[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024046011A1 - 一种正极材料、正极材料的制备方法、正极片及电池 - Google Patents

一种正极材料、正极材料的制备方法、正极片及电池 Download PDF

Info

Publication number
WO2024046011A1
WO2024046011A1 PCT/CN2023/110604 CN2023110604W WO2024046011A1 WO 2024046011 A1 WO2024046011 A1 WO 2024046011A1 CN 2023110604 W CN2023110604 W CN 2023110604W WO 2024046011 A1 WO2024046011 A1 WO 2024046011A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
characteristic peak
positive electrode
containing oxide
cathode material
Prior art date
Application number
PCT/CN2023/110604
Other languages
English (en)
French (fr)
Inventor
刘何丽
曾家江
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024046011A1 publication Critical patent/WO2024046011A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a cathode material, a preparation method of the cathode material, a cathode sheet and a battery.
  • the cathode material in the prior art has the problem of low capacity.
  • the present disclosure provides a cathode material, a preparation method of the cathode material, a cathode sheet and a battery to solve the problem of low capacity of the cathode material in the prior art.
  • the present disclosure provides a cathode material.
  • the cathode material includes a sodium-containing oxide.
  • the angle range of the first characteristic peak of the sodium-containing oxide is smaller than the angle range of the second characteristic peak.
  • the first characteristic peak is the The characteristic peak of the sodium-containing oxide at the initial voltage
  • the second characteristic peak is the characteristic peak of the sodium-containing oxide at the cut-off voltage
  • the chemical formula of the sodium-containing oxide is Li x Na 1-x Co 1-z M z O 2 ;
  • M includes metal elements or non-metal elements, 0.7 ⁇ x ⁇ 1, 0.001 ⁇ z ⁇ 0.03.
  • the sodium-containing oxide includes multiple phase changes, and the multiple phase changes become reversible phase changes.
  • each of the multiple phase transitions includes an equilibrium potential.
  • the sodium-containing oxide compound coexists in the first phase and the second phase; in the second voltage range Under the voltage range, the sodium-containing oxide compound coexists in the third phase and the fourth phase; under the third voltage range, the sodium-containing oxide compound coexists in the fifth phase and the sixth phase.
  • the phase layered structure containing sodium oxide includes a plurality of stacked repeating units, and each of the repeating units is a stacked layer of a first transition metal layer, a lithium oxygen layer, and a second transition metal layer. -like structure, and transition metal and lithium atoms occupy octahedral sites respectively.
  • M includes at least one element among Al, Mg, Ti, Zr, Mn, Ni, B, P, Y, La, Te, Nb, W, K and La.
  • the sodium-containing oxide has a median particle size ranging from 3 ⁇ m to 30 ⁇ m.
  • the specific surface area of the sodium-containing oxide ranges from 0.2m 2 /g to 1m 2 /g.
  • the present disclosure also provides a method for preparing the cathode material, which is used to prepare the above-mentioned cathode material.
  • the method includes:
  • M salt solution includes a salt solution formed by metal elements or non-metal elements
  • the cathode material is produced.
  • the molar ratio between Co and M is (1-z):z
  • the coprecipitate includes (Co 1-z M z ) 3 O 4 , where 0.001 ⁇ z ⁇ 0.03
  • the intermediate product includes Na m Co 1-z M z O 2 , where 0.65 ⁇ m ⁇ 1
  • the pre-product includes Li x Na 1-x Co 1-z M z O 2 , where 0.7 ⁇ x ⁇ 1.
  • the present disclosure also provides a cathode sheet, including a current collector and a coating layer provided on one or both sides of the current collector.
  • the coating layer includes the cathode material described in the present disclosure and/or is formed by the present disclosure.
  • the positive electrode material is prepared by the preparation method of the positive electrode material.
  • the present disclosure also provides a battery, including a positive electrode sheet and a negative electrode sheet.
  • the positive electrode sheet includes the positive electrode material described in the present disclosure and/or the positive electrode material prepared by the preparation method of the positive electrode material described in the present disclosure.
  • the sodium-containing oxide forms a first characteristic peak and a second characteristic peak during the phase change process from the initial voltage to the cut-off voltage.
  • the angle range of the first characteristic peak is smaller than the angle range of the second characteristic peak.
  • Figure 1 is an in-situ XRD pattern of the sodium-containing oxide in the cathode material provided by the embodiment of the present disclosure during the charge and discharge process.
  • Figure 2 is a charge-discharge curve diagram of a sodium oxide-containing cathode material provided by an embodiment of the present disclosure.
  • Figure 3 is a scanning electron microscope image of sodium oxide contained in the cathode material provided by the embodiment of the present disclosure.
  • Figure 4 is an in-situ XRD pattern of lithium cobalt oxide in existing cathode materials.
  • FIG. 5 is a flow chart of a method for preparing a cathode material according to an embodiment of the present disclosure.
  • first, second, etc. in the description and claims of the present disclosure are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the structures so used are interchangeable under appropriate circumstances so that embodiments of the disclosure can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the cathode material includes a sodium-containing oxide, and the angle range of the first characteristic peak of the sodium-containing oxide is smaller than the second characteristic peak. angle range, the first characteristic peak is the characteristic peak of the sodium-containing oxide under the initial voltage, the second characteristic peak is the characteristic peak of the sodium-containing oxide under the cut-off voltage, and the sodium-containing oxide
  • the chemical formula of the oxide is Li x Na 1-x Co 1-z M z O 2 ;
  • M includes metallic elements or non-metal elements, 0.7 ⁇ x ⁇ 1 (for example, 0.71, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99), 0.001 ⁇ z ⁇ 0.03 (for example, 0.0015, 0.005, 0.01, 0.015, 0.02, 0.025, 0.029).
  • the sodium-containing oxide forms a first characteristic peak and a second characteristic peak during the phase change process from the initial voltage to the cut-off voltage, wherein the first characteristic peak is the sodium-containing oxide at the initial voltage (3V ), the second characteristic peak is the characteristic peak of sodium-containing oxides at the cut-off voltage (4.5V), and the angle range of the first characteristic peak is smaller than the angle range of the second characteristic peak, so that at the same voltage Sodium-containing oxides can release more lithium ions, thereby increasing the capacity of the cathode material and improving the rate performance and cycle performance of the cathode material.
  • the chemical formula of the sodium-containing oxide can be Li x Na 1-x Co 1-z M z O 2 , in-situ X-ray diffraction (diffraction of x-rays, XRD) during the charge and discharge process of 3V-4.5V ), as shown in Figure 1
  • the first characteristic peak that is, the characteristic peak of sodium-containing oxide at the initial voltage (3V)
  • the second characteristic peak that is, the characteristic peak of sodium-containing oxide at the cut-off
  • the characteristic peak at voltage (4.5V) can be located in the angle range from 18.7° to 19.5°.
  • the second characteristic peak is located on the right side of the first characteristic peak, that is, the angle range of the first characteristic peak is smaller than the angle range of the second characteristic peak.
  • the cathode material in the prior art includes commercial lithium cobalt oxide.
  • the in-situ XRD test of commercial lithium cobalt oxide during the charge and discharge process at 3V-4.5V shows that the material performs well during the charge and discharge process. There is only a shift in the position of one peak between 18.4° and 19°, and there is no coexistence of the two peaks. This shows that during the charge and discharge process, it is mainly a solid solution reaction of lithium ion insertion and extraction, and there is no excess. Two reversible phase change reactions.
  • the characteristic peak of the lithium cobalt oxide material at the cut-off voltage (4.5V) is located to the left of the characteristic peak of the lithium cobalt oxide material at the initial voltage (3V).
  • the second characteristic peak of the cathode material provided by the present disclosure is located on the right side of the first characteristic peak, so that the sodium oxide contained in the cathode material provided by the present disclosure can extract more lithium (about 80%) at the same voltage.
  • Lithium ions while existing lithium cobalt oxide can only extract 70% of lithium ions at the same voltage. Therefore, compared with the existing technology, the cathode material of the present disclosure improves its capacity at the same charging cut-off voltage.
  • the cathode material provided by the present invention can obtain a gram capacity of 202mAh/g at 4.5V, which is much higher than the existing commercial lithium cobalt oxide material (186mAh/g) at the same voltage.
  • the sodium-containing oxide includes multiple phase changes, and the multiple phase changes become reversible phase changes.
  • each phase change process in the multiple phase changes includes an equilibrium potential.
  • a charge and discharge test was performed on the sodium-containing oxide Li x Na 1-x Co 1-z M z O 2.
  • the test results are shown in Figures 1 to As shown in Figure 2, it can be expressed It shows that the material has four charge and discharge platforms in its charge and discharge curve within the voltage range of 3V-4.5V.
  • Li x Na 1-x Co 1-z M z O 2 shows that it operates at 3.7V-3.8V , 4.0V-4.15V, 4.15V-4.25V and 4.4V-4.5V respectively show charge and discharge platforms, which are obviously different from the current commercial lithium cobalt oxide materials.
  • Li x Na 1-x Co 1-z M z O 2 appears a charge and discharge platform, that is, the equilibrium potential. The current voltage is constant, and the material content of the corresponding phase increases at the current voltage. In this way, each phase change can release part of the Lithium ions increase the capacity of the cathode material.
  • the phase layered structure containing sodium oxide includes a plurality of stacked repeating units, and each of the repeating units is a stacked layer of a first transition metal layer, a lithium oxygen layer, and a second transition metal layer. -like structure, and transition metal and lithium atoms occupy octahedral sites respectively.
  • the morphology of sodium-containing oxides can be polycrystalline or single crystalline.
  • the Li x Na 1-x Co 1-z M z O 2 material exhibits four reversible phase transitions in in-situ XRD. The first one occurs in the material when charged to 3.7V-3.8V. The phase transition in which Li atoms transform from octahedral sites to tetrahedral sites; the second is the phase transition after charging to 4.0V-4.15V, due to the continuous detachment of Li, resulting in the change of lattice parameters; the third is the phase transition after charging to 4.0V-4.15V.
  • Li reoccupies the octahedral sites, and the lithium cobalt layer undergoes interlayer slip transition; the fourth phase transition is when charging to 4.4V-4.5V, six layers of lithium cobalt metal layers A phase transition from alternatingly arranged structural units to a structure in which two layers of lithium cobalt metal layers are arranged.
  • the angle changes are consistent with the above-mentioned charging process, and the phase change is completely reversible.
  • the Li x Na 1-x Co 1-z M z O 2 material can completely return to its original phase structure, reflecting the good dynamic stability of the material during the charge and discharge process.
  • In-situ XRD shows that all phase transitions at 3V-4.5V are reversible phase transitions and can maintain good structural stability during charge and discharge. Since the material has multiple reversible phase transitions at less than 4.6V, it not only can achieve high capacity, but also has good cycle performance. In addition, the material structure has a larger interlayer electrostatic repulsion due to the coplanarity of the LiO 6 layer and the CoO 6 layer, thus having a larger transition metal layer spacing than the lithium cobalt oxide in the prior art, and is therefore more efficient. It is conducive to the rapid diffusion of Li ions between layers, thereby achieving higher rate performance and increasing the capacity of the cathode material.
  • the sodium-containing oxide compound coexists in the first phase and the second phase; in the second voltage range Under the voltage range, the sodium-containing oxide compound coexists in the third phase and the fourth phase; under the third voltage range, the sodium-containing oxide compound coexists in the fifth phase and the sixth phase.
  • the first voltage range is 3.7V-3.8V; the second voltage range is 4.15V-4.25V; and the third voltage range is 4.4V-4.5V.
  • the first voltage occurs during charging from 3V to the first voltage range (for example, 3.7V-3.8V).
  • a phase transition corresponds to the coexistence of two peaks in the range of 17.6° to 18.7° in the XRD spectrum, that is, the coexistence of the first phase and the second phase.
  • the first phase can be the left peak located between 17.6° and 18.2°.
  • the second phase can be the right peak located at 18.4° to 18.7°, and as the charging process continues, the left peak slowly becomes stronger and the right peak slowly weakens until it disappears;
  • the third phase change occurs.
  • two peaks coexist that is, the third phase and the fourth phase coexist, and the third phase It can be the left peak located at 17.6° to 18.1°, and the fourth phase can be the right peak located at 18.0° to 18.7°.
  • the left peak slowly weakens until it disappears, and the right peak slowly strengthens.
  • the peak position changes range is 17.6°. to 18.7°;
  • the fourth phase change occurs, and two peaks coexist, that is, the fifth phase and the sixth phase coexist.
  • the fifth phase can be The left peak is located at 18° to 18.6°
  • the sixth phase can be the right peak located at 18.7° to 19.5°.
  • the left peak slowly weakens to disappears, and the right peak slowly strengthens.
  • the peak position changes range from 18° to 19.5°. , while it is completely reversible during the discharge process.
  • the peak position of the cathode material of the present disclosure is located on the right side of the initial state, while the peak position of the cathode material is located on the left side of its initial state position. This is because the cathode material of the present disclosure is in the same state. More Li (approximately 80% of Li ions) can be extracted at the same voltage, while the existing cathode materials can only extract 70% of Li ions at the same voltage. Capacity under the same charging cut-off voltage.
  • M includes at least one element among Al, Mg, Ti, Zr, Mn, Ni, B, P, Y, Te, Nb, W, K and La.
  • the M element includes the above-mentioned metal elements or non-metal elements, and can also be other elements that can form covalent bonds with oxygen atoms and be embedded in the Li x Na 1-x Co 1-z M z O 2 crystal lattice , for example, lanthanide elements La/Y, etc., can also achieve the same technical effect, and will not be described again here.
  • the median particle size range of the sodium-containing oxide may be 3 ⁇ m-30 ⁇ m (for example, 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m).
  • the specific surface area range of the sodium-containing oxide can be 0.2m 2 /g-1m 2 /g (for example, 0.2m 2 /g, 0.3m 2 /g, 0.4m 2 /g, 0.5m 2 /g , 0.6m 2 /g, 0.7m 2 /g, 0.8m 2 /g, 0.9m 2 /g, 1m 2 /g).
  • phase transition of sodium-containing oxides is also completely reversible from an initial voltage to a cut-off voltage exceeding 4.6V.
  • Li x Na 1-x Co 1-z M z O 2 sodium-containing oxide can completely return to its original phase structure, and has good kinetic stability during the charge and discharge process.
  • the chemical formula of the sodium-containing oxide can be Li 0.97 Na 0.03 Co 0.99 Al 0.01 O 2 .
  • solvent such as deionized water
  • 0.05 mol/L sodium hydroxide and ammonia are added to adjust the pH to 6-10 to allow the mixture to co-precipitate.
  • the precipitate was sintered at 900°C for 20 hours in an air atmosphere, the product was ground and sieved to obtain (Co 0.99 Al 0.01 ) 3 O 4 material.
  • the chemical formula of the sodium-containing oxide can be Li 0.95 Na 0.05 Co 0.99 Al 0.01 O 2 .
  • solvent such as deionized water
  • 0.05 mol/L sodium hydroxide and ammonia are added to adjust the pH to 6-10 to allow the mixture to co-precipitate.
  • the precipitate was sintered at 900°C for 20 hours in an air atmosphere, the product was ground and sieved to obtain (Co 0.99 Al 0.01 ) 3 O 4 material.
  • (Co 0.99 Al 0.01 ) 3 O 4 and Na 2 CO 3 were evenly mixed at a molar ratio of Na to Co of 0.74:0.99, and then sintered at 850°C for 36 hours with oxygen to obtain Na 0.74 Co 0.99 Al 0.01 O 2 .
  • Na 0.74 Co 0.99 Al 0.01 O 2 and LiCl are mixed, heated and melted at 300°C, ensuring that Li/Na is 7, and finally Li 0.95 Na 0.05 Co 0.99 Al 0.01 O 2 is obtained.
  • the chemical formula of the sodium-containing oxide can be Li 0.93 Na 0.07 Co 0.99 Al 0.01 O 2 .
  • solvent such as deionized water
  • 0.05 mol/L sodium hydroxide and ammonia are added to adjust the pH to 6-10 to allow the mixture to co-precipitate.
  • the precipitate was sintered at 900°C for 20 hours in an air atmosphere, the product was ground and sieved to obtain (Co 0.99 Al 0.01 ) 3 O 4 material.
  • (Co 0.99 Al 0.01 ) 3 O 4 and Na 2 CO 3 were evenly mixed at a molar ratio of Na to Co of 0.72:0.99, and then sintered at 750°C for 36 hours under oxygen to obtain Na 0.72 Co 0.99 Al 0.01 O 2 .
  • Na 0.72 Co 0.99 Al 0.01 O 2 and LiCl are mixed and heated to melt at 300°C, ensuring that Li/Na is 5, and finally Li 0.93 N a0.07 Co 0.99 Al 0.01 O 2 is obtained.
  • the chemical formula of the sodium-containing oxide can be Li 0.92 Na 0.08 Co 0.99 Mg 0.01 O 2 .
  • cobalt nitrate and magnesium sulfate will be mixed according to the molar ratio of Co and Mg. Add it to the solvent (such as deionized water) at a ratio of 0.99:0.01, then add 0.05 mol/L sodium hydroxide and ammonia water, adjust the pH to 6-10, and make the mixture form co-precipitate. After the precipitate was sintered at 900°C for 20 hours in an air atmosphere, the product was ground and sieved to obtain (Co 0.99 Mg 0.01 ) 3 O 4 material.
  • the chemical formula of the sodium-containing oxide can be Li 0.95 Na 0.05 Co 0.99 Ni 0.01 O 2 .
  • a solvent such as deionized water
  • 0.05 mol/L sodium hydroxide and ammonia to adjust the pH to 6-10 to allow the mixture to co-precipitate.
  • the precipitate was sintered at 800°C for 20 hours in an air atmosphere, the product was ground and sieved to obtain (Co 0.99 Ni 0.01 ) 3 O 4 material.
  • (Co 0.99 Ni 0.01 ) 3 O 4 and Na 2 CO 3 were evenly mixed at a molar ratio of Na to Co of 0.72:0.99, and then sintered at 800°C for 36 hours with oxygen to obtain Na 0.72 Co 0.99 Ni 0.01 O 2 .
  • Na 0.72 Co 0.99 Ni 0.01 O 2 and LiCl are mixed and heated to melt at 300°C, ensuring that Li/Na is 10, and finally Li 0.95 Na 0.05 Co 0.99 Ni 0.01 O 2 is obtained.
  • the chemical formula of the sodium-containing oxide can be Li 0.95 Na 0.05 Co 0.98 Al 0.01 Mg 0.01 O 2 .
  • the solvent such as deionized water
  • 0.05 mol/L hydroxide is added.
  • Sodium and ammonia adjust the pH to 6-10 to make the mixture form co-precipitate.
  • the chemical formula of the sodium-containing oxide can be Li 0.97 Na 0.03 Co 0.98 Al 0.01 Ni 0.01 O 2 .
  • the preparation process of the sodium-containing oxide in Example 7 is the same as that in Example 1, except that Ni element is added according to the molar ratio during co-precipitation.
  • the chemical formula of the sodium-containing oxide can be Li 0.97 Na 0.03 Co 0.98 Al 0.01 Mg 0.005 Ni 0.005 O 2 .
  • the preparation process of the sodium-containing oxide in Example 8 is the same as that in Example 1, except that Mg element and Ni element are added according to the molar ratio during co-precipitation.
  • lithium cobalt oxide cathode materials that have been doped and coated were prepared using traditional synthesis methods.
  • the synthesis method was as follows: adding cobalt sulfate and aluminum sulfate to deionized water at a molar ratio of 0.99:0.01, adding sodium carbonate and Ammonia water is used as a precipitant and complexing agent respectively, and the pH is adjusted to 7-8 to precipitate.
  • the precipitant is sintered and ground to obtain (Co 0.99 Al 0.01 ) 3 O 4 , which is then combined with Li 2 CO 3 according to Li/ After mixing at a Co molar ratio of 1.01, the materials were sintered at 900°C for 12 hours in air to finally obtain a lithium cobalt oxide cathode material with the chemical formula LiCo 0.99 Al 0.01 O 2 .
  • the preparation method of the cathode material in Comparative Example 2 is the same as that in Comparative Example 1. The difference is that the Mg element is added according to the molar ratio during co-precipitation, and finally a lithium cobalt oxide cathode material with a chemical formula of LiCo 0.98 Al 0.01 Mg 0.01 O 2 is obtained.
  • the preparation method of the cathode material in Comparative Example 3 is the same as Comparative Example 1. The difference is that the Mg element is added according to the molar ratio during co-precipitation, and the Ti element is added according to the molar ratio during sintering.
  • the final chemical formula is LiCo 0.97 Al. Lithium cobalt oxide cathode material of 0.01 Mg 0.01 Ti 0.01 O 2 .
  • the preparation method of the cathode material in Comparative Example 4 is the same as that in Comparative Example 1. The difference lies in that in the common Mg was added according to the molar ratio during precipitation, and Ti and Zr elements were added according to the molar ratio during sintering, and finally the lithium cobalt oxide cathode material with the chemical formula LiCo 0.96 Al 0.01 Mg 0.01 Ti 0.01 Zr 0.01 O 2 was obtained.
  • Positive electrode sheets were made from Examples 1 to 8 and Comparative Examples 1 to 4 in the same manner and assembled into pairs of lithium batteries, and electrochemical tests were performed on them.
  • the electrochemical performance test results are shown in Table 1 below:
  • the cathode material including Li x Na 1-x Co 1-z M z O 2 provided by the present disclosure has a higher capacity at the same voltage than conventional commercial high-voltage lithium cobalt oxide. and better rate cycling performance.
  • Figure 5 illustrates a method for preparing a cathode material provided by the present disclosure.
  • Embodiments of the present disclosure provide a method for preparing a cathode material, which is used to prepare the above-mentioned cathode material. The method includes:
  • Step 501 Add M salt solution, precipitant and complexing agent to the cobalt salt solution to prepare a co-precipitate.
  • the M salt solution includes a salt solution formed of metal elements or non-metal elements;
  • cobalt salts include but are not limited to cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt acetate, etc.
  • M salts can Examples include nitrates, sulfates, oxalates and acetates.
  • Cobalt salt and M salt can be added to deionized water in a preset ratio, and then 0.01mol/L-2mol/L precipitant and complexing agent can be added.
  • the precipitating agent can be sodium hydroxide, and the complexing agent can be ammonia water;
  • the molar ratio of the complexing agent to the precipitating agent is 0.1:2, and the pH is adjusted to 6-10, so that the mixture forms a coprecipitate.
  • Step 502 Add a sodium-containing salt compound to the co-precipitate to prepare an intermediate product
  • the sodium-containing salt compound may be sodium carbonate.
  • the molar ratio of Co in the co-precipitate and Na in the sodium-containing salt compound is n:1 (0.69 ⁇ n ⁇ 0.78), and the molar ratio is uniformly mixed at 700°C-
  • the intermediate product is obtained by sintering at 1000°C for 24h to 36h.
  • Step 503 Add lithium-containing salt compound to the intermediate product to prepare a pre-product
  • the intermediate product is mixed with the lithium-containing salt compound and then heated to melt, ensuring that the molar ratio of Li/Na is 2:10.
  • the lithium salt can be lithium chloride, lithium bromide, lithium acetate, lithium carbonate or hydroxide.
  • One or more types of lithium are heated at 100°C to 300°C to finally obtain a pre-product.
  • the pre-product can be a sodium-containing oxide with the chemical formula Li x Na 1-x Co 1-z M z O 2 .
  • Step 504 Prepare the cathode material based on the pre-product.
  • the positive electrode material is mixed with a conductive agent, a binder, etc. to prepare a positive electrode slurry.
  • the sodium-containing oxide Li x Na 1-x Co 1-z M z O 2 can maintain good structural stability during the charge and discharge process, but has multiple reversible phase transitions, allowing it to not only obtain high capacity , also has good cycle performance.
  • the material structure has a coplanar LiO 6 layer and a CoO 6 layer, which leads to a larger interlayer electrostatic repulsion, it has a larger transition metal layer spacing, which is more conducive to the interlayer diffusion of Li ions. Rapid diffusion enables higher rate performance and increases the gram capacity of the cathode material.
  • the molar ratio between Co and M is (1-z):z
  • the coprecipitate includes (Co 1-z M z ) 3 O 4 , where 0.001 ⁇ z ⁇ 0.03
  • the intermediate product includes Na m Co 1-z M z O 2 , where 0.65 ⁇ m ⁇ 1
  • the pre-product includes Li x Na 1-x Co 1-z M z O 2 , where 0.70 ⁇ x ⁇ 1.
  • the molar ratio of Co to M in the cobalt salt and M salt can be (1-z):z, add it to deionized water, and then add 0.01mol/L-2mol/L precipitant and complexing agent to obtain co-precipitation substance, the coprecipitate will be in the air After sintering at 300°C-900°C for 10h to 20h in an atmosphere, the product is ground and sieved to obtain (Co 1-z M z ) 3 O 4 material, where 0.001 ⁇ z ⁇ 0.03, and (Co 1- The median particle size of z M z ) 3 O 4 ranges from 3 ⁇ m to 30 ⁇ m; then, (Co 1-z M z ) 3 O 4 and Na 2 CO 3 are mixed according to the molar ratio of Na to Co in a ratio of n:1 Mix evenly (0.69 ⁇ n ⁇ 0.78), sinter at 700°C-1000°C for 24h to 36h with oxygen, to obtain Nam Co 1-z M z O 2 , 0.65 ⁇ m ⁇ 1;
  • the present disclosure also provides a positive electrode sheet, including a current collector and a coating layer provided on the current collector.
  • the coating layer includes the positive electrode material described in the present disclosure and/or is composed of the positive electrode material described in the present disclosure.
  • the cathode material prepared by the preparation method.
  • the current collector is made of metal foil, preferably aluminum foil.
  • the thickness of the aluminum foil is 6 ⁇ m-10 ⁇ m (eg, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m).
  • the coating layer includes a cathode material
  • the cathode active material in the cathode material may include Li x Na 1-x Co 1-z M z O 2 .
  • the compacted density of the positive electrode sheet can be 3g/cm 3 -4.5g/cm 3 (for example, 3g/cm 3 , 3.2g/cm 3 , 3.5g/cm 3 , 3.8g/cm 3 , 4g /cm 3 , 4.2g/cm 3 , 4.5g/cm 3 ).
  • the coating layer also includes a conductive agent and a binder.
  • the binder may include polyvinylidene fluoride (PVDF), carboxymethylcellulose (CMC), styrene-butadiene rubber (SBR), One or more of water-based acrylic resin, polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer (EVA) and polyvinyl alcohol (PVA).
  • the conductive agent can include superconducting carbon, acetylene black, and carbon black. , Ketjen black, carbon dots, carbon nanotubes, graphene and one or more of carbon nanofibers.
  • the weight content of the cathode material is 90wt%-99wt%
  • the weight content of the conductive agent is 0.5wt%-5wt%
  • the bonding The weight content of the agent is 0.5wt%-5wt%.
  • the cathode material, conductive agent and binder are dispersed in a solvent (such as N-methylpyrrolidone, (abbreviated as NMP), a uniform coating layer is formed, the coating layer is coated on the positive electrode current collector, and after drying and rolling processes, the positive electrode piece is obtained.
  • a solvent such as N-methylpyrrolidone, (abbreviated as NMP)
  • NMP N-methylpyrrolidone
  • the cathode material has multiple reversible phase changes during the charge and discharge process from the initial voltage to the cut-off voltage. These phase changes are not only reversible, but also provide higher capacity at lower voltages, improving the performance of the cathode sheet at the same charge cut-off voltage. capacity.
  • the present disclosure also provides a battery, including a positive electrode sheet and a negative electrode sheet.
  • the positive electrode sheet includes the positive electrode material described in the present disclosure and/or the positive electrode material prepared by the preparation method of the positive electrode material described in the present disclosure.
  • the battery may be a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本公开提供一种正极材料、正极材料的制备方法、正极片及电池。正极材料包括含钠氧化物,含钠氧化物的第一特征峰的角度范围小于第二特征峰的角度范围,第一特征峰为含钠氧化物在初始电压下的特征峰,第二特征峰为含钠氧化物在截止电压下的特征峰,含钠氧化物的化学式为LixNa1-xCo1-zMzO2;M包括金属元素或非金属元素,0.7<x<1,0.001<z<0.03。含钠氧化物在初始电压至截止电压的相变过程中,形成有第一特征峰和第二特征峰,第一特征峰的角度范围小于第二特征峰的角度范围,这样在相同的电压下含钠氧化物可以脱出更多的锂离子,从而提升了正极材料的容量,并提升了正极材料的倍率性能和循环性能。

Description

一种正极材料、正极材料的制备方法、正极片及电池 技术领域
本公开涉及电池技术领域,尤其涉及一种正极材料、正极材料的制备方法、正极片及电池。
发明背景
随着电池技术的发展,在正极材料结构稳定的条件下,获得较高的容量成为了人们迫切的需求。目前,充放电截止电压从原来的4.2V、4.3V过渡到现在的4.45V、4.48V,最后将向4.5V、4.6V,甚至更高的方向发展。
然而,现有的正极材料在充放电截止电压超过4.5V时,会发生严重不可逆的相变,例如在4.55V时,正极材料发生O3相至H1-3相的相变,以及在更高电压下发生H1-3相至O1相的相变,这种不可逆相变使得正极材料在高电压下的结构变得极其不稳定,晶体结构发生剧烈收缩,引起正极材料颗粒的破裂甚至破碎,从而出现容量衰减较快和循环急速跳水等问题。尽管,通过掺杂和包覆正极材料在一定程度上抑制或减缓了这些相变的危害,但是也造成了容量的损失。
可见,现有技术中正极材料存在容量较低的问题。
发明内容
本公开提供一种正极材料、正极材料的制备方法、正极片及电池,以解决现有技术中正极材料容量较低的问题。
本公开提供了一种正极材料,所述正极材料包括含钠氧化物,所述含钠氧化物的第一特征峰的角度范围小于第二特征峰的角度范围,所述第一特征峰为所述含钠氧化物在初始电压下的特征峰,所述第二特征峰为所述含钠氧化物在截止电压下的特征峰,所述含钠氧化物的化学式为LixNa1-xCo1-zMzO2
其中,M包括金属元素或非金属元素,0.7<x<1,0.001<z<0.03。
在一实例中,在所述初始电压至所述截止电压的充放电过程中,所述含钠氧化物包括多次相变,所述多次相变为可逆相变。
在一实例中,所述多次相变中每一次相变过程包括有平衡电位。
在一实例中,在所述初始电压至所述截止电压的充放电过程中,在第一电压范围下,所述含钠氧化物化合物以第一相和第二相共存;在第二电压范围下,所述含钠氧化物化合物以第三相和第四相共存;在第三电压范围下,所述含钠氧化物化合物以第五相和第六相共存。
在一实例中,所述含钠氧化物的相层状结构包括若干层叠的重复单元,每一所述重复单元呈第一过渡金属层、锂氧层、第二过渡金属层层叠排布的层状结构,且过渡金属和锂原子分别占据八面体位点。
在一实例中,M包括Al、Mg、Ti、Zr、Mn、Ni、B、P、Y、La、Te、Nb、W、K和La中的至少一种元素。
在一实例中,所述含钠氧化物的中值粒径范围为3μm-30μm。
在一实例中,所述含钠氧化物的比表面积范围为0.2m2/g-1m2/g。
本公开还提供了一种正极材料的制备方法,用于制备上述的正极材料,所述方法包括:
向钴盐溶液中加入M盐溶液、沉淀剂和络合剂,制得共沉淀物,所述M盐溶液包括金属元素或非金属元素形成的盐溶液;
在所述共沉淀物中加入含钠盐化物,制得中间产物;
在所述中间产物中加入含锂盐化物,制得预产物;
基于所述预产物,制得所述正极材料。
在一实例中,所述钴盐溶液和所述M盐溶液中,Co与M之间的摩尔比为(1-z):z,所述共沉淀物包括(Co1-zMz)3O4,其中0.001<z<0.03,所述中间产物包括NamCo1-zMzO2,其中0.65<m<1,所述预产物包括LixNa1-xCo1-zMzO2,其中,0.7<x<1。
本公开还提供了一种正极片,包括集流体和设置于所述集流体一侧或两侧表面的涂覆层,所述涂覆层中包括本公开所述的正极材料和/或由本公开所述的正极材料的制备方法制得的正极材料。
本公开还提供了一种电池,包括正极片和负极片,所述正极片中包括本公开所述的正极材料和/或由本公开所述的正极材料的制备方法制得的正极材料。
本公开中,含钠氧化物在初始电压至截止电压的相变过程中,形成有第一特征峰和第二特征峰,第一特征峰的角度范围小于第二特征峰的角度范围,这样在相同的电压下含钠氧化物可以脱出更多的锂离子,从而提升了正极材料的容量,并提升了正极材料的倍率性能和循环性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的正极材料中含钠氧化物在充放电过程中的原位XRD图。
图2是本公开实施例提供的正极材料中含钠氧化物的充放电曲线图。
图3是本公开实施例提供的正极材料中含钠氧化物的扫描电子显微镜图。
图4是现有的正极材料中钴酸锂的原位XRD图。
图5是本公开实施例提供一种正极材料的制备方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的结构在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
本公开提供了一种正极材料,如图1、图2和图3所示,所述正极材料包括含钠氧化物,所述含钠氧化物的第一特征峰的角度范围小于第二特征峰的角度范围,所述第一特征峰为所述含钠氧化物在初始电压下的特征峰,所述第二特征峰为所述含钠氧化物在截止电压下的特征峰,所述含钠氧化物的化学式为LixNa1-xCo1-zMzO2
其中,M包括金属元素或非金属元素,0.7<x<1(例如,0.71、0.75、0.8、0.85、0.9、0.95、0.99),0.001<z<0.03(例如,0.0015、0.005、0.01、0.015、0.02、0.025、0.029)。
在化学式LixNa1-xCo1-zMzO2中,当M包括多种(≥2)元素时,z为多种元素的原子数之和。例如,当M为Al和Mg时,Al与Mg的原子数之和为1。
本公开中,含钠氧化物在初始电压至截止电压的相变过程中,形成有第一特征峰和第二特征峰,其中,所述第一特征峰为含钠氧化物在初始电压(3V)下的特征峰,所述第二特征峰为含钠氧化物在截止电压(4.5V)下的特征峰,第一特征峰的角度范围小于第二特征峰的角度范围,这样在相同的电压下含钠氧化物可以脱出更多的锂离子,从而提升了正极材料的容量,并提升了正极材料的倍率性能和循环性能。
具体的,含钠氧化物的化学式可以是LixNa1-xCo1-zMzO2,在3V-4.5V的充放电过程中的原位X射线衍射(diffraction of x-rays,XRD)图中,如图1所 示,可以看到第一特征峰,即含钠氧化物在初始电压(3V)下的特征峰,其位于角度范围可以是18.4°至18.7°;第二特征峰,即含钠氧化物在截止电压(4.5V)下的特征峰,其位于角度范围可以是18.7°至19.5°。第二特征峰位于第一特征峰的右侧,即第一特征峰的角度范围小于第二特征峰的角度范围。通过与现有技术中的正极材料对比,本公开提高的正极材料具有更高的容量。
例如,如图4所示,现有技术中的正极材料包括商业化钴酸锂,商业化钴酸锂在3V-4.5V充放电过程中的原位XRD测试,结果显示该材料在充放电过程中在18.4°至19°之间仅存在一个峰在位置上的偏移,未出现两峰共存的现象,说明其在充放电过程中主要是锂离子嵌入和脱出的固溶反应,不存在超过两个的可逆相变反应。且经过充电到4.5V的满电过程后,钴酸锂材料在截止电压(4.5V)下的特征峰位于钴酸锂材料在初始电压(3V)下的特征峰的左侧。而本公开提供的正极材料的第二特征峰位于第一特征峰的右侧,从而本公开提供的正极材料中含钠氧化物在相同的电压下可以脱出更多的锂(大约为80%的锂离子),而现有的钴酸锂在相同电压下仅可以脱出70%的锂离子,因此,与现有技术相比,本公开的正极材料提高了其在相同充电截止电压下的容量。
在一实例中,本发明提供的正极材料在4.5V下可获得202mAh/g的克容量,在相同电压下远高于现有的商业化钴酸锂材料(186mAh/g)。
在一实例中,在所述初始电压至所述截止电压的充放电过程中,所述含钠氧化物包括多次相变,所述多次相变为可逆相变。
在本公开中,从原位XRD(如图1所示)结果显示可以看出,含钠氧化物在初始电压至截止电压的充放电过程中具有多个可逆的相变,这些相变不仅可逆,还为其在较低电压下获得较高容量,提高了正极材料在相同充电截止电压下的容量,同时保持了结构稳定性。
其中,多次相变中每一次相变过程包括有平衡电位,换言之,对含钠氧化物LixNa1-xCo1-zMzO2进行充放电测试,其测试结果如图1至图2所示,可以表 明该材料在3V-4.5V的电压范围内,其充放电曲线有四个充放电平台。通过与目前商业化的钴酸锂材料的原位XRD(如图4所示)进行对比,LixNa1-xCo1-zMzO2的充放电曲线显示其在3.7V-3.8V、4.0V-4.15V、4.15V-4.25V以及4.4V-4.5V分别显示出充放电平台,明显区别于目前的商业化钴酸锂材料。LixNa1-xCo1-zMzO2出现充放电平台,即平衡电位,在当前电压恒定,而在当前电压下对应的相的物质含量增加,这样,每一次相变可以脱出部分锂离子,提升了正极材料的容量。
在一实例中,所述含钠氧化物的相层状结构包括若干层叠的重复单元,每一所述重复单元呈第一过渡金属层、锂氧层、第二过渡金属层层叠排布的层状结构,且过渡金属和锂原子分别占据八面体位点。含钠氧化物的形貌可以是多晶或者单晶。
具体的,LixNa1-xCo1-zMzO2材料在原位XRD中展示出的四个可逆相变,第一个是当充电到3.7V-3.8V时,该材料中发生Li原子从八面体位点向四面体位点转变的相变;第二个是充电到4.0V-4.15V时,由于Li不断脱出导致晶格参数发生变化后的相变;第三个是充电至4.15V-4.25V时,Li重新占据八面体位点,且锂钴层发生层间滑移的转变;第四个相变是当充电至4.4V-4.5V时,由六层锂钴金属层交替排列的结构单元向两层锂钴金属层排列的结构转变的相变。在放电过程中则和上述充电过程的角度变化一致,相变完全可逆。经过一次完整的充放电过程,LixNa1-xCo1-zMzO2材料可以完全回归到原来的相结构,体现出该材料在充放电过程中的良好的动力学稳定性。原位XRD显示其在3V-4.5V的所有相变均为可逆相变,在充放电过程中能够保持良好的结构稳定性。由于该材料在小于4.6V时具有多个可逆相变,使其不仅可以获得高容量,还具有良好的循环性能。另外,该材料结构由于存在LiO6层与CoO6层的共面,而导致较大的层间静电排斥力,从而比现有技术中的钴酸锂具有更大的过渡金属层间距,因此更加有利于Li离子在层间的快速扩散,从而可以获得较高的倍率性能,提升了正极材料的容量。
在一实例中,在所述初始电压至所述截止电压的充放电过程中,在第一电压范围下,所述含钠氧化物化合物以第一相和第二相共存;在第二电压范围下,所述含钠氧化物化合物以第三相和第四相共存;在第三电压范围下,所述含钠氧化物化合物以第五相和第六相共存。其中,第一电压范围为3.7V-3.8V;第二电压范围为4.15V-4.25V;第三电压范围为4.4V-4.5V。
在一实例中,在LixNa1-xCo1-zMzO2材料充电过程中,当由3V充电到第一电压范围(例如可以是3.7V-3.8V)的过程中发生了第一个相变,对应在XRD谱图中17.6°至18.7°的范围内,出现了两峰共存,即第一相和第二相共存,第一相可以是位于17.6°至18.2°的左峰,第二相可以是位于18.4°至18.7°的右峰,并且随着充电过程继续,左峰慢慢变强,右峰慢慢减弱直至消失;
当继续充电到4.0V-4.15V的过程中,增强的左峰在慢慢向左偏移,角度范围可以是17.7°至18°,此时发生第二个相变反应;
当继续充电到第二电压范围(例如可以是4.15V-4.25V)的过程中发生了第三个相变,此时又出现两峰共存,即第三相和第四相共存,第三相可以是位于17.6°至18.1°的左峰,第四相可以是位于18.0°至18.7°的右峰,并且左峰慢慢减弱直至消失,右峰慢慢增强,峰的位置变化范围为17.6°至18.7°;
当继续充电到第三电压范围(例如可以是4.4V-4.5V)的过程中发生了第四个相变,又出现两峰共存,即第五相和第六相共存,第五相可以是位于18°至18.6°的左峰,第六相可以是位于18.7°至19.5°的右峰,左峰慢慢减弱至消失,右峰慢慢增强,峰的位置变化范围为18°至19.5°,而在放电过程中则完全可逆。
通过与目前商业化的钴酸锂材料的原位XRD进行对比,目前商业化钴酸锂在3V-4.5V充放电过程中的原位XRD测试结果显示(如图4所示):目前商业化的钴酸锂材料在充放电过程中在18.4°至19°之间仅存在一个峰在位置上的偏移,未出现两峰共存的现象,说明现有的正极材料在充放电过程中主要是Li离子嵌入和脱出的固溶反应,不存在超过两个的可逆相变反应。且经 过充到4.5V的满电过程后,本公开所述正极材料的峰位置位于初始态的右侧,而正极材料的峰位置位于其初始态位置左侧,是因为本公开的正极材料在相同的电压下可以脱出更多的Li(大约为80%的Li离子),而现有的正极材料在相同电压下仅可以脱出70%的Li离子,在相同充电截止电压下,提高了正极材料在相同充电截止电压下的容量。
其中,M包括Al、Mg、Ti、Zr、Mn、Ni、B、P、Y、Te、Nb、W、K和La中的至少一种元素。
需要说明的是,M元素包括上述金属元素或非金属元素,还可以是其他可以与氧原子形成共价键并嵌入LixNa1-xCo1-zMzO2晶格中的其他元素,例如,镧系元素La/Y等,同样可以达到相同的技术效果,在此不再赘述。
其中,所述含钠氧化物的中值粒径范围可以是3μm-30μm(例如,3μm、5μm、10μm、15μm、20μm、25μm、30μm)。
其中,所述含钠氧化物的比表面积范围可以是0.2m2/g-1m2/g(例如,0.2m2/g、0.3m2/g、0.4m2/g、0.5m2/g、0.6m2/g、0.7m2/g、0.8m2/g、0.9m2/g、1m2/g)。
需要说明的是,含钠氧化物在初始电压至超过4.6V的截止电压的情况下,同样,相变完全可逆。经过一次完整的充放电过程,LixNa1-xCo1-zMzO2含钠氧化物可以完全回归到原来的相结构,在充放电过程中动力学稳定性良好。
下面,基于多组实验对采用本公开提供的正极材料,制作得到的电池的效果进行描述。
实施例1:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.97Na0.03Co0.99Al0.01O2。首先,将硝酸钴和硫酸铝等,按照Co与Al的摩尔比为0.99:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物在空气氛围下在900℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.99Al0.01)3O4材料。然后,(Co0.99Al0.01)3O4与Na2CO3按照Na与Co的摩尔比为0.76:0.99的 比例均匀混合,通氧气在950℃下烧结36h,获得Na0.76Co0.99Al0.01O2。再将Na0.76Co0.99Al0.01O2与LiCl在300℃下混合加热熔融,最终获得Li0.97Na0.03Co0.99Al0.01O2
实施例2:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.95Na0.05Co0.99Al0.01O2。首先,将硝酸钴和硫酸铝等,按照Co与Al的摩尔比为0.99:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物在空气氛围下在900℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.99Al0.01)3O4材料。然后,(Co0.99Al0.01)3O4与Na2CO3按照Na与Co的摩尔比为0.74:0.99的比例均匀混合,通氧气在850℃下烧结36h,获得Na0.74Co0.99Al0.01O2。再将Na0.74Co0.99Al0.01O2与LiCl在300℃下混合加热熔融,其中保证Li/Na为7,最终获得Li0.95Na0.05Co0.99Al0.01O2
实施例3:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.93Na0.07Co0.99Al0.01O2。首先,将硝酸钴和硫酸铝等,按照Co与Al的摩尔比为0.99:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物在空气氛围下在900℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.99Al0.01)3O4材料。然后,(Co0.99Al0.01)3O4与Na2CO3按照Na与Co的摩尔比为0.72:0.99的比例均匀混合,通氧气在750℃下烧结36h,获得Na0.72Co0.99Al0.01O2。再将Na0.72Co0.99Al0.01O2与LiCl在300℃下混合加热熔融,其中保证Li/Na为5,最终获得Li0.93Na0.07Co0.99Al0.01O2
实施例4:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.92Na0.08Co0.99Mg0.01O2。首先,将将硝酸钴和硫酸镁等,按照Co与Mg的摩 尔比为0.99:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物在空气氛围下在900℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.99Mg0.01)3O4材料。然后,将(Co0.99Mg0.01)3O4与Na2CO3按照Na与Co的摩尔比为0.70:0.99的比例均匀混合,通氧气在750℃下烧结36h,获得Na0.70Co0.99Mg0.01O2。再将Na0.70Co0.99Mg0.01O2与LiCl在300℃下混合加热熔融,其中保证Li/Na为7,最终获得Li0.92Na0.08Co0.99Mg0.01O2
实施例5:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.95Na0.05Co0.99Ni0.01O2。首先,将硝酸钴和硫酸镍等,按照Co与Ni的摩尔比为0.99:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物,在空气氛围下在800℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.99Ni0.01)3O4材料。然后,将(Co0.99Ni0.01)3O4与Na2CO3,按照Na与Co的摩尔比为0.72:0.99的比例均匀混合,通氧气在800℃下烧结36h,获得Na0.72Co0.99Ni0.01O2。再将Na0.72Co0.99Ni0.01O2与LiCl在300℃下混合加热熔融,其中保证Li/Na为10,最终获得Li0.95Na0.05Co0.99Ni0.01O2
实施例6:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.95Na0.05Co0.98Al0.01Mg0.01O2。首先,将硝酸钴和硫酸铝及硫酸镁等,按照Co与Al及Mg的摩尔比为1.98:0.01:0.01的比例加入到溶剂(如去离子水)中,然后加入0.05mol/L的氢氧化钠和氨水,调节pH为6-10,使混合物形成共沉淀。将沉淀物在空气氛围下在800℃下烧结20h后,对产物进行研磨过筛处理,从而获得(Co0.98Al0.01Mg0.01)3O4材料。然后,将(Co0.98Al0.01Mg0.01)3O4与Na2CO3按照Na与Co的摩尔比为0.72:1的比例均匀混合,通氧气在800℃下烧结36h,获得Na0.72Co0.98Al0.01Mg0.01O2。再将Na0.72Co0.98Al0.01Mg0.01O2与LiCl在300℃ 下混合加热熔融,其中保证Li/Na为10,最终获得Li0.95Na0.05Co0.98Al0.01Mg0.01O2
实施例7:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.97Na0.03Co0.98Al0.01Ni0.01O2。实施例7中含钠氧化物的制备过程与实施例1相同,区别在于,共沉淀时按照摩尔比添加了Ni元素。
实施例8:
制备正极材料中的含钠氧化物:含钠氧化物的化学式可以是Li0.97Na0.03Co0.98Al0.01Mg0.005Ni0.005O2。实施例8中含钠氧化物的制备过程与实施例1相同,区别在于,共沉淀时按照摩尔比加入了Mg元素和Ni元素。
对比例1:
利用传统合成方式制备了经过掺杂包覆处理的商业化钴酸锂正极材料,合成方法为:将硫酸钴和硫酸铝按照摩尔比为0.99:0.01的比例加入到去离子水中,加入碳酸钠和氨水分别作为沉淀剂和络合剂,调节pH为7~8,使其沉淀,对沉淀剂进行烧结和研磨获得(Co0.99Al0.01)3O4,然后将其与Li2CO3按照Li/Co摩尔比为1.01的比例进行混合后,在空气中900℃烧结12h,最终获得化学式为LiCo0.99Al0.01O2的钴酸锂正极材料。
对比例2:
对比例2中正极材料的制备方法与对比例1相同,其区别在于,在共沉淀时按照摩尔比加入了Mg元素,最终获得化学式为LiCo0.98Al0.01Mg0.01O2的钴酸锂正极材料。
对比例3:
对比例3中正极材料的制备方法与对比例1相同,其区别在于,在共沉淀时按照摩尔比加入了Mg元素,以及在烧结时按照摩尔比加入了Ti元素,最终获得化学式为LiCo0.97Al0.01Mg0.01Ti0.01O2的钴酸锂正极材料。
对比例4:
对比例4中正极材料的制备方法与对比例1相同,其区别在于,在于在共 沉淀时按照摩尔比加入了Mg,以及在烧结时按照摩尔比加入了Ti和Zr元素,最终获得化学式为LiCo0.96Al0.01Mg0.01Ti0.01Zr0.01O2的钴酸锂正极材料。
将实施例1至实施例8以及对比例1至对比例4,按照相同的方式制成正极片并组装成对锂电池,对其进行电化学测试,电化学性能测试结果如下表1所示:
表1:电化学性能测试结果
由上表可以看出本公开提供的一种包括LixNa1-xCo1-zMzO2的正极材料与常规商业化高电压钴酸锂相比在相同的电压具有更高的容量和更好的倍率循环性能。
参见图5,图5是本公开提供一种正极材料的制备方法。本公开实施例提供了一种正极材料的制备方法,用于制备上述的正极材料,所述方法包括:
步骤501、向钴盐溶液中加入M盐溶液、沉淀剂和络合剂,制得共沉淀物,所述M盐溶液包括金属元素或非金属元素形成的盐溶液;
该步骤中,钴盐括但不限于氯化钴,硫酸钴,硝酸钴,醋酸钴等,M盐可以 是如硝酸盐,硫酸盐,草酸盐和醋酸盐等。可以将钴盐和M盐按照预设比例加入至去离子水中,然后加入0.01mol/L-2mol/L的沉淀剂和络合剂,沉淀剂可以是氢氧化钠,络合剂可以是氨水;并使得络合剂与沉淀剂的摩尔比为0.1:2,调节pH为6-10,使混合物形成共沉淀物。
步骤502、在所述共沉淀物中加入含钠盐化物,制得中间产物;
该步骤中,含钠盐化物可以是碳酸钠,共沉淀物中Co与含钠盐化物中Na的摩尔比为n:1的比例均匀混合(0.69<n<0.78),通氧气在700℃-1000℃下烧结24h至36h,获得中间产物。
步骤503、在所述中间产物中加入含锂盐化物,制得预产物;
该步骤中,将中间产物与含锂盐化物混合后,加热至熔融,其中保证Li/Na的摩尔比为2:10,锂盐可选氯化锂,溴化锂,醋酸锂,碳酸锂或者氢氧化锂中的一种或几种,经过100℃-300℃的加热最终获得预产物,预产物可以是化学式为LixNa1-xCo1-zMzO2的含钠氧化物。
步骤504、基于所述预产物,制得所述正极材料。
该步骤中,将正极材料与导电剂和粘结剂等混合后,制得正极浆料。
本公开中,含钠氧化物LixNa1-xCo1-zMzO2在充放电过程中能够保持良好的结构稳定性,却具有多个可逆相变,使其不仅可以获得高容量,还具有良好的循环性能。另外,由于该材料结构由于存在LiO6层与CoO6层的共面,而导致较大的层间静电排斥力,从而具有更大的过渡金属层间距,因此更加有利于Li离子在层间的快速扩散,从而可以获得较高的倍率性能,提升了正极材料的克容量。
在一实例中,所述钴盐溶液和所述M盐溶液中,Co与M之间的摩尔比为(1-z):z,所述共沉淀物包括(Co1-zMz)3O4,其中0.001<z<0.03,所述中间产物包括NamCo1-zMzO2,其中0.65<m<1,所述预产物包括LixNa1-xCo1-zMzO2,其中,0.70<x<1。
钴盐和M盐中Co与M的摩尔比可以是(1-z):z,加入至去离子水中,然后加入0.01mol/L-2mol/L的沉淀剂和络合剂,从而获得共沉淀物,将共沉淀物在空气 氛围下在300℃-900℃下烧结10h至20h后,对产物进行研磨过筛处理,从而获得(Co1-zMz)3O4材料,其中0.001<z<0.03,且(Co1-zMz)3O4的中值粒径范围在3μm至30μm;然后,将(Co1-zMz)3O4与Na2CO3按照Na与Co的摩尔比为n:1的比例均匀混合(0.69<n<0.78),通氧气在700℃-1000℃下烧结24h至36h,以获得NamCo1-zMzO2,0.65<m<1;通过将NamCo1-zMzO2与锂盐混合加热熔融的方式获得LixNa1-xCo1-zMzO2。通过在正极材料中添加含钠氧化物LixNa1-xCo1-zMzO2,提高了正极材料的克容量。
本公开还提供了一种正极片,包括集流体和设置于所述集流体的涂覆层,所述涂覆层中包括本公开所述的正极材料和/或由本公开所述的正极材料的制备方法制得的正极材料。
在一实例中,所述集流体采用金属箔材,优选铝箔。
在一实例中,所述铝箔厚度为6μm-10μm(例如,6μm、7μm、8μm、9μm、10μm)。
在一实例中,所述涂覆层中包括正极材料,正极材料中正极活性材料可以包括LixNa1-xCo1-zMzO2
在一实例中,正极片的压实密度可以是3g/cm3-4.5g/cm3(例如,3g/cm3、3.2g/cm3、3.5g/cm3、3.8g/cm3、4g/cm3、4.2g/cm3、4.5g/cm3)。
在一实例中,所述涂覆层中还包括导电剂和粘结剂,粘结剂可以包含聚偏二氟乙烯(PVDF)、羧甲基纤维素(CMC)、丁苯橡胶(SBR)、水性丙烯酸树脂、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种,导电剂可以包含超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
在一实例中,以所述涂覆层的总重量为基准,所述正极材料的重量含量为90wt%-99wt%,所述导电剂的重量含量为0.5wt%-5wt%,所述粘结剂的重量含量为0.5wt%-5wt%。
具体的,将正极材料、导电剂和粘结剂分散于溶剂(例如N-甲基吡咯烷酮, 简称为NMP)中,形成均匀的涂覆层,将涂覆层涂覆在正极集流体上,经烘干、辊压工序后,得到正极极片。正极材料在初始电压至截止电压的充放电过程中具有多个可逆的相变,这些相变不仅可逆,还为其在较低电压下获得较高容量,提高了正极片在相同充电截止电压下的容量。
本公开还提供了一种电池,包括正极片和负极片,所述正极片中包括本公开所述的正极材料和/或由本公开所述的正极材料的制备方法制得的正极材料。
所述电池可以为锂离子电池。
需要说明的是,上述正极材料的实施例的实现方式同样适应于该电池的实施例中,并能达到相同的技术效果,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本公开实施方式中的方法和装置的范围不限于按所讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (15)

  1. 一种正极材料,其特征在于,所述正极材料包括含钠氧化物,所述含钠氧化物的第一特征峰的角度范围小于第二特征峰的角度范围,所述第一特征峰为所述含钠氧化物在初始电压下的特征峰,所述第二特征峰为所述含钠氧化物在截止电压下的特征峰,所述含钠氧化物的化学式为LixNa1-xCo1-zMzO2
    其中,M包括金属元素或非金属元素,0.7<x<1,0.001<z<0.03。
  2. 根据权利要求1所述的正极材料,其特征在于,在3V-4.5V的充放电过程中的原位X射线衍射图中,第一特征峰,即含钠氧化物在初始电压(3V)下的特征峰,其位于角度范围可以是18.4°至18.7°;第二特征峰,即含钠氧化物在截止电压(4.5V)下的特征峰,其位于角度范围可以是18.7°至19.5°;
    和/或,第二特征峰位于第一特征峰的右侧,即第一特征峰的角度范围小于第二特征峰的角度范围。
  3. 根据权利要求1或2所述的正极材料,其特征在于,在所述初始电压至所述截止电压的充放电过程中,所述含钠氧化物包括多次相变,所述多次相变为可逆相变。
  4. 根据权利要求1-3中任一项所述的正极材料,其特征在于,所述多次相变中每一次相变过程包括有平衡电位。
  5. 根据权利要求1-4中任一项所述的正极材料,其特征在于,在所述初始电压至所述截止电压的充放电过程中,在第一电压范围下,所述含钠氧化物化合物以第一相和第二相共存;在第二电压范围下,所述含钠氧化物化合物以第三相和第四相共存;在第三电压范围下,所述含钠氧化物化合物以第五相和第六相共存。
  6. 根据权利要求1-5中任一项所述的正极材料,其特征在于,所述含钠氧化物的相层状结构包括若干层叠的重复单元,每一所述重复单元呈第一过渡金属层、锂氧层、第二过渡金属层层叠排布的层状结构,且过渡金属和锂原子分别占据八面体位点。
  7. 根据权利要求1-6中任一项所述的正极材料,其特征在于,M包括Al、Mg、 Ti、Zr、Mn、Ni、B、P、Y、La、Te、Nb、W、K和La中的至少一种元素。
  8. 根据权利要求1-7中任一项所述的正极材料,其特征在于,所述含钠氧化物的中值粒径范围为3μm-30μm。
  9. 根据权利要求1-8中任一项所述的正极材料,其特征在于,所述含钠氧化物的比表面积范围为0.2m2/g-1m2/g。
  10. 一种正极材料的制备方法,用于制备权利要求1-9中任一项所述的正极材料,其特征在于,所述方法包括:
    向钴盐溶液中加入M盐溶液、沉淀剂和络合剂,制得共沉淀物,所述M盐溶液包括金属元素或非金属元素形成的盐溶液;
    在所述共沉淀物中加入含钠盐化物,制得中间产物;
    在所述中间产物中加入含锂盐化物,制得预产物;
    基于所述预产物,制得所述正极材料。
  11. 根据权利要求10所述方法,其特征在于,所述钴盐溶液和所述M盐溶液中,Co与M之间的摩尔比为(1-z):z,所述共沉淀物包括(Co1-zMz)3O4,其中0.001<z<0.03,所述中间产物包括NamCo1-zMzO2,其中0.65<m<1,所述预产物包括LixNa1-xCo1-zMzO2,其中,0.7<x<1。
  12. 一种正极片,其特征在于,包括集流体和设置于所述集流体的涂覆层,所述涂覆层中包括如权利要求1-9中任一项所述的正极材料和/或由权利要求10或11所述的方法制得的正极材料。
  13. 根据权利要求12所述的正极片,其特征在于,所述涂覆层还包括导电剂和粘结剂,以所述涂覆层的总重量为基准,所述正极材料的重量含量为90wt%-99wt%,所述导电剂的重量含量为0.5wt%-5wt%,所述粘结剂的重量含量为0.5wt%-5wt%。
  14. 一种电池,其特征在于,包括正极片和负极片,所述正极片中包括如权利要求1-9中任一项所述的正极材料和/或由权利要求10或11所述的方法制得的正极材料。
  15. 根据权利要求14所述的电池,其特征在于,所述电池为锂离子电池。
PCT/CN2023/110604 2022-08-30 2023-08-01 一种正极材料、正极材料的制备方法、正极片及电池 WO2024046011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211045711.1 2022-08-30
CN202211045711.1A CN117673259A (zh) 2022-08-30 2022-08-30 一种正极材料、正极材料的制备方法、正极片及电池

Publications (1)

Publication Number Publication Date
WO2024046011A1 true WO2024046011A1 (zh) 2024-03-07

Family

ID=90073830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110604 WO2024046011A1 (zh) 2022-08-30 2023-08-01 一种正极材料、正极材料的制备方法、正极片及电池

Country Status (2)

Country Link
CN (1) CN117673259A (zh)
WO (1) WO2024046011A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025795A1 (ja) * 2016-08-04 2018-02-08 株式会社三徳 非水電解質二次電池用正極活物質、並びに該正極活物質を使用した正極及び二次電池
CN114335534A (zh) * 2021-12-16 2022-04-12 中国科学技术大学 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN114573041A (zh) * 2022-03-25 2022-06-03 珠海冠宇电池股份有限公司 一种正极材料的制备方法
CN114613992A (zh) * 2022-03-25 2022-06-10 珠海冠宇电池股份有限公司 一种正极材料、电池、电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025795A1 (ja) * 2016-08-04 2018-02-08 株式会社三徳 非水電解質二次電池用正極活物質、並びに該正極活物質を使用した正極及び二次電池
CN114335534A (zh) * 2021-12-16 2022-04-12 中国科学技术大学 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN114573041A (zh) * 2022-03-25 2022-06-03 珠海冠宇电池股份有限公司 一种正极材料的制备方法
CN114613992A (zh) * 2022-03-25 2022-06-10 珠海冠宇电池股份有限公司 一种正极材料、电池、电子设备

Also Published As

Publication number Publication date
CN117673259A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP7503863B2 (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
WO2020134781A1 (zh) 一种高压实密度正极材料及电化学储能装置
JP5030123B2 (ja) リチウム二次電池
TW543227B (en) Lithium secondary battery
TW480768B (en) Non-aqueous electrolyte secondary cell
TW565961B (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP5741908B2 (ja) リチウムイオン二次電池用正極活物質
US20180183046A1 (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
CN108807860B (zh) 阴极添加剂及其制备方法、阴极片及锂电池
JP2020504415A (ja) 二次電池用正極活物質、その製造方法、及びそれを含む二次電池
JP2003221236A (ja) リチウム含有複合酸化物およびそれを用いた非水二次電池
KR20160074236A (ko) 복합 양극 활물질, 그 제조방법, 이를 포함한 양극 및 리튬 전지
JP2003142101A (ja) 二次電池用正極およびそれを用いた二次電池
CN107068995B (zh) 一种原位析出氧化物包覆锂离子电池正极材料及其制备方法及应用
WO2010106768A1 (ja) 非水電解質二次電池用正極、それを用いた非水電解質二次電池、およびその製造方法
TW201136001A (en) High capacity lithium-ion electrochemical cells
JP7535329B2 (ja) リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
JP3858699B2 (ja) リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP4581333B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP5176317B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP2001185146A (ja) リチウム二次電池
WO2024153145A1 (zh) 一种正极材料及包含该正极材料的电池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
WO2024146611A1 (zh) 一种锂离子电池
WO2024164930A1 (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859046

Country of ref document: EP

Kind code of ref document: A1