[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024078405A1 - 传输方法、装置、通信设备及可读存储介质 - Google Patents

传输方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2024078405A1
WO2024078405A1 PCT/CN2023/123324 CN2023123324W WO2024078405A1 WO 2024078405 A1 WO2024078405 A1 WO 2024078405A1 CN 2023123324 W CN2023123324 W CN 2023123324W WO 2024078405 A1 WO2024078405 A1 WO 2024078405A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
report
quality information
indication information
beam quality
Prior art date
Application number
PCT/CN2023/123324
Other languages
English (en)
French (fr)
Inventor
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024078405A1 publication Critical patent/WO2024078405A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the field of wireless communication technology, and in particular, to a transmission method, apparatus, communication device, and readable storage medium.
  • the network When performing beam measurement, the network configures a reference signal resource set (RS resource set), which includes at least one reference signal resource, such as a synchronization signal block (Synchronization Signal and PBCH block, SSB) resource or a channel state information reference signal (CSI-RS) resource.
  • RS resource set which includes at least one reference signal resource, such as a synchronization signal block (Synchronization Signal and PBCH block, SSB) resource or a channel state information reference signal (CSI-RS) resource.
  • the terminal measures the layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP)/Layer 1 signal-to-noise and interference ratio (Layer 1 signal-to-noise and interference ratio, L1-SINR) of each reference signal (Reference Signal, RS) resource, and reports at least one optimal measurement result to the network, including SSB resource indicator (SSBRI) or CSI-RS resource indicator (CSI-RS Resource Indicator, CRI), and L1-RSRP/L1-SINR.
  • the report content reflects at least one optimal beam and its quality, so that the network can determine the beam used to send a channel or signal to the terminal.
  • the beam report needs to include a large number of beam positions such as SSBRI and CRI, the beam report overhead is large. Therefore, how to reduce the beam report overhead while ensuring that the network side can correctly decode the beam report is an urgent problem to be solved.
  • the embodiments of the present application provide a transmission method, apparatus, communication equipment and readable storage medium to solve the problem of large beam reporting overhead.
  • a transmission method comprising:
  • the terminal sends a beam report, where the beam report includes beam quality information arranged in a preset order, where the preset order is related to the beam position.
  • a transmission method including:
  • the network side device receives a beam report, where the beam report includes beam quality information arranged in a preset order, where the preset order is related to the beam position.
  • a transmission device comprising:
  • the first sending module is used to send a beam report, where the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position.
  • a transmission device comprising:
  • the first receiving module is used to receive a beam report, where the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position.
  • a communication device comprising: a processor, a memory, and a program or instruction stored in the memory and executable on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the method described in the first aspect or the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect or the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • a communication system comprising a terminal and a network side device, the terminal being used to execute the steps of the method described in the first aspect, and the network side device being used to execute the steps of the method described in the second aspect.
  • the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position, so that the beam report may not carry the beam position or carry less beam position, while reducing the overhead of the beam report, it can also ensure that the network side can correctly decode the beam report.
  • Figure 1 is a schematic diagram of a neural network
  • Figure 2 is a schematic diagram of a neuron
  • FIG3 is one of the schematic diagrams of beam prediction based on the AI model
  • FIG4 is a second schematic diagram of beam prediction based on an AI model
  • FIG5 is a third schematic diagram of beam prediction based on an AI model
  • FIG6 is a schematic diagram of the architecture of a wireless communication system according to an embodiment of the present application.
  • FIG7 is a flow chart of a transmission method according to an embodiment of the present application.
  • FIG8 is a second flow chart of the transmission method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a transmission device according to an embodiment of the present application.
  • FIG10 is a second schematic diagram of a transmission device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a terminal provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a network side device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • AI Artificial Intelligence
  • This application uses a neural network as an example for illustration, but does not limit the specific type of AI module.
  • the structure of the neural network is shown in FIG1 .
  • the neural network is composed of neurons, and a schematic diagram of neurons is shown in Figure 2.
  • a 1 , a 2 , ... a K are inputs
  • w is the weight (multiplicative coefficient)
  • b is the bias (additive coefficient)
  • ⁇ (.) is the activation function
  • z a 1 w 1 + ... + a k w k + ... + a K w K + b.
  • Common activation functions include Sigmoid function, tanh function, Rectified Linear Unit (ReLU), etc.
  • the parameters of a neural network can be optimized using an optimization algorithm.
  • An optimization algorithm is a method that minimizes or maximizes A type of algorithm that optimizes the objective function (sometimes also called the loss function).
  • the objective function is often a mathematical combination of model parameters and data. For example, given data X and its corresponding label Y, a neural network model f(.) is constructed. With the model, the predicted output f(x) can be obtained based on the input x, and the difference between the predicted value and the true value (f(x)-Y) can be calculated. This is the loss function. If the appropriate W, b is found to minimize the value of the above loss function, the smaller the loss value, the closer the model is to the actual situation.
  • the common optimization algorithms are basically based on the error back propagation (BP) algorithm.
  • BP error back propagation
  • the basic idea of the BP algorithm is that the learning process consists of two processes: the forward propagation of the signal and the back propagation of the error.
  • the input sample is transmitted from the input layer, processed by each hidden layer layer by layer, and then transmitted to the output layer. If the actual output of the output layer does not match the expected output, it will enter the error back propagation stage.
  • Error back propagation is to propagate the output error layer by layer through the hidden layer to the input layer in some form, and distribute the error to all units in each layer, so as to obtain the error signal of each layer unit, and this error signal is used as the basis for correcting the weights of each unit.
  • This process of adjusting the weights of each layer of the signal forward propagation and error back propagation is repeated.
  • the process of continuous adjustment of weights is the learning and training process of the network. This process continues until the error of the network output is reduced to an acceptable level, or until the pre-set number of learning times is reached.
  • the network can make beam indications for the downlink and uplink channels or reference signals to establish a beam link between the network and the UE to achieve channel or reference signal transmission.
  • the network uses radio resource management (RRC) signaling to configure K transmission configuration indication (TCI) states for each control resource set (CORESET).
  • RRC radio resource management
  • TCI transmission configuration indication
  • the media access control (MAC) control element (CE) indicates or activates 1 TCI state.
  • the terminal uses the same quasi-colocation (QCL), that is, the same TCI state, for all search spaces in the CORESET to monitor PDCCH.
  • QCL quasi-colocation
  • the reference signals (RS) in the TCI state (such as periodic channel state information reference signal resource (CSI-RS resource), semi-persistent CSI-RS resource, synchronization signal block (Synchronization Signal and PBCH block, SSB), etc.) and the terminal-specific (UE-specific) PDCCH demodulation reference signal (DMRS) port are spatially QCL.
  • the terminal can know which receive beam to use to receive PDCCH based on the TCI state.
  • the network configures M TCI states through RRC signaling, and then uses the MAC CE command to activate 2N TCI states, and then notifies the TCI state through the N-bit TCI field of the downlink control information (DCI).
  • the reference signal in the TCI state is QCL with the DMRS port of the physical downlink shared channel (PDSCH) to be scheduled.
  • the UE can know which receive beam to use to receive PDSCH based on the TCI state.
  • the network uses RRC signaling to CSI-RS resource configures QCL information.
  • the network indicates its QCL information when activating a CSI-RS resource from the CSI-RS resource set configured by RRC through the MAC CE command.
  • the network configures QCL for the CSI-RS resource through RRC signaling and uses DCI to trigger the CSI-RS.
  • the network uses RRC signaling to configure spatial relation information for each PUCCH resource through the parameter PUCCH-Spatial Relation information.
  • the spatial relation information configured for the PUCCH resource contains multiple spatial relation information
  • MAC-CE is used to indicate or activate one of the spatial relation information.
  • the spatial relation information configured for the PUCCH resource contains only one, no additional MAC CE command is required.
  • the spatial relation information of PUSCH is that when the DCI carried by PDCCH schedules PUSCH, each SRI code point in the Sounding Reference Signal resource indicator (SRI) field in the DCI indicates an SRI, which is used to indicate the spatial relation information of PUSCH.
  • SRI Sounding Reference Signal resource indicator
  • the network configures spatial relation information for the SRS resource through RRC signaling.
  • the SRS type is semi-persistent SRS
  • the network activates one from a set of spatial relation information configured by RRC through a MAC CE command.
  • the SRS type is aperiodic SRS
  • the network configures spatial relation information for the SRS resource through RRC signaling.
  • TCI Transmission Configuration Indicator
  • downlink beam information can usually be represented by TCI state information and QCL information
  • uplink beam information can usually be represented by spatial relation information
  • Analog beamforming is full-bandwidth transmission, and each polarization direction array element on the panel of each high-frequency antenna array can only send analog beams in a time-division multiplexing manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the RF front-end phase shifter and other devices.
  • polling is usually used to train simulated beamforming vectors, that is, the array elements of each polarization direction of each antenna panel send training signals (i.e. candidate beamforming vectors) in turn at the agreed time in a time-division multiplexing manner.
  • the terminal feeds back a beam report for the network to use the training signal to implement simulated beam transmission in the next transmission of services.
  • the content of the beam report usually includes the optimal number of transmit beam identifiers and the measured beams. The received power of each transmit beam.
  • the number of beam reports is determined by the parameters configured by the network to the terminal.
  • the RRC configuration parameters are used to configure the number of RS and RSRP that should be included in the terminal's beam report.
  • the values of the number configuration are 1, 2, 3, and 4, and the default value is 1.
  • the number limit is based on the terminal's capabilities, and the terminal will first report the maximum number it can support.
  • the quantization step is 1dB
  • the quantization range is -140dBm to -44dBm.
  • the output of the AI model is the RSRP result of all beam pairs.
  • a beam pair consists of a transmit beam and a receive beam.
  • the number of inputs to the AI model is the number of selected beam pairs, and the number of outputs is the number of all beam pairs.
  • the associated information is added on the input side.
  • the associated information is generally the angle-related information corresponding to the selected beam pairs for input, beam ID information, etc. Therefore, the number of inputs of this model is still related to the number of selected beam pairs, and the number of outputs is still equal to the number of all beam pairs.
  • the input type of the AI model includes at least one of the following:
  • End B receives beam information
  • the beam quality information herein includes but is not limited to at least one of the following types: L1-SINR, L1-RSRP, Reference Signal Received Quality (L1-RSRQ), Layer 3 signal-to-noise and interference ratio (L3-SINR), Layer 3 reference signal received power (L3-RSRP), Layer 3 reference signal received quality (L3-RSRQ), etc.
  • the beam information herein refers to the associated information corresponding to the beam quality information contained in the beam report, and the associated information includes but is not limited to at least one of the following: beam identification (ID) information, beam angle information, beam gain information, Beam width information, expected information, etc.
  • ID beam identification
  • beam angle information beam angle information
  • beam gain information beam gain information
  • Beam width information Beam width information
  • expected information etc.
  • the beam ID information is used to characterize the relevant information of the identity identification of the beam, including but not limited to at least one of the following: transmitting beam ID, receiving beam ID, beam ID, reference signal set (set) ID corresponding to the beam, reference signal resource ID corresponding to the beam, uniquely identified random ID, encoding value after additional AI network processing, beam angle information, resource index information, CRI, SSBRI, etc.
  • the beam angle information is used to characterize the angle information corresponding to the beam, including but not limited to at least one of the following: angle-related information, sending angle-related information, and receiving angle-related information.
  • the angle information is related information used to characterize the angle or identity, for example, angle, radian, index encoding value, ID value, encoding value after additional AI network processing, etc.
  • FIG6 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 61 and a network side device 62.
  • the wireless communication system may be a communication system with wireless AI functions such as 5G-Advanced or 6G.
  • the terminal 61 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device , robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian user equipment (PUE), smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service machines and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart
  • the terminal involved in this application can also be a chip in the terminal, such as a modem chip, a system-on-chip (SoC). It should be noted that the specific type of terminal 61 is not limited in the embodiment of this application.
  • the network side device 62 may include an access network device or a core network device, wherein the access network device may also be referred to as a wireless access network device, a wireless access network (Radio Access Network, RAN), a wireless access network function or a wireless access network unit.
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home B node, a home evolved B node, a transmitting and receiving point (Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management implementations, Mobility Management Entity (MME), Access and Mobility Management Function (AMF), Session Management Function (SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (L-NEF), Binding Support Function (BSF), Application Function (AF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and Charging Rules Function
  • EASDF Edge Application Server Discovery Function
  • UDM Unified Data Management
  • UDR Unified Data Repository
  • HSS Home Subscriber Server
  • an embodiment of the present application provides a transmission method, which is applied to a terminal, and the specific steps include:
  • Step 701 The terminal sends a beam report, where the beam report includes beam quality information arranged in a preset order, where the preset order is related to the beam position.
  • the beam report in this application can also be called a feedback report.
  • the beam report can be used for at least one of AI model training, AI model performance verification, AI model adjustment, and AI model reasoning.
  • the above-mentioned beam report includes beam quality information arranged in a preset order.
  • the preset order is related to the beam position, which can be understood as the beam report may not carry the beam position or carry less of the beam position.
  • the network side can correctly decode the beam report according to the preset order of the beam quality information.
  • the beam report sending method includes one of the following methods 1 to 4:
  • the beam report does not include the beam position, for example, the beam position may be SSBRI, CRI, etc.
  • the beam quality information at all beam positions in this article can be understood as all beam measurement results corresponding to all beam resources sent by the network side.
  • the network side configures 16 beam resources, corresponding to beam resource 1, beam resource 2, ..., beam resource 16, and the terminal obtains 16 RSRPs through measurement, namely RSRP1, RSRP2, ...RSRP16.
  • the order of the beam quality information in the beam report sent by the terminal is RSRP1, RSRP2, RSRP3, RSRP4, ...RSRP16, that is, the beam quality information is arranged according to the size of the beam resource identifier.
  • the network After the network receives the beam report, it can obtain that the first RSRP in the beam report corresponds to the RSRP of beam resource 1, and so on.
  • the beam report also includes First position indication information indicating a first position, where the first position is a position in the beam report where beam quality information does not need to be fed back;
  • the first location indication information may be SSBRI, CRI, etc.
  • the first location indication information satisfies at least one of the following:
  • the amount of the first position indication information is equal to the amount or the sum of the beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the first position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the first position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including one of the following:
  • the number of bits occupied by the first position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the first position indication information is equal to the upper integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and does not need to be fed back)).
  • the overhead of a first position indication information in a beam report is determined by the number of beam quality information at all beam positions associated with the beam report and the number of beam quality information that does not need to be fed back determined by the position indication information located before the first position indication information in the beam report.
  • the method further includes:
  • the terminal obtains a method for determining the number of bits occupied by the first location indication information according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the beam report contains the beam quality information at all beam positions, and the beam report does not contain the first position indication information.
  • the beam report also includes: first information, where the first information is used to indicate a method for determining the number of bits occupied by the first position indication information.
  • the encoding positions of the multiple first position indication information in the beam report are adjacent.
  • the encoding position of the first position indication information in the beam report is before the encoding position of the beam quality information.
  • the network side configures 16 beam resources, corresponding to beam resource 1, beam resource 2, ..., beam resource 16, and the terminal obtains 16 RSRPs through measurement, namely RSRP1, RSRP2, ... RSRP16, of which RSRP 1, RSRP 2, and RSRP 5 are not fed back.
  • the beam report sent by the terminal contains three first position indication information, which are used to indicate that RSRP1, RSRP2, and RSRP5 are not fed back.
  • the order of the remaining RSRP feedback is consistent with the order corresponding to the beam resources, that is, the order of the beam quality information in the beam report is RSRP3, RSRP4, RSRP6, RSRP7, ... RSRP16.
  • the network After the network receives the beam report, it can obtain the first RSRP in the beam report corresponding to the RSRP of beam resource 3 according to the first position indication information, and so on.
  • the beam report further includes second position indication information indicating a second position and type indication information indicating a type of the second position, wherein the type indication information is used to indicate that the second position is a position where beam quality information does not need to be fed back, or the type indication information is used to indicate that the second position is a position where beam quality information needs to be fed back;
  • the second location indication information may be SSBRI, CRI, etc.
  • the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of the second position indication information is equal to the sum of the number of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam reports corresponding to all feedback moments contained in the beam report;
  • the beam report contains 2 feedback moments, the beam quality information of 4 beam positions is not fed back in the first feedback moment, and the beam quality information of 2 beam positions is not fed back in the second feedback moment, then the number of second position indication information should be 6.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including one of the following:
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the upper integer (log2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the upper integer (log2(the number of beam quality information at all beam positions associated with the beam report - the number of indicated beam quality information that does not need to be fed back)). It can be understood that the overhead of a second position indication information in the beam report is determined by the number of beam quality information at all beam positions associated with the beam report and the number of beam quality information that does not need to be fed back determined by the position indication information that precedes the second position indication information in the beam report.
  • the second position indication information satisfies at least one of the following:
  • the number of the second position indication information is equal to the number or the sum of the beam quality information that needs to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is determined according to the number or the sum of the enabled beam positions in all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including one of the following:
  • the number of bits occupied by the second position indication information is equal to the upper integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the second position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of indicated beam quality information that needs to be fed back)). It can be understood that the overhead of a second position indication information in a beam report is determined by the number of beam quality information at all beam positions associated with the beam report and the number of beam quality information that needs to be fed back determined by the position indication information that precedes the second position indication information in the beam report.
  • the method further includes:
  • the terminal obtains a method for determining the number of bits occupied by the second location indication information according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the beam report further includes:
  • First information where the first information is used to indicate a method for determining the number of bits occupied by the second position indication information.
  • the encoding positions of the multiple second position indication information in the beam report are adjacent.
  • the encoding position of the second position indication information in the beam report is before the encoding position of the beam quality information.
  • the beam report includes beam quality information on a partial beam position
  • the beam report also includes third position indication information indicating the partial beam position
  • the third position indication information is a bit map
  • the bit order of the bit map is consistent with the order of at least one of the following: a reference signal resource set, a reference signal resource, and a beam information template; wherein the reference signal resource set and the reference signal resource are resources associated with the beam report and used for beam measurement, and the beam information template is used to determine the beam position associated with the beam report and used for beam measurement.
  • the number of bits occupied by the bit map is determined by the number of beam quality information at all beam positions associated with the beam report.
  • bitmap represents that the beam quality information of the corresponding position needs to be fed back
  • bitmap represents that the beam quality information of the corresponding position does not need to be fed back
  • the beam quality information at all beam positions contained or associated in the beam report is determined based on a reference signal resource set and/or reference signal resource associated with the beam report for beam measurement, or the beam quality information at all beam positions contained or associated in the beam report is determined based on a pre-configured beam position resource pool, for example, a beam position resource set configured on the network side, and the network side obtains the beam position resource from the beam
  • the location resource set selects some beam location resources and associates them with a beam report.
  • the terminal performs beam measurement, and the beam report feeds back beam quality information corresponding to the selected part of the beam location resources.
  • the reference signal resource set and/or reference signal resource is associated or configured to turn off repetition (repetition off) or turn on repetition (repetition on).
  • the amount of beam quality information at all beam positions included in or associated with the beam report is determined according to the reference signal resource set and/or the number of reference signal resources for beam measurement associated with the beam report;
  • the number of beam quality information on all beam positions contained or associated with the beam report is determined based on the number of beam position resources associated with the beam report and used for beam measurement.
  • a method for determining a preset order of beam quality information includes: determination method 1 and determination method 2.
  • the preset order of the beam quality information is consistent with the order of the reference signal resource sets and/or reference signal resources associated and/or enabled in the configuration information of the beam report, and the reference signal resource sets and/or reference signal resources are used to obtain the beam quality information at all beam positions contained or associated with the beam report.
  • the reference signal resource set or the order of the reference signal resources is determined according to a first order
  • the first sequence includes at least one of the following:
  • the beam quality information determined by SSB is fed back first in the beam report, and then the beam quality information corresponding to CSI-RS is determined.
  • the priorities between the different sequences in the first sequence are determined according to the protocol agreement, network side configuration, terminal reporting, the terminal and The value is determined by at least one method in network-side negotiation.
  • the ID order, index order and angle order include one of the following: from small to large, from large to small.
  • the time order and position order include one of the following: from front to back, from back to front.
  • the preset order of the beam quality information is consistent with the order of the beam information template.
  • the order of the beam information templates is determined according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the beam report also includes or is associated with the index of the beam information template selected by the terminal.
  • the order of the beam information template is determined simultaneously by network configuration and terminal reporting.
  • the network configures multiple beam information templates in advance, and the terminal selects a suitable beam information template and includes or associates the beam information template index in the beam report.
  • the beam report also includes the amount of beam quality information that needs to be fed back.
  • the beam report further includes second information, where the second information is used to indicate the number of beam quality information and/or the number of beam positions in the beam report.
  • the configuration information of the beam report or the beam report further includes third information, and the third information is used to indicate the number of periods or time moments of the beam quality information included in the beam report.
  • the number of the second information is the same as the number of the cycles or time moments indicated by the third information.
  • the beam quality information at all beam positions associated with the beam report or the amount of beam quality information that needs to be fed back is determined by the beam information template reported or associated in the beam report.
  • the amount of beam quality information that needs to be fed back is determined by the number of panels simultaneously received by the terminal, or by the number of beams simultaneously received by the terminal, or by the number of beam groups, and the number of beam groups is determined by a group beam reporting function.
  • the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single panel and the number of panels received simultaneously, or the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single receiving beam and the number of beams received simultaneously.
  • the preset order of the beam quality information is determined according to a panel feedback method, or according to a beam feedback method.
  • the panel feedback mode includes: at least one of multiple panel priority and single panel priority
  • the beam feedback mode includes: at least one of multiple beam priority and single beam priority
  • the coding order of the beam report is RSPP1-panel1, RSRP1-panel2, RSRP2-panel1, RSRP2-panel2, ....
  • 2 panels receive simultaneously, and a single panel takes priority, RSPP1-panel1, RSPP2-panel1, ..., RSRP1-panel2, RSRP2-panel2.
  • the reference beam quality information in the differential quantization method is determined according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the reference beam quality information may be the maximum value of the beam quality information in the beam report.
  • the beam report when the reference beam quality information is included in the beam quality information at all beam positions associated with the beam report, the beam report contains or is associated with reference beam information position indication information, and the reference beam information position indication information is used to indicate the position of the reference beam quality information in the beam quality information at all beam positions associated with the beam report.
  • the reference beam information position indication information satisfies at least one of the following:
  • the number of bits occupied by the reference beam information position indication information is determined according to the number of beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the reference beam information position indication information is equal to the upper integer (log2 (the number of beam quality information at all beam positions associated with the beam report)), or a bitmap of equal length.
  • the reference beam information position indication information is located in the beam report before the beam quality information position in the beam report.
  • the network side preferentially decodes the reference beam quality information according to the reference beam position indication information, and then decodes the beam quality information contained in the beam report according to the reference beam quality information.
  • the position of the reference beam quality information in the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • protocol stipulates that the reference beam quality information is located at the front, back, or a specific position in a feedback area of the beam report.
  • the beam position includes at least one of the following:
  • the method for sending the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the beam report includes sending indication information, and the sending indication information is used to To indicate how the beam report is sent.
  • the number of bits occupied by the sending indication information is determined according to the number of preset sending methods of the beam report, and the number of preset sending methods is determined according to at least one of the protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the sending indication information includes type indication information.
  • the sending indication information is 2 bits, which are respectively used to indicate the situation in which the second position indication information in mode 1, mode 2, mode 3 is used to indicate the beam indication information to be fed back, and mode 4.
  • the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position, so that the beam report may not carry the beam position or carry less beam position, while reducing the overhead of the beam report, it can also ensure that the network side can correctly decode the beam report.
  • an embodiment of the present application provides a transmission method, which is applied to a network side device, including:
  • Step 801 A network-side device receives a beam report, where the beam report includes beam quality information arranged in a preset order, where the preset order is related to the beam position.
  • the beam report in the case where the beam report includes beam quality information at all beam positions associated with the beam report, the beam report does not include the beam position;
  • the beam report further includes first position indication information indicating a first position, where the first position is a position in the beam report where beam quality information does not need to be fed back;
  • the beam report further includes second position indication information indicating a second position and type indication information indicating a type of the second position, wherein the type indication information is used to indicate that the second position is a position where beam quality information does not need to be fed back, or the type indication information is used to indicate that the second position is a position where beam quality information needs to be fed back;
  • the beam report includes beam quality information on a partial beam position
  • the beam report also includes third position indication information indicating the partial beam position
  • the third position indication information is a bit map
  • the bit order of the bit map is consistent with the order of at least one of the following: a reference signal resource set, a reference signal resource, and a beam information template; wherein the reference signal resource set and the reference signal resource are resources associated with the beam report and used for beam measurement, and the beam information template is used to determine the beam position associated with the beam report and used for beam measurement.
  • the method further includes:
  • the network side device determines, according to the first position indication information or the second position indication information, that the beam quality information that does not need to be fed back is a default value.
  • the default value is determined by protocol agreement, terminal AI model capability reporting, network AI model capability interaction, etc.
  • the AI model capability interaction method determines that the default value is equal to the upper limit of the model capability interaction value.
  • the default value agreed upon by the protocol is the lower limit value of the beam quality information quantization interval or the lower limit value of the reference beam quality information quantization interval.
  • the beam position includes at least one of the following:
  • the first location indication information satisfies at least one of the following:
  • the number of the first position indication information is equal to the number or the sum of the beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the first position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the beam report when the number of bits corresponding to the amount of beam quality information at all beam positions associated with the beam report is greater than or equal to the number of quantization bits or the number of differential quantization bits of the beam quality information, the beam report includes the beam quality information at all beam positions, and the beam report does not include the first position indication information.
  • the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of the second position indication information is equal to the sum of the number of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam reports corresponding to all feedback moments contained in the beam report;
  • the beam report contains 2 feedback moments, the beam quality information of 4 beam positions is not fed back in the first feedback moment, and the beam quality information of 2 beam positions is not fed back in the second feedback moment, then the number of second position indication information should be 6.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the first position indication information or the second position indication information is determined by one of the following:
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the upper integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam positions that do not need feedback) The amount of beam quality information)).
  • the second position indication information satisfies at least one of the following:
  • the number of the second position indication information is equal to the number or the sum of the beam quality information that needs to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is determined according to the number or the sum of the enabled beam positions in all beam positions;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including one of the following:
  • the number of bits occupied by the second position indication information is equal to the upper integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the second position indication information is equal to the upper integer of (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and needs to be fed back)).
  • the beam report further includes:
  • First information where the first information is used to indicate a method for determining the number of bits occupied by the first position indication information or the second position indication information.
  • the encoding positions of the multiple first position indication information or the second position indication information in the beam report are adjacent.
  • the encoding position of the first position indication information or the second position indication information in the beam report is before the encoding position of the beam quality information.
  • the number of bits occupied by the bit map is determined by the amount of beam quality information at all beam positions associated with the beam report.
  • the beam quality information on all beam positions contained or associated with the beam report is determined based on a reference signal resource set and/or reference signal resource associated with the beam report and used for beam measurement, or the beam quality information on all beam positions contained or associated with the beam report is determined based on a pre-configured beam position resource pool.
  • the amount of beam quality information at all beam positions included in or associated with the beam report is determined according to the reference signal resource set and/or the number of reference signal resources for beam measurement associated with the beam report;
  • the number of beam quality information on all beam positions contained or associated with the beam report is determined based on the number of beam position resources associated with the beam report and used for beam measurement.
  • the preset order of the beam quality information is consistent with the configuration information of the beam report.
  • the order of the reference signal resource sets and/or reference signal resources associated and/or enabled in the beam report is consistent, and the reference signal resource sets and/or reference signal resources are used to obtain the beam quality information at all beam positions contained in or associated with the beam report.
  • the reference signal resource set or the order of the reference signal resources is determined according to a first order
  • the first sequence includes at least one of the following:
  • the preset order of the beam quality information is consistent with the order of the beam information template.
  • the beam report also includes or is associated with an index of a beam information template selected by the terminal, and/or the beam report also includes the amount of beam quality information that needs to be fed back.
  • the beam report further includes second information, where the second information is used to indicate the number of beam quality information and/or the number of beam positions in the beam report.
  • the configuration information of the beam report or the beam report further includes third information, and the third information is used to indicate the number of periods or time moments of the beam quality information included in the beam report.
  • the number of the second information is the same as the number of the cycles or time moments indicated by the third information.
  • the beam quality information at all beam positions associated with the beam report or the amount of beam quality information that needs to be fed back is determined by the beam information template reported or associated in the beam report.
  • the amount of beam quality information that needs to be fed back is determined by the number of panels simultaneously received by the terminal, or by the number of beams simultaneously received by the terminal, or by the number of beam groups, and the number of beam groups is determined by a group beam reporting function.
  • the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single panel and the number of panels received simultaneously, or the amount of beam quality information that needs to be fed back is equal to the amount of beam quality information that needs to be fed back corresponding to a single receiving beam and the number of panels received simultaneously. is the product of the number of receive beams.
  • the preset order of the beam quality information is determined according to a panel feedback method, or according to a beam feedback method.
  • the panel feedback mode includes: at least one of multiple panel priority and single panel priority
  • the beam feedback mode includes: at least one of multiple beam priority and single beam priority
  • the reference beam quality information in the differential quantization method is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the beam report when the reference beam quality information is included in the beam quality information at all beam positions associated with the beam report, the beam report contains or is associated with reference beam information position indication information, and the reference beam information position indication information is used to indicate the position of the reference beam quality information in the beam quality information at all beam positions associated with the beam report.
  • the reference beam information position indication information satisfies at least one of the following:
  • the number of bits occupied by the reference beam information position indication information is determined according to the number of beam quality information at all beam positions associated with the beam report;
  • the reference beam information position indication information is located in the beam report before the beam quality information position in the beam report.
  • the position of the reference beam quality information in the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the reference beam quality information is located in the beam report before the beam quality information in the beam report.
  • the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position, so that the beam report may not carry the beam position or carry less beam position, while reducing the overhead of the beam report, it can also ensure that the network side can correctly decode the beam report.
  • an embodiment of the present application provides a transmission device, which is applied to a terminal.
  • the device 900 includes:
  • the first sending module 901 is used to send a beam report, where the beam report includes beam quality information arranged in a preset order, and the preset order is related to the beam position.
  • the beam report in the case where the beam report includes beam quality information at all beam positions, the beam report does not include the beam position;
  • the beam report further includes first position indication information indicating a first position, where the first position is a position in the beam report where beam quality information does not need to be fed back;
  • the beam report further includes second position indication information indicating a second position and type indication information indicating a type of the second position, wherein the type indication information is used to indicate that the second position is a position where beam quality information does not need to be fed back, or the type indication information is used to indicate that the second position is a position where beam quality information needs to be fed back;
  • the beam report includes beam quality information on a partial beam position
  • the beam report also includes third position indication information indicating the partial beam position
  • the third position indication information is a bit map
  • the bit order of the bit map is consistent with the order of at least one of the following: a reference signal resource set, a reference signal resource, and a beam information template; wherein the reference signal resource set and the reference signal resource are resources associated with the beam report and used for beam measurement, and the beam information template is used to determine the beam position associated with the beam report and used for beam measurement.
  • the beam position includes at least one of the following:
  • the method for sending the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the beam report includes sending indication information, and the sending indication information is used to indicate the sending method of the beam report.
  • the number of bits occupied by the sending indication information is determined according to the number of preset sending methods of the beam report, and the number of preset sending methods is determined according to at least one of the protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the first location indication information satisfies at least one of the following:
  • the amount of the first position indication information is equal to the amount or the sum of the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the first position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the beam report when the number of bits corresponding to the amount of beam quality information at all beam positions associated with the beam report is greater than or equal to the number of quantization bits or the number of differential quantization bits of the beam quality information, the beam report includes the beam quality information at all beam positions associated with the beam report, and the beam report does not include the first position indication information.
  • the type indication information is used to indicate the second position indication information indicates When the position is a position where beam quality information does not need to be fed back, the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the amount of the second position indication information is equal to the sum of the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions corresponding to all feedback moments contained in the beam report;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions.
  • the number of bits occupied by the first position indication information or the second position indication information is equal to rounded up (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and does not need to be fed back)).
  • the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount or the sum of the beam quality information that needs to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is determined according to the number or the sum of the numbers of enabled beam positions in all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including:
  • the number of bits occupied by the second position indication information is equal to (log 2 (the number of beam quality information at all beam positions associated with the beam report)) rounded up;
  • the number of bits occupied by the second position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and needs to be fed back)).
  • the device further includes:
  • the first acquisition module is used to obtain a method for determining the number of bits occupied by the first location indication information or the second location indication information according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the beam report further includes:
  • the first information is used to indicate that the first position indication information or the second position indication information occupies A method for determining the number of bits used.
  • the encoding positions of the multiple first position indication information or the multiple second position indication information in the beam report are adjacent.
  • the encoding position of the first position indication information or the second position indication information in the beam report is before the encoding position of the beam quality information.
  • the number of bits occupied by the bit map is determined by the amount of beam quality information at all beam positions associated with the beam report.
  • the beam quality information on all beam positions contained or associated with the beam report is determined based on a reference signal resource set and/or reference signal resource associated with the beam report and used for beam measurement, or the beam quality information on all beam positions contained or associated with the beam report is determined based on a pre-configured beam position resource pool.
  • the amount of beam quality information at all beam positions included in or associated with the beam report is determined according to the reference signal resource set and/or the number of reference signal resources for beam measurement associated with the beam report;
  • the number of beam quality information on all beam positions contained or associated with the beam report is determined based on the number of beam position resources associated with the beam report and used for beam measurement.
  • the preset order of the beam quality information is consistent with the order of the reference signal resource sets and/or reference signal resources associated and/or enabled in the configuration information of the beam report, and the reference signal resource sets and/or reference signal resources are used to obtain the beam quality information at all beam positions contained or associated with the beam report.
  • the reference signal resource set or the order of the reference signal resources is determined according to a first order
  • the first sequence includes at least one of the following:
  • the priority between different orders in the first order is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the preset order of the beam quality information is consistent with the order of the beam information template.
  • the order of the beam information templates is determined according to at least one of a protocol agreement, a network side configuration, a terminal report, and a negotiation between the terminal and the network side.
  • the beam report also includes or is associated with an index of the beam information template selected by the terminal, and/or the beam report also includes the amount of beam quality information that needs to be fed back.
  • the beam report further includes second information, where the second information is used to indicate the number of beam quality information and/or the number of beam positions in the beam report.
  • the configuration information of the beam report or the beam report further includes third information, and the third information is used to indicate the number of periods or time moments of the beam quality information included in the beam report.
  • the number of the second information is the same as the number of the cycles or time moments indicated by the third information.
  • the beam quality information at all beam positions associated with the beam report or the amount of beam quality information that needs to be fed back is determined by the beam information template reported or associated in the beam report.
  • the amount of beam quality information that needs to be fed back is determined by the number of multiple panels simultaneously received by the terminal, or by the number of beams simultaneously received by the terminal, or by the number of beam groups, and the number of beam groups is determined by a group beam reporting function.
  • the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single panel and the number of panels received simultaneously, or the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single receiving beam and the number of beams received simultaneously.
  • the preset order of the beam quality information is determined according to a panel feedback method, or according to a beam feedback method.
  • the panel feedback mode includes: at least one of multiple panel priority and single panel priority
  • the beam feedback mode includes: at least one of multiple beam priority and single beam priority
  • the reference beam quality information in the differential quantization method is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the beam report when the reference beam quality information is included in the beam quality information at all beam positions associated with the beam report, the beam report includes or is associated with reference beam information position indication information, and the reference beam information position indication information is used to indicate the reference beam quality information at the beam report. The position in the beam quality information of all the beam positions associated.
  • the reference beam information position indication information satisfies at least one of the following:
  • the number of bits occupied by the reference beam information position indication information is determined according to the number of beam quality information at all beam positions associated with the beam report;
  • the reference beam information position indication information is located in the beam report before the beam quality information position in the beam report.
  • the position of the reference beam quality information in the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the reference beam quality information is located in the beam report before the beam quality information in the beam report.
  • the device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application provides a transmission device, which is applied to a network side device.
  • the device 1000 includes:
  • the first receiving module 1001 is used to receive a beam report, where the beam report includes beam quality information arranged in a preset order, where the preset order is related to the beam position.
  • the beam report in the case where the beam report includes beam quality information at all beam positions, the beam report does not include the beam position;
  • the beam report further includes first position indication information indicating a first position, where the first position is a position in the beam report where beam quality information does not need to be fed back;
  • the beam report further includes or is associated with type indication information and second position indication information, wherein the type indication information is used to indicate that the position indicated by the second position indication information is a position where beam quality information does not need to be fed back, or the type indication information is used to indicate that the position indicated by the second position indication information is a position where beam quality information needs to be fed back;
  • the beam report includes beam quality information on a partial beam position
  • the beam report also includes third position indication information indicating the partial beam position
  • the third position indication information is a bit map
  • the bit order of the bit map is consistent with the order of at least one of the following: a reference signal resource set, a reference signal resource, and a beam information template; wherein the reference signal resource set and the reference signal resource are resources associated with the beam report and used for beam measurement, and the beam information template is used to determine the beam position associated with the beam report and used for beam measurement.
  • the device further includes:
  • a second determining module is used to determine that feedback is not required according to the first position indication information or the second position indication information.
  • the beam quality information is the default value.
  • the beam position includes at least one of the following:
  • the first location indication information satisfies at least one of the following:
  • the amount of the first position indication information is equal to the amount or the sum of the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the first position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the beam report when the number of bits corresponding to the amount of beam quality information at all beam positions associated with the beam report is greater than or equal to the number of quantization bits or the number of differential quantization bits of the beam quality information, the beam report includes the beam quality information at all beam positions, and the beam report does not include the first position indication information.
  • the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the amount of the second position indication information is equal to the sum of the amount of beam quality information that does not need to be fed back in the beam quality information at all beam positions corresponding to all feedback moments contained in the beam report;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the first position indication information or the second position indication information is equal to rounded up (log 2 (the number of beam quality information at all beam positions associated with the beam report));
  • the number of bits occupied by the first position indication information or the second position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and does not need to be fed back)).
  • the second position indication information satisfies at least one of the following:
  • the amount of the second position indication information is equal to the amount or the sum of the beam quality information that needs to be fed back in the beam quality information at all beam positions associated with the beam report;
  • the number of bits occupied by the second position indication information is based on the number of bits enabled in all beam positions associated with the beam report. Determined by the number or sum of the number of beam positions;
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report.
  • the number of bits occupied by the second position indication information is determined according to the amount of beam quality information at all beam positions associated with the beam report, including:
  • the number of bits occupied by the second position indication information is equal to (log 2 (the number of beam quality information at all beam positions associated with the beam report)) rounded up;
  • the number of bits occupied by the second position indication information is equal to the upper integer (log 2 (the number of beam quality information at all beam positions associated with the beam report - the number of beam quality information that has been indicated and needs to be fed back)).
  • the beam report further includes:
  • First information where the first information is used to indicate a method for determining the number of bits occupied by the first position indication information or the second position indication information.
  • the encoding positions of the multiple first position indication information or the second position indication information in the beam report are adjacent.
  • the encoding position of the first position indication information or the second position indication information in the beam report is before the encoding position of the beam quality information.
  • the number of bits occupied by the bit map is determined by the amount of beam quality information at all beam positions associated with the beam report.
  • the beam quality information on all beam positions contained or associated with the beam report is determined based on a reference signal resource set and/or reference signal resource associated with the beam report and used for beam measurement, or the beam quality information on all beam positions contained or associated with the beam report is determined based on a pre-configured beam position resource pool.
  • the amount of beam quality information at all beam positions included in or associated with the beam report is determined according to the reference signal resource set and/or the number of reference signal resources for beam measurement associated with the beam report;
  • the number of beam quality information on all beam positions contained or associated with the beam report is determined based on the number of beam position resources associated with the beam report and used for beam measurement.
  • the preset order of the beam quality information is consistent with the order of the reference signal resource sets and/or reference signal resources associated and/or enabled in the configuration information of the beam report, and the reference signal resource sets and/or reference signal resources are used to obtain the beam quality information at all beam positions contained or associated with the beam report.
  • the reference signal resource set or the order of the reference signal resources is determined according to a first order
  • the first sequence includes at least one of the following:
  • the preset order of the beam quality information is consistent with the order of the beam information template.
  • the beam report also includes or is associated with an index of a beam information template selected by the terminal, and/or the beam report also includes the amount of beam quality information that needs to be fed back.
  • the beam report further includes second information, where the second information is used to indicate the number of beam quality information and/or the number of beam positions in the beam report.
  • the configuration information of the beam report or the beam report further includes third information, and the third information is used to indicate the number of periods or time moments of the beam quality information included in the beam report.
  • the number of the second information is the same as the number of the cycles or time moments indicated by the third information.
  • the beam quality information at all beam positions associated with the beam report or the amount of beam quality information that needs to be fed back is determined by the beam information template reported or associated in the beam report.
  • the amount of beam quality information that needs to be fed back is determined by the number of panels simultaneously received by the terminal, or by the number of beams simultaneously received by the terminal, or by the number of beam groups, and the number of beam groups is determined by a group beam reporting function (groupBasedBeamReport).
  • the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single panel and the number of panels received simultaneously, or the amount of beam quality information that needs to be fed back is equal to the product of the amount of beam quality information that needs to be fed back corresponding to a single receiving beam and the number of beams received simultaneously.
  • the preset order of the beam quality information is determined according to a panel feedback method or according to a beam feedback method.
  • the panel feedback mode includes: at least one of multiple panel priorities and single panel priority, or the beam feedback mode includes: at least one of multiple beam priorities and single beam priority. One less.
  • the reference beam quality information in the differential quantization method is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the beam report when the reference beam quality information is included in the beam quality information at all beam positions associated with the beam report, the beam report contains or is associated with reference beam information position indication information, and the reference beam information position indication information is used to indicate the position of the reference beam quality information in the beam quality information at all beam positions associated with the beam report.
  • the reference beam information position indication information satisfies at least one of the following:
  • the number of bits occupied by the reference beam information position indication information is determined according to the number of beam quality information at all beam positions associated with the beam report;
  • the reference beam information position indication information is located in the beam report before the beam quality information position in the beam report.
  • the position of the reference beam quality information in the beam report is determined according to at least one of protocol agreement, network side configuration, terminal reporting, and negotiation between the terminal and the network side.
  • the reference beam quality information is located in the beam report before the beam quality information in the beam report.
  • the device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 8 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • Fig. 11 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and at least some of the components in the processor 1110.
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1110 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1107 includes a touch panel 11071 and at least one of the other input devices 11072.
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include a touch detection device and a touch
  • the other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be described in detail here.
  • the RF unit 1101 can transmit the data to the processor 1110 for processing; in addition, the RF unit 1101 can send uplink data to the network side device.
  • the RF unit 1101 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1109 can be used to store software programs or instructions and various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1109 may include a volatile memory or a non-volatile memory, or the memory 1109 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1109 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1110.
  • the terminal provided in the embodiment of the present application can implement each process implemented in the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG. 12 is a structural diagram of a communication device applied in an embodiment of the present invention.
  • the communication device 1200 includes: a processor 1201, a transceiver 1202, a memory 1203 and a bus interface, wherein the processor 1201 may be responsible for managing the bus architecture and general processing.
  • the memory 1203 may store data used by the processor 1201 when performing operations.
  • the communication device 1200 further includes: a program stored in the memory 1203 and executable on the processor 1201 , and when the program is executed by the processor 1201 , the steps in the method shown in FIG. 8 are implemented.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linking together various circuits of one or more processors represented by processor 1201 and memory represented by memory 1203.
  • the bus architecture may also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and are therefore not further described herein.
  • the bus interface provides an interface.
  • Transceiver 1202 There may be multiple elements, including a transmitter and a receiver, providing a means for communicating with various other devices over a transmission medium.
  • an embodiment of the present application also provides a communication device 1300, including a processor 1301 and a memory 1302, and the memory 1302 stores programs or instructions that can be executed on the processor 1301.
  • the communication device 1300 is a terminal
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of Figure 7 above.
  • the communication device 1300 is a network side device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of Figure 8 above and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the method of Figure 7 or Figure 8 and the various processes of the above-mentioned embodiments are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes shown in Figure 7 or Figure 8 and the various method embodiments mentioned above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes shown in Figure 7 or Figure 8 and the various method embodiments described above, and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • An embodiment of the present application further provides a communication system, which includes a terminal and a network-side device.
  • the terminal is used to execute the various processes as shown in Figure 7 and the various method embodiments described above
  • the network-side device is used to execute the various processes as shown in Figure 8 and the various method embodiments described above, and can achieve the same technical effects. To avoid repetition, they are not repeated here.
  • the above embodiment method can be It can be implemented by means of software plus a necessary general hardware platform, or by hardware, but in many cases the former is a better implementation method.
  • the technical solution of the present application, or the part that contributes to the relevant technology can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions for enabling a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、装置、通信设备及可读存储介质,涉及无线通信技术领域,该方法包括:终端发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。

Description

传输方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年10月14日提交的中国专利申请No.202211262707.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种传输方法、装置、通信设备及可读存储介质。
背景技术
在做波束测量时,网络会配置参考信号资源集合(RS resource set),其中包括至少一个参考信号资源,例如同步信号块(Synchronization Signal and PBCH block,SSB)资源(resource)或信道状态信息参考信号(Channel state information Reference Signal,CSI-RS)resource。终端测量每个参考信号(Reference Signal,RS)resource的层1参考信号接收功率(Layer 1reference signal received power,L1-RSRP)/层1信号与干扰加噪声比(Layer 1signal-to-noise and interference ratio,L1-SINR),并将最优的至少一个测量结果上报给网络,上报内容包括SSB资源指示(SSB Resource Indicator,SSBRI)或CSI-RS资源指示(CSI-RS Resource Indicator,CRI)、及L1-RSRP/L1-SINR。该报告内容反映了至少一个最优的波束及其质量,供网络确定用来向终端发送信道或信号的波束。
由于波束报告中需要包括大量的SSBRI、CRI等波束位置,导致波束报告开销较大,因此在确保网络侧能正确解码波束报告的情况下如何减少波束报告开销是亟待解决的问题。
发明内容
本申请实施例提供一种传输方法、装置、通信设备及可读存储介质,解决波束报告开销较大的问题。
第一方面,提供一种传输方法,包括:
终端发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
第二方面,提供一种传输方法,包括:
网络侧设备接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
第三方面,提供一种传输装置,包括:
第一发送模块,用于发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
第四方面,提供一种传输装置,包括:
第一接收模块,用于接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
第五方面,提供了一种通信设备,包括:处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的法的步骤。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
第九方面,提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如第一方面所述的方法的步骤,所述网络侧设备用于执行如第二方面所述的方法的步骤。
在本申请实施例中,波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关,这样波束报告可以不携带波束位置或者少携带波束位置,在减少波束报告的开销的同时,也能确保网络侧能正确解码该波束报告。
附图说明
图1是神经网络的示意图;
图2是神经元的示意图;
图3是基于AI模型进行波束预测的示意图之一;
图4是基于AI模型进行波束预测的示意图之二;
图5是基于AI模型进行波束预测的示意图之三;
图6为本申请实施例的无线通信系统的架构示意图;
图7是本申请实施例提供的传输方法的流程图之一;
图8是本申请实施例提供的传输方法的流程图之二;
图9是本申请实施例提供的传输装置的示意图之一;
图10是本申请实施例提供的传输装置的示意图之二;
图11是本申请实施例提供的终端的示意图;
图12是本申请实施例提供的网络侧设备的示意图;
图13是本申请实施例提供的通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
为了便于理解本申请的实施方式,下面先介绍以下技术点。
1、关于神经网络的介绍。
人工智能目前在各个领域获得了广泛的应用。人工智能(Artificial Intelligence,AI)模块有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。
本申请以神经网络为例进行说明,但是并不限定AI模块的具体类型,神经网络的结构如图1所示。
其中,神经网络由神经元组成,神经元的示意图如图2所示。其中a1,a2,…aK为输入,w为权值(乘性系数),b为偏置(加性系数),σ(.)为激活函数,z=a1w1+…+akwk+…+aKwK+b。常见的激活函数包括Sigmoid函数、tanh函数、修正线性单元(Rectified Linear Unit,ReLU)等等。
神经网络的参数可以通过优化算法进行优化。优化算法就是一种能够最小化或者最大 化目标函数(有时候也叫损失函数)的一类算法。而目标函数往往是模型参数和数据的数学组合。例如给定数据X和其对应的标签Y,构建一个神经网络模型f(.),有了模型后,根据输入x就可以得到预测输出f(x),并且可以计算出预测值和真实值之间的差距(f(x)-Y),这个就是损失函数。如果找到合适的W,b使上述的损失函数的值达到最小,损失值越小,则说明模型越接近于真实情况。
目前常见的优化算法,基本都是基于误差反向传播(error Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐藏层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐藏层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
2、关于波束指示(beam indication)机制。
在经过波束测量和波束报告后,网络可以对下行与上行链路的信道或参考信号做波束指示,用于网络与UE之间建立波束链路,实现信道或参考信号的传输。
对于物理下行控制信道(Physical downlink control channel,PDCCH)的波束指示,网络使用无线资源控制(Radio resource management,RRC)信令为每个控制资源集(Control Resource Set,CORESET)配置K个传输配置指示(Transmission Configuration Indication,TCI)状态(state),当K>1时,由媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)指示或激活1个TCI state,当K=1时,不需要额外的MAC CE命令。终端在监听PDCCH时,对CORESET内全部搜索空间(search space)使用相同准共址(Quasi-colocation,QCL),即相同的TCI state来监听PDCCH。该TCI状态中的参考信号(Reference Signal,RS)(例如周期信道状态信息参考信号资源(Channel State Information Reference Signal resource,CSI-RS resource)、半持续CSI-RS resource、同步信号块(Synchronization Signal and PBCH block,SSB)等)与终端专用(UE-specific)PDCCH解调参考信号(Demodulation Reference Signal,DMRS)端口是空间QCL的。终端根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
对于PDSCH的波束指示,网络通过RRC信令配置M个TCI state,再使用MAC CE命令激活2N个TCI state,然后通过下行控制信息(Downlink Control Information,DCI)的N-比特(bit)TCI域(field)来通知TCI状态,该TCI状态中的参考信号与要调度的物理下行共享信道(Physical downlink shared channel,PDSCH)的DMRS端口是QCL的。UE根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
对于CSI-RS的波束指示,当CSI-RS类型为周期CSI-RS时,网络通过RRC信令为 CSI-RS resource配置QCL信息。当CSI-RS类型为半持续CSI-RS时,网络通过MAC CE命令来从RRC配置的CSI-RS resource集合(set)中激活一个CSI-RS resource时指示其QCL信息。当CSI-RS类型为非周期CSI-RS时,网络通过RRC信令为CSI-RS resource配置QCL,并使用DCI来触发CSI-RS。
对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的波束指示,网络使用RRC信令通过参数PUCCH-空间关系信息(Spatial Relation information)为每个PUCCH resource配置spatial relation information,当为PUCCH resource配置的spatial relation information包含多个时,使用MAC-CE指示或激活其中一个spatial relation information。当为PUCCH resource配置的spatial relation information只包含1个时,不需要额外的MAC CE命令。
对于PUSCH的波束指示,PUSCH的spatial relation信息是当PDCCH承载的DCI调度PUSCH时,DCI中的探测参考信号资源指示(Sounding Reference Signal resource indicator,SRI)field的每个SRI码点(code point)指示一个SRI,该SRI用于指示PUSCH的spatial relation information。
对于探测参考信号(Sounding Reference Signal,SRS)的波束指示,当SRS类型为周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。当SRS类型为半持续SRS时,网络通过MAC CE命令来从RRC配置的一组spatial relation information中激活一个。当SRS类型为非周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。
对于进一步的波束指示改进,提出了统一(unified)传输配置指示(Transmission Configuration Indicator,TCI)state,简单来说就是通过一个DCI中的TCI域,指示后续的各参考信号以及多个信道的波束信息。
上述波束信息、spatial relation信息、空域接收滤波器(spatial domain transmission filter)信息、空间滤波器(spatial filter)信息、TCI state信息、QCL信息、QCL参数、波束关联关系等,是近似相同的意思。
其中,下行波束信息通常可使用TCI state信息、QCL信息表示。上行波束信息通常可使用spatial relation信息表示。
3、关于波束测量和报告(beam measurement and beam reporting)。
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前在学术界和工业界,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出 的每个发射波束的接收功率。
波束报告数量是通过网络配置给终端的参数进行确定的,通过RRC配置参数,配置终端的波束报告中应该包含的RS以及RSRP的数量,数量配置的取值是1,2,3,4,默认值为1,此外,该数量限制是基于终端能力的,终端会先上报能支持的最大数量。
当终端波束报告中仅包含一个L1-RSRP时,使用7比特(bit)的量化方法,量化步进为1dB,量化范围是-140dBm到-44dBm。当终端被指示的波束报告中包含多个L1-RSRP,或使能了基于组的波束报告(group based beam report)时,最强的RSRP量化使用7bit量化,其余RSRP量化使用4bit的差分量化方法,量化步进为2dB。
4、关于使用AI方法进行波束预测。
一种可能的方式如图3所示。使用部分波束对的RSRP作为输入,AI模型的输出则是所有波束对的RSRP结果。其中波束对是由发送波束和接收波束组成的。那该AI模型的输入数量是挑选出来的部分波束对的数量,输出数量则是所有波束对的数量。
额外还有增强波束预测性能的方法如图4所示。
在输入侧增加了关联信息,关联信息一般是挑选出来用于输入的波束对对应的角度相关信息,波束ID信息等。因此这种模型的输入数量还是与挑出来的部分波束对的数量相关,输出数量还是等于所有波束对的数量。
还有一种基于以上的改进型的方法如图5所示。
主要是通过AI模型改变期望信息,来影响AI模型的输出。
其中AI模型的输入类型包括以下至少之一:
(1)波束质量相关信息;
(2)波束信息;
(3)A端发送波束信息;
(4)B端接收波束信息;
(5)B端期望的波束信息;
(6)B端期望的B端接收波束信息;
(7)B端期望的A端发送波束信息;
(8)与波束质量相关信息的时间相关信息;
(9)期望的预测时间相关信息。
本文中波束质量信息包括但不限于以下至少之一类型:L1-SINR,L1-RSRP,层1参考信号接收质量(Reference Signal Received Quality,L1-RSRQ),层3信号与干扰加噪声比(Layer 3signal-to-noise and interference ratio,L3-SINR),层3参考信号接收功率(Layer3reference signal received power,L3-RSRP),层3参考信号接收质量(Reference Signal Received Quality,L3-RSRQ)等;
本文中波束信息是指与波束报告包含的波束质量信息对应的关联信息,关联信息包含但不限于以下至少之一:波束标识(Identity,ID)信息,波束角度信息,波束增益信息, 波束宽度信息,期望信息等。
其中,波束ID信息用于表征所述波束的身份识别的相关信息,包含但不限于以下至少之一:发送波束ID,接收波束ID,波束ID,所述波束对应的参考信号集合(set)ID,所述波束对应的参考信号resource ID,唯一标识的随机ID,额外AI网络处理后的编码值,波束角度信息,资源索引信息,CRI,SSBRI等。
波束角度信息用于表征所述波束对应的角度信息,包含但不限于以下至少之一:角度相关信息,发送角度相关信息,接收角度相关信息。
角度信息是用于表征角度或身份的相关信息,例如,角度,弧度,索引编码值,ID值,额外AI网络处理后的编码值等。
图6示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端61和网络侧设备62。其中,无线通信系统可以是5G演进(5G-Advanced)或6G等具备无线AI功能的通信系统。
其中,终端61可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。除了上述终端设备,本申请涉及的终端也可以是终端内的芯片,例如调制解调器(Modem)芯片,系统级芯片(System on Chip,SoC)。需要说明的是,在本申请实施例并不限定终端61的具体类型。
网络侧设备62可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实 体(Mobility Management Entity,MME)、接入和移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输方法、装置、通信设备及可读存储介质进行详细地说明。
参见图7,本申请实施例提供一种传输方法,应用于终端,具体步骤包括:
步骤701:终端发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
本申请中的波束报告也可称为反馈报告,波束报告可以用于AI模型训练、AI模型性能验证、AI模型调整、AI模型推理中的至少一项。
上述所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关可以理解为波束报告中可以不携带波束位置或少携带波束位置的情况下,网络侧可以根据波束质量信息的预设顺序正确解码该波束报告。
在本申请的一种实施方式中,所述波束报告的发送方式包括以下方式1~方式4中一种:
方式1:
在所述波束报告包含全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置,例如,波束位置可以是SSBRI,CRI等。
本文中全部波束位置上的波束质量信息(或者称为所有需要反馈的波束质量信息)可以理解为是网络侧发送的所有波束资源对应的所有波束测量结果。
例如,网络侧配置16个波束资源,对应波束资源1,波束资源2,…,波束资源16,终端测量获得16个RSRP,分别是RSRP1,RSRP2,…RSRP16。终端发送的波束报告中的波束质量信息的顺序为RSRP1,RSRP2,RSRP3,RSRP4,…RSRP16,即波束质量信息按照波束资源标识的大小排列。网络接收到波束报告后,即可获得波束报告中第一个RSRP对应的是波束资源1的RSRP,后续类推。
方式2:
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含 指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
例如,第一位置指示信息可以是SSBRI,CRI等。
在本申请的一种实施方式中,所述第一位置指示信息满足以下至少一项:
(1)所述第一位置指示信息的数量等于所述波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量或数量之和;
(2)所述第一位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第一位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括以下之一:
(1)所述第一位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
(2)所述第一位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的不需要反馈的波束质量信息的数量))。
可以理解的是,波束报告中的一个第一位置指示信息的开销都由波束报告关联的全部波束位置上的波束质量信息的数量与在该波束报告中位于所述第一位置指示信息之前的位置指示信息确定的不需要反馈的波束质量信息的数量确定。
在本申请的一种实施方式中,所述方法还包括:
所述终端根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式,获取所述第一位置指示信息占用的比特数的确定方式。
可选地,在波束报告关联的全部波束位置上的波束质量信息的数量对应的比特数大于或等于波束质量信息量化比特数或差分量化比特数的情况下,所述波束报告包含全部波束位置上的波束质量信息,所述波束报告不包含所述第一位置指示信息。
可选地,所述波束报告还包括:第一信息,所述第一信息用于指示所述第一位置指示信息占用的比特数的确定方式。
可选地,在所述波束报告包含多个第一位置指示信息的情况下,所述多个第一位置指示信息在所述波束报告中的编码位置相邻。
可选地,所述第一位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。例如,第一位置指示信息1,第一位置指示信息2,波束质量信息1,波束质量信息2,波束质量信息3,波束质量信息4。
例如,网络侧配置16个波束资源,对应波束资源1,波束资源2,…,波束资源16,终端测量获得16个RSRP,分别是RSRP1,RSRP2,…RSRP16,其中RSRP 1,RSRP 2,RSRP 5不反馈,则终端发送的波束报告中包含三个第一位置指示信息分别用于指示RSRP1,RSRP2,RSRP5不反馈,其余RSRP反馈的顺序与波束资源对应的顺序保持一致,即波束报告中波束质量信息的顺序为RSRP3,RSRP4,RSRP6,RSRP7,…RSRP16。网 络接收到波束报告后,根据第一位置指示信息即可获得波束报告中第一个RSRP对应的是波束资源3的RSRP,后续类推。
方式3:
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第二位置的第二位置指示信息以及指示所述第二位置的类型的类型指示信息,所述类型指示信息用于指示所述第二位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置是需要反馈波束质量信息的位置;
例如,第二位置指示信息可以是SSBRI,CRI等。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是不需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
(1)所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量;
(2)所述第二位置指示信息的数量等于所述波束报告中包含的所有反馈时刻对应的波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量之和;
例如,波束报告中包含2个反馈时刻,第一个反馈时刻中有4个波束位置的波束质量信息不反馈,第二个反馈时刻中有2个波束位置的波束质量信息不反馈,则第二位置指示信息的数量应该是6个。
(2)所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
可选地,所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括以下之一:
(1)所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
(2)所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的不需要反馈的波束质量信息的数量)),可以理解的是,波束报告中的一个第二位置指示信息的开销都由波束报告关联的全部波束位置上的波束质量信息的数量与在该波束报告中位于所述第二位置指示信息之前的位置指示信息确定的不需要反馈的波束质量信息的数量确定。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
(1)所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中需要反馈的波束质量信息的数量或数量之和;
(2)所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置中使能的波束位置的数量或数量之和确定的;
(3)所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括以下之一:
(1)所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
(2)所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的需要反馈的波束质量信息的数量)),可以理解的是,波束报告中的一个第二位置指示信息的开销都由波束报告关联的全部波束位置上的波束质量信息的数量与在该波束报告中位于所述第二位置指示信息之前的位置指示信息确定的需反馈的波束质量信息的数量确定。
在本申请的一种实施方式中,所述方法还包括:
所述终端根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式,获取所述第二位置指示信息占用的比特数的确定方式。
在本申请的一种实施方式中,所述波束报告还包括:
第一信息,所述第一信息用于指示所述第二位置指示信息占用的比特数的确定方式。
在本申请的一种实施方式中,在所述波束报告包含多个第二位置指示信息的情况下,所述多个第二位置指示信息在所述波束报告中的编码位置相邻。
在本申请的一种实施方式中,所述第二位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。例如,第二位置指示信息1,第二位置指示信息2,波束质量信息1,波束质量信息2,波束质量信息3,波束质量信息4。
方式4:
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
在本申请的一种实施方式中,所述比特位图占用的比特数是由所述波束报告关联的波束报告关联的全部波束位置上的波束质量信息的数量确定的。
例如,比特位图中的“1”代表是对应位置的波束质量信息需要反馈,比特位图中的“0”代表对应位置的波束质量信息不需要反馈。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据与所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源确定的,或者,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据预先配置的波束位置资源池确定的,比如,网络侧配置的一个波束位置资源集,网络侧从波束 位置资源集中选择部分波束位置资源关联到一个波束报告,终端进行波束测量,波束报告中反馈的是该选择的部分波束位置资源对应的波束质量信息。
在本申请的一种实施方式中,所述参考信号资源集合和/或参考信号资源是关联或被配置成关闭重复(repetition off),或者开启重复(repetition on)。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源的数量确定的;
或者,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的波束位置资源的数量确定的。
在本申请的一种实施方式中,波束质量信息的预设顺序的确定方式包括:确定方式1和确定方式2。
(A)确定方式1:
在本申请的一种实施方式中,所述波束质量信息的预设顺序与所述波束报告的配置信息中关联和/或使能的参考信号资源集合和/或参考信号资源的顺序一致,所述参考信号资源集合和/或参考信号资源用于获得所述波束报告包含或关联的全部波束位置上的波束质量信息。
在本申请的一种实施方式中,所述参考信号资源集合或参考信号资源的顺序按照第一顺序确定;
其中,所述第一顺序包括以下至少一项:
(1)参考信号资源集合的标识ID顺序;
(2)参考信号资源集合关联的波束ID顺序;
(3)参考信号资源集合关联的波束索引顺序;
(4)参考信号资源集合关联的波束角度顺序;
(5)参考信号资源的ID顺序;
(6)参考信号资源关联的波束ID顺序;
(7)参考信号资源关联的波束索引顺序;
(8)参考信号资源关联的波束角度顺序;
(9)波束报告的配置信息中的参考信号资源集合的位置顺序;
(10)波束报告的配置信息中的参考信号资源的位置顺序;
(11)参考信号资源发送和/或接收的时间顺序;
(12)参考信号的优先级顺序。
例如,同时关联SSB和CSI-RS,波束报告中优先反馈SSB确定的波束质量信息,再确定CSI-RS对应的波束质量信息。
在本申请的一种实施方式中,在所述第一顺序包括多个不同的顺序的情况下,所述第一顺序中的不同顺序之间的优先级是根据协议约定、网络侧配置、终端上报、所述终端与 网络侧协商中的至少一种方式确定的。
例如,按照资源集合的位置顺序和资源的位置顺序确定时,先根据资源集合的位置顺序,确定好后,再根据资源集合内的资源的顺序确定。
可选地,ID顺序、索引顺序和角度顺序包括以下之一:从小到大,从大到小。可选地,时间顺序和位置顺序包括以下之一:从前往后,从后往前。
(B)确定方式2:
在本申请的一种实施方式中,所述波束质量信息的预设顺序与波束信息模板顺序一致。
在本申请的一种实施方式中,所述波束信息模板顺序是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述波束报告还包含或关联由终端选择的所述波束信息模板的索引,比如,波束信息模板顺序通过网络配置和终端上报同时确定,网络提前配置多个波束信息模板,终端选择合适的波束信息模板,并在波束报告中包含或关联该波束信息模板索引。
在本申请的一种实施方式中,所述波束报告还包含需要反馈的波束质量信息的数量。
在本申请的一种实施方式中,所述波束报告还包含第二信息,所述第二信息用于指示所述波束报告中的波束质量信息的数量和/或波束位置的数量。
在本申请的一种实施方式中,所述波束报告的配置信息或者所述波束报告中还包含第三信息,所述第三信息用于指示所述波束报告中包含的波束质量信息的周期或时刻的数量。
在本申请的一种实施方式中,所述第二信息的数量与所述第三信息指示的所述周期或时刻的数量相同。
在本申请的一种实施方式中,所述波束报告关联的全部波束位置上的波束质量信息或需要反馈的波束质量信息的数量是由所述波束报告中报告或关联的波束信息模板确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量是由所述终端同时接收的面板(panel)数量确定的,或者由所述终端同时接收波束的数量确定的,或者由波束组数量确定的,所述波束组数量是由组波束报告功能确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量等于单个panel对应的需要反馈的波束质量信息的数量与同时接收的panel数量的乘积,或者,所述需要反馈的波束质量信息的数量等于单个接收波束对应的需要反馈的波束质量信息的数量与同时接收波束的数量的乘积。
在本申请的一种实施方式中,所述波束质量信息的预设顺序是根据panel反馈方式确定,或者是根据波束反馈方式确定。
在本申请的一种实施方式中,所述panel反馈方式包括:多个panel优先,单个panel优先中的至少一种,或者,所述波束反馈方式包括:多个波束优先,单个波束优先中的至少一种。
例如,2panel同时接收,且多个panel优先,波束报告的编码顺序为RSPP1-panel1, RSRP1-panel2,RSRP2-panel1,RSRP2-panel2,…。
例如,2panel同时接收,且单个panel优先,RSPP1-panel1,RSPP2-panel1,….,RSRP1-panel2,RSRP2-panel2。
在本申请的一种实施方式中,在所述波束质量信息使用差分量化方法的情况下,所述差分量化方法中的参考波束质量信息是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。例如,参考波束质量信息可以是波束报告中波束质量信息中的最大值。
在本申请的一种实施方式中,在所述参考波束质量信息包含在所述波束报告关联的全部波束位置上的波束质量信息中的情况下,所述波束报告中包含或关联参考波束信息位置指示信息,所述参考波束信息位置指示信息用于指示参考波束质量信息在所述波束报告关联的全部波束位置上的波束质量信息中的位置。
在本申请的一种实施方式中,所述参考波束信息位置指示信息满足以下至少一项:
(1)所述参考波束信息位置指示信息占用的比特数量是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的;
例如所述参考波束信息位置指示信息占用的比特数量等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量)),或等长度的位图(bitmap)。
(2)所述参考波束信息位置指示信息在波束报告中的位于波束报告中的波束质量信息位置之前。
比如,网络侧根据参考波束位置指示信息优先解码出参考波束质量信息,再根据参考波束质量信息解码出波束报告包含的波束质量信息。
在本申请的一种实施方式中,在所述参考波束质量信息没有包含在所述波束报告关联的全部波束位置上的波束质量信息中时,所述参考波束质量信息在波束报告中的位置是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。例如协议约定所述参考波束质量信息位于所述波束报告的最前面,最后面,或某个反馈区域的特定位置等。
在本申请的一种实施方式中,所述波束位置包括以下至少一项:
(1)波束资源标识;
(2)波束索引;
(3)波束资源索引;
(4)波束资源时域位置;
(5)波束时域位置;
(6)波束角度。
在本申请的一种实施方式中,所述波束报告的发送方式是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述波束报告包括发送指示信息,所述发送指示信息用 于指示所述波束报告的发送方式。
在本申请的一种实施方式中,所述发送指示信息占用的比特数是根据波束报告的预设发送方式的数量确定的,所述预设发送方式的数量是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,发送指示信息包括类型指示信息。例如发送指示信息是2bit,分别用于指示方式1,方式2,方式3中第二位置指示信息用于指示需反馈的波束指示信息的情况,方式4。
在本申请实施例中,波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关,这样波束报告可以不携带波束位置或者少携带波束位置,在减少波束报告的开销的同时,也能确保网络侧能正确解码该波束报告。
参见图8,本申请实施例提供一种传输方法,应用于网络侧设备,包括:
步骤801:网络侧设备接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
在本申请的一种实施方式中,在所述波束报告包含波束报告关联的全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第二位置的第二位置指示信息以及指示所述第二位置的类型的类型指示信息,所述类型指示信息用于指示所述第二位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置是需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
在本申请的一种实施方式中,所述方法还包括:
所述网络侧设备根据所述第一位置指示信息或第二位置指示信息确定不需要反馈的波束质量信息为默认值。
可选地,默认值通过协议约定,终端的AI模型能力上报,网络的AI模型能力交互等方式确定。例如,所述AI模型能力交互方式确定是默认值等于模型能力交互值中的上限 值或下限值。例如,协议约定方式的默认值为波束质量信息量化区间的下限值或参考波束质量信息量化区间的下限值。
在本申请的一种实施方式中,所述波束位置包括以下至少一项:
(1)波束资源标识;
(2)波束索引;
(3)波束资源索引;
(4)波束资源时域位置;
(5)波束时域位置;
(6)波束角度。
在本申请的一种实施方式中,所述第一位置指示信息满足以下至少一项:
(1)所述第一位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量或数量之和;
(2)所述第一位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,在波束报告关联的全部波束位置上的波束质量信息的数量对应的比特数大于或等于波束质量信息量化比特数或差分量化比特数的情况下,所述波束报告包含全部波束位置上的波束质量信息,所述波束报告不包含所述第一位置指示信息。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是不需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
(1)所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量;
(2)所述第二位置指示信息的数量等于所述波束报告中包含的所有反馈时刻对应的波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量之和;
例如,波束报告中包含2个反馈时刻,第一个反馈时刻中有4个波束位置的波束质量信息不反馈,第二个反馈时刻中有2个波束位置的波束质量信息不反馈,则第二位置指示信息的数量应该是6个。
(2)所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第一位置指示信息或者所述第二位置指示信息占用的比特数通过以下之一确定:
(1)所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
(2)所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的不需要反馈的波 束质量信息的数量))。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
(1)所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中需要反馈的波束质量信息的数量或数量之和;
(2)所述第二位置指示信息占用的比特数是根据全部波束位置中使能的波束位置的数量或数量之和确定的;
(3)所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括以下之一:
(1)所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
(2)所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的需要反馈的波束质量信息的数量))。
在本申请的一种实施方式中,所述波束报告还包括:
第一信息,所述第一信息用于指示所述第一位置指示信息或所述第二位置指示信息占用的比特数的确定方式。
在本申请的一种实施方式中,在所述波束报告包含多个第一位置指示信息或多个第二位置指示信息的情况下,所述多个第一位置指示信息或第二位置指示信息在所述波束报告中的编码位置相邻。
在本申请的一种实施方式中,所述第一位置指示信息或所述第二位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。
在本申请的一种实施方式中,所述比特位图占用的比特数是由所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,波束报告包含或关联的全部波束位置上的波束质量信息是根据与所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源确定的,或者,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据预先配置的波束位置资源池确定。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源的数量确定的;
或者,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的波束位置资源的数量确定的。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与所述波束报告的配置信 息中关联和/或使能的参考信号资源集合和/或参考信号资源的顺序一致,所述参考信号资源集合和/或参考信号资源用于获得所述波束报告包含或关联的全部波束位置上的波束质量信息。
在本申请的一种实施方式中,所述参考信号资源集合或参考信号资源的顺序按照第一顺序确定;
其中,所述第一顺序包括以下至少一项:
(1)参考信号资源集合的标识ID顺序;
(2)参考信号资源集合关联的波束ID顺序;
(3)参考信号资源集合关联的波束索引顺序;
(4)参考信号资源集合关联的波束角度顺序;
(5)参考信号资源的ID顺序;
(6)参考信号资源关联的波束ID顺序;
(7)参考信号资源关联的波束索引顺序;
(8)参考信号资源关联的波束角度顺序;
(9)波束报告的配置信息中的参考信号资源集合的位置顺序;
(10)波束报告的配置信息中的参考信号资源的位置顺序;
(11)参考信号资源发送和/或接收的时间顺序;
(12)参考信号的优先级顺序。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与波束信息模板顺序一致。
在本申请的一种实施方式中,所述波束报告还包含或关联由终端选择的波束信息模板的索引,和/或所述波束报告还包含需要反馈的波束质量信息的数量。
在本申请的一种实施方式中,所述波束报告还包含第二信息,所述第二信息用于指示所述波束报告中的波束质量信息的数量和/或波束位置的数量。
在本申请的一种实施方式中,所述波束报告的配置信息或者所述波束报告中还包含第三信息,所述第三信息用于指示所述波束报告中包含的波束质量信息的周期或时刻的数量。
在本申请的一种实施方式中,所述第二信息的数量与所述第三信息指示的所述周期或时刻的数量相同。
在本申请的一种实施方式中,所述波束报告关联的全部波束位置上的波束质量信息或需要反馈的波束质量信息的数量是由所述波束报告中报告或关联的波束信息模板确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量是由所述终端同时接收的面板panel数量确定的,或者由所述终端同时接收波束的数量确定的,或者由波束组数量确定的,所述波束组数量是由组波束报告功能确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量等于单个panel对应的需要反馈的波束质量信息的数量与同时接收的panel数量的乘积,或者,所述需要反馈的波束质量信息的数量等于单个接收波束对应的需要反馈的波束质量信息的数量与同 时接收波束的数量的乘积。
在本申请的一种实施方式中,所述波束质量信息的预设顺序是根据panel反馈方式确定,或者是根据波束反馈方式确定。
在本申请的一种实施方式中,所述panel反馈方式包括:多个panel优先,单个panel优先中的至少一种,或者,所述波束反馈方式包括:多个波束优先,单个波束优先中的至少一种。
在本申请的一种实施方式中,在所述波束质量信息使用差分量化方法的情况下,所述差分量化方法中的参考波束质量信息是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,在所述参考波束质量信息包含在所述波束报告关联的全部波束位置上的波束质量信息中的情况下,所述波束报告中包含或关联参考波束信息位置指示信息,所述参考波束信息位置指示信息用于指示参考波束质量信息在所述波束报告关联的全部波束位置上的波束质量信息中的位置。
在本申请的一种实施方式中,所述参考波束信息位置指示信息满足以下至少一项:
(1)所述参考波束信息位置指示信息占用的比特数量是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的;
(2)所述参考波束信息位置指示信息在波束报告中的位于波束报告中的波束质量信息位置之前。
在本申请的一种实施方式中,在所述参考波束质量信息没有包含在所述波束报告关联的全部波束位置上的波束质量信息中时,所述参考波束质量信息在波束报告中的位置是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述参考波束质量信息在波束报告中的位于所述波束报告中的波束质量信息位置之前。
在本申请实施例中,波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关,这样波束报告可以不携带波束位置或者少携带波束位置,在减少波束报告的开销的同时,也能确保网络侧能正确解码该波束报告。
参见图9,本申请实施例提供一种传输装置,应用于终端,该装置900包括:
第一发送模块901,用于发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
在本申请的一种实施方式中,在所述波束报告包含全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第二位置的第二位置指示信息以及指示所述第二位置的类型的类型指示信息,所述类型指示信息用于指示所述第二位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置是需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
在本申请的一种实施方式中,所述波束位置包括以下至少一项:
波束资源标识;
波束索引;
波束资源索引;
波束资源时域位置;
波束时域位置;
波束角度。
在本申请的一种实施方式中,所述波束报告的发送方式是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述波束报告包括发送指示信息,所述发送指示信息用于指示所述波束报告的发送方式。
在本申请的一种实施方式中,所述发送指示信息占用的比特数是根据波束报告的预设发送方式的数量确定的,所述预设发送方式的数量是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述第一位置指示信息满足以下至少一项:
所述第一位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量或数量之和;
所述第一位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,在波束报告关联的全部波束位置上的波束质量信息的数量对应的比特数大于或等于波束质量信息量化比特数或差分量化比特数的情况下,所述波束报告包含波束报告关联的全部波束位置上的波束质量信息,所述波束报告不包含所述第一位置指示信息。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置指示信息指示的 位置是不需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量;
所述第二位置指示信息的数量等于所述波束报告中包含的所有反馈时刻对应的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量之和;
所述第二位置指示信息占用的比特数是根据全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
或者,
所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的不需要反馈的波束质量信息的数量))。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置指示信息指示的位置是需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中需要反馈的波束质量信息的数量或数量之和;
所述第二位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置中使能的波束位置的数量或数量之和确定的;
所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括:
所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
或者,
所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的需要反馈的波束质量信息的数量))。
在本申请的一种实施方式中,所述装置还包括:
第一获取模块,用于根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式,获取所述第一位置指示信息或所述第二位置指示信息占用的比特数的确定方式。
在本申请的一种实施方式中,所述波束报告还包括:
第一信息,所述第一信息用于指示所述第一位置指示信息或所述第二位置指示信息占 用的比特数的确定方式。
在本申请的一种实施方式中,在所述波束报告包含多个第一位置指示信息或多个第二位置指示信息的情况下,所述多个第一位置指示信息或多个第二位置指示信息在所述波束报告中的编码位置相邻。
在本申请的一种实施方式中,所述第一位置指示信息或所述第二位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。
在本申请的一种实施方式中,所述比特位图占用的比特数是由所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据与所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源确定的,或者,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据预先配置的波束位置资源池确定。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源的数量确定的;
或者,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的波束位置资源的数量确定的。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与所述波束报告的配置信息中关联和/或使能的参考信号资源集合和/或参考信号资源的顺序一致,所述参考信号资源集合和/或参考信号资源用于获得所述波束报告包含或关联的全部波束位置上的波束质量信息。
在本申请的一种实施方式中,所述参考信号资源集合或参考信号资源的顺序按照第一顺序确定;
其中,所述第一顺序包括以下至少一项:
参考信号资源集合的标识ID顺序;
参考信号资源集合关联的波束ID顺序;
参考信号资源集合关联的波束索引顺序;
参考信号资源集合关联的波束角度顺序;
参考信号资源的ID顺序;
参考信号资源关联的波束ID顺序;
参考信号资源关联的波束索引顺序;
参考信号资源关联的波束角度顺序;
波束报告的配置信息中的参考信号资源集合的位置顺序;
波束报告的配置信息中的参考信号资源的位置顺序;
参考信号资源发送和/或接收的时间顺序;
参考信号的优先级顺序。
在本申请的一种实施方式中,在所述第一顺序包括多个不同的顺序的情况下,所述第一顺序中的不同顺序之间的优先级是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与波束信息模板顺序一致。
在本申请的一种实施方式中,所述波束信息模板顺序是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述波束报告还包含或关联由终端选择的所述波束信息模板的索引,和/或所述波束报告还包含需要反馈的波束质量信息的数量。
在本申请的一种实施方式中,所述波束报告还包含第二信息,所述第二信息用于指示所述波束报告中的波束质量信息的数量和/或波束位置的数量。
在本申请的一种实施方式中,所述波束报告的配置信息或者所述波束报告中还包含第三信息,所述第三信息用于指示所述波束报告中包含的波束质量信息的周期或时刻的数量。
在本申请的一种实施方式中,所述第二信息的数量与所述第三信息指示的所述周期或时刻的数量相同。
在本申请的一种实施方式中,所述波束报告关联的全部波束位置上的波束质量信息或需要反馈的波束质量信息的数量是由所述波束报告中报告或关联的波束信息模板确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量是由所述终端同时接收的多个面板panel数量确定的,或者由所述终端同时接收波束的数量确定的,或者由波束组数量确定的,所述波束组数量是由组波束报告功能确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量等于单个panel对应的需要反馈的波束质量信息的数量与同时接收的panel数量的乘积,或者,所述需要反馈的波束质量信息的数量等于单个接收波束对应的需要反馈的波束质量信息的数量与同时接收波束的数量的乘积。
在本申请的一种实施方式中,所述波束质量信息的预设顺序是根据panel反馈方式确定,或者是根据波束反馈方式确定。
在本申请的一种实施方式中,所述panel反馈方式包括:多个panel优先,单个panel优先中的至少一种,或者,所述波束反馈方式包括:多个波束优先,单个波束优先中的至少一种。
在本申请的一种实施方式中,在所述波束质量信息使用差分量化方法的情况下,所述差分量化方法中的参考波束质量信息是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,在所述参考波束质量信息包含在所述波束报告关联的全部波束位置上的波束质量信息中的情况下,所述波束报告中包含或关联参考波束信息位置指示信息,所述参考波束信息位置指示信息用于指示参考波束质量信息在所述波束报告关 联的全部波束位置上的波束质量信息中的位置。
在本申请的一种实施方式中,所述参考波束信息位置指示信息满足以下至少一项:
所述参考波束信息位置指示信息占用的比特数量是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的;
所述参考波束信息位置指示信息在波束报告中的位于波束报告中的波束质量信息位置之前。
在本申请的一种实施方式中,在所述参考波束质量信息没有包含在所述波束报告关联的全部波束位置上的波束质量信息中时,所述参考波束质量信息在波束报告中的位置是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述参考波束质量信息在波束报告中的位于所述波束报告中的波束质量信息位置之前。
本申请实施例提供的装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图10,本申请实施例提供一种传输装置,应用于网络侧设备,该装置1000包括:
第一接收模块1001,用于接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
在本申请的一种实施方式中,在所述波束报告包含全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含或关联类型指示信息和第二位置指示信息,所述类型指示信息用于指示所述第二位置指示信息指示的位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置指示信息指示的位置是需要反馈波束质量信息的位置;
或者,
在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
在本申请的一种实施方式中,所述装置还包括:
第二确定模块,用于根据所述第一位置指示信息或第二位置指示信息确定不需要反馈 的波束质量信息为默认值。
在本申请的一种实施方式中,所述波束位置包括以下至少一项:
波束资源标识;
波束索引;
波束资源索引;
波束资源时域位置;
波束时域位置;
波束角度。
在本申请的一种实施方式中,所述第一位置指示信息满足以下至少一项:
所述第一位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量或数量之和;
所述第一位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,在波束报告关联的全部波束位置上的波束质量信息的数量对应的比特数大于或等于波束质量信息量化比特数或差分量化比特数的情况下,所述波束报告包含全部波束位置上的波束质量信息,所述波束报告不包含所述第一位置指示信息。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是不需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量;
所述第二位置指示信息的数量等于所述波束报告中包含的所有反馈时刻对应的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量之和;
所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
或者,
所述第一位置指示信息或者所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的不需要反馈的波束质量信息的数量))。
在本申请的一种实施方式中,在所述类型指示信息用于指示第二位置是需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
所述第二位置指示信息的数量等于波束报告关联的全部波束位置上的波束质量信息中需要反馈的波束质量信息的数量或数量之和;
所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置中使能的 波束位置的数量或数量之和确定的;
所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述第二位置指示信息占用的比特数是根据波束报告关联的全部波束位置上的波束质量信息的数量确定的,包括:
所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量));
或者,
所述第二位置指示信息占用的比特数等于上取整(log2(波束报告关联的全部波束位置上的波束质量信息的数量-已指示的需要反馈的波束质量信息的数量))。
在本申请的一种实施方式中,,所述波束报告还包括:
第一信息,所述第一信息用于指示所述第一位置指示信息或所述第二位置指示信息占用的比特数的确定方式。
在本申请的一种实施方式中,在所述波束报告包含多个第一位置指示信息或多个第二位置指示信息的情况下,所述多个第一位置指示信息或第二位置指示信息在所述波束报告中的编码位置相邻。
在本申请的一种实施方式中,所述第一位置指示信息或所述第二位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。
在本申请的一种实施方式中,所述比特位图占用的比特数是由所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据与所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源确定的,或者,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据预先配置的波束位置资源池确定。
在本申请的一种实施方式中,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源的数量确定的;
或者,所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的波束位置资源的数量确定的。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与所述波束报告的配置信息中关联和/或使能的参考信号资源集合和/或参考信号资源的顺序一致,所述参考信号资源集合和/或参考信号资源用于获得所述波束报告包含或关联的全部波束位置上的波束质量信息。
在本申请的一种实施方式中,所述参考信号资源集合或参考信号资源的顺序按照第一顺序确定;
其中,所述第一顺序包括以下至少一项:
参考信号资源集合的ID顺序;
参考信号资源集合的关联的波束ID顺序;
参考信号资源集合关联的波束索引顺序;
参考信号资源集合关联的波束角度顺序;
参考信号资源的ID顺序;
参考信号资源的关联的波束ID顺序;
参考信号资源关联的波束索引顺序;
参考信号资源关联的波束角度顺序;
波束报告的配置信息中的参考信号资源集合的位置顺序;
波束报告的配置信息中的参考信号资源的位置顺序;
参考信号资源发送和/或接收的时间顺序;
参考信号的优先级顺序。
在本申请的一种实施方式中,所述波束质量信息的预设顺序与波束信息模板顺序一致。
在本申请的一种实施方式中,所述波束报告还包含或关联由终端选择的波束信息模板的索引,和/或所述波束报告还包含需要反馈的波束质量信息的数量。
在本申请的一种实施方式中,所述波束报告还包含第二信息,所述第二信息用于指示所述波束报告中的波束质量信息的数量和/或波束位置的数量。
在本申请的一种实施方式中,所述波束报告的配置信息或者所述波束报告中还包含第三信息,所述第三信息用于指示所述波束报告中包含的波束质量信息的周期或时刻的数量。
在本申请的一种实施方式中,所述第二信息的数量与所述第三信息指示的所述周期或时刻的数量相同。
在本申请的一种实施方式中,所述波束报告关联的全部波束位置上的波束质量信息或需要反馈的波束质量信息的数量是由所述波束报告中报告或关联的波束信息模板确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量是由所述终端同时接收的面板panel数量确定的,或者由所述终端同时接收波束的数量确定的,或者由波束组数量确定的,所述波束组数量是由组波束报告功能(groupBasedBeamReport)确定的。
在本申请的一种实施方式中,所述需要反馈的波束质量信息的数量等于单个panel对应的需要反馈的波束质量信息的数量与同时接收的panel数量的乘积,或者,所述需要反馈的波束质量信息的数量等于单个接收波束对应的需要反馈的波束质量信息的数量与同时接收波束的数量的乘积。
在本申请的一种实施方式中,所述波束质量信息的预设顺序是根据panel反馈方式确定或者是根据波束反馈方式确定。
在本申请的一种实施方式中,所述panel反馈方式包括:多个panel优先,单个panel优先中的至少一种,或者,所述波束反馈方式包括:多个波束优先,单个波束优先中的至 少一种。
在本申请的一种实施方式中,在所述波束质量信息使用差分量化方法的情况下,所述差分量化方法中的参考波束质量信息是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,在所述参考波束质量信息包含在所述波束报告关联的全部波束位置上的波束质量信息中的情况下,所述波束报告中包含或关联参考波束信息位置指示信息,所述参考波束信息位置指示信息用于指示参考波束质量信息在所述波束报告关联的全部波束位置上的波束质量信息中的位置。
在本申请的一种实施方式中,所述参考波束信息位置指示信息满足以下至少一项:
所述参考波束信息位置指示信息占用的比特数量是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的;
所述参考波束信息位置指示信息在波束报告中的位于波束报告中的波束质量信息位置之前。
在本申请的一种实施方式中,在所述参考波束质量信息没有包含在所述波束报告关联的全部波束位置上的波束质量信息中时,所述参考波束质量信息在波束报告中的位置是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
在本申请的一种实施方式中,所述参考波束质量信息在波束报告中的位于所述波束报告中的波束质量信息位置之前。
本申请实施例提供的装置能够实现图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11为实现本申请实施例的一种终端的硬件结构示意图。该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸 控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选地,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
本申请实施例提供的终端能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参阅图12,图12是本发明实施例应用的通信设备的结构图,如图12所示,通信设备1200包括:处理器1201、收发机1202、存储器1203和总线接口,其中,处理器1201可以负责管理总线架构和通常的处理。存储器1203可以存储处理器1201在执行操作时所使用的数据。
在本发明的一个实施例中,通信设备1200还包括:存储在存储器1203并可在处理器1201上运行的程序,程序被处理器1201执行时实现以上图8所示方法中的步骤。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202 可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
可选地,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述图7方法实施例的各个步骤,该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述图8方法实施例的各个步骤且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现图7或图8方法及上述各个实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现图7或图8所示及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现图7或图8所示及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如图7及上述各个方法实施例的各个过程,所述网络侧设备用于执行如图8及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可 借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种传输方法,包括:
    终端发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
  2. 根据权利要求1所述的方法,其中,
    在所述波束报告包含全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第二位置的第二位置指示信息以及指示所述第二位置的类型的类型指示信息,所述类型指示信息用于指示所述第二位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置是需要反馈波束质量信息的位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
  3. 根据权利要求1或2所述的方法,其中,所述波束位置包括以下至少一项:
    波束资源标识;
    波束索引;
    波束资源索引;
    波束资源时域位置;
    波束时域位置;
    波束角度。
  4. 根据权利要求1所述的方法,其中,所述波束报告包括发送指示信息,所述发送指示信息用于指示所述波束报告的发送方式,其中,所述发送指示信息占用的比特数是根据波束报告的预设发送方式的数量确定的,所述预设发送方式的数量是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
  5. 根据权利要求2所述的方法,其中,所述第一位置指示信息满足以下至少一项:
    所述第一位置指示信息的数量等于所述波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量或数量之和;
    所述第一位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量或数量之和确定的。
  6. 根据权利要求2所述的方法,其中,在所述波束报告关联的全部波束位置上的波束质量信息的数量对应的比特数大于或等于波束质量信息量化比特数或差分量化比特数的情况下,所述波束报告包含全部波束位置上的波束质量信息,所述波束报告不包含所述第一位置指示信息。
  7. 根据权利要求2所述的方法,其中,在所述类型指示信息用于指示第二位置是不需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
    所述第二位置指示信息的数量等于所述波束报告关联的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量;
    所述第二位置指示信息的数量等于所述波束报告中包含的所有反馈时刻对应的全部波束位置上的波束质量信息中不需要反馈的波束质量信息的数量之和;
    所述第二位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的;
    或者,
    在所述类型指示信息用于指示第二位置是需要反馈波束质量信息的位置的情况下,所述第二位置指示信息满足以下至少一项:
    所述第二位置指示信息的数量等于所述波束报告关联的全部波束位置上的波束质量信息中需要反馈的波束质量信息的数量或数量之和;
    所述第二位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置中使能的波束位置的数量或数量之和确定的;
    所述第二位置指示信息占用的比特数是根据所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
  8. 根据权利要求5所述的方法,其中,
    所述第一位置指示信息占用的比特数等于上取整(log2(所述波束报告关联的全部波束位置上的波束质量信息的数量));
    或者,
    所述第一位置指示信息占用的比特数等于上取整(log2(所述波束报告关联的全部波束位置上的波束质量信息的数量与已指示的不需要反馈的波束质量信息的数量之差))。
  9. 根据权利要求7所述的方法,其中,
    所述第二位置指示信息占用的比特数等于上取整(log2(所述波束报告关联的全部波束位置上的波束质量信息的数量));
    或者,
    所述第二位置指示信息占用的比特数等于上取整(log2(所述波束报告关联的全部波束位置上的波束质量信息的数量与已指示的需要反馈的波束质量信息的数量之差))。
  10. 根据权利要求1所述的方法,其中,所述波束报告还包括:
    第一信息,所述第一信息用于指示所述第一位置指示信息或所述第二位置指示信息占用的比特数的确定方式。
  11. 根据权利要求2、5或7所述的方法,其中,在所述波束报告包含多个第一位置指示信息或多个第二位置指示信息的情况下,所述多个第一位置指示信息或多个第二位置指示信息在所述波束报告中的编码位置相邻。
  12. 根据权利要求2或11所述的方法,其中,所述第一位置指示信息或所述第二位置指示信息在所述波束报告中的编码位置在波束质量信息编码位置之前。
  13. 根据权利要求2所述的方法,其中,所述比特位图占用的比特数是由所述波束报告关联的全部波束位置上的波束质量信息的数量确定的。
  14. 根据权利要求1或2所述的方法,其中,所述波束报告包含或关联的全部波束位置上的波束质量信息是根据与所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源确定的;
    或者,
    所述波束报告包含或关联的全部波束位置上的波束质量信息是根据预先配置的波束位置资源池确定的;
    或者,
    所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的参考信号资源集合和/或参考信号资源的数量确定的;
    或者,
    所述波束报告包含或关联的全部波束位置上的波束质量信息的数量是根据所述波束报告关联的,用于波束测量的波束位置资源的数量确定的。
  15. 根据权利要求1所述的方法,其中,所述波束质量信息的预设顺序与所述波束报告的配置信息中关联和/或使能的参考信号资源集合和/或参考信号资源的顺序一致,所述参考信号资源集合和/或参考信号资源用于获得所述波束报告关联的全部波束位置上的波束质量信息;
    其中,所述参考信号资源集合或参考信号资源的顺序按照第一顺序确定;
    其中,所述第一顺序包括以下至少一项:
    参考信号资源集合的标识ID顺序;
    参考信号资源集合关联的波束ID顺序;
    参考信号资源集合关联的波束索引顺序;
    参考信号资源集合关联的波束角度顺序;
    参考信号资源的ID顺序;
    参考信号资源关联的波束ID顺序;
    参考信号资源关联的波束索引顺序;
    参考信号资源关联的波束角度顺序;
    波束报告的配置信息中的参考信号资源集合的位置顺序;
    波束报告的配置信息中的参考信号资源的位置顺序;
    参考信号资源发送和/或接收的时间顺序;
    参考信号的优先级顺序。
  16. 根据权利要求1所述的方法,其中,所述波束质量信息的预设顺序与波束信息模板顺序一致。
  17. 根据权利要求1所述的方法,其中,所述波束报告还包含或关联由终端选择的所述波束信息模板的索引。
  18. 根据权利要求1、2或17所述的方法,其中,所述波束报告还包含第二信息,所述第二信息用于指示所述波束报告中的波束质量信息的数量和/或波束位置的数量。
  19. 根据权利要求1、2、17或18所述的方法,其中,所述波束报告的配置信息或者所述波束报告中还包含第三信息,所述第三信息用于指示所述波束报告中包含的波束质量信息的周期或时刻的数量。
  20. 根据权利要求19所述的方法,其中,所述第二信息的数量与所述第三信息指示的所述周期或时刻数量的相同。
  21. 根据权利要求17所述的方法,其中,所述波束报告关联的全部波束位置上的波束质量信息或需要反馈的波束质量信息的数量是由所述波束报告中报告或关联的波束信息模板确定的。
  22. 根据权利要求1所述的方法,其中,所述需要反馈的波束质量信息的数量是由所述终端同时接收的面板panel数量确定的,或者是由所述终端同时接收波束的数量确定的,或者是由波束组数量确定的,所述波束组数量是由组波束报告功能确定的。
  23. 根据权利要求22所述的方法,其中,所述需要反馈的波束质量信息的数量等于单个panel对应的需要反馈的波束质量信息的数量与同时接收的panel数量的乘积,或者,所述需要反馈的波束质量信息的数量等于单个接收波束对应的需要反馈的波束质量信息的数量与同时接收波束的数量的乘积。
  24. 根据权利要求1所述的方法,其中,所述波束质量信息的预设顺序是根据panel反馈方式确定,或者是根据波束反馈方式确定;
    其中,所述panel反馈方式包括:多个panel优先,单个panel优先中的至少一种,或者,所述波束反馈方式包括:多个波束优先,单个波束优先中的至少一种。
  25. 根据权利要求1所述的方法,其中,在所述波束质量信息使用差分量化方法的情况下,所述差分量化方法中的参考波束质量信息是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
  26. 根据权利要求25所述的方法,其中,在所述参考波束质量信息包含在所述波束报告包含或关联的全部波束位置上的波束质量信息中的情况下,所述波束报告中包含或关联参考波束信息位置指示信息,所述参考波束信息位置指示信息用于指示参考波束质量信息在所述全部波束位置上的波束质量信息中的位置。
  27. 根据权利要求26所述的方法,其中,所述参考波束信息位置指示信息满足以下至少一项:
    所述参考波束信息位置指示信息占用的比特数量是根据所述全部波束位置上的波束质量信息的数量确定的;
    所述参考波束信息位置指示信息在波束报告中的位于波束报告中的波束质量信息位置之前。
  28. 根据权利要求26所述的方法,其中,在所述参考波束质量信息没有包含在所述全部波束位置上的波束质量信息中时,所述参考波束质量信息在波束报告中的位置是根据协议约定、网络侧配置、终端上报、所述终端与网络侧协商中的至少一种方式确定的。
  29. 根据权利要求28所述的方法,其中,所述参考波束质量信息在波束报告中的位于所述波束报告中的波束质量信息位置之前。
  30. 一种传输方法,包括:
    网络侧设备接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
  31. 根据权利要求30所述的方法,其中,
    在所述波束报告包含全部波束位置上的波束质量信息的情况下,所述波束报告不包含波束位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示第一位置的第一位置指示信息,所述第一位置为所述波束报告中不需要反馈波束质量信息的位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含或关联类型指示信息和第二位置指示信息,所述类型指示信息用于指示所述第二位置指示信息指示的位置是不需要反馈波束质量信息的位置,或所述类型指示信息用于指示所述第二位置指示信息指示的位置是需要反馈波束质量信息的位置;
    或者,
    在所述波束报告包含部分波束位置上的波束质量信息的情况下,所述波束报告还包含指示部分波束位置的第三位置指示信息,所述第三位置指示信息为比特位图,所述比特位图的比特顺序与以下至少之一的顺序一致:参考信号资源集合,参考信号资源,波束信息模板;其中,所述参考信号资源集合和参考信号资源是所述波束报告关联的、用于波束测 量的资源,所述波束信息模板用于确定与所述波束报告关联的、用于波束测量的波束位置。
  32. 根据权利要求31所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述第一位置指示信息或第二位置指示信息确定不需要反馈的波束质量信息为默认值。
  33. 根据权利要求30或31所述的方法,其中,所述波束位置包括以下至少一项:
    波束资源标识;
    波束索引;
    波束资源索引;
    波束资源时域位置;
    波束时域位置;
    波束角度。
  34. 一种传输装置,包括:
    第一发送模块,用于发送波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
  35. 一种传输装置,包括:
    第一接收模块,用于接收波束报告,所述波束报告包括按照预设顺序排列的波束质量信息,所述预设顺序与波束位置相关。
  36. 一种通信设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至29中任一项所述的方法的步骤或如权利要求30至33中任一项所述的方法的步骤。
  37. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至29中任一项所述的方法的步骤或如权利要求30至33中任一项所述的方法的步骤。
PCT/CN2023/123324 2022-10-14 2023-10-08 传输方法、装置、通信设备及可读存储介质 WO2024078405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211262707.0 2022-10-14
CN202211262707.0A CN117938214A (zh) 2022-10-14 2022-10-14 传输方法、装置、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024078405A1 true WO2024078405A1 (zh) 2024-04-18

Family

ID=90668813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123324 WO2024078405A1 (zh) 2022-10-14 2023-10-08 传输方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117938214A (zh)
WO (1) WO2024078405A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162827A (zh) * 2020-03-06 2020-05-15 大唐移动通信设备有限公司 波束管理方法、装置、网络侧设备、终端及存储介质
CN113260057A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 无线通信的方法和装置以及通信设备
WO2021231468A1 (en) * 2020-05-11 2021-11-18 Qualcomm Incorporated Measurement report payload reduction techniques
CN114340015A (zh) * 2018-09-20 2022-04-12 北京小米移动软件有限公司 一种通信方法、装置、终端、基站和存储介质
CN114765799A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 波束测量上报方法、装置、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340015A (zh) * 2018-09-20 2022-04-12 北京小米移动软件有限公司 一种通信方法、装置、终端、基站和存储介质
CN113260057A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 无线通信的方法和装置以及通信设备
CN111162827A (zh) * 2020-03-06 2020-05-15 大唐移动通信设备有限公司 波束管理方法、装置、网络侧设备、终端及存储介质
WO2021231468A1 (en) * 2020-05-11 2021-11-18 Qualcomm Incorporated Measurement report payload reduction techniques
CN114765799A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 波束测量上报方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN117938214A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN114390580B (zh) 波束上报方法、波束信息确定方法及相关设备
WO2023040887A1 (zh) 信息上报方法、装置、终端及可读存储介质
US20230244911A1 (en) Neural network information transmission method and apparatus, communication device, and storage medium
WO2024078405A1 (zh) 传输方法、装置、通信设备及可读存储介质
WO2024104070A1 (zh) 波束报告的发送方法、接收方法、装置及通信设备
WO2024093713A1 (zh) 资源配置方法、装置、通信设备及可读存储介质
WO2024160085A1 (zh) 通信处理方法、装置、设备及可读存储介质
WO2024164962A1 (zh) 通信处理方法、装置、设备及可读存储介质
WO2024160086A1 (zh) 通信处理方法、装置、设备及可读存储介质
WO2024125391A2 (zh) Ai模型监测方法、ai模型性能的测量方法、装置及设备
WO2024032694A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024041421A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024041420A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024067665A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024099091A1 (zh) 波束预测方法、装置、终端、网络侧设备及存储介质
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质
WO2024099094A1 (zh) 波束测量方法、装置、终端、网络侧设备及存储介质
WO2024041419A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024149157A1 (zh) Csi传输方法、装置、终端及网络侧设备
WO2024032695A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024046206A1 (zh) 接收方法、设备及可读存储介质
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2024149156A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024222573A1 (zh) 信息处理方法、信息处理装置、终端及网络侧设备
WO2024208211A1 (zh) Csi预测性能的监测方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876607

Country of ref document: EP

Kind code of ref document: A1