WO2024093615A1 - 一种微显示芯片及其制备方法 - Google Patents
一种微显示芯片及其制备方法 Download PDFInfo
- Publication number
- WO2024093615A1 WO2024093615A1 PCT/CN2023/123419 CN2023123419W WO2024093615A1 WO 2024093615 A1 WO2024093615 A1 WO 2024093615A1 CN 2023123419 W CN2023123419 W CN 2023123419W WO 2024093615 A1 WO2024093615 A1 WO 2024093615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- layer
- wavelength conversion
- reflective layer
- transmissive reflective
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 147
- 238000002834 transmittance Methods 0.000 claims abstract description 96
- 238000002310 reflectometry Methods 0.000 claims abstract description 72
- 239000000463 material Substances 0.000 claims description 99
- 239000002096 quantum dot Substances 0.000 claims description 62
- 230000000737 periodic effect Effects 0.000 claims description 59
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 51
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 36
- 230000005540 biological transmission Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229920002120 photoresistant polymer Polymers 0.000 claims description 14
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 12
- 229910004205 SiNX Inorganic materials 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 9
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910004140 HfO Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000002835 absorbance Methods 0.000 abstract description 6
- 238000001831 conversion spectrum Methods 0.000 abstract description 4
- 239000012788 optical film Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 34
- 238000010586 diagram Methods 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000001579 optical reflectometry Methods 0.000 description 3
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 3
- LKJPSUCKSLORMF-UHFFFAOYSA-N Monolinuron Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C=C1 LKJPSUCKSLORMF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XPIIDKFHGDPTIY-UHFFFAOYSA-N F.F.F.P Chemical class F.F.F.P XPIIDKFHGDPTIY-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- -1 respectively Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Definitions
- the present disclosure relates to the field of optical films, and in particular to a micro display chip and a preparation method thereof.
- Micro LED display technology is an effective supplement to the current mainstream display technology, and fills the shortcomings and gaps in the application of the current mainstream display technology. After splicing, it can meet the needs of large-size displays. Its high brightness, high color gamut, and high contrast performance achieved by pixel-level light control can meet the needs of use in outdoor, semi-outdoor and cinema scenes. Its ultra-small grain size can meet the needs of thousands of pixel densities.
- the self-luminous and material stable characteristics of Micro LED display give it advantages in response time, wide temperature operation and storage, and can meet the real-time and reliability requirements of aircraft and other airborne main displays. Taking advantage of the nanosecond response time characteristics of Micro LED display technology, it is possible to achieve true naked-eye 3D display.
- Micro LED display technology has significant advantages, the technology is still immature. Currently, achieving high-performance and high-brightness Micro LED displays still faces problems such as low color purity and low conversion light brightness.
- the purpose of the present invention is to overcome the above problems existing in the prior art and provide a micro display chip and a preparation method thereof.
- the micro display chip disclosed in the present invention can effectively improve the absorbance and color purity of the converted light, thereby obtaining a brighter and purer conversion spectrum.
- the present disclosure provides a micro display chip, comprising: a self-luminous layer, the self-luminous layer comprising a plurality of light-emitting units arranged in an array, the light-emitting units being used to emit a first color light; a wavelength conversion layer, arranged on a surface of the self-luminous layer, the wavelength conversion layer comprising a plurality of wavelength conversion units, the wavelength conversion units comprising at least a first wavelength conversion unit, the light-emitting units superimposed on the first wavelength conversion unit emit a second color light; the micro display chip further comprises: a first transmissive reflective layer and/or a second transmissive reflective layer; the first transmissive reflective layer being used to be arranged between the self-luminous layer and the wavelength conversion layer; the second transmissive reflective layer being used to be arranged on the other surface of the wavelength conversion layer; the first transmissive reflective layer being arranged to have a low reflectivity and a high transmittance for the first color light and a high reflectivity and a low transmittance
- the micro display chip includes the first transmissive reflective layer (but not the second transmissive reflective layer).
- the micro display chip includes the second transmissive reflective layer (excluding the first transmissive reflective layer).
- the micro display chip includes the first transmissive reflective layer and the second transmissive reflective layer.
- the microdisplay chip further includes a driving substrate having a driving circuit, the self-luminous layer is disposed on the driving substrate, and the driving substrate can light up each of the light-emitting units individually, the light-emitting units are LED units or OLED units, and the size of the light-emitting units is 0.1 ⁇ m to 10 ⁇ m.
- the reflectivity of the first transmissive reflective layer to the first color light is lower than 5% and the transmittance is higher than 95%.
- the reflectivity of the first transmissive reflective layer to the second color light is higher than 90% and the transmittance is lower than 10%.
- the reflectivity of the second transmissive reflective layer to the first color light is higher than 95% and the transmittance is lower than 5%.
- the reflectivity of the second transmissive reflective layer to the second color light is lower than 10% and the transmittance is higher than 90%.
- the wavelength conversion unit also includes a second wavelength conversion unit, and the light-emitting unit is superimposed on the second wavelength conversion unit to emit a third color light;
- the first transmissive reflective layer is also configured to have a high reflectivity and a low transmittance for the third color light
- the second transmissive reflective layer is also configured to have a low reflectivity and a high transmittance for the third color light.
- the reflectivity of the first transmissive reflective layer to the third color light is higher than 90% and the transmittance is lower than 10%
- the reflectivity of the second transmissive reflective layer to the third color light is lower than 10% and the transmittance is higher than 90%
- the wavelength conversion unit contains quantum dots and/or phosphors.
- the wavelength conversion unit includes photoresist.
- the first transmissive reflective layer and the second transmissive reflective layer are each independently a hybrid Bragg reflector or a distributed Bragg reflector; wherein the distributed Bragg reflector includes m periodic structures A, wherein each periodic structure A is formed by stacking A1 and A2 materials, and m is an integer of 4 to 9; the hybrid Bragg reflector is formed by replacing one or more layers of the periodic stacked material with other materials; wherein the periodic stacked material includes n periodic structures B, wherein each periodic structure B is formed by stacking B1 and B2 materials; the other materials are one or more materials different from B1 and B2, denoted as B3...Bx, x is an integer ⁇ 3; n is an integer of 4 to 9; the A1, A2, B1, B2, B3...Bx materials are each independently selected from TiO2 , SiO2 , SiNx, HfO2 , MgF2 , ZrO2 or polymethyl methacrylate.
- the wavelength conversion layer also includes a plurality of transmission units, which are disposed on some of the plurality of light-emitting units and are used to transmit the first color light emitted by the corresponding light-emitting units; and the second transmissive reflective layer has a space at a position corresponding to the transmission unit to transmit the first color light.
- the first color light is blue light
- the wavelength conversion layer includes a plurality of transmission units, a first wavelength conversion unit, and a second wavelength conversion unit, which correspond one-to-one to the light-emitting units and form a periodic arrangement together; wherein the transmission unit is used to transmit blue light; the first wavelength conversion unit is a red quantum dot film, and the light-emitting unit superimposed on the first wavelength conversion unit emits red light; the second wavelength conversion unit is a green quantum dot film, and the light-emitting unit superimposed on the second wavelength conversion unit emits green light; at least one of the transmission units, at least one of the first wavelength conversion units, and at least one of the second wavelength conversion units constitute a pixel.
- a second aspect of the present disclosure provides a method for preparing a microdisplay chip, the method comprising the following steps:
- first transmissive reflective layer on a self-luminous layer provided with a plurality of light-emitting units arranged in an array, wherein the first transmissive reflective layer is configured to have a low reflectivity and a high transmittance for a first color light emitted by the light-emitting units;
- the wavelength conversion layer includes a plurality of wavelength conversion units, wherein the wavelength conversion units include at least a first wavelength conversion unit, and the light-emitting unit is superimposed on the first wavelength conversion unit to emit a second color light;
- a second transflective layer is formed on the surface of the wavelength conversion unit, wherein the second transflective layer is configured to have high reflectivity and low transmittance with respect to the first color light.
- the method further includes: providing a driving substrate having a driving circuit, and forming the self-luminous layer on the driving substrate, wherein the driving substrate can light up each of the light-emitting units individually, the light-emitting units are LED units or OLED units, and the size of the light-emitting units is 0.1 ⁇ m to 10 ⁇ m.
- the first transmissive reflective layer and the second transmissive reflective layer are each independently a hybrid Bragg reflector or a distributed Bragg reflector; wherein the distributed Bragg reflector includes m periodic structures A, wherein each periodic structure A is formed by stacking A1 and A2 materials, and m is an integer of 4 to 9; the hybrid Bragg reflector is formed by replacing one or more layers of the periodic stacked material with other materials; wherein the periodic stacked material includes n periodic structures B, wherein each periodic structure B is formed by stacking B1 and B2 materials; the other materials are one or more materials different from B1 and B2, denoted as B3...Bx, x is an integer ⁇ 3; n is an integer of 4 to 9; the A1, A2, B1, B2, B3...Bx materials are each independently selected from TiO2 , SiO2 , SiNx, HfO2 , MgF2 , ZrO2 or polymethyl methacrylate.
- the hybrid Bragg reflector and the distributed Bragg reflector are each independently formed by one or more methods of evaporation, sputtering, and deposition.
- the method further includes: the wavelength conversion layer is configured to further include a transmission unit, the transmission unit is disposed on some of the plurality of light-emitting units and is used to transmit the first color light emitted by the corresponding light-emitting units; and the second transmissive reflective layer has a space at a position corresponding to the transmission unit to transmit the first color light.
- the method for forming the self-luminous layer on the driving substrate includes: providing an LED epitaxial layer, wherein the LED epitaxial layer includes a first doped semiconductor layer, an active layer, and a second doped semiconductor layer; forming a bonding layer on the driving substrate and/or the second doped semiconductor layer and bonding the two; forming the LED unit on the LED epitaxial layer; and forming an electrical connection structure between the LED unit and the driving substrate so that the driving substrate can light up each of the light-emitting units individually.
- the present disclosure has at least the following advantages compared with the prior art:
- the micro display chip disclosed in the present invention can effectively improve the absorption efficiency and light extraction efficiency of the conversion layer
- the micro display chip disclosed in the present invention has a significantly improved light emitting effect on low-absorption light (such as green light), so that the color purity and brightness of the converted light are greatly improved.
- FIG. 1 is a schematic diagram of a micro display chip according to the present invention.
- FIG. 2 is a schematic diagram showing the propagation of light in the micro display chip of the present disclosure.
- FIG3 is a schematic diagram showing a reflection curve and spectrum of a DBR serving as a second transmissive reflective layer.
- FIG. 4 is a schematic diagram showing a reflection curve and spectrum of an HBR serving as a first transmissive reflective layer.
- FIG5 is a schematic diagram of a micro display chip having a LED-H1-quantum dot film-H2 structure obtained in Example 1.
- FIG6 is a schematic diagram of a micro display chip having a LED-D1-quantum dot film-D2 structure obtained in Example 2.
- FIG. 7 is a schematic diagram of a micro-display chip having a LED-H1-quantum dot film-D2 structure obtained in Example 3a.
- FIG8 is a schematic diagram of a micro display chip having a LED-D1-quantum dot film-H2 structure obtained in Example 3b.
- FIG9 is a schematic diagram of a micro-display chip of LED-no structure-quantum dot film-D2 structure obtained in Example 3c.
- FIG10 is a schematic diagram of a micro-display chip of LED-no structure-quantum dot film-H2 structure obtained in Example 3d.
- FIG. 11 is a schematic diagram of a micro display chip with an LED-quantum dot film structure in Comparative Example 1.
- FIG. 12 is a schematic diagram of the layer structure of a distributed Bragg reflector (DBR).
- DBR distributed Bragg reflector
- FIG. 13 is a schematic diagram of a layer structure of a hybrid Bragg reflector (HBR) according to an example.
- HBR hybrid Bragg reflector
- micro display chip is exemplarily described below in conjunction with the accompanying drawings.
- a micro display chip includes: a self-luminous layer 10, wherein the self-luminous layer 10 includes a plurality of light-emitting units arranged in an array, wherein the light-emitting units are used to emit a first color light 101; a wavelength conversion layer 30, which is arranged on the surface of the self-luminous layer 10, wherein the wavelength conversion layer 30 includes a plurality of wavelength conversion units, wherein the wavelength conversion units include at least a first wavelength conversion unit 31, and the light-emitting units are superimposed on the first wavelength conversion unit 31 to emit a second color light 311; the micro display chip also includes: a first transmissive reflective layer 50 and/or a second transmissive reflective layer 60; the first transmissive reflective layer is used to be arranged between the self-luminous layer 10 and the wavelength conversion layer 30; the second transmissive reflective layer 60 is used to be arranged on the other surface of the wavelength conversion layer 30; the first transmissive reflective layer 50 is configured to have a low reflectivity and a high transmit
- the micro display chip may include one or both of the first transflective layer and the second transflective layer.
- the micro display chip may include only the first transflective layer but not the second transflective layer; may include only the second transflective layer but not the first transflective layer; may also include both the first transflective layer and the second transflective layer.
- the micro display chip further includes a driving substrate having a driving circuit, the self-luminous layer is disposed on the driving substrate, and the driving substrate is capable of lighting each of the light-emitting units individually, the light-emitting units are LED units or OLED units, and the size of the light-emitting units is 0.1 ⁇ m to 10 ⁇ m.
- the driving substrate and the self-luminous layer can be disposed in a conventional manner in the art. In a preferred embodiment, the driving substrate and the self-luminous layer are disposed in a manner disclosed in the patent with publication number CN112992964A.
- the micro display chip includes both the first transmissive reflective layer and the second transmissive reflective layer, that is, includes the self-luminous layer 10 - the first transmissive reflective layer 50 - the wavelength conversion layer 30 - the second transmissive reflective layer 60 stacked in order from bottom to top.
- the first transmissive reflective layer When the first transmissive reflective layer exists, it is arranged between the self-luminous layer and the wavelength conversion layer, and is arranged to have low reflectivity and high transmittance for the first color light and high reflectivity and low transmittance for the second color light; thereby, the first color light can be transmitted more through the first transmissive reflective layer and propagated upward and reflected back to the self-luminous layer as little as possible, and the second color light reflected from above can be reflected back to the direction of upward propagation as much as possible and transmitted as little as possible through the first transmissive reflective layer to the self-luminous layer.
- preparing the first transmissive reflective layer on the lower surface of the wavelength conversion layer and the upper surface of the self-luminous layer includes the following advantages: through the anti-transmittance effect from high refractive index to low refractive index, multiple materials with different refractive indices are selected to effectively reduce the interface light loss between the light-emitting surface of the self-luminous layer and the wavelength conversion layer; through the design of the first transmissive reflective layer, the first color light of the bottom self-luminous layer is fully transmitted, and the converted light emitted downward by the wavelength conversion layer is reflected to the upper surface (as shown in FIG. 2 ), thereby improving the overall conversion light efficiency of the film layer and obtaining a high-brightness color LED chip.
- the second transmissive reflective layer When the second transmissive reflective layer exists, it is arranged on the other surface of the wavelength conversion layer (i.e., the surface away from the self-luminous layer), and is arranged to have high reflectivity and low transmittance for the first color light and low reflectivity and high transmittance for the second color light; thereby, the first color light can be reflected back to the wavelength conversion layer as much as possible for light conversion again and the first color light can be avoided to be emitted upward through the second transmissive reflective layer as much as possible, and the second color light emitted from bottom to top can be emitted upward through the second transmissive reflective layer as much as possible and reflected downward as little as possible.
- preparing the second transmissive reflective layer on the upper surface of the wavelength conversion layer includes the following advantages: through selective filtering, the first color light not absorbed in the wavelength conversion layer 30 (the first color light 101 between the second transmissive reflective layer 60 and the wavelength conversion layer 30 as shown in FIG2) can be effectively filtered, the absorbance of the structure of the wavelength conversion layer 30 is improved, the light purity of the sub-pixel area is ensured, and the color gamut of the overall display screen is improved; the first color light 101 not absorbed by the wavelength conversion layer 30 is reflected back to the wavelength conversion layer, resulting in secondary absorption conversion, which has a substantial improvement on the low-absorption second wavelength conversion layer 32.
- high and low have commonly recognized meanings in the art. It is generally believed that: “high reflectivity” means a reflectivity at least higher than 90%; “low reflectivity” means a reflectivity at least lower than 10%; “high transmittance” means a transmittance at least higher than 90%; “low transmittance” means a transmittance at least lower than 10%.
- the reflectivity of the first transmissive reflective layer 50 to the first color light is lower than 5% (e.g., 5%, 4%, 3%, 2%, 1%) and the transmittance is higher than 95% (e.g., 95%, 96%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, 100%).
- the reflectivity of the first transmissive reflective layer 50 to the first color light is lower than 3% and the transmittance is higher than 97%.
- the reflectivity of the first transmissive reflective layer 50 to the first color light is lower than 1% and the transmittance is higher than 99%.
- the reflectivity of the first transmissive reflective layer 50 to the second color light is higher than 95% (e.g., 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 100%) and the transmittance is lower than 5% (e.g., 5%, 4%, 3%, 2%, 1%).
- the reflectivity of the first transmissive reflective layer 50 to the second color light is higher than 97% and the transmittance is lower than 3%.
- the reflectivity of the second transmissive reflective layer to the first color light is higher than 95% (e.g., 95%, 96%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, 100%) and the transmittance is lower than 5% (e.g., 5%, 4%, 3%, 2%, 1%).
- the reflectivity of the second transmissive reflective layer to the first color light is higher than 97% and the transmittance is lower than 3%.
- the reflectivity of the second transmissive reflective layer to the first color light is higher than 99% and the transmittance is lower than 1%.
- the reflectivity of the second transmissive reflective layer to the second color light is lower than 10% (for example, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%) and the transmittance is higher than 90% (for example, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, 100%).
- the reflectivity of the second transmissive reflective layer to the second color light is lower than 5% and the transmittance is higher than 95%.
- the reflectivity of the second transmissive reflective layer to the second color light is lower than 3% and the transmittance is higher than 97%.
- the wavelength conversion unit may include one or more different types of wavelength conversion units, and at least include the first wavelength conversion unit 31 for emitting the second color light.
- the wavelength conversion unit further includes a second wavelength conversion unit 32 , and the light emitting unit is superimposed on the second wavelength conversion unit 32 to emit a third color light 321 .
- the first transflective layer 50 has high reflectivity and low transmittance for the third color light 321
- the second transflective layer 60 is configured to have low reflectivity and high transmittance for the third color light 321 .
- the reflectivity of the first transflective layer 50 to the third color light is higher than 90% and the transmittance is lower than 10%
- the reflectivity of the second transflective layer to the third color light is lower than 10% and the transmittance is higher than 90%
- the reflectivity of the first transflective layer 50 to the third color light is higher than 95% and the transmittance is lower than 5%
- the reflectivity of the second transflective layer to the third color light is lower than 5% and the transmittance is higher than 95%
- the reflectivity of the first transmissive reflective layer 50 to the third color light is higher than 97% and the transmittance is lower than 3%, and the reflectivity of the second transmissive reflective layer to the third color light is lower than 3% and the transmittance is higher than 97%.
- the first transmissive reflective layer is configured to have high reflectivity and low transmittance for light of other colors except the first color light, and the specific requirements for reflectivity and transmittance refer to the requirements for reflectivity and transmittance of the second color light.
- the second transmissive reflective layer is configured to have low reflectivity and high transmittance for light of other colors except the first color light, and the specific requirements for reflectivity and transmittance refer to the requirements for reflectivity and transmittance of the second color light.
- the wavelength conversion unit contains a material capable of converting the color of light, such as quantum dots and/or phosphors.
- the wavelength conversion unit contains phosphor and/or quantum dots.
- the wavelength conversion unit contains quantum dots, and the wavelength conversion unit is a quantum dot film, such as quantum dot photoresist.
- the quantum dot film can be prepared by selecting conventional materials in the art and in a conventional manner in the art.
- the material of the quantum dot film includes one or more of CdSe, CdS, CdZnSe, CdZnS, CdZnSeS, ZnSeS, ZnSe, CuInS, CuInSe, InP and InZnP.
- the quantum dot film can be formed by one or more of photolithography (e.g., by coating, patterning and curing a quantum dot photoresist to obtain a quantum dot photoresist), spraying and printing.
- first transflective layer and the second transflective layer are not particularly limited, as long as they meet the above requirements of transmittance and refractive index.
- first transflective layer 50 and the second transflective layer 60 are each independently a hybrid Bragg reflector (HBR) or a distributed Bragg reflector (DBR).
- HBR hybrid Bragg reflector
- DBR distributed Bragg reflector
- DBR/HBR is added to the surface of the structure on the top of the film layer to selectively reflect the excitation light and transmit the converted light, thereby improving color purity.
- DBR/HBR is added to the bottom of the film layer to selectively reflect the converted light and transmit the excitation light generated by the LED below, thereby improving the brightness of the converted light.
- At least one of the first transmissive reflective layer and the second transmissive reflective layer is an HBR.
- the reflection curve and the spectrum schematic diagram are shown in, for example, FIG. 4 .
- the reflection curve and the spectrum schematic diagram are shown in FIG3 , for example.
- the DBR includes m periodic structures A, wherein each periodic structure A is formed by stacking A1 and A2 materials, as shown in FIG12 .
- the refractive index of the A1 material is set to be greater than the refractive index of the A2 material.
- the positional relationship between A1 and A2 is not limited in the DBR, that is, A1 can be located below A2 (closer to the self-luminous layer), or A2 can be located below A1.
- A1 and A2 are each independently selected from TiO 2 , SiO 2 , SiNx, HfO 2 , MgF 2 , ZrO 2 or polymethyl methacrylate.
- the A1 and A2 materials are SiO 2 and TiO 2 , respectively.
- the A1 and A2 materials are MgF 2 and TiO 2 , respectively.
- the A1 and A2 materials are SiN x and TiO 2 , respectively.
- m a positive integer of 4-9 (eg, 4, 5, 6, 7, 8, 9).
- the term “distributed Bragg reflector (DBR)” has a meaning that is basically consistent with that in the art, specifically "a periodic structure composed of two materials with different refractive indices arranged alternately in an ABAB manner, and the optical thickness of each layer of material is 1/4 of the central reflection wavelength". It should be noted that, in this article, the meaning of the DBR is not limited to the standard value of "optical thickness is 1/4 of the central reflection wavelength", but the thickness can be allowed to fluctuate within a certain range (for example, within the range of 50% to 200% of the above standard value).
- the thickness of each layer A1 is independently a ⁇ [ ⁇ A1 ⁇ 1/(4k A1 )], where ⁇ A1 is the reflection wavelength of the A1 material, and k A1 is the refractive index of the A1 material;
- the thickness of each layer A2 is independently a ⁇ [ ⁇ A2 ⁇ 1/(4k A2 )], where ⁇ A2 is the reflection wavelength of the A2 material, and k A2 is the refractive index of the A2 material;
- the role of the coefficient a is to fine-tune the thickness of each layer so that the obtained DBR can better fit the reflection curve.
- hybrid Bragg reflector is a term that has never been or is rarely used in the art. In this article, it refers to "a stacked material containing at least three materials with different refractive indices when one or more layers of materials in the DBR are changed so that the material stacking method does not completely follow the periodic structure of ABAB". Therefore, the HBR is a non-completely periodic stacked material.
- the HBR is formed by replacing one or more layers of a periodic stacking material with other materials; wherein the periodic stacking material includes n periodic structures B, each of which is formed by stacking B1 and B2 materials; the other materials are one or more materials different from B1 and B2, denoted as B3...Bx, x is an integer ⁇ 3; n is an integer of 4 to 9 (for example, 4, 5, 6, 7, 8, 9).
- the refractive index of the B1 material is set to be greater than the refractive index of the B2 material.
- the HBR does not limit the positional relationship between B1 and B2, that is, B1 can be located below B2, or B2 can be located below B1.
- the HBR may include only one other material, that is, the HBR consists of B1, B2 and B3; or may include multiple other materials, that is, the HBR consists of B1, B2, B3, B4... (until Bx).
- B1 and B2 are each independently selected from TiO 2 , SiO 2 , SiNx, HfO 2 , MgF 2 , ZrO 2 or polymethyl methacrylate.
- the B1 and B2 materials are SiO 2 and TiO 2 , respectively.
- the B1 and B2 materials are MgF 2 and TiO 2 , respectively.
- the B1 and B2 materials are SiN x and TiO 2 , respectively, and SiN x is a conventional expression of silicon nitride in the art.
- the B3...Bx are each independently selected from TiO2 , SiO2 , SiNx, HfO2 , MgF2 , ZrO2 or polymethyl methacrylate, and are different from the materials of B1 and B2 in the HBR.
- n periodic structures B formed by stacking the B1 and B2 materials are represented herein by the formula “(B1+B2) n ”, wherein the number in the brackets represents a repeating unit and the subscript represents the number of repetitions.
- the HBR is obtained by replacing one or more layers of the (B1+B2) n stacked materials with another material B3.
- the periodic structure and n2 periodic structures composed of B1 or B2 and B3.
- the (B1+B2) n1 +(B1/B2+B3) n2 is not limited to the case where the two periodic structures are completely separated, and can also be interspersed and stacked, for example, the stacking method of (B1+B2)+(B1+B3)+(B1+B2)+(B1+B2)+(B1+B3)+...
- the HBR is obtained by replacing the (B1+B2) n stacked materials with two materials B3 and B4.
- the thickness of the B3 ...
- the role of the coefficient b is to make the obtained HBR better fit the reflection curve by fine-tuning the thickness of each layer.
- Both DBR and HBR can be fitted in simulation software commonly used in the art.
- the inventors of the present disclosure found in the fitting process that in order to achieve the set transmittance and reflectance, the simulation software often adjusts the thickness of one or more layers in the DBR to deviate from the ideal thickness (i.e., 1/4 of the central reflection wavelength) by a large amount; the inventors of the present disclosure found that when the deviation of the thickness of a certain layer exceeds a certain degree (for example, greater than 200% or less than 50% of the ideal thickness, preferably greater than 150% or less than 70%, more preferably greater than 120% or less than 90%), the material of the layer can be replaced (when the fitting thickness is too large, it is replaced with a material with a higher refractive index, and when the fitting thickness is smaller, it is replaced with a material with a lower refractive index), so that the layer thickness is as close to the ideal thickness as possible, thereby obtaining a better HBR.
- a certain degree for example, greater than 200% or less than 50% of the ideal thickness, preferably greater than 150% or less than 70%, more preferably
- HBR can adjust the reflection curve to a situation without a secondary peak (as shown in FIG4, the reflection curve is smoother), and can achieve a higher reflection of the corresponding wavelength while achieving a higher transmission of other wavelengths, thereby obtaining a brighter and purer conversion spectrum.
- the wavelength conversion layer also includes a plurality of transmission units 33, the transmission units 33 and the wavelength conversion units respectively correspond to the light-emitting units one by one and together form a periodic arrangement; the transmission units are used to transmit the first color light 101 emitted by the light-emitting units; and the second transmission-reflective layer 60 has a space at a position corresponding to the transmission unit 33 to transmit the first color light 101.
- the transmission unit 33 may be a hole on the wavelength conversion layer, or may be filled with a transparent material (ie, a material that has no effect on light waves), such as transparent glue.
- the first color light 101 is any one of blue light, ultraviolet light and dual-wavelength light.
- the dual-wavelength light can be blue light + ultraviolet light, blue light + green light, etc.
- the first color light is blue light.
- the wavelength conversion layer 30 includes a plurality of light-emitting units 11 corresponding to each other and forming a periodic
- the invention further comprises a plurality of transmission units 33, a first wavelength conversion unit 31 and a second wavelength conversion unit 32 arranged in a linear manner; wherein the transmission unit 33 is used to emit blue light (i.e., the blue light (first color light) emitted by the light-emitting unit 11); the first wavelength conversion unit 31 is a red quantum dot film, and the light-emitting unit 11 superimposed on the first wavelength conversion unit 31 emits red light (i.e., the second color light); the second wavelength conversion unit 32 is a green quantum dot film, and the light-emitting unit 11 superimposed on the second wavelength conversion unit 32 emits green light (i.e., the third color light); at least one of the transmission units, at least one of the red quantum dot films and at least one of the green quantum dot films constitute a pixel.
- the transmission unit 33 is used to emit blue light (i.e.
- the first color light may also be other high-energy light, such as ultraviolet light.
- the quantum dot film optical structure disclosed in the present invention combines a Bragg reflector with a quantum dot film, and through selective filtering, changes the propagation paths of red, green and blue light, thereby obtaining a brighter and purer quantum dot conversion spectrum.
- One or more of the transmission units, one or more of the first wavelength conversion units, and one or more of the second wavelength conversion units together form a periodic arrangement, and each periodic arrangement forms a pixel.
- the color conversion disclosed in the present invention is not limited to the conversion of red, green and blue light, but may also be other various light conversions that can be realized in the art, for example, it may also include fluorescence conversion.
- the first color light is blue light and/or ultraviolet light
- the wavelength conversion unit includes a first wavelength conversion unit, the first wavelength conversion unit is a phosphor film, and the light-emitting unit is superimposed on the first wavelength conversion unit to emit fluorescence.
- the material and preparation method of the phosphor film can refer to conventional methods in the art.
- the material of the phosphor film is, for example, one or more selected from Ce phosphor, (oxy)nitride phosphor, silicate phosphor, Mn 4+ activated fluoride phosphor, etc.
- the micro display chip disclosed in the present invention is particularly suitable for use in micro displays, high-resolution displays, near-eye displays, etc., and therefore the size of the micro display chip disclosed in the present invention is very small.
- the size of the light-emitting unit is 1-50 ⁇ m (e.g., 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m).
- the "light-emitting unit” refers to an LED light-emitting area corresponding to a wavelength conversion unit to emit light of one color, corresponding to "a sub-pixel" conventionally referred to in the art.
- the thickness of the first transmissive reflective layer is 0.5-1.5 ⁇ m (e.g., 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m), preferably 1 ⁇ m-1.4 ⁇ m.
- the wavelength conversion layer has a thickness of 1.5-2.5 ⁇ m (1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m, 2 ⁇ m, 2.1 ⁇ m, 2.2 ⁇ m, 2.3 ⁇ m, 2.4 ⁇ m, 2.5 ⁇ m).
- the thickness of the second transmissive reflective layer is 0.5-1.5 ⁇ m (e.g., 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m), preferably 1 ⁇ m-1.4 ⁇ m.
- a thickness ratio of the first transmissive reflective layer, the wavelength conversion layer, and the second transmissive reflective layer is (0.3-0.8):1:(0.3-0.8).
- the micro display chip may further include conventional material layers in the art.
- a planarization layer may be provided on the surface of the self-luminous layer to make the surface flat and facilitate the formation of an upper layer of material.
- a second aspect of the present disclosure provides a method for preparing a microdisplay chip, the method comprising the following steps:
- the first transmissive reflective layer is configured to have low reflectivity and high transmittance for the first color light emitted by the light emitting unit;
- wavelength conversion layer (2) forming a wavelength conversion layer on a surface of the first transmissive reflective layer, wherein the wavelength conversion layer is configured to include a wavelength conversion unit, and a film material capable of achieving wavelength conversion is formed at the wavelength conversion unit;
- a second transflective layer is formed on the surface of the wavelength conversion unit, wherein the second transflective layer is configured to have high reflectivity and low transmittance with respect to the first color light.
- the method described in the second aspect of the present disclosure can prepare the micro display chip described in the first aspect of the present disclosure.
- the specific composition, amount and arrangement of the materials used in the method can be the same as those defined in the first aspect, and will not be repeated here.
- the method further includes: before step (1), providing a driving substrate having a driving circuit, and forming the self-luminous layer on the driving substrate, wherein the driving substrate is capable of lighting each of the light-emitting units individually, the light-emitting units are LED units or OLED units, and the size of the light-emitting units is 0.1 ⁇ m to 10 ⁇ m.
- the specific structure and formation method of the driving substrate and the self-luminous layer can be carried out in accordance with conventional methods in the art.
- the driving substrate and the self-luminous layer are formed in accordance with the method disclosed in the patent with publication number CN112992964A.
- the method for forming the self-luminous layer on the driving substrate includes: providing an LED epitaxial layer, the LED epitaxial layer including a first doped semiconductor layer, an active layer and a second doped semiconductor layer; forming a bonding layer on the driving substrate and/or the second doped semiconductor layer and bonding the two; forming the LED unit on the LED epitaxial layer; and forming an electrical connection structure between the LED unit and the driving substrate so that the driving substrate can light up each of the light-emitting units individually.
- the method further includes: the wavelength conversion layer 30 is configured to further include a transmission unit 33, the transmission unit 33 and the wavelength conversion unit (for example, the first wavelength conversion unit 31 and the second wavelength conversion unit 32 in Figure 1) respectively correspond to the light-emitting unit 11 one by one and together form a periodic arrangement, and no film material capable of achieving wavelength conversion is formed at the transmission unit to transmit the first color light; and the second transmission and reflection layer 60 is configured to leave a space at a position corresponding to the transmission unit.
- the wavelength conversion layer 30 is configured to further include a transmission unit 33, the transmission unit 33 and the wavelength conversion unit (for example, the first wavelength conversion unit 31 and the second wavelength conversion unit 32 in Figure 1) respectively correspond to the light-emitting unit 11 one by one and together form a periodic arrangement, and no film material capable of achieving wavelength conversion is formed at the transmission unit to transmit the first color light
- the second transmission and reflection layer 60 is configured to leave a space at a position corresponding to the transmission unit.
- the film material capable of achieving wavelength conversion is a red quantum dot film 31 and/or a green quantum dot film 32.
- the quantum dot film is a quantum dot photoresist, which is prepared by mixing a quantum dot solution with a transparent photoresist negative in a certain ratio and coating the prepared quantum dot photoresist (QDPR) on the surface of the first transmissive reflective layer.
- the first transmissive reflective layer 50 and the second transmissive reflective layer 60 are each independently a DBR or a HBR, and the DBR or the HBR is formed by one or more methods of evaporation, sputtering, and deposition.
- the evaporation method includes, for example, using an optical coating machine, selecting different target materials, and evaporating optical films of different materials layer by layer to form the DBR or the HBR.
- the sputtering method includes, for example, using magnetron sputtering to form the DBR or the HBR by sputtering the target material layer by layer onto the surface of the substrate using physical means by utilizing the interaction between the magnetic field and the electric field.
- the deposition method includes, for example, using a chemical vapor deposition device to generate a solid substance through a low chemical reaction and depositing the solid substance layer by layer on a substrate to form the DBR or the HBR.
- microdisplay chip described in the first aspect of the present disclosure and/or the microdisplay chip described in the second aspect of the present disclosure are suitable for application in microdisplays, high-resolution displays, near-eye displays, etc.
- the microdisplay chip disclosed in the present invention has an extremely small microscopic size (for example, a 4-inch, 6-inch, or 8-inch wafer) and has great advantages in manufacturing high-resolution display devices, and can be used in virtual reality (VR) and augmented reality (AR).
- VR virtual reality
- AR augmented reality
- first”, “second” and other ordinal numbers are not used to indicate order, but are only used to distinguish different objects and/or different usage environments;
- the terms “upper”, “lower”, “top”, “bottom” and other words indicating spatial positions are not used to limit the spatial positions in states such as usage, but are only for the convenience of description, and in this article refer to the spatial position relationship shown in the accompanying drawings.
- the present invention solves the problems of poor absorption of quantum dot materials, high reflectivity of the interface between the light-emitting surface of the LED and the quantum dot film layer, reverse light emission loss of the quantum dot film layer, low color purity of the quantum dot film layer in realizing full-color LED, and uncertainty of the refractive index of the light-emitting surface in the mixed preparation of quantum dot photoresist; it can effectively improve the absorption efficiency and light-emitting efficiency of the conversion layer, and significantly improve the light-emitting effect of low-absorption light (such as green light), thereby greatly improving the color purity and brightness of the converted light.
- low-absorption light such as green light
- the self-luminous layer used is a blue light LED chip, which is a Micro-LED chip with a size of 6-inch wafer, and the light-emitting units are arranged in an array, with a side length of 0.19 inches and a dot pitch of 0.2 inches.
- an HBR layer is evaporated on the surface of the prepared blue light self-luminous layer by an optical coating machine (stacked from bottom to top into a (TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +MgF 2 )+(TiO 2 +MgF 2 ) structure, 7 pairs in total; total thickness is 1.18 ⁇ m; blue light transmittance is 99%, blue light reflectance is 1%, red light transmittance is 3%, red light reflectance is 97%, green light transmittance is 1%, green light reflectance is 99%), denoted as H1;
- the preparation method of the red quantum dot photoresist and the green quantum dot photoresist comprises: mixing 300 mg/ml CdSe/ZnS core-shell structure quantum dots (red quantum dots with shell thickness of 8 nm, green quantum dots with shell thickness of 6 nm) solution (propylene glycol methyl ether acetate (PGMEA) as solvent) with transparent negative resist (PGMEA as solvent and polymethyl methacrylate PMMA as main resin) in a volume ratio of 1:1, and then spin coating on the layer obtained in step (1) at 200 r/min 100 s to obtain a wavelength conversion layer with a film thickness of 2 ⁇ m.
- PGMEA propylene glycol methyl ether acetate
- PMMA polymethyl methacrylate
- an HBR layer is evaporated on the surface of the wavelength conversion layer by an optical coating machine (stacked from bottom to top into 9 pairs of (TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +MgF 2 )+(TiO 2 +MgF 2 ), with a total thickness of 1.08 ⁇ m, a blue light transmittance of 0.4%, a blue light reflectance of 99.6%, a red light transmittance of 98%, a red light reflectance of 2%, a green light transmittance of 99%, and a green light reflectance of 1%), denoted as H2;
- a micro display chip with a structure of LED-H1-quantum dot film-H2 was obtained, as shown in FIG5 .
- a DBR layer is deposited on the surface of the quantum dot film layer by an optical coating machine (HfO 2 and MgF 2 are one cycle from bottom to top, 9 cycles are stacked in total, and the total thickness is 1.01 ⁇ m; the blue light transmittance is 2%, the blue light reflectance is 98%, the red light transmittance is 95%, the red light reflectance is 5%, the green light transmittance is 97%, and the green light reflectance is 3%), recorded as D2;
- a micro display chip with a structure of LED-D1-quantum dot film-D2 is obtained, as shown in FIG6 .
- This group of embodiments is used to illustrate the impact of different HBR or DBR settings.
- Example 1 This group of examples is carried out according to Example 1, specifically involving the HBR or DBR of the top layer and the bottom layer of the quantum dot film layer using the same HBR and DBR arrangement and preparation method as in Example 1 and Example 2, except that the arrangement positions of the HBR and/or DBR are changed respectively, specifically:
- Example 3a LED-H1-quantum dot film-D2, as shown in FIG7 ;
- Example 3b LED-D1-quantum dot film-H2, as shown in FIG8 ;
- Example 3c LED-no structure-quantum dot film-D2, as shown in FIG9 ;
- Example 3d LED-no structure-quantum dot film-H2, as shown in FIG10 .
- This group of embodiments is used to illustrate the effects of changing the specific material and/or structure of HBR.
- Example 4a the H1 layer is replaced with a new HBR layer of (TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +MgF 2 )+(TiO 2 +MgF 2 ), a total of 7 pairs, with a total thickness of 1.19 ⁇ m; the blue light transmittance is 98%, the blue light reflectance is 2%, the red light transmittance is 3%, the red light reflectance is 97%, the green light transmittance is 1%, and the green light reflectance is 99%, recorded as H3;
- Example 4b the H1 layer is replaced with a new HBR layer of (TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +SiN x )+(TiO 2 +MgF 2 ), a total of 7 pairs, with a total thickness of 1.20 ⁇ m; the blue light transmittance is 98%, the blue light reflectance is 2%, the red light transmittance is 4%, the red light reflectance is 96%, the green light transmittance is 2%, and the green light reflectance is 98%, recorded as H4;
- Example 4c the H1 layer is replaced with a new HBR layer of (TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +SiO 2 )+(TiO 2 +MgF 2 ) for a total of 7 pairs with a total thickness of 1.19 ⁇ m; blue light transmission The rate is 98%, the blue light reflectivity is 2%, the red light transmittance is 4%, the red light reflectivity is 96%, the green light transmittance is 2%, and the green light reflectivity is 98%; the obtained HBR layer is recorded as H5.
- the top and bottom layers of the quantum dot film layer are structureless, that is, LED-structureless-quantum dot film-structureless, as shown in FIG11 .
- the red and green pixel areas within the 100 ⁇ m aperture were tested by a spectrometer, and the brightness of the light emitted vertically from the surface was measured (the results are recorded in Table 1).
- the emission spectrum was obtained, and the proportions of red/blue and red/green light were integrated to obtain the absorbance OD of the light source (the results are recorded in Table 2).
- the red and blue; green and blue dual-color band spectra are measured by an integrating sphere/spectrometer, the light power is measured, and the ratio of the red light power in the red pixel to the total light power is calculated (the result is recorded in Table 3). Similarly, the ratio of the green light power in the green pixel to the total light power is calculated (the result is recorded in Table 3).
- the micro display chip of the embodiment can achieve significantly better conversion light brightness, absorbance and color purity than the comparative example.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本公开涉及光学薄膜领域,具体涉及一种微显示芯片及其制备方法。包括:自发光层,发射第一颜色光;波长转换层,至少包括第一波长转换单元,叠加发光单元发出第二颜色光;第一透射反射层和/或第二透射反射层;第一透射反射层设置于自发光层与波长转换层之间;第二透射反射层设置于波长转换层的另一表面;第一透射反射层设置为对第一颜色光具有低反射率和高透射率且对第二颜色光具有高反射率和低透射率,第二透射反射层设置为对第一颜色光具有高反射率和低透射率且对第二颜色光具有低反射率和高透射率。本公开的微显示芯片能够有效提高转换光的吸光度和色纯度,继而得到更亮更纯的转换光谱。
Description
本公开涉及光学薄膜领域,具体涉及一种微显示芯片及其制备方法。
发明背景
Micro LED显示技术是对目前主流显示技术的有效补充,在应用上填补了目前主流显示技术的短板和空白。将其拼接性后可以满足大尺寸显示的需求。其像素级控光达到的高亮度、高色域、高对比度性能,可以满足在户外、半户外及影院场景下使用的需求,利用其超小的晶粒尺寸,可以实现上千像素密度的需求。Micro LED显示的自发光和材料稳定的特性使其在响应时间、宽温工作及储存上具有优势,能满足飞机等机载主显示器在实时性和可靠性方面的要求。利用Micro LED显示技术具有纳秒级响应时间的特性,有可能实现真正的裸眼3D显示。
虽然Micro LED显示技术具有显著的优势,但该技术尚不成熟,目前实现高性能及高亮的Micro LED显示仍面临着色纯度低、转换光亮度低等问题。
因此,发现一种提升色纯度与增加转换光亮度的微显示芯片是非常重要的。
发明内容
本公开的目的在于克服现有技术存在的上述问题,提供一种微显示芯片及其制备方法。本公开的微显示芯片能够有效提高转换光的吸光度和色纯度,继而得到更亮更纯的转换光谱。
本公开第一方面提供了一种微显示芯片,包括:自发光层,所述自发光层包括呈阵列排布的若干发光单元,所述发光单元用于发射第一颜色光;波长转换层,设置于所述自发光层表面,所述波长转换层包括若干波长转换单元,所述波长转换单元至少包括第一波长转换单元,所述发光单元叠加所述第一波长转换单元发出第二颜色光;所述微显示芯片还包括:第一透射反射层和/或第二透射反射层;所述第一透射反射层用于设置于所述自发光层与所述波长转换层之间;所述第二透射反射层用于设置于所述波长转换层的另一表面;所述第一透射反射层设置为对所述第一颜色光具有低反射率和高透射率且对所述第二颜色光具有高反射率和低透射率,所述第二透射反射层设置为对所述第一颜色光具有高反射率和低透射率且对所述第二颜色光具有低反射率和高透射率。
可选地,所述微显示芯片包括所述第一透射反射层(不包括所述第二透射反射层)。
可选地,所述微显示芯片包括所述第二透射反射层(不包括所述第一透射反射层)。
可选地,所述微显示芯片包括所述第一透射反射层和所述第二透射反射层。
在一实例中,所述微显示芯片还包括具有驱动电路的驱动基板,所述自发光层设置于所述驱动基板上,所述驱动基板能够单独点亮每一所述发光单元,所述发光单元为LED单元或者OLED单元,所述发光单元的尺寸为0.1μm~10μm。
在一实例中,所述第一透射反射层对所述第一颜色光的反射率低于5%且透射率高于95%。
在一实例中,所述第一透射反射层对所述第二颜色光的反射率高于90%且透射率低于10%。
在一实例中,所述第二透射反射层对所述第一颜色光的反射率高于95%且透射率低于5%。
在一实例中,所述第二透射反射层对所述第二颜色光的反射率低于10%且透射率高于90%。
在一实例中,所述波长转换单元还包括第二波长转换单元,所述发光单元叠加所述第二波长转换单元发出第三颜色光;所述第一透射反射层还设置为对所述第三颜色光具有高反射率和低透射率,所述第二透射反射层还设置为对所述第三颜色光具有低反射率和高透射率。
在一实例中,所述第一透射反射层对所述第三颜色光的反射率高于90%且透射率低于10%,所述第二透射反射层对所述第三颜色光的反射率低于10%且透射率高于90%。
在一实例中,所述波长转换单元中含有量子点和/或荧光粉。
在一实例中,所述波长转换单元包含光刻胶。
在一实例中,所述第一透射反射层和所述第二透射反射层各自独立地为混合式布拉格反射镜或分布式布拉格反射镜;其中,所述分布式布拉格反射镜包括m个周期结构A,其中每个周期结构A由A1和A2材料层叠而成,m为4~9的整数;所述混合式布拉格反射镜通过将周期性层叠材料中的一层或多层用其它材料替换所形成;其中所述周期性层叠材料包括n个周期结构B,每个周期结构B由B1和B2材料层叠而成;所述其它材料为一种或多种与所述B1和B2均不同的材料,记为B3……Bx,x为≥3的整数;n为4~9的整数;所述A1、A2、B1、B2、B3……Bx材料各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯。
在一实例中,所述混合式布拉格反射镜包括n1个由B1与B2组成的周期结构和n2个由B1或B2与B3组成的周期结构,n1+n2=n。
在一实例中,所述混合式布拉格反射镜包括n1个由TiO2和SiO2组成的周期结构和n2个由TiO2和MgF2组成的周期结构,其中n1为1-3的正整数,n为6-9的正整数,n2=n-n1;或者,所述混合式布拉格反射镜包括n1个由TiO2和SiNx组成的周期结构和n2个由TiO2和MgF2组成的周期结构,其中n1为1-3的正整数,n为6-9的正整数,n2=n-n1。
在一实例中,所述波长转换层还包括若干透射单元,所述透射单元设置于多个发光单元的其中一些发光单元上并用于透过对应的所述发光单元发出的所述第一颜色光;并且,所述第二透射反射层在与所述透射单元相对应的位置上留有空位,以透过所述第一颜色光。
在一实例中,所述第一颜色光为蓝光;所述波长转换层包括与所述发光单元一一对应并且共同形成周期性排布的若干透射单元、第一波长转换单元和第二波长转换单元;其中所述透射单元用于透射蓝光;所述第一波长转换单元为红色量子点膜,所述发光单元叠加所述第一波长转换单元发出红光;所述第二波长转换单元为绿色量子点膜,所述发光单元叠加所述第二波长转换单元发出绿光;至少1个所述透射单元、至少1个所述第一波长转换单元以及至少1个所述第二波长转换单元组成一个像素。
本公开第二方面提供了一种制备微显示芯片的方法,所述方法包括以下步骤:
(1)在设置有呈阵列排布的若干发光单元的自发光层上形成第一透射反射层,所述第一透射反射层设置为对所述发光单元发出的第一颜色光具有低反射率和高透射率;
(2)在所述第一透射反射层的表面形成波长转换层,所述波长转换层包括若干波长转换单元,所述波长转换单元至少包括第一波长转换单元,所述发光单元叠加所述第一波长转换单元发出第二颜色光;
(3)在所述波长转换单元的表面形成第二透射反射层,所述第二透射反射层设置为对所述第一颜色光具有高反射率和低透射率。
在一实例中,所述方法还包括:提供具有驱动电路的驱动基板,并在该驱动基板上形成所述自发光层,所述驱动基板能够单独点亮每一所述发光单元,所述发光单元为LED单元或者OLED单元,所述发光单元的尺寸为0.1μm~10μm。
在一实例中,所述第一透射反射层与所述第二透射反射层各自独立地为混合式布拉格反射镜或分布式布拉格反射镜;其中,所述分布式布拉格反射镜包括m个周期结构A,其中每个周期结构A由A1和A2材料层叠而成,m为4~9的整数;所述混合式布拉格反射镜通过将周期性层叠材料中的一层或多层用其它材料替换所形成;其中所述周期性层叠材料包括n个周期结构B,每个周期结构B由B1和B2材料层叠而成;所述其它材料为一种或多种与所述B1和B2均不同的材料,记为B3……Bx,x为≥3的整数;n为4~9的整数;所述A1、A2、B1、B2、B3……Bx材料各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯。
在一实例中,所述混合式布拉格反射镜和所述分布式布拉格反射镜各自独立地通过蒸镀、溅射、沉积中的一种或多种方式形成。
在一实例中,所述方法还包括:所述波长转换层设置为还包括透射单元,所述透射单元设置于多个发光单元的其中一些发光单元上并用于透过对应的所述发光单元发出的所述第一颜色光;并且,所述第二透射反射层在与所述透射单元相对应的位置上留有空位,以透过所述第一颜色光。
在一实例中,在所述驱动基板上形成所述自发光层的方法包括:提供LED外延层,所述LED外延层包括第一掺杂型半导体层、有源层以及第二掺杂型半导体层;在所述驱动基板和/或所述第二掺杂型半导体层上形成键合层并将两者键合;在所述LED外延层上形成所述LED单元;在LED单元与所述驱动基板之间形成电连接结构使得所述驱动基板能够单独点亮每一所述发光单元。
通过上述技术方案,本公开与现有技术相比至少具有以下优势:
(1)本公开的微显示芯片,能够有效提升转换层吸收效率与出光效率;
(2)本公开的微显示芯片对低吸收光(如绿光)的出光效果具有明显提升,使得色纯度和转换光亮度大大提高。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新
的数值范围,这些数值范围应被视为在本文中具体公开。
图1所示为本公开的微显示芯片示意图。
图2所示为光在本公开的微显示芯片中的光传播示意图。
图3所示为作为第二透射反射层的DBR反射曲线与光谱示意图。
图4所示为作为第一透射反射层的HBR反射曲线与光谱示意图。
图5所示为实施例1所得LED-H1-量子点膜-H2结构的微显示芯片示意图。
图6为实施例2所得LED-D1-量子点膜-D2结构的微显示芯片示意图。
图7为实施例3a所得LED-H1-量子点膜-D2结构的微显示芯片示意图。
图8为实施例3b所得LED-D1-量子点膜-H2结构的微显示芯片示意图。
图9为实施例3c所得LED-无结构-量子点膜-D2结构的微显示芯片示意图。
图10为实施例3d所得LED-无结构-量子点膜-H2结构的微显示芯片示意图。
图11为对比例1中LED-量子点膜结构的微显示芯片示意图。
图12为分布式布拉格反射镜(DBR)的层结构示意图。
图13为一实例的混合式布拉格反射镜(HBR)的层结构示意图。
附图标记说明
10-自发光层,11-发光单元,50-第一透射反射层,30-波长转换层,31-第一波长转换
单元,32-第二波长转换单元,33-透射单元,60-第二透射反射层,
101-第一颜色光,311-第二颜色光,321-第三颜色光。
10-自发光层,11-发光单元,50-第一透射反射层,30-波长转换层,31-第一波长转换
单元,32-第二波长转换单元,33-透射单元,60-第二透射反射层,
101-第一颜色光,311-第二颜色光,321-第三颜色光。
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。以下结合附图对所述微显示芯片进行示例性说明。
如图1和图2所示,一种微显示芯片包括:自发光层10,所述自发光层10包括呈阵列排布的若干发光单元,所述发光单元用于发射第一颜色光101;波长转换层30,设置于所述自发光层10表面,所述波长转换层30包括若干波长转换单元,所述波长转换单元至少包括第一波长转换单元31,所述发光单元叠加所述第一波长转换单元31发出第二颜色光311;所述微显示芯片还包括:第一透射反射层50和/或第二透射反射层60;所述第一透射反射层用于设置于所述自发光层10与所述波长转换层30之间;所述第二透射反射层60用于设置于所述波长转换层30的另一表面;所述第一透射反射层50设置为对所述第一颜色光101具有低反射率和高透射率且对所述第二颜色光311具有高反射率和低透射率,所述第二透射反射层60设置为对所述第一颜色光具有高反射率和低透射率且对所述第二
颜色光311具有低反射率和高透射率。
所述微显示芯片可以包括所述第一透射反射层和第二透射反射层中的一种或两种。例如可选地,所述微显示芯片可以只包括所述第一透射反射层而不包括所述第二透射反射层;也可以只包括所述第二透射反射层而不包括所述第一透射反射层;还可以同时包括所述第一透射反射层和所述第二透射反射层。
在一实例中,所述微显示芯片还包括具有驱动电路的驱动基板,所述自发光层设置于所述驱动基板上,所述驱动基板能够单独点亮每一所述发光单元,所述发光单元为LED单元或者OLED单元,所述发光单元的尺寸为0.1μm~10μm。所述驱动基板与所述自发光层可以按照本领域常规的方式设置。在优选的实施方式中,所述驱动基板与所述自发光层按照公开号为CN112992964A的专利中公开的方式设置。
在一实例中,所述微显示芯片同时包括所述第一透射反射层和第二透射反射层,即包括自下而上依次层叠的自发光层10-第一透射反射层50-波长转换层30-第二透射反射层60。
当所述第一透射反射层存在时,其设置于所述自发光层与所述波长转换层之间,并且设置为对所述第一颜色光具有低反射率和高透射率且对所述第二颜色光具有高反射率和低透射率;从而能够实现使得所述第一颜色光更多地透过所述第一透射反射层而向上传播且尽可能少地反射回自发光层,且使得从上方反射来的所述第二颜色光尽可能反射回向上传播的方向且尽可能少地透过所述第一透射反射层射向自发光层。本公开的发明人发现,于波长转换层下表面与自发光层上表面制备第一透射反射层包括以下优势:通过高折射率向低折射率的增透效果,选取多个不同折射率材料,有效减少自发光层出光表面与波长转换层间的介面光损失;通过第一透射反射层设计将底部自发光层的第一颜色光充分透过,同时将波长转换层向下发射的转换光反射到上表面(如图2所示),提升膜层整体转换光效,得到高亮彩色LED芯片。
所述第二透射反射层存在时,其设置于所述波长转换层的另一表面(即远离自发光层的表面),并且设置为对所述第一颜色光具有高反射率和低透射率且对所述第二颜色光具有低反射率和高透射率;从而能够实现使得所述第一颜色光尽可能多地反射回所述波长转换层以再次进行光转化且尽量避免所述第一颜色光透过所述第二透射反射层向上射出,且使得自下而上发射的所述第二颜色光尽可能多地透过所述第二透射反射层向上射出而尽可能少地向下反射。本公开的发明人发现,于波长转换层上表面制备第二透射反射层包括以下优势:通过选择性滤光,可有效过滤波长转换层30内未吸收的第一颜色光(如图2所示第二透射反射层60和波长转换层30之间第一颜色光101),提升波长转换层30结构吸光度,保证子像素区域出光纯度,提高整体显示屏幕色域;将波长转换层30未吸收第一颜色光101反射回波长转换层,产生二次吸收转换,对低吸收第二波长转化层32具有实质性提升。
在本文中,“高”、“低”具有本领域共同认可的含义,一般认为:“高反射率”指的是反射率至少高于90%;“低反射率”指的是反射率至少低于10%;“高透射率”指的是透射率至少高于90%;“低透射率”指的是透射率至少低于10%。
在一实例中,所述第一透射反射层50对所述第一颜色光的反射率低于5%(例如5%、4%、3%、2%、1%)且透射率高于95%(例如95%、96%、97%、97.5%、98%、98.5%、99%、99.5%、100%)。
优选地,所述第一透射反射层50对所述第一颜色光的反射率低于3%且透射率高于97%。
更优选地,所述第一透射反射层50对所述第一颜色光的反射率低于1%且透射率高于99%。
在一实例中,所述第一透射反射层50对所述第二颜色光的反射率高于95%(例如95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、100%)且透射率低于5%(例如5%、4%、3%、2%、1%)。
优选地,所述第一透射反射层50对所述第二颜色光的反射率高于97%且透射率低于3%。
在一实例中,所述第二透射反射层对所述第一颜色光的反射率高于95%(例如95%、96%、97%、97.5%、98%、98.5%、99%、99.5%、100%)且透射率低于5%(例如5%、4%、3%、2%、1%)。
优选地,所述第二透射反射层对所述第一颜色光的反射率高于97%且透射率低于3%。
优选地,所述第二透射反射层对所述第一颜色光的反射率高于99%且透射率低于1%。
所述第二透射反射层对所述第二颜色光的反射率低于10%(例如9%、8%、7%、6%、5%、4%、3%、2%、1%)且透射率高于90%(例如91%、92%、93%、94%、95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%、100%)。
优选地,所述第二透射反射层对所述第二颜色光的反射率低于5%且透射率高于95%。
优选地,所述第二透射反射层对所述第二颜色光的反射率低于3%且透射率高于97%。
所述波长转换单元可以包括一种或多种不同类型的波长转换单元,并且至少包括所述第一波长转换单元31用于发出第二颜色光。
在一实例中,所述波长转换单元还包括第二波长转换单元32,所述发光单元叠加所述第二波长转换单元32发出第三颜色光321。
所述第一透射反射层50对所述第三颜色光321具有高反射率和低透射率,所述第二透射反射层60设置为对所述第三颜色光321具有低反射率和高透射率。
在一实例中,所述第一透射反射层50对所述第三颜色光的反射率高于90%且透射率低于10%,所述第二透射反射层对所述第三颜色光的反射率低于10%且透射率高于90%。
在一实例中,所述第一透射反射层50对所述第三颜色光的反射率高于95%且透射率低于5%,所述第二透射反射层对所述第三颜色光的反射率低于5%且透射率高于95%。
优选地,所述第一透射反射层50对所述第三颜色光的反射率高于97%且透射率低于3%,所述第二透射反射层对所述第三颜色光的反射率低于3%且透射率高于97%。
所述第一透射反射层对除第一颜色光以外的其它颜色光,均设置为具有高反射率和低透射率,且具体的反射率和透射率的要求参照对所述第二颜色光的反射率和透射率的要求。
所述第二透射反射层对除第一颜色光以外的其它颜色光,均设置为具有低反射率和高透射率,且具体的反射率和透射率的要求参照对所述第二颜色光的反射率和透射率的要求。
所述波长转换单元中含有能够对光的颜色进行转换的材料,例如为量子点和/或荧光粉。
在一实例中,所述波长转换单元中含有荧光粉和/或量子点。
根据一种具体实施方式,所述波长转换单元中含有量子点,所述波长转换单元为量子点膜,例如为量子点光刻胶。
所述量子点膜可以选用本领域常规的材料并按照本领域常规的方式制备得到。在一实例中,所述量子点膜的材料包括CdSe、CdS、CdZnSe、CdZnS、CdZnSeS、ZnSeS、ZnSe、CuInS、CuInSe、InP和InZnP中的一种或多种。所述量子点膜可以通过光刻(例如通过量子点光刻胶涂覆、图形化和固化得到量子点光刻胶)、喷涂、打印中的一种或多种方式形成。
所述第一透射反射层和第二透射反射层的材料没有特别的限定,能够满足上述透射率和折射率的要求即可。在一实例中,所述第一透射反射层50和第二透射反射层60各自独立地为混合式布拉格反射镜(HBR)或分布式布拉格反射镜(DBR)。
本公开的发明人发现,由于量子点材料具有光致发光性质,对高能量光有吸收作用,但是受限于其固有的吸收效率,色纯度难以提高,膜层顶部增加DBR/HBR于结构表面,选择性反射激发光,透过转换光,继而提升色纯度,膜层底部增加DBR/HBR,选择性反射转换光,透过下方LED产生的激发光,继而提高转换光亮度;由此通过引入特定的DBR/HBR能有效过滤蓝光与反射转换光,以达到提升色纯度与增加转换光亮度的目的,在实现单色LED器件全彩化问题上具有深远意义。
在一实例中,所述第一透射反射层和所述第二透射反射层中至少一个为HBR。通过同时设计DBR与HBR两种结构实现办法,既可在DBR设计中保证研发成本优势,同时也可利用HBR实现最高效率的量子点转换结构。
当所述第一布拉格反射镜为HBR时,反射曲线与光谱示意图例如图4所示。
当所述第二布拉格反射镜为DBR时,反射曲线与光谱示意图例如图3所示。
所述DBR包括m个周期结构A,其中每个周期结构A由A1和A2材料层叠而成,如图12所示。为便于区分,设定所述A1材料的折射率大于所述A2材料的折射率。所述DBR中不限定A1与A2的位置关系,即可以A1位于A2的下方(更靠近自发光层),也可以A2位于A1的下方。
在一实例中,所述A1、A2各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯。
在一实例中,所述A1和A2材料分别为SiO2和TiO2。
在一实例中,所述A1和A2材料分别为MgF2和TiO2。
在一实例中,所述A1和A2材料分别为SiNx和TiO2。
在一实例中,m=4~9的正整数(例如4、5、6、7、8、9)。
在本文中,术语“分布式布拉格反射镜(DBR)”具有与本领域基本一致的含义,具体为“一种由两种不同折射率的材料以ABAB的方式交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的1/4”。需要说明的是,在本文中,所述DBR的含义不限于“光学厚度为中心反射波长的1/4”的标准数值,而是可以允许厚度在一定范围内(例如上述标准数值的50%~200%范围内)波动。
因此,各层A1的厚度各自独立地=a×[λA1×1/(4kA1)],其中λA1为A1材料的反射波长,kA1为A1材料的折射率;各层A2的厚度各自独立地=a×[λA2×1/(4kA2)],其中λA2为A2材料的反射波长,kA2为A2材料的折射率;a为厚度可调系数,a=50%~200%,优选地a=70%~150%,更优选地a=90%~120%。系数a的作用在于通过对各层厚度进行微调,使所得的DBR能够更好地拟合反射曲线。
在本文中,术语“混合式布拉格反射镜(HBR)”为本领域从未或较少使用的术语。在本文中指的是“当DBR中一层或多层材料发生了改变,使得材料层叠方式不完全遵循ABAB的周期结构时,所得到的至少含有三种不同折射率材料的层叠材料”。因此,所述HBR为一种非完全周期性层叠材料。
所述HBR通过将一种周期性层叠材料中的一层或多层用其它材料替换所形成;其中所述周期性层叠材料包括n个周期结构B,其中每个周期结构B由B1和B2材料层叠而成;所述其它材料为一种或多种与所述B1和B2均不同的材料,记为B3……Bx,x为≥3的整数;n为4~9的整数(例如4、5、6、7、8、9)。
为便于区分,设定所述B1材料的折射率大于所述B2材料的折射率。所述HBR中不限定B1与B2的位置关系,即可以B1位于B2的下方,也可以B2位于B1的下方。
所述HBR中可以只包括一种其它材料,即所述HBR由B1、B2和B3组成;也可以包括多种其它材料,即所述HBR由B1、B2、B3、B4……(直至Bx)组成。
在一实例中,所述B1、B2各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯。
在一实例中,所述B1和B2材料分别为SiO2和TiO2。
在一实例中,所述B1和B2材料分别为MgF2和TiO2。
在一实例中,所述B1和B2材料分别为SiNx和TiO2,SiNx为本领域常规的氮化硅的表达方式。
所述B3……Bx各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯,且与所在HBR中的B1和B2的材料选择不同。
为了便于描述,本文中将所述B1和B2材料层叠而成的n个周期结构B用公式“(B1+B2)n”表示,其中括号内表示一个重复单元,下标表示重复次数。
在一实例中,所述HBR由B3一种其它材料对(B1+B2)n层叠材料中的一层或多层进行替换而得到。
在一实例中,所述HBR为(B1+B2)n1+(B1/B2+B3)n2的层叠结构(如图13所示),n1+n2=n;所述(B1/B2+B3)指(B1+B3)或(B2+B3);即该HBR包括n1个由B1与B2组成的
周期结构和n2个由B1或B2与B3组成的周期结构。所述(B1+B2)n1+(B1/B2+B3)n2不限于两周期结构完全分开的情形,也可以穿插层叠,例如(B1+B2)+(B1+B3)+(B1+B2)+(B1+B2)+(B1+B3)+……的层叠方式。
在一实例中,所述HBR为(TiO2+SiO2)n1+(TiO2+MgF2)n2结构,其中n1为1-3的正整数(如1、2、3),n为6-9的正整数,n2=n-n1;即该HBR包括n1个由TiO2和SiO2组成的周期结构和n2个由TiO2和MgF2组成的周期结构。
在一实例中,所述HBR为(TiO2+SiNx)n1+(TiO2+MgF2)n2结构,其中n1为1-3的正整数(如1、2、3),n为6-9的正整数,n2=n-n1;即该HBR包括n1个由TiO2和SiNx组成的周期结构和n2个由TiO2和MgF2组成的周期结构。
在一实例中,所述HBR由B3和B4两种材料对(B1+B2)n层叠材料进行替换而得到。
各层B1的厚度各自独立地=b×[λB1×1/(4kB1)],其中λB1为B1材料的反射波长,kB1为B1材料的折射率;各层B2的厚度各自独立地=b×[λB2×1/(4kB2)],其中λB2为B2材料的反射波长,kB2为B2材料的折射率;b为厚度可调系数,b=50%~200%,优选地b=70%~150%,更优选地b=90%~120%。所述B3……Bx材料的厚度各自独立地=b×[λBx×1/(4kBx)],其中λBx为Bx材料的反射波长,kBx为Bx材料的折射率。系数b的作用在于通过对各层厚度进行微调,使所得的HBR能够更好地拟合反射曲线。
DBR和HBR均可以在本领域常规使用的仿真软件中进行拟合。
本公开的发明人在拟合过程中发现,为了实现所设定的透射率和反射率,仿真软件常常会把DBR中的一层或多层的层厚度调节地偏离理想厚度(即中心反射波长的1/4)较多;本公开的发明人发现,当某层厚度的偏离程度超过一定程度时(例如大于理想厚度的200%或小于50%,优选地大于150%或小于70%,更优选地大于120%或小于90%),可以将该层的材料进行替换(当拟合厚度过大时替换为折射率更高的材料,当拟合厚度更小时替换为折射率更低的材料),从而使层厚度尽量接近理想厚度,由此得到效果更好的HBR。相对于DBR(反射曲线如图3所示,其反射峰有次峰,且透光方式单一),HBR能够将反射曲线调为没有次峰的情况(如图4所示,反射曲线更平滑),能够实现对应波长更高的反射的同时,对其他波长更高的透射,从而得到更亮更纯的转换光谱。
在一实例中,所述波长转换层还包括若干透射单元33,所述透射单元33与所述波长转换单元分别与所述发光单元一一对应并且共同形成周期性排布;所述透射单元用于透过所述发光单元发出的所述第一颜色光101;并且,所述第二透射反射层60在与所述透射单元33相对应的位置上留有空位,以透过所述第一颜色光101。
所述透射单元33可以为波长转换层上的孔洞,也可以填充有透明材料(即对光波没有影响的材料),例如透明胶。
在一实例中,所述第一颜色光101为蓝光、紫外光和双波长光中的任意一种。所述双波长光可以为蓝光+紫外光、蓝光+绿光等。
在一实例中,所述第一颜色光为蓝光。
如图1所示,所述波长转换层30包括与所述发光单元11一一对应并且共同形成周期
性排布的若干透射单元33、第一波长转换单元31和第二波长转换单元32;其中所述透射单元33用于发出蓝光(即为所述发光单元11发出的蓝光(第一颜色光);所述第一波长转换单元31为红色量子点膜,所述发光单元11叠加所述第一波长转换单元31发出红光(即第二颜色光);所述第二波长转换单元32为绿色量子点膜,所述发光单元11叠加所述第二波长转换单元32发出绿光(即第三颜色光);至少1个所述透射单元、至少1个所述红色量子点膜以及至少1个所述绿色量子点膜组成一个像素。
在另一实施例中,所述第一颜色光也可以为其它高能量光,例如紫外光。
本公开的量子点膜层光学结构将布拉格反射镜与量子点膜层结合,通过选择性滤光,改变红绿蓝三色光传播路径,继而得到更亮更纯的量子点转换光谱。
1个或多个所述透射单元、1个或多个所述第一波长转换单元和1个或多个所述第二波长转换单元共同形成周期性排布,每个周期性排布形成一个像素。
本公开的颜色转化不限于红绿蓝光的转化,还可以为其它各种本领域能够实现的光转化,例如还可以包括荧光转化。
在一实例中,所述第一颜色光为蓝光和/或紫外光;所述波长转换单元包括第一波长转换单元,所述第一波长转换单元为荧光粉膜,所述发光单元叠加所述第一波长转换单元发出荧光。
所述荧光粉膜的材料和制备方法可以参照本领域常规的方式。所述荧光粉膜的材料例如选自Ce荧光粉、(氧)氮化荧光粉、硅酸盐荧光粉、Mn4+活化氟化荧光粉等中的一种或多种。
本公开的微显示芯片特别适用于微型显示器、高分辨显示器、近眼显示器等中,因此本公开的微显示芯片的尺寸非常微小。
在一实例中,发光单元的尺寸为1-50μm(例如1μm、5μm、10μm、15μm、20μm、25μm、30μm、40μm、50μm)。在本文中,所述“发光单元”指的是与一个波长转换单元所对应以发出一种颜色光的LED发光区域,对应本领域中常规所说的“一个子像素”。
在一实例中,所述第一透射反射层的厚度为0.5-1.5μm(例如0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm),优选为1μm-1.4μm。
在一实例中,所述波长转换层的厚度为1.5-2.5μm(1.5μm、1.6μm、1.7μm、1.8μm、1.9μm、2μm、2.1μm、2.2μm、2.3μm、2.4μm、2.5μm)。
在一实例中,所述第二透射反射层的厚度为0.5-1.5μm(例如0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm),优选为1μm-1.4μm。
在一实例中,所述第一透射反射层、所述波长转换层和所述第二透射反射层的厚度比为(0.3-0.8):1:(0.3-0.8)。
所述微显示芯片还可以包括本领域常规的材料层,例如可以在自发光层的表面设置平坦化层,用于使表面平整,便于形成上层材料。
本公开第二方面提供了一种制备微显示芯片的方法,所述方法包括以下步骤:
(1)在设置有呈阵列排布的若干发光单元的自发光层上形成第一透射反射层,所述
第一透射反射层设置为对所述发光单元发出的第一颜色光具有低反射率和高透射率;
(2)在所述第一透射反射层的表面形成波长转换层,所述波长转换层设置为包括波长转换单元,在所述波长转换单元处形成能够实现波长转换的膜材料;
(3)在所述波长转换单元的表面形成第二透射反射层,所述第二透射反射层设置为对所述第一颜色光具有高反射率和低透射率。
本公开第二方面所述的方法能够制备得到本公开第一方面所述微显示芯片。为了制得该微显示芯片,方法中所用的材料的具体成分、用量和设置方式均可以与第一方面中的限定相同,在此不再赘述。
在一实例中,所述方法还包括:在步骤(1)之前,提供具有驱动电路的驱动基板,并在该驱动基板上形成所述自发光层,所述驱动基板能够单独点亮每一所述发光单元,所述发光单元为LED单元或者OLED单元,所述发光单元的尺寸为0.1μm~10μm。
所述驱动基板和所述自发光层的具体结构和形成方式可以按照本领域常规的方式进行,在优选的实施方式中,所述驱动基板与所述自发光层按照公开号为CN112992964A的专利中公开的方式形成。在一实例中,在所述驱动基板上形成所述自发光层的方法包括:提供LED外延层,所述LED外延层包括第一掺杂型半导体层、有源层以及第二掺杂型半导体层;在所述驱动基板和/或所述第二掺杂型半导体层上形成键合层并将两者键合;在所述LED外延层上形成所述LED单元;在LED单元与所述驱动基板之间形成电连接结构使得所述驱动基板能够单独点亮每一所述发光单元。
在一实例中,所述方法还包括:所述波长转换层30设置为还包括透射单元33,所述透射单元33与所述波长转换单元(例如图1中的第一波长转换单元31和第二波长转换单元32)分别与所述发光单元11一一对应并且共同形成周期性排布,在所述透射单元处不形成能够实现波长转换的膜材料,以透过所述第一颜色光;并且所述第二透射反射层60设置为在与所述透射单元相对应的位置留有空位。
在一实例中,所述能够实现波长转换的膜材料为红色量子点膜31和/或绿色量子点膜32。例如所述量子点膜为量子点光刻胶,通过将量子点溶液与透明光刻负胶以一定比例混合制备量子点光刻胶(QDPR)涂覆于所述第一透射反射层的表面形成。
在一实例中,所述第一透射反射层50与所述第二透射反射层60各自独立地为DBR或HBR,所述DBR或HBR通过蒸镀、溅射、沉积中的一种或多种方式形成。
所述蒸镀的方法例如包括:使用光学镀膜机,选用不同靶材,逐层蒸镀不同材料光学薄膜形成所述DBR或所述HBR。
所述溅射的方法例如包括:通过磁控溅射,利用磁场与电场交互作用,利用物理手段将靶材逐层溅射至基板表面形成所述DBR或所述HBR。
所述沉积的方法例如包括:通过化学气相沉积装置,通过低化学反应生成固体物质并逐层沉积在基板上形成所述DBR或所述HBR。
本公开第一方面所述的微显示芯片和/或本公开第二方面所述的微显示芯片适合应用于微型显示器、高分辨显示器、近眼显示器等中。
本公开的微显示芯片由于具有极小的微观尺寸(例如为4寸、6寸、8寸晶圆),在制作高分辨率显示器件中具有较大的优势,可用于虚拟现实(Virtual reality,VR)和增强显示(Augmented reality,AR)。
在发明中,术语“第一”、“第二”等序数词不用来表示顺序,仅用于区分不同的对象和/或不同的使用环境;术语“上”、“下”、“顶”、“底”等表示空间位置的词不用于限制使用状态等状态下的空间位置,仅为了便于描述,在本文中指附图所示的空间位置关系。
本公开解决量子点材料吸收较差问题,LED出光面与量子点膜层介面反射率较高问题,量子点膜层反向出光损失问题,量子点膜层实现全彩LED色纯度偏低问题以及混合制备量子点光刻胶中出光表面折射率不确定问题;能够有效提升转换层吸收效率与出光效率,对低吸收光(如绿光)的出光效果具有明显提升,使得色纯度和转换光亮度大大提高。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在以下实例中,在没有特别说明的情况下,所用的材料均为商购的分析纯。使用的自发光层为蓝光LED芯片,所述LED芯片为Micro-LED芯片,尺寸为6寸晶圆,发光单元呈阵列排布,发光单元的边长为0.19寸,点间距为0.2寸。
实施例1
(1)在准备好的蓝光自发光层的表面通过光学镀膜机蒸镀HBR层(自下而上层叠成(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+MgF2)+(TiO2+MgF2)结构,共7对;总厚度为1.18μm;蓝光透射率为99%,蓝光反射率为1%,红光透射率为3%,红光反射率为97%,绿光透射率为1%,绿光反射率为99%),记为H1;
(2)在HBR层的表面与发光单元一一对应的位置设定出红色量子点光刻胶、绿色量子点光刻胶和空洞区(透射单元);其中红色量子点光刻胶和绿色量子点光刻胶的制备方式包括:将300mg/ml的CdSe/ZnS核壳结构量子点(红色量子点壳厚8nm,绿色量子点壳厚6nm)的溶液(丙二醇甲醚醋酸酯(PGMEA)为溶剂)与透明负胶(以PGMEA为溶剂、聚甲基丙烯酸甲酯PMMA为主体树脂)以体积比1:1混合然后在200r/min 100s的旋涂条件下旋涂于步骤(1)所得层上,得到波长转化层,膜层厚度2μm。
(3)在波长转化层表面通过光学镀膜机蒸镀HBR层(自下而上层叠成(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+MgF2)+(TiO2+MgF2)共9对,总厚度为1.08μm,蓝光透射率为0.4%,蓝光反射率为99.6%,红光透射率为98%,红光反射率为2%,绿光透射率为99%,绿光反射率为1%),记为H2;
得到结构为LED-H1-量子点膜-H2的微显示芯片,如图5所示。
实施例2
(1)在准备好的蓝光LED芯片表面通过光学镀膜机蒸镀DBR层(自下而上SiO2和TiO2为一个周期,共层叠7个周期;总厚度为1.17μm;蓝光透射率为95%,蓝光反射率为5%,红光透射率为10%,红光反射率为90%,绿光透射率为5%,绿光反射率为95%),记为D1;
(2)按照与实施例1相同的方式形成红色量子点膜和绿色量子点膜;
(3)在量子点膜层表面通过光学镀膜机蒸镀DBR层(自下而上HfO2和MgF2为一个周期,共层叠9个周期,总厚度为1.01μm;蓝光透射率为2%,蓝光反射率为98%,红光透射率为95%,红光反射率为5%,绿光透射率为97%,绿光反射率为3%),记为D2;
得到结构为LED-D1-量子点膜-D2的微显示芯片,如图6所示。
实施例3
本组实施例用于说明不同HBR或DBR设置方式所带来的影响。
本组实施例按照实施例1进行,具体涉及量子点膜层的顶层和底层的HBR或DBR使用与实施例1和实施例2中相同的HBR、DBR的设置方式和制备方法,所不同的是,分别改变HBR和/或DBR的设置位置,具体地:
实施例3a,LED-H1-量子点膜-D2,如图7所示;
实施例3b,LED-D1-量子点膜-H2,如图8所示;
实施例3c,LED-无结构-量子点膜-D2,如图9所示;
实施例3d,LED-无结构-量子点膜-H2,如图10所示。
实施例4
本组实施例用于说明当改变HBR的具体材料和/或结构时所带来的影响。
本组实施例按照实施例3a进行,所不同的是,分别改变HBR中的材料组合、周期内层叠层数或周期数;除HBR外的其它层不变;具体地:
实施例4a,将H1层替换为用新的HBR层(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+MgF2)+(TiO2+MgF2)共7对,总厚度为1.19μm;蓝光透射率为98%,蓝光反射率为2%,红光透射率为3%,红光反射率为97%,绿光透射率为1%,绿光反射率为99%,记为H3;
实施例4b,将H1层替换为用新的HBR层(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+SiNx)+(TiO2+MgF2)共7对,总厚度为1.20μm;蓝光透射率为98%,蓝光反射率为2%,红光透射率为4%,红光反射率为96%,绿光透射率为2%,绿光反射率为98%,记为H4;
实施例4c,将H1层替换为用新的HBR层(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+SiO2)+(TiO2+MgF2)共7对,总厚度为1.19μm;蓝光透射
率为98%,蓝光反射率为2%,红光透射率为4%,红光反射率为96%,绿光透射率为2%,绿光反射率为98%;将所得的HBR层记为H5。
对比例1
参照实施例1,所不同的是,量子点膜层的顶层和底层无结构,即LED-无结构-量子点膜-无结构,如图11所示。
测试例
分别对实施例和对比例所得产品进行以下测试:
(1)转换光亮度(单位:nits)和对红绿光的吸光度OD
通过光谱仪,测试100μm孔径内的红绿像素区域,测得其表面垂直出射的光亮度(将结果记于表1中),并得到发射光谱,积分出其中红/蓝、红/绿光占比,从而得到其对光源光的吸收度OD(将结果记于表2中)。
(2)色纯度(单位:%)
通过积分球/光谱仪测得红蓝;绿蓝双色波段光谱,测得光功率,计算红色像素中红光功率占总光功率比值(将结果记与表3中),同样计算绿色像素中绿光功率占总光功率比值(将结果记与表3中)。
表1
表2
表3
从表可以看出,实施例的微显示芯片能够实现比对比例显著更好的转换光亮度、吸光度和色纯度。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于此。在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本公开所公开的内容,均属于本公开的保护范围。
Claims (15)
- 一种微显示芯片,包括:自发光层(10),所述自发光层(10)包括呈阵列排布的若干发光单元(11),每一所述发光单元(11)能够单独被点亮,所述发光单元(11)用于发射第一颜色光(101);波长转换层(30),设置于所述自发光层(10)表面,所述波长转换层(30)包括若干波长转换单元,所述波长转换单元至少包括第一波长转换单元(31),所述发光单元(11)叠加所述第一波长转换单元(31)发出第二颜色光(311);其特征在于,所述微显示芯片还包括:第一透射反射层(50)和/或第二透射反射层(60);所述第一透射反射层(50)用于设置于所述自发光层(10)与所述波长转换层(30)之间;所述第二透射反射层(60)用于设置于所述波长转换层(30)的另一表面;所述第一透射反射层(50)设置为对所述第一颜色光(101)具有低反射率和高透射率且对所述第二颜色光(311)具有高反射率和低透射率,所述第二透射反射层(60)设置为对所述第一颜色光(101)具有高反射率和低透射率且对所述第二颜色光(311)具有低反射率和高透射率。
- 根据权利要求1所述的微显示芯片,其特征在于,所述微显示芯片还包括具有驱动电路的驱动基板,所述自发光层设置于所述驱动基板上,所述驱动基板能够单独点亮每一所述发光单元(11),所述发光单元(11)为LED单元或者OLED单元,所述发光单元(11)的尺寸为0.1μm~10μm。
- 根据权利要求1或2所述的微显示芯片,其特征在于,所述第一透射反射层(50)对所述第一颜色光(101)的反射率低于5%且透射率高于95%;和/或,所述第一透射反射层(50)对所述第二颜色光(311)的反射率高于90%且透射率低于10%。
- 根据权利要求1-3中任意一项所述的微显示芯片,其特征在于,所述第二透射反射层(60)对所述第一颜色光(101)的反射率高于95%且透射率低于5%;和/或,所述第二透射反射层(60)对所述第二颜色光(311)的反射率低于10%且透射率高于90%。
- 根据权利要求1-4中任意一项所述的微显示芯片,其特征在于,所述波长转换单元还包括第二波长转换单元(32),所述发光单元(11)叠加所述第二波长转换单元(32)发出第三颜色光(321);所述第一透射反射层(50)还设置为对所述第三颜色光(321)具有高反射率和低透射率,所述第二透射反射层(60)还设置为对所述第三颜色光(321)具有低反射率和高 透射率;优选地,所述第一透射反射层(50)对所述第三颜色光(321)的反射率高于90%且透射率低于10%,所述第二透射反射层(60)对所述第三颜色光(321)的反射率低于10%且透射率高于90%。
- 根据权利要求1-5中任意一项所述的微显示芯片,其特征在于,所述波长转换单元中含有量子点和/或荧光粉;优选地,所述波长转换单元包含光刻胶。
- 根据权利要求1-6中任意一项所述的微显示芯片,其特征在于,所述第一透射反射层(50)和所述第二透射反射层(60)各自独立地为混合式布拉格反射镜或分布式布拉格反射镜;其中,所述分布式布拉格反射镜包括m个周期结构A,其中每个周期结构A由A1和A2材料层叠而成,m为4~9的整数;所述混合式布拉格反射镜通过将周期性层叠材料中的一层或多层用其它材料替换所形成;其中所述周期性层叠材料包括n个周期结构B,每个周期结构B由B1和B2材料层叠而成;所述其它材料为一种或多种与所述B1和B2均不同的材料,记为B3……Bx,x为≥3的整数;n为4~9的整数;所述A1、A2、B1、B2、B3……Bx材料各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯。
- 根据权利要求7所述的微显示芯片,其特征在于,所述混合式布拉格反射镜包括n1个由B1与B2组成的周期结构和n2个由B1或B2与B3组成的周期结构,n1+n2=n;优选地,所述混合式布拉格反射镜包括n1个由TiO2和SiO2组成的周期结构和n2个由TiO2和MgF2组成的周期结构,其中n1为1-3的正整数,n为6-9的正整数,n2=n-n1;或者,所述混合式布拉格反射镜包括n1个由TiO2和SiNx组成的周期结构和n2个由TiO2和MgF2组成的周期结构,其中n1为1-3的正整数,n为6-9的正整数,n2=n-n1。
- 根据权利要求1-8中任意一项所述的微显示芯片,其特征在于,所述波长转换层还包括若干透射单元(33),所述透射单元(33)设置于多个发光单元(11)的其中一些发光单元(11)上并用于透过对应的所述发光单元(11)发出的所述第一颜色光(101);并且,所述第二透射反射层(60)在与所述透射单元(33)相对应的位置上留有空位,以透过所述第一颜色光(101)。
- 根据权利要求1-9中任意一项所述的微显示芯片,其特征在于,所述第一颜色光(101)为蓝光;所述波长转换层(30)包括与所述发光单元(11)一一对应并且共同形成周期性排布的若干透射单元(33)、第一波长转换单元(31)和第二波长转换单元(32);其中所述透射单元(33)用于透射蓝光;所述第一波长转换单元(31)为红色量子点膜,所述发光单元(11)叠加所述第一波长转换单元(31)发出红光;所述第二波长转换单元(32)为绿色量子点膜,所述发光单元(11)叠加所述第二波长转换单元(32)发出绿光;至少1个所述透射单元(33)、至少1个所述第一波长转换单元(31)以及至少1个所述第二波长转换单元(32)组成一个像素。
- 一种制备微显示芯片的方法,其特征在于,所述方法包括以下步骤:(1)在设置有呈阵列排布的若干发光单元(11)的自发光层上形成第一透射反射层(50),所述第一透射反射层(50)设置为对所述发光单元(11)发出的第一颜色光(101)具有低反射率和高透射率;(2)在所述第一透射反射层(50)的表面形成波长转换层(30),所述波长转换层(30)包括若干波长转换单元,所述波长转换单元至少包括第一波长转换单元(31),所述发光单元(11)叠加所述第一波长转换单元(31)发出第二颜色光(311);(3)在所述波长转换单元的表面形成第二透射反射层(60),所述第二透射反射层(60)设置为对所述第一颜色光(101)具有高反射率和低透射率。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:提供具有驱动电路的驱动基板,并在该驱动基板上形成所述自发光层,所述驱动基板能够单独点亮每一所述发光单元(11),所述发光单元(11)为LED单元或者OLED单元,所述发光单元的尺寸为0.1μm~10μm。
- 根据权利要求11或12所述的方法,其特征在于,所述第一透射反射层(50)与所述第二透射反射层(60)各自独立地为混合式布拉格反射镜或分布式布拉格反射镜;其中,所述分布式布拉格反射镜包括m个周期结构A,其中每个周期结构A由A1和A2材料层叠而成,m为4~9的整数;所述混合式布拉格反射镜通过将周期性层叠材料中的一层或多层用其它材料替换所形成;其中所述周期性层叠材料包括n个周期结构B,每个周期结构B由B1和B2材料层叠而成;所述其它材料为一种或多种与所述B1和B2均不同的材料,记为B3……Bx,x为≥3的整数;n为4~9的整数;所述A1、A2、B1、B2、B3……Bx材料各自独立地选自TiO2、SiO2、SiNx、HfO2、MgF2、ZrO2或聚甲基丙烯酸甲酯;所述混合式布拉格反射镜和所述分布式布拉格反射镜各自独立地通过蒸镀、溅射、沉积中的一种或多种方式形成。
- 根据权利要求11-13中任意一项所述的方法,其特征在于,所述方法还包括:所述波长转换层(30)设置为还包括透射单元(33),所述透射单元(33)设置于多个发光单元的其中一些发光单元(11)上并用于透过对应的所述发光单元(11)发出的所述第一颜色光(101);并且,所述第二透射反射层(60)在与所述透射单元(33)相对应的位置上留有空位,以透过所述第一颜色光(101)。
- 根据权利要求12-14中任意一项所述的方法,其特征在于,在所述驱动基板上形成所述自发光层的方法包括:提供LED外延层,所述LED外延层包括第一掺杂型半导体层、有源层以及第二掺杂型半导体层;在所述驱动基板和/或所述第二掺杂型半导体层上形成键合层并将两者键合;在所述LED外延层上形成所述LED单元;在LED单元与所述驱动基板之间形成电连接结构使得所述驱动基板能够单独点亮每一所述发光单元(11)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211356839.XA CN115472641B (zh) | 2022-11-01 | 2022-11-01 | 一种微显示芯片及其制备方法 |
CN202211356839.X | 2022-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093615A1 true WO2024093615A1 (zh) | 2024-05-10 |
Family
ID=84337191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/123419 WO2024093615A1 (zh) | 2022-11-01 | 2023-10-08 | 一种微显示芯片及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115472641B (zh) |
WO (1) | WO2024093615A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115472641B (zh) * | 2022-11-01 | 2023-03-24 | 镭昱光电科技(苏州)有限公司 | 一种微显示芯片及其制备方法 |
CN118073395B (zh) * | 2024-04-19 | 2024-08-09 | 镭昱光电科技(苏州)有限公司 | 显示器件及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129483A (ja) * | 2006-11-24 | 2008-06-05 | Nitto Denko Corp | 色純度向上シート、光学装置、画像表示装置、液晶表示装置および太陽電池 |
CN107357080A (zh) * | 2017-08-30 | 2017-11-17 | 京东方科技集团股份有限公司 | 彩膜片及其制作方法和彩膜基板 |
CN109545832A (zh) * | 2018-11-29 | 2019-03-29 | 京东方科技集团股份有限公司 | 有机发光二极管显示基板及其制备方法、显示装置 |
CN111128035A (zh) * | 2018-10-30 | 2020-05-08 | 咸阳彩虹光电科技有限公司 | 一种oled显示面板及其显示器 |
CN113451483A (zh) * | 2020-05-28 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | 一种颜色转换装置及其制备方法、显示背板 |
CN115472641A (zh) * | 2022-11-01 | 2022-12-13 | 镭昱光电科技(苏州)有限公司 | 一种微显示芯片及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102480902B1 (ko) * | 2015-09-18 | 2022-12-22 | 삼성전자주식회사 | 표시 장치 |
CN114530532A (zh) * | 2022-02-14 | 2022-05-24 | 江西兆驰半导体有限公司 | 一种布拉格反射镜及具有布拉格反射镜的发光二极管 |
-
2022
- 2022-11-01 CN CN202211356839.XA patent/CN115472641B/zh active Active
-
2023
- 2023-10-08 WO PCT/CN2023/123419 patent/WO2024093615A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129483A (ja) * | 2006-11-24 | 2008-06-05 | Nitto Denko Corp | 色純度向上シート、光学装置、画像表示装置、液晶表示装置および太陽電池 |
CN107357080A (zh) * | 2017-08-30 | 2017-11-17 | 京东方科技集团股份有限公司 | 彩膜片及其制作方法和彩膜基板 |
CN111128035A (zh) * | 2018-10-30 | 2020-05-08 | 咸阳彩虹光电科技有限公司 | 一种oled显示面板及其显示器 |
CN109545832A (zh) * | 2018-11-29 | 2019-03-29 | 京东方科技集团股份有限公司 | 有机发光二极管显示基板及其制备方法、显示装置 |
CN113451483A (zh) * | 2020-05-28 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | 一种颜色转换装置及其制备方法、显示背板 |
CN115472641A (zh) * | 2022-11-01 | 2022-12-13 | 镭昱光电科技(苏州)有限公司 | 一种微显示芯片及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115472641B (zh) | 2023-03-24 |
CN115472641A (zh) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024093615A1 (zh) | 一种微显示芯片及其制备方法 | |
US7732827B2 (en) | High efficient phosphor-converted light emitting diode | |
KR100941277B1 (ko) | 유기발광소자 및 그 제조 방법 | |
US6833565B2 (en) | White-light led with dielectric omni-directional reflectors | |
US20060145172A1 (en) | Light emitting diode with a quasi-omnidirectional reflector | |
Chen et al. | Asymmetric quantum-dot pixelation for color-converted white balance | |
EP2610930B1 (en) | Multichip white led device | |
CN217280834U (zh) | 一种显示装置 | |
CN112310143A (zh) | 量子点微led显示器件及其制备方法 | |
US20130181194A1 (en) | Organic light emitting device | |
JP4769068B2 (ja) | 有機発光素子及びその製造方法 | |
CN110911456B (zh) | 量子点显示面板滤光片 | |
CN109166876B (zh) | 微显示器件及其制备方法 | |
CN110854257A (zh) | 一种可转换颜色的倒装led芯片及其制作方法 | |
CN111710800B (zh) | 显示面板及显示面板的制备方法 | |
CN114141934A (zh) | 显示面板及其制作方法 | |
CN101140967B (zh) | 高效率荧光体转换发光装置及其制造方法 | |
CN112631019A (zh) | 一种量子点显示面板的制备方法及量子点显示面板 | |
US11962125B2 (en) | Wavelength conversion device and light source system | |
CN213843712U (zh) | 一种量子点显示面板及显示装置 | |
TWI825873B (zh) | 光源裝置以及光源裝置的製作方法 | |
CN114335293B (zh) | 一种量子点光转换模组、微led显示器及其制备方法 | |
WO2020133816A1 (zh) | 显示面板及其制备方法 | |
CN114050220A (zh) | 透明显示面板、显示装置、发光显示器件及制备方法 | |
CN112666748A (zh) | 一种量子点显示面板的制备方法及量子点显示面板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884547 Country of ref document: EP Kind code of ref document: A1 |