[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024057445A1 - Elevator - Google Patents

Elevator Download PDF

Info

Publication number
WO2024057445A1
WO2024057445A1 PCT/JP2022/034420 JP2022034420W WO2024057445A1 WO 2024057445 A1 WO2024057445 A1 WO 2024057445A1 JP 2022034420 W JP2022034420 W JP 2022034420W WO 2024057445 A1 WO2024057445 A1 WO 2024057445A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
attenuation
caught
elongated object
photographing device
Prior art date
Application number
PCT/JP2022/034420
Other languages
French (fr)
Japanese (ja)
Inventor
典宏 長徳
智史 山▲崎▼
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to PCT/JP2022/034420 priority Critical patent/WO2024057445A1/en
Publication of WO2024057445A1 publication Critical patent/WO2024057445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present disclosure relates to an elevator.
  • Patent Document 1 the technology described in Patent Document 1 is known as a countermeasure against earthquakes in elevators.
  • this technology during automatic diagnostic recovery operation after an earthquake occurs, the car is operated at a slower speed than normal, and the possibility of a long object being caught is detected from changes in the torque of the hoisting machine.
  • an object of the present disclosure is to provide an elevator that can directly and accurately determine whether or not a long object is caught after an earthquake.
  • an elevator includes a car, a lifting mechanism for raising and lowering the car, an upper area attached to the car and located above the car, and an upper area below the car.
  • a photographing device capable of photographing at least one of the lower regions located on the side; an illumination device attached to the basket and irradiating light to at least part of the upper region and the lower region; and a lighting device capable of detecting an earthquake.
  • an earthquake sensor and when the earthquake sensor detects an earthquake, the cage stops, and after the cage stops, the photographing device photographs at least a part of at least one elongated object, and the photographing device It is determined whether the at least one elongated object is caught based on the at least part of the images taken by the device.
  • the present disclosure it is determined whether a long object is caught based on an image of at least a portion of at least one long object taken by a photographing device after the basket is stopped due to earthquake sensing. Therefore, it is possible to directly and accurately determine whether a long object is caught.
  • a two-dimensional waveform defined by time and a deflection amount in one direction at a reference point of the elongated object is generated based on the image; , it may be determined whether the elongated object is caught based on the two-dimensional waveform. Note that at the reference point of a long object when no earthquake occurs, the amount of deflection is 0 (zero).
  • the at least one elongated object is caught on the basis of a plurality of attenuation peaks that can be confirmed in the two-dimensional waveform, and the attenuation peak is a maximum point of shake in the two-dimensional waveform, and It may be a maximum point where there is no maximum point of the amount of runout greater than the attenuation peak at a time after the time when the attenuation peak occurs.
  • the reference location may include a location closest to the center of the image.
  • the reference location may include a location of the elongated object where the shake is largest in the image.
  • the reference location may be a marked location on the elongated object.
  • the mark may be, for example, a light-reflecting member fixed to the reference point of the long object, or a paint such as fluorescent paint applied to the reference point of the long object.
  • the storage unit stores a plurality of reference two-dimensional waveforms in advance. It may also be possible to determine if the object is caught.
  • Multiple standard two-dimensional waveforms differ for typical multiple types of earthquakes, such as pitching, lateral shaking, long-period ground motion, earthquakes with different magnitudes, etc. (two-dimensional waveform) may be created in advance for each landing on each floor and stored in advance in the storage section of the elevator. Then, one standard two-dimensional waveform is selected from a plurality of standard two-dimensional waveforms based on the landing area of the car that stopped when an earthquake actually occurred and the type of earthquake identified based on information detected by the earthquake sensor. It is also possible to determine whether a long object is caught by selecting a dimensional waveform and comparing the selected reference two-dimensional waveform with a two-dimensional waveform based on photography. In this way, it is easy to accurately determine whether a long object is caught.
  • the photographing device may photograph a plurality of different long objects, generate the two-dimensional waveform for each long object, and generate a plurality of different two-dimensional waveforms for each of the plurality of long objects. Based on the waveform, it may be determined whether one or more of the plurality of elongated objects is caught.
  • multiple long objects may exhibit similar swing behavior in relation to the same earthquake. Therefore, it may be possible to determine whether a long object is caught, and whose behavior is significantly different from that of other long objects and whose swinging behavior is unique. According to this configuration, a plurality of mutually different two-dimensional waveforms are generated for a plurality of elongated objects. Therefore, it may be possible to determine whether a long object is caught and exhibits unusual swinging behavior.
  • a local attenuation rate which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform, is a first threshold value or less; If it is larger than one threshold value, it may be determined that the elongated object is caught.
  • the 10% or less portion of the two-dimensional waveform refers to a time portion that is 10% or less of the entire two-dimensional waveform, which is a function of the amount of shake with respect to time.
  • the overall waveform is the waveform of the time from the start of imaging until the earthquake subsides. According to this configuration, it is easy to objectively determine whether a long object is caught.
  • a first case is defined as a case where a local attenuation rate that can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform is less than or equal to a first threshold
  • a second case is defined as a case where the local attenuation rate is less than or equal to a first threshold.
  • the earthquake has ended when the second case is the case where the local attenuation rate is greater than the first threshold, and the third case is when the local attenuation rate is greater than the first threshold and less than the second threshold.
  • the maximum speed of the car in the first case is made greater than the maximum speed of the car in the second case, and further, the maximum speed of the car in the second case is The maximum speed may be greater than the maximum speed of the car in the third case.
  • the above-mentioned first movement of the car is defined as the movement of the car from the time the car first starts moving until it stops after the car stops due to the occurrence of an earthquake.
  • the maximum speed of the first basket movement is controlled in three levels depending on the degree (size) of the possibility that a long object will be caught. Therefore, it is possible to effectively suppress the possibility of damage caused by long objects being caught in an automatic diagnostic operation for automatically diagnosing whether or not there is a problem with the elevator after an earthquake.
  • each of the attenuation peaks is a maximum point of shake in the two-dimensional waveform, and a time later than the time at which the attenuation peak occurs. is a maximum point where there is no maximum point of the amount of runout that is greater than or equal to the attenuation peak, and the local attenuation rate is [(the amount of runout of the attenuation peak after a time among the two adjacent attenuation peaks)/ (The amount of deflection of the attenuation peak that is earlier in time among the two adjacent attenuation peaks)] may be a value based on the minimum value.
  • the local damping rate is a value based on the maximum value of [a value obtained by subtracting the minimum deflection amount of the attenuation peak from the maximum deflection amount of the damping peak during a predetermined time], and
  • the attenuation peak may be a maximum point of the shake in the two-dimensional waveform, and a maximum point where there is no maximum point of the shake amount greater than the attenuation peak at a time after the time when the attenuation peak occurs.
  • the local attenuation of the two-dimensional waveform can be evaluated objectively and accurately.
  • the photographing device includes an upper photographing device that photographs the upper region and a lower photographing device photographing the lower region, and after the car stops, the upper photographing device and the lower photographing device Photographing may be performed using only the photographing device that can photograph a region having a large length in the height direction.
  • the photographing device may photograph at least a portion of the at least one elongated object after it has stopped moving, and regarding the at least one elongated object, at least a portion of the elongated object that has stopped moving. It may be determined whether the long object is caught based on the image.
  • An image taken by the photographing device of at least a portion of at least one long object in which the car is stopped at each landing floor and is not caught may be stored in advance in the storage unit of the elevator. .
  • the photographing device is used to photograph at least a portion of at least one long object that has stopped moving after the earthquake, and the photographed image is transferred to the corresponding landing.
  • FIG. 1 is a schematic configuration diagram of an elevator according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of related parts related to control for determining whether a long object is caught. It is a flowchart which shows the procedure of an example of the catching determination control of a long object performed by a control apparatus. It is a flowchart which shows the procedure of an example of the catching determination control of a long object performed by a control device. It is a figure showing an example of a two-dimensional waveform in a wire rope without a catch. It is a figure which shows an example of the two-dimensional waveform in the wire rope with a catch.
  • a portion of 10% or less of the two-dimensional waveform refers to a time portion of 10% or less of the entire two-dimensional waveform, which is a function of the amount of deflection with respect to time.
  • the overall waveform is the waveform of the time from the start of imaging until the earthquake subsides.
  • FIG. 1 is a schematic configuration diagram of an elevator 10 according to an embodiment of the present disclosure.
  • the elevator 10 includes a car 11, a hoist 12, a counterweight 13, a wire rope 14, a car call button 15, a destination floor designation button 16, a floor landing detection sensor 17, an encoder 25, and a car elevator.
  • a mechanism 28 and a control device 18 are provided.
  • the control device 18 is composed of, for example, a control panel, and in this embodiment, the control device 18 and the hoist 12 are provided in a machine room 30 above the hoistway 19. If the elevator does not have a machine room, the control panel and hoisting machine may be provided on a pit below the hoistway.
  • the wire rope 14 is wound around the hoist 12, and one end thereof is fixed, for example, to the upper part of the cage 11, and the other end is fixed to the counterweight 13 via a warping wheel (not shown).
  • the car call button 15 is provided at the landing 22 for calling the car 11 and specifying the moving direction of the car 11. Further, a destination floor designation button 16 is provided within the car 11 to designate the destination floor of the car 11.
  • the landing detection sensor 17 is provided in the hoistway 19 and detects that the car 11 has landed on the landing 22.
  • the landing detection sensor 17 includes, for example, a vane 17a such as a steel plate provided at a hoistway position corresponding to the landing position on each floor, and a magnetic detector 17b for detecting the vane 17a.
  • the control device 18 receives a signal from the landing detection sensor 17 indicating that the car 11 has landed on the landing 22 on any floor, and controls the car door opening/closing motor 39, thereby opening the car door 32 and closing the car.
  • the landing door 31 opens in conjunction with the door 32, allowing people to get on and off from the car 11.
  • the encoder 25 is composed of, for example, an absolute encoder, and detects the rotational distance and rotational direction of the hoisting machine motor 12a of the hoisting machine 12 from the origin, thereby determining the position of the car 11 and the movement of the car 11. Detect direction.
  • the encoder 25 may be configured to be mechanical (contact type), optical type, magnetic type, or electromagnetic induction type.
  • the elevator 10 further includes a lighting device 40, a photographing device 43, and an earthquake sensor 47.
  • the illumination device 40 has an upper illumination device 41 and a lower illumination device 42
  • the photographing device 43 has an upper photographing device 45 and a lower photographing device 46.
  • the upper lighting device 41 is installed, for example, on the ceiling of the car 11 to illuminate the hoistway 19 above the car 11, and the lower lighting device 42 is installed at the bottom of the car 11 on the hoistway 19 side. It is installed to illuminate the hoistway 19 below the car 11.
  • the upper illumination device 41 and the lower illumination device 42 are used to illuminate the inside of the hoistway 19 during maintenance of these devices, and are also used when photographing a long object, which will be described later.
  • Each of the upper lighting device 41 and the lower lighting device 42 is configured using a lighting device with an illuminance suitable for illuminating the periphery of the basket 11, such as a fluorescent lamp, an incandescent lamp, an LED, or the like.
  • the upper photographing device 45 is installed, for example, at the top of the basket 11 so that the photographing device protrudes vertically upward from the top end of the basket 11.
  • the upper photographing device 45 can be suitably configured with, for example, a spherical camera (a photographing device capable of taking 360° panoramic photographs in all vertical and horizontal directions, and 360° videos).
  • the upper photographing device 45 may be any photographing device that can photograph at least a portion of at least one elongated object located in an area above the basket 11.
  • the upper photographing device is capable of photographing at least a portion of the wire rope 14 and at least a portion of the control cable, no matter where the cage 11 is located.
  • the lower photographing device 46 is installed at the bottom of the cage 11, for example, so that the photographing device protrudes vertically downward from the bottom end of the basket 11.
  • the lower photographing device 46 can be suitably configured with, for example, a spherical camera (a photographing device capable of taking 360° panoramic photographs in all directions, top, bottom, right and left, and 360° video).
  • the lower photographing device 46 may be any photographing device that can photograph at least a portion of at least one elongated object located in an area below the basket 11.
  • the lower photographing device 46 is capable of photographing at least a part of the control cable no matter where the car 11 is located. At least a part of the compen rope can be photographed regardless of the position of the compen rope.
  • the lower photographing device 46 is capable of photographing at least a portion of the wire rope 14 when the counterweight 13 is located below the basket 11 by a predetermined length or more.
  • the predetermined length is a length greater than zero (0).
  • the earthquake sensor 47 is installed, for example, in the machine room 30 or a pit below the hoistway 19. When the earthquake sensor 47 detects the occurrence of an earthquake, it outputs a signal indicating that an earthquake has been detected to the control device 18.
  • the earthquake sensor 47 may be configured with a mechanical earthquake sensor that detects earthquakes using magnetic force and does not require a power source, and uses a capacitance sensor to detect initial tremors (P-waves), main tremors (S-waves), and long-period earthquake motions.
  • An electronic seismic sensor may be used to detect the earthquake.
  • the earthquake sensor 47 is configured to automatically operate and turn on an electric circuit when it senses an earthquake motion (P wave or S wave) that is higher than a set acceleration (gal). Then, the control device 18 that receives the signal from the earthquake sensor 47 performs stop control of the basket 11 and control for determining whether a long object is caught, which will be described in detail below.
  • the control device 18 that receives signals from the car call button 15, the destination floor designation button 16, the floor landing detection sensor 17, the encoder 25, and the earthquake sensor 47 controls the rotation speed and rotation direction of the hoist motor 12a. Then, the car 11 moves up and down in the hoistway 19.
  • the wire rope 14, the hoist 12, the warping wheel, and the counterweight 13 constitute a car lifting mechanism 28.
  • FIG. 2 is a block diagram of the relevant parts related to the control of determining whether a long object has been caught, which will be described below.
  • the control device 18 receives signals (information) from the landing detection sensor 17, the encoder 25, the earthquake detector 47, the upper camera 45, and the lower camera 46. Based on the received signals, the control device 18 also controls the hoist motor 12a, the cage door opening and closing motor 39, the upper lighting device 41, the lower lighting device 42, the upper camera 45, and the lower camera 46.
  • the control device 18 is preferably configured by a computer, for example, a microcomputer, and includes a control section 60 and a storage section 61.
  • the control unit 60 that is, the processor includes, for example, a CPU (Central Processing Unit).
  • the storage unit 61 is composed of a hard disk drive (HDD), solid state drive (SSD), etc., and includes nonvolatile memory such as ROM (Read Only Memory) and volatile memory such as RAM (Random Access Memory). May include. Further, the storage unit 61 may be configured with only one storage medium, or may be configured with a plurality of different storage media.
  • the CPU reads and executes programs etc. stored in advance in the storage unit 61.
  • the nonvolatile memory stores in advance a control program, predetermined threshold values, and the like. Further, the volatile memory temporarily stores read programs and processing data.
  • a stopwatch application is stored in the storage unit 61. The stopwatch application is activated and starts measuring time based on the time-lapse start signal from the control unit 60, and ends the time-measurement based on the time-lapse end signal from the control unit 60.
  • the control unit 60 is capable of acquiring information from the stopwatch application that can specify the time measured.
  • the control unit 60 includes an earthquake determination unit 60a, a car stop floor identification unit 60b, a hoisting machine motor control unit 60c, a car door opening/closing motor control unit 60d, an imaging device control unit 60e, a reference position identification unit 60f, and a two-dimensional waveform generation unit. 60g, an attenuation peak calculation section 60h, a local attenuation rate calculation section 60i, and a threshold comparison section 60j. The operation of the control unit 60 will be explained in detail using FIGS. 3A to 5.
  • FIGS. 3A and 3B are flowcharts illustrating an example of a long object snagging determination control performed by the control device 18.
  • the elongated object is the wire rope 14
  • the elongated object may be a control cable or a compen rope.
  • step S1 the process proceeds to step S2, where the car stop floor identifying unit 60b recognizes the position and moving direction of the car 11 based on the information from the encoder 25, and the car 11 reaches the landing 22. If the car 11 is not stopped, the stopping floor of the car 11 is specified.
  • the specific floor specified by the car stop floor specifying unit 60b may be, for example, the nearest floor that is located ahead in the moving direction of the car 11 and is the closest to the car 11 in the height direction.
  • the specific floor identified by the car stop floor identifying section 60b may be a floor where the wire rope 14 does not resonate.
  • the earthquake sensor 47 can detect the direction of acceleration, it can estimate the period of the earthquake, that is, the period of vibration of the building in which the elevator 10 is installed. Furthermore, the positions of the wire rope 14, the car 11, and the counterweight 13 can be specified for each landing based on the information from the encoder 25 when the car 11 lands on that floor. Therefore, the period of vibration of the building can be estimated using the information from the earthquake sensor 47, and the resonant frequency of the wire rope 14 can be specified using the information from the encoder 25, so it is possible to estimate the floor where the wire rope 14 does not resonate.
  • step S3 after step S2, the hoist motor control unit 60c controls the hoist motor 12a based on information from the encoder 25 and landing detection sensor 17 to move the car 11 to the specific floor. Then, the car door opening/closing motor control unit 60d controls the car door opening/closing motor 39 to open the car door 32 and the landing door 31. In this way, if there is a person inside the car 11, the person is quickly evacuated outside the car 11.
  • step S4 the photographing device control unit 60e determines whether or not the upper photographing device 45 is to perform photographing. Specifically, the photographing device control unit 60e determines, for example, whether the position where the car 11 is stopped is located in a lower area below the center of the movement range of the car 11 in the height direction. do. When the basket 11 is located in the lower region, the photographing device control unit 60e determines that the upper photographing device 45 is to perform photographing, and the position where the basket 11 is stopped is the movement range of the basket 11 in the height direction. If it is located at the center and above the center, the photographing device control unit 60e determines that the lower photographing device 46 is to perform photographing.
  • step S4 If an affirmative determination is made in step S4, the process proceeds to step S5, where the photographing device control unit 60e drives the upper lighting device 41 and the upper photographing device 45 to start photographing, and at the same time drives the stopwatch app. Start measuring time using the stopwatch app.
  • the elevator 10 may have any known clock mechanism other than the stopwatch app, and the control device 18 starts and ends shooting by obtaining information from the clock mechanism other than the stopwatch app. You can also get the time until
  • step S5 the upper photographing device 45 photographs at least a portion of the wire rope 14 located above the car 11 in the hoistway 19, and then in step S6, the earthquake determination unit 60a determines whether the earthquake has ended. Determine whether or not. If a negative determination is made in step S6, the process moves to step S7, and after continuing to photograph at least a portion of the wire rope 14 located above the car 11, steps S6 and subsequent steps are repeated. On the other hand, if an affirmative determination is made in step S6, the process moves to step S8.
  • step S4 the process proceeds to step S9, where the photographing device control unit 60e drives the lower lighting device 42 and the lower photographing device 46 to start photographing, and at the same time runs the stopwatch app. drive and start measuring time using the stopwatch app.
  • step S9 the lower photographing device 46 photographs at least a portion of the wire rope 14 located below the car 11 in the hoistway 19, and then in step S10, the earthquake determining unit 60a determines that the earthquake has ended. Determine whether or not. If a negative determination is made in step S10, in step S11, photographing of at least a portion of the wire rope 14 located below the car 11 is continued, and then steps S10 and subsequent steps are repeated. On the other hand, if an affirmative determination is made in step S10, the process moves to step S8.
  • step S8 the photographing device control unit 60e ends the photographing by the photographing device 43 and at the same time ends the time measurement by the stopwatch application.
  • step S12 the reference position specifying section 60f specifies the reference position of the wire rope 14.
  • the reference position specifying unit 60f specifies, as the reference position of the wire rope 14, the location on the wire rope 14 that is closest to the center of the image captured by the image capturing device 43 at the start of imaging.
  • the lighting device 40 is installed so as to illuminate the reference position.
  • step S13 the two-dimensional waveform generation unit 60g generates a two-dimensional waveform based on the moving image photographed by the photographing device 43.
  • the two-dimensional waveform generation unit 60g generates a two-dimensional waveform based on the displacement of the reference position of the wire rope 14 in one direction and the elapsed time information from the stopwatch application.
  • Hoistway equipment where long objects are likely to get caught e.g., counterweight 13, vane (guide plate) 17a, guide rail, members fixed to the guide rail (e.g., brackets supporting the guide rail, etc.)
  • They are arranged on the front side and the back side of the basket 11 in the depth direction. Therefore, it is preferable to select the depth direction of the basket 11 as one direction because it is easy to accurately determine whether or not a long object is caught.
  • the attenuation peak calculation unit 60h identifies a plurality of attenuation peaks 81a, 81b (see FIGS. 4 and 5).
  • FIG. 4 is a diagram showing an example of a two-dimensional waveform in a wire rope 14 that is not caught
  • FIG. 5 is a diagram showing an example of a two-dimensional waveform in a wire rope 14 that is caught.
  • the two-dimensional waveform of the wire rope 14 without any snags generally has a sinusoidal shape and gradually attenuates.
  • the two-dimensional waveform of the wire rope 14 that is caught has a sharply attenuated amplitude in the vicinity of the snag, and has a locally large attenuation portion.
  • the attenuation peak calculation unit 60h specifies a plurality of attenuation peaks 81a and 81b based on the two-dimensional waveform generated in step S13.
  • the attenuation peaks 81a, 81b are the maximum points of vibration in the two-dimensional waveforms 80a, 80b, and are greater than or equal to the attenuation peaks 81a, 81b at a time later than the time at which the attenuation peaks 81a, 81b occur. This is a maximum point where the amount of runout does not exist.
  • step S15 the local attenuation rate calculation unit 60i calculates attenuation rates for all sets of two different adjacent attenuation peaks 81a, 81b based on the identified plurality of attenuation peaks 81a, 81b, and Determine the decay rate.
  • the local attenuation rate is [(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b)/(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81) is defined as the minimum value among the deflection amounts of the previous attenuation peaks 81a and 81b)].
  • the local attenuation rate By specifying the local attenuation rate, it is possible to accurately and objectively evaluate whether or not there is a locally large attenuation part in the two-dimensional waveform, and it is possible to accurately and objectively evaluate whether or not the wire rope 14 is caught. Can be judged. Note that the local attenuation rate can be calculated only for a very short local portion of the two-dimensional waveform, and therefore can be used as a measure of attenuation in a portion of 10% or less of the two-dimensional waveform.
  • step S16 the threshold comparison unit 60j determines whether the local attenuation rate is less than or equal to the first threshold. If an affirmative determination is made in step S16, it is determined that the wire rope 14 is not caught, and the process proceeds to step S17. 11 is raised and lowered to perform normal operation, and then steps S1 and subsequent steps are repeated.
  • step S16 the process proceeds to step S18, and the threshold comparison unit 60j determines whether the local attenuation rate is equal to or greater than a second threshold that is larger than the first threshold. If a negative determination is made in step S18, the process proceeds to step S19, where the hoisting machine motor control unit 60c sets the maximum speed of the car 11 to the maximum speed of the car 11 during the first movement of the car 11 after the earthquake. After limiting the speed to a speed lower than the maximum speed of movement of the car 11, an automatic diagnostic operation of the car 11 is performed to determine whether or not there is a problem with the elevator 10, and then the process moves to step S20.
  • step S18 the process proceeds to step S21, and in the first movement of the car 11 after the earthquake, the maximum speed of the car 11 is determined as the car 11 in the automatic diagnostic operation of the car 11 in step S19. After limiting the speed to a speed lower than the maximum speed of the car 11, an automatic diagnostic operation of the car 11 is performed to determine whether or not there is a problem with the elevator 10, and then the process moves to step S20.
  • the first movement of the car 11 in step S19 and step S21 refers to the movement of the car 11 from when the car 11 first starts moving until it stops after the earthquake subsides.
  • step S20 the control device 18 determines whether or not there is a problem with the elevator 10 based on the automatic diagnostic operation. If a negative determination is made in step S20, the process moves to step S17. On the other hand, if an affirmative determination is made in step S20, the process moves to step S22, and after stopping the car 11, the control ends.
  • the elevator 10 includes a car 11, a car lifting mechanism 28 for raising and lowering the car 11, an upper area that is attached to the car 11 and is located above the car 11, and a lower area that is located below the car 11.
  • a photographing device 43 capable of photographing at least one of the side regions, an illumination device 40 attached to the basket 11 and irradiating light to at least part of the upper region and the lower region, and an earthquake sensor capable of detecting earthquakes. 47. Further, when the earthquake sensor 47 detects an earthquake, the car 11 stops, and after the car 11 stops, the photographing device 43 captures at least part of at least one long object (for example, wire rope 14, control cable, compen rope, etc.). is photographed, and based on an image of at least a portion of at least one long object (in the above embodiment, the wire rope 14) photographed by the photographing device 43, it is determined whether the long object is caught.
  • the earthquake sensor 47 detects an earthquake
  • the car 11 stops stops, and after the car 11 stops, the photographing device 43 captures at least part
  • whether a long object is caught is determined based on an image of at least a portion of at least one long object taken by the photographing device 43 after the basket 11 is stopped due to earthquake sensing. Therefore, it is possible to directly and accurately determine whether a long object is caught.
  • two-dimensional waveforms 80a and 80b defined by time and a deflection amount in one direction of a reference point of the long object are generated based on the image, and regarding at least one long object, two-dimensional waveforms 80a and 80b are generated based on the image. It may be determined whether a long object is caught based on the two-dimensional waveforms 80a and 80b.
  • the attenuation peaks 81a, 81b are the maximum points of deflection in the two-dimensional waveforms 80a, 80.
  • it may be a maximum location where there is no maximum location of the amount of runout greater than the attenuation peaks 81a, 81b at a time later than the time when the attenuation peaks 81a, 81b occur.
  • the reference location may include the location closest to the center of the image of at least one elongated object. According to this configuration, image analysis can be performed automatically and easily. Note that the reference location may include the location of the elongated object where the shake is the largest in the image. In this case, it is easy to determine a sudden decrease in attenuation, and it is possible to accurately determine whether the elongated object is caught.
  • the reference location may be a marked location on a long object.
  • a plurality of marks may be placed on the long object at intervals.
  • the mark may be, for example, a light-reflecting member fixed to a reference point on the long object, or a paint such as fluorescent paint applied to the reference point on the long object. According to this configuration, measurement of the displacement of the reference location and image processing can be performed much more easily.
  • the first case is defined as a case where the local attenuation rate, which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b, is less than or equal to the first threshold
  • the second case where the local attenuation rate is greater than the first threshold is defined as the first case.
  • the second case is when the local attenuation rate is greater than the threshold
  • the third case is when the local attenuation rate is larger than the first threshold and less than the second threshold.
  • the maximum speed of the car 11 in the first case is set higher than the maximum speed of the car 11 in the second case
  • the maximum speed of the car 11 in the second case is set to be higher than the maximum speed of the car 11 in the second case.
  • the maximum speed of the car 11 may be higher than the maximum speed of the car 11 in this case.
  • the above-mentioned first movement of the car 11 is the movement of the car 11 from when the car 11 first starts moving until it stops after the car 11 stops due to the occurrence of an earthquake.
  • the maximum speed of the first movement of the basket 11 is controlled in three stages depending on the degree (large or small) of the possibility that a long object will be caught. Therefore, it is possible to effectively suppress the possibility of damage caused by long objects being caught in the automatic diagnostic operation for automatically diagnosing whether or not there is a problem with the elevator 10 after an earthquake.
  • the local attenuation rate is [(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b)/(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b) may be a value based on the smallest value among the deviation amounts of the previous attenuation peaks 81a and 81b).
  • the value based on the minimum value includes, for example, the minimum value itself, a constant multiple of the minimum value, and the like.
  • the local attenuation of the two-dimensional waveforms 80a and 80b can be evaluated objectively and accurately.
  • the local damping rate may be a value based on the maximum value of [the value obtained by subtracting the deflection amount of the minimum damping peak from the deflection amount of the maximum damping peak] during a predetermined period of time.
  • the local attenuation of the two-dimensional waveforms 80a and 60b can be evaluated objectively and accurately.
  • the value based on the maximum value includes, for example, the maximum value itself, a constant multiple of the maximum value, and the like.
  • the predetermined time is 10% or less of the entire time of the two-dimensional waveform.
  • the photographing device 43 includes an upper photographing device 45 for photographing the upper region and a lower photographing device 46 for photographing the lower region, and after the car 11 has stopped, the upper photographing device 45 and the lower photographing device 46 are Photographing may be performed using only the photographing device that can photograph an area having a large length in the height direction.
  • the photographing device only needs to be able to photograph at least one of the upper region and the lower region, and the photographing device may be composed of only the upper photographing device 45 or only the lower photographing device 46.
  • the lower photographing device 46 is installed below the cage 11 in order to ensure the safety of the maintenance workers working in the pit, if the photographing is performed only with the lower photographing device 46, The lower photographing device 46 for the safety of maintenance workers can be used to determine whether a long object is caught, and it is possible to determine whether a long object is caught without making new equipment investment.
  • the floor of the car 11 to be stopped after an earthquake is a floor higher than the center of the movement range of the car 11 in the height direction.
  • the possibility of getting caught on a long object is evaluated in three stages using the local attenuation rate, but the possibility of getting caught on a long object is evaluated in two stages using the local attenuation rate.
  • the local attenuation rate which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b, is equal to or less than a first threshold value, it is determined that there is no catch of a corresponding long object, and the local attenuation rate It may be determined that the corresponding elongated object is caught when is larger than the first threshold value.
  • the local attenuation rate was defined as a rate that can serve as a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b. However, if the local attenuation rate is a rate that can serve as a measure of attenuation in a portion of 5% or less of the two-dimensional waveforms 80a, 80b, it is easier to more accurately determine whether a long object is caught.
  • the elevator may include a storage unit that stores a plurality of reference two-dimensional waveforms in advance. For at least one elongated object, whether or not the elongated object is caught may be determined based on one of the plurality of reference two-dimensional waveforms and the corresponding two-dimensional waveform.
  • multiple standard two-dimensional waveforms may be created in advance for each landing on each floor and stored in advance in the storage unit of the elevator. Then, one standard two-dimensional waveform is selected from a plurality of standard two-dimensional waveforms based on the landing area of the car that stopped when an earthquake actually occurred and the type of earthquake identified based on information detected by the earthquake sensor. It is also possible to determine whether a long object is caught by selecting a dimensional waveform and comparing the selected reference two-dimensional waveform with a two-dimensional waveform based on photography.
  • the comparison may be performed, for example, by comparing the time it takes for the attenuation rate of the two-dimensional waveform to reach a predetermined value (for example, 10%), the average amplitude of the two-dimensional waveform, or the like. Even in this case, it is easy to accurately judge whether a long object is caught.
  • a predetermined value for example, 10%
  • the average amplitude of the two-dimensional waveform or the like. Even in this case, it is easy to accurately judge whether a long object is caught.
  • the imaging device photographs a plurality of different long objects, generates a two-dimensional waveform for each long object, and generates a plurality of two-dimensional waveforms based on the plurality of mutually different two-dimensional waveforms generated for the plurality of long objects. It may be determined whether one or more of the long objects are caught.
  • multiple long objects may exhibit similar swing behavior in relation to the same earthquake. Therefore, it may be possible to determine whether a long object is caught, and whose behavior is significantly different from that of other long objects and whose swinging behavior is unique. For example, if the time period in which the amplitude decreases to the maximum is different for only one elongated object than for other elongated objects, it may be determined that that one elongated object is caught in hoistway equipment. . According to this configuration, a plurality of mutually different two-dimensional waveforms generated for a plurality of elongated objects are generated. Therefore, it may be possible to determine whether a long object is caught and exhibits unusual swinging behavior.
  • a convergence curve 90 (see FIG. 4)
  • the photographing device photographs at least a part of the at least one elongated object after the movement has stopped, and regarding the at least one elongated object, based on the image of at least a part of the elongated object that has stopped moving. It may also be possible to determine if a long object is caught.
  • An image taken by the photographing device of at least a portion of at least one long object in which the car is stopped at each landing floor and is not caught may be stored in advance in the storage unit of the elevator. .
  • the photographing device is used to photograph at least a portion of at least one long object that has stopped moving after the earthquake, and the photographed image is transferred to the corresponding landing.
  • the two images may be compared at a marked location on the long object, and in this case, it is possible to instantly and accurately determine whether or not the long object is caught.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

An elevator (10) comprises an imaging device (43) attached to a car (11) and capable of capturing an image of at least one of an upper region positioned above the car (11) and a lower region positioned below the car (11), a lighting device (40) attached to the car (11) and configured to irradiate at least a portion of the upper region and the lower region with light, and an earthquake detector (47) capable of detecting an earthquake. When the earthquake detector (47) detects an earthquake, the car (11) stops and, thereafter, the imaging device (43) captures an image of at least a portion of at least one long object. Connection of the long object is then determined on the basis of the image captured by the imaging device (43).

Description

エレベーターelevator
 本開示は、エレベーターに関する。 The present disclosure relates to an elevator.
 従来、エレベーターの地震に対する対処としては、特許文献1に記載されている技術が知られている。この技術では、地震発生後の自動診断復旧運転で、カゴを通常時よりも低速で運転させて、巻上機のトルクの変化から長尺物の引っ掛かりを検出する。 Conventionally, the technology described in Patent Document 1 is known as a countermeasure against earthquakes in elevators. With this technology, during automatic diagnostic recovery operation after an earthquake occurs, the car is operated at a slower speed than normal, and the possibility of a long object being caught is detected from changes in the torque of the hoisting machine.
特開2018-184241号公報Japanese Patent Application Publication No. 2018-184241
 上記技術を用いれば地震後の長尺物の引っ掛かりを検出でき、エレベーターの安全な自動復旧を行い易い。しかし、この技術では、長尺物の引っ掛かりを間接的(疑似的)に検出していて直接的に検出しておらず、長尺物の引っ掛かりの有無をより直接的かつ正確に判断できると好ましい。 Using the above technology, it is possible to detect long objects caught after an earthquake, and it is easy to perform safe automatic recovery of elevators. However, this technology indirectly (pseudo) detects long objects that are caught and does not directly detect them, and it would be desirable to be able to more directly and accurately determine whether or not long objects are caught. .
 そこで、本開示の目的は、地震後の長尺物の引っ掛かりの有無を直接的かつ正確に判断できるエレベーターを提供することにある。 Therefore, an object of the present disclosure is to provide an elevator that can directly and accurately determine whether or not a long object is caught after an earthquake.
 上記課題を解決するため、本開示に係るエレベーターは、カゴと、前記カゴを昇降させるための昇降機構と、前記カゴに取り付けられ、前記カゴよりも上側に位置する上側領域及び前記カゴよりも下側に位置する下側領域のうちの少なくとも一方を撮影できる撮影装置と、前記カゴに取り付けられ、前記上側領域及び前記下側領域の少なくとも一部に光を照射する照明装置と、地震を感知可能である地震感知器と、を備え、前記地震感知器が地震を感知すると前記カゴが停止して前記カゴの停止後に前記撮影装置が少なくとも1つの長尺物の少なくとも一部を撮影し、前記撮影装置が撮影した前記少なくとも一部の画像に基づいて前記少なくとも1つの長尺物の引っ掛かりを判定する。 In order to solve the above problems, an elevator according to the present disclosure includes a car, a lifting mechanism for raising and lowering the car, an upper area attached to the car and located above the car, and an upper area below the car. a photographing device capable of photographing at least one of the lower regions located on the side; an illumination device attached to the basket and irradiating light to at least part of the upper region and the lower region; and a lighting device capable of detecting an earthquake. an earthquake sensor, and when the earthquake sensor detects an earthquake, the cage stops, and after the cage stops, the photographing device photographs at least a part of at least one elongated object, and the photographing device It is determined whether the at least one elongated object is caught based on the at least part of the images taken by the device.
 本開示によれば、地震感知によるカゴの停止後に撮影装置が撮影した少なくとも1つの長尺物の少なくとも一部の画像に基づいて長尺物の引っ掛かりを判定する。したがって、長尺物の引っ掛かりを直接的かつ正確に判定できる。 According to the present disclosure, it is determined whether a long object is caught based on an image of at least a portion of at least one long object taken by a photographing device after the basket is stopped due to earthquake sensing. Therefore, it is possible to directly and accurately determine whether a long object is caught.
 また、前記少なくとも1つの長尺物に関して、時間と前記長尺物の基準箇所の一方向の振れ量で画定される二次元波形を前記画像に基づいて生成し、前記少なくとも1つの長尺物に関して、前記二次元波形に基づいて前記長尺物の引っ掛かりを判定してもよい。なお、地震が発生していないときの長尺物の基準箇所は、振れ量が0(零)となる。 Further, regarding the at least one elongated object, a two-dimensional waveform defined by time and a deflection amount in one direction at a reference point of the elongated object is generated based on the image; , it may be determined whether the elongated object is caught based on the two-dimensional waveform. Note that at the reference point of a long object when no earthquake occurs, the amount of deflection is 0 (zero).
 上記二次元波形には、長尺物の引っ掛かりが生じた時刻の前後で大きな違いが生じ、例えば、当該二次元波形の振幅の大きさに急激な減少が生じる。本構成によれば、上記二次元波形に基づいて長尺物の引っ掛かりを判定する、したがって、長尺物の引っ掛かりを正確に判定できる。 There is a large difference in the two-dimensional waveform before and after the time when the long object is caught, for example, there is a sudden decrease in the amplitude of the two-dimensional waveform. According to this configuration, it is possible to determine whether a long object is caught on the basis of the two-dimensional waveform, and therefore it is possible to accurately determine whether a long object is caught.
 また、前記二次元波形において確認できる複数の減衰ピークに基づいて前記少なくとも1つの長尺物の引っ掛かりを判定し、前記減衰ピークは、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所でもよい。 Further, it is determined whether the at least one elongated object is caught on the basis of a plurality of attenuation peaks that can be confirmed in the two-dimensional waveform, and the attenuation peak is a maximum point of shake in the two-dimensional waveform, and It may be a maximum point where there is no maximum point of the amount of runout greater than the attenuation peak at a time after the time when the attenuation peak occurs.
 本構成によれば、二次元波形における局所的で急激な減衰を容易かつ客観的に評価し易い。よって、長尺物の引っ掛かりを正確に判定し易い。 According to this configuration, local and rapid attenuation in a two-dimensional waveform can be easily and objectively evaluated. Therefore, it is easy to accurately determine whether a long object is caught.
 また、前記基準箇所が、前記画像の中心に最も近い箇所を含んでもよい。 Additionally, the reference location may include a location closest to the center of the image.
 本構成によれば、画像解析を自動的かつ容易に行うことができる。 According to this configuration, image analysis can be performed automatically and easily.
 また、前記基準箇所が、前記画像において最も振れが大きい前記長尺物の箇所を含んでもよい。 Furthermore, the reference location may include a location of the elongated object where the shake is largest in the image.
 本構成によれば、急減な減衰を判定し易い。したがって、長尺物の引っ掛かりを正確に判定できる。 According to this configuration, it is easy to determine sudden attenuation. Therefore, it is possible to accurately determine whether a long object is caught.
 また、前記基準箇所は、前記長尺物において印がつけられている箇所でもよい。 Furthermore, the reference location may be a marked location on the elongated object.
 上記印は、例えば、長尺物の基準箇所へ固定された光を反射する部材でもよく、長尺物の基準箇所へ塗布された蛍光塗料等の塗料でもよい。 The mark may be, for example, a light-reflecting member fixed to the reference point of the long object, or a paint such as fluorescent paint applied to the reference point of the long object.
 本構成によれば、基準箇所の変位の測定や画像処理を格段に容易に行うことができる。 According to this configuration, measurement of the displacement of the reference location and image processing can be performed much more easily.
 また、複数の基準二次元波形を予め記憶している記憶部を備え、前記少なくとも1つの長尺物に関して、前記複数の基準二次元波形のうちの一つと前記二次元波形とに基づいて前記長尺物の引っ掛かりを判定してもよい。 The storage unit stores a plurality of reference two-dimensional waveforms in advance. It may also be possible to determine if the object is caught.
 地震の典型的な複数のタイプ、例えば、縦揺れ、横揺れ、長周期地震動、異なるマグニチュードの大きさでの地震等、で異なる複数の基準二次元波形(長尺物が引っ掛かっていない場合の基準二次元波形)が各階の乗場毎に予め作成され、エレベーターの記憶部に予め記憶されていてもよい。そして、実際に地震が生じたときに停止したカゴの乗場と、地震感知器が感知した情報に基づいて特定した地震のタイプとに基づいて、複数の基準二次元波形のうちから1の基準二次元波形を選定して、その選定した基準二次元波形と、撮影に基づく二次元波形とを比較することで、長尺物の引っ掛かりを判定してもよい。このようにすると、長尺物の引っ掛かりを正確に判断し易い。 Multiple standard two-dimensional waveforms (standard when no long object is caught) differ for typical multiple types of earthquakes, such as pitching, lateral shaking, long-period ground motion, earthquakes with different magnitudes, etc. (two-dimensional waveform) may be created in advance for each landing on each floor and stored in advance in the storage section of the elevator. Then, one standard two-dimensional waveform is selected from a plurality of standard two-dimensional waveforms based on the landing area of the car that stopped when an earthquake actually occurred and the type of earthquake identified based on information detected by the earthquake sensor. It is also possible to determine whether a long object is caught by selecting a dimensional waveform and comparing the selected reference two-dimensional waveform with a two-dimensional waveform based on photography. In this way, it is easy to accurately determine whether a long object is caught.
 また、前記撮影装置が、互いに異なる複数の前記長尺物を撮影して、前記長尺物毎に前記二次元波形を生成し、前記複数の長尺物に関して生成した互いに異なる複数の前記二次元波形に基づいて、前記複数の長尺物のうちの1以上の前記長尺物の引っ掛かりを判定してもよい。 The photographing device may photograph a plurality of different long objects, generate the two-dimensional waveform for each long object, and generate a plurality of different two-dimensional waveforms for each of the plurality of long objects. Based on the waveform, it may be determined whether one or more of the plurality of elongated objects is caught.
 複数の長尺物に引っ掛かりに生じていない場合、同じ地震に関して、複数の長尺物が類似の振れの振る舞いをする場合がある。よって、振る舞いが他の長尺物と大きく異なっていて異質な振れの振る舞いを行っている長尺物の引っ掛かりを判断できる場合がある。本構成によれば、複数の長尺物に関して互いに異なる複数の二次元波形を生成する。よって、異質な振れの振る舞いを行っている長尺物の引っ掛かりを判断できる場合がある。 If it is not caused by being caught on multiple long objects, multiple long objects may exhibit similar swing behavior in relation to the same earthquake. Therefore, it may be possible to determine whether a long object is caught, and whose behavior is significantly different from that of other long objects and whose swinging behavior is unique. According to this configuration, a plurality of mutually different two-dimensional waveforms are generated for a plurality of elongated objects. Therefore, it may be possible to determine whether a long object is caught and exhibits unusual swinging behavior.
 また、前記二次元波形の10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合に前記長尺物の引っ掛かりがないことを判定する一方、前記局所減衰率が第1閾値より大きい場合に前記長尺物の引っ掛かりがあることを判定してもよい。 Further, it is determined that the elongated object is not caught when a local attenuation rate, which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform, is a first threshold value or less; If it is larger than one threshold value, it may be determined that the elongated object is caught.
 なお、上記二次元波形の10%以下の部分とは、時間に対する振れ量の関数である二次元波形の全体波形における10%以下の時間部分のことである。また、全体波形は、撮影を始めてから地震が収まるまでの時間の波形である。本構成によれば、長尺物の引っ掛かりを客観的に判定し易い。 Note that the 10% or less portion of the two-dimensional waveform refers to a time portion that is 10% or less of the entire two-dimensional waveform, which is a function of the amount of shake with respect to time. Further, the overall waveform is the waveform of the time from the start of imaging until the earthquake subsides. According to this configuration, it is easy to objectively determine whether a long object is caught.
 また、前記二次元波形の10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合を第1の場合とし、前記局所減衰率が前記第1閾値よりも大きい第2閾値以上の場合を第2の場合とし、更に、前記局所減衰率が前記第1閾値よりも大きくて、かつ、前記第2閾値未満の場合を第3の場合とするとき、前記地震が終了した後の最初の前記カゴの移動において、前記第1の場合の前記カゴの最高速度を、前記第2の場合の前記カゴの最高速度よりも大きくし、更に、前記第2の場合の前記カゴの最高速度を、前記第3の場合の前記カゴの最高速度よりも大きくしてもよい。 Further, a first case is defined as a case where a local attenuation rate that can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform is less than or equal to a first threshold, and a second case is defined as a case where the local attenuation rate is less than or equal to a first threshold. The earthquake has ended when the second case is the case where the local attenuation rate is greater than the first threshold, and the third case is when the local attenuation rate is greater than the first threshold and less than the second threshold. In the subsequent first movement of the car, the maximum speed of the car in the first case is made greater than the maximum speed of the car in the second case, and further, the maximum speed of the car in the second case is The maximum speed may be greater than the maximum speed of the car in the third case.
 なお、上記最初のカゴの移動を、地震の発生でカゴが停止した後に最初にカゴが動き出してから止るまでのカゴの移動として定義する。 Note that the above-mentioned first movement of the car is defined as the movement of the car from the time the car first starts moving until it stops after the car stops due to the occurrence of an earthquake.
 長尺物の引っ掛かりが生じている場合、地震後にエレベーターに不具合があるか否かを自動で診断するための自動診断運転においてカゴを低速で動かした方が、当該自動診断運転でエレベーターが損傷する可能性は低くなる。 If a long object is caught, it is better to move the car at a low speed during automatic diagnostic operation to automatically diagnose whether there is a problem with the elevator after an earthquake, as this will cause damage to the elevator during the automatic diagnostic operation. less likely.
 本構成によれば、長尺物の引っ掛かりの可能性の程度(大小)に応じて、上記最初のカゴの移動での最高速度を3段階に制御する。よって、地震後にエレベーターに不具合があるか否かを自動で診断するための自動診断運転において長尺物の引っ掛かり基づく損傷が生じる可能性を効果的に抑制できる。 According to this configuration, the maximum speed of the first basket movement is controlled in three levels depending on the degree (size) of the possibility that a long object will be caught. Therefore, it is possible to effectively suppress the possibility of damage caused by long objects being caught in an automatic diagnostic operation for automatically diagnosing whether or not there is a problem with the elevator after an earthquake.
 また、前記二次元波形において確認できる複数の減衰ピークを特定し、前記各減衰ピークは、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所であり、前記局所減衰率が、[(隣り合う2つの前記減衰ピークのうちで時間が後の前記減衰ピークの振れ量)/(前記隣り合う2つの前記減衰ピークのうちで時間が先の前記減衰ピークの振れ量)]のうちで最小の値に基づく値でもよい。 Further, a plurality of attenuation peaks that can be confirmed in the two-dimensional waveform are identified, and each of the attenuation peaks is a maximum point of shake in the two-dimensional waveform, and a time later than the time at which the attenuation peak occurs. is a maximum point where there is no maximum point of the amount of runout that is greater than or equal to the attenuation peak, and the local attenuation rate is [(the amount of runout of the attenuation peak after a time among the two adjacent attenuation peaks)/ (The amount of deflection of the attenuation peak that is earlier in time among the two adjacent attenuation peaks)] may be a value based on the minimum value.
 本構成によれば、二次元波形の局所的な減衰を客観的かつ正確に評価できる。 According to this configuration, local attenuation of a two-dimensional waveform can be evaluated objectively and accurately.
 また、前記局所減衰率が、[所定時間の間における、最大の減衰ピークの振れ量から最小の前記減衰ピークの振れ量を引いた値]のうちで最大の値に基づく値であり、前記各減衰ピークが、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所でもよい。 Further, the local damping rate is a value based on the maximum value of [a value obtained by subtracting the minimum deflection amount of the attenuation peak from the maximum deflection amount of the damping peak during a predetermined time], and The attenuation peak may be a maximum point of the shake in the two-dimensional waveform, and a maximum point where there is no maximum point of the shake amount greater than the attenuation peak at a time after the time when the attenuation peak occurs. .
 本構成においても、二次元波形の局所的な減衰を客観的かつ正確に評価できる。 Also in this configuration, the local attenuation of the two-dimensional waveform can be evaluated objectively and accurately.
 また、前記撮影装置が、前記上側領域を撮影する上側撮影装置と、前記下側領域を撮影する下側撮影装置を含み、前記カゴが止まった後において、前記上側撮影装置と前記下側撮影装置のうちで高さ方向の長さが大きい領域を撮影できる方の撮影装置のみで撮影を行ってもよい。 Further, the photographing device includes an upper photographing device that photographs the upper region and a lower photographing device photographing the lower region, and after the car stops, the upper photographing device and the lower photographing device Photographing may be performed using only the photographing device that can photograph a region having a large length in the height direction.
 本構成によれば、長尺物の振れが大きい部分を撮影し易く、長尺物の引っ掛かりを正確に判定し易い。 According to this configuration, it is easy to photograph a portion of a long object where the shake is large, and it is easy to accurately determine whether the long object is caught.
 また、前記撮影装置が、動きが止まった後の前記少なくとも1つの長尺物の少なくとも一部を撮影し、前記少なくとも1つの長尺物に関し、前記動きが止まった前記長尺物の少なくとも一部の画像に基づいて前記長尺物の引っ掛かりを判断してもよい。 The photographing device may photograph at least a portion of the at least one elongated object after it has stopped moving, and regarding the at least one elongated object, at least a portion of the elongated object that has stopped moving. It may be determined whether the long object is caught based on the image.
 カゴが各乗場階に停止している状態で、かつ、引っ掛かりが生じていない少なくとも1つの長尺物の少なくとも一部の上記撮影装置による画像をエレベーターの記憶部に予め記憶しておいてもよい。この場合、地震後にカゴをいずれかの乗場に停止させた後に上記撮影装置で地震後に動きが止まった後の少なくとも1つの長尺物の少なくとも一部を撮影して、撮影した画像を対応する乗場の引っ掛かりが生じていない画像と比較することで、少なくとも1つの長尺物の引っ掛かりの有無を正確に判定できる。 An image taken by the photographing device of at least a portion of at least one long object in which the car is stopped at each landing floor and is not caught may be stored in advance in the storage unit of the elevator. . In this case, after the car is stopped at one of the landings after the earthquake, the photographing device is used to photograph at least a portion of at least one long object that has stopped moving after the earthquake, and the photographed image is transferred to the corresponding landing. By comparing the image with an image in which no object is caught, it is possible to accurately determine whether or not at least one long object is caught.
 本開示に係るエレベーターによれば、地震後の長尺物の引っ掛かりの有無を直接的かつ正確に判断できる。 According to the elevator according to the present disclosure, it is possible to directly and accurately determine whether a long object is caught after an earthquake.
本開示の一実施形態に係るエレベーターの概略構成図である。1 is a schematic configuration diagram of an elevator according to an embodiment of the present disclosure. 長尺物の引っ掛かり判定制御に関連する関連部位のブロック図である。FIG. 2 is a block diagram of related parts related to control for determining whether a long object is caught. 制御装置が行う長尺物の引っ掛かり判定制御の一例の手順を示すフローチャートである。It is a flowchart which shows the procedure of an example of the catching determination control of a long object performed by a control apparatus. 制御装置が行う長尺物の引っ掛かり判定制御の一例の手順を示すフローチャートである。It is a flowchart which shows the procedure of an example of the catching determination control of a long object performed by a control device. 引っ掛かりがないワイヤーロープにおける二次元波形の一例を示す図である。It is a figure showing an example of a two-dimensional waveform in a wire rope without a catch. 引っ掛かりがあるワイヤーロープにおける二次元波形の一例を示す図である。It is a figure which shows an example of the two-dimensional waveform in the wire rope with a catch.
 以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の実施例では、図面において同一構成に同一符号を付し、重複する説明を省略する。また、以下の説明において、ワイヤーロープ14、制御ケーブル、及びコンペンロープは、長尺物である。また、以下で詳述するが、地震が発生していないときの長尺物の基準箇所は、振れ量が0(零)となる。また、以下の説明で、二次元波形の10%以下の部分とは、時間に対する振れ量の関数である二次元波形の全体波形における10%以下の時間部分のことである。また、全体波形は、撮影を始めてから地震が収まるまでの時間の波形である。また、以下で説明される構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素であり、必須の構成要素ではない。 Embodiments according to the present disclosure will be described in detail below with reference to the accompanying drawings. Note that when a plurality of embodiments, modifications, etc. are included below, it is assumed from the beginning that a new embodiment will be constructed by appropriately combining their characteristic parts. Furthermore, in the following embodiments, the same components are denoted by the same reference numerals in the drawings, and overlapping explanations will be omitted. Moreover, in the following description, the wire rope 14, the control cable, and the compensating rope are long ones. Further, as will be described in detail below, the amount of deflection at the reference location of the long object when no earthquake occurs is 0 (zero). Further, in the following explanation, a portion of 10% or less of the two-dimensional waveform refers to a time portion of 10% or less of the entire two-dimensional waveform, which is a function of the amount of deflection with respect to time. Further, the overall waveform is the waveform of the time from the start of imaging until the earthquake subsides. Furthermore, among the constituent elements described below, constituent elements that are not described in the independent claim indicating the most significant concept are optional constituent elements and are not essential constituent elements.
 図1は、本開示の一実施形態に係るエレベーター10の概略構成図である。図1に示すように、エレベーター10は、カゴ11、巻上機12、釣合錘13、ワイヤーロープ14、カゴ呼び釦15、行先階指定釦16、着床検出センサ17、エンコーダ25、カゴ昇降機構28、及び制御装置18を備える。制御装置18は、例えば、制御盤で構成され、本実施例では、制御装置18及び巻上機12が、昇降路19上方にある機械室30内に設けられる。エレベーターが機械室を有さない場合、制御盤及び巻上機は、昇降路下側にあるピット上に設けられてもよい。ワイヤーロープ14は、巻上機12に巻回され、その一端部は、例えば、カゴ11の上部に固定され、その他端部は、図示しない反らせ車を介して釣合錘13に固定される。カゴ呼び釦15は、カゴ11を呼ぶと共にカゴ11の移動方向を指定するために乗場22に設けられる。また、行先階指定釦16は、カゴ11の行先階を指定するためにカゴ11内に設けられる。 FIG. 1 is a schematic configuration diagram of an elevator 10 according to an embodiment of the present disclosure. As shown in FIG. 1, the elevator 10 includes a car 11, a hoist 12, a counterweight 13, a wire rope 14, a car call button 15, a destination floor designation button 16, a floor landing detection sensor 17, an encoder 25, and a car elevator. A mechanism 28 and a control device 18 are provided. The control device 18 is composed of, for example, a control panel, and in this embodiment, the control device 18 and the hoist 12 are provided in a machine room 30 above the hoistway 19. If the elevator does not have a machine room, the control panel and hoisting machine may be provided on a pit below the hoistway. The wire rope 14 is wound around the hoist 12, and one end thereof is fixed, for example, to the upper part of the cage 11, and the other end is fixed to the counterweight 13 via a warping wheel (not shown). The car call button 15 is provided at the landing 22 for calling the car 11 and specifying the moving direction of the car 11. Further, a destination floor designation button 16 is provided within the car 11 to designate the destination floor of the car 11.
 着床検出センサ17は、昇降路19内に設けられ、カゴ11が乗場22に着床したことを検出する。着床検出センサ17は、例えば、各階の着床位置に対応する昇降路位置に設けられた鉄板等のベーン17aと、ベーン17aを検出する磁気方式の検出器17bで構成される。着床検出センサ17からカゴ11がいずれかの階の乗場22に着床したことを表す信号を受けた制御装置18がカゴ扉開閉用モータ39を制御することによって、カゴ扉32が開くと共にカゴ扉32に連動して乗場扉31が開き、人がカゴ11から乗り降り可能となる。 The landing detection sensor 17 is provided in the hoistway 19 and detects that the car 11 has landed on the landing 22. The landing detection sensor 17 includes, for example, a vane 17a such as a steel plate provided at a hoistway position corresponding to the landing position on each floor, and a magnetic detector 17b for detecting the vane 17a. The control device 18 receives a signal from the landing detection sensor 17 indicating that the car 11 has landed on the landing 22 on any floor, and controls the car door opening/closing motor 39, thereby opening the car door 32 and closing the car. The landing door 31 opens in conjunction with the door 32, allowing people to get on and off from the car 11.
 エンコーダ25は、例えば、アブソリュート型のエンコーダで構成され、巻上機12の巻上機モータ12aの原点からの回転距離と回転方向を検出することで、カゴ11の存在位置と、カゴ11の移動方向を検出する。エンコーダ25は、機械式(接触式)、光学式、磁気式、電磁誘導式のいずれで構成されてもよい。 The encoder 25 is composed of, for example, an absolute encoder, and detects the rotational distance and rotational direction of the hoisting machine motor 12a of the hoisting machine 12 from the origin, thereby determining the position of the car 11 and the movement of the car 11. Detect direction. The encoder 25 may be configured to be mechanical (contact type), optical type, magnetic type, or electromagnetic induction type.
 エレベーター10は、更に、照明装置40、撮影装置43、及び地震感知器47を備える。照明装置40は、上側照明装置41と、下側照明装置42を有し、撮影装置43は、上側撮影装置45と、下側撮影装置46を有する。上側照明装置41は、例えば、カゴ11の天井に設置されてカゴ11よりも上側の昇降路19を照らすようになっており、下側照明装置42は、カゴ11の底の昇降路19側に設置されてカゴ11よりも下側の昇降路19を照らすようになっている。昇降路19内には、カゴ11、釣合錘13、ワイヤーロープ14、カゴ11や釣合錘13をガイドするレール(図示せず)、カゴ11と制御装置18をつなぐ制御ケーブル、カゴ11の位置を検出する着床検出センサ17等が設置されている。上側照明装置41及び下側照明装置42は、それらの機器のメンテナンス等の際に昇降路19内を照らすために使用される他、後述する長尺物の撮影の際にも使用される。上側照明装置41及び下側照明装置42の夫々は、カゴ11の周辺を照らすのに適した照度の照明器具、例えば、蛍光灯、白熱灯、LED等を用いて構成される。 The elevator 10 further includes a lighting device 40, a photographing device 43, and an earthquake sensor 47. The illumination device 40 has an upper illumination device 41 and a lower illumination device 42, and the photographing device 43 has an upper photographing device 45 and a lower photographing device 46. The upper lighting device 41 is installed, for example, on the ceiling of the car 11 to illuminate the hoistway 19 above the car 11, and the lower lighting device 42 is installed at the bottom of the car 11 on the hoistway 19 side. It is installed to illuminate the hoistway 19 below the car 11. Inside the hoistway 19, the car 11, the counterweight 13, a wire rope 14, a rail (not shown) that guides the car 11 and the counterweight 13, a control cable that connects the car 11 and the control device 18, and a control cable for connecting the car 11 and the control device 18. A landing detection sensor 17 and the like are installed to detect the position. The upper illumination device 41 and the lower illumination device 42 are used to illuminate the inside of the hoistway 19 during maintenance of these devices, and are also used when photographing a long object, which will be described later. Each of the upper lighting device 41 and the lower lighting device 42 is configured using a lighting device with an illuminance suitable for illuminating the periphery of the basket 11, such as a fluorescent lamp, an incandescent lamp, an LED, or the like.
 上側撮影装置45は、例えば、その撮影装置がカゴ11の上端から鉛直方向上方に突出するようにカゴ11の上部に設置される。上側撮影装置45は、例えば、全天球カメラ(上下左右全方位の360°パノラマ写真、及び360°動画の撮れる撮影装置)で好適に構成できる。上側撮影装置45は、カゴ11よりも上側の領域に位置する、少なくとも1つの長尺物の少なくとも一部を撮影できる撮影装置であれば如何なる撮影装置で構成されてもよい。上側撮影装置は、カゴ11が如何なる位置に存在しても、ワイヤーロープ14の少なくとも一部と、制御ケーブルの少なくとも一部を撮影可能になっている。 The upper photographing device 45 is installed, for example, at the top of the basket 11 so that the photographing device protrudes vertically upward from the top end of the basket 11. The upper photographing device 45 can be suitably configured with, for example, a spherical camera (a photographing device capable of taking 360° panoramic photographs in all vertical and horizontal directions, and 360° videos). The upper photographing device 45 may be any photographing device that can photograph at least a portion of at least one elongated object located in an area above the basket 11. The upper photographing device is capable of photographing at least a portion of the wire rope 14 and at least a portion of the control cable, no matter where the cage 11 is located.
 下側撮影装置46は、例えば、その撮影装置がカゴ11の下端から鉛直方向下方に突出するようにカゴ11の下部に設置される。下側撮影装置46は、例えば、全天球カメラ(上下左右全方位の360°パノラマ写真、及び360°動画の撮れる撮影装置)で好適に構成できる。下側撮影装置46は、カゴ11よりも下側の領域に位置する、少なくとも1つの長尺物の少なくとも一部を撮影できる撮影装置であれば如何なる撮影装置で構成されてもよい。下側撮影装置46は、カゴ11が如何なる位置に存在しても、制御ケーブルの少なくとも一部を撮影可能になっており、カゴ11と釣合錘13を結ぶコンペンロープが存在する場合、カゴ11が如何なる位置に存在しても、コンペンロープの少なくとも一部を撮影可能になっている。また、下側撮影装置46は、釣合錘13がカゴ11よりも所定長さ以上下側に位置する場合、ワイヤーロープ14の少なくとも一部を撮影できるようになっている。ここで、上記所定長さは、零(0)より大きい長さである。 The lower photographing device 46 is installed at the bottom of the cage 11, for example, so that the photographing device protrudes vertically downward from the bottom end of the basket 11. The lower photographing device 46 can be suitably configured with, for example, a spherical camera (a photographing device capable of taking 360° panoramic photographs in all directions, top, bottom, right and left, and 360° video). The lower photographing device 46 may be any photographing device that can photograph at least a portion of at least one elongated object located in an area below the basket 11. The lower photographing device 46 is capable of photographing at least a part of the control cable no matter where the car 11 is located. At least a part of the compen rope can be photographed regardless of the position of the compen rope. Further, the lower photographing device 46 is capable of photographing at least a portion of the wire rope 14 when the counterweight 13 is located below the basket 11 by a predetermined length or more. Here, the predetermined length is a length greater than zero (0).
 地震感知器47は、例えば、機械室30や昇降路19下側のピットに設置される。地震感知器47は、地震の発生を感知すると、地震を感知したことを表す信号を制御装置18に出力する。地震感知器47は、磁力で地震を検知する電源不要な機械式地震感知器で構成されてもよく、静電容量センサーで初期微動(P波)、主要動(S波)、長周期地震動を検知する電子式地震感知器で構成されてもよい。地震感知器47は、例えば、設定加速度(ガル)以上の地震動(P波或いはS波)を感知すると自動的に作動して電気回路をONするようになっている。そして、地震感知器47からの信号を受けた制御装置18が、カゴ11の停止制御や、以下で詳述する長尺物の引っ掛かり判定制御を行う。 The earthquake sensor 47 is installed, for example, in the machine room 30 or a pit below the hoistway 19. When the earthquake sensor 47 detects the occurrence of an earthquake, it outputs a signal indicating that an earthquake has been detected to the control device 18. The earthquake sensor 47 may be configured with a mechanical earthquake sensor that detects earthquakes using magnetic force and does not require a power source, and uses a capacitance sensor to detect initial tremors (P-waves), main tremors (S-waves), and long-period earthquake motions. An electronic seismic sensor may be used to detect the earthquake. For example, the earthquake sensor 47 is configured to automatically operate and turn on an electric circuit when it senses an earthquake motion (P wave or S wave) that is higher than a set acceleration (gal). Then, the control device 18 that receives the signal from the earthquake sensor 47 performs stop control of the basket 11 and control for determining whether a long object is caught, which will be described in detail below.
 カゴ呼び釦15、行先階指定釦16、着床検出センサ17、エンコーダ25、及び地震感知器47からの信号を受けた制御装置18が巻上機モータ12aの回転数及び回転方向を制御することで、カゴ11が昇降路19内を昇降する。ワイヤーロープ14、巻上機12、反らせ車、及び釣合錘13は、カゴ昇降機構28を構成する。 The control device 18 that receives signals from the car call button 15, the destination floor designation button 16, the floor landing detection sensor 17, the encoder 25, and the earthquake sensor 47 controls the rotation speed and rotation direction of the hoist motor 12a. Then, the car 11 moves up and down in the hoistway 19. The wire rope 14, the hoist 12, the warping wheel, and the counterweight 13 constitute a car lifting mechanism 28.
 図2は、以下で説明する長尺物の引っ掛かり判定制御に関連する関連部位のブロック図である。図2に示すように、制御装置18は、着床検出センサ17、エンコーダ25、地震感知器47、上側撮影装置45、及び下側撮影装置46から信号(情報)を受信する。また、制御装置18は、受信した信号に基づいて、巻上機モータ12a、カゴ扉開閉用モータ39、上側照明装置41、下側照明装置42、上側撮影装置45、及び下側撮影装置46を制御する。 Figure 2 is a block diagram of the relevant parts related to the control of determining whether a long object has been caught, which will be described below. As shown in Figure 2, the control device 18 receives signals (information) from the landing detection sensor 17, the encoder 25, the earthquake detector 47, the upper camera 45, and the lower camera 46. Based on the received signals, the control device 18 also controls the hoist motor 12a, the cage door opening and closing motor 39, the upper lighting device 41, the lower lighting device 42, the upper camera 45, and the lower camera 46.
 制御装置18は、コンピュータ、例えば、マイクロコンピュータによって好適に構成され、制御部60と、記憶部61を含む。制御部60、すなわち、プロセッサは、例えば、CPU(Central Processing Unit)を含む。また、記憶部61は、ハードディスクドライブ(HDD)や、ソリッドステートドライブ(SSD)等で構成され、ROM(Read Only Memory)等の不揮発性メモリや、RAM(Random Access Memory)等の揮発性メモリを含んでもよい。また、記憶部61は、一つのみの記憶媒体で構成されてもよく、複数の異なる記憶媒体で構成されてもよい。CPUは、記憶部61に予め記憶されたプログラム等を読み出して実行する。また、不揮発性メモリは、制御プロラムや所定の閾値等を予め記憶する。また、揮発性メモリは、読み出したプログラムや処理データを一時的に記憶する。記憶部61には、ストップウォッチアプリが記憶されている。ストップウォッチアプリは、制御部60からの経時開始信号に基づいて起動して計時を開始し、制御部60からの経時終了信号に基づいて計時を終了する。制御部60は、ストップウォッチアプリから計時時間を特定可能な情報を取得可能になっている。 The control device 18 is preferably configured by a computer, for example, a microcomputer, and includes a control section 60 and a storage section 61. The control unit 60, that is, the processor includes, for example, a CPU (Central Processing Unit). The storage unit 61 is composed of a hard disk drive (HDD), solid state drive (SSD), etc., and includes nonvolatile memory such as ROM (Read Only Memory) and volatile memory such as RAM (Random Access Memory). May include. Further, the storage unit 61 may be configured with only one storage medium, or may be configured with a plurality of different storage media. The CPU reads and executes programs etc. stored in advance in the storage unit 61. Furthermore, the nonvolatile memory stores in advance a control program, predetermined threshold values, and the like. Further, the volatile memory temporarily stores read programs and processing data. A stopwatch application is stored in the storage unit 61. The stopwatch application is activated and starts measuring time based on the time-lapse start signal from the control unit 60, and ends the time-measurement based on the time-lapse end signal from the control unit 60. The control unit 60 is capable of acquiring information from the stopwatch application that can specify the time measured.
 制御部60は、地震判定部60a、カゴ停止階特定部60b、巻上機モータ制御部60c、カゴ扉開閉用モータ制御部60d、撮影装置制御部60e、基準位置特定部60f、二次元波形生成部60g、減衰ピーク算出部60h、局所減衰率算出部60i、及び閾値比較部60jを含む。制御部60の動作については、図3A乃至図5を用いて詳細に説明する。 The control unit 60 includes an earthquake determination unit 60a, a car stop floor identification unit 60b, a hoisting machine motor control unit 60c, a car door opening/closing motor control unit 60d, an imaging device control unit 60e, a reference position identification unit 60f, and a two-dimensional waveform generation unit. 60g, an attenuation peak calculation section 60h, a local attenuation rate calculation section 60i, and a threshold comparison section 60j. The operation of the control unit 60 will be explained in detail using FIGS. 3A to 5.
 図3A及び図3Bは、制御装置18が行う長尺物の引っ掛かり判定制御の一例の手順を示すフローチャートである。なお、図3A及び図3Bでは、長尺物がワイヤーロープ14である場合を例に説明を行うが、長尺物は、制御ケーブルでもよく、コンペンロープでもよい。新規のエレベーター10の最初の駆動又はメンテナンスモードから通常運転モードへの移行等によって、カゴ11が乗客を運搬する通常運転がスタートすると、ステップS1で、地震判定部60aが地震感知器47からの情報に基づいて地震が発生したか否かを判定する。ステップS1で否定判定されると、ステップS1が繰り返される。 FIGS. 3A and 3B are flowcharts illustrating an example of a long object snagging determination control performed by the control device 18. In addition, although FIGS. 3A and 3B will be described using an example in which the elongated object is the wire rope 14, the elongated object may be a control cable or a compen rope. When a normal operation in which the car 11 transports passengers starts due to the initial operation of the new elevator 10 or transition from the maintenance mode to the normal operation mode, in step S1, the earthquake determination unit 60a detects information from the earthquake sensor 47. Based on this, it is determined whether an earthquake has occurred. If a negative determination is made in step S1, step S1 is repeated.
 他方、ステップS1で肯定判定されると、ステップS2に移行して、カゴ停止階特定部60bが、エンコーダ25からの情報基づいてカゴ11の位置と移動方向を認識し、カゴ11が乗場22に停止していない場合、カゴ11の停止階を特定する。カゴ停止階特定部60bが特定する特定階としては、例えば、カゴ11の移動方向の先にあり、カゴ11からの高さ方向の距離が最も近い最寄階でもよい。又は、カゴ停止階特定部60bが特定する特定階としては、ワイヤーロープ14が共振しない階でもよい。 On the other hand, if an affirmative determination is made in step S1, the process proceeds to step S2, where the car stop floor identifying unit 60b recognizes the position and moving direction of the car 11 based on the information from the encoder 25, and the car 11 reaches the landing 22. If the car 11 is not stopped, the stopping floor of the car 11 is specified. The specific floor specified by the car stop floor specifying unit 60b may be, for example, the nearest floor that is located ahead in the moving direction of the car 11 and is the closest to the car 11 in the height direction. Alternatively, the specific floor identified by the car stop floor identifying section 60b may be a floor where the wire rope 14 does not resonate.
 詳しくは、地震感知器47は、加速度の向きを検出できるので、地震の周期、すなわち、エレベーター10が設置された建物の振動の周期を推定できる。また、エンコーダ25からの情報で乗場毎にカゴ11がその階に着床した場合におけるワイヤーロープ14と、カゴ11と、釣合錘13の位置を特定できる。したがって、地震感知器47からの情報で建物の振動の周期を推定できると共に、エンコーダ25からの情報でワイヤーロープ14の共振周波数を特定できるので、ワイヤーロープ14が共振しない階を推定できる。 Specifically, since the earthquake sensor 47 can detect the direction of acceleration, it can estimate the period of the earthquake, that is, the period of vibration of the building in which the elevator 10 is installed. Furthermore, the positions of the wire rope 14, the car 11, and the counterweight 13 can be specified for each landing based on the information from the encoder 25 when the car 11 lands on that floor. Therefore, the period of vibration of the building can be estimated using the information from the earthquake sensor 47, and the resonant frequency of the wire rope 14 can be specified using the information from the encoder 25, so it is possible to estimate the floor where the wire rope 14 does not resonate.
 ステップS2の後のステップS3では、巻上機モータ制御部60cが、エンコーダ25及び着床検出センサ17からの情報に基づいて巻上機モータ12aを制御することで、カゴ11を上記特定階に停止させ、その後、カゴ扉開閉用モータ制御部60dが、カゴ扉開閉用モータ39を制御することで、カゴ扉32及び乗場扉31を開く。このようにして、カゴ11内に人が存在する場合、その人をカゴ11外に迅速に退避させる。 In step S3 after step S2, the hoist motor control unit 60c controls the hoist motor 12a based on information from the encoder 25 and landing detection sensor 17 to move the car 11 to the specific floor. Then, the car door opening/closing motor control unit 60d controls the car door opening/closing motor 39 to open the car door 32 and the landing door 31. In this way, if there is a person inside the car 11, the person is quickly evacuated outside the car 11.
 ステップS3の後のステップS4では、撮影装置制御部60eが上側撮影装置45で撮影を行うか否かを判定する。詳しくは、撮影装置制御部60eは、例えば、カゴ11が停止している位置が、カゴ11の高さ方向の移動範囲における中心よりも下側の下側領域に位置しているか否かを判定する。カゴ11が下側領域に位置している場合、撮影装置制御部60eが上側撮影装置45で撮影を行うと判定し、カゴ11が停止している位置が、カゴ11の高さ方向の移動範囲における中心及び中心よりも上側に位置している場合、撮影装置制御部60eが下側撮影装置46で撮影を行うと判定する。 In step S4 after step S3, the photographing device control unit 60e determines whether or not the upper photographing device 45 is to perform photographing. Specifically, the photographing device control unit 60e determines, for example, whether the position where the car 11 is stopped is located in a lower area below the center of the movement range of the car 11 in the height direction. do. When the basket 11 is located in the lower region, the photographing device control unit 60e determines that the upper photographing device 45 is to perform photographing, and the position where the basket 11 is stopped is the movement range of the basket 11 in the height direction. If it is located at the center and above the center, the photographing device control unit 60e determines that the lower photographing device 46 is to perform photographing.
 ステップS4で肯定判定されると、ステップS5に移行して、撮影装置制御部60eが、上側照明装置41及び上側撮影装置45を駆動して撮影を開始すると同時に上記ストップウォッチアプリを駆動して、ストップウォッチアプリによる計時を開始する。なお、エレベーター10は、ストップウォッチアプリ以外の公知の如何なる時計機構を有してもよく、制御装置18は、ストップウォッチアプリ以外の時計機構から情報を得ることで、撮影を開始してから終了するまでの時間を取得してもよい。 If an affirmative determination is made in step S4, the process proceeds to step S5, where the photographing device control unit 60e drives the upper lighting device 41 and the upper photographing device 45 to start photographing, and at the same time drives the stopwatch app. Start measuring time using the stopwatch app. Note that the elevator 10 may have any known clock mechanism other than the stopwatch app, and the control device 18 starts and ends shooting by obtaining information from the clock mechanism other than the stopwatch app. You can also get the time until
 ステップS5では、上側撮影装置45で昇降路19におけるカゴ11よりも上側に位置するワイヤーロープ14の少なくとも一部を撮影し、続いて、ステップS6で、地震判定部60aが、地震が終了したか否かを判定する。ステップS6で否定判定されると、ステップS7に移行して、カゴ11よりも上側に位置するワイヤーロープ14の少なくとも一部の撮影を継続した後、ステップS6以下が繰り返される。他方、ステップS6で、肯定判定されると、ステップS8に移行する。 In step S5, the upper photographing device 45 photographs at least a portion of the wire rope 14 located above the car 11 in the hoistway 19, and then in step S6, the earthquake determination unit 60a determines whether the earthquake has ended. Determine whether or not. If a negative determination is made in step S6, the process moves to step S7, and after continuing to photograph at least a portion of the wire rope 14 located above the car 11, steps S6 and subsequent steps are repeated. On the other hand, if an affirmative determination is made in step S6, the process moves to step S8.
 他方、ステップS4で否定判定されると、ステップS9に移行して、撮影装置制御部60eが、下側照明装置42及び下側撮影装置46を駆動して撮影を開始すると同時に上記ストップウォッチアプリを駆動して、ストップウォッチアプリによる計時を開始する。ステップS9では、下側撮影装置46で昇降路19におけるカゴ11よりも下側に位置するワイヤーロープ14の少なくとも一部を撮影し、続いて、ステップS10で、地震判定部60aが、地震が終了したか否かを判定する。ステップS10で否定判定されると、ステップS11で、カゴ11より下側に位置するワイヤーロープ14の少なくとも一部の撮影を継続した後、ステップS10以下が繰り返される。他方、ステップS10で、肯定判定されると、ステップS8に移行する。 On the other hand, if a negative determination is made in step S4, the process proceeds to step S9, where the photographing device control unit 60e drives the lower lighting device 42 and the lower photographing device 46 to start photographing, and at the same time runs the stopwatch app. drive and start measuring time using the stopwatch app. In step S9, the lower photographing device 46 photographs at least a portion of the wire rope 14 located below the car 11 in the hoistway 19, and then in step S10, the earthquake determining unit 60a determines that the earthquake has ended. Determine whether or not. If a negative determination is made in step S10, in step S11, photographing of at least a portion of the wire rope 14 located below the car 11 is continued, and then steps S10 and subsequent steps are repeated. On the other hand, if an affirmative determination is made in step S10, the process moves to step S8.
 ステップS8では、撮影装置制御部60eが、撮影装置43による撮影を終了させると同時にストップウォッチアプリによる計時を終了させる。続く、ステップS12では、基準位置特定部60fが、ワイヤーロープ14の基準位置を特定する。例えば、基準位置特定部60fは、撮影の開始時における撮影装置43の撮影画像の中心に最も近いワイヤーロープ14の箇所を、ワイヤーロープ14の基準位置として特定する。なお、照明装置40は、基準位置を照らすように設置されている。続いて、ステップS13では、二次元波形生成部60gが、撮影装置43が撮影した動画に基づいて、二次元波形を生成する。 In step S8, the photographing device control unit 60e ends the photographing by the photographing device 43 and at the same time ends the time measurement by the stopwatch application. Subsequently, in step S12, the reference position specifying section 60f specifies the reference position of the wire rope 14. For example, the reference position specifying unit 60f specifies, as the reference position of the wire rope 14, the location on the wire rope 14 that is closest to the center of the image captured by the image capturing device 43 at the start of imaging. Note that the lighting device 40 is installed so as to illuminate the reference position. Subsequently, in step S13, the two-dimensional waveform generation unit 60g generates a two-dimensional waveform based on the moving image photographed by the photographing device 43.
 詳しくは、例えば、二次元波形生成部60gは、ワイヤーロープ14の基準位置の一方向の変位とストップウォッチアプリからの経時情報に基づいて、二次元波形を生成する。長尺物が引っ掛かり易い昇降路機器(例えば、釣合錘13、ベーン(誘導板)17a、ガイドレール、ガイドレールに固定されている部材(例えば、ガイドレールを支えているブラケット等))は、カゴ11の奥行方向の手前側や奥側に配置されている。したがって、一方向として、カゴ11の奥行方向を選択すると、長尺物のひっかかりの有無を正確に判定し易くて好ましい。 Specifically, for example, the two-dimensional waveform generation unit 60g generates a two-dimensional waveform based on the displacement of the reference position of the wire rope 14 in one direction and the elapsed time information from the stopwatch application. Hoistway equipment where long objects are likely to get caught (e.g., counterweight 13, vane (guide plate) 17a, guide rail, members fixed to the guide rail (e.g., brackets supporting the guide rail, etc.)) They are arranged on the front side and the back side of the basket 11 in the depth direction. Therefore, it is preferable to select the depth direction of the basket 11 as one direction because it is easy to accurately determine whether or not a long object is caught.
 続く、ステップS14では、減衰ピーク算出部60hが複数の減衰ピーク81a,81b(図4、図5参照)を特定する。図4は、引っ掛かりがないワイヤーロープ14における二次元波形の一例を示す図であり、図5は、引っ掛かりがあるワイヤーロープ14における二次元波形の一例を示す図である。図4に示すように、引っ掛かりがないないワイヤーロープ14の二次元波形は、概略的には、正弦波の形状を有し、徐々に減衰する。これに対し、図5に示すように、引っ掛かりがあるワイヤーロープ14における二次元波形は、引っ掛かりが生じた付近で振幅が急激に減衰し、局所的で大きな減衰部分を有する。 In the following step S14, the attenuation peak calculation unit 60h identifies a plurality of attenuation peaks 81a, 81b (see FIGS. 4 and 5). FIG. 4 is a diagram showing an example of a two-dimensional waveform in a wire rope 14 that is not caught, and FIG. 5 is a diagram showing an example of a two-dimensional waveform in a wire rope 14 that is caught. As shown in FIG. 4, the two-dimensional waveform of the wire rope 14 without any snags generally has a sinusoidal shape and gradually attenuates. On the other hand, as shown in FIG. 5, the two-dimensional waveform of the wire rope 14 that is caught has a sharply attenuated amplitude in the vicinity of the snag, and has a locally large attenuation portion.
 減衰ピーク算出部60hは、ステップS13で生成した二次元波形に基づいて複数の減衰ピーク81a,81bを特定する。ここで、減衰ピーク81a,81bは、二次元波形80a,80bにおける振れの極大箇所であって、かつ、その減衰ピーク81a,81bが生じた時間よりも後の時間に当該減衰ピーク81a,81b以上の振れ量の極大箇所が存在しない極大箇所である。 The attenuation peak calculation unit 60h specifies a plurality of attenuation peaks 81a and 81b based on the two-dimensional waveform generated in step S13. Here, the attenuation peaks 81a, 81b are the maximum points of vibration in the two-dimensional waveforms 80a, 80b, and are greater than or equal to the attenuation peaks 81a, 81b at a time later than the time at which the attenuation peaks 81a, 81b occur. This is a maximum point where the amount of runout does not exist.
 続く、ステップS15では、局所減衰率算出部60iが、特定した複数の減衰ピーク81a,81bに基づいて、全ての異なる隣り合う2つの減衰ピーク81a,81bの組に関し、減衰率を算出し、局所減衰率を特定する。ここで、局所減衰率は、[(隣り合う2つの減衰ピーク81a,81bのうちで時間が後の減衰ピーク81a,81bの振れ量)/(隣り合う2つの減衰ピーク81a,81のうちで時間が前の減衰ピーク81a,81bの振れ量)]のうちで最小の値で定義される。局所減衰率を特定することで、二次元波形において、局所的で大きな減衰部分が存在するか否かを正確かつ客観的に評価でき、ワイヤーロープ14が引っ掛かっているか否かを正確かつ客観的に判定できる。なお、局所減衰率は、二次元波形のうちの非常に短い時間の局所部分のみで算出できるので、二次元波形の10%以下の部分における減衰の尺度となり得る。 Subsequently, in step S15, the local attenuation rate calculation unit 60i calculates attenuation rates for all sets of two different adjacent attenuation peaks 81a, 81b based on the identified plurality of attenuation peaks 81a, 81b, and Determine the decay rate. Here, the local attenuation rate is [(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b)/(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81) is defined as the minimum value among the deflection amounts of the previous attenuation peaks 81a and 81b)]. By specifying the local attenuation rate, it is possible to accurately and objectively evaluate whether or not there is a locally large attenuation part in the two-dimensional waveform, and it is possible to accurately and objectively evaluate whether or not the wire rope 14 is caught. Can be judged. Note that the local attenuation rate can be calculated only for a very short local portion of the two-dimensional waveform, and therefore can be used as a measure of attenuation in a portion of 10% or less of the two-dimensional waveform.
 続く、ステップS16では、閾値比較部60jが、局所減衰率が、第1閾値以下であるか否かを判定する。ステップS16で肯定判定されると、ワイヤーロープ14に引っ掛かりがないと判定して、ステップS17に移行して、エレベーター10を、カゴ呼び釦15及び行先階指定釦16の乗客の操作に基づいてカゴ11が昇降する通常運転させ、その後、ステップS1以下が繰り返される。 In the following step S16, the threshold comparison unit 60j determines whether the local attenuation rate is less than or equal to the first threshold. If an affirmative determination is made in step S16, it is determined that the wire rope 14 is not caught, and the process proceeds to step S17. 11 is raised and lowered to perform normal operation, and then steps S1 and subsequent steps are repeated.
 他方、ステップS16で否定判定されると、ステップS18に移行して、閾値比較部60jが、上記局所減衰率が、上記第1閾値よりも大きい第2閾値以上であるか否かを判定する。ステップS18で否定判定されると、ステップS19に移行して、巻上機モータ制御部60cが、地震が終了した後の最初のカゴ11の移動において、カゴ11の最高速度を、通常運転におけるカゴ11の移動の最高速度よりも遅い速度に制限した上で、エレベーター10に不具合があるか否かを判定するためのカゴ11の自動診断運転を行い、その後、ステップS20に移行する。 On the other hand, if a negative determination is made in step S16, the process proceeds to step S18, and the threshold comparison unit 60j determines whether the local attenuation rate is equal to or greater than a second threshold that is larger than the first threshold. If a negative determination is made in step S18, the process proceeds to step S19, where the hoisting machine motor control unit 60c sets the maximum speed of the car 11 to the maximum speed of the car 11 during the first movement of the car 11 after the earthquake. After limiting the speed to a speed lower than the maximum speed of movement of the car 11, an automatic diagnostic operation of the car 11 is performed to determine whether or not there is a problem with the elevator 10, and then the process moves to step S20.
 他方、ステップS18で肯定判定されると、ステップS21に移行して、地震が終了した後の最初のカゴ11の移動において、カゴ11の最高速度を、ステップS19におけるカゴ11の自動診断運転におけるカゴ11の最高速度よりも遅い速度に制限した上で、エレベーター10に不具合があるか否かを判定するためのカゴ11の自動診断運転を行い、その後、ステップS20に移行する。なお、ステップS19及びステップS21における最初のカゴ11の移動とは、地震がおさまった後で最初にカゴ11が動き出してから止るまでのカゴ11の移動のことを指す。ステップS20では、制御装置18が、上記自動診断運転に基づいて、エレベーター10に不具合があるか否かを判定する。ステップS20で否定判定されると、ステップS17に移行する。他方、ステップS20で肯定判定されると、ステップS22に移行して、カゴ11を停止させた後、制御がエンドになる。 On the other hand, if an affirmative determination is made in step S18, the process proceeds to step S21, and in the first movement of the car 11 after the earthquake, the maximum speed of the car 11 is determined as the car 11 in the automatic diagnostic operation of the car 11 in step S19. After limiting the speed to a speed lower than the maximum speed of the car 11, an automatic diagnostic operation of the car 11 is performed to determine whether or not there is a problem with the elevator 10, and then the process moves to step S20. Note that the first movement of the car 11 in step S19 and step S21 refers to the movement of the car 11 from when the car 11 first starts moving until it stops after the earthquake subsides. In step S20, the control device 18 determines whether or not there is a problem with the elevator 10 based on the automatic diagnostic operation. If a negative determination is made in step S20, the process moves to step S17. On the other hand, if an affirmative determination is made in step S20, the process moves to step S22, and after stopping the car 11, the control ends.
 以上、エレベーター10は、カゴ11と、カゴ11を昇降させるためのカゴ昇降機構28と、カゴ11に取り付けられ、カゴ11よりも上側に位置する上側領域及びカゴ11よりも下側に位置する下側領域のうちの少なくとも一方を撮影できる撮影装置43と、カゴ11に取り付けられ、上側領域及び下側領域の少なくとも一部に光を照射する照明装置40と、地震を感知可能である地震感知器47と、を備える。また、地震感知器47が地震を感知するとカゴ11が停止してカゴ11の停止後に撮影装置43が少なくとも1つの長尺物(例えば、ワイヤーロープ14、制御ケーブル、コンペンロープ等)の少なくとも一部を撮影し、撮影装置43が撮影した少なくとも1つの長尺物(上記実施形態では、ワイヤーロープ14)の少なくとも一部の画像に基づいて長尺物の引っ掛かりを判定する。 As described above, the elevator 10 includes a car 11, a car lifting mechanism 28 for raising and lowering the car 11, an upper area that is attached to the car 11 and is located above the car 11, and a lower area that is located below the car 11. A photographing device 43 capable of photographing at least one of the side regions, an illumination device 40 attached to the basket 11 and irradiating light to at least part of the upper region and the lower region, and an earthquake sensor capable of detecting earthquakes. 47. Further, when the earthquake sensor 47 detects an earthquake, the car 11 stops, and after the car 11 stops, the photographing device 43 captures at least part of at least one long object (for example, wire rope 14, control cable, compen rope, etc.). is photographed, and based on an image of at least a portion of at least one long object (in the above embodiment, the wire rope 14) photographed by the photographing device 43, it is determined whether the long object is caught.
 本開示によれば、地震感知によるカゴ11の停止後に撮影装置43が撮影した少なくとも1つの長尺物の少なくとも一部の画像に基づいて長尺物の引っ掛かりを判定する。したがって、長尺物の引っ掛かりを直接的かつ正確に判定できる。 According to the present disclosure, whether a long object is caught is determined based on an image of at least a portion of at least one long object taken by the photographing device 43 after the basket 11 is stopped due to earthquake sensing. Therefore, it is possible to directly and accurately determine whether a long object is caught.
 また、少なくとも1つの長尺物に関して、時間と長尺物の基準箇所の一方向の振れ量で画定される二次元波形80a,80bを画像に基づいて生成し、少なくとも1つの長尺物に関して、二次元波形80a,80bに基づいて長尺物の引っ掛かりを判定してもよい。 Further, regarding at least one long object, two-dimensional waveforms 80a and 80b defined by time and a deflection amount in one direction of a reference point of the long object are generated based on the image, and regarding at least one long object, two-dimensional waveforms 80a and 80b are generated based on the image. It may be determined whether a long object is caught based on the two-dimensional waveforms 80a and 80b.
 長尺物の引っ掛かりが生じた場合、二次元波形80bには、長尺物の引っ掛かりが生じた時刻の前後で大きな違いが生じる。そして、図5に示すように、当該二次元波形80bの振幅の大きさに局所的で急激な減少が生じる。本構成によれば、上記二次元波形80a,80bに基づいて長尺物の引っ掛かりを判定する、したがって、長尺物の引っ掛かりを正確に判定できる。 When a long object is caught, there is a large difference in the two-dimensional waveform 80b before and after the time when the long object is caught. Then, as shown in FIG. 5, a local and rapid decrease occurs in the amplitude of the two-dimensional waveform 80b. According to this configuration, it is possible to determine whether a long object is caught on the basis of the two-dimensional waveforms 80a and 80b, and therefore it is possible to accurately determine whether a long object is caught.
 また、二次元波形80a,80bにおいて確認できる複数の減衰ピーク81a,81bに基づいて長尺物の引っ掛かりを判定し、減衰ピーク81a,81bは、二次元波形80a,80における振れの極大箇所であって、かつ、その減衰ピーク81a,81bが生じた時間よりも後の時間に減衰ピーク81a,81b以上の振れ量の極大箇所が存在しない極大箇所でもよい。 In addition, it is determined whether a long object is caught on the basis of a plurality of attenuation peaks 81a, 81b that can be confirmed in the two-dimensional waveforms 80a, 80b, and the attenuation peaks 81a, 81b are the maximum points of deflection in the two-dimensional waveforms 80a, 80. In addition, it may be a maximum location where there is no maximum location of the amount of runout greater than the attenuation peaks 81a, 81b at a time later than the time when the attenuation peaks 81a, 81b occur.
 本構成によれば、二次元波形における局所的で急激な減衰を容易かつ客観的に評価できる。よって、長尺物の引っ掛かりを正確に判定できる。 According to this configuration, local and rapid attenuation in a two-dimensional waveform can be easily and objectively evaluated. Therefore, it is possible to accurately determine whether a long object is caught.
 また、基準箇所が、少なくとも1つの長尺物における画像の中心に最も近い箇所を含んでもよい。本構成によれば、画像解析を自動的かつ容易に行うことができる。なお、基準箇所は、画像において最も振れが大きい長尺物の箇所を含むようにしてもよく、この場合、急減な減衰を判定し易く、長尺物の引っ掛かりを正確に判定できる。 Additionally, the reference location may include the location closest to the center of the image of at least one elongated object. According to this configuration, image analysis can be performed automatically and easily. Note that the reference location may include the location of the elongated object where the shake is the largest in the image. In this case, it is easy to determine a sudden decrease in attenuation, and it is possible to accurately determine whether the elongated object is caught.
 又は、基準箇所は、長尺物において印がつけられている箇所でもよい。ここで、地震の後でカゴが停止する階が、決まっていない場合には、長尺物に間隔をおいて複数の印をつてもよい。また、上記印は、例えば、長尺物の基準箇所へ固定された光を反射する部材でもよく、長尺物の基準箇所へ塗布された蛍光塗料等の塗料でもよい。本構成によれば、基準箇所の変位の測定や画像処理を格段に容易に行うことができる。 Alternatively, the reference location may be a marked location on a long object. Here, if the floor on which the car will stop after an earthquake is not determined, a plurality of marks may be placed on the long object at intervals. Furthermore, the mark may be, for example, a light-reflecting member fixed to a reference point on the long object, or a paint such as fluorescent paint applied to the reference point on the long object. According to this configuration, measurement of the displacement of the reference location and image processing can be performed much more easily.
 また、二次元波形80a,80bの10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合を第1の場合とし、局所減衰率が第1閾値よりも大きい第2閾値以上の場合を第2の場合とし、更に、局所減衰率が第1閾値よりも大きくて、かつ、第2閾値未満の場合を第3の場合とするとき、地震が終了した後の最初のカゴ11の移動において、第1の場合のカゴ11の最高速度を、第2の場合のカゴ11の最高速度よりも大きくし、更に、第2の場合のカゴ11の最高速度を、第3の場合のカゴ11の最高速度よりも大きくしてもよい。なお、上記最初のカゴ11の移動は、地震の発生でカゴ11が停止した後に最初にカゴ11が動き出してから止るまでのカゴ11の移動である。 Further, the first case is defined as a case where the local attenuation rate, which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b, is less than or equal to the first threshold, and the second case where the local attenuation rate is greater than the first threshold is defined as the first case. The second case is when the local attenuation rate is greater than the threshold, and the third case is when the local attenuation rate is larger than the first threshold and less than the second threshold. In moving the car 11, the maximum speed of the car 11 in the first case is set higher than the maximum speed of the car 11 in the second case, and the maximum speed of the car 11 in the second case is set to be higher than the maximum speed of the car 11 in the second case. The maximum speed of the car 11 may be higher than the maximum speed of the car 11 in this case. The above-mentioned first movement of the car 11 is the movement of the car 11 from when the car 11 first starts moving until it stops after the car 11 stops due to the occurrence of an earthquake.
 長尺物の引っ掛かりが生じている場合、地震後にエレベーター10に不具合があるか否かを自動で診断するための自動診断運転においてカゴ11を低速で動かした方が、当該自動診断運転でエレベーター10が損傷する可能性は低くなる。 If a long object is caught, it is better to move the car 11 at a low speed during the automatic diagnostic operation to automatically diagnose whether there is a problem with the elevator 10 after an earthquake. is less likely to be damaged.
 本構成によれば、長尺物の引っ掛かりの可能性の程度(大小)に応じて、上記最初のカゴ11の移動で最高速度を3段階に制御する。よって、地震後にエレベーター10に不具合があるか否かを自動で診断するための自動診断運転において長尺物の引っ掛かり基づく損傷が生じる可能性を効果的に抑制できる。 According to this configuration, the maximum speed of the first movement of the basket 11 is controlled in three stages depending on the degree (large or small) of the possibility that a long object will be caught. Therefore, it is possible to effectively suppress the possibility of damage caused by long objects being caught in the automatic diagnostic operation for automatically diagnosing whether or not there is a problem with the elevator 10 after an earthquake.
 また、上記局所減衰率が、[(隣り合う2つの減衰ピーク81a,81bのうちで時間が後の減衰ピーク81a,81bの振れ量)/(隣り合う2つの減衰ピーク81a,81bのうちで時間が先の減衰ピーク81a,81bの振れ量)]のうちで最小の値に基づく値でもよい。ここで、最小の値に基づく値には、例えば、最小の値そのものや、最小の値の定数倍の値等が含まれる。 In addition, the local attenuation rate is [(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b)/(the amount of deflection of the attenuation peaks 81a, 81b that are later in time among the two adjacent attenuation peaks 81a, 81b) may be a value based on the smallest value among the deviation amounts of the previous attenuation peaks 81a and 81b). Here, the value based on the minimum value includes, for example, the minimum value itself, a constant multiple of the minimum value, and the like.
 本構成によれば、二次元波形80a,80bの局所的な減衰を客観的かつ正確に評価できる。なお、局所減衰率は、所定時間の間における、[最大の減衰ピークの振れ量から最小の減衰ピークの振れ量を引いた値]のうちで最大の値に基づく値でもよく、このようにしても、二次元波形80a,60bの局所的な減衰を客観的かつ正確に評価できる。なお、最大の値に基づく値には、例えば、最大の値そのものや、最大の値の定数倍の値等が含まれる。また、上記所定時間は、二次元波形の全体の時間の10%以下の時間である。 According to this configuration, the local attenuation of the two-dimensional waveforms 80a and 80b can be evaluated objectively and accurately. Note that the local damping rate may be a value based on the maximum value of [the value obtained by subtracting the deflection amount of the minimum damping peak from the deflection amount of the maximum damping peak] during a predetermined period of time. Also, the local attenuation of the two-dimensional waveforms 80a and 60b can be evaluated objectively and accurately. Note that the value based on the maximum value includes, for example, the maximum value itself, a constant multiple of the maximum value, and the like. Further, the predetermined time is 10% or less of the entire time of the two-dimensional waveform.
 また、撮影装置43が、上側領域を撮影する上側撮影装置45と下側領域を撮影する下側撮影装置46を含み、カゴ11が止まった後において、上側撮影装置45と下側撮影装置46のうちで高さ方向の長さが大きい領域を撮影できる方の撮影装置のみで撮影を行ってもよい。 Further, the photographing device 43 includes an upper photographing device 45 for photographing the upper region and a lower photographing device 46 for photographing the lower region, and after the car 11 has stopped, the upper photographing device 45 and the lower photographing device 46 are Photographing may be performed using only the photographing device that can photograph an area having a large length in the height direction.
 本構成によれば、長尺物の振れが大きい部分を撮影し易く、長尺物の引っ掛かりを正確に判定し易い。なお、撮影装置は、上側領域と下側領域の少なくとも一方を撮影できればよく、撮影装置は、上側撮影装置45のみで構成されてもよく、下側撮影装置46のみで構成されてもよい。ここで、ピットで作業する保守作業員の安全を確保するためにカゴ11の下側に下側撮影装置46が設置されている場合、撮影を、下側撮影装置46のみで行うようにすると、保守作業員の安全のための下側撮影装置46を長尺物の引っ掛かりの判定に流用することができ、新たな設備投資を行うことなく、長尺物の引っ掛かりの判定を行うことができる。但し、この場合、地震の後に停止させるカゴ11の階は、カゴ11の高さ方向の移動範囲における中心以上の階にすると好ましい。 According to this configuration, it is easy to photograph a portion of a long object where the shake is large, and it is easy to accurately determine whether the long object is caught. Note that the photographing device only needs to be able to photograph at least one of the upper region and the lower region, and the photographing device may be composed of only the upper photographing device 45 or only the lower photographing device 46. Here, if the lower photographing device 46 is installed below the cage 11 in order to ensure the safety of the maintenance workers working in the pit, if the photographing is performed only with the lower photographing device 46, The lower photographing device 46 for the safety of maintenance workers can be used to determine whether a long object is caught, and it is possible to determine whether a long object is caught without making new equipment investment. However, in this case, it is preferable that the floor of the car 11 to be stopped after an earthquake is a floor higher than the center of the movement range of the car 11 in the height direction.
 なお、本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。 Note that the present disclosure is not limited to the above-described embodiments and modifications thereof, and various improvements and changes can be made within the scope of the claims of the present application and their equivalents.
 例えば、上記実施形態では、局所減衰率を用いて長尺物における引っ掛かりの可能性を3段階に評価したが、局所減衰率を用いて長尺物における引っ掛かりの可能性を2段階に評価してもよい。例えば、二次元波形80a,80bの10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合に対応する長尺物の引っ掛かりがないことを判定する一方、局所減衰率が第1閾値より大きい場合に対応する長尺物の引っ掛かりがあることを判定してもよい。 For example, in the above embodiment, the possibility of getting caught on a long object is evaluated in three stages using the local attenuation rate, but the possibility of getting caught on a long object is evaluated in two stages using the local attenuation rate. Good too. For example, if the local attenuation rate, which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b, is equal to or less than a first threshold value, it is determined that there is no catch of a corresponding long object, and the local attenuation rate It may be determined that the corresponding elongated object is caught when is larger than the first threshold value.
 また、局所減衰率を、二次元波形80a,80bの10%以下の部分における減衰の尺度となり得る率として定義した。しかし、局所減衰率を、二次元波形80a,80bの5%以下の部分における減衰の尺度となり得る率とすれば、長尺物の引っ掛かりの有無を更に正確に判定し易い。 In addition, the local attenuation rate was defined as a rate that can serve as a measure of attenuation in a portion of 10% or less of the two-dimensional waveforms 80a, 80b. However, if the local attenuation rate is a rate that can serve as a measure of attenuation in a portion of 5% or less of the two-dimensional waveforms 80a, 80b, it is easier to more accurately determine whether a long object is caught.
 また、長尺物の引っ掛かりを、局所減衰率を用いて判定したが、局所減衰率を用いずに判定してもよい。例えば、エレベーターは、複数の基準二次元波形を予め記憶している記憶部を備えてもよい。そして、少なくとも1つの長尺物に関して、複数の基準二次元波形のうちの一つと対応する二次元波形とに基づいて長尺物の引っ掛かりを判定してもよい。 Furthermore, although the catching of a long object was determined using the local attenuation rate, the determination may be made without using the local attenuation rate. For example, the elevator may include a storage unit that stores a plurality of reference two-dimensional waveforms in advance. For at least one elongated object, whether or not the elongated object is caught may be determined based on one of the plurality of reference two-dimensional waveforms and the corresponding two-dimensional waveform.
 詳しくは、地震の典型的な複数のタイプ、例えば、縦揺れ、横揺れ、長周期地震動、異なるマグニチュードの大きさでの地震等、で異なる複数の基準二次元波形(長尺物が引っ掛かっていない場合の基準二次元波形)が各階の乗場毎に予め作成され、エレベーターの記憶部に予め記憶されていてもよい。そして、実際に地震が生じたときに停止したカゴの乗場と、地震感知器が感知した情報に基づいて特定した地震のタイプとに基づいて、複数の基準二次元波形のうちから1の基準二次元波形を選定して、その選定した基準二次元波形と、撮影に基づく二次元波形とを比較することで、長尺物の引っ掛かりを判定してもよい。ここで、比較は、例えば、二次元波形の減衰率が、所定値(例えば、10%)に到達するまでの時間や、二次元波形の振幅の平均等を比較することで行ってもよい。このようにしても、長尺物の引っ掛かりを正確に判断し易い。 In detail, multiple standard two-dimensional waveforms (no long objects caught (reference two-dimensional waveform) may be created in advance for each landing on each floor and stored in advance in the storage unit of the elevator. Then, one standard two-dimensional waveform is selected from a plurality of standard two-dimensional waveforms based on the landing area of the car that stopped when an earthquake actually occurred and the type of earthquake identified based on information detected by the earthquake sensor. It is also possible to determine whether a long object is caught by selecting a dimensional waveform and comparing the selected reference two-dimensional waveform with a two-dimensional waveform based on photography. Here, the comparison may be performed, for example, by comparing the time it takes for the attenuation rate of the two-dimensional waveform to reach a predetermined value (for example, 10%), the average amplitude of the two-dimensional waveform, or the like. Even in this case, it is easy to accurately judge whether a long object is caught.
 又は、撮影装置が、互いに異なる複数の長尺物を撮影して、長尺物毎に二次元波形を生成し、複数の長尺物に関して生成した互いに異なる複数の二次元波形に基づいて、複数の長尺物のうちの1以上の長尺物の引っ掛かりを判定してもよい。 Alternatively, the imaging device photographs a plurality of different long objects, generates a two-dimensional waveform for each long object, and generates a plurality of two-dimensional waveforms based on the plurality of mutually different two-dimensional waveforms generated for the plurality of long objects. It may be determined whether one or more of the long objects are caught.
 複数の長尺物に引っ掛かりに生じていない場合、同じ地震に関して、複数の長尺物が類似の振れの振る舞いをする場合がある。よって、振る舞いが他の長尺物と大きく異なっていて異質な振れの振る舞いを行っている長尺物の引っ掛かりを判断できる場合がある。例えば、振幅が最大に減少した時間帯が、1つの長尺物のみが、他の長尺物と異なっている場合、その1つの長尺物が、昇降路機器に引っ掛かったと判定してもよい。本構成によれば、複数の長尺物に関して生成した互いに異なる複数の二次元波形を生成する。よって、異質な振れの振る舞いを行っている長尺物の引っ掛かりを判断できる場合がある。 If it is not caused by being caught on multiple long objects, multiple long objects may exhibit similar swing behavior in relation to the same earthquake. Therefore, it may be possible to determine whether a long object is caught, and whose behavior is significantly different from that of other long objects and whose swinging behavior is unique. For example, if the time period in which the amplitude decreases to the maximum is different for only one elongated object than for other elongated objects, it may be determined that that one elongated object is caught in hoistway equipment. . According to this configuration, a plurality of mutually different two-dimensional waveforms generated for a plurality of elongated objects are generated. Therefore, it may be possible to determine whether a long object is caught and exhibits unusual swinging behavior.
 また、減衰ピークを滑らかに結んだ曲線を収束曲線90(図4参照)として定義したとき、収束曲線90に基づいて長尺物の引っ掛かりを判定してもよい。例えば、収束曲線90の単位時間当りの傾きが、閾値よりも大きくなる箇所が存在する場合に長尺物の引っ掛かりを判定してもよい。 Furthermore, when a curve that smoothly connects the attenuation peaks is defined as a convergence curve 90 (see FIG. 4), it is also possible to determine whether a long object is caught on the basis of the convergence curve 90. For example, if there is a portion where the slope of the convergence curve 90 per unit time is larger than a threshold value, it may be determined that a long object is caught.
 また、撮影装置が、動きが止まった後の少なくとも1つの長尺物の少なくとも一部を撮影し、少なくとも1つの長尺物に関し、動きが止まった長尺物の少なくとも一部の画像に基づいて長尺物の引っ掛かりを判断してもよい。 Further, the photographing device photographs at least a part of the at least one elongated object after the movement has stopped, and regarding the at least one elongated object, based on the image of at least a part of the elongated object that has stopped moving. It may also be possible to determine if a long object is caught.
 カゴが各乗場階に停止している状態で、かつ、引っ掛かりが生じていない少なくとも1つの長尺物の少なくとも一部の上記撮影装置による画像をエレベーターの記憶部に予め記憶しておいてもよい。この場合、地震後にカゴをいずれかの乗場に停止させた後に上記撮影装置で地震後に動きが止まった後の少なくとも1つの長尺物の少なくとも一部を撮影して、撮影した画像を対応する乗場の引っ掛かりが生じていない画像と比較することで、少なくとも1つの長尺物の引っ掛かりの有無を正確かつ格段に容易に判定できる。なお、この場合においても、2つの画像の比較を、長尺物において印を付けた個所で行ってもよく、この場合、瞬時かつ正確に長尺物の引っ掛かりの有無を判定できる。 An image taken by the photographing device of at least a portion of at least one long object in which the car is stopped at each landing floor and is not caught may be stored in advance in the storage unit of the elevator. . In this case, after the car is stopped at one of the landings after the earthquake, the photographing device is used to photograph at least a portion of at least one long object that has stopped moving after the earthquake, and the photographed image is transferred to the corresponding landing. By comparing the image with an image in which no object is caught, it is possible to accurately and much more easily determine whether or not at least one elongated object is caught. In this case as well, the two images may be compared at a marked location on the long object, and in this case, it is possible to instantly and accurately determine whether or not the long object is caught.
 10 エレベーター、 11 カゴ、 12 巻上機、 12a 巻上機モータ、 13 釣合錘、 14 ワイヤーロープ、 15 カゴ呼び釦、 16 行先階指定釦、 17 着床検出センサ、 17a ベーン、 17b 検出器、 18 制御装置、 19 昇降路、 22 乗場、 25 エンコーダ、 28 カゴ昇降機構、 30 機械室、 31 乗場扉、 32 カゴ扉、 39 カゴ扉開閉用モータ、 40 照明装置、 41 上側照明装置、 42 下側照明装置、 43 撮影装置、 45 上側撮影装置、 46 下側撮影装置、 47 地震感知器、 60 制御部、 60a 地震判定部、 60b カゴ停止階特定部、 60c 巻上機モータ制御部、 60d カゴ扉開閉用モータ制御部、 60e 撮影装置制御部、 60f 基準位置特定部、 60g 二次元波形生成部、 60h 減衰ピーク算出部、 60i 局所減衰率算出部、 60j 閾値比較部、 61 記憶部、 80a,80b 二次元波形、 81a,81b 減衰ピーク、 90 収束曲線。 10 Elevator, 11 Car, 12 Hoisting machine, 12a Hoisting machine motor, 13 Counterweight, 14 Wire rope, 15 Car call button, 16 Destination floor designation button, 17 Landing detection sensor, 17a Vane, 17b detector, 18 Control device, 19 Hoistway, 22 Landing, 25 Encoder, 28 Car lifting mechanism, 30 Machine room, 31 Landing door, 32 Car door, 39 Car door opening/closing motor, 40 Lighting device, 41 Upper lighting device, 42 Lower side Lighting device, 43 Photographing device, 45 Upper photographing device, 46 Lower photographing device, 47 Earthquake detector, 60 Control section, 60a Earthquake determination section, 60b Car stop floor identification section, 60c Hoisting machine motor control section, 60d Car door Opening/closing motor control unit, 60e Imaging device control unit, 60f reference position identification unit, 60g two-dimensional waveform generation unit, 60h attenuation peak calculation unit, 60i local attenuation rate calculation unit, 60j threshold comparison unit, 61 storage unit, 80a, 80b Two-dimensional waveform, 81a, 81b attenuation peak, 90 convergence curve.

Claims (14)

  1.  カゴと、
     前記カゴを昇降させるための昇降機構と、
     前記カゴに取り付けられ、前記カゴよりも上側に位置する上側領域及び前記カゴよりも下側に位置する下側領域のうちの少なくとも一方を撮影できる撮影装置と、
     前記カゴに取り付けられ、前記上側領域及び前記下側領域の少なくとも一部に光を照射する照明装置と、
     地震を感知可能である地震感知器と、を備え、
     前記地震感知器が地震を感知すると前記カゴが停止して前記カゴの停止後に前記撮影装置が少なくとも1つの長尺物の少なくとも一部を撮影し、
     前記撮影装置が撮影した前記少なくとも一部の画像に基づいて前記少なくとも1つの長尺物の引っ掛かりを判定する、エレベーター。
    A basket and
    a lifting mechanism for lifting and lowering the basket;
    a photographing device attached to the basket and capable of photographing at least one of an upper region located above the basket and a lower region located below the basket;
    a lighting device that is attached to the basket and irradiates light to at least a portion of the upper region and the lower region;
    Equipped with an earthquake sensor capable of detecting earthquakes,
    When the earthquake sensor detects an earthquake, the basket stops, and after the basket stops, the photographing device photographs at least a portion of at least one elongated object;
    An elevator that determines whether the at least one elongated object is caught based on at least some of the images taken by the imaging device.
  2.  前記少なくとも1つの長尺物に関して、時間と前記長尺物の基準箇所の一方向の振れ量とで画定される二次元波形を前記画像に基づいて生成し、
     前記少なくとも1つの長尺物に関して、前記二次元波形に基づいて前記長尺物の引っ掛かりを判定する、請求項1に記載のエレベーター。
    With respect to the at least one elongated object, a two-dimensional waveform defined by time and a deflection amount in one direction of a reference point of the elongated object is generated based on the image;
    The elevator according to claim 1, wherein, regarding the at least one elongated object, whether or not the elongated object is caught is determined based on the two-dimensional waveform.
  3.  前記二次元波形において確認できる複数の減衰ピークに基づいて前記少なくとも1つの長尺物の引っ掛かりを判定し、
     前記減衰ピークは、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所である、請求項2に記載のエレベーター。
    determining whether the at least one elongated object is caught based on a plurality of attenuation peaks that can be confirmed in the two-dimensional waveform;
    The attenuation peak is a maximum point of the deflection in the two-dimensional waveform, and is a maximum point where there is no maximum point of the deflection amount greater than the attenuation peak at a time after the time when the attenuation peak occurs. The elevator according to claim 2.
  4.  前記基準箇所が、前記少なくとも1つの長尺物における前記画像の中心に最も近い箇所を含む、請求項2又は3に記載のエレベーター。 The elevator according to claim 2 or 3, wherein the reference location includes a location closest to the center of the image of the at least one elongated object.
  5.  前記基準箇所が、前記画像において最も振れが大きい前記長尺物の箇所を含む、請求項2又は3に記載のエレベーター。 The elevator according to claim 2 or 3, wherein the reference location includes a location of the elongated object where the shake is largest in the image.
  6.  前記基準箇所は、前記長尺物において印がつけられている箇所である、請求項2又は3に記載のエレベーター。 The elevator according to claim 2 or 3, wherein the reference location is a location marked on the long object.
  7.  複数の基準二次元波形を予め記憶している記憶部を備え、
     前記少なくとも1つの長尺物に関して、前記複数の基準二次元波形のうちの一つと前記二次元波形とに基づいて前記長尺物の引っ掛かりを判定する、請求項2又は3に記載のエレベーター。
    Equipped with a storage unit that stores a plurality of reference two-dimensional waveforms in advance,
    The elevator according to claim 2 or 3, wherein, regarding the at least one elongated object, whether or not the elongated object is caught is determined based on one of the plurality of reference two-dimensional waveforms and the two-dimensional waveform.
  8.  前記撮影装置が、互いに異なる複数の前記長尺物を撮影して、前記長尺物毎に前記二次元波形を生成し、前記複数の長尺物に関して生成した互いに異なる複数の前記二次元波形に基づいて、前記複数の長尺物のうちの1以上の前記長尺物の引っ掛かりを判定する、請求項2又は3に記載のエレベーター。 The photographing device photographs a plurality of different elongated objects, generates the two-dimensional waveform for each elongated object, and generates the two-dimensional waveforms generated for the plurality of elongated objects. The elevator according to claim 2 or 3, wherein the elevator determines whether one or more of the plurality of elongated objects is caught, based on the above.
  9.  前記二次元波形の10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合に前記長尺物の引っ掛かりがないことを判定する一方、前記局所減衰率が第1閾値より大きい場合に前記長尺物の引っ掛かりがあることを判定する、請求項2に記載のエレベーター。 It is determined that the elongated object is not caught when a local attenuation rate that can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform is less than a first threshold value, and the local attenuation rate is determined to be a first threshold value. The elevator according to claim 2, wherein the elevator determines that the elongated object is caught if the elongated object is larger.
  10.  前記二次元波形の10%以下の部分における減衰の尺度となり得る局所減衰率が第1閾値以下である場合を第1の場合とし、前記局所減衰率が前記第1閾値よりも大きい第2閾値以上の場合を第2の場合とし、更に、前記局所減衰率が前記第1閾値よりも大きくて、かつ、前記第2閾値未満の場合を第3の場合とするとき、前記地震が終了した後の最初の前記カゴの移動において、前記第1の場合の前記カゴの最高速度を、前記第2の場合の前記カゴの最高速度よりも大きくし、更に、前記第2の場合の前記カゴの最高速度を、前記第3の場合の前記カゴの最高速度よりも大きくする、請求項2に記載のエレベーター。 The first case is a case where the local attenuation rate, which can be a measure of attenuation in a portion of 10% or less of the two-dimensional waveform, is less than or equal to a first threshold, and the local attenuation rate is greater than or equal to a second threshold that is greater than the first threshold. The second case is the case, and the third case is the case where the local attenuation rate is larger than the first threshold and less than the second threshold. In the first movement of the car, the maximum speed of the car in the first case is greater than the maximum speed of the car in the second case, and further, the maximum speed of the car in the second case is The elevator according to claim 2, wherein: is greater than the maximum speed of the car in the third case.
  11.  前記二次元波形において確認できる複数の減衰ピークを特定し、
     前記各減衰ピークは、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所であり、
     前記局所減衰率が、[(隣り合う2つの前記減衰ピークのうちで時間が後の前記減衰ピークの振れ量)/(前記隣り合う2つの前記減衰ピークのうちで時間が先の前記減衰ピークの振れ量)]のうちで最小の値に基づく値である、請求項9又は10に記載のエレベーター。
    Identifying multiple attenuation peaks that can be confirmed in the two-dimensional waveform,
    Each of the attenuation peaks is a maximum point of the shake in the two-dimensional waveform, and a maximum point where there is no maximum point of the shake amount greater than the attenuation peak at a time after the time when the attenuation peak occurs. and
    The local attenuation rate is [(the amount of deflection of the attenuation peak that is later in time among the two adjacent attenuation peaks)/(the amount of deflection of the attenuation peak that is earlier in time among the two adjacent attenuation peaks) 11. The elevator according to claim 9 or 10, wherein the value is based on the smallest value among the following: (amount of vibration)].
  12.  前記局所減衰率が、[所定時間の間における、最大の減衰ピークの振れ量から最小の前記減衰ピークの振れ量を引いた値]のうちで最大の値に基づく値であり、前記各減衰ピークが、前記二次元波形における振れの極大箇所であって、かつ、その減衰ピークが生じた時間よりも後の時間に当該減衰ピーク以上の前記振れ量の極大箇所が存在しない極大箇所である、請求項9又は10に記載のエレベーター。 The local damping rate is a value based on the maximum value of [a value obtained by subtracting the minimum deflection amount of the attenuation peak from the maximum deflection amount of the attenuation peak during a predetermined period of time], and is a maximum point of the shake in the two-dimensional waveform, and is a maximum point where there is no maximum point of the shake amount greater than the attenuation peak at a time after the time when the attenuation peak occurs. The elevator according to item 9 or 10.
  13.  前記撮影装置が、前記上側領域を撮影する上側撮影装置と、前記下側領域を撮影する下側撮影装置を含み、
     前記カゴが止まった後において、前記上側撮影装置と前記下側撮影装置のうちで高さ方向の長さが大きい領域を撮影できる方の撮影装置のみで撮影を行う、請求項1又は2に記載のエレベーター。
    The photographing device includes an upper photographing device that photographs the upper region, and a lower photographing device that photographs the lower region,
    According to claim 1 or 2, after the car has stopped, photography is performed only with the one of the upper photography device and the lower photography device that can photograph an area having a larger length in the height direction. elevator.
  14.  前記撮影装置が、動きが止まった後の前記少なくとも1つの長尺物の少なくとも一部を撮影し、
     前記少なくとも1つの長尺物に関し、前記動きが止まった前記長尺物の少なくとも一部の画像に基づいて前記長尺物の引っ掛かりを判断する、請求項1に記載のエレベーター。
    the photographing device photographs at least a portion of the at least one elongated object after it stops moving;
    The elevator according to claim 1, wherein, regarding the at least one elongated object, whether or not the elongated object is caught is determined based on an image of at least a portion of the elongated object that has stopped moving.
PCT/JP2022/034420 2022-09-14 2022-09-14 Elevator WO2024057445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034420 WO2024057445A1 (en) 2022-09-14 2022-09-14 Elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034420 WO2024057445A1 (en) 2022-09-14 2022-09-14 Elevator

Publications (1)

Publication Number Publication Date
WO2024057445A1 true WO2024057445A1 (en) 2024-03-21

Family

ID=90274580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034420 WO2024057445A1 (en) 2022-09-14 2022-09-14 Elevator

Country Status (1)

Country Link
WO (1) WO2024057445A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091100A (en) * 2007-10-05 2009-04-30 Toshiba Elevator Co Ltd Earthquake emergency operation control system of elevator
JP2009220994A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Earthquake recovery device and earthquake recovery operation control method for elevator
JP2012017192A (en) * 2010-07-09 2012-01-26 Mitsubishi Electric Corp Long article vibration detection device and emergency operation device of elevator
JP2015078043A (en) * 2013-10-17 2015-04-23 株式会社日立製作所 Long object hooking detection device of elevator
JP2016141519A (en) * 2015-02-02 2016-08-08 株式会社日立製作所 Elevator device and operation control method for elevator device
JP2018177473A (en) * 2017-04-14 2018-11-15 株式会社日立製作所 Elevator apparatus and control method for elevator apparatus
WO2020021630A1 (en) * 2018-07-24 2020-01-30 三菱電機株式会社 Soundness diagnosis device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091100A (en) * 2007-10-05 2009-04-30 Toshiba Elevator Co Ltd Earthquake emergency operation control system of elevator
JP2009220994A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Earthquake recovery device and earthquake recovery operation control method for elevator
JP2012017192A (en) * 2010-07-09 2012-01-26 Mitsubishi Electric Corp Long article vibration detection device and emergency operation device of elevator
JP2015078043A (en) * 2013-10-17 2015-04-23 株式会社日立製作所 Long object hooking detection device of elevator
JP2016141519A (en) * 2015-02-02 2016-08-08 株式会社日立製作所 Elevator device and operation control method for elevator device
JP2018177473A (en) * 2017-04-14 2018-11-15 株式会社日立製作所 Elevator apparatus and control method for elevator apparatus
WO2020021630A1 (en) * 2018-07-24 2020-01-30 三菱電機株式会社 Soundness diagnosis device

Similar Documents

Publication Publication Date Title
CN107539855B (en) The detection method and system of Elevator landing failure
WO2006073015A1 (en) Elevator bolt detecting device, elevator system, and mover position/speed detecting device
JP6205234B2 (en) Elevator long object catch detection device
JP6778648B2 (en) Elevator device and control method of elevator device
JP2012017192A (en) Long article vibration detection device and emergency operation device of elevator
WO2024057445A1 (en) Elevator
CN210682871U (en) Full-automatic learning system for absolute position of elevator floor
JP2009113937A (en) Emergency operation device of elevator
JP6480840B2 (en) Elevator and control method of elevator
JP2009091100A (en) Earthquake emergency operation control system of elevator
JP2015113182A (en) Monitoring system within elevator hoistway
JP7167994B2 (en) An inspection device and inspection system capable of inspecting the inside of an elevator hoistway
JP2017095226A (en) Elevator inspection device, method for inspection of maintenance object and photographing start mark
JP6737254B2 (en) Information processing equipment
JP5512588B2 (en) Elevator control device
JP4952366B2 (en) Clearance management measuring device and method for elevator balancing weight and governor rope tensioned vehicle
JP2016108125A (en) Strong wind emergency driving device and method for elevator
CN110937481B (en) Water detection inside elevator pit
JPH05294583A (en) Device for detecting abrasion of elevator guide shoe
JP2014088242A (en) Long period vibration detection device for elevator and long period vibration detection method for elevator
JP7019046B2 (en) Health diagnostic device
JP2021187640A (en) Monitoring method for elevator
JP2008050131A (en) Hoistway swing displacement detection device of elevator
WO2024042624A1 (en) Elevator
CN112429610A (en) Inspection device for mechanical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958773

Country of ref document: EP

Kind code of ref document: A1