[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023238688A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2023238688A1
WO2023238688A1 PCT/JP2023/019563 JP2023019563W WO2023238688A1 WO 2023238688 A1 WO2023238688 A1 WO 2023238688A1 JP 2023019563 W JP2023019563 W JP 2023019563W WO 2023238688 A1 WO2023238688 A1 WO 2023238688A1
Authority
WO
WIPO (PCT)
Prior art keywords
eredcap
base station
resource blocks
communication device
rnti
Prior art date
Application number
PCT/JP2023/019563
Other languages
English (en)
French (fr)
Inventor
卓宏 古山
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023238688A1 publication Critical patent/WO2023238688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to a communication device and a communication method used in a mobile communication system.
  • NR New Radio
  • 3GPP 3rd Generation Partnership Project 3rd Generation Partnership Project. Registered trademark, the same applies hereinafter
  • UE User Equipment
  • Such a terminal type is also referred to as "RedCap (Reduced Capability) UE.”
  • eRedCap UE In Release 18 of the 3GPP technical specifications, it is being considered to introduce a new terminal type that is even less complex than RedCap UE. It is assumed that the performance of such a new terminal type is between that of RedCap UE introduced in Release 17 and LPWA (Low Power Wide Area) of LTE (Long Term Evolution). Such a new terminal type is referred to as "eRedCap UE.” In the following, eRedCap UE is also referred to as a "predetermined terminal type.”
  • eRedCap UE For eRedCap UE, (a) reducing the compatible frequency bandwidth in FR1 (Frequency Range 1) to a predetermined bandwidth (for example, 5 MHz), and (b) reducing the frequency bandwidth in FR1 to reduce the peak data rate. It has been proposed to reduce the frequency bandwidth for a data channel to a predetermined bandwidth (for example, see Non-Patent Documents 1 to 5).
  • the data channel refers to a physical channel for transmitting data, that is, a physical downlink shared channel (PDSCH) and/or a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the frequency bandwidth is also simply referred to as "bandwidth.”
  • the bandwidth that can be supported by both the RF (Radio Frequency) section and the BB (Base Band) section of the UE i.e., the maximum bandwidth
  • the complexity of the RF section and the BB section is reduced. It is possible to reduce the
  • the bandwidth that can be handled mainly by the BB section of the UE it is possible to reduce the bandwidth that can be handled mainly by the BB section of the UE, and reduce the complexity of the BB section.
  • the current PDSCH allocation (scheduling) mechanism has the problem that there is a concern that communication devices of a given terminal type, such as eRedCap UE, may not be able to properly receive downlink data. .
  • the present disclosure aims to enable downlink data to be appropriately received even when a communication device of a predetermined terminal type such as eRedCap UE is introduced.
  • the communication device is a communication device of a predetermined terminal type in which a frequency bandwidth that can be supported at least for a physical downlink shared channel is reduced to a predetermined bandwidth, and the frequency resource of the physical downlink shared channel is a receiving unit that receives downlink control information including a frequency resource allocation field indicating allocation from a base station on a physical downlink control channel; and a first resource constituting a control resource set corresponding to the physical downlink control channel. and a control unit that specifies the number of bits of the frequency resource allocation field based on the second number of resource blocks corresponding to a frequency bandwidth equal to or less than the predetermined bandwidth, regardless of the number of blocks.
  • the communication method is a communication method executed by a communication device of a predetermined terminal type in which the frequency bandwidth that can be handled for at least a physical downlink shared channel is reduced to a predetermined bandwidth, receiving from a base station on a physical downlink control channel downlink control information including a frequency resource allocation field indicating allocation of frequency resources for a shared channel; and configuring a control resource set corresponding to the physical downlink control channel.
  • the method further includes the step of specifying the number of bits of the frequency resource allocation field based on the second number of resource blocks corresponding to a frequency bandwidth equal to or less than the predetermined bandwidth, regardless of the first number of resource blocks.
  • FIG. 1 is a diagram for explaining the configuration of a mobile communication system according to an embodiment
  • FIG. 2 is a diagram for explaining a configuration example of a protocol stack in a mobile communication system according to an embodiment
  • FIG. 3 is a diagram for explaining an overview of initial access in the mobile communication system according to the embodiment
  • FIG. 4 shows the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 included in MIB in the mobile communication system according to the embodiment, and the parameter for CORESET#0 (CORESET for Type0-PDCCH search space set).
  • controlResourceSetZero is a parameter included in pdcch-ConfigSIB1 included in MIB in the mobile communication system according to the embodiment
  • CORESET#0 CORESET for Type0-PDCCH search space set
  • FIG. 2 is a diagram showing an example of a table shown in FIG.
  • FIG. 5 shows the value of searchSpaceZero, which is a parameter included in pdcch-ConfigSIB1 included in MIB in the mobile communication system according to the embodiment, and the parameter for search space set #0 (PDCCH monitoring occasions for Type0-PDCCH CSS set).
  • FIG. 6 is a diagram illustrating a paging message transmission method in the mobile communication system according to the embodiment
  • FIG. 7 is a diagram illustrating a system information message (SIB) transmission method in the mobile communication system according to the embodiment
  • FIG. 8 is a diagram illustrating a random access (RA) response transmission method in the mobile communication system according to the embodiment
  • SIB system information message
  • RA random access
  • FIG. 9 is a diagram showing "DCI format 1_0 with P-RNTI", "DCI format 1_0 with SI-RNTI", and "DCI format 1_0 with RA-RNTI” in the mobile communication system according to the embodiment
  • FIG. 10 is a diagram for explaining an overview of eRedCap UE in the mobile communication system according to the embodiment
  • FIG. 11 is a diagram for explaining an overview of eRedCap UE in the mobile communication system according to the embodiment
  • FIG. 12 is a diagram for explaining the configuration of the UE according to the embodiment
  • FIG. 13 is a diagram for explaining the configuration of the base station according to the embodiment
  • FIG. 14 is a diagram showing MIB transmission operation in the base station according to the embodiment
  • FIG. 15 is a diagram showing MIB reception operation in the UE (eRedCap UE) according to the embodiment
  • FIG. 16 is a diagram showing an example of table configuration according to the embodiment
  • FIG. 17 is a diagram illustrating a sequence example of an initial access method of an eRedCap UE according to an embodiment
  • FIG. 18 is a diagram illustrating a first PDSCH resource allocation bit number identification method according to the embodiment
  • FIG. 19 is a diagram illustrating an example of the correspondence between the subcarrier spacing (SCS) and the second number of resource blocks according to the embodiment
  • FIG. 20 is a diagram illustrating a second PDSCH resource allocation bit number identification method according to the embodiment
  • FIG. SCS subcarrier spacing
  • FIG. 21 is a diagram illustrating an example of associating the first index (controlResourceSetZero) and the second number of resource blocks according to the embodiment
  • FIG. 22 is a diagram for explaining an overview of the handover method for eRedCap UE according to the embodiment
  • FIG. 23 is a diagram illustrating an example of a handover method for eRedCap UE according to the embodiment.
  • the mobile communication system 1 is a system that complies with the technical specifications of 3GPP.
  • NR NR Radio Access
  • RAT radio access technology
  • the mobile communication system 1 is at least partially based on E-UTRA (Evolved Universal Terrestrial Radio Access)/LTE (Long Term Evolution), which is a 3GPP fourth generation (4G) system RAT. It has a configuration based on It's okay.
  • the mobile communication system 1 includes a network 10 and a UE 100 that is a communication device that communicates with the network 10.
  • Network 10 includes a radio access network (RAN) 20 and a core network (CN) 30.
  • RAN20 is NG-RAN (Next Generation Radio Access Network) in 5G/NR.
  • the RAN 20 may be E-UTRAN (Evolved Universal Terrestrial Radio Access Network) in 4G/LTE.
  • CN30 is 5GC (5th Generation Core network) in 5G/NR.
  • the CN 30 may be an EPC (Evolved Packet Core) in 4G/LTE.
  • the UE 100 is a device used by a user.
  • the UE 100 is, for example, a device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, a communication card, or a chipset.
  • UE 100 may be a vehicle (for example, a car, a train, etc.) or a device installed therein.
  • the UE 100 may be a transport aircraft other than a vehicle (for example, a ship, an airplane, etc.) or a device installed therein.
  • UE 100 may be a sensor or a device provided therein.
  • the UE 100 is a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal. , remote device, or remote unit.
  • the RAN 20 includes multiple base stations 200.
  • Each base station 200 manages at least one cell.
  • a cell constitutes the smallest unit of communication area. For example, one cell belongs to one frequency (carrier frequency) and is composed of one component carrier.
  • the term "cell" may represent a wireless communication resource, and may also represent a communication target of the UE 100. Therefore, base station 200 in the following description may be read as "cell”.
  • Each base station 200 can perform wireless communication with the UE 100 located in its own cell.
  • the base station 200 communicates with the UE 100 using a RAN protocol stack.
  • Base station 200 provides user plane and control plane protocol termination for UE 100, and is connected to CN 30 via a base station-CN network interface.
  • the base station 200 in 5G/NR is called a gNodeB (gNB), and the base station 200 in 4G/LTE is called an eNodeB (eNB).
  • the base station-CN interface in 5G/NR is called an NG interface
  • the base station-CN interface in 4G/LTE is called an S1 interface.
  • Base station 200 is connected to adjacent base stations via a network interface between base stations.
  • the inter-base station interface in 5G/NR is called an Xn interface
  • the inter-base station interface in 4G/LTE is called an X2 interface.
  • the CN 30 includes a core network device 300.
  • the core network device 300 is an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function) in 5G/NR.
  • the core network device 300 may be an MME (Mobility Management Entity) and/or an S-GW (Serving Gateway) in 4G/LTE.
  • AMF/MME performs mobility management of UE 100.
  • UPF/S-GW provides functions specialized for user plane processing.
  • Protocol stack configuration An example of the protocol stack configuration in the mobile communication system 1 according to the embodiment will be described with reference to FIG. 2.
  • the protocols in the wireless section between the UE 100 and the base station 200 include a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer. and a radio resource control (RRC) layer.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of UE 100 and the PHY layer of base station 200 via a physical channel.
  • a physical channel is composed of multiple OFDM symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe is composed of multiple OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of multiple OFDM symbols and multiple subcarriers.
  • a frame can be made up of 10ms and can include 10 subframes made up of 1ms.
  • a subframe may include a number of slots depending on the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for the purposes of downlink scheduling allocation, uplink scheduling grant, and transmission power control.
  • the UE 100 uses a radio network temporary identifier (RNTI) assigned to the UE 100 from the base station 200, for example, C-RNTI (Cell-RNTI), MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI), and/or Blind decoding of PDCCH is performed using CS-RNTI (Configured Scheduling-RNTI), and downlink control information (DCI) that has been successfully decoded is acquired as DCI addressed to the own UE.
  • a CRC Cyclic Redundancy Check
  • parity bit scrambled by the C-RNTI, MCS-C-RNTI, or CS-RNTI is added to the DCI transmitted from the base station 200.
  • the UE 100 can use a bandwidth narrower than the system bandwidth (i.e., the cell bandwidth).
  • the base station 200 sets a bandwidth portion (BWP) consisting of consecutive resource blocks (PRB: Physical Resource Block) to the UE 100.
  • BWP bandwidth portion
  • PRB Physical Resource Block
  • UE 100 transmits and receives data and control signals in active BWP.
  • a maximum of four BWPs can be set in the UE 100.
  • Each BWP may have a different subcarrier spacing.
  • the respective BWPs may have overlapping frequencies.
  • the base station 200 can specify which BWP to activate through downlink control.
  • the base station 200 can configure up to three control resource sets (CORESET) for each of up to four BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive. Up to 12 CORESETs can be configured in the UE 100 on the serving cell.
  • Each CORESET has an index (ID) from 0 to 11.
  • ID index
  • a CORESET is composed of six resource blocks (PRBs) and one, two, or three consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, retransmission processing using Hybrid ARQ (HARQ), random access procedure, etc.
  • Data and control information are transmitted between the MAC layer of UE 100 and the MAC layer of base station 200 via a transport channel.
  • the MAC layer of base station 200 includes a scheduler.
  • the scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and resources to be allocated to the UE 100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE 100 and the RLC layer of base station 200 via logical channels.
  • the PDCP layer performs header compression/expansion, and encryption/decryption.
  • a service data adaptation protocol (SDAP) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP layer performs mapping between an IP flow, which is a unit in which the core network performs QoS (Quality of Service) control, and a radio bearer, which is a unit in which an access stratum (AS) performs QoS control.
  • IP flow which is a unit in which the core network performs QoS (Quality of Service) control
  • AS access stratum
  • the RRC layer controls logical channels, transport channels and physical channels according to the establishment, re-establishment and release of radio bearers.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200.
  • the UE 100 When there is an RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in an RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in an RRC idle state. When the RRC connection between the RRC of the UE 100 and the RRC of the base station 200 is suspended, the UE 100 is in an RRC inactive state.
  • a non-access stratum (NAS) layer located above the RRC layer performs session management and mobility management of the UE 100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF/MME).
  • AMF/MME NAS layer of the core network device 300
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • BWP BWP is defined to reduce power consumption of the UE 100 and effectively utilize broadband carriers.
  • BWP includes initial BWP (initial DL BWP and initial UL BWP) and dedicated BWP (dedicated DL BWP and dedicated UL BWP). Up to four DL BWPs and up to four UL BWPs are configured in the UE 100 within one serving cell according to its capabilities. Note that in the following, when DL BWP and UL BWP are not distinguished, they are simply referred to as BWP.
  • the initial BWP is a BWP used at least for initial access, and is commonly used by multiple UEs 100.
  • bwp-id which is a BWP identifier
  • the initial BWP includes an initial BWP derived and set by a master information block (MIB) transmitted on a physical broadcast channel (PBCH), and a system information block (SIB), specifically a system information block type 1 ( There are two types: initial BWP set by SIB1).
  • the initial BWP set by the MIB has a bandwidth according to CORESET #0, which is set using parameters included in the MIB.
  • the initial BWP set by SIB1 is set by various parameters (locationAndBandwidth, subcarrierSpacing, cyclicPrefix) included in ServingCellConfigCommonSIB, which is an information element in SIB1.
  • the UE 100 that has received the synchronization signal block (SSB: Synchronization Signal/PBCH block) of the cell, controls the controlResourceS in pdcch-ConfigSIB1, which is an information element included in the PBCH (MIB).
  • MIB PBCH
  • etZero (0 to 15 Obtain the bandwidth (24, 48, or 96 resource blocks) of the Type-0 PDCCH CSS set from the setting value (integer value up to).
  • the UE 100 monitors the Type-0 PDCCH CSS set to obtain SIB1, and obtains locationAndBandwidth, which is a parameter indicating the frequency position and/or bandwidth of the initial BWP, from SIB1.
  • Msg. 4 the UE 100 uses the initial BWP set by the MIB, that is, the bandwidth based on CORESET #0 for the initial BWP.
  • Msg. 4 the UE 100 uses the bandwidth set in locationAndBandwidth in SIB1 for the initial BWP.
  • Msg. 4 may be an RRCSetup message, an RRCResume message, or an RRCReestablishment message.
  • the UE 100 transits from, for example, an RRC idle state to an RRC connected state by such an initial access (random access procedure).
  • a dedicated BWP is a BWP that is set exclusively for a certain UE 100 (UE-specific).
  • a bwp-id other than "0" may be set in the dedicated BWP.
  • a dedicated DL BWP and a dedicated UL BWP are respectively configured based on BWP-Downlink and BWP-Uplink, which are information elements included in SevingcellConfig in an RRC message that is dedicated signaling transmitted from the base station 200 to the UE 100.
  • BWP-Downlink and BWP-Uplink may include various parameters (locationAndBandwidth, subcarrierSpacing, cyclicPrefix) that configure the BWP.
  • the base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (i.e., active BWP) among the one or more configured BWPs. For example, the base station 200 can transmit to the UE 100 a BWP identifier that indicates the BWP to be activated when performing configuration, that is, the BWP that is first used in communication with the base station 200.
  • a BWP identifier that indicates the BWP to be activated when performing configuration, that is, the BWP that is first used in communication with the base station 200.
  • PDCCH DCI
  • RRC signaling MAC control element
  • MAC CE MAC control element
  • communication in an active BWP includes transmission on the uplink shared channel (UL-SCH) in the BWP, transmission on the random access channel (RACH) in the BWP (physical random access channel (PRACH) opportunity is set) monitoring of the physical downlink control channel (PDCCH) in the relevant BWP, transmission on the physical uplink control channel (PUCCH) in the relevant BWP (if PUCCH resources are configured), channel state information for the relevant BWP ( The information may include at least one of a report of CSI) and reception of a downlink shared channel (DL-SCH: Down Link-Shared CHannel) in the BWP.
  • UL-SCH uplink shared channel
  • RACH random access channel
  • PRACH physical random access channel
  • the UL-SCH is a transport channel and is mapped to the physical uplink shared channel (PUSCH), which is a physical channel.
  • data transmitted on the UL-SCH is also referred to as UL-SCH data.
  • PUSCH physical uplink shared channel
  • data transmitted on the UL-SCH is also referred to as UL-SCH data.
  • UL-SCH data may correspond to UL-SCH data and uplink user data.
  • PDSCH physical downlink shared channel
  • data transmitted on DL-SCH is also referred to as DL-SCH data.
  • it may correspond to DL-SCH data and downlink user data.
  • PUCCH is used to transmit uplink control information (UCI).
  • the uplink control information includes HARQ (Hybrid Automatic Repeat Request)-ACK, CSI, and/or scheduling request (SR).
  • HARQ-ACK includes a positive acknowledgment or a negative acknowledgment.
  • PUCCH is used to transmit HARQ-ACK for PDSCH (ie, DL-SCH (DL-SCH data, downlink user data)).
  • DL-SCH data and/or downlink user data is also referred to as a downlink transport block.
  • the UE 100 monitors a set of PDCCH candidates in one or more CORESETs in the active DL BWP.
  • Monitoring the PDCCH may include decoding each of the PDCCH candidates according to a monitored downlink control information (DCI) format.
  • DCI downlink control information
  • the UE 100 may monitor the DCI format to which a CRC (cyclic redundancy check, also referred to as CRC parity bit) scrambled by the RNTI set by the base station 200 is added.
  • CRC cyclic redundancy check
  • RNTI is SI-RNTI (System Information-RNTI), RA-RNTI (Random Access RNTI), TC-RNTI (Temporary C-RNTI), P-RNTI (Paging RNTI) TI), and/or C-RNTI (Cell-RNTI).
  • the set of PDCCH candidates that the UE 100 monitors may be defined as a PDCCH search space set.
  • the search space sets may include common search space sets (CSS set(s)) and/or UE-specific search space sets (USS set(s)). Therefore, the base station 200 may set a CORESET and/or a search space set to the UE 100, and the UE 100 may monitor the PDCCH in the set CORESET and/or search space set.
  • the base station 200 transmits SSB in the initial DL BWP.
  • the SSB is composed of four consecutive OFDM symbols, and a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (MIB), and a demodulation reference signal (DMRS) of the PBCH are arranged.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • MIB PBCH
  • DMRS demodulation reference signal
  • the locations of resource elements (time resources and frequency resources) to which SSBs are mapped are defined in 3GPP technical specifications, such as "TS38.211" and "TS38.213.”
  • the bandwidth of SSB is, for example, a bandwidth of 240 consecutive subcarriers, or 20RB.
  • the SSB associated with SIB1 is called a cell-specific SSB (CD-SSB). From the perspective of one UE 100, one serving cell is associated with one CD-SSB. Note that SIB1 is also referred to as RMSI (Remaining Minimum System information). One CD-SSB corresponds to one cell with a unique NCGI (NR Cell Global Identifier). SSBs that are not associated with SIB1 (RMSI) are referred to as non-cell-specific SSBs (Non-CD-SSBs).
  • RMSI Remaining Minimum System information
  • bandwidth There are the following types of bandwidth common to UEs during initial access: ⁇ SSB (CD-SSB) bandwidth: 240 consecutive subcarriers (i.e., 20 resource blocks), - Bandwidth of CORESET #0: 24 resource blocks, 48 resource blocks, or 96 resource blocks, - Initial BWP bandwidth: maximum 275 resource blocks determined by locationAndBandwidth, which is a parameter set in RRC.
  • CD-SSB 240 consecutive subcarriers (i.e., 20 resource blocks)
  • - Bandwidth of CORESET #0 24 resource blocks, 48 resource blocks, or 96 resource blocks
  • Initial BWP bandwidth maximum 275 resource blocks determined by locationAndBandwidth, which is a parameter set in RRC.
  • step S1 the base station 200 transmits SSB.
  • UE 100 receives the SSB.
  • step S2 the UE 100 determines the bandwidth of CORESET #0 (value from 0 to 15) based on the value (value from 0 to 15) of the parameter (controlResourceSetZero) included in pdcch-ConfigSIB1 included in the MIB in the SSB received in step S1. 24, 48, or 96 resource blocks).
  • CORESET #0 is a CORESET whose ID is set to #0, and is also referred to as a CORESET for Type-0 PDCCH CSS set.
  • Type-0 PDCCH CSS set is a parameter included in pdcch-ConfigSIB1 in MIB (pdcch-ConfigSIB1) or a parameter included in PDCCH-ConfigCommon (searchSpaceSIB1 or searchS paceZero) value in the common search space. It is set as a certain search space set #0. Search space set #0 consists of search spaces whose IDs are set to #0.
  • step S3 the UE 100 monitors PDCCH candidates using the Type-0 PDCCH CSS set.
  • step S4 the base station 200 transmits DCI in DCI format 1_0 to which a CRC scrambled by SI-RNTI is added on the PDCCH.
  • step S5 the UE 100 receives (detects) the DCI and identifies PDSCH resource allocation (time and/or frequency resources) from the DCI.
  • step S6 the base station 200 transmits SIB1 on the PDSCH scheduled with "DCI format 1_0 with SI-RNTI".
  • the UE 100 receives (acquires) the SIB1 and acquires locationAndBandwidth, which is a parameter indicating the frequency position and bandwidth of the initial BWP (initial DL BWP and initial UL BWP), from the SIB1.
  • Figure 4 shows the value of controlResourceSetZero, which is a parameter included in pdcch-ConfigSIB1 included in MIB, and the value for CORESET #0 (CORESET for Type0-PDCCH search space set).
  • This is a diagram showing an example of a table showing correspondence with parameters. be.
  • the correspondence relationship is defined in advance in the technical specifications, and the UE 100 maintains the table.
  • the example in FIG. 4 shows a table in which the maximum channel bandwidth is 5 MHz or 10 MHz, and the subcarrier spacing (SCS) of each of SSB and PDCCH is 15 kHz.
  • SCS subcarrier spacing
  • controlResourceSetZero which is a parameter included in pdcch-ConfigSIB1 included in the MIB, is an index value from 0 to 15.
  • the UE 100 uses the table to identify the corresponding CORESET #0 parameter (for example, the number of resource blocks, the number of symbols, etc.) from the value of the index.
  • FIG. 5 shows the value of searchSpaceZero, a parameter included in pdcch-ConfigSIB1 included in the MIB, and search space set #0 (PDCCH monitoring occasions for Type0-PDCCH CSS set). ) is an example of a table showing the correspondence with parameters.
  • FIG. The correspondence relationship is defined in advance in the technical specifications, and the UE 100 maintains the table.
  • the value of searchSpaceZero which is a parameter included in pdcch-ConfigSIB1 included in the MIB, is an index value from 0 to 15.
  • the UE 100 identifies the corresponding search space set #0 (for example, the number per slot, the index of the first symbol, etc.) from the value of the index.
  • a common message is a message that is commonly used by a plurality of UEs 100 and is transmitted on the PDSCH.
  • Common messages include paging messages, system information messages, and random access (RA) responses.
  • FIG. 6 is a diagram showing a paging message transmission method in the mobile communication system 1 according to the embodiment.
  • step S11 the base station 200 transmits DCI of DCI format 1_0 to which a CRC scrambled by P-RNTI is added (hereinafter also referred to as "DCI format 1_0 with P-RNTI") on the PDCCH.
  • DCI format 1_0 with P-RNTI DCI format 1_0 with P-RNTI
  • step S12 the UE 100 receives (detects) "DCI format 1_0 with P-RNTI” by monitoring "DCI format 1_0 with P-RNTI", and receives PDSCH resources from "DCI format 1_0 with P-RNTI”. Identify allocations (time and/or frequency resources).
  • step S13 the base station 200 transmits a paging message on the PDSCH scheduled with "DCI format 1_0 with P-RNTI".
  • the UE 100 receives (obtains) a paging message on the PDSCH scheduled with "DCI format 1_0 with P-RNTI".
  • FIG. 7 is a diagram showing a method of transmitting a system information message (SIB: System Information Block) in the mobile communication system 1 according to the embodiment.
  • SIB System Information Block
  • step S21 the base station 200 transmits a DCI of DCI format 1_0 to which a CRC scrambled by SI-RNTI is added (hereinafter also referred to as "DCI format 1_0 with SI-RNTI") on the PDCCH.
  • DCI format 1_0 with SI-RNTI a DCI of DCI format 1_0 to which a CRC scrambled by SI-RNTI is added
  • step S22 the UE 100 receives (detects) "DCI format 1_0 with SI-RNTI” by monitoring "DCI format 1_0 with SI-RNTI", and receives PDSCH resources from "DCI format 1_0 with SI-RNTI”. Identify allocations (time and/or frequency resources).
  • step S23 the base station 200 transmits a system information message on the PDSCH scheduled with "DCI format 1_0 with SI-RNTI".
  • the UE 100 receives (obtains) the system information message on the PDSCH scheduled with "DCI format 1_0 with SI-RNTI".
  • FIG. 8 is a diagram showing a random access (RA) response transmission method in the mobile communication system 1 according to the embodiment.
  • step S31 the base station 200 transmits a DCI of DCI format 1_0 to which a CRC scrambled by RA-RNTI is added (hereinafter also referred to as "DCI format 1_0 with RA-RNTI") on the PDCCH.
  • DCI format 1_0 with RA-RNTI a DCI of DCI format 1_0 to which a CRC scrambled by RA-RNTI is added
  • step S32 the UE 100 receives (detects) "DCI format 1_0 with RA-RNTI” by monitoring "DCI format 1_0 with RA-RNTI", and receives PDSCH resources from "DCI format 1_0 with RA-RNTI”. Identify allocations (time and/or frequency resources).
  • step S33 the base station 200 transmits an RA response on the PDSCH scheduled with "DCI format 1_0 with RA-RNTI".
  • the UE 100 receives (obtains) the RA response on the PDSCH scheduled with "DCI format 1_0 with RA-RNTI".
  • FIG. 9 is a diagram showing "DCI format 1_0 with P-RNTI", “DCI format 1_0 with SI-RNTI”, and “DCI format 1_0 with RA-RNTI” in the mobile communication system 1 according to the embodiment.
  • such DCI format 1_0 includes a "Frequency domain resource assignment” field that indicates PDSCH resource assignment in the frequency domain, and a "Time domain resource” field that indicates PDSCH resource assignment in the time domain. assignment” field and including.
  • the number of bits (bit length) of the "Time domain resource assignment” field is fixed at 4 bits.
  • the number of bits (bit length) in the "Frequency domain resource assignment” field is the size of CORESET #0.
  • the CORESET #0 size is expressed by the number of resource blocks (RB number).
  • RedCap UE is introduced as a low-performance UE type suitable for use cases such as industrial sensors, surveillance cameras, and wearables. RedCap UE is also referred to as a "Reduced capability NR device.” RedCap UE is a UE type (terminal type) with reduced equipment cost and complexity compared to common UE types. RedCap UE has mid-range performance and price for IoT, and for example, compared to general UE types, the maximum bandwidth used for wireless communication is set narrower, and the number of receivers is smaller. . As shown in FIG. 10, for FR1, the bandwidth that the RedCap UE can support (ie, the maximum bandwidth supported by the RedCap UE) may be 20 MHz.
  • eRedCap UE has a narrower maximum bandwidth used for wireless communication than RedCap UE.
  • the eRedCap UE corresponds to a predetermined UE type (predetermined terminal type) in which the frequency bandwidth that can be used for at least PDSCH is reduced to a predetermined bandwidth.
  • eRedCap UEs For eRedCap UEs, (a) reducing the compatible frequency bandwidth in FR1 to a predetermined bandwidth (e.g., 5 MHz); and (b) reducing the frequency band for the data channel in FR1 to reduce the peak data rate. It has been proposed to reduce the width.
  • the data channel refers to a physical channel that transmits data, ie, PDSCH and/or PUSCH.
  • the frequency bandwidth is also simply referred to as "bandwidth.”
  • the maximum bandwidth of the RedCap UE particularly the maximum bandwidth of the data channel of the RedCap UE, will be referred to as "predetermined bandwidth.”
  • the bandwidth (that is, the maximum bandwidth) that can be supported by both the RF section and the BB section of the UE 100 is reduced, and the complexity of the RF section and the BB section is reduced. It is possible to reduce this.
  • the bandwidth that can be handled by the BB section of the UE 100
  • the maximum RF bandwidth that can be supported by the RF section of the UE 100 is 20 MHz
  • the maximum BB band that is the frequency bandwidth (predetermined bandwidth) that can be supported by the BB section of the UE 100 is 20 MHz.
  • the width is 5 MHz.
  • the maximum BB bandwidth is not limited to 5 MHz, and may be set to 3 MHz or 4 MHz, for example.
  • Such a bandwidth of 5 MHz (or 3 MHz or 4 MHz) may be set as a predetermined bandwidth as BWP for the eRedCap UE. In that case, the bandwidth may be referred to as "BWP of eRedCap".
  • either the method (a) or the method (b) above may be adopted for the eRedCap UE, but it is mainly assumed that the method (b) above is adopted.
  • eRedCap UE is introduced, there is a concern that there will be restrictions on the transmission of common messages that are commonly transmitted to multiple terminals on the PDSCH.
  • 5G systems need to accommodate multiple UE types with different capabilities.
  • the multiple UE types include the Release 15, 16, 17, and 18 general UE types, the Release 17 RedCap UE, and the Release 18 eRedCap UE.
  • the fact that a common message for multiple UEs 100 is transmitted in conjunction with the eRedCap UE may be a restriction on scheduling.
  • system information messages eg, SIB1
  • SIB1 system information messages
  • the eRedCap UE may not be able to properly receive downlink data.
  • the UE 100 which has a bandwidth of, for example, 5 MHz for the data channel, uses the number of bits in the "Frequency domain resource assignment" field that indicates PDSCH resource allocation. , and downlink data cannot be properly received. More specifically, the number of bits for resource allocation of a PDSCH scheduled using P-RNTI, SI-RNTI, or RA-RNTI cannot be specified, and DCI cannot be appropriately decoded.
  • eRedCap UE may not be able to properly support mobility. For example, there is a concern that the eRedCap UE may not be able to properly receive downlink data (especially common messages) from the target cell after handover. More specifically, after performing handover, the eRedCap UE does not know in which bandwidth it should receive the PDSCH, and cannot specify the frequency band to which the PDSCH is mapped.
  • UE 100 may be an eRedCap UE.
  • UE 100 includes a communication section 110 and a control section 120.
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200.
  • the communication unit 110 includes at least one transmitting unit 111 and at least one receiving unit 112.
  • the transmitting section 111 and the receiving section 112 may be configured to include a plurality of antennas and RF circuits.
  • the antenna and the RF circuit convert the baseband signal into a radio signal (RF signal) and radiate the radio signal into space.
  • the antenna and the RF circuit also receive radio signals in space and convert the radio signals into baseband signals.
  • the RF circuit performs analog processing of signals transmitted and received via the antenna, and may include, for example, a high frequency filter, an amplifier, a modulator, a low-pass filter, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110.
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120.
  • the control unit 120 may include at least one processor that can execute a program and a memory that stores the program.
  • the processor may execute the program to perform the operations of the control unit 120.
  • the control unit 120 may include a digital signal processor that digitally processes signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack. Note that the memory stores a program executed by the processor, parameters related to the program, and data related to the program.
  • Memories include ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically Erasable Programmable Memory).
  • the memory may include at least one of RAM (Random Access Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be contained within the processor.
  • the UE 100 may be an eRedCap UE in which the frequency bandwidth that can be used for at least PDSCH is reduced to a predetermined bandwidth (for example, 5 MHz).
  • the receiving unit 112 receives the MIB from the base station 200 on the PBCH.
  • the control unit 120 acquires a common message commonly used by the plurality of UEs 100 from the base station 200 on the PDSCH.
  • the MIB includes a parameter indicating whether the second common message specified for the eRedCap UE is provided from the base station 200.
  • the second common message is a common message defined independently of the first common message defined for UE types other than eRedCap UE.
  • UE types other than eRedCap UE include general UE types of Releases 15, 16, 17, and 18, and RedCap UE of Release 17. In the following, UE types other than eRedCap UE are also referred to as "Non-eRedCap UE.”
  • the second common message is provided from the base station 200 may also mean “the second common message is broadcast from the base station 200".
  • the “second common message is provided by the base station 200” may also mean “the second common message is scheduled by the base station 200.”
  • the receiving unit 112 has a DCI, including a frequency resource allocation field (that is, "FREQUENCY DOMAIN RESORCE ASSIGNMENT" field), which indicates the perfection of PDSCH frequency resources.
  • a frequency resource allocation field that is, "FREQUENCY DOMAIN RESORCE ASSIGNMENT" field
  • the control unit 120 controls the predetermined bandwidth (for example, 5 MHz) or less, regardless of the number of first resource blocks (i.e., the size of CORESET #0) constituting the control resource set (CORESET #0) corresponding to the PDCCH.
  • the number of bits of the frequency resource allocation field is specified based on the second number of resource blocks corresponding to the frequency bandwidth of .
  • the eRedCap UE allows it to appropriately determine the number of bits in the frequency resource allocation field, and allows it to appropriately receive downlink data (especially common messages). More specifically, the number of bits for resource allocation of PDSCH scheduled using P-RNTI, SI-RNTI, or RA-RNTI can be appropriately determined, and the DCI for scheduling common messages can be appropriately determined. Can be decoded properly.
  • the receiving unit 112 receives a message from the base station 200 instructing handover to the target cell. Based on the message, the control unit 120 acquires a common message commonly used by the plurality of UEs 100 from the target cell on the PDSCH. The message is obtained by the UE 100 acquiring a second common message specified for eRedCap UE from the target cell independently of the first common message specified for UE types other than eRedCap UE (Non-eRedCap UE). Contains parameters for This allows the eRedCap UE to appropriately receive downlink data (particularly common messages) from the target cell after handover, and allows the eRedCap UE to appropriately support mobility.
  • the second common message may be a common message specific (dedicated) to the eRedCap UE.
  • the second common message may be referred to as an eRedCap specific common message.
  • the second common message may be a common message that can be received by Non-eRedCap UEs in addition to eRedCap UEs.
  • the second common message may be a common message that is transmitted from the base station 200 using a frequency bandwidth that is less than or equal to a predetermined bandwidth (eg, 5 MHz).
  • a predetermined bandwidth eg, 5 MHz
  • Base station 200 includes a communication section 210, a network interface 220, and a control section 230.
  • the communication unit 210 performs wireless communication with the UE 100 by transmitting and receiving wireless signals to and from the UE 100.
  • the communication unit 210 includes at least one transmitting unit 211 and at least one receiving unit 212.
  • the transmitter 211 and the receiver 212 may be configured to include multiple antennas and RF circuits.
  • the antenna and the RF circuit convert the baseband signal into a radio signal (RF signal) and radiate the radio signal into space.
  • the antenna and the RF circuit also receive radio signals in space and convert the radio signals into baseband signals.
  • the RF circuit performs analog processing of signals transmitted and received via the antenna, and may include, for example, a high frequency filter, an amplifier, a modulator, a low-pass filter, and the like.
  • the network interface 220 sends and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via, for example, an Xn interface that is an interface between base stations, and transmits signals to the adjacent base stations. Further, the network interface 220 receives a signal from the core network device 300 connected via the NG interface, and transmits the signal to the core network device 300, for example.
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Further, the control unit 230 controls, for example, communication with a node (eg, an adjacent base station, the core network device 300) via the network interface 220.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230.
  • the control unit 230 may include at least one processor that can execute a program and a memory that stores the program.
  • the processor may execute the program to perform the operations of the control unit 230.
  • the control unit 230 may include a digital signal processor that digitally processes signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack. Note that the memory stores a program executed by the processor, parameters related to the program, and data related to the program. All or part of the memory may be contained within the processor.
  • the transmitter 211 transmits the MIB on the PBCH.
  • the control unit 230 provides the plurality of UEs 100 with a common message commonly used by the plurality of UEs 100 on the PDSCH based on the MIB.
  • a second common message defined for eRedCap UE is provided from the base station 200 independently of a first common message defined for UE types other than eRedCap UE (Non-eRedCap UE). Contains a parameter indicating whether or not. This allows the base station 200 to independently transmit common messages to eRedCap UEs and others.
  • the base station 200 can transmit the second common message for eRedCap UE in a 5 MHz band, for example. It is also possible to transmit within the width. Therefore, restrictions on PDSCH scheduling can be relaxed.
  • the transmitting unit 211 transmits a message instructing handover to the target cell to the UE 100 (eRedCap UE) whose frequency bandwidth that can support at least PDSCH has been reduced to a predetermined bandwidth (for example, 5 MHz).
  • the message is a second common message defined for eRedCap UE, independent of the first common message defined for UE types other than eRedCap UE (Non-eRedCap UE), which the UE 100 transmits from the target cell. Contains parameters to retrieve. This allows the eRedCap UE to appropriately receive downlink data (particularly common messages) from the target cell after handover, and allows the eRedCap UE to appropriately support mobility.
  • the base station 200 may apply repetition transmission on the PDSCH to transmission of the second common message. Repeated transmission is a technique that allows the base station 200 to repeatedly transmit the same signal, thereby expanding the communication range of the base station 200 (that is, the coverage of the cell).
  • the common message used during initial access may be primarily a system information message. Therefore, the first common message may be a first system information message defined for Non-eRedCap UEs.
  • the second common message may be a second system information message defined for eRedCap UEs.
  • the second system information message may be a system information message transmitted from the base station 200 using a frequency bandwidth that is less than or equal to a predetermined bandwidth (eg, 5 MHz). This allows independent transmission of system information messages between the eRedCap UE and the rest.
  • the base station 200 transmits the first system information message to UE types other than eRedCap UE in the same manner as before, the base station 200 transmits the second system information message for eRedCap UE at a frequency of, for example, 5 MHz. It is also possible to transmit within the bandwidth of
  • the system information message includes SIB1.
  • the first system information message includes a first SIB1 indicating the scheduling of a first other system information message (hereinafter referred to as "first SIBx") defined for the Non-eRedCap UE.
  • the second system information message includes a second SIB1 indicating the scheduling of a second other system information message (hereinafter referred to as "second SIBx”) defined for the eRedCap UE.
  • the transmitter 211 of the base station 200 transmits the MIB on the PBCH.
  • the MIB contains a parameter (hereinafter referred to as a "predetermined parameters).
  • the UE 100 which is an eRedCap UE, can determine whether or not the second SIB1 is provided from the base station 200 based on a predetermined parameter in the MIB.
  • the control unit 120 of the UE 100 which is an eRedCap UE, acquires the second SIB1 based on a predetermined parameter included in the MIB, and acquires the second SIBx based on the acquired second SIB1.
  • the second SIBx is an SIB other than SIB1 for eRedCap UE, that is, at least one of SIB2, SIB3, SIB4, . . . for eRedCap UE.
  • the UE 100 which is an eRedCap UE, can appropriately acquire the second SIBx.
  • FIG. 14 is a diagram showing MIB transmission operation in the base station 200 according to the embodiment.
  • step S101 the control unit 230 of the base station 200 determines whether to provide the second SIB1.
  • step S102 the control unit 230 of the base station 200 sets a first value (for example, "1") to a predetermined parameter in the MIB. do.
  • step S101: NO the control unit 230 of the base station 200 sets a second value (for example, "0") to a predetermined parameter in the MIB in step S103.
  • the predetermined parameter can also be regarded as a parameter indicating whether the eRedCap UE can access the base station 200 (accommodation).
  • step S104 the transmitter 211 of the base station 200 transmits the MIB on the PBCH.
  • the PBCH MIB
  • the SSB constitutes a part of the SSB.
  • controlResourceSetZero (first index) and searchSpaceZero (second index) each have a value from 0 to 15 (index value).
  • controlResourceSetZero (first index) indicates the setting of CORESET #0, which is a control resource set corresponding to the PDCCH used for SIB1 scheduling.
  • searchSpaceZero (second index) indicates the setting of search space set #0, which is a common search space corresponding to the PDCCH used for SIB1 scheduling.
  • FIG. 15 is a diagram showing the MIB reception operation in the UE 100 (eRedCap UE) according to the embodiment.
  • step S111 the receiving unit 112 of the UE 100 receives the MIB from the base station 200 on the PBCH.
  • step S112 the control unit 120 of the UE 100 obtains predetermined parameters in the MIB.
  • step S113 the control unit 120 of the UE 100 determines whether a first value (for example, "1") is set to a predetermined parameter in the MIB.
  • a first value for example, "1”
  • step S114 the control unit 120 of the UE 100 sets the second SIB1 to It is determined that the second SIB1 is provided from the base station 200, and the second SIB1 is acquired from the base station 200. That is, the control unit 120 of the UE 100 provides the second SIB1 (second common message) in response to the predetermined parameter indicating that the second SIB1 (second common message) is provided from the base station 200. is obtained from the base station 200.
  • the control unit 120 of the UE 100 sets the second SIB1 to It is determined that the second SIB1 is provided from the base station 200, and the second SIB1 is acquired from the base station 200. That is, the control unit 120 of the UE 100 provides the second SIB1 (second common message) in response to the predetermined parameter indicating that the second SIB1 (second common message) is provided from the base station 200. is obtained from the base station 200.
  • step S115 the control unit 120 of the UE 100 It is determined that SIB1 is not provided by the base station 200. That is, in response to the predetermined parameter indicating that the second SIB1 (second common message) is not provided from the base station 200, the control unit 120 of the UE 100 controls whether the second SIB1 (second common message) is not provided by the base station 200 or not. It is determined that the base station 200 does not provide the information.
  • the predetermined parameter indicating that the second SIB1 (second common message) is not provided from the base station 200
  • the control unit 120 of the UE 100 controls whether the second SIB1 (second common message) is not provided by the base station 200 or not. It is determined that the base station 200 does not provide the information.
  • step S113 YES
  • the control unit 120 of the UE 100 which is the eRedCap UE
  • controlResourceSetZero first index
  • searchSpaceZero second index
  • the control unit 120 of the UE 100 in response to the predetermined parameter in the MIB indicating that the second SIB1 (second common message) is provided from the base station 200, the control unit 120 of the UE 100, which is the eRedCap UE, The specified setting of CORESET #0 is specified based on controlResourceSetZero (first index) in the MIB.
  • the control unit 120 of the UE 100 in response to the predetermined parameter in the MIB indicating that the second SIB1 (second common message) is provided from the base station 200, the control unit 120 of the UE 100, which is the eRedCap UE,
  • the settings of the specified search space set #0 are specified based on searchSpaceZero (second index) in the MIB.
  • the UE 100 which is an eRedCap UE, uses a table different from the table shown in FIG. 4 and the table shown in FIG.
  • search space set #0 for eRedCap UE may be specified.
  • FIG. 16 is a diagram illustrating an example of table configuration according to the embodiment.
  • the Non-eRedCap UE 100a holds the first controlResourceSetZero table shown in FIG. 4 and the first searchSpaceZero table shown in FIG. 5.
  • the first controlResourceSetZero table is a table for identifying the corresponding CORESET#0 parameter (CORESET#0 setting) from controlResourceSetZero (first index) in the MIB.
  • the first searchSpaceZero table is a table for specifying the corresponding search space set #0 parameter (search space set #0 setting) from searchSpaceZero (second index) in the MIB.
  • the eRedCap UE 100b has a second controlResourceSetZero table that is different from the first controlResourceSetZero table, and a second searchSpace that is different from the first searchSpaceZero table. Zero table is maintained.
  • the second controlResourceSetZero table specifies the corresponding CORESET#0 parameter (CORESET#0 setting), specifically, the CORESET#0 parameter for eRedCap UE, from controlResourceSetZero (first index) in the MIB. to do It's a table.
  • the second searchSpaceZero table stores the corresponding search space set #0 parameter (search space set #0 setting) from searchSpaceZero (second index) in the MIB, specifically, search space set #0 for eRedCap UE. This is a table for specifying parameters.
  • the predefined CORESET #0 settings include the first CORESET setting (first controlResourceSetZero table) specified for Non-eRedCap UE, and the second CORESET setting specified for eRedCap UE. (second controlResourceSetZero table) are respectively associated with controlResourceSetZero (first index) in the MIB.
  • the control unit 120 of the eRedCap UE 100b uses the second controlResourceSetZero table to identify the CORESET#0 setting corresponding to controlResourceSetZero (first index) in the MIB.
  • the first search space set #0 setting (first searchSpaceZero table) defined for Non-eRedCap UE
  • the first search space set #0 setting defined for eRedCap UE 2 search space set #0 settings (second searchSpaceZero table) are respectively associated with searchSpaceZero (second index) in the MIB.
  • the control unit 120 of the eRedCap UE 100b uses the second searchSpaceZero table to identify the search space set #0 setting corresponding to searchSpaceZero (second index) in the MIB.
  • FIG. 17 is a diagram illustrating a sequence example of the initial access method of the eRedCap UE according to the embodiment.
  • the base station 200 transmits an MIB including a predetermined parameter set to a first value (for example, "1"), a first index (controlResourceSetZero), and a second index (searchSpaceZero). do.
  • the UE 100 eRedCap UE that has received the MIB determines that the second SIB1 will be provided from the base station 200 based on predetermined parameters.
  • step S122 the UE 100 (eRedCap UE) uses the second controlResourceSetZero table to identify the CORESET #0 setting corresponding to the first index (controlResourceSetZero) in the MIB. Further, the UE 100 (eRedCap UE) uses the second searchSpaceZero table to identify the search space set #0 setting corresponding to the second index (searchSpaceZero) in the MIB.
  • step S123 the UE 100 (eRedCap UE) monitors PDCCH candidates in search space set #0 (Type-0 PDCCH CSS set) based on the CORESET #0 settings and search space set #0 settings identified in step S122. .
  • step S124 the base station 200 transmits DCI in DCI format 1_0 to which a CRC scrambled by SI-RNTI is added on the PDCCH.
  • step S125 the UE 100 (eRedCap UE) receives (detects) the DCI and identifies PDSCH resource allocation (time and/or frequency resources) from the DCI.
  • step S126 the base station 200 transmits the second SIB1 on the PDSCH scheduled with "DCI format 1_0 with SI-RNTI".
  • the UE 100 eRedCap UE
  • step S127 the UE 100 (eRedCap UE) specifies the scheduling of the second SIBx based on the second SIB1.
  • step S1208 the base station 200 transmits DCI in DCI format 1_0 to which a CRC scrambled by SI-RNTI is added on the PDCCH.
  • step S129 the UE 100 (eRedCap UE) receives (detects) the DCI and identifies PDSCH resource allocation (time and/or frequency resources) from the DCI.
  • step S130 the base station 200 transmits the second SIBx on the PDSCH scheduled with "DCI format 1_0 with SI-RNTI".
  • the UE 100 eRedCap UE
  • the second SIBx scheduled by the second SIB1 may be identified as "eRedCap specific common message”.
  • the base station 200 transmits a first system information message (first SIB1 and first SIBx) for Non-eRedCap UE and a second system information message (second SIB1 and second SIBx) for eRedCap UE. SIBx) transmission may be switched. That is, base station 200 may time-divisionally transmit the first system information message and the second system information message.
  • the base station 200 transmits the first system information message (first SIB1 and first SIBx) for Non-eRedCap UE and the second system information message (second SIB1 and first SIBx) for eRedCap UE.
  • the transmission of the second SIBx) may be performed in parallel. That is, base station 200 may transmit both the first system information message and the second system information message in the same time period. In that case, the base station 200 may apply different SI-RNTIs to the DCI (PDCCH) used for transmitting the first system information message and the DCI (PDCCH) used for transmitting the second system information message. good.
  • the transmitting unit 211 of the base station 200 uses a second SI-RNTI specified for eRedCap UE independently of the first SI-RNTI specified for Non-eRedCap UE, and transmits the second SI-RNTI.
  • System information messages may also be sent.
  • the second SI-RNTI defined for the eRedCap UE may be identified as "eRedCap specific SI-RNTI".
  • the control unit 120 of the UE 100 eRedCap UE) may obtain the second system information message using the second SI-RNTI.
  • the DCI (PDCCH) used for transmitting a common message commonly used by a plurality of UEs 100 is a DCI of DCI format 1_0 (predetermined format) to which a predefined RNTI is applied.
  • the predefined RNTI is at least one of SI-RNTI, P-RNTI, and RA-RNTI.
  • the DCI has a "Frequency domain resource assignment" field, which is a frequency resource assignment field indicating frequency resource assignment for the PDSCH (see FIG. 9).
  • the common message sent on the PDSCH is at least one of a system information message, a paging message, and a random access response.
  • the receiving unit 112 receives DCI including a "Frequency domain resource assignment" field indicating frequency resource assignment of the PDSCH from the base station 200 on the PDCCH. Regardless of the first number of resource blocks configuring CORESET #0 corresponding to the PDCCH, the control unit 120 determines the number of resource blocks based on the second number of resource blocks corresponding to a frequency bandwidth equal to or less than a predetermined bandwidth (for example, 5 MHz). to specify the number of bits in the “Frequency domain resource assignment” field.
  • a predetermined bandwidth for example, 5 MHz
  • control unit 120 specifies the number of bits in the "Frequency domain resource assignment" field using the method shown in FIG. However, when specifying the number of bits in the "Frequency domain resource assignment" field, the size of CORESET #0 (i.e., the number of first resource blocks)
  • the second number of resource blocks for eRedCap UE is used.
  • the number of bits in the "Frequency domain resource assignment" field can be adjusted. Becomes properly identifiable.
  • the "Frequency domain resource assignment" field included in “DCI format 1_0 with P-RNTI” and the “Frequency domain resource assignment” field included in “DCI format 1_0 with SI-RNTI” are “domain resource assignment” field, and "DCI format 1_0 with A second number of resource blocks is defined in common for at least two of the "Frequency domain resource assignment” fields included in "RA-RNTI".
  • control unit 120 identifies the PDSCH frequency resource indicated by the "Frequency domain resource assignment” field based on the identified number of bits. Furthermore, the control unit 120 identifies the PDSCH time resource indicated by the "Time domain resource assignment” field. The receiving unit 112 receives the common message on the PDSCH based on the identified frequency resources and time resources.
  • FIG. 18 is a diagram illustrating a first PDSCH resource allocation bit number identification method according to the embodiment.
  • the second resource block number is the resource block number predefined for eRedCap UE in the technical specifications of the mobile communication system 1.
  • step S201 the receiving unit 112 of the UE 100 (eRedCap UE) receives "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI" from the base station 200 on the PDCCH.
  • step S202 the control unit 120 of the UE 100 (eRedCap UE) sets the frequency of "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI" based on the predefined second number of resource blocks Specify the number of bits in the "domain resource assignment" field.
  • the second number of resource blocks is predefined as 25 resource blocks (or 24 resource blocks) or 12 resource blocks (or 11 resource blocks).
  • the control unit 120 of the UE 100 may determine the second number of resource blocks based on the subcarrier spacing (SCS) for the common message. For example, for each subcarrier interval (SCS), the correspondence relationship between the subcarrier interval (SCS) and the second number of resource blocks is defined in advance in the technical specifications.
  • the receiving unit 112 of the UE 100 receives an MIB including a parameter indicating the subcarrier spacing (SCS) for the common message from the base station 200 on the PBCH.
  • the parameter may be subCarrierSpacingCommon included in the MIB.
  • subCarrierSpacingCommon is the system information message, Msg. in the initial access. 2 (random access response)/Msg.
  • Control unit 120 of UE 100 determines the second number of resource blocks based on the subcarrier spacing (SCS) indicated by the parameter and the correspondence relationship predefined in the technical specifications.
  • step S203 the control unit 120 of the UE 100 (eRedCap UE) identifies the PDSCH frequency resource indicated by the "Frequency domain resource assignment" field based on the number of bits identified in step S202. Further, the control unit 120 identifies the PDSCH time resource indicated by the "Time domain resource assignment" field in "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI".
  • step S204 the receiving unit 112 of the UE 100 (eRedCap UE) receives the common message on the PDSCH based on the frequency resource and time resource specified in step S203. Specifically, the receiving unit 112 of the UE 100 (eRedCap UE) receives a paging message, a system information message (for example, SIB1), and/or a random access response (i.e., an eRedCap specific common message) on a scheduled PDSCH. ).
  • SIB1 system information message
  • a random access response i.e., an eRedCap specific common message
  • FIG. 20 is a diagram illustrating a second PDSCH resource allocation bit number identification method according to the embodiment.
  • the second resource block number is the number of resource blocks determined according to a parameter (index) in the MIB.
  • a parameter in pdcch-ConfigSIB1 in the MIB or a spare bit in the MIB may be used.
  • An example in which parameters in pdcch-ConfigSIB1 in the MIB are used as the parameters will be mainly described below.
  • the transmitter 211 of the base station 200 transmits an MIB including a first index (controlResourceSetZero) and a second index (searchSpaceZero).
  • the MIB may further include a parameter (subCarrierSpacingCommon) indicating subcarrier spacing (SCS) for common messages.
  • the first index (controlResourceSetZero) and/or the second index (searchSpaceZero) are used to determine the second number of resource blocks. That is, the receiving unit 112 of the UE 100 (eRedCap UE) receives the MIB including the index for determining the second number of resource blocks from the base station 200 on the PBCH.
  • step S212 the control unit 120 of the UE 100 (eRedCap UE) identifies the CORESET #0 setting corresponding to the first index (controlResourceSetZero) in the MIB, and specifies the CORESET #0 setting corresponding to the second index (searchSpaceZero) in the MIB. Specify space set #0 settings.
  • the control unit 120 of the UE 100 (eRedCap UE) determines the second number of resource blocks based on the first index (controlResourceSetZero) and/or the second index (searchSpaceZero). Specifically, the control unit 120 of the UE 100 (eRedCap UE) determines each of the first number of resource blocks and the second number of resource blocks based on the index.
  • the first resource block number is part of the CORESET #0 setting.
  • the second resource block number is used to specify the number of bits in the "Frequency domain resource assignment" field.
  • the control unit 120 of the UE 100 may determine the second number of resource blocks further based on the subcarrier spacing (SCS) for the common message.
  • the subcarrier spacing (SCS) is determined, for example, according to subCarrierSpacingCommon. Specifically, for each subcarrier interval (SCS), the correspondence relationship between the subcarrier interval (SCS) and the second number of resource blocks is defined in advance in the technical specifications.
  • the control unit 120 of the UE 100 (eRedCap UE) uses the first index (controlResourceSetZero) and/or the second index (searchSpaceZero), the subcarrier spacing (SCS) indicated by subCarrierSpacingCommon, and the scheduled based on the specified correspondence relationship. Then, the second number of resource blocks is determined.
  • FIG. 21 is a diagram illustrating an example of associating the first index (controlResourceSetZero) with the second number of resource blocks.
  • the control unit 120 of the UE 100 (eRedCap UE) maintains a table as shown in FIG.
  • the number of resource blocks is associated.
  • the second number of resource blocks is 15 or 8 resource blocks when the predetermined bandwidth is 3 MHz, 20 or 10 resource blocks when the predetermined bandwidth is 4 MHz, and when the predetermined bandwidth is 5 MHz, the second number of resource blocks is 15 or 8 resource blocks. In this case, there are 25 or 12 resource blocks.
  • the controlResourceSetZero table shown in FIG. 21 is a table when the maximum channel bandwidth is 5 MHz or 10 MHz, and the subcarrier spacing (SCS) of each of SSB and PDCCH is 15 kHz. If the subcarrier spacing (SCS) of each of SSB and PDCCH is not 15 kHz, a controlResourceSetZero table different from that in FIG. 21 will be used. Even in the controlResourceSetZero table different from that in FIG. 21, it is assumed that the second number of resource blocks is associated with the value of controlResourceSetZero.
  • the control unit 120 of the UE 100 determines the second number of resource blocks further based on the subcarrier spacing (SCS) for SSB and/or the subcarrier spacing (SCS) for PDCCH.
  • the base station 200 may set the SSB subcarrier spacing (SCS) based on a parameter (ssbSubcarrierSpacing) included in the RRC message (ServingCellConfigCommon).
  • the base station 200 may set the subcarrier spacing (SCS) of the PDCCH (that is, DL BWP) based on a parameter (subcarrierSpacing) included in the RRC message (BWP-DownlinkCommon).
  • FIG. 21 is an example of associating the second number of resource blocks with controlResourceSetZero
  • the second number of resource blocks may be associated with searchSpaceZero using a similar method.
  • the transmitter 211 of the base station 200 transmits "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI” on the PDCCH.
  • the receiving unit 112 of the UE 100 receives “DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI” from the base station 200 on the PDCCH.
  • "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI” may further include a field indicating the number of times the common message is repeatedly transmitted. This allows the UE 100 (eRedCap UE) to specify the number of times the common message is repeatedly transmitted.
  • step S214 the control unit 120 of the UE 100 (eRedCap UE) selects "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI" based on the second number of resource blocks determined in step S212. Specify the number of bits in the "Frequency domain resource assignment" field.
  • step S215 the control unit 120 of the UE 100 (eRedCap UE) identifies the PDSCH frequency resource indicated by the "Frequency domain resource assignment" field based on the number of bits identified in step S214. Further, the control unit 120 identifies the PDSCH time resource indicated by the "Time domain resource assignment" field in "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI". Further, if "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI" includes a field indicating the number of repeated transmissions, the control unit 120 specifies the number of repeated transmissions based on the field.
  • step S216 the receiving unit 112 of the UE 100 (eRedCap UE) receives the common message on the PDSCH based on the frequency resource and time resource specified in step S215. Specifically, the receiving unit 112 of the UE 100 (eRedCap UE) receives a paging message, a system information message (for example, SIB1), and/or a random access response (i.e., an eRedCap specific common message) on a scheduled PDSCH. ).
  • SIB1 system information message
  • a random access response i.e., an eRedCap specific common message
  • FIG. 22 is a diagram for explaining an overview of the handover method for eRedCap UE according to the embodiment.
  • FIG. 22 shows an example in which the base station 200a that manages the source cell and the base station 200b that manages the target cell are different, the source cell and the target cell may be managed by the same base station 200.
  • the transmitter 211 of the base station 200a that manages the source cell transmits a message instructing the UE 100 (eRedCap UE) to handover to the target cell.
  • the message is an RRC message, for example, an RRCReconfiguration message that includes reocnconfigurationWithSync as an information element.
  • reocnconfigurationWithSync is a parameter for synchronization reconfiguration for the target cell.
  • the receiving unit 112 of the UE 100 receives a message instructing handover to a target cell from the base station 200a (source cell).
  • the control unit 120 of the UE 100 acquires a common message commonly used by the plurality of UEs 100 from the base station 200b (target cell) on the PDSCH.
  • the message includes parameters for the UE 100 to obtain a second common message defined for the eRedCap UE (i.e., an eRedCap specific common message) from the target cell.
  • This allows the UE 100 (eRedCap UE) to appropriately communicate with the target cell.
  • the eRedCap UE can properly receive downlink data (especially common messages) from the target cell after handover, and mobility can be appropriately supported for the eRedCap UE.
  • the second common message is a common message transmitted from the target cell in a frequency bandwidth that is less than or equal to a predetermined bandwidth (for example, 5 MHz), and is a common message that is transmitted from the target cell using a frequency bandwidth that is less than or equal to a predetermined bandwidth (for example, 5 MHz), and is a common message that is transmitted from the target cell using a frequency bandwidth that is less than or equal to a predetermined bandwidth (for example, 5 MHz). different from the message.
  • the common message is a system information message
  • the first common message is a first system information message specified for Non-eRedCap UE
  • the second common message is a second system information message specified for eRedCap UE. It may also be a system information message.
  • FIG. 23 is a diagram illustrating an example of a handover method for eRedCap UE according to the embodiment.
  • step S301 the transmitter 211 of the base station 200a that manages the source cell transmits an RRCReconfiguration message including reocnconfigurationWithSync as an information element to the UE 100 (eRedCap UE).
  • the receiving unit 112 of the UE 100 receives the RRCReconfiguration message from the base station 200a (source cell).
  • the RRCReconfiguration message may include a first parameter indicating whether a second common message (eRedCap specific common message) is provided from the target cell.
  • the control unit 120 of the UE 100 eRedCap UE
  • the base station 200a may include in the RRCReconfiguration message a first parameter indicating whether the second SIB1 is broadcast/scheduled in the target cell.
  • the base station 200a may set the first parameter to a first value (for example, "1") when the second SIB1 is broadcast/scheduled in the target cell.
  • the base station 200a may set the first parameter to a second value (for example, "0") when the second SIB1 is not broadcast/scheduled in the target cell.
  • the control unit 120 of the UE 100 may obtain the second common message from the target cell in response to the first parameter indicating that the second common message is provided from the target cell. .
  • the control unit 120 of the UE 100 determines that the second common message is not provided from the target cell in response to the first parameter indicating that the second common message is not provided from the target cell. Good too.
  • the RRCReconfiguration message indicates whether or not the second CORESET #0 specified for eRedCap UE is provided (configured) from the target cell independently of the first CORESET #0 specified for Non-eRedCap UE. It may also include a second parameter indicating.
  • the second CORESET #0 may be a CORESET #0 set with a bandwidth equal to or less than a predetermined bandwidth. Thereby, the control unit 120 of the UE 100 (eRedCap UE) can specify whether or not the second CORESET #0 is provided (set) from the target cell based on the second parameter.
  • the base station 200a may set the second parameter to the first value (for example, "1") when the second CORESET #0 is provided in the target cell. On the other hand, the base station 200a may set the second parameter to a second value (for example, "0") if the second CORESET #0 is not provided in the target cell.
  • the RRCReconfiguration message indicates that the second search space set #0 specified for eRedCap UE is provided (set) from the target cell independently of the first search space set #0 specified for Non-eRedCap UE. It may also include a third parameter indicating whether or not.
  • the second search space set #0 may be a search space set #0 set with a bandwidth equal to or less than a predetermined bandwidth. Thereby, the control unit 120 of the UE 100 (eRedCap UE) can specify whether or not the second search space set #0 is provided (set) from the target cell based on the third parameter.
  • the base station 200a may set the third parameter to the first value (for example, "1") when the second search space set #0 is provided in the target cell. On the other hand, when the second search space set #0 is not provided in the target cell, the base station 200a may set the third parameter to the second value (for example, "0").
  • the RRCReconfiguration message may include a fourth parameter for identifying the PDSCH resource on which the second common message (eRedCap specific common message) is transmitted in the target cell.
  • the fourth parameter may be a parameter for specifying the number of bits of the "Frequency domain resource assignment" field in "DCI format 1_0 with P-RNTI/SI-RNTI/RA-RNTI".
  • the fourth parameter may be a parameter indicating the second number of resource blocks for specifying the number of bits. The details of such operation are similar to the second PDSCH resource allocation bit number identification method described above.
  • step S302 the control unit 120 of the UE 100 (eRedCap UE) sends a second common message (eRedCap specific common message) to the base station on the PDSCH based on the parameters included in the RRCReconfiguration message received in step S301.
  • Station 200b target cell
  • operation sequences (and operation flows) in the embodiments described above do not necessarily have to be executed chronologically in the order described in the flow diagram or sequence diagram. For example, steps in an operation may be performed in a different order than depicted in a flow diagram or sequence diagram, or in parallel. Also, some of the steps in the operation may be deleted, and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented separately or in combination of two or more operation sequences (and operation flows). For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 was explained using an NR-based mobile communication system as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a system compliant with any TS of LTE or other generation systems (for example, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • Computer-readable media allow programs to be installed on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited. For example, it may be a recording medium such as a CD-ROM or a DVD-ROM.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a portion of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC: System on a chip).
  • transmit may mean processing at least one layer within a protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. It may also mean sending to. Alternatively, “transmitting” may mean a combination of processing the at least one layer and physically transmitting the signal wirelessly or by wire. Similarly, “receive” may mean processing at least one layer within the protocol stack used for receiving, or physically receiving a signal, wirelessly or by wire. It can also mean that. Alternatively, “receiving” may mean a combination of processing the at least one layer and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information from among stored information, and may refer to obtaining information from among information received from other nodes. Alternatively, it may mean obtaining information by generating the information.
  • “include” and “comprise” do not mean to include only the listed items; they may include only the listed items, or in addition to the listed items. This means that it may contain further items.
  • “or” does not mean exclusive disjunction, but rather disjunction.
  • any reference to elements using the designations "first,” “second,” etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements.
  • first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • first and second element when articles are added by translation, for example, a, an, and the in English, these articles are used in the plural unless the context clearly indicates otherwise. shall include things.
  • the downlink control information is downlink control information in a predetermined format to which a predefined cell radio network temporary identifier (RNTI) is applied,
  • RNTI cell radio network temporary identifier
  • the frequency resource allocation field indicates allocation of the frequency resource of the physical downlink shared channel through which a common message commonly used by a plurality of communication devices (100) is transmitted, The communication device (100) according to appendix 1 or 2, wherein the common message is at least one of a system information message, a paging message, and a random access response.
  • the control unit (120) specifies the frequency resource indicated by the frequency resource allocation field based on the specified number of bits, The communication device (100) according to appendix 3, wherein the receiving unit (112) receives the common message on the physical downlink shared channel based on the identified frequency resource.
  • control unit (120) determines the second number of resource blocks based on a subcarrier interval for the common message.
  • the receiving unit (112) receives a master information block including a parameter indicating the subcarrier spacing from the base station (200) on a physical broadcast channel;
  • the communication device (100) according to appendix 6, wherein the control unit (120) determines the second number of resource blocks based on the subcarrier interval and the correspondence relationship indicated by the parameter.
  • the receiving unit (112) receives a master information block including an index for determining the second number of resource blocks from the base station (200) on a physical broadcast channel;
  • the communication device (100) according to supplementary note 3 or 4, wherein the control unit (120) determines the second number of resource blocks based on the index.
  • Appendix 11 The communication device (100) according to appendix 8 or 9, wherein the index is a second index indicating the setting of a common search space.
  • Appendix 12 The communication device (100) according to any one of appendices 8 to 11, wherein the control unit (120) determines the second number of resource blocks further based on a subcarrier interval for the common message.
  • the receiving unit (112) receives the master information block further including a parameter indicating the subcarrier spacing from the base station (200) on the physical broadcast channel;
  • the communication device (100) according to appendix 12, wherein the control unit (120) determines the second number of resource blocks based on the index, the subcarrier interval indicated by the parameter, and the correspondence relationship. .
  • the control unit (120) determines the second number of resource blocks further based on a subcarrier interval for a synchronization signal block (SSB) and/or a subcarrier interval for a physical downlink control channel (PDCCH). Supplementary note 12 Or the communication device (100) according to 13.
  • SSB synchronization signal block
  • PDCCH physical downlink control channel
  • (Appendix 16) A communication method executed by a communication device (100) of a predetermined terminal type in which the frequency bandwidth that can be supported by at least a physical downlink shared channel is reduced to a predetermined bandwidth, the method comprising: receiving from a base station (200) on a physical downlink control channel downlink control information including a frequency resource allocation field indicating frequency resource allocation for the physical downlink shared channel; Regardless of the first number of resource blocks constituting the control resource set corresponding to the physical downlink control channel, the frequency resource A communication method, comprising: determining the number of bits of an allocation field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

少なくともPDSCHについて対応可能な周波数帯域幅が所定帯域幅に低減されたeRedCap UEである通信装置(100)は、PDSCHの周波数リソースの割り当てを示す周波数リソース割当フィールドを含むDCIをPDCCH上で基地局から受信する受信部(112)と、PDCCHに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、周波数リソース割当フィールドのビット数を特定する制御部(120)と、を備える。

Description

通信装置及び通信方法 関連出願への相互参照
 本出願は、2022年6月6日に出願された日本出願番号2022-091757号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置及び通信方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project。登録商標。以下同じ)におけるNR(New Radio)の技術仕様のリリース17において、産業用センサ、監視カメラ、及びウェアラブル等のユースケースに適した低性能の通信装置(UE:User Equipment)のタイプが導入されている。このような端末タイプ(「UEタイプ」とも称する)は、「RedCap(Reduced Capability) UE」とも称される。
 3GPP技術仕様のリリース18において、RedCap UEよりもさらに複雑さが軽減された新たな端末タイプを導入することが検討されている。このような新たな端末タイプは、リリース17で導入されたRedCap UEと、LTE(Long Term Evolution)のLPWA(Low Power Wide Area)との間の性能であることが想定されている。このような新たな端末タイプは、「eRedCap UE」と称される。以下において、eRedCap UEを「所定端末タイプ」とも称する。
 eRedCap UEについては、(a)FR1(Frequency Range 1)における対応可能な周波数帯域幅を所定帯域幅(例えば、5MHz)に低減すること、及び、(b)ピークデータレートを削減するためにFR1におけるデータチャネルに対する周波数帯域幅を所定帯域幅に低減することが提案されている(例えば、非特許文献1乃至5参照)。ここでデータチャネルとは、データを伝送する物理チャネル、すなわち、物理下りリンク共有チャネル(PDSCH)及び/又は物理上りリンク共有チャネル(PUSCH)をいう。なお、周波数帯域幅は単に「帯域幅」とも称される。
 上記(a)の方法では、UEのRF(Radio Frequency)部及びBB(Base Band)部の両方について対応可能な帯域幅(すなわち、最大帯域幅)を低減し、RF部及びBB部の複雑さを軽減することが可能である。一方、上記(b)の方法では、主にUEのBB部について対応可能な帯域幅を低減し、BB部の複雑さを軽減することが可能である。また、上記(b)の方法では、PDSCH及び/又はPUSCH以外の物理チャネル構成について技術仕様の変更を小さくすることが可能である。
3GPP寄書:R1-2203117 「Potential solutions for further RedCap UE complexity reduction」 3GPP寄書:R1-2203917 「Further UE complexity reduction for eRedCap」 3GPP寄書:R1-2204038 「Further UE Complexity Reduction」 3GPP寄書:R1-2204389 「Discussion on potential solutions for further UE complexity reduction」 3GPP寄書:R1-2205043 「Further complexity reduction for eRedCap device」
 発明者の詳細な検討の結果、現状のPDSCHの割り当て(スケジューリング)の仕組みでは、eRedCap UEなどの所定端末タイプの通信装置が下りリンクデータを適切に受信できない懸念があるという課題が見出された。
 そこで、本開示は、eRedCap UEなどの所定端末タイプの通信装置が導入される場合であっても下りリンクデータを適切に受信可能にすることを目的とする。
 第1の態様に係る通信装置は、少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置であって、前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局から受信する受信部と、前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定する制御部と、を備える。
 第2の態様に係る通信方法は、少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置で実行する通信方法であって、前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局から受信するステップと、前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定するステップと、を備える。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態に係る移動通信システムの構成について説明するための図であり、 図2は、実施形態に係る移動通信システムにおけるプロトコルスタックの構成例について説明するための図であり、 図3は、実施形態に係る移動通信システムにおけるイニシャルアクセスの概要について説明するための図であり、 図4は、実施形態に係る移動通信システムにおけるMIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるcontrolResourceSetZeroの値と、CORESET#0(CORESET for Type0-PDCCH search space set)に対するパラメータとの対応関係を示すテーブルの一例を示す図であり、 図5は、実施形態に係る移動通信システムにおけるMIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるsearchSpaceZeroの値と、サーチスペースセット#0(PDCCH monitoring occasions for Type0-PDCCH CSS set)に対するパラメータとの対応関係を示すテーブルの一例を示す図であり、 図6は、実施形態に係る移動通信システムにおけるページングメッセージの伝送方法を示す図であり、 図7は、実施形態に係る移動通信システムにおけるシステム情報メッセージ(SIB:System Information Block)の伝送方法を示す図であり、 図8は、実施形態に係る移動通信システムにおけるランダムアクセス(RA)応答の伝送方法を示す図であり、 図9は、実施形態に係る移動通信システムにおける「DCIフォーマット1_0 with P-RNTI」、「DCIフォーマット1_0 with SI-RNTI」、及び「DCIフォーマット1_0 with RA-RNTI」を示す図であり、 図10は、実施形態に係る移動通信システムにおけるeRedCap UEの概要について説明するための図であり、 図11は、実施形態に係る移動通信システムにおけるeRedCap UEの概要について説明するための図であり、 図12は、実施形態に係るUEの構成について説明するための図であり、 図13は、実施形態に係る基地局の構成について説明するための図であり、 図14は、実施形態に係る基地局におけるMIB送信動作を示す図であり、 図15は、実施形態に係るUE(eRedCap UE)におけるMIB受信動作を示す図であり、 図16は、実施形態に係るテーブル構成例を示す図であり、 図17は、実施形態に係るeRedCap UEのイニシャルアクセス方法のシーケンス例を示す図であり、 図18は、実施形態に係る第1のPDSCHリソース割当ビット数特定方法を示す図であり、 図19は、実施形態に係るサブキャリア間隔(SCS)と第2のリソースブロック数との対応関係の一例を示す図であり、 図20は、実施形態に係る第2のPDSCHリソース割当ビット数特定方法を示す図であり、 図21は、実施形態に係る第1のインデックス(controlResourceSetZero)と第2のリソースブロック数とを対応付ける一例を示す図であり、 図22は、実施形態に係るeRedCap UE向けのハンドオーバ方法の概要を説明するための図であり、 図23は、実施形態に係るeRedCap UE向けのハンドオーバ方法の一例を示す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)移動通信システムの概要
 まず、実施形態に係る移動通信システムの構成について説明する。
 (1.1)システム構成
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。
 移動通信システム1は、3GPPの技術仕様に準拠したシステムである。以下において、移動通信システム1として、3GPPの第5世代(5G)システムの無線アクセス技術(RAT)であるNR(NR Radio Access)に基づく移動通信システムを主として説明する。但し、移動通信システム1は、少なくとも部分的に、3GPPの第4世代(4G)システムのRATであるE-UTRA(Evolved Universal Terrestrial Radio Access)/LTE(Long Term Evolution)に基づく構成を有していてもよい。
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信する通信装置であるUE100とを有する。ネットワーク10は、無線アクセスネットワーク(RAN)20と、コアネットワーク(CN)30とを有する。RAN20は、5G/NRにおけるNG-RAN(Next Generation Radio Access Network)である。RAN20は、4G/LTEにおけるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。CN30は、5G/NRにおける5GC(5th Generation Core network)である。CN30は、4G/LTEにおけるEPC(Evolved Packet Core)であってもよい。
 UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォン等の携帯電話端末、タブレット端末、ノートPC、通信モジュール、通信カード、又はチップセット等の装置である。UE100は、車両(例えば、車、電車等)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機等)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。そのため、以下の説明における基地局200を「セル」と読み替えてもよい。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたユーザプレーン及び制御プレーンプロトコル終端を提供し、基地局-CN間のネットワークインターフェイスを介してCN30に接続される。5G/NRにおける基地局200はgNodeB(gNB)と称され、4G/LTEにおける基地局200はeNodeB(eNB)と称される。また、5G/NRにおける基地局-CN間インターフェイスはNGインターフェイスと称され、4G/LTEにおける基地局-CN間インターフェイスはS1インターフェイスと称される。基地局200は、基地局間のネットワークインターフェイスを介して隣接基地局と接続される。5G/NRにおける基地局間インターフェイスはXnインターフェイスと称され、4G/LTEにおける基地局間インターフェイスはX2インターフェイスと称される。
 CN30は、コアネットワーク装置300を含む。コアネットワーク装置300は、5G/NRにおけるAMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)である。コアネットワーク装置300は、4G/LTEにおけるMME(Mobility Management Entity)及び/又はS-GW(Serving Gateway)であってもよい。AMF/MMEは、UE100のモビリティ管理を行う。UPF/S-GWは、ユーザプレーン処理に特化した機能を提供する。
 (1.2)プロトコルスタック構成
 図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、媒体アクセス制御(MAC)レイヤと、無線リンク制御(RLC)レイヤと、パケットデータコンバージェンスプロトコル(PDCP)レイヤと、無線リソース制御(RRC)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 物理チャネルは、時間領域における複数のOFDMシンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。UE100は、基地局200からUE100に割り当てられた無線ネットワーク一時識別子(RNTI)、例えば、C-RNTI(Cell-RNTI)、MCS-C-RNTI(Modulation and Coding Scheme-C-RNTI)、及び/又はCS-RNTI(Configured Scheduling-RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功した下りリンク制御情報(DCI)を自UE宛てのDCIとして取得する。ここで、基地局200から送信されるDCIには、C-RNTI及びMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRC(Cyclic Redundancy Check)パリティビットが付加されている。
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するリソースブロック(PRB:Physical Resource Block)からなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよい。当該各BWPは、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(CORESET:control resource set)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックス(ID)を有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてサービスデータアダプテーションプロトコル(SDAP)レイヤが設けられていてもよい。SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとアクセス層(AS:Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態である。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態である。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態である。
 RRCレイヤの上位に位置する非アクセス層(NAS:Non-Access Stratum)レイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF/MME)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (2)BWP及びSSBの概要
 次に、BWP及びSSBの概要について説明する。
 (2.1)BWP UE100の消費電力の削減及び広帯域キャリアの有効活用のためにBWPが規定されている。BWPには、イニシャルBWP(イニシャルDL BWP及びイニシャルUL BWP)と、専用BWP(専用DL BWP及び専用UL BWP)とがある。UE100には、その能力に応じて、ある1つのサービングセル内で最大4つまでのDL BWP及び最大4つまでのUL BWPが設定される。なお、以下において、DL BWP及びUL BWPを区別しないときは単にBWPと称する。
 イニシャルBWPは、少なくともイニシャルアクセスに用いられるBWPであって、複数のUE100に共通で用いられる。イニシャルDL BWP及びイニシャルUL BWPのそれぞれは、BWP識別子であるbwp-idが“0”として規定される。イニシャルBWPには、物理ブロードキャストチャネル(PBCH)で伝送されるマスタ情報ブロック(MIB)により導出及び設定されるイニシャルBWPと、システム情報ブロック(SIB)、具体的には、システム情報ブロック・タイプ1(SIB1)により設定されるイニシャルBWPとの2種類がある。MIBにより設定されるイニシャルBWPは、MIBに含まれるパラメータを用いて設定されるCORESET#0に応じた帯域幅を有する。SIB1により設定されるイニシャルBWPは、SIB1中の情報要素であるServingCellConfigCommonSIBに含まれる各種パラメータ(locationAndBandwidth、subcarrierSpacing、cyclicPrefix)により設定される。
 セルに対するイニシャルアクセス時において、当該セルの同期信号ブロック(SSB:Synchronization Signal/PBCH block)を受信したUE100は、そのPBCH(MIB)に含まれる情報要素であるpdcch-ConfigSIB1内のcontrolResourceSetZero(0から15までの整数値)の設定値から、Type-0 PDCCH CSS setの帯域幅(24、48、又は96リソースブロック)を取得する。そして、UE100は、Type-0 PDCCH CSS setをモニタリングしてSIB1を取得し、SIB1から、イニシャルBWPの周波数位置及び/又は帯域幅を示すパラメータであるlocationAndBandwidthを取得する。UE100は、イニシャルアクセスにおけるランダムアクセスプロシージャ中のメッセージ4(Msg.4)を受信するまでの間は、MIBにより設定されるイニシャルBWP、すなわち、CORESET #0に基づく帯域幅をイニシャルBWPに用いる。これに対しMsg.4の受信後は、UE100は、SIB1中のlocationAndBandwidthで設定された帯域幅をイニシャルBWPに用いる。なお、Msg.4は、RRCSetupメッセージ、RRCResumeメッセージ、又はRRCReestablishmentメッセージであってもよい。UE100は、このようなイニシャルアクセス(ランダムアクセスプロシージャ)により、例えばRRCアイドル状態からRRCコネクティッド状態に遷移する。
 専用BWPは、あるUE100に専用(UE固有)に設定されるBWPである。専用BWPには、“0”以外のbwp-idが設定されてもよい。例えば、基地局200からUE100に送信される専用シグナリングであるRRCメッセージ中のSevingcellConfigに含まれる情報要素であるBWP-Downlink及びBWP-Uplinkに基づいて、専用DL BWP及び専用UL BWPがそれぞれ設定される。例えば、BWP-Downlink及びBWP-Uplinkのそれぞれに、当該BWPを設定する各種パラメータ(locationAndBandwidth、subcarrierSpacing、cyclicPrefix)が含まれてもよい。
 基地局200は、設定された1つ又は複数のBWPのうち、基地局200との通信に用いるBWP(すなわち、アクティブBWP)をUE100へ通知できる。例えば、基地局200は、設定の実行時にアクティブにするBWP、すなわち、基地局200との通信で最初に用いるBWPを示すBWP識別子をUE100へ送信できる。また、アクティブBWPからアクティブBWPでないBWP(非アクティブBWP)への切り替え、及び非アクティブBWPからアクティブBWPへの切り替えの制御には、例えば、PDCCH(DCI)、RRCシグナリング、MAC制御要素(MAC CE)、又はタイマによる切り替えが用いられる。
 なお、アクティブBWPにおける通信とは、当該BWPにおける上りリンク共用チャネル(UL-SCH)での送信、当該BWPにおけるランダムアクセスチャネル(RACH)での送信(物理ランダムアクセスチャネル(PRACH)機会が設定されている場合)、当該BWPにおける物理下りリンク制御チャネル(PDCCH)のモニタ、当該BWPにおける物理上りリンク制御チャネル(PUCCH)での送信(PUCCHリソースが設定されている場合)、当該BWPに対するチャネル状態情報(CSI)のレポート、及び、当該BWPにおける下りリンク共用チャネル(DL-SCH:Down Link―Shared CHannel)の受信の少なくともいずれかが含まれてもよい。
 ここで、UL-SCHはトランスポートチャネルであり、物理チャネルである物理上りリンク共用チャネル(PUSCH)にマップされる。また、UL-SCHで送信されるデータは、UL-SCHデータとも称される。例えば、UL-SCHデータ、上りユーザデータに対応してもよい。また、DL-SCHはトランスポートチャネルであり、物理チャネルである物理下りリンク共用チャネル(PDSCH:Physical downlink Shared CHannel)にマップされる。また、DL-SCHで送信されるデータは、DL-SCHデータとも称される。例えば、DL-SCHデータ、下りユーザデータに対応してもよい。
 PUCCHは、上りリンク制御情報(UCI)を送信するために用いられる。例えば、上りリンク制御情報は、HARQ(Hybrid Automatic Repeat Request)-ACK、CSI、及び/又は、スケジューリング要求(SR)を含む。HARQ-ACKは、肯定応答(Positive Acknowledgment)、又は、否定応答(Negative Acknowledgment)を含む。例えば、PUCCHは、PDSCH(すなわち、DL-SCH(DL-SCHデータ、下りユーザデータ))に対するHARQ-ACKの送信に用いられる。ここで、DL-SCHデータ、及び/又は、下りユーザデータは、下りトランスポートブロックとも称される。
 UE100は、例えば、アクティブなDL BWPにおいて、1又は複数のCORESETにおけるPDCCH候補のセットをモニタする。PDCCHのモニタは、モニタされる下りリンク制御情報(DCI)フォーマットに従って、PDCCH候補のそれぞれをデコードすることを含んでもよい。ここで、UE100は、基地局200によって設定されたRNTIによってスクランブルされたCRC(Cyclic Redundancy Check、CRCパリティビットとも称される)が付加されたDCIフォーマットをモニタしてもよい。ここで、RNTIは、SI-RNTI(System Information-RNTI)、RA-RNTI(Random Access RNTI)、TC-RNTI(Temporary C-RNTI)、P-RNTI(Paging RNTI)、及び/又は、C-RNTI(Cell-RNTI)を含んでもよい。UE100がモニタするPDCCH候補のセットは、PDCCHのサーチスペースセットとして規定されてもよい。サーチスペースセットは、共通サーチスペースセット(CSS set(s))及び/又はUE固有サーチスペースセット(USS set(s))を含んでもよい。従って、基地局200は、CORESET及び/又はサーチスペースセットをUE100に設定し、UE100は、設定されたCORESET及び/又はサーチスペースセットにおいて、PDCCHをモニタしてもよい。
 (2.2)SSB
 基地局200は、イニシャルDL BWPにおいてSSBを送信する。例えば、SSBは、連続する4つのOFDMシンボルから構成され、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(MIB)、及び、PBCHの復調参照信号(DMRS)が配置される。SSBがマップされるリソースエレメント(時間リソース・周波数リソース)の位置は、3GPPの技術仕様書、例えば「TS38.211」及び「TS38.213」に規定されている。SSBの帯域幅は、例えば、240の連続するサブキャリア、すなわち、20RBの帯域幅である。
 SIB1と対応付けられたSSBは、セル固有SSB(CD-SSB)と称される。ある1つのUE100の観点では、1つのサービングセルは1つのCD-SSBと対応付けられる。なお、SIB1は、RMSI(Remaining Minimum System information)とも称される。1つのCD-SSBは、一意のNCGI(NR Cell Global Identifier)を持つ1つのセルと対応する。SIB1(RMSI)と対応付けられていないSSBは、非セル固有SSB(Non-CD-SSB)と称される。
 (3)イニシャルアクセスの概要
 次に、図3乃至図5を参照して、実施形態に係る移動通信システム1におけるイニシャルアクセスの概要について説明する。
 イニシャルアクセス時におけるUE共通の帯域幅としては、次のような種類がある:
 ・SSB(CD-SSB)の帯域幅:連続する240サブキャリア(すなわち、20リソースブロック)、
 ・CORESET#0の帯域幅:24リソースブロック、48リソースブロック、又は96リソースブロック、
 ・イニシャルBWPの帯域幅:RRCで設定されるパラメータであるlocationAndBandwidthによって決定される最大275リソースブロック。
 図3に示すように、ステップS1において、基地局200は、SSBを送信する。UE100は、SSBを受信する。
 ステップS2において、UE100は、ステップS1で受信したSSB中のMIBに含まれるpdcch-ConfigSIB1に含まれるパラメータ(controlResourceSetZero)の値(0から15までの値)に基づいて、CORESET#0の帯域幅(24、48、又は96リソースブロック)を取得する。CORESET#0は、そのIDが#0にセットされるCORESETであって、Type-0 PDCCH CSS setに対するCORESETとも称される。ここで、Type-0 PDCCH CSS setは、MIB中のpdcch-ConfigSIB1に含まれるパラメータ(pdcch-ConfigSIB1)、又はPDCCH-ConfigCommonに含まれるパラメータ(searchSpaceSIB1又はsearchSpaceZero)の値を用いて、共通サーチスペースであるサーチスペースセット#0として設定される。サーチスペースセット#0は、そのIDが#0にセットされるサーチスペースからなる。
 ステップS3において、UE100は、Type-0 PDCCH CSS setでPDCCH候補をモニタする。
 ステップS4において、基地局200は、SI-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCIをPDCCH上で送信する。
 ステップS5において、UE100は、当該DCIを受信(検出)し、当該DCIからPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS6において、基地局200は、「DCIフォーマット1_0 with SI-RNTI」でスケジュールされたPDSCH上でSIB1を送信する。UE100は、SIB1を受信(取得)し、イニシャルBWP(イニシャルDL BWP及びイニシャルUL BWP)の周波数位置及び帯域幅を示すパラメータであるlocationAndBandwidthをSIB1から取得する。
 図4は、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるcontrolResourceSetZeroの値と、CORESET#0(CORESET for Type0-PDCCH search space set)に対するパラメータとの対応関係を示すテーブルの一例を示す図である。
 当該対応関係は技術仕様で予め規定されており、UE100は当該テーブルを保持している。なお、図4の例では、最大チャネル帯域幅が5MHz又は10MHzであって、且つ、SSB及びPDCCHのそれぞれのサブキャリア間隔(SCS)が15kHzである場合のテーブルを示している。
 図4に示すように、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるcontrolResourceSetZeroの値は、0から15までのインデックス値である。UE100は、当該テーブルを用いて、当該インデックスの値から、対応するCORESET#0パラメータ(例えば、リソースブロック数及びシンボル数等)を特定する。
 図5は、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるsearchSpaceZeroの値と、サーチスペースセット#0(PDCCH monitoring occasions for Type0-PDCCH CSS set)に対するパラメータとの対応関係を示すテーブルの一例を示す図である。当該対応関係は技術仕様で予め規定されており、UE100は当該テーブルを保持している。
 図5に示すように、MIBに含まれるpdcch-ConfigSIB1に含まれるパラメータであるsearchSpaceZeroの値は、0から15までのインデックス値である。UE100は、当該テーブルを用いて、当該インデックスの値から、対応するサーチスペースセット#0(例えば、スロットあたりの数、及び/又は最初のシンボルのインデックス等)を特定する。
 (4)共通メッセージの概要
 次に、図6乃至図9を参照して、実施形態に係る移動通信システム1における共通メッセージの概要について説明する。共通メッセージ(Common message)とは、複数のUE100に共通で用いるメッセージであってPDSCH上で送信されるメッセージをいう。共通メッセージには、ページングメッセージ、システム情報メッセージ、及びランダムアクセス(RA)応答が含まれる。
 図6は、実施形態に係る移動通信システム1におけるページングメッセージの伝送方法を示す図である。
 ステップS11において、基地局200は、P-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCI(以下、「DCIフォーマット1_0 with P-RNTI」とも称する)をPDCCH上で送信する。
 ステップS12において、UE100は、「DCIフォーマット1_0 with P-RNTI」をモニタすることで「DCIフォーマット1_0 with P-RNTI」を受信(検出)し、「DCIフォーマット1_0 with P-RNTI」からPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS13において、基地局200は、「DCIフォーマット1_0 with P-RNTI」でスケジュールされたPDSCH上でページングメッセージを送信する。UE100は、「DCIフォーマット1_0 with P-RNTI」でスケジュールされたPDSCH上でページングメッセージを受信(取得)する。
 図7は、実施形態に係る移動通信システム1におけるシステム情報メッセージ(SIB:System Information Block)の伝送方法を示す図である。
 ステップS21において、基地局200は、SI-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCI(以下、「DCIフォーマット1_0 with SI-RNTI」とも称する)をPDCCH上で送信する。
 ステップS22において、UE100は、「DCIフォーマット1_0 with SI-RNTI」をモニタすることで「DCIフォーマット1_0 with SI-RNTI」を受信(検出)し、「DCIフォーマット1_0 with SI-RNTI」からPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS23において、基地局200は、「DCIフォーマット1_0 with SI-RNTI」でスケジュールされたPDSCH上でシステム情報メッセージを送信する。UE100は、「DCIフォーマット1_0 with SI-RNTI」でスケジュールされたPDSCH上でシステム情報メッセージを受信(取得)する。
 図8は、実施形態に係る移動通信システム1におけるランダムアクセス(RA)応答の伝送方法を示す図である。
 ステップS31において、基地局200は、RA-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCI(以下、「DCIフォーマット1_0 with RA-RNTI」とも称する)をPDCCH上で送信する。
 ステップS32において、UE100は、「DCIフォーマット1_0 with RA-RNTI」をモニタすることで「DCIフォーマット1_0 with RA-RNTI」を受信(検出)し、「DCIフォーマット1_0 with RA-RNTI」からPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS33において、基地局200は、「DCIフォーマット1_0 with RA-RNTI」でスケジュールされたPDSCH上でRA応答を送信する。UE100は、「DCIフォーマット1_0 with RA-RNTI」でスケジュールされたPDSCH上でRA応答を受信(取得)する。
 図9は、実施形態に係る移動通信システム1における「DCIフォーマット1_0 with P-RNTI」、「DCIフォーマット1_0 with SI-RNTI」、及び「DCIフォーマット1_0 with RA-RNTI」を示す図である。
 図9に示すように、このようなDCIフォーマット1_0は、周波数ドメインにおけるPDSCHのリソース割り当てを示す「Frequency domain resource assignment」フィールドと、時間ドメインにおけるPDSCHのリソース割り当てを示す「Time domain resource assignment」フィールドとを含む。
 「Time domain resource assignment」フィールドのビット数(ビット長)は、4ビット固定である。一方、「Frequency domain resource assignment」フィールドのビット数(ビット長)は、CORESET#0のサイズ
Figure JPOXMLDOC01-appb-M000001
に応じて可変である。ここで、当該CORESET#0サイズは、リソースブロック数(RB数)で表現される。
 (5)eRedCap UEの概要
 次に、図10及び図11を参照して、実施形態に係る移動通信システム1におけるeRedCap UEの概要について説明する。
 3GPP技術仕様のリリース17において、産業用センサ、監視カメラ、及びウェアラブル等のユースケースに適した低性能のUEタイプとしてRedCap UEが導入されている。RedCap UEは、「Reduced capability NR device」とも称される。RedCap UEは、一般的なUEタイプに比べて装置コスト及び複雑さが軽減されたUEタイプ(端末タイプ)である。RedCap UEは、IoT向けにミドルレンジの性能・価格を有し、例えば、一般的なUEタイプに比べて、無線通信に用いる最大帯域幅が狭く設定されていたり、受信機の数が少なかったりする。図10に示すように、FR1について、RedCap UEが対応可能な帯域幅(すなわち、RedCap UEによってサポートされる最大帯域幅)は、20MHzであってよい。
 3GPP技術仕様のリリース18において、RedCap UEよりもさらに複雑さが軽減された新たなUEタイプを導入することが検討されている。このような新たなUEタイプは、リリース17で導入されたRedCap UEと、LTEのLPWAとの間の性能であることが想定されている。このような新たなUEタイプは、「eRedCap UE」と称される。eRedCap UEは、RedCap UEに比べて無線通信に用いる最大帯域幅が狭い。eRedCap UEは、少なくともPDSCHについて対応可能な周波数帯域幅が所定帯域幅に低減された所定UEタイプ(所定端末タイプ)に相当する。
 eRedCap UEについては、(a)FR1における対応可能な周波数帯域幅を所定帯域幅(例えば、5MHz)に低減すること、及び、(b)ピークデータレートを削減するためにFR1におけるデータチャネルに対する周波数帯域幅を低減することが提案されている。ここでデータチャネルとは、データを伝送する物理チャネル、すなわち、PDSCH及び/又はPUSCHをいう。なお、周波数帯域幅は単に「帯域幅」とも称される。以下において、RedCap UEの最大帯域幅、特に、RedCap UEのデータチャネルの最大帯域幅を「所定帯域幅」と称する。
 図10に示すように、上記(a)の方法では、UE100のRF部及びBB部の両方について対応可能な帯域幅(すなわち、最大帯域幅)を低減し、RF部及びBB部の複雑さを軽減することが可能である。一方、図11に示すように、上記(b)の方法では、主にUE100のBB部について対応可能な帯域幅を低減し、BB部の複雑さを軽減することが可能である。図11の例では、UE100のRF部が対応可能な周波数帯域幅である最大RF帯域幅が20MHzであって、UE100のBB部が対応可能な周波数帯域幅(所定帯域幅)である最大BB帯域幅が5MHzである一例を示している。なお、最大BB帯域幅は5MHzに限定されず、例えば最大BB帯域幅を3MHz又は4MHzにも設定可能であってもよい。このような5MHz(或いは、3MHz又は4MHz)の帯域幅は、所定帯域幅としてeRedCap UE向けのBWPとして設定されてもよい。その場合、当該帯域幅は、「BWP of eRedCap」と称されてもよい。
 以下の実施形態では、eRedCap UEについて上記(a)の方法及び上記(b)の方法のいずれが採用されてよいが、主として上記(b)の方法が採用されることを主として想定する。
 eRedCap UEが導入される場合、PDSCH上で複数の端末に共通で送信される共通メッセージの送信に対する制限が生じる懸念がある。5Gシステムでは、能力の異なる複数UEタイプを収容する必要がある。複数UEタイプには、リリース15、16、17、及び18の一般的なUEタイプと、リリース17のRedCap UEと、リリース18のeRedCap UEとが含まれる。ここで、複数のUE100に対する共通メッセージ(Common message)が、eRedCap UEに合わせて送信されることは、スケジューリングに対する制限になり得る。例えば、システム情報メッセージ(例えば、SIB1)が、eRedCap UEに合わせて例えば5MHzの帯域幅で送信されることは、PDSCHのスケジューリングに対する制限になる。
 また、現状のPDSCHの割り当て(スケジューリング)の仕組みでは、eRedCap UEが下りリンクデータを適切に受信できない懸念がある。上述のように、CORESET#0のサイズに基づくPDSCHのリソース割り当て方法では、データチャネルに対して例えば5MHzの帯域幅を有するUE100は、PDSCHのリソース割り当てを示す「Frequency domain resource assignment」フィールドのビット数を特定することができず、下りリンクデータを適切に受信できない。より詳細には、P-RNTI、SI-RNTI、又はRA-RNTIを用いてスケジューリングされたPDSCHのリソース割り当てのためのビット数を特定することができず、DCIを適切にデコードできない。
 さらに、eRedCap UEについては、モビリティを適切にサポートすることができない懸念がある。例えば、eRedCap UEがハンドオーバ後にターゲットセルから下りリンクデータ(特に、共通メッセージ)を適切に受信できない懸念がある。より詳細には、eRedCap UEは、ハンドオーバを実行した後に、どの帯域幅でPDSCHを受信したらいいのか分からずに、PDSCHがマップされる周波数帯域を特定できない。
 (6)UEの構成
 次に、図12を参照して、実施形態に係るUE100の構成について説明する。UE100は、eRedCap UEであってもよい。UE100は、通信部110と、制御部120とを有する。
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナ及びRF回路は、ベースバンド信号を無線信号(RF信号)に変換し、当該無線信号を空間に放射する。また、アンテナ及びRF回路は、空間における無線信号を受信し、当該無線信号をベースバンド信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行い、例えば、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 UE100は、少なくともPDSCHについて対応可能な周波数帯域幅が所定帯域幅(例えば、5MHz)に低減されたeRedCap UEであってもよい。当該UE100(eRedCap UE)において、受信部112は、MIBをPBCH上で基地局200から受信する。制御部120は、当該MIBに基づいて、複数のUE100に共通で用いる共通メッセージをPDSCH上で基地局200から取得する。当該MIBは、eRedCap UE向けに規定された第2の共通メッセージが基地局200から提供される否かを示すパラメータを含む。ここで、第2の共通メッセージは、eRedCap UE以外のUEタイプ向けに規定された第1の共通メッセージとは独立に規定された共通メッセージである。これにより、eRedCap UEとそれ以外とで独立した共通メッセージの伝送が可能になる。そのため、基地局200は、eRedCap UE以外のUEタイプに対して第1の共通メッセージを従来と同様に送信することが可能でありつつも、eRedCap UE向けの第2の共通メッセージを例えば5MHzの帯域幅内で送信することも可能である。よって、PDSCHのスケジューリングに対する制限を緩和可能である。なお、eRedCap UE以外のUEタイプには、リリース15、16、17、及び18の一般的なUEタイプと、リリース17のRedCap UEとが含まれる。以下において、eRedCap UE以外のUEタイプを「Non-eRedCap UE」とも称する。
 なお、「第2の共通メッセージが基地局200から提供される」とは、「第2の共通メッセージが基地局200からブロードキャストされる」ことであってもよい。当該「第2の共通メッセージが基地局200から提供される」とは、「第2の共通メッセージが基地局200によってスケジューリングされる」ことであってもよい。
 eRedCap UEであるUE100において、受信部112は、PDSCHの周波数リソースの割り当てを示す周波数リソース割当フィールド(すなわち、「Frequency domain resource assignment」フィールド)を含むDCIをPDCCH上で基地局200から受信する。制御部120は、当該PDCCHに対応する制御リソースセット(CORESET#0)を構成する第1のリソースブロック数(すなわち、CORESET#0のサイズ)にかかわらず、当該所定帯域幅(例えば、5MHz)以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、周波数リソース割当フィールドのビット数を特定する。これにより、eRedCap UEが周波数リソース割当フィールドのビット数を適切に決定することが可能になり、下りリンクデータ(特に、共通メッセージ)を適切に受信可能になる。より詳細には、P-RNTI、SI-RNTI、又はRA-RNTIを用いてスケジューリングされたPDSCHのリソース割り当てのためのビット数を適切に決定することができ、共通メッセージをスケジューリングするためのDCIを適切にデコードできる。
 eRedCap UEであるUE100において、受信部112は、ターゲットセルへのハンドオーバを指示するメッセージを基地局200から受信する。制御部120は、当該メッセージに基づいて、複数のUE100に共通で用いる共通メッセージをPDSCH上でターゲットセルから取得する。当該メッセージは、eRedCap UE以外のUEタイプ(Non-eRedCap UE)向けに規定された第1の共通メッセージとは独立にeRedCap UE向けに規定された第2の共通メッセージを、ターゲットセルからUE100が取得するためのパラメータを含む。これにより、eRedCap UEがハンドオーバ後にターゲットセルから下りリンクデータ(特に、共通メッセージ)を適切に受信できるようになり、eRedCap UEについてモビリティを適切にサポートすることができる。
 第2の共通メッセージは、eRedCap UEに固有(専用)の共通メッセージであってもよい。第2の共通メッセージは、eRedCap specific common messageと称されてもよい。或いは、第2の共通メッセージは、eRedCap UEに加えて、Non-eRedCap UEも受信可能な共通メッセージであってもよい。第2の共通メッセージは、基地局200から所定帯域幅(例えば、5MHz)以下の周波数帯域幅で送信される共通メッセージであればよい。以下においては、第2の共通メッセージがeRedCap UEに固有(専用)の共通メッセージである一例を主として想定する。
 (7)基地局の構成
 次に、図13を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
 通信部210は、無線信号をUE100と送受信することによってUE100との無線通信を行う。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナ及びRF回路は、ベースバンド信号を無線信号(RF信号)に変換し、当該無線信号を空間に放射する。また、アンテナ及びRF回路は、空間における無線信号を受信し、当該無線信号をベースバンド信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行い、例えば、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 このように構成された基地局200において、送信部211は、MIBをPBCH上で送信する。制御部230は、当該MIBに基づいて、複数のUE100に共通で用いる共通メッセージをPDSCH上で複数のUE100に提供する。当該MIBは、eRedCap UE以外のUEタイプ(Non-eRedCap UE)向けに規定された第1の共通メッセージとは独立にeRedCap UE向けに規定された第2の共通メッセージが基地局200から提供される否かを示すパラメータを含む。これにより、基地局200は、eRedCap UEとそれ以外とで独立した共通メッセージの伝送が可能になる。そのため、基地局200は、eRedCap UE以外のUEタイプに対して第1の共通メッセージを従来と同様に送信することが可能でありつつも、eRedCap UE向けの第2の共通メッセージを例えば5MHzの帯域幅内で送信することも可能である。よって、PDSCHのスケジューリングに対する制限を緩和可能である。
 送信部211は、少なくともPDSCHについて対応可能な周波数帯域幅が所定帯域幅(例えば、5MHz)に低減されたUE100(eRedCap UE)に対して、ターゲットセルへのハンドオーバを指示するメッセージを送信する。当該メッセージは、eRedCap UE以外のUEタイプ(Non-eRedCap UE)向けに規定された第1の共通メッセージとは独立にeRedCap UE向けに規定された第2の共通メッセージを、ターゲットセルから当該UE100が取得するためのパラメータを含む。これにより、eRedCap UEがハンドオーバ後にターゲットセルから下りリンクデータ(特に、共通メッセージ)を適切に受信できるようになり、eRedCap UEについてモビリティを適切にサポートすることができる。
 基地局200(送信部211)は、第2の共通メッセージの送信に対して、PDSCHにおける繰り返し送信(repetition)を適用してもよい。繰り返し送信は、同じ信号を基地局200が繰り返し送信することで、基地局200の通信可能範囲(すなわち、セルのカバレッジ)を拡張可能な技術である。
 (8)eRedCap UE向けのイニシャルアクセス方法
 次に、図14乃至図17を参照して、実施形態に係るeRedCap UE向けのイニシャルアクセス方法について説明する。
 イニシャルアクセス時に用いる共通メッセージは、主としてシステム情報メッセージであってもよい。そのため、第1の共通メッセージは、Non-eRedCap UE向けに規定された第1のシステム情報メッセージであってもよい。第2の共通メッセージは、eRedCap UE向けに規定された第2のシステム情報メッセージであってもよい。第2のシステム情報メッセージは、基地局200から所定帯域幅(例えば、5MHz)以下の周波数帯域幅で送信されるシステム情報メッセージであってもよい。これにより、eRedCap UEとそれ以外とで独立したシステム情報メッセージの伝送が可能になる。そのため、基地局200は、eRedCap UE以外のUEタイプに対して第1のシステム情報メッセージを従来と同様に送信することが可能でありつつも、eRedCap UE向けの第2のシステム情報メッセージを例えば5MHzの帯域幅内で送信することも可能である。
 システム情報メッセージは、SIB1を含む。第1のシステム情報メッセージは、Non-eRedCap UE向けに規定された第1の他のシステム情報メッセージ(以下、「第1のSIBx」と称する)のスケジューリングを示す第1のSIB1を含む。一方、第2のシステム情報メッセージは、eRedCap UE向けに規定された第2の他のシステム情報メッセージ(以下、「第2のSIBx」と称する)のスケジューリングを示す第2のSIB1を含む。これにより、Non-eRedCap UE向けに第1のSIB1によって第1のSIBxのスケジューリングを示し、且つ、eRedCap UE向けに第2のSIB1によって第2のSIBxのスケジューリングを示すことが可能である。
 基地局200の送信部211は、MIBをPBCH上で送信する。当該MIBは、Non-eRedCap UE向けに規定された第1のSIB1とは独立にeRedCap UE向けに規定された第2のSIB1が基地局200から提供される否かを示すパラメータ(以下、「所定パラメータ」と称する)を含む。これにより、eRedCap UEであるUE100は、MIB中の所定パラメータに基づいて、第2のSIB1が基地局200から提供される否かを判定可能である。
 具体的には、eRedCap UEであるUE100の制御部120は、MIBに含まれる所定パラメータに基づいて第2のSIB1を取得し、当該取得した第2のSIB1に基づいて第2のSIBxを取得する。第2のSIBxは、eRedCap UE向けのSIB1以外のSIBであり、すなわち、eRedCap UE向けのSIB2,SIB3,SIB4,・・・の少なくともいずれか1つである。これにより、eRedCap UEであるUE100は、第2のSIBxを適切に取得することが可能である。
 図14は、実施形態に係る基地局200におけるMIB送信動作を示す図である。
 ステップS101において、基地局200の制御部230は、第2のSIB1を提供するか否かを判定する。
 第2のSIB1を提供すると判定された場合(ステップS101:YES)、ステップS102において、基地局200の制御部230は、MIB中の所定パラメータに第1の値(例えば、“1”)をセットする。一方、第2のSIB1を提供しないと判定された場合(ステップS101:NO)、ステップS103において、基地局200の制御部230は、MIB中の所定パラメータに第2の値(例えば、“0”)をセットする。なお、所定パラメータは、基地局200に対するeRedCap UEのアクセス可否(収容可否)を示すパラメータであるとみなすこともできる。
 ステップS104において、基地局200の送信部211は、MIBをPBCH上で送信する。なお、PBCH(MIB)は、SSBの一部を構成する。
 また、MIBは、所定パラメータ以外のパラメータとして、上述のcontrolResourceSetZero及びsearchSpaceZeroをさらに含む。controlResourceSetZero(第1のインデックス)及びsearchSpaceZero(第2のインデックス)のそれぞれは、0から15までの値(インデックス値)である。具体的には、controlResourceSetZero(第1のインデックス)は、SIB1のスケジューリングに用いるPDCCHに対応する制御リソースセットであるCORESET#0の設定を示す。searchSpaceZero(第2のインデックス)は、SIB1のスケジューリングに用いるPDCCHに対応する共通サーチスペースであるサーチスペースセット#0の設定を示す。
 図15は、実施形態に係るUE100(eRedCap UE)におけるMIB受信動作を示す図である。
 ステップS111において、UE100の受信部112は、MIBをPBCH上で基地局200から受信する。
 ステップS112において、UE100の制御部120は、MIB中の所定パラメータを取得する。
 ステップS113において、UE100の制御部120は、MIB中の所定パラメータに第1の値(例えば、“1”)がセットされているか否かを判定する。
 MIB中の所定パラメータに第1の値(例えば、“1”)がセットされていると判定された場合(ステップS113:YES)、ステップS114において、UE100の制御部120は、第2のSIB1が基地局200から提供されると判定し、第2のSIB1を基地局200から取得する。すなわち、UE100の制御部120は、第2のSIB1(第2の共通メッセージ)が基地局200から提供されることを所定パラメータが示すことに応じて、第2のSIB1(第2の共通メッセージ)を基地局200から取得する。
 一方、MIB中の所定パラメータに第2の値(例えば、“0”)がセットされていると判定された場合(ステップS113:NO)、ステップS115において、UE100の制御部120は、第2のSIB1が基地局200から提供されないと判定する。すなわち、UE100の制御部120は、第2のSIB1(第2の共通メッセージ)が基地局200から提供されないことを所定パラメータが示すことに応じて、第2のSIB1(第2の共通メッセージ)が基地局200から提供されないと判定する。
 なお、eRedCap UEであるUE100の制御部120は、MIB中の所定パラメータに第1の値(例えば、“1”)がセットされていると判定された場合(ステップS113:YES)、MIB中のcontrolResourceSetZero(第1のインデックス)及びsearchSpaceZero(第2のインデックス)に基づいて、eRedCap UE向けのCORESET#0及び/又はeRedCap UE向けのサーチスペースセット#0を特定してもよい。すなわち、eRedCap UEであるUE100の制御部120は、第2のSIB1(第2の共通メッセージ)が基地局200から提供されることをMIB中の所定パラメータが示すことに応じて、eRedCap UE向けに規定されたCORESET#0の設定をMIB中のcontrolResourceSetZero(第1のインデックス)に基づいて特定する。また、eRedCap UEであるUE100の制御部120は、第2のSIB1(第2の共通メッセージ)が基地局200から提供されることをMIB中の所定パラメータが示すことに応じて、eRedCap UE向けに規定されたサーチスペースセット#0の設定をMIB中のsearchSpaceZero(第2のインデックス)に基づいて特定する。
 ここで、eRedCap UEであるUE100は、図4に示すテーブル及び図5に示すテーブルとは異なるテーブル(すなわち、eRedCap UE向けに規定されたテーブル)を用いて、eRedCap UE向けのCORESET#0及び/又はeRedCap UE向けのサーチスペースセット#0を特定してもよい。図16は、実施形態に係るテーブル構成例を示す図である。
 図16に示すように、Non-eRedCap UE100aは、図4に示す第1のcontrolResourceSetZeroテーブルと、図5に示す第1のsearchSpaceZeroテーブルとを保持する。第1のcontrolResourceSetZeroテーブルは、MIB中のcontrolResourceSetZero(第1のインデックス)から、対応するCORESET#0パラメータ(CORESET#0設定)を特定するためのテーブルである。第1のsearchSpaceZeroテーブルは、MIB中のsearchSpaceZero(第2のインデックス)から、対応するサーチスペースセット#0パラメータ(サーチスペースセット#0設定)を特定するためのテーブルである。
 一方、eRedCap UE100bは、第1のcontrolResourceSetZeroテーブルと異なる第2のcontrolResourceSetZeroテーブルと、第1のsearchSpaceZeroテーブルと異なる第2のsearchSpaceZeroテーブルとを保持する。第2のcontrolResourceSetZeroテーブルは、MIB中のcontrolResourceSetZero(第1のインデックス)から、対応するCORESET#0パラメータ(CORESET#0設定)、具体的には、eRedCap UE向けのCORESET#0パラメータを特定するためのテーブルである。第2のsearchSpaceZeroテーブルは、MIB中のsearchSpaceZero(第2のインデックス)から、対応するサーチスペースセット#0パラメータ(サーチスペースセット#0設定)、具体的には、eRedCap UE向けのサーチスペースセット#0パラメータを特定するためのテーブルである。
 このように、予め規定されたCORESET#0の設定として、Non-eRedCap UE向けに規定された第1のCORESET設定(第1のcontrolResourceSetZeroテーブル)と、eRedCap UE向けに規定された第2のCORESET設定(第2のcontrolResourceSetZeroテーブル)とのそれぞれが、MIB中のcontrolResourceSetZero(第1のインデックス)に対応付けられている。eRedCap UE100bの制御部120は、第2のcontrolResourceSetZeroテーブルを用いて、MIB中のcontrolResourceSetZero(第1のインデックス)に対応するCORESET#0設定を特定する。
 また、予め規定されたサーチスペースセット#0の設定として、Non-eRedCap UE向けに規定された第1のサーチスペースセット#0設定(第1のsearchSpaceZeroテーブル)と、eRedCap UE向けに規定された第2のサーチスペースセット#0設定(第2のsearchSpaceZeroテーブル)とのそれぞれが、MIB中のsearchSpaceZero(第2のインデックス)に対応付けられている。eRedCap UE100bの制御部120は、第2のsearchSpaceZeroテーブルを用いて、MIB中のsearchSpaceZero(第2のインデックス)に対応するサーチスペースセット#0設定を特定する。
 図17は、実施形態に係るeRedCap UEのイニシャルアクセス方法のシーケンス例を示す図である。
 ステップS121において、基地局200は、第1の値(例えば、“1”)がセットされた所定パラメータと、第1のインデックス(controlResourceSetZero)と、第2のインデックス(searchSpaceZero)とを含むMIBを送信する。MIBを受信したUE100(eRedCap UE)は、所定パラメータに基づいて第2のSIB1が基地局200から提供されると判定する。
 ステップS122において、UE100(eRedCap UE)は、第2のcontrolResourceSetZeroテーブルを用いて、MIB中の第1のインデックス(controlResourceSetZero)に対応するCORESET#0設定を特定する。また、UE100(eRedCap UE)は、第2のsearchSpaceZeroテーブルを用いて、MIB中の第2のインデックス(searchSpaceZero)に対応するサーチスペースセット#0設定を特定する。
 ステップS123において、UE100(eRedCap UE)は、ステップS122で特定したCORESET#0設定及びサーチスペースセット#0設定に基づいて、サーチスペースセット#0(Type-0 PDCCH CSS set)でPDCCH候補をモニタする。
 ステップS124において、基地局200は、SI-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCIをPDCCH上で送信する。
 ステップS125において、UE100(eRedCap UE)は、当該DCIを受信(検出)し、当該DCIからPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS126において、基地局200は、「DCIフォーマット1_0 with SI-RNTI」でスケジュールされたPDSCH上で第2のSIB1を送信する。UE100(eRedCap UE)は、第2のSIB1を受信(取得)する。
 ステップS127において、UE100(eRedCap UE)は、第2のSIB1に基づいて第2のSIBxのスケジューリングを特定する。
 ステップS128において、基地局200は、SI-RNTIによってスクランブルされたCRCが付加されたDCIフォーマット1_0のDCIをPDCCH上で送信する。
 ステップS129において、UE100(eRedCap UE)は、当該DCIを受信(検出)し、当該DCIからPDSCHのリソース割り当て(時間及び/又は周波数リソース)を特定する。
 ステップS130において、基地局200は、「DCIフォーマット1_0 with SI-RNTI」でスケジュールされたPDSCH上で第2のSIBxを送信する。UE100(eRedCap UE)は、第2のSIBxを受信(取得)する。なお、第2のSIB1によってスケジュールされる第2のSIBxは、「eRedCap specific common message」として識別されてもよい。
 基地局200は、Non-eRedCap UE向けの第1のシステム情報メッセージ(第1のSIB1及び第1のSIBx)の送信と、eRedCap UE向けの第2のシステム情報メッセージ(第2のSIB1及び第2のSIBx)の送信とを切り替えてもよい。すなわち、基地局200は、第1のシステム情報メッセージの送信と第2のシステム情報メッセージの送信とを時分割で行ってもよい。
 或いは、基地局200は、Non-eRedCap UE向けの第1のシステム情報メッセージ(第1のSIB1及び第1のSIBx)の送信と、eRedCap UE向けの第2のシステム情報メッセージ(第2のSIB1及び第2のSIBx)の送信とを並行して行ってもよい。すなわち、基地局200は、第1のシステム情報メッセージの送信と第2のシステム情報メッセージの送信との両方を同じ時間帯で行ってもよい。その場合、基地局200は、第1のシステム情報メッセージの送信に用いるDCI(PDCCH)と第2のシステム情報メッセージの送信に用いるDCI(PDCCH)とで、適用するSI-RNTIを異ならせてもよい。例えば、基地局200の送信部211は、Non-eRedCap UE向けに規定された第1のSI-RNTIとは独立にeRedCap UE向けに規定された第2のSI-RNTIを用いて、第2のシステム情報メッセージを送信してもよい。eRedCap UE向けに規定された第2のSI-RNTIは、「eRedCap specific SI-RNTI」として識別されてもよい。UE100(eRedCap UE)の制御部120は、第2のSI-RNTIを用いて、第2のシステム情報メッセージを取得してもよい。
 (9)eRedCap UE向けのPDSCHリソース割当ビット数特定方法
 次に、図18乃至図21を参照して、実施形態に係るeRedCap UE向けのPDSCHリソース割当ビット数特定方法について説明する。なお、実施形態に係るeRedCap UE向けのPDSCHリソース割当ビット数特定方法は、上述のeRedCap UE向けのイニシャルアクセス方法と組み合わせて実施してもよい。
 上述のように、複数のUE100に共通で用いる共通メッセージの送信に用いるDCI(PDCCH)は、予め規定されたRNTIが適用されるDCIフォーマット1_0(所定フォーマット)のDCIである。ここで、予め規定されたRNTIは、SI-RNTI、P-RNTI、及びRA-RNTIのうち少なくとも1つである。当該DCIは、PDSCHの周波数リソースの割り当てを示す周波数リソース割当フィールドである「Frequency domain resource assignment」フィールドを有する(図9参照)。当該PDSCH上で送信される共通メッセージは、システム情報メッセージ、ページングメッセージ、及びランダムアクセス応答のうち少なくとも1つである。
 eRedCap UEであるUE100において、受信部112は、PDSCHの周波数リソースの割り当てを示す「Frequency domain resource assignment」フィールドを含むDCIをPDCCH上で基地局200から受信する。制御部120は、当該PDCCHに対応するCORESET#0を構成する第1のリソースブロック数にかかわらず、所定帯域幅(例えば、5MHz)以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、「Frequency domain resource assignment」フィールドのビット数を特定する。
 ここで、制御部120は、図9に示す方法で「Frequency domain resource assignment」フィールドのビット数を特定する。但し、「Frequency domain resource assignment」フィールドのビット数を特定するにあたり、CORESET#0のサイズ(すなわち、第1のリソースブロック数)
Figure JPOXMLDOC01-appb-M000002
に代えて、eRedCap UE向けの第2のリソースブロック数を用いる。eRedCap UE向けの第2のリソースブロック数を第1のリソースブロック数と独立に規定することにより、PDSCHの帯域幅が低減されたeRedCap UEであっても「Frequency domain resource assignment」フィールドのビット数を適切に特定可能になる。
 実施形態では、「DCIフォーマット1_0 with P-RNTI」に含まれる「Frequency domain resource assignment」フィールド、「DCIフォーマット1_0 with SI-RNTI」に含まれる「Frequency domain resource assignment」フィールド、及び「DCIフォーマット1_0 with RA-RNTI」に含まれる「Frequency domain resource assignment」フィールドのうち、少なくとも2つに対して共通に第2のリソースブロック数が規定される。
 そして、制御部120は、特定されたビット数に基づいて、「Frequency domain resource assignment」フィールドが示すPDSCHの周波数リソースを特定する。また、制御部120は、「Time domain resource assignment」フィールドが示すPDSCHの時間リソースを特定する。受信部112は、特定された周波数リソース及び時間リソースに基づいて、PDSCH上で共通メッセージを受信する。
 (9.1)第1のPDSCHリソース割当ビット数特定方法
 図18は、実施形態に係る第1のPDSCHリソース割当ビット数特定方法を示す図である。第1のPDSCHリソース割当ビット数特定方法では、第2のリソースブロック数は、移動通信システム1の技術仕様でeRedCap UEについて予め規定されたリソースブロック数である。
 ステップS201において、UE100(eRedCap UE)の受信部112は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」をPDCCH上で基地局200から受信する。
 ステップS202において、UE100(eRedCap UE)の制御部120は、予め規定された第2のリソースブロック数に基づいて、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」中の「Frequency domain resource assignment」フィールドのビット数を特定する。例えば、第2のリソースブロック数は、25リソースブロック(又は24リソースブロック)、或いは、12リソースブロック(又は11リソースブロック)であることが予め規定される。
 UE100(eRedCap UE)の制御部120は、共通メッセージに対するサブキャリア間隔(SCS)に基づいて第2のリソースブロック数を決定してもよい。例えば、サブキャリア間隔(SCS)ごとに当該サブキャリア間隔(SCS)と第2のリソースブロック数との対応関係が技術仕様で予め規定される。UE100(eRedCap UE)の受信部112は、共通メッセージに対するサブキャリア間隔(SCS)を示すパラメータを含むMIBをPBCH上で基地局200から受信する。当該パラメータは、MIBに含まれるsubCarrierSpacingCommonであってもよい。subCarrierSpacingCommonは、システム情報メッセージ、イニシャルアクセスにおけるMsg.2(ランダムアクセス応答)/Msg.4、及びページングメッセージに対するサブキャリア間隔(SCS)を設定するパラメータである。UE100(eRedCap UE)の制御部120は、当該パラメータが示すサブキャリア間隔(SCS)と、技術仕様で予め規定された対応関係とに基づいて、第2のリソースブロック数を決定する。図19は、サブキャリア間隔(SCS)と第2のリソースブロック数との対応関係の一例を示す図である。図19に示すように、第2のリソースブロック数は、SCS=15kHzの場合には25リソースブロック(又は24リソースブロック)であり、SCS=30kHzの場合には12リソースブロック(又は11リソースブロック)であることが規定されてもよい。
 ステップS203において、UE100(eRedCap UE)の制御部120は、ステップS202で特定されたビット数に基づいて、「Frequency domain resource assignment」フィールドが示すPDSCHの周波数リソースを特定する。また、制御部120は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」中の「Time domain resource assignment」フィールドが示すPDSCHの時間リソースを特定する。
 ステップS204において、UE100(eRedCap UE)の受信部112は、ステップS203で特定された周波数リソース及び時間リソースに基づいて、PDSCH上で共通メッセージを受信する。具体的には、UE100(eRedCap UE)の受信部112は、スケジュールされたPDSCHで、ページングメッセージ、システム情報メッセージ(例えば、SIB1)、及び/又はランダムアクセス応答を受信する(すなわち、eRedCap specific common messageを受信する)。
 (9.2)第2のPDSCHリソース割当ビット数特定方法
 図20は、実施形態に係る第2のPDSCHリソース割当ビット数特定方法を示す図である。第2のPDSCHリソース割当ビット数特定方法では、第2のリソースブロック数は、MIB中のパラメータ(インデックス)に応じて決定されるリソースブロック数である。当該パラメータとしては、例えば、MIB中のpdcch-ConfigSIB1中のパラメータ又はMIB中のspare bitが用いられてもよい。以下において、当該パラメータとしてMIB中のpdcch-ConfigSIB1中のパラメータを用いる一例について主として説明する。
 ステップS211において、基地局200の送信部211は、第1のインデックス(controlResourceSetZero)と、第2のインデックス(searchSpaceZero)とを含むMIBを送信する。MIBは、共通メッセージに対するサブキャリア間隔(SCS)を示すパラメータ(subCarrierSpacingCommon)をさらに含んでもよい。第1のインデックス(controlResourceSetZero)及び/又は第2のインデックス(searchSpaceZero)は、第2のリソースブロック数を決定するために用いられる。すなわち、UE100(eRedCap UE)の受信部112は、第2のリソースブロック数を決定するためのインデックスを含むMIBをPBCH上で基地局200から受信する。
 ステップS212において、UE100(eRedCap UE)の制御部120は、MIB中の第1のインデックス(controlResourceSetZero)に対応するCORESET#0設定を特定し、MIB中の第2のインデックス(searchSpaceZero)に対応するサーチスペースセット#0設定を特定する。UE100(eRedCap UE)の制御部120は、第1のインデックス(controlResourceSetZero)及び/又は第2のインデックス(searchSpaceZero)に基づいて第2のリソースブロック数を決定する。具体的には、UE100(eRedCap UE)の制御部120は、当該インデックスに基づいて、第1のリソースブロック数及び第2のリソースブロック数のそれぞれを決定する。第1のリソースブロック数は、CORESET#0設定の一部である。一方、第2のリソースブロック数は、「Frequency domain resource assignment」フィールドのビット数を特定するために用いられる。
 ここで、UE100(eRedCap UE)の制御部120は、共通メッセージに対するサブキャリア間隔(SCS)にさらに基づいて、第2のリソースブロック数を決定してもよい。当該サブキャリア間隔(SCS)は、例えばsubCarrierSpacingCommonに応じて定められる。具体的には、サブキャリア間隔(SCS)ごとに当該サブキャリア間隔(SCS)と第2のリソースブロック数との対応関係が技術仕様で予め規定される。UE100(eRedCap UE)の制御部120は、第1のインデックス(controlResourceSetZero)及び/又は第2のインデックス(searchSpaceZero)と、subCarrierSpacingCommonが示すサブキャリア間隔(SCS)と、予め規定された対応関係とに基づいて、第2のリソースブロック数を決定する。
 図21は、第1のインデックス(controlResourceSetZero)と第2のリソースブロック数とを対応付ける一例を示す図である。UE100(eRedCap UE)の制御部120は、図21に示すようなテーブルを保持しており、第1のインデックス(controlResourceSetZero)の値に対して、第1のリソースブロック数とは独立に、第2のリソースブロック数が対応付けられている。第2のリソースブロック数は、所定帯域幅を3MHzとする場合には15又は8リソースブロックであり、所定帯域幅を4MHzとする場合には20又は10リソースブロックであり、所定帯域幅を5MHzとする場合には25又は12リソースブロックである。第2のリソースブロック数は、SCS=15kHzの場合には25リソースブロック(又は24リソースブロック)であり、SCS=30kHzの場合には12リソースブロック(又は11リソースブロック)であることが規定されてもよい。
 図21に示すcontrolResourceSetZeroテーブルは、最大チャネル帯域幅が5MHz又は10MHzであって、且つ、SSB及びPDCCHのそれぞれのサブキャリア間隔(SCS)が15kHzである場合のテーブルである。SSB及びPDCCHのそれぞれのサブキャリア間隔(SCS)が15kHzではない場合、図21とは異なるcontrolResourceSetZeroテーブルを用いることになる。図21とは異なるcontrolResourceSetZeroテーブルにおいても、controlResourceSetZeroの値に対して第2のリソースブロック数が対応付けられるものとする。そのため、UE100(eRedCap UE)の制御部120は、SSBに対するサブキャリア間隔(SCS)及び/又はPDCCHに対するサブキャリア間隔(SCS)にさらに基づいて、第2のリソースブロック数を決定する。ここで、基地局200は、RRCメッセージ(ServingCellConfigCommon)に含まれるパラメータ(ssbSubcarrierSpacing)に基づいて、SSBのサブキャリア間隔(SCS)を設定してもよい。また、基地局200は、RRCメッセージ(BWP-DownlinkCommon)に含まれるパラメータ(subcarrierSpacing)に基づいて、PDCCH(すなわち、DL BWP)のサブキャリア間隔(SCS)を設定してもよい。
 なお、図21は、controlResourceSetZeroに対して第2のリソースブロック数を対応付ける一例であるが、同様な方法により、searchSpaceZeroに対して第2のリソースブロック数を対応付けてもよい。
 図20に戻り、ステップS213において、基地局200の送信部211は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」をPDCCH上で送信する。UE100(eRedCap UE)の受信部112は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」をPDCCH上で基地局200から受信する。ここで、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」は、共通メッセージに対する繰り返し送信回数を示すフィールドをさらに含んでもよい。これにより、UE100(eRedCap UE)が共通メッセージに対する繰り返し送信回数を特定可能になる。
 ステップS214において、UE100(eRedCap UE)の制御部120は、ステップS212で決定した第2のリソースブロック数に基づいて、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」中の「Frequency domain resource assignment」フィールドのビット数を特定する。
 ステップS215において、UE100(eRedCap UE)の制御部120は、ステップS214で特定されたビット数に基づいて、「Frequency domain resource assignment」フィールドが示すPDSCHの周波数リソースを特定する。また、制御部120は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」中の「Time domain resource assignment」フィールドが示すPDSCHの時間リソースを特定する。さらに、制御部120は、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」が繰り返し送信回数を示すフィールドを含む場合、当該フィールドに基づいて繰り返し送信回数を特定する。
 ステップS216において、UE100(eRedCap UE)の受信部112は、ステップS215で特定された周波数リソース及び時間リソースに基づいて、PDSCH上で共通メッセージを受信する。具体的には、UE100(eRedCap UE)の受信部112は、スケジュールされたPDSCHで、ページングメッセージ、システム情報メッセージ(例えば、SIB1)、及び/又はランダムアクセス応答を受信する(すなわち、eRedCap specific common messageを受信する)。
 (10)eRedCap UE向けのハンドオーバ方法
 次に、図22及び図23を参照して、実施形態に係るeRedCap UE向けのハンドオーバ方法について説明する。なお、実施形態に係るeRedCap UE向けのハンドオーバ方法は、上述のeRedCap UE向けのイニシャルアクセス方法及び/又は上述のeRedCap UE向けのPDSCHリソース割当ビット数特定方法と組み合わせて実施してもよい。
 図22は、実施形態に係るeRedCap UE向けのハンドオーバ方法の概要を説明するための図である。図22では、ソースセルを管理する基地局200aとターゲットセルを管理する基地局200bとが異なる一例を示しているが、ソースセル及びターゲットセルが同じ基地局200により管理されていてもよい。
 ソースセルを管理する基地局200aの送信部211は、UE100(eRedCap UE)に対して、ターゲットセルへのハンドオーバを指示するメッセージを送信する。当該メッセージは、RRCメッセージであって、例えば、reocnfigurationWithSyncを情報要素として含むRRCReconfigurationメッセージである。reocnfigurationWithSyncは、ターゲットセルに対する同期再構成のためのパラメータである。UE100(eRedCap UE)の受信部112は、ターゲットセルへのハンドオーバを指示するメッセージを基地局200a(ソースセル)から受信する。UE100(eRedCap UE)の制御部120は、当該メッセージに基づいて、複数のUE100に共通で用いる共通メッセージをPDSCH上で基地局200b(ターゲットセル)から取得する。当該メッセージは、eRedCap UE向けに規定された第2の共通メッセージ(すなわち、eRedCap specific common message)を、ターゲットセルからUE100が取得するためのパラメータを含む。これにより、UE100(eRedCap UE)は、ターゲットセルとの通信を適切に行うことが可能になる。例えば、eRedCap UEがハンドオーバ後にターゲットセルから下りリンクデータ(特に、共通メッセージ)を適切に受信できるようになり、eRedCap UEについてモビリティを適切にサポートすることができる。
 上述のように、第2の共通メッセージは、ターゲットセルから所定帯域幅(例えば、5MHz)以下の周波数帯域幅で送信される共通メッセージであり、Non-eRedCap UE向けに規定された第1の共通メッセージとは異なる。共通メッセージがシステム情報メッセージであって、第1の共通メッセージがNon-eRedCap UE向けに規定された第1のシステム情報メッセージであり、第2の共通メッセージがeRedCap UE向けに規定された第2のシステム情報メッセージであってもよい。
 図23は、実施形態に係るeRedCap UE向けのハンドオーバ方法の一例を示す図である。
 ステップS301において、ソースセルを管理する基地局200aの送信部211は、reocnfigurationWithSyncを情報要素として含むRRCReconfigurationメッセージをUE100(eRedCap UE)に送信する。UE100(eRedCap UE)の受信部112は、当該RRCReconfigurationメッセージを基地局200a(ソースセル)から受信する。
 当該RRCReconfigurationメッセージは、第2の共通メッセージ(eRedCap specific common message)がターゲットセルから提供される否かを示す第1のパラメータを含んでもよい。例えば、UE100(eRedCap UE)の制御部120は、第1のパラメータの値に基づいて、ターゲットセルにおいてeRedCap specific common messageが報知/スケジュールされていることを特定してもよい。例えば、基地局200aは、第2のSIB1がターゲットセルで報知/スケジュールされるか否かを示す第1のパラメータを当該RRCReconfigurationメッセージに含めてもよい。基地局200aは、第2のSIB1がターゲットセルで報知/スケジュールされる場合、第1のパラメータに第1の値(例えば、“1”)をセットしてもよい。一方、基地局200aは、第2のSIB1がターゲットセルで報知/スケジュールされない場合、第1のパラメータに第2の値(例えば、“0”)をセットしてもよい。
 UE100(eRedCap UE)の制御部120は、第2の共通メッセージがターゲットセルから提供されることを第1のパラメータが示すことに応じて、第2の共通メッセージをターゲットセルから取得してもよい。UE100(eRedCap UE)の制御部120は、第2の共通メッセージがターゲットセルから提供されないことを第1のパラメータが示すことに応じて、第2の共通メッセージがターゲットセルから提供されないと判定してもよい。
 当該RRCReconfigurationメッセージは、Non-eRedCap UE向けに規定された第1のCORESET#0とは独立にeRedCap UE向けに規定された第2のCORESET#0がターゲットセルから提供(設定)される否かを示す第2のパラメータを含んでもよい。第2のCORESET#0は、所定帯域幅以下の帯域幅で設定されるCORESET#0であってもよい。これにより、UE100(eRedCap UE)の制御部120は、第2のパラメータに基づいて、第2のCORESET#0がターゲットセルから提供(設定)される否かを特定できる。基地局200aは、第2のCORESET#0がターゲットセルで提供される場合、第2のパラメータに第1の値(例えば、“1”)をセットしてもよい。一方、基地局200aは、第2のCORESET#0がターゲットセルで提供されない場合、第2のパラメータに第2の値(例えば、“0”)をセットしてもよい。
 当該RRCReconfigurationメッセージは、Non-eRedCap UE向けに規定された第1のサーチスペースセット#0とは独立にeRedCap UE向けに規定された第2のサーチスペースセット#0がターゲットセルから提供(設定)される否かを示す第3のパラメータを含んでもよい。第2のサーチスペースセット#0は、所定帯域幅以下の帯域幅で設定されるサーチスペースセット#0であってもよい。これにより、UE100(eRedCap UE)の制御部120は、第3のパラメータに基づいて、第2のサーチスペースセット#0がターゲットセルから提供(設定)される否かを特定できる。基地局200aは、第2のサーチスペースセット#0がターゲットセルで提供される場合、第3のパラメータに第1の値(例えば、“1”)をセットしてもよい。一方、基地局200aは、第2のサーチスペースセット#0がターゲットセルで提供されない場合、第3のパラメータに第2の値(例えば、“0”)をセットしてもよい。
 当該RRCReconfigurationメッセージは、ターゲットセルで第2の共通メッセージ(eRedCap specific common message)が送信されるPDSCHのリソースを特定するための第4のパラメータを含んでもよい。第4のパラメータは、「DCIフォーマット1_0 with P-RNTI/SI-RNTI/RA-RNTI」中の「Frequency domain resource assignment」フィールドのビット数を特定するためのパラメータであってもよい。第4のパラメータは、当該ビット数を特定するための第2のリソースブロック数を示すパラメータであってもよい。このような動作の詳細については、上述の第2のPDSCHリソース割当ビット数特定方法と同様である。
 ステップS302において、UE100(eRedCap UE)の制御部120は、ステップS301で受信したRRCReconfigurationメッセージに含まれるパラメータに基づいて、第2の共通メッセージ(eRedCap specific common message)をPDSCH上で基地局200b(ターゲットセル)から取得する。
 (11)その他の実施形態
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではない。例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや携帯、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (12)付記
 上述の実施形態に係る特徴に関して付記する。
 (付記1)
 少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置(100)であって、
 前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局(200)から受信する受信部(112)と、
 前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定する制御部(120)と、を備える
 通信装置(100)。
 (付記2)
 前記下りリンク制御情報は、予め規定されたセル無線ネットワーク一時識別子(RNTI)が適用される所定フォーマットの下りリンク制御情報であり、
 前記予め規定されたRNTIは、システム情報RNTI、ページングRNTI、及びランダムアクセスRNTIのうち少なくとも1つである
 付記1に記載の通信装置(100)。
 (付記3)
 前記周波数リソース割当フィールドは、複数の通信装置(100)に共通で用いる共通メッセージが送信される前記物理下りリンク共有チャネルの前記周波数リソースの割り当てを示し、
 前記共通メッセージは、システム情報メッセージ、ページングメッセージ、及びランダムアクセス応答のうち少なくとも1つである
 付記1又は2に記載の通信装置(100)。
 (付記4)
 前記制御部(120)は、前記特定されたビット数に基づいて、前記周波数リソース割当フィールドが示す前記周波数リソースを特定し、
 前記受信部(112)は、前記特定された周波数リソースに基づいて、前記物理下りリンク共有チャネル上で前記共通メッセージを受信する
 付記3に記載の通信装置(100)。
 (付記5)
 前記第2のリソースブロック数は、移動通信システムの技術仕様で前記所定端末タイプについて予め規定されたリソースブロック数である
 付記3又は4に記載の通信装置(100)。
 (付記6)
 前記制御部(120)は、前記共通メッセージに対するサブキャリア間隔に基づいて前記第2のリソースブロック数を決定する
 付記5に記載の通信装置(100)。
 (付記7)
 前記サブキャリア間隔ごとに当該サブキャリア間隔と前記第2のリソースブロック数との対応関係が前記技術仕様で予め規定されており、
 前記受信部(112)は、前記サブキャリア間隔を示すパラメータを含むマスタ情報ブロックを物理ブロードキャストチャネル上で前記基地局(200)から受信し、
 前記制御部(120)は、前記パラメータが示す前記サブキャリア間隔と前記対応関係とに基づいて前記第2のリソースブロック数を決定する
 付記6に記載の通信装置(100)。
 (付記8)
 前記受信部(112)は、前記第2のリソースブロック数を決定するためのインデックスを含むマスタ情報ブロックを物理ブロードキャストチャネル上で前記基地局(200)から受信し、
 前記制御部(120)は、前記インデックスに基づいて前記第2のリソースブロック数を決定する
 付記3又は4に記載の通信装置(100)。
 (付記9)
 前記制御部(120)は、前記インデックスに基づいて、前記第1のリソースブロック数及び前記第2のリソースブロック数のそれぞれを決定する
 付記8に記載の通信装置(100)。
 (付記10)
 前記インデックスは、前記制御リソースセットの設定を示す第1のインデックスである
 付記8又は9に記載の通信装置(100)。
 (付記11)
 前記インデックスは、共通サーチスペースの設定を示す第2のインデックスである
 付記8又は9に記載の通信装置(100)。
 (付記12)
 前記制御部(120)は、前記共通メッセージに対するサブキャリア間隔にさらに基づいて、前記第2のリソースブロック数を決定する
 付記8乃至11のいずれかに記載の通信装置(100)。
 (付記13)
 前記サブキャリア間隔ごとに当該サブキャリア間隔と前記第2のリソースブロック数との対応関係が前記技術仕様で予め規定されており、
 前記受信部(112)は、前記サブキャリア間隔を示すパラメータをさらに含む前記マスタ情報ブロックを前記物理ブロードキャストチャネル上で前記基地局(200)から受信し、
 前記制御部(120)は、前記インデックスと、前記パラメータが示す前記サブキャリア間隔と、前記対応関係とに基づいて、前記第2のリソースブロック数を決定する
 付記12に記載の通信装置(100)。
 (付記14)
 前記制御部(120)は、同期信号ブロック(SSB)に対するサブキャリア間隔及び/又は物理下りリンク制御チャネル(PDCCH)に対するサブキャリア間隔にさらに基づいて、前記第2のリソースブロック数を決定する
 付記12又は13に記載の通信装置(100)。
 (付記15)
 前記下りリンク制御情報は、前記共通メッセージに対する繰り返し送信回数を示すフィールドをさらに含む
 付記1乃至14のいずれかに記載の通信装置(100)。
 (付記16)
 少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置(100)で実行する通信方法であって、
 前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局(200)から受信するステップと、
 前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定するステップと、を備える
 通信方法。

Claims (16)

  1.  少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置(100)であって、
     前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局(200)から受信する受信部(112)と、
     前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定する制御部(120)と、を備える
     通信装置(100)。
  2.  前記下りリンク制御情報は、予め規定されたセル無線ネットワーク一時識別子(RNTI)が適用される所定フォーマットの下りリンク制御情報であり、
     前記予め規定されたRNTIは、システム情報RNTI、ページングRNTI、及びランダムアクセスRNTIのうち少なくとも1つである
     請求項1に記載の通信装置(100)。
  3.  前記周波数リソース割当フィールドは、複数の通信装置(100)に共通で用いる共通メッセージが送信される前記物理下りリンク共有チャネルの前記周波数リソースの割り当てを示し、
     前記共通メッセージは、システム情報メッセージ、ページングメッセージ、及びランダムアクセス応答のうち少なくとも1つである
     請求項1又は2に記載の通信装置(100)。
  4.  前記制御部(120)は、前記特定されたビット数に基づいて、前記周波数リソース割当フィールドが示す前記周波数リソースを特定し、
     前記受信部(112)は、前記特定された周波数リソースに基づいて、前記物理下りリンク共有チャネル上で前記共通メッセージを受信する
     請求項3に記載の通信装置(100)。
  5.  前記第2のリソースブロック数は、移動通信システムの技術仕様で前記所定端末タイプについて予め規定されたリソースブロック数である
     請求項3に記載の通信装置(100)。
  6.  前記制御部(120)は、前記共通メッセージに対するサブキャリア間隔に基づいて前記第2のリソースブロック数を決定する
     請求項5に記載の通信装置(100)。
  7.  前記サブキャリア間隔ごとに当該サブキャリア間隔と前記第2のリソースブロック数との対応関係が前記技術仕様で予め規定されており、
     前記受信部(112)は、前記サブキャリア間隔を示すパラメータを含むマスタ情報ブロックを物理ブロードキャストチャネル上で前記基地局(200)から受信し、
     前記制御部(120)は、前記パラメータが示す前記サブキャリア間隔と前記対応関係とに基づいて前記第2のリソースブロック数を決定する
     請求項6に記載の通信装置(100)。
  8.  前記受信部(112)は、前記第2のリソースブロック数を決定するためのインデックスを含むマスタ情報ブロックを物理ブロードキャストチャネル上で前記基地局(200)から受信し、
     前記制御部(120)は、前記インデックスに基づいて前記第2のリソースブロック数を決定する
     請求項3に記載の通信装置(100)。
  9.  前記制御部(120)は、前記インデックスに基づいて、前記第1のリソースブロック数及び前記第2のリソースブロック数のそれぞれを決定する
     請求項8に記載の通信装置(100)。
  10.  前記インデックスは、前記制御リソースセットの設定を示す第1のインデックスである
     請求項8に記載の通信装置(100)。
  11.  前記インデックスは、共通サーチスペースの設定を示す第2のインデックスである
     請求項8に記載の通信装置(100)。
  12.  前記制御部(120)は、前記共通メッセージに対するサブキャリア間隔にさらに基づいて、前記第2のリソースブロック数を決定する
     請求項8に記載の通信装置(100)。
  13.  前記サブキャリア間隔ごとに当該サブキャリア間隔と前記第2のリソースブロック数との対応関係が前記技術仕様で予め規定されており、
     前記受信部(112)は、前記サブキャリア間隔を示すパラメータをさらに含む前記マスタ情報ブロックを前記物理ブロードキャストチャネル上で前記基地局(200)から受信し、
     前記制御部(120)は、前記インデックスと、前記パラメータが示す前記サブキャリア間隔と、前記対応関係とに基づいて、前記第2のリソースブロック数を決定する
     請求項12に記載の通信装置(100)。
  14.  前記制御部(120)は、同期信号ブロック(SSB)に対するサブキャリア間隔及び/又は物理下りリンク制御チャネル(PDCCH)に対するサブキャリア間隔にさらに基づいて、前記第2のリソースブロック数を決定する
     請求項12に記載の通信装置(100)。
  15.  前記下りリンク制御情報は、前記共通メッセージに対する繰り返し送信回数を示すフィールドをさらに含む
     請求項1に記載の通信装置(100)。
  16.  少なくとも物理下りリンク共有チャネルについて対応可能な周波数帯域幅が所定帯域幅に低減された所定端末タイプの通信装置(100)で実行する通信方法であって、
     前記物理下りリンク共有チャネルの周波数リソースの割り当てを示す周波数リソース割当フィールドを含む下りリンク制御情報を物理下りリンク制御チャネル上で基地局(200)から受信するステップと、
     前記物理下りリンク制御チャネルに対応する制御リソースセットを構成する第1のリソースブロック数にかかわらず、前記所定帯域幅以下の周波数帯域幅に対応する第2のリソースブロック数に基づいて、前記周波数リソース割当フィールドのビット数を特定するステップと、を備える
     通信方法。
PCT/JP2023/019563 2022-06-06 2023-05-25 通信装置及び通信方法 WO2023238688A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022091757 2022-06-06
JP2022-091757 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238688A1 true WO2023238688A1 (ja) 2023-12-14

Family

ID=89118135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019563 WO2023238688A1 (ja) 2022-06-06 2023-05-25 通信装置及び通信方法

Country Status (1)

Country Link
WO (1) WO2023238688A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Reduced maximum UE bandwidth", 3GPP TSG RAN WG1 #106B-E R1-2108753, 2 October 2021 (2021-10-02), XP052057850 *
ZTE, SANECHIPS: "Bandwidth reduction for reduced capability NR devices", 3GPP TSG RAN WG1 #106B-E R1-2109332, 2 October 2021 (2021-10-02), XP052058285 *

Similar Documents

Publication Publication Date Title
US10212732B2 (en) Method for transmitting and receiving uplink data using contention based resources in wireless communication system and apparatus therefor
EP3437285B1 (en) Method performed by user equipment, method performed by evolved node b, user equipment, and evolved node b
EP3800815B1 (en) Devices and methods for epdcch monitoring in wireless communication systems
CN109076517B (zh) 用户设备、基站装置以及通信方法
JP6546607B2 (ja) 無線通信システムにおいて競合ベースリソースを用いたスケジューリング要求伝送方法及びそのための装置
EP2448157B1 (en) Method and apparatus for managing system information in wireless communication system supporting multi-carriers
CN111096055A (zh) 终端设备、基站设备、方法和记录介质
JP7043746B2 (ja) 通信装置、通信方法及びコンピュータプログラム
WO2015020190A1 (ja) 端末装置、基地局装置、通信方法、および集積回路
WO2016121863A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
CN107852715B (zh) 终端装置以及通信方法
WO2012097696A1 (zh) 随机接入方法、用户设备及网络设备
CN114175558A (zh) 用户装备、基站和方法
WO2023013547A1 (ja) 通信装置、基地局及び通信方法
JP6774414B2 (ja) 端末装置、および通信方法
WO2023238688A1 (ja) 通信装置及び通信方法
WO2023238689A1 (ja) 通信装置、基地局、及び通信方法
WO2023238686A1 (ja) 通信装置、基地局、及び通信方法
WO2023013548A1 (ja) 通信装置及び通信制御方法
WO2024070599A1 (ja) 端末及び基地局
US20240283620A1 (en) Communication apparatus, base station, and communication method
US20240349388A1 (en) Communication apparatus and communication method
WO2023058756A1 (ja) 通信装置、基地局及び通信方法
WO2023080036A1 (ja) 通信装置、基地局、及び通信方法
WO2023080037A1 (ja) 通信装置、基地局、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819670

Country of ref document: EP

Kind code of ref document: A1