部における幅をa、前記凸部の底部から2/3の高さにおける幅をbとするとき、a/bが1より大きい、請求項9又は10に記載の光学素子。 The optical system according to claim 9 or 10, wherein a/b is greater than 1, where a is the width at the bottom of the convex part of the diffraction pattern, and b is the width at 2/3 height from the bottom of the convex part. element.
  13.  前記回折パターンの凹部における表面粗さをRa1、凸部における表面粗さをRa2とするとき、Ra1/Ra2が1より大きい、請求項9又は10に記載の光学素子。 The optical element according to claim 9 or 10, wherein Ra1/Ra2 is larger than 1, where Ra1 is the surface roughness at the concave portions of the diffraction pattern, and Ra2 is the surface roughness at the convex portions of the diffraction pattern.
  14.  前記回折パターンの凸部における曲率半径をrとするとき、rが3nm~200nmである、請求項9又は10に記載の光学素子。 The optical element according to claim 9 or 10, wherein r is 3 nm to 200 nm, where r is the radius of curvature of the convex portion of the diffraction pattern.
  15.  前記ガラス基板が、質量%で、SiO 0%~12%、B 0%~10%、BaO 0%~13%、ZnO 0%~5%、ZrO 2%~10%、La 15%~45%、Gd 0%~15%、Nb 0%~15%、WO 0%~10%、TiO 13%~50%、Y 0.1%~10%を含有する、請求項9又は10に記載の光学素子。 The glass substrate contains, in mass %, SiO 2 0% to 12%, B 2 O 3 0% to 10%, BaO 0% to 13%, ZnO 0% to 5%, ZrO 2 2% to 10%, La 2 O 3 15% to 45%, Gd 2 O 3 0% to 15%, Nb 2 O 5 0% to 15%, WO 3 0% to 10%, TiO 2 13% to 50%, Y 2 O 3 0 The optical element according to claim 9 or 10, containing .1% to 10%.
  16.  前記回折パターンが金属酸化物材料からなる、請求項9又は10に記載の光学素子。 The optical element according to claim 9 or 10, wherein the diffraction pattern is made of a metal oxide material.
  17.  導光板として用いられる、請求項9又は10に記載の光学素子。
     
    The optical element according to claim 9 or 10, which is used as a light guide plate.
PCT/JP2023/022408 2022-06-27 2023-06-16 Optical element manufacturing method and optical element WO2024004712A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-102357 2022-06-27
JP2022102357 2022-06-27
JP2023-084037 2023-05-22
JP2023084037A JP2024003763A (en) 2022-06-27 2023-05-22 Method of manufacturing optical element, and optical element

Publications (1)

Publication Number Publication Date
WO2024004712A1 true WO2024004712A1 (en) 2024-01-04

Family

ID=89382156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022408 WO2024004712A1 (en) 2022-06-27 2023-06-16 Optical element manufacturing method and optical element

Country Status (1)

Country Link
WO (1) WO2024004712A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033229A (en) * 1983-07-28 1985-02-20 Minolta Camera Co Ltd Optical glass having high refractive index
JP2000155406A (en) * 1998-09-04 2000-06-06 Cselt Spa (Cent Stud E Lab Telecomun) Method for etching surface of quartz glass to manufacture phase mask or the like
JP2009067056A (en) * 2002-04-11 2009-04-02 Nec Corp Master die for microlens array
JP2011153048A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Optical glass
JP2020505302A (en) * 2017-01-05 2020-02-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. Patterning of high refractive index glass by plasma etching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033229A (en) * 1983-07-28 1985-02-20 Minolta Camera Co Ltd Optical glass having high refractive index
JP2000155406A (en) * 1998-09-04 2000-06-06 Cselt Spa (Cent Stud E Lab Telecomun) Method for etching surface of quartz glass to manufacture phase mask or the like
JP2009067056A (en) * 2002-04-11 2009-04-02 Nec Corp Master die for microlens array
JP2011153048A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Optical glass
JP2020505302A (en) * 2017-01-05 2020-02-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. Patterning of high refractive index glass by plasma etching

Similar Documents

Publication Publication Date Title
CN112638835B (en) Optical glass and optical component
JP6207242B2 (en) Optical glass
JP7110981B2 (en) Glass substrates, semiconductor devices and display devices
JP2017031054A (en) Optical glass, preform and optical element
US20230048986A1 (en) Glass
JP2019517726A (en) Glass articles comprising light extraction features
TW201728920A (en) Lenticular structure
JP6292877B2 (en) Optical glass
WO2018025727A1 (en) Alkali-free glass substrate, laminated substrate, and glass substrate production method
WO2024004712A1 (en) Optical element manufacturing method and optical element
TW201827372A (en) Optical glass, preform, and optical element having high refractive index and high dispersion of color with low production cost
JP2024003763A (en) Method of manufacturing optical element, and optical element
JP2016074558A (en) Optical glass and optical element
WO2020004140A1 (en) Plate glass
JP2019529316A (en) High permeability glass containing alkaline earth oxide as modifier
WO2016182054A1 (en) Glass sheet
US20230131948A1 (en) Glass sheet
JP7228135B2 (en) Method for manufacturing glass substrate laminate, glass substrate, glass substrate laminate, and head mounted display
TWI727841B (en) Diffractive optical element
JP6626298B2 (en) Optical glass, preform and optical element
WO2023120415A1 (en) Glass
TWI856230B (en) Optical glass, optical component blanks and optical components
TWI860070B (en) Optical glass and optical components
CN116323506A (en) Glass
WO2023079973A1 (en) Optical filter and near-infrared cut filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831158

Country of ref document: EP

Kind code of ref document: A1